Zephyr API Documentation  2.7.0-rc2
A Scalable Open Source RTOS
kernel.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2016, Wind River Systems, Inc.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
13#ifndef ZEPHYR_INCLUDE_KERNEL_H_
14#define ZEPHYR_INCLUDE_KERNEL_H_
15
16#if !defined(_ASMLANGUAGE)
17#include <kernel_includes.h>
18#include <errno.h>
19#include <limits.h>
20#include <stdbool.h>
21#include <toolchain.h>
23
24#ifdef CONFIG_THREAD_RUNTIME_STATS_USE_TIMING_FUNCTIONS
25#include <timing/timing.h>
26#endif
27
28#ifdef __cplusplus
29extern "C" {
30#endif
31
39#define K_ANY NULL
40#define K_END NULL
41
42#if CONFIG_NUM_COOP_PRIORITIES + CONFIG_NUM_PREEMPT_PRIORITIES == 0
43#error Zero available thread priorities defined!
44#endif
45
46#define K_PRIO_COOP(x) (-(CONFIG_NUM_COOP_PRIORITIES - (x)))
47#define K_PRIO_PREEMPT(x) (x)
48
49#define K_HIGHEST_THREAD_PRIO (-CONFIG_NUM_COOP_PRIORITIES)
50#define K_LOWEST_THREAD_PRIO CONFIG_NUM_PREEMPT_PRIORITIES
51#define K_IDLE_PRIO K_LOWEST_THREAD_PRIO
52#define K_HIGHEST_APPLICATION_THREAD_PRIO (K_HIGHEST_THREAD_PRIO)
53#define K_LOWEST_APPLICATION_THREAD_PRIO (K_LOWEST_THREAD_PRIO - 1)
54
55#ifdef CONFIG_POLL
56#define _POLL_EVENT_OBJ_INIT(obj) \
57 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events),
58#define _POLL_EVENT sys_dlist_t poll_events
59#else
60#define _POLL_EVENT_OBJ_INIT(obj)
61#define _POLL_EVENT
62#endif
63
64struct k_thread;
65struct k_mutex;
66struct k_sem;
67struct k_msgq;
68struct k_mbox;
69struct k_pipe;
70struct k_queue;
71struct k_fifo;
72struct k_lifo;
73struct k_stack;
74struct k_mem_slab;
75struct k_mem_pool;
76struct k_timer;
77struct k_poll_event;
78struct k_poll_signal;
79struct k_mem_domain;
80struct k_mem_partition;
81struct k_futex;
82struct k_event;
83
85 K_ISR = 0,
88};
89
90/* private, used by k_poll and k_work_poll */
91struct k_work_poll;
92typedef int (*_poller_cb_t)(struct k_poll_event *event, uint32_t state);
93
99typedef void (*k_thread_user_cb_t)(const struct k_thread *thread,
100 void *user_data);
101
120
149 k_thread_user_cb_t user_cb, void *user_data);
150
159#endif /* !_ASMLANGUAGE */
160
161
162/*
163 * Thread user options. May be needed by assembly code. Common part uses low
164 * bits, arch-specific use high bits.
165 */
166
170#define K_ESSENTIAL (BIT(0))
171
172#if defined(CONFIG_FPU_SHARING)
182#define K_FP_REGS (BIT(1))
183#endif
184
191#define K_USER (BIT(2))
192
201#define K_INHERIT_PERMS (BIT(3))
202
212#define K_CALLBACK_STATE (BIT(4))
213
214#ifdef CONFIG_X86
215/* x86 Bitmask definitions for threads user options */
216
217#if defined(CONFIG_FPU_SHARING) && defined(CONFIG_X86_SSE)
227#define K_SSE_REGS (BIT(7))
228#endif
229#endif
230
231/* end - thread options */
232
233#if !defined(_ASMLANGUAGE)
282__syscall k_tid_t k_thread_create(struct k_thread *new_thread,
284 size_t stack_size,
286 void *p1, void *p2, void *p3,
287 int prio, uint32_t options, k_timeout_t delay);
288
311 void *p1, void *p2,
312 void *p3);
313
327#define k_thread_access_grant(thread, ...) \
328 FOR_EACH_FIXED_ARG(k_object_access_grant, (;), thread, __VA_ARGS__)
329
344static inline void k_thread_heap_assign(struct k_thread *thread,
345 struct k_heap *heap)
346{
347 thread->resource_pool = heap;
348}
349
350#if defined(CONFIG_INIT_STACKS) && defined(CONFIG_THREAD_STACK_INFO)
371__syscall int k_thread_stack_space_get(const struct k_thread *thread,
372 size_t *unused_ptr);
373#endif
374
375#if (CONFIG_HEAP_MEM_POOL_SIZE > 0)
389#endif /* (CONFIG_HEAP_MEM_POOL_SIZE > 0) */
390
411
426
438{
439 return k_sleep(Z_TIMEOUT_MS(ms));
440}
441
458
473__syscall void k_busy_wait(uint32_t usec_to_wait);
474
484__syscall void k_yield(void);
485
497__syscall void k_wakeup(k_tid_t thread);
498
506__attribute_const__
507__syscall k_tid_t z_current_get(void);
508
509#ifdef CONFIG_THREAD_LOCAL_STORAGE
510/* Thread-local cache of current thread ID, set in z_thread_entry() */
511extern __thread k_tid_t z_tls_current;
512#endif
513
520__attribute_const__
521static inline k_tid_t k_current_get(void)
522{
523#ifdef CONFIG_THREAD_LOCAL_STORAGE
524 return z_tls_current;
525#else
526 return z_current_get();
527#endif
528}
529
556
557
568
569extern k_ticks_t z_timeout_expires(const struct _timeout *timeout);
570extern k_ticks_t z_timeout_remaining(const struct _timeout *timeout);
571
572#ifdef CONFIG_SYS_CLOCK_EXISTS
573
582
583static inline k_ticks_t z_impl_k_thread_timeout_expires_ticks(
