13#ifndef ZEPHYR_INCLUDE_KERNEL_H_
14#define ZEPHYR_INCLUDE_KERNEL_H_
16#if !defined(_ASMLANGUAGE)
24#ifdef CONFIG_THREAD_RUNTIME_STATS_USE_TIMING_FUNCTIONS
42#if CONFIG_NUM_COOP_PRIORITIES + CONFIG_NUM_PREEMPT_PRIORITIES == 0
43#error Zero available thread priorities defined!
46#define K_PRIO_COOP(x) (-(CONFIG_NUM_COOP_PRIORITIES - (x)))
47#define K_PRIO_PREEMPT(x) (x)
49#define K_HIGHEST_THREAD_PRIO (-CONFIG_NUM_COOP_PRIORITIES)
50#define K_LOWEST_THREAD_PRIO CONFIG_NUM_PREEMPT_PRIORITIES
51#define K_IDLE_PRIO K_LOWEST_THREAD_PRIO
52#define K_HIGHEST_APPLICATION_THREAD_PRIO (K_HIGHEST_THREAD_PRIO)
53#define K_LOWEST_APPLICATION_THREAD_PRIO (K_LOWEST_THREAD_PRIO - 1)
56#define _POLL_EVENT_OBJ_INIT(obj) \
57 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events),
58#define _POLL_EVENT sys_dlist_t poll_events
60#define _POLL_EVENT_OBJ_INIT(obj)
170#define K_ESSENTIAL (BIT(0))
172#if defined(CONFIG_FPU_SHARING)
182#define K_FP_REGS (BIT(1))
191#define K_USER (BIT(2))
201#define K_INHERIT_PERMS (BIT(3))
212#define K_CALLBACK_STATE (BIT(4))
217#if defined(CONFIG_FPU_SHARING) && defined(CONFIG_X86_SSE)
227#define K_SSE_REGS (BIT(7))
233#if !defined(_ASMLANGUAGE)
286 void *p1,
void *p2,
void *p3,
327#define k_thread_access_grant(thread, ...) \
328 FOR_EACH_FIXED_ARG(k_object_access_grant, (;), thread, __VA_ARGS__)
350#if defined(CONFIG_INIT_STACKS) && defined(CONFIG_THREAD_STACK_INFO)
371__syscall
int k_thread_stack_space_get(
const struct k_thread *
thread,
375#if (CONFIG_HEAP_MEM_POOL_SIZE > 0)
507__syscall
k_tid_t z_current_get(
void);
509#ifdef CONFIG_THREAD_LOCAL_STORAGE
511extern __thread
k_tid_t z_tls_current;
523#ifdef CONFIG_THREAD_LOCAL_STORAGE
524 return z_tls_current;
526 return z_current_get();
572#ifdef CONFIG_SYS_CLOCK_EXISTS
583static inline k_ticks_t z_impl_k_thread_timeout_expires_ticks(
586 return z_timeout_expires(&
t->
base.timeout);
598static inline k_ticks_t z_impl_k_thread_timeout_remaining_ticks(
601 return z_timeout_remaining(&
t->
base.timeout);
613struct _static_thread_data {
616 unsigned int init_stack_size;
625 const char *init_name;
628#define Z_THREAD_INITIALIZER(thread, stack, stack_size, \
630 prio, options, delay, abort, tname) \
632 .init_thread = (thread), \
633 .init_stack = (stack), \
634 .init_stack_size = (stack_size), \
635 .init_entry = (k_thread_entry_t)entry, \
636 .init_p1 = (void *)p1, \
637 .init_p2 = (void *)p2, \
638 .init_p3 = (void *)p3, \
639 .init_prio = (prio), \
640 .init_options = (options), \
641 .init_delay = (delay), \
642 .init_abort = (abort), \
643 .init_name = STRINGIFY(tname), \
679#define K_THREAD_DEFINE(name, stack_size, \
681 prio, options, delay) \
682 K_THREAD_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
683 struct k_thread _k_thread_obj_##name; \
684 STRUCT_SECTION_ITERABLE(_static_thread_data, _k_thread_data_##name) = \
685 Z_THREAD_INITIALIZER(&_k_thread_obj_##name, \
686 _k_thread_stack_##name, stack_size, \
687 entry, p1, p2, p3, prio, options, delay, \
689 const k_tid_t name = (k_tid_t)&_k_thread_obj_##name
732#ifdef CONFIG_SCHED_DEADLINE
768#ifdef CONFIG_SCHED_CPU_MASK
940 extern bool z_sys_post_kernel;
942 return !z_sys_post_kernel;
1076#define K_NO_WAIT Z_TIMEOUT_NO_WAIT
1090#define K_NSEC(t) Z_TIMEOUT_NS(t)
1104#define K_USEC(t) Z_TIMEOUT_US(t)
1116#define K_CYC(t) Z_TIMEOUT_CYC(t)
1128#define K_TICKS(t) Z_TIMEOUT_TICKS(t)
1140#define K_MSEC(ms) Z_TIMEOUT_MS(ms)
1152#define K_SECONDS(s) K_MSEC((s) * MSEC_PER_SEC)
1164#define K_MINUTES(m) K_SECONDS((m) * 60)
1176#define K_HOURS(h) K_MINUTES((h) * 60)
1186#define K_FOREVER Z_FOREVER
1188#ifdef CONFIG_TIMEOUT_64BIT
1201#define K_TIMEOUT_ABS_TICKS(t) \
1202 Z_TIMEOUT_TICKS(Z_TICK_ABS((k_ticks_t)MAX(t, 0)))
1215#define K_TIMEOUT_ABS_MS(t) K_TIMEOUT_ABS_TICKS(k_ms_to_ticks_ceil64(t))
1229#define K_TIMEOUT_ABS_US(t) K_TIMEOUT_ABS_TICKS(k_us_to_ticks_ceil64(t))
1243#define K_TIMEOUT_ABS_NS(t) K_TIMEOUT_ABS_TICKS(k_ns_to_ticks_ceil64(t))
1257#define K_TIMEOUT_ABS_CYC(t) K_TIMEOUT_ABS_TICKS(k_cyc_to_ticks_ceil64(t))
1281 void (*expiry_fn)(
struct k_timer *
timer);
1297#define Z_TIMER_INITIALIZER(obj, expiry, stop) \
1301 .fn = z_timer_expiration_handler, \
1304 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1305 .expiry_fn = expiry, \
1364#define K_TIMER_DEFINE(name, expiry_fn, stop_fn) \
1365 STRUCT_SECTION_ITERABLE(k_timer, name) = \
1366 Z_TIMER_INITIALIZER(name, expiry_fn, stop_fn)
1455#ifdef CONFIG_SYS_CLOCK_EXISTS
1469static inline k_ticks_t z_impl_k_timer_expires_ticks(
1470 const struct k_timer *
timer)
1472 return z_timeout_expires(&
timer->timeout);
1484static inline k_ticks_t z_impl_k_timer_remaining_ticks(
1485 const struct k_timer *
timer)
1487 return z_timeout_remaining(&
timer->timeout);
1526static inline void z_impl_k_timer_user_data_set(
struct k_timer *
timer,
1541static inline void *z_impl_k_timer_user_data_get(
const struct k_timer *
timer)
1543 return timer->user_data;
1623 delta = uptime - *reftime;
1658#define Z_QUEUE_INITIALIZER(obj) \
1660 .data_q = SYS_SFLIST_STATIC_INIT(&obj.data_q), \
1662 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1663 _POLL_EVENT_OBJ_INIT(obj) \
1666extern void *z_queue_node_peek(
sys_sfnode_t *node,
bool needs_free);
1897static inline int z_impl_k_queue_is_empty(
struct k_queue *
queue)
1933#define K_QUEUE_DEFINE(name) \
1934 STRUCT_SECTION_ITERABLE(k_queue, name) = \
1935 Z_QUEUE_INITIALIZER(name)