584 const struct k_thread *t)
585{
586 return z_timeout_expires(&t->base.timeout);
587}
588
597
598static inline k_ticks_t z_impl_k_thread_timeout_remaining_ticks(
599 const struct k_thread *t)
600{
601 return z_timeout_remaining(&t->base.timeout);
602}
603
604#endif /* CONFIG_SYS_CLOCK_EXISTS */
605
610/* timeout has timed out and is not on _timeout_q anymore */
611#define _EXPIRED (-2)
612
613struct _static_thread_data {
614 struct k_thread *init_thread;
615 k_thread_stack_t *init_stack;
616 unsigned int init_stack_size;
618 void *init_p1;
619 void *init_p2;
620 void *init_p3;
621 int init_prio;
622 uint32_t init_options;
623 int32_t init_delay;
624 void (*init_abort)(void);
625 const char *init_name;
626};
627
628#define Z_THREAD_INITIALIZER(thread, stack, stack_size, \
629 entry, p1, p2, p3, \
630 prio, options, delay, abort, tname) \
631 { \
632 .init_thread = (thread), \
633 .init_stack = (stack), \
634 .init_stack_size = (stack_size), \
635 .init_entry = (k_thread_entry_t)entry, \
636 .init_p1 = (void *)p1, \
637 .init_p2 = (void *)p2, \
638 .init_p3 = (void *)p3, \
639 .init_prio = (prio), \
640 .init_options = (options), \
641 .init_delay = (delay), \
642 .init_abort = (abort), \
643 .init_name = STRINGIFY(tname), \
644 }
645
679#define K_THREAD_DEFINE(name, stack_size, \
680 entry, p1, p2, p3, \
681 prio, options, delay) \
682 K_THREAD_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
683 struct k_thread _k_thread_obj_##name; \
684 STRUCT_SECTION_ITERABLE(_static_thread_data, _k_thread_data_##name) = \
685 Z_THREAD_INITIALIZER(&_k_thread_obj_##name, \
686 _k_thread_stack_##name, stack_size, \
687 entry, p1, p2, p3, prio, options, delay, \
688 NULL, name); \
689 const k_tid_t name = (k_tid_t)&_k_thread_obj_##name
690
701
729__syscall void k_thread_priority_set(k_tid_t thread, int prio);
730
731
732#ifdef CONFIG_SCHED_DEADLINE
765__syscall void k_thread_deadline_set(k_tid_t thread, int deadline);
766#endif
767
768#ifdef CONFIG_SCHED_CPU_MASK
782
796
810
824#endif
825
844
858
887extern void k_sched_time_slice_set(int32_t slice, int prio);
888
907extern bool k_is_in_isr(void);
908
925__syscall int k_is_preempt_thread(void);
926
938static inline bool k_is_pre_kernel(void)
939{
940 extern bool z_sys_post_kernel; /* in init.c */
941
942 return !z_sys_post_kernel;
943}
944
972extern void k_sched_lock(void);
973
983extern void k_sched_unlock(void);
984
999__syscall void k_thread_custom_data_set(void *value);
1000
1008__syscall void *k_thread_custom_data_get(void);
1009
1023__syscall int k_thread_name_set(k_tid_t thread, const char *str);
1024
1034
1046__syscall int k_thread_name_copy(k_tid_t thread, char *buf,
1047 size_t size);
1048
1057const char *k_thread_state_str(k_tid_t thread_id);
1058
1076#define K_NO_WAIT Z_TIMEOUT_NO_WAIT
1077
1090#define K_NSEC(t) Z_TIMEOUT_NS(t)
1091
1104#define K_USEC(t) Z_TIMEOUT_US(t)
1105
1116#define K_CYC(t) Z_TIMEOUT_CYC(t)
1117
1128#define K_TICKS(t) Z_TIMEOUT_TICKS(t)
1129
1140#define K_MSEC(ms) Z_TIMEOUT_MS(ms)
1141
1152#define K_SECONDS(s) K_MSEC((s) * MSEC_PER_SEC)
1153
1164#define K_MINUTES(m) K_SECONDS((m) * 60)
1165
1176#define K_HOURS(h) K_MINUTES((h) * 60)
1177
1186#define K_FOREVER Z_FOREVER
1187
1188#ifdef CONFIG_TIMEOUT_64BIT
1189
1201#define K_TIMEOUT_ABS_TICKS(t) \
1202 Z_TIMEOUT_TICKS(Z_TICK_ABS((k_ticks_t)MAX(t, 0)))
1203
1215#define K_TIMEOUT_ABS_MS(t) K_TIMEOUT_ABS_TICKS(k_ms_to_ticks_ceil64(t))
1216
1229#define K_TIMEOUT_ABS_US(t) K_TIMEOUT_ABS_TICKS(k_us_to_ticks_ceil64(t))
1230
1243#define K_TIMEOUT_ABS_NS(t) K_TIMEOUT_ABS_TICKS(k_ns_to_ticks_ceil64(t))
1244
1257#define K_TIMEOUT_ABS_CYC(t) K_TIMEOUT_ABS_TICKS(k_cyc_to_ticks_ceil64(t))
1258
1259#endif
1260
1269struct k_timer {
1270 /*
1271 * _timeout structure must be first here if we want to use
1272 * dynamic timer allocation. timeout.node is used in the double-linked
1273 * list of free timers
1274 */
1275 struct _timeout timeout;
1276
1277 /* wait queue for the (single) thread waiting on this timer */
1278 _wait_q_t wait_q;
1279
1280 /* runs in ISR context */
1281 void (*expiry_fn)(struct k_timer *timer);
1282
1283 /* runs in the context of the thread that calls k_timer_stop() */
1284 void (*stop_fn)(struct k_timer *timer);
1285
1286 /* timer period */
1287 k_timeout_t period;
1288
1289 /* timer status */
1290 uint32_t status;
1291
1292 /* user-specific data, also used to support legacy features */
1293 void *user_data;
1294
1295};
1296
1297#define Z_TIMER_INITIALIZER(obj, expiry, stop) \
1298 { \
1299 .timeout = { \
1300 .node = {},\
1301 .fn = z_timer_expiration_handler, \
1302 .dticks = 0, \
1303 }, \
1304 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1305 .expiry_fn = expiry, \
1306 .stop_fn = stop, \
1307 .status = 0, \
1308 .user_data = 0, \
1309 }
1310
1333typedef void (*k_timer_expiry_t)(struct k_timer *timer);
1334
1351typedef void (*k_timer_stop_t)(struct k_timer *timer);
1352
1364#define K_TIMER_DEFINE(name, expiry_fn, stop_fn) \
1365 STRUCT_SECTION_ITERABLE(k_timer, name) = \
1366 Z_TIMER_INITIALIZER(name, expiry_fn, stop_fn)
1367
1379extern void k_timer_init(struct k_timer *timer,
1380 k_timer_expiry_t expiry_fn,
1381 k_timer_stop_t stop_fn);
1382
1399__syscall void k_timer_start(struct k_timer *timer,
1400 k_timeout_t duration, k_timeout_t period);
1401
1420__syscall void k_timer_stop(struct k_timer *timer);
1421
1434__syscall uint32_t k_timer_status_get(struct k_timer *timer);
1435
1453__syscall uint32_t k_timer_status_sync(struct k_timer *timer);
1454
1455#ifdef CONFIG_SYS_CLOCK_EXISTS
1456
1467__syscall k_ticks_t k_timer_expires_ticks(const struct k_timer *timer);
1468
1469static inline k_ticks_t z_impl_k_timer_expires_ticks(
1470 const struct k_timer *timer)
1471{
1472 return z_timeout_expires(&timer->timeout);
1473}
1474
1482__syscall k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer);
1483
1484static inline k_ticks_t z_impl_k_timer_remaining_ticks(
1485 const struct k_timer *timer)
1486{
1487 return z_timeout_remaining(&timer->timeout);
1488}
1489
1500static inline uint32_t k_timer_remaining_get(struct k_timer *timer)
1501{
1503}
1504
1505#endif /* CONFIG_SYS_CLOCK_EXISTS */
1506
1521__syscall void k_timer_user_data_set(struct k_timer *timer, void *user_data);
1522
1526static inline void z_impl_k_timer_user_data_set(struct k_timer *timer,
1527 void *user_data)
1528{
1529 timer->user_data = user_data;
1530}
1531
1539__syscall void *k_timer_user_data_get(const struct k_timer *timer);
1540
1541static inline void *z_impl_k_timer_user_data_get(const struct k_timer *timer)
1542{
1543 return timer->user_data;
1544}
1545
1563__syscall int64_t k_uptime_ticks(void);
1564
1578static inline int64_t k_uptime_get(void)
1579{
1581}
1582
1602static inline uint32_t k_uptime_get_32(void)
1603{
1604 return (uint32_t)k_uptime_get();
1605}
1606
1618static inline int64_t k_uptime_delta(int64_t *reftime)
1619{
1620 int64_t uptime, delta;
1621
1622 uptime = k_uptime_get();
1623 delta = uptime - *reftime;
1624 *reftime = uptime;
1625
1626 return delta;
1627}
1628
1637static inline uint32_t k_cycle_get_32(void)
1638{
1639 return arch_k_cycle_get_32();
1640}
1641
1650struct k_queue {
1651 sys_sflist_t data_q;
1652 struct k_spinlock lock;
1653 _wait_q_t wait_q;
1654
1655 _POLL_EVENT;
1656};
1657
1658#define Z_QUEUE_INITIALIZER(obj) \
1659 { \
1660 .data_q = SYS_SFLIST_STATIC_INIT(&obj.data_q), \
1661 .lock = { }, \
1662 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1663 _POLL_EVENT_OBJ_INIT(obj) \
1664 }
1665
1666extern void *z_queue_node_peek(sys_sfnode_t *node, bool needs_free);
1667
1687__syscall void k_queue_init(struct k_queue *queue);
1688
1704__syscall void k_queue_cancel_wait(struct k_queue *queue);
1705
1720extern void k_queue_append(struct k_queue *queue, void *data);
1721
1738__syscall int32_t k_queue_alloc_append(struct k_queue *queue, void *data);
1739
1754extern void k_queue_prepend(struct k_queue *queue, void *data);
1755
1772__syscall int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data);
1773
1789extern void k_queue_insert(struct k_queue *queue, void *prev, void *data);
1790
1809extern int k_queue_append_list(struct k_queue *queue, void *head, void *tail);
1810
1826extern int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list);
1827
1846__syscall void *k_queue_get(struct k_queue *queue, k_timeout_t timeout);
1847
1864bool k_queue_remove(struct k_queue *queue, void *data);
1865
1880bool k_queue_unique_append(struct k_queue *queue, void *data);
1881
1895__syscall int k_queue_is_empty(struct k_queue *queue);
1896
1897static inline int z_impl_k_queue_is_empty(struct k_queue *queue)
1898{
1899 return (int)sys_sflist_is_empty(&queue->data_q);
1900}
1901
1911__syscall void *k_queue_peek_head(struct k_queue *queue);
1912
1922__syscall void *k_queue_peek_tail(struct k_queue *queue);
1923