1939#ifdef CONFIG_USERSPACE
1960struct z_futex_data {
1965#define Z_FUTEX_DATA_INITIALIZER(obj) \
1967 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q) \
2034#define Z_EVENT_INITIALIZER(obj) \
2036 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2147#define K_EVENT_DEFINE(name) \
2148 STRUCT_SECTION_ITERABLE(k_event, name) = \
2149 Z_EVENT_INITIALIZER(name);
2154 struct k_queue _queue;
2160#define Z_FIFO_INITIALIZER(obj) \
2162 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2184#define k_fifo_init(fifo) \
2186 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, init, fifo); \
2187 k_queue_init(&(fifo)->_queue); \
2188 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, init, fifo); \
2204#define k_fifo_cancel_wait(fifo) \
2206 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, cancel_wait, fifo); \
2207 k_queue_cancel_wait(&(fifo)->_queue); \
2208 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, cancel_wait, fifo); \
2225#define k_fifo_put(fifo, data) \
2227 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put, fifo, data); \
2228 k_queue_append(&(fifo)->_queue, data); \
2229 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put, fifo, data); \
2248#define k_fifo_alloc_put(fifo, data) \
2250 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, alloc_put, fifo, data); \
2251 int ret = k_queue_alloc_append(&(fifo)->_queue, data); \
2252 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, alloc_put, fifo, data, ret); \
2272#define k_fifo_put_list(fifo, head, tail) \
2274 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_list, fifo, head, tail); \
2275 k_queue_append_list(&(fifo)->_queue, head, tail); \
2276 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_list, fifo, head, tail); \
2294#define k_fifo_put_slist(fifo, list) \
2296 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_slist, fifo, list); \
2297 k_queue_merge_slist(&(fifo)->_queue, list); \
2298 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_slist, fifo, list); \
2318#define k_fifo_get(fifo, timeout) \
2320 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, get, fifo, timeout); \
2321 void *ret = k_queue_get(&(fifo)->_queue, timeout); \
2322 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, get, fifo, timeout, ret); \
2339#define k_fifo_is_empty(fifo) \
2340 k_queue_is_empty(&(fifo)->_queue)
2355#define k_fifo_peek_head(fifo) \
2357 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_head, fifo); \
2358 void *ret = k_queue_peek_head(&(fifo)->_queue); \
2359 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_head, fifo, ret); \
2374#define k_fifo_peek_tail(fifo) \
2376 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_tail, fifo); \
2377 void *ret = k_queue_peek_tail(&(fifo)->_queue); \
2378 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_tail, fifo, ret); \
2391#define K_FIFO_DEFINE(name) \
2392 STRUCT_SECTION_ITERABLE_ALTERNATE(k_queue, k_fifo, name) = \
2393 Z_FIFO_INITIALIZER(name)
2398 struct k_queue _queue;
2405#define Z_LIFO_INITIALIZER(obj) \
2407 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2429#define k_lifo_init(lifo) \
2431 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, init, lifo); \
2432 k_queue_init(&(lifo)->_queue); \
2433 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, init, lifo); \
2450#define k_lifo_put(lifo, data) \
2452 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, put, lifo, data); \
2453 k_queue_prepend(&(lifo)->_queue, data); \
2454 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, put, lifo, data); \
2473#define k_lifo_alloc_put(lifo, data) \
2475 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, alloc_put, lifo, data); \
2476 int ret = k_queue_alloc_prepend(&(lifo)->_queue, data); \
2477 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, alloc_put, lifo, data, ret); \
2498#define k_lifo_get(lifo, timeout) \
2500 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, get, lifo, timeout); \
2501 void *ret = k_queue_get(&(lifo)->_queue, timeout); \
2502 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, get, lifo, timeout, ret); \
2515#define K_LIFO_DEFINE(name) \
2516 STRUCT_SECTION_ITERABLE_ALTERNATE(k_queue, k_lifo, name) = \
2517 Z_LIFO_INITIALIZER(name)
2524#define K_STACK_FLAG_ALLOC ((uint8_t)1)
2531 stack_data_t *base, *next, *top;
2536#define Z_STACK_INITIALIZER(obj, stack_buffer, stack_num_entries) \
2538 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2539 .base = stack_buffer, \
2540 .next = stack_buffer, \
2541 .top = stack_buffer + stack_num_entries, \
2647#define K_STACK_DEFINE(name, stack_num_entries) \
2648 stack_data_t __noinit \
2649 _k_stack_buf_##name[stack_num_entries]; \
2650 STRUCT_SECTION_ITERABLE(k_stack, name) = \
2651 Z_STACK_INITIALIZER(name, _k_stack_buf_##name, \
2664extern struct k_work_q k_sys_work_q;
2696#define Z_MUTEX_INITIALIZER(obj) \
2698 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2701 .owner_orig_prio = K_LOWEST_APPLICATION_THREAD_PRIO, \
2717#define K_MUTEX_DEFINE(name) \
2718 STRUCT_SECTION_ITERABLE(k_mutex, name) = \
2719 Z_MUTEX_INITIALIZER(name)
2790#define Z_CONDVAR_INITIALIZER(obj) \
2792 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2856#define K_CONDVAR_DEFINE(name) \
2857 STRUCT_SECTION_ITERABLE(k_condvar, name) = \
2858 Z_CONDVAR_INITIALIZER(name)