1933#define K_QUEUE_DEFINE(name) \
1934 STRUCT_SECTION_ITERABLE(k_queue, name) = \
1935 Z_QUEUE_INITIALIZER(name)
1936
1939#ifdef CONFIG_USERSPACE
1949struct k_futex {
1951};
1952
1960struct z_futex_data {
1961 _wait_q_t wait_q;
1962 struct k_spinlock lock;
1963};
1964
1965#define Z_FUTEX_DATA_INITIALIZER(obj) \
1966 { \
1967 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q) \
1968 }
1969
1995__syscall int k_futex_wait(struct k_futex *futex, int expected,
1997
2012__syscall int k_futex_wake(struct k_futex *futex, bool wake_all);
2013
2015#endif
2016
2028struct k_event {
2029 _wait_q_t wait_q;
2032};
2033
2034#define Z_EVENT_INITIALIZER(obj) \
2035 { \
2036 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2037 .events = 0 \
2038 }
2049__syscall void k_event_init(struct k_event *event);
2050
2067__syscall void k_event_post(struct k_event *event, uint32_t events);
2068
2085__syscall void k_event_set(struct k_event *event, uint32_t events);
2086
2109__syscall uint32_t k_event_wait(struct k_event *event, uint32_t events,
2110 bool reset, k_timeout_t timeout);
2111
2134__syscall uint32_t k_event_wait_all(struct k_event *event, uint32_t events,
2135 bool reset, k_timeout_t timeout);
2136
2147#define K_EVENT_DEFINE(name) \
2148 STRUCT_SECTION_ITERABLE(k_event, name) = \
2149 Z_EVENT_INITIALIZER(name);
2150
2153struct k_fifo {
2154 struct k_queue _queue;
2155};
2156
2160#define Z_FIFO_INITIALIZER(obj) \
2161 { \
2162 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2163 }
2164
2184#define k_fifo_init(fifo) \
2185 ({ \
2186 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, init, fifo); \
2187 k_queue_init(&(fifo)->_queue); \
2188 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, init, fifo); \
2189 })
2190
2204#define k_fifo_cancel_wait(fifo) \
2205 ({ \
2206 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, cancel_wait, fifo); \
2207 k_queue_cancel_wait(&(fifo)->_queue); \
2208 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, cancel_wait, fifo); \
2209 })
2210
2225#define k_fifo_put(fifo, data) \
2226 ({ \
2227 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put, fifo, data); \
2228 k_queue_append(&(fifo)->_queue, data); \
2229 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put, fifo, data); \
2230 })
2231
2248#define k_fifo_alloc_put(fifo, data) \
2249 ({ \
2250 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, alloc_put, fifo, data); \
2251 int ret = k_queue_alloc_append(&(fifo)->_queue, data); \
2252 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, alloc_put, fifo, data, ret); \
2253 ret; \
2254 })
2255
2272#define k_fifo_put_list(fifo, head, tail) \
2273 ({ \
2274 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_list, fifo, head, tail); \
2275 k_queue_append_list(&(fifo)->_queue, head, tail); \
2276 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_list, fifo, head, tail); \
2277 })
2278
2294#define k_fifo_put_slist(fifo, list) \
2295 ({ \
2296 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_slist, fifo, list); \
2297 k_queue_merge_slist(&(fifo)->_queue, list); \
2298 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_slist, fifo, list); \
2299 })
2300
2318#define k_fifo_get(fifo, timeout) \
2319 ({ \
2320 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, get, fifo, timeout); \
2321 void *ret = k_queue_get(&(fifo)->_queue, timeout); \
2322 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, get, fifo, timeout, ret); \
2323 ret; \
2324 })
2325
2339#define k_fifo_is_empty(fifo) \
2340 k_queue_is_empty(&(fifo)->_queue)
2341
2355#define k_fifo_peek_head(fifo) \
2356 ({ \
2357 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_head, fifo); \
2358 void *ret = k_queue_peek_head(&(fifo)->_queue); \
2359 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_head, fifo, ret); \
2360 ret; \
2361 })
2362
2374#define k_fifo_peek_tail(fifo) \
2375 ({ \
2376 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_tail, fifo); \
2377 void *ret = k_queue_peek_tail(&(fifo)->_queue); \
2378 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_tail, fifo, ret); \
2379 ret; \
2380 })
2381
2391#define K_FIFO_DEFINE(name) \
2392 STRUCT_SECTION_ITERABLE_ALTERNATE(k_queue, k_fifo, name) = \
2393 Z_FIFO_INITIALIZER(name)
2394
2397struct k_lifo {
2398 struct k_queue _queue;
2399};
2400
2405#define Z_LIFO_INITIALIZER(obj) \
2406 { \
2407 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2408 }
2409
2429#define k_lifo_init(lifo) \
2430 ({ \
2431 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, init, lifo); \
2432 k_queue_init(&(lifo)->_queue); \
2433 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, init, lifo); \
2434 })
2435
2450#define k_lifo_put(lifo, data) \
2451 ({ \
2452 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, put, lifo, data); \
2453 k_queue_prepend(&(lifo)->_queue, data); \
2454 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, put, lifo, data); \
2455 })
2456
2473#define k_lifo_alloc_put(lifo, data) \
2474 ({ \
2475 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, alloc_put, lifo, data); \
2476 int ret = k_queue_alloc_prepend(&(lifo)->_queue, data); \
2477 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, alloc_put, lifo, data, ret); \
2478 ret; \
2479 })
2480
2498#define k_lifo_get(lifo, timeout) \
2499 ({ \
2500 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, get, lifo, timeout); \
2501 void *ret = k_queue_get(&(lifo)->_queue, timeout); \
2502 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, get, lifo, timeout, ret); \
2503 ret; \
2504 })
2505
2515#define K_LIFO_DEFINE(name) \
2516 STRUCT_SECTION_ITERABLE_ALTERNATE(k_queue, k_lifo, name) = \
2517 Z_LIFO_INITIALIZER(name)
2518
2524#define K_STACK_FLAG_ALLOC ((uint8_t)1) /* Buffer was allocated */
2525
2526typedef uintptr_t stack_data_t;
2527
2528struct k_stack {
2529 _wait_q_t wait_q;
2530 struct k_spinlock lock;
2531 stack_data_t *base, *next, *top;
2532
2533 uint8_t flags;
2534};
2535
2536#define Z_STACK_INITIALIZER(obj, stack_buffer, stack_num_entries) \
2537 { \
2538 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2539 .base = stack_buffer, \
2540 .next = stack_buffer, \
2541 .top = stack_buffer + stack_num_entries, \
2542 }
2543
2565void k_stack_init(struct k_stack *stack,
2566 stack_data_t *buffer, uint32_t num_entries);
2567
2568
2583__syscall int32_t k_stack_alloc_init(struct k_stack *stack,
2584 uint32_t num_entries);
2585
2597int k_stack_cleanup(struct k_stack *stack);
2598
2612__syscall int k_stack_push(struct k_stack *stack, stack_data_t data);
2613
2634__syscall int k_stack_pop(struct k_stack *stack, stack_data_t *data,
2636
2647#define K_STACK_DEFINE(name, stack_num_entries) \
2648 stack_data_t __noinit \
2649 _k_stack_buf_##name[stack_num_entries]; \
2650 STRUCT_SECTION_ITERABLE(k_stack, name) = \
2651 Z_STACK_INITIALIZER(name, _k_stack_buf_##name, \
2652 stack_num_entries)
2653
2660struct k_work;
2661struct k_work_q;
2662struct k_work_queue_config;
2663struct k_delayed_work;
2664extern struct k_work_q k_sys_work_q;
2665
2680struct k_mutex {
2682 _wait_q_t wait_q;
2685
2688
2691};
2692
2696#define Z_MUTEX_INITIALIZER(obj) \
2697 { \
2698 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2699 .owner = NULL, \
2700 .lock_count = 0, \
2701 .owner_orig_prio = K_LOWEST_APPLICATION_THREAD_PRIO, \
2702 }
2703
2717#define K_MUTEX_DEFINE(name) \
2718 STRUCT_SECTION_ITERABLE(k_mutex, name) = \
2719 Z_MUTEX_INITIALIZER(name)
2720
2733__syscall int k_mutex_init(struct k_mutex *mutex);
2734
2735
2758
2779__syscall int k_mutex_unlock(struct k_mutex *mutex);
2780
2787 _wait_q_t wait_q;
2788};
2789
2790#define Z_CONDVAR_INITIALIZER(obj) \
2791 { \
2792 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2793 }
2794
2807__syscall int k_condvar_init(struct k_condvar *condvar);
2808
2815__syscall int k_condvar_signal(struct k_condvar *condvar);
2816
2824__syscall int k_condvar_broadcast(struct k_condvar *condvar);
2825
2843__syscall int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex,
2845
2856#define K_CONDVAR_DEFINE(name) \
2857 STRUCT_SECTION_ITERABLE(k_condvar, name) = \
2858 Z_CONDVAR_INITIALIZER(name)
2867struct k_sem {
2868 _wait_q_t wait_q;
2869 unsigned int count;
2870 unsigned int limit;
2871
2872 _POLL_EVENT;
2873
2874};
2875
2876#define Z_SEM_INITIALIZER(obj, initial_count, count_limit) \
2877 { \
2878 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2879 .count = initial_count, \
2880 .limit = count_limit, \
2881 _POLL_EVENT_OBJ_INIT(obj) \
2882 }
2883
2902#define K_SEM_MAX_LIMIT UINT_MAX
2903
2919__syscall int k_sem_init(struct k_sem *sem, unsigned int initial_count,
2920 unsigned int limit);
2921
2940__syscall int k_sem_take(struct k_sem *sem, k_timeout_t timeout);
2941
2954__syscall void k_sem_give(struct k_sem *sem);
2955
2967__syscall void k_sem_reset(struct k_sem *sem);