2876#define Z_SEM_INITIALIZER(obj, initial_count, count_limit) \
2878 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2879 .count = initial_count, \
2880 .limit = count_limit, \
2881 _POLL_EVENT_OBJ_INIT(obj) \
2902#define K_SEM_MAX_LIMIT UINT_MAX
2920 unsigned int limit);
2983static inline unsigned int z_impl_k_sem_count_get(
struct k_sem *
sem)
2999#define K_SEM_DEFINE(name, initial_count, count_limit) \
3000 STRUCT_SECTION_ITERABLE(k_sem, name) = \
3001 Z_SEM_INITIALIZER(name, initial_count, count_limit); \
3002 BUILD_ASSERT(((count_limit) != 0) && \
3003 ((initial_count) <= (count_limit)) && \
3004 ((count_limit) <= K_SEM_MAX_LIMIT));
3563 K_WORK_RUNNING_BIT = 0,
3564 K_WORK_CANCELING_BIT = 1,
3565 K_WORK_QUEUED_BIT = 2,
3566 K_WORK_DELAYED_BIT = 3,
3568 K_WORK_MASK =
BIT(K_WORK_DELAYED_BIT) |
BIT(K_WORK_QUEUED_BIT)
3569 |
BIT(K_WORK_RUNNING_BIT) |
BIT(K_WORK_CANCELING_BIT),
3572 K_WORK_DELAYABLE_BIT = 8,
3573 K_WORK_DELAYABLE =
BIT(K_WORK_DELAYABLE_BIT),
3576 K_WORK_QUEUE_STARTED_BIT = 0,
3577 K_WORK_QUEUE_STARTED =
BIT(K_WORK_QUEUE_STARTED_BIT),
3578 K_WORK_QUEUE_BUSY_BIT = 1,
3579 K_WORK_QUEUE_BUSY =
BIT(K_WORK_QUEUE_BUSY_BIT),
3580 K_WORK_QUEUE_DRAIN_BIT = 2,
3581 K_WORK_QUEUE_DRAIN =
BIT(K_WORK_QUEUE_DRAIN_BIT),
3582 K_WORK_QUEUE_PLUGGED_BIT = 3,
3583 K_WORK_QUEUE_PLUGGED =
BIT(K_WORK_QUEUE_PLUGGED_BIT),
3586 K_WORK_QUEUE_NO_YIELD_BIT = 8,
3587 K_WORK_QUEUE_NO_YIELD =
BIT(K_WORK_QUEUE_NO_YIELD_BIT),
3646#define Z_WORK_INITIALIZER(work_handler) { \
3647 .handler = work_handler, \
3662#define Z_WORK_DELAYABLE_INITIALIZER(work_handler) { \
3664 .handler = work_handler, \
3665 .flags = K_WORK_DELAYABLE, \
3685#define K_WORK_DELAYABLE_DEFINE(work, work_handler) \
3686 struct k_work_delayable work \
3687 = Z_WORK_DELAYABLE_INITIALIZER(work_handler)
3700struct z_work_flusher {
3711struct z_work_canceller {
3824 return &
queue->thread;
3838 size_t stack_size,
int prio)
3848#define Z_DELAYED_WORK_INITIALIZER(work_handler) __DEPRECATED_MACRO { \
3849 .work = Z_WORK_DELAYABLE_INITIALIZER(work_handler), \
3867 return (rc >= 0) ? 0 : rc;
3877 return (rc >= 0) ? 0 : rc;
3915 return (rc == 0) ? 0 : -
EINVAL;
3976struct k_work_user_q {
3977 struct k_queue
queue;
3982 K_WORK_USER_STATE_PENDING,
3995#define Z_WORK_USER_INITIALIZER(work_handler) \
3997 ._reserved = NULL, \
3998 .handler = work_handler, \
4013#define K_WORK_USER_DEFINE(work, work_handler) \
4014 struct k_work_user work = Z_WORK_USER_INITIALIZER(work_handler)
4030 *
work = (
struct k_work_user)Z_WORK_USER_INITIALIZER(
handler);
4073 struct k_work_user *
work)
4078 K_WORK_USER_STATE_PENDING)) {
4086 K_WORK_USER_STATE_PENDING);
4116 size_t stack_size,
int prio,
4128 struct z_poller poller;
4156#define K_WORK_DEFINE(work, work_handler) \
4157 struct k_work work = Z_WORK_INITIALIZER(work_handler)
4170#define K_DELAYED_WORK_DEFINE(work, work_handler) __DEPRECATED_MACRO \
4171 struct k_delayed_work work = Z_DELAYED_WORK_INITIALIZER(work_handler)
4222 struct k_work_poll *
work,
4320#define Z_MSGQ_INITIALIZER(obj, q_buffer, q_msg_size, q_max_msgs) \
4322 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
4323 .msg_size = q_msg_size, \
4324 .max_msgs = q_max_msgs, \
4325 .buffer_start = q_buffer, \
4326 .buffer_end = q_buffer + (q_max_msgs * q_msg_size), \
4327 .read_ptr = q_buffer, \
4328 .write_ptr = q_buffer, \
4330 _POLL_EVENT_OBJ_INIT(obj) \
4338#define K_MSGQ_FLAG_ALLOC BIT(0)
4373#define K_MSGQ_DEFINE(q_name, q_msg_size, q_max_msgs, q_align) \
4374 static char __noinit __aligned(q_align) \
4375 _k_fifo_buf_##q_name[(q_max_msgs) * (q_msg_size)]; \
4376 STRUCT_SECTION_ITERABLE(k_msgq, q_name) = \
4377 Z_MSGQ_INITIALIZER(q_name, _k_fifo_buf_##q_name, \
4378 q_msg_size, q_max_msgs)
4587#if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0)
4589 struct k_sem *_async_sem;
4608#define Z_MBOX_INITIALIZER(obj) \
4610 .tx_msg_queue = Z_WAIT_Q_INIT(&obj.tx_msg_queue), \
4611 .rx_msg_queue = Z_WAIT_Q_INIT(&obj.rx_msg_queue), \
4627#define K_MBOX_DEFINE(name) \
4628 STRUCT_SECTION_ITERABLE(k_mbox, name) = \
4629 Z_MBOX_INITIALIZER(name) \
4747#define K_PIPE_FLAG_ALLOC BIT(0)
4749#define Z_PIPE_INITIALIZER(obj, pipe_buffer, pipe_buffer_size) \
4751 .buffer = pipe_buffer, \
4752 .size = pipe_buffer_size, \
4758 .readers = Z_WAIT_Q_INIT(&obj.wait_q.readers), \
4759 .writers = Z_WAIT_Q_INIT(&obj.wait_q.writers) \
4781#define K_PIPE_DEFINE(name, pipe_buffer_size, pipe_align) \
4782 static unsigned char __noinit __aligned(pipe_align) \
4783 _k_pipe_buf_##name[pipe_buffer_size]; \
4784 STRUCT_SECTION_ITERABLE(k_pipe, name) = \
4785 Z_PIPE_INITIALIZER(name, _k_pipe_buf_##name, pipe_buffer_size)
4851 size_t bytes_to_write,
size_t *bytes_written,
4874 size_t bytes_to_read,
size_t *bytes_read,
4911#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
4917#define Z_MEM_SLAB_INITIALIZER(obj, slab_buffer, slab_block_size, \
4920 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
4922 .num_blocks = slab_num_blocks, \
4923 .block_size = slab_block_size, \
4924 .buffer = slab_buffer, \
4925 .free_list = NULL, \
4959#define K_MEM_SLAB_DEFINE(name, slab_block_size, slab_num_blocks, slab_align) \
4960 char __noinit_named(k_mem_slab_buf_##name) \
4961 __aligned(WB_UP(slab_align)) \
4962 _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
4963 STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
4964 Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