2968
2978__syscall unsigned int k_sem_count_get(struct k_sem *sem);
2979
2983static inline unsigned int z_impl_k_sem_count_get(struct k_sem *sem)
2984{
2985 return sem->count;
2986}
2987
2999#define K_SEM_DEFINE(name, initial_count, count_limit) \
3000 STRUCT_SECTION_ITERABLE(k_sem, name) = \
3001 Z_SEM_INITIALIZER(name, initial_count, count_limit); \
3002 BUILD_ASSERT(((count_limit) != 0) && \
3003 ((initial_count) <= (count_limit)) && \
3004 ((count_limit) <= K_SEM_MAX_LIMIT));
3005
3012struct k_work_delayable;
3013struct k_work_sync;
3014
3031typedef void (*k_work_handler_t)(struct k_work *work);
3032
3048
3063int k_work_busy_get(const struct k_work *work);
3064
3078static inline bool k_work_is_pending(const struct k_work *work);
3079
3101 struct k_work *work);
3102
3111extern int k_work_submit(struct k_work *work);
3112
3138 struct k_work_sync *sync);
3139
3160
3191bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync);
3192
3203
3224 k_thread_stack_t *stack, size_t stack_size,
3225 int prio, const struct k_work_queue_config *cfg);
3226
3236static inline k_tid_t k_work_queue_thread_get(struct k_work_q *queue);
3237
3261int k_work_queue_drain(struct k_work_q *queue, bool plug);
3262
3277
3293
3305static inline struct k_work_delayable *
3307
3322
3337static inline bool k_work_delayable_is_pending(
3338 const struct k_work_delayable *dwork);
3339
3354 const struct k_work_delayable *dwork);
3355
3370 const struct k_work_delayable *dwork);
3371
3398 struct k_work_delayable *dwork,
3399 k_timeout_t delay);
3400
3415 k_timeout_t delay);
3416
3453 struct k_work_delayable *dwork,
3454 k_timeout_t delay);
3455
3469 k_timeout_t delay);
3470
3496 struct k_work_sync *sync);
3497
3519
3549 struct k_work_sync *sync);
3550
3551enum {
3556 /* The atomic API is used for all work and queue flags fields to
3557 * enforce sequential consistency in SMP environments.
3558 */
3559
3560 /* Bits that represent the work item states. At least nine of the
3561 * combinations are distinct valid stable states.
3562 */
3563 K_WORK_RUNNING_BIT = 0,
3564 K_WORK_CANCELING_BIT = 1,
3565 K_WORK_QUEUED_BIT = 2,
3566 K_WORK_DELAYED_BIT = 3,
3567
3568 K_WORK_MASK = BIT(K_WORK_DELAYED_BIT) | BIT(K_WORK_QUEUED_BIT)
3569 | BIT(K_WORK_RUNNING_BIT) | BIT(K_WORK_CANCELING_BIT),
3570
3571 /* Static work flags */
3572 K_WORK_DELAYABLE_BIT = 8,
3573 K_WORK_DELAYABLE = BIT(K_WORK_DELAYABLE_BIT),
3574
3575 /* Dynamic work queue flags */
3576 K_WORK_QUEUE_STARTED_BIT = 0,
3577 K_WORK_QUEUE_STARTED = BIT(K_WORK_QUEUE_STARTED_BIT),
3578 K_WORK_QUEUE_BUSY_BIT = 1,
3579 K_WORK_QUEUE_BUSY = BIT(K_WORK_QUEUE_BUSY_BIT),
3580 K_WORK_QUEUE_DRAIN_BIT = 2,
3581 K_WORK_QUEUE_DRAIN = BIT(K_WORK_QUEUE_DRAIN_BIT),
3582 K_WORK_QUEUE_PLUGGED_BIT = 3,
3583 K_WORK_QUEUE_PLUGGED = BIT(K_WORK_QUEUE_PLUGGED_BIT),
3584
3585 /* Static work queue flags */
3586 K_WORK_QUEUE_NO_YIELD_BIT = 8,
3587 K_WORK_QUEUE_NO_YIELD = BIT(K_WORK_QUEUE_NO_YIELD_BIT),
3588
3592 /* Transient work flags */
3593
3599 K_WORK_RUNNING = BIT(K_WORK_RUNNING_BIT),
3600
3605 K_WORK_CANCELING = BIT(K_WORK_CANCELING_BIT),
3606
3612 K_WORK_QUEUED = BIT(K_WORK_QUEUED_BIT),
3613
3619 K_WORK_DELAYED = BIT(K_WORK_DELAYED_BIT),
3620};
3621
3623struct k_work {
3624 /* All fields are protected by the work module spinlock. No fields
3625 * are to be accessed except through kernel API.
3626 */
3627
3628 /* Node to link into k_work_q pending list. */
3630
3631 /* The function to be invoked by the work queue thread. */
3633
3634 /* The queue on which the work item was last submitted. */
3636
3637 /* State of the work item.
3638 *
3639 * The item can be DELAYED, QUEUED, and RUNNING simultaneously.
3640 *
3641 * It can be RUNNING and CANCELING simultaneously.
3642 */
3644};
3645
3646#define Z_WORK_INITIALIZER(work_handler) { \
3647 .handler = work_handler, \
3648}
3649
3652 /* The work item. */
3653 struct k_work work;
3654
3655 /* Timeout used to submit work after a delay. */
3656 struct _timeout timeout;
3657
3658 /* The queue to which the work should be submitted. */
3660};
3661
3662#define Z_WORK_DELAYABLE_INITIALIZER(work_handler) { \
3663 .work = { \
3664 .handler = work_handler, \
3665 .flags = K_WORK_DELAYABLE, \
3666 }, \
3667}
3668
3685#define K_WORK_DELAYABLE_DEFINE(work, work_handler) \
3686 struct k_work_delayable work \
3687 = Z_WORK_DELAYABLE_INITIALIZER(work_handler)
3688
3693/* Record used to wait for work to flush.