4965 WB_UP(slab_block_size), slab_num_blocks)
4989 size_t block_size,
uint32_t num_blocks);
5041 return slab->num_used;
5056#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5057 return slab->max_used;
5076 return slab->num_blocks - slab->num_used;
5169#define Z_HEAP_MIN_SIZE (sizeof(void *) > 4 ? 56 : 44)
5187#define Z_HEAP_DEFINE_IN_SECT(name, bytes, in_section) \
5190 kheap_##name[MAX(bytes, Z_HEAP_MIN_SIZE)]; \
5191 STRUCT_SECTION_ITERABLE(k_heap, name) = { \
5193 .init_mem = kheap_##name, \
5194 .init_bytes = MAX(bytes, Z_HEAP_MIN_SIZE), \
5212#define K_HEAP_DEFINE(name, bytes) \
5213 Z_HEAP_DEFINE_IN_SECT(name, bytes, \
5214 __noinit_named(kheap_buf_##name))
5230#define K_HEAP_DEFINE_NOCACHE(name, bytes) \
5231 Z_HEAP_DEFINE_IN_SECT(name, bytes, __nocache)
5308#define _INIT_OBJ_POLL_EVENT(obj) do { (obj)->poll_event = NULL; } while (false)
5310#define _INIT_OBJ_POLL_EVENT(obj) do { } while (false)
5314enum _poll_types_bits {
5322 _POLL_TYPE_SEM_AVAILABLE,
5325 _POLL_TYPE_DATA_AVAILABLE,
5328 _POLL_TYPE_MSGQ_DATA_AVAILABLE,
5333#define Z_POLL_TYPE_BIT(type) (1U << ((type) - 1U))
5336enum _poll_states_bits {
5338 _POLL_STATE_NOT_READY,
5341 _POLL_STATE_SIGNALED,
5344 _POLL_STATE_SEM_AVAILABLE,
5347 _POLL_STATE_DATA_AVAILABLE,
5350 _POLL_STATE_CANCELLED,
5353 _POLL_STATE_MSGQ_DATA_AVAILABLE,
5358#define Z_POLL_STATE_BIT(state) (1U << ((state) - 1U))
5360#define _POLL_EVENT_NUM_UNUSED_BITS \
5364 + _POLL_NUM_STATES \
5380#define K_POLL_TYPE_IGNORE 0
5381#define K_POLL_TYPE_SIGNAL Z_POLL_TYPE_BIT(_POLL_TYPE_SIGNAL)
5382#define K_POLL_TYPE_SEM_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_SEM_AVAILABLE)
5383#define K_POLL_TYPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_DATA_AVAILABLE)
5384#define K_POLL_TYPE_FIFO_DATA_AVAILABLE K_POLL_TYPE_DATA_AVAILABLE
5385#define K_POLL_TYPE_MSGQ_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_MSGQ_DATA_AVAILABLE)
5396#define K_POLL_STATE_NOT_READY 0
5397#define K_POLL_STATE_SIGNALED Z_POLL_STATE_BIT(_POLL_STATE_SIGNALED)
5398#define K_POLL_STATE_SEM_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_SEM_AVAILABLE)
5399#define K_POLL_STATE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_DATA_AVAILABLE)
5400#define K_POLL_STATE_FIFO_DATA_AVAILABLE K_POLL_STATE_DATA_AVAILABLE
5401#define K_POLL_STATE_MSGQ_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_MSGQ_DATA_AVAILABLE)
5402#define K_POLL_STATE_CANCELLED Z_POLL_STATE_BIT(_POLL_STATE_CANCELLED)
5419#define K_POLL_SIGNAL_INITIALIZER(obj) \
5421 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events), \
5462#define K_POLL_EVENT_INITIALIZER(_event_type, _event_mode, _event_obj) \
5465 .type = _event_type, \
5466 .state = K_POLL_STATE_NOT_READY, \
5467 .mode = _event_mode, \
5470 .obj = _event_obj, \
5474#define K_POLL_EVENT_STATIC_INITIALIZER(_event_type, _event_mode, _event_obj, \
5478 .type = _event_type, \
5479 .state = K_POLL_STATE_NOT_READY, \
5480 .mode = _event_mode, \
5483 .obj = _event_obj, \
5505 int mode,
void *obj);
5583 unsigned int *signaled,
int *
result);
5673#define z_except_reason(reason) ARCH_EXCEPT(reason)
5676#if !defined(CONFIG_ASSERT_NO_FILE_INFO)
5677#define __EXCEPT_LOC() __ASSERT_PRINT("@ %s:%d\n", __FILE__, __LINE__)
5679#define __EXCEPT_LOC()
5689#define z_except_reason(reason) do { \
5691 z_fatal_error(reason, NULL); \
5707#define k_oops() z_except_reason(K_ERR_KERNEL_OOPS)
5717#define k_panic() z_except_reason(K_ERR_KERNEL_PANIC)
5726extern void z_init_thread_base(
struct _thread_base *thread_base,
5727 int priority,
uint32_t initial_state,
5728 unsigned int options);
5730#ifdef CONFIG_MULTITHREADING
5734extern void z_init_static_threads(
void);
5739#define z_init_static_threads() do { } while (false)
5745extern bool z_is_thread_essential(
void);
5749void z_smp_thread_swap(
void);
5755extern void z_timer_expiration_handler(
struct _timeout *
t);
5765__syscall
void k_str_out(
char *
c,
size_t n);
5830#ifdef CONFIG_THREAD_RUNTIME_STATS
5840 k_thread_runtime_stats_t *stats);
5848int k_thread_runtime_stats_all_get(k_thread_runtime_stats_t *stats);
static uint32_t arch_k_cycle_get_32(void)
Definition: misc.h:26
struct z_thread_stack_element k_thread_stack_t
Typedef of struct z_thread_stack_element.
Definition: arch_interface.h:44
void(* k_thread_entry_t)(void *p1, void *p2, void *p3)
Thread entry point function type.
Definition: arch_interface.h:46
static struct k_thread thread[2]
Definition: atomic.c:22
int atomic_t
Definition: atomic.h:21
ZTEST_BMEM int timeout
Definition: main.c:31
ZTEST_BMEM int count
Definition: main.c:33
void
Definition: eswifi_shell.c:15
void arch_cpu_atomic_idle(unsigned int key)
Atomically re-enable interrupts and enter low power mode.
void arch_cpu_idle(void)
Power save idle routine.
static bool atomic_test_bit(const atomic_t *target, int bit)
Atomically test a bit.
Definition: atomic.h:127
static void atomic_clear_bit(atomic_t *target, int bit)
Atomically clear a bit.
Definition: atomic.h:187
static bool atomic_test_and_set_bit(atomic_t *target, int bit)
Atomically set a bit.
Definition: atomic.h:166
static uint32_t k_cycle_get_32(void)
Read the hardware clock.
Definition: kernel.h:1637
int64_t k_uptime_ticks(void)
Get system uptime, in system ticks.
static uint32_t k_uptime_get_32(void)
Get system uptime (32-bit version).
Definition: kernel.h:1602
uint32_t k_ticks_t
Tick precision used in timeout APIs.