3694 *
3695 * The work item is inserted into the queue that will process (or is
3696 * processing) the item, and will be processed as soon as the item
3697 * completes. When the flusher is processed the semaphore will be
3698 * signaled, releasing the thread waiting for the flush.
3699 */
3700struct z_work_flusher {
3701 struct k_work work;
3702 struct k_sem sem;
3703};
3704
3705/* Record used to wait for work to complete a cancellation.
3706 *
3707 * The work item is inserted into a global queue of pending cancels.
3708 * When a cancelling work item goes idle any matching waiters are
3709 * removed from pending_cancels and are woken.
3710 */
3711struct z_work_canceller {
3712 sys_snode_t node;
3713 struct k_work *work;
3714 struct k_sem sem;
3715};
3716
3735 union {
3736 struct z_work_flusher flusher;
3737 struct z_work_canceller canceller;
3738 };
3739};
3740
3752 const char *name;
3753
3767};
3768
3770struct k_work_q {
3771 /* The thread that animates the work. */
3773
3774 /* All the following fields must be accessed only while the
3775 * work module spinlock is held.
3776 */
3777
3778 /* List of k_work items to be worked. */
3780
3781 /* Wait queue for idle work thread. */
3782 _wait_q_t notifyq;
3783
3784 /* Wait queue for threads waiting for the queue to drain. */
3785 _wait_q_t drainq;
3786
3787 /* Flags describing queue state. */
3789};
3790
3791/* Provide the implementation for inline functions declared above */
3792
3793static inline bool k_work_is_pending(const struct k_work *work)
3794{
3795 return k_work_busy_get(work) != 0;
3796}
3797
3798static inline struct k_work_delayable *
3800{
3801 return CONTAINER_OF(work, struct k_work_delayable, work);
3802}
3803
3805 const struct k_work_delayable *dwork)
3806{
3807 return k_work_delayable_busy_get(dwork) != 0;
3808}
3809
3811 const struct k_work_delayable *dwork)
3812{
3813 return z_timeout_expires(&dwork->timeout);
3814}
3815
3817 const struct k_work_delayable *dwork)
3818{
3819 return z_timeout_remaining(&dwork->timeout);
3820}
3821
3823{
3824 return &queue->thread;
3825}
3826
3827/* Legacy wrappers */
3828
3829__deprecated
3830static inline bool k_work_pending(const struct k_work *work)
3831{
3832 return k_work_is_pending(work);
3833}
3834
3835__deprecated
3836static inline void k_work_q_start(struct k_work_q *work_q,
3838 size_t stack_size, int prio)
3839{
3840 k_work_queue_start(work_q, stack, stack_size, prio, NULL);
3841}
3842
3843/* deprecated, remove when corresponding deprecated API is removed. */
3846};
3847
3848#define Z_DELAYED_WORK_INITIALIZER(work_handler) __DEPRECATED_MACRO { \
3849 .work = Z_WORK_DELAYABLE_INITIALIZER(work_handler), \
3850}
3851
3852__deprecated
3853static inline void k_delayed_work_init(struct k_delayed_work *work,
3855{
3857}
3858
3859__deprecated
3860static inline int k_delayed_work_submit_to_queue(struct k_work_q *work_q,
3861 struct k_delayed_work *work,
3862 k_timeout_t delay)
3863{
3864 int rc = k_work_reschedule_for_queue(work_q, &work->work, delay);
3865
3866 /* Legacy API doesn't distinguish success cases. */
3867 return (rc >= 0) ? 0 : rc;
3868}
3869
3870__deprecated
3872 k_timeout_t delay)
3873{
3874 int rc = k_work_reschedule(&work->work, delay);
3875
3876 /* Legacy API doesn't distinguish success cases. */
3877 return (rc >= 0) ? 0 : rc;
3878}
3879
3880__deprecated
3882{
3883 bool pending = k_work_delayable_is_pending(&work->work);
3884 int rc = k_work_cancel_delayable(&work->work);
3885
3886 /* Old return value rules:
3887 *
3888 * 0 if:
3889 * * Work item countdown cancelled before the item was submitted to
3890 * its queue; or
3891 * * Work item was removed from its queue before it was processed.
3892 *
3893 * -EINVAL if:
3894 * * Work item has never been submitted; or
3895 * * Work item has been successfully cancelled; or
3896 * * Timeout handler is in the process of submitting the work item to
3897 * its queue; or
3898 * * Work queue thread has removed the work item from the queue but
3899 * has not called its handler.
3900 *
3901 * -EALREADY if:
3902 * * Work queue thread has removed the work item from the queue and
3903 * cleared its pending flag; or
3904 * * Work queue thread is invoking the item handler; or
3905 * * Work item handler has completed.
3906 *
3907
3908 * We can't reconstruct those states, so call it successful only when
3909 * a pending item is no longer pending, -EINVAL if it was pending and
3910 * still is, and cancel, and -EALREADY if it wasn't pending (so
3911 * presumably cancellation should have had no effect, assuming we
3912 * didn't hit a race condition).