Definition: sys_clock.h:48
static int64_t k_uptime_delta(int64_t *reftime)
Get elapsed time.
Definition: kernel.h:1618
static int64_t k_uptime_get(void)
Get system uptime.
Definition: kernel.h:1578
int k_condvar_signal(struct k_condvar *condvar)
Signals one thread that is pending on the condition variable.
int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex, k_timeout_t timeout)
Waits on the condition variable releasing the mutex lock.
int k_condvar_init(struct k_condvar *condvar)
Initialize a condition variable.
int k_condvar_broadcast(struct k_condvar *condvar)
Unblock all threads that are pending on the condition variable.
static void k_cpu_idle(void)
Make the CPU idle.
Definition: kernel.h:5638
static void k_cpu_atomic_idle(unsigned int key)
Make the CPU idle in an atomic fashion.
Definition: kernel.h:5659
struct _dnode sys_dnode_t
Definition: dlist.h:49
struct _dnode sys_dlist_t
Definition: dlist.h:48
uint32_t k_event_wait(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for any of the specified events.
void k_event_set(struct k_event *event, uint32_t events)
Set the events in an event object.
void k_event_post(struct k_event *event, uint32_t events)
Post one or more events to an event object.
void k_event_init(struct k_event *event)
Initialize an event object.
uint32_t k_event_wait_all(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for any of the specified events.
static bool sys_sflist_is_empty(sys_sflist_t *list)
Test if the given list is empty.
Definition: sflist.h:323
int k_futex_wait(struct k_futex *futex, int expected, k_timeout_t timeout)
Pend the current thread on a futex.
int k_futex_wake(struct k_futex *futex, bool wake_all)
Wake one/all threads pending on a futex.
void * k_heap_alloc(struct k_heap *h, size_t bytes, k_timeout_t timeout)
Allocate memory from a k_heap.
void k_heap_free(struct k_heap *h, void *mem)
Free memory allocated by k_heap_alloc()
void k_free(void *ptr)
Free memory allocated from heap.
void k_heap_init(struct k_heap *h, void *mem, size_t bytes)
Initialize a k_heap.
void * k_malloc(size_t size)
Allocate memory from the heap.
void * k_calloc(size_t nmemb, size_t size)
Allocate memory from heap, array style.
void * k_aligned_alloc(size_t align, size_t size)
Allocate memory from the heap with a specified alignment.
void * k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes, k_timeout_t timeout)
Allocate aligned memory from a k_heap.
bool k_is_in_isr(void)
Determine if code is running at interrupt level.
int k_is_preempt_thread(void)
Determine if code is running in a preemptible thread.
static bool k_is_pre_kernel(void)
Test whether startup is in the before-main-task phase.
Definition: kernel.h:938
static ZTEST_BMEM char buffer[8]
Test mailbox enhance capabilities.
Definition: test_mbox_api.c:566
int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg, void *buffer, k_timeout_t timeout)
Receive a mailbox message.
void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer)
Retrieve mailbox message data into a buffer.
void k_mbox_init(struct k_mbox *mbox)
Initialize a mailbox.
int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, k_timeout_t timeout)
Send a mailbox message in a synchronous manner.
void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, struct k_sem *sem)
Send a mailbox message in an asynchronous manner.
int k_mem_slab_init(struct k_mem_slab *slab, void *buffer, size_t block_size, uint32_t num_blocks)
Initialize a memory slab.
void k_mem_slab_free(struct k_mem_slab *slab, void **mem)
Free memory allocated from a memory slab.
int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem, k_timeout_t timeout)
Allocate memory from a memory slab.
static uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
Get the number of used blocks in a memory slab.
Definition: kernel.h:5039
static uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
Get the number of maximum used blocks so far in a memory slab.
Definition: kernel.h:5054
static uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
Get the number of unused blocks in a memory slab.
Definition: kernel.h:5074
int k_msgq_peek(struct k_msgq *msgq, void *data)
Peek/read a message from a message queue.
uint32_t k_msgq_num_used_get(struct k_msgq *msgq)
Get the number of messages in a message queue.
void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout)
Send a message to a message queue.
uint32_t k_msgq_num_free_get(struct k_msgq *msgq)
Get the amount of free space in a message queue.
void k_msgq_get_attrs(struct k_msgq *msgq, struct k_msgq_attrs *attrs)
Get basic attributes of a message queue.
void k_msgq_purge(struct k_msgq *msgq)
Purge a message queue.
int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout)
Receive a message from a message queue.
int k_msgq_cleanup(struct k_msgq *msgq)
Release allocated buffer for a queue.
int k_mutex_unlock(struct k_mutex *mutex)
Unlock a mutex.
int k_mutex_init(struct k_mutex *mutex)
Initialize a mutex.
int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout)
Lock a mutex.
size_t k_pipe_read_avail(struct k_pipe *pipe)
Query the number of bytes that may be read from pipe.
int k_pipe_alloc_init(struct k_pipe *pipe, size_t size)
Initialize a pipe and allocate a buffer for it.
int k_pipe_put(struct k_pipe *pipe, void *data, size_t bytes_to_write, size_t *bytes_written, size_t min_xfer, k_timeout_t timeout)
Write data to a pipe.
int k_pipe_cleanup(struct k_pipe *pipe)
Release a pipe's allocated buffer.
int k_pipe_get(struct k_pipe *pipe, void *data, size_t bytes_to_read, size_t *bytes_read, size_t min_xfer, k_timeout_t timeout)
Read data from a pipe.
void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size)
Initialize a pipe.
size_t k_pipe_write_avail(struct k_pipe *pipe)
Query the number of bytes that may be written to pipe.
void k_poll_signal_reset(struct k_poll_signal *sig)
k_poll_modes
Definition: kernel.h:5388
void k_poll_signal_check(struct k_poll_signal *sig, unsigned int *signaled, int *result)
Fetch the signaled state and result value of a poll signal.
void k_poll_event_init(struct k_poll_event *event, uint32_t type, int mode, void *obj)
Initialize one struct k_poll_event instance.
int k_poll(struct k_poll_event *events, int num_events, k_timeout_t timeout)
Wait for one or many of multiple poll events to occur.
int k_poll_signal_raise(struct k_poll_signal *sig, int result)
Signal a poll signal object.
void k_poll_signal_init(struct k_poll_signal *sig)
Initialize a poll signal object.
@ K_POLL_MODE_NOTIFY_ONLY
Definition: kernel.h:5390
@ K_POLL_NUM_MODES
Definition: kernel.h:5392
void k_queue_init(struct k_queue *queue)
Initialize a queue.
void * k_queue_get(struct k_queue *queue, k_timeout_t timeout)
Get an element from a queue.
void * k_queue_peek_tail(struct k_queue *queue)
Peek element at the tail of queue.
bool k_queue_unique_append(struct k_queue *queue, void *data)
Append an element to a queue only if it's not present already.
bool k_queue_remove(struct k_queue *queue, void *data)
Remove an element from a queue.
int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list)
Atomically add a list of elements to a queue.
int32_t k_queue_alloc_append(struct k_queue *queue, void *data)
Append an element to a queue.
void k_queue_cancel_wait(struct k_queue *queue)
Cancel waiting on a queue.
void * k_queue_peek_head(struct k_queue *queue)
Peek element at the head of queue.
void k_queue_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
int k_queue_append_list(struct k_queue *queue, void *head, void *tail)
Atomically append a list of elements to a queue.
void k_queue_append(struct k_queue *queue, void *data)
Append an element to the end of a queue.
int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
void k_queue_insert(struct k_queue *queue, void *prev, void *data)
Inserts an element to a queue.
int k_queue_is_empty(struct k_queue *queue)
Query a queue to see if it has data available.
void k_sem_reset(struct k_sem *sem)
Resets a semaphore's count to zero.
unsigned int k_sem_count_get(struct k_sem *sem)
Get a semaphore's count.
void k_sem_give(struct k_sem *sem)
Give a semaphore.
int k_sem_take(struct k_sem *sem, k_timeout_t timeout)
Take a semaphore.
int k_sem_init(struct k_sem *sem, unsigned int initial_count, unsigned int limit)
Initialize a semaphore.
int k_stack_pop(struct k_stack *stack, stack_data_t *data, k_timeout_t timeout)
Pop an element from a stack.
void k_stack_init(struct k_stack *stack, stack_data_t *buffer, uint32_t num_entries)
Initialize a stack.
int k_stack_cleanup(struct k_stack *stack)
Release a stack's allocated buffer.
int k_stack_push(struct k_stack *stack, stack_data_t data)
Push an element onto a stack.
int32_t k_stack_alloc_init(struct k_stack *stack, uint32_t num_entries)
Initialize a stack.
#define BIT(n)
Unsigned integer with bit position n set (signed in assembly language).
Definition: util_macro.h:44
#define CONTAINER_OF(ptr, type, field)
Get a pointer to a container structure from an element.
Definition: util.h:131
#define EINVAL
Definition: errno.h:61
#define EBUSY
Definition: errno.h:55
#define EALREADY
Definition: errno.h:105
int k_thread_name_copy(k_tid_t thread, char *buf, size_t size)
Copy the thread name into a supplied buffer.
void k_yield(void)
Yield the current thread.
void k_thread_resume(k_tid_t thread)
Resume a suspended thread.
void * k_thread_custom_data_get(void)
Get current thread's custom data.
void k_thread_abort(k_tid_t thread)
Abort a thread.
void k_thread_system_pool_assign(struct k_thread *thread)
Assign the system heap as a thread's resource pool.
int k_thread_name_set(k_tid_t thread, const char *str)
Set current thread name.
void k_thread_priority_set(k_tid_t thread, int prio)
Set a thread's priority.
int k_thread_cpu_mask_enable(k_tid_t thread, int cpu)
Enable thread to run on specified CPU.
void k_thread_foreach_unlocked(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system without locking.
int k_thread_priority_get(k_tid_t thread)
Get a thread's priority.
static void k_thread_heap_assign(struct k_thread *thread, struct k_heap *heap)
Assign a resource memory pool to a thread.
Definition: kernel.h:344
FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry, void *p1, void *p2, void *p3)
Drop a thread's privileges permanently to user mode.
int k_thread_join(struct k_thread *thread, k_timeout_t timeout)
Sleep until a thread exits.
void k_thread_custom_data_set(void *value)
Set current thread's custom data.
int32_t k_sleep(k_timeout_t timeout)
Put the current thread to sleep.
k_ticks_t k_thread_timeout_remaining_ticks(const struct k_thread *t)
Get time remaining before a thread wakes up, in system ticks.
void k_sched_lock(void)
Lock the scheduler.
static int32_t k_msleep(int32_t ms)
Put the current thread to sleep.
Definition: kernel.h:437
void k_busy_wait(uint32_t usec_to_wait)
Cause the current thread to busy wait.
void k_thread_suspend(k_tid_t thread)
Suspend a thread.
void k_sched_unlock(void)
Unlock the scheduler.
static __attribute_const__ k_tid_t k_current_get(void)
Get thread ID of the current thread.
Definition: kernel.h:521
k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *t)
Get time when a thread wakes up, in system ticks.
int k_thread_cpu_mask_clear(k_tid_t thread)
Sets all CPU enable masks to zero.
void k_sched_time_slice_set(int32_t slice, int prio)
Set time-slicing period and scope.
void k_thread_start(k_tid_t thread)
Start an inactive thread.
int k_thread_cpu_mask_disable(k_tid_t thread, int cpu)
Prevent thread to run on specified CPU.
void k_wakeup(k_tid_t thread)
Wake up a sleeping thread.
k_tid_t k_thread_create(struct k_thread *new_thread, k_thread_stack_t *stack, size_t stack_size, k_thread_entry_t entry, void *p1, void *p2, void *p3, int prio, uint32_t options, k_timeout_t delay)
Create a thread.
void k_thread_deadline_set(k_tid_t thread, int deadline)
Set deadline expiration time for scheduler.
const char * k_thread_name_get(k_tid_t thread)
Get thread name.
void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system.
const char * k_thread_state_str(k_tid_t thread_id)
Get thread state string.
int32_t k_usleep(int32_t us)
Put the current thread to sleep with microsecond resolution.
int k_thread_cpu_mask_enable_all(k_tid_t thread)
Sets all CPU enable masks to one.
void(* k_thread_user_cb_t)(const struct k_thread *thread, void *user_data)
Definition: kernel.h:99
k_ticks_t k_timer_expires_ticks(const struct k_timer *timer)
Get next expiration time of a timer, in system ticks.
k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer)
Get time remaining before a timer next expires, in system ticks.
void(* k_timer_stop_t)(struct k_timer *timer)
Timer stop function type.
Definition: kernel.h:1351
void * k_timer_user_data_get(const struct k_timer *timer)
Retrieve the user-specific data from a timer.
void k_timer_init(struct k_timer *timer, k_timer_expiry_t expiry_fn, k_timer_stop_t stop_fn)
Initialize a timer.
void(* k_timer_expiry_t)(struct k_timer *timer)
Timer expiry function type.
Definition: kernel.h:1333
void k_timer_start(struct k_timer *timer, k_timeout_t duration, k_timeout_t period)
Start a timer.
static uint32_t k_timer_remaining_get(struct k_timer *timer)
Get time remaining before a timer next expires.
Definition: kernel.h:1500
uint32_t k_timer_status_sync(struct k_timer *timer)
Synchronize thread to timer expiration.
void k_timer_stop(struct k_timer *timer)
Stop a timer.
uint32_t k_timer_status_get(struct k_timer *timer)
Read timer status.
void k_timer_user_data_set(struct k_timer *timer, void *user_data)
Associate user-specific data with a timer.
static int k_delayed_work_cancel(struct k_delayed_work *work)
Definition: kernel.h:3881
int k_work_poll_submit_to_queue(struct k_work_q *work_q, struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item.
static k_tid_t k_work_queue_thread_get(struct k_work_q *queue)
Access the thread that animates a work queue.
Definition: kernel.h:3822
static bool k_work_is_pending(const struct k_work *work)
Test whether a work item is currently pending.
Definition: kernel.h:3793
int k_work_queue_drain(struct k_work_q *queue, bool plug)
Wait until the work queue has drained, optionally plugging it.
static k_ticks_t k_work_delayable_expires_get(const struct k_work_delayable *dwork)
Get the absolute tick count at which a scheduled delayable work will be submitted.
Definition: kernel.h:3810
int k_work_schedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to a queue after a delay.
int k_work_delayable_busy_get(const struct k_work_delayable *dwork)
Busy state flags from the delayable work item.
static k_ticks_t k_delayed_work_remaining_ticks(struct k_delayed_work *work)
Definition: kernel.h:3944
void k_work_init_delayable(struct k_work_delayable *dwork, k_work_handler_t handler)
Initialize a delayable work structure.
int k_work_poll_cancel(struct k_work_poll *work)
Cancel a triggered work item.
void k_work_user_queue_start(struct k_work_user_q *work_q, k_thread_stack_t *stack, size_t stack_size, int prio, const char *name)
Start a workqueue in user mode.
void k_work_poll_init(struct k_work_poll *work, k_work_handler_t handler)
Initialize a triggered work item.
int k_work_cancel(struct k_work *work)
Cancel a work item.
static int32_t k_delayed_work_remaining_get(struct k_delayed_work *work)
Definition: kernel.h:3928
static bool k_delayed_work_pending(struct k_delayed_work *work)
Definition: kernel.h:3922
static int k_work_user_submit_to_queue(struct k_work_user_q *work_q, struct k_work_user *work)
Submit a work item to a user mode workqueue.
Definition: kernel.h:4072
int k_work_submit_to_queue(struct k_work_q *queue, struct k_work *work)
Submit a work item to a queue.
static bool k_work_user_is_pending(struct k_work_user *work)
Check if a userspace work item is pending.
Definition: kernel.h:4049
void(* k_work_handler_t)(struct k_work *work)
The signature for a work item handler function.
Definition: kernel.h:3031
int k_work_schedule(struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to the system work queue after a delay.
static bool k_work_delayable_is_pending(const struct k_work_delayable *dwork)
Test whether a delayed work item is currently pending.
Definition: kernel.h:3804
static bool k_work_pending(const struct k_work *work)
Definition: kernel.h:3830
bool k_work_cancel_delayable_sync(struct k_work_delayable *dwork, struct k_work_sync *sync)
Cancel delayable work and wait.
int k_work_cancel_delayable(struct k_work_delayable *dwork)
Cancel delayable work.
static int k_delayed_work_submit_to_queue(struct k_work_q *work_q, struct k_delayed_work *work, k_timeout_t delay)
Definition: kernel.h:3860
static void k_work_user_init(struct k_work_user *work, k_work_user_handler_t handler)
Initialize a userspace work item.
Definition: kernel.h:4027
int k_work_queue_unplug(struct k_work_q *queue)
Release a work queue to accept new submissions.
int k_work_reschedule(struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to the system work queue after a delay.
bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync)
Cancel a work item and wait for it to complete.
int k_work_busy_get(const struct k_work *work)
Busy state flags from the work item.
static int k_delayed_work_submit(struct k_delayed_work *work, k_timeout_t delay)
Definition: kernel.h:3871
static struct k_work_delayable * k_work_delayable_from_work(struct k_work *work)
Get the parent delayable work structure from a work pointer.
Definition: kernel.h:3799
static k_ticks_t k_work_delayable_remaining_get(const struct k_work_delayable *dwork)
Get the number of ticks until a scheduled delayable work will be submitted.
Definition: kernel.h:3816
bool k_work_flush(struct k_work *work, struct k_work_sync *sync)
Wait for last-submitted instance to complete.
int k_work_reschedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to a queue after a delay.
static k_ticks_t k_delayed_work_expires_ticks(struct k_delayed_work *work)
Definition: kernel.h:3937
int k_work_submit(struct k_work *work)
Submit a work item to the system queue.
bool k_work_flush_delayable(struct k_work_delayable *dwork, struct k_work_sync *sync)
Flush delayable work.
static void k_work_q_start(struct k_work_q *work_q, k_thread_stack_t *stack, size_t stack_size, int prio)
Definition: kernel.h:3836
int k_work_poll_submit(struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item to the system workqueue.
void k_work_queue_init(struct k_work_q *queue)
Initialize a work queue structure.
void k_work_queue_start(struct k_work_q *queue, k_thread_stack_t *stack, size_t stack_size, int prio, const struct k_work_queue_config *cfg)
Initialize a work queue.
void k_work_init(struct k_work *work, k_work_handler_t handler)
Initialize a (non-delayable) work structure.
static void k_delayed_work_init(struct k_delayed_work *work, k_work_handler_t handler)
Definition: kernel.h:3853
void(* k_work_user_handler_t)(struct k_work_user *work)
Work item handler function type for user work queues.
Definition: kernel.h:3970
@ K_WORK_CANCELING
Flag indicating a work item that is being canceled.
Definition: kernel.h:3605
@ K_WORK_QUEUED
Flag indicating a work item that has been submitted to a queue but has not started running.
Definition: kernel.h:3612
@ K_WORK_DELAYED
Flag indicating a delayed work item that is scheduled for submission to a queue.
Definition: kernel.h:3619
@ K_WORK_RUNNING
Flag indicating a work item that is running under a work queue thread.
Definition: kernel.h:3599
flags
Definition: http_parser.h:131
state
Definition: http_parser_state.h:30
int k_float_disable(struct k_thread *thread)
Disable preservation of floating point context information.
int k_float_enable(struct k_thread *thread, unsigned int options)
Enable preservation of floating point context information.
execution_context_types
Definition: kernel.h:84
@ K_ISR
Definition: kernel.h:85
@ K_COOP_THREAD
Definition: kernel.h:86
@ K_PREEMPT_THREAD
Definition: kernel.h:87
static ZTEST_BMEM volatile int ret
Definition: k_float_disable.c:28
Header files included by kernel.h.
struct k_mem_slab ms
Definition: kobject.c:1308
struct k_mutex mutex
Definition: kobject.c:1310
struct k_thread t
Definition: kobject.c:1316
struct k_msgq msgq
Definition: test_msgq_contexts.c:12
char c
Definition: printk.c:71
void * ptr
Definition: printk.c:79
static struct k_work work[2]
Definition: main.c:16
struct _sfnode sys_sfnode_t
Definition: sflist.h:39
struct _sflist sys_sflist_t
Definition: sflist.h:46
struct _slist sys_slist_t
Definition: slist.h:40
struct _snode sys_snode_t
Definition: slist.h:33
static struct k_spinlock lock
Definition: spinlock_error_case.c:12
static k_spinlock_key_t key
Definition: spinlock_error_case.c:14
struct k_stack stack
Definition: test_stack_contexts.c:18
__UINT32_TYPE__ uint32_t
Definition: stdint.h:60
__INT32_TYPE__ int32_t
Definition: stdint.h:44
__UINT8_TYPE__ uint8_t
Definition: stdint.h:58
__UINTPTR_TYPE__ uintptr_t
Definition: stdint.h:75
__INT64_TYPE__ int64_t
Definition: stdint.h:45
Static init entry structure for each device driver or services.
Definition: init.h:43
Definition: kernel.h:2786
_wait_q_t wait_q
Definition: kernel.h:2787
Definition: kernel.h:3844
struct k_work_delayable work
Definition: kernel.h:3845
Definition: kernel.h:2028
struct k_spinlock lock
Definition: kernel.h:2031
uint32_t events
Definition: kernel.h:2030
_wait_q_t wait_q
Definition: kernel.h:2029
Definition: kernel.h:2153
futex structure
Definition: kernel.h:1949
atomic_t val
Definition: kernel.h:1950
Definition: kernel.h:5088
struct k_spinlock lock
Definition: kernel.h:5091
struct sys_heap heap
Definition: kernel.h:5089
_wait_q_t wait_q
Definition: kernel.h:5090
Definition: kernel.h:2397
Mailbox Message Structure.
Definition: kernel.h:4568
struct k_mem_block tx_block
Definition: kernel.h:4580
k_tid_t tx_target_thread
Definition: kernel.h:4584
void * tx_data
Definition: kernel.h:4576
k_tid_t rx_source_thread
Definition: kernel.h:4582
uint32_t info
Definition: kernel.h:4574
size_t size
Definition: kernel.h:4572
Mailbox Structure.
Definition: kernel.h:4596
_wait_q_t tx_msg_queue
Definition: kernel.h:4598
struct k_spinlock lock
Definition: kernel.h:4601
_wait_q_t rx_msg_queue
Definition: kernel.h:4600
Definition: mempool_heap.h:24
Memory Domain.
Definition: mem_domain.h:80
Memory Partition.
Definition: mem_domain.h:55
Message Queue Attributes.
Definition: kernel.h:4343
uint32_t used_msgs
Definition: kernel.h:4349
size_t msg_size
Definition: kernel.h:4345
uint32_t max_msgs
Definition: kernel.h:4347
Message Queue Structure.
Definition: kernel.h:4290
size_t msg_size
Definition: kernel.h:4296
char * read_ptr
Definition: kernel.h:4304
uint32_t used_msgs
Definition: kernel.h:4308
char * buffer_end
Definition: kernel.h:4302
struct k_spinlock lock
Definition: kernel.h:4294
char * write_ptr
Definition: kernel.h:4306
char * buffer_start
Definition: kernel.h:4300
uint8_t flags
Definition: kernel.h:4313
_wait_q_t wait_q
Definition: kernel.h:4292
uint32_t max_msgs
Definition: kernel.h:4298
Definition: kernel.h:2680
uint32_t lock_count
Definition: kernel.h:2687
_wait_q_t wait_q
Definition: kernel.h:2682
int owner_orig_prio
Definition: kernel.h:2690
struct k_thread * owner
Definition: kernel.h:2684
Definition: kernel.h:4728
uint8_t flags
Definition: kernel.h:4741
struct k_pipe::@112 wait_q
_wait_q_t readers
Definition: kernel.h:4737
size_t write_index
Definition: kernel.h:4733
size_t bytes_used
Definition: kernel.h:4731
struct k_spinlock lock
Definition: kernel.h:4734
_wait_q_t writers
Definition: kernel.h:4738
size_t size
Definition: kernel.h:4730
unsigned char * buffer
Definition: kernel.h:4729
size_t read_index
Definition: kernel.h:4732
Poll Event.
Definition: kernel.h:5429
struct k_poll_signal * signal
Definition: kernel.h:5454
uint32_t tag
Definition: kernel.h:5437
struct k_fifo * fifo
Definition: kernel.h:5456
struct k_msgq * msgq
Definition: kernel.h:5458
struct k_queue * queue
Definition: kernel.h:5457
uint32_t unused
Definition: kernel.h:5449
uint32_t type
Definition: kernel.h:5440
struct k_sem * sem
Definition: kernel.h:5455
uint32_t state
Definition: kernel.h:5443
uint32_t mode
Definition: kernel.h:5446
struct z_poller * poller
Definition: kernel.h:5434
void * obj
Definition: kernel.h:5453
Definition: kernel.h:5405
sys_dlist_t poll_events
Definition: kernel.h:5407
int result
Definition: kernel.h:5416
unsigned int signaled
Definition: kernel.h:5413
Kernel Spin Lock.
Definition: spinlock.h:29
struct _thread_base base
Definition: thread.h:203
struct k_heap * resource_pool
Definition: thread.h:281
struct __thread_entry entry
Definition: thread.h:227
Kernel timeout type.
Definition: sys_clock.h:65
A structure used to submit work after a delay.
Definition: kernel.h:3651
struct _timeout timeout
Definition: kernel.h:3656
struct k_work_q * queue
Definition: kernel.h:3659
struct k_work work
Definition: kernel.h:3653
A structure used to hold work until it can be processed.
Definition: kernel.h:3770
sys_slist_t pending
Definition: kernel.h:3779
_wait_q_t drainq
Definition: kernel.h:3785
_wait_q_t notifyq
Definition: kernel.h:3782
uint32_t flags
Definition: kernel.h:3788
struct k_thread thread
Definition: kernel.h:3772
A structure holding optional configuration items for a work queue.
Definition: kernel.h:3747
const char * name
Definition: kernel.h:3752
bool no_yield
Definition: kernel.h:3766
A structure holding internal state for a pending synchronous operation on a work item or queue.
Definition: kernel.h:3734
struct z_work_canceller canceller
Definition: kernel.h:3737
struct z_work_flusher flusher
Definition: kernel.h:3736
A structure used to submit work.
Definition: kernel.h:3623
k_work_handler_t handler
Definition: kernel.h:3632
uint32_t flags
Definition: kernel.h:3643
struct k_work_q * queue
Definition: kernel.h:3635
sys_snode_t node
Definition: kernel.h:3629
Definition: sys_heap.h:51
static fdata_t data[2]
Definition: test_fifo_contexts.c:15
static struct k_mbox mbox
Definition: test_mbox_api.c:28
static struct k_pipe pipe
Definition: test_mutex_error.c:18
struct k_queue queue
Definition: test_queue_contexts.c:17
static int init_prio
Definition: test_sched_timeslice_and_lock.c:15
static ZTEST_BMEM struct thread_data expected
static uint64_t k_ticks_to_ms_floor64(uint64_t t)
Convert ticks to milliseconds.
Definition: time_units.h:1069
static uint32_t k_ticks_to_ms_floor32(uint32_t t)
Convert ticks to milliseconds.
Definition: time_units.h:1055
static struct k_timer timer[3]
Definition: timeout_order.c:13
static struct k_sem sem[3]
Definition: timeout_order.c:14
static void handler(struct k_timer *timer)
Definition: main.c:19
static const intptr_t user_data[5]
Definition: main.c:590
static struct k_work_delayable dwork
Definition: main.c:47