3913 */
3914 if (pending) {
3915 return (rc == 0) ? 0 : -EINVAL;
3916 }
3917
3918 return -EALREADY;
3919}
3920
3921__deprecated
3922static inline bool k_delayed_work_pending(struct k_delayed_work *work)
3923{
3924 return k_work_delayable_is_pending(&work->work);
3925}
3926
3927__deprecated
3929{
3931
3932 /* Probably should be ceil32, but was floor32 */
3933 return k_ticks_to_ms_floor32(rem);
3934}
3935
3936__deprecated
3938 struct k_delayed_work *work)
3939{
3940 return k_work_delayable_expires_get(&work->work);
3941}
3942
3943__deprecated
3945 struct k_delayed_work *work)
3946{
3947 return k_work_delayable_remaining_get(&work->work);
3948}
3949
3952struct k_work_user;
3953
3970typedef void (*k_work_user_handler_t)(struct k_work_user *work);
3971
3976struct k_work_user_q {
3977 struct k_queue queue;
3978 struct k_thread thread;
3979};
3980
3981enum {
3982 K_WORK_USER_STATE_PENDING, /* Work item pending state */
3983};
3984
3985struct k_work_user {
3986 void *_reserved; /* Used by k_queue implementation. */
3989};
3990
3995#define Z_WORK_USER_INITIALIZER(work_handler) \
3996 { \
3997 ._reserved = NULL, \
3998 .handler = work_handler, \
3999 .flags = 0 \
4000 }
4001
4013#define K_WORK_USER_DEFINE(work, work_handler) \
4014 struct k_work_user work = Z_WORK_USER_INITIALIZER(work_handler)
4015
4027static inline void k_work_user_init(struct k_work_user *work,
4029{
4030 *work = (struct k_work_user)Z_WORK_USER_INITIALIZER(handler);
4031}
4032
4049static inline bool k_work_user_is_pending(struct k_work_user *work)
4050{
4051 return atomic_test_bit(&work->flags, K_WORK_USER_STATE_PENDING);
4052}
4053
4072static inline int k_work_user_submit_to_queue(struct k_work_user_q *work_q,
4073 struct k_work_user *work)
4074{
4075 int ret = -EBUSY;
4076
4078 K_WORK_USER_STATE_PENDING)) {
4079 ret = k_queue_alloc_append(&work_q->queue, work);
4080
4081 /* Couldn't insert into the queue. Clear the pending bit
4082 * so the work item can be submitted again
4083 */
4084 if (ret != 0) {
4086 K_WORK_USER_STATE_PENDING);
4087 }
4088 }
4089
4090 return ret;
4091}
4092
4114extern void k_work_user_queue_start(struct k_work_user_q *work_q,
4116 size_t stack_size, int prio,
4117 const char *name);
4118
4125struct k_work_poll {
4126 struct k_work work;
4127 struct k_work_q *workq;
4128 struct z_poller poller;
4129 struct k_poll_event *events;
4130 int num_events;
4131 k_work_handler_t real_handler;
4132 struct _timeout timeout;
4133 int poll_result;
4134};
4135
4156#define K_WORK_DEFINE(work, work_handler) \
4157 struct k_work work = Z_WORK_INITIALIZER(work_handler)
4158
4170#define K_DELAYED_WORK_DEFINE(work, work_handler) __DEPRECATED_MACRO \
4171 struct k_delayed_work work = Z_DELAYED_WORK_INITIALIZER(work_handler)
4172
4184extern void k_work_poll_init(struct k_work_poll *work,
4186
4221extern int k_work_poll_submit_to_queue(struct k_work_q *work_q,
4222 struct k_work_poll *work,
4223 struct k_poll_event *events,
4224 int num_events,
4226
4258extern int k_work_poll_submit(struct k_work_poll *work,
4259 struct k_poll_event *events,
4260 int num_events,
4262
4277extern int k_work_poll_cancel(struct k_work_poll *work);
4278
4290struct k_msgq {
4292 _wait_q_t wait_q;
4296 size_t msg_size;
4309
4310 _POLL_EVENT;
4311
4314};
4320#define Z_MSGQ_INITIALIZER(obj, q_buffer, q_msg_size, q_max_msgs) \
4321 { \
4322 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
4323 .msg_size = q_msg_size, \
4324 .max_msgs = q_max_msgs, \
4325 .buffer_start = q_buffer, \
4326 .buffer_end = q_buffer + (q_max_msgs * q_msg_size), \
4327 .read_ptr = q_buffer, \
4328 .write_ptr = q_buffer, \
4329 .used_msgs = 0, \
4330 _POLL_EVENT_OBJ_INIT(obj) \
4331 }
4332
4338#define K_MSGQ_FLAG_ALLOC BIT(0)
4339
4345 size_t msg_size;
4350};
4351
4352
4373#define K_MSGQ_DEFINE(q_name, q_msg_size, q_max_msgs, q_align) \
4374 static char __noinit __aligned(q_align) \
4375 _k_fifo_buf_##q_name[(q_max_msgs) * (q_msg_size)]; \
4376 STRUCT_SECTION_ITERABLE(k_msgq, q_name) = \
4377 Z_MSGQ_INITIALIZER(q_name, _k_fifo_buf_##q_name, \
4378 q_msg_size, q_max_msgs)
4379
4398void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size,
4399 uint32_t max_msgs);
4400
4420__syscall int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size,
4421 uint32_t max_msgs);
4422
4434
4456__syscall int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout);
4457
4478__syscall int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout);
4479
4494__syscall int k_msgq_peek(struct k_msgq *msgq, void *data);
4495
4507__syscall void k_msgq_purge(struct k_msgq *msgq);
4508
4520
4531__syscall void k_msgq_get_attrs(struct k_msgq *msgq,
4532 struct k_msgq_attrs *attrs);
4533
4534
4535static inline uint32_t z_impl_k_msgq_num_free_get(struct k_msgq *msgq)
4536{
4537 return msgq->max_msgs - msgq->used_msgs;
4538}
4539
4550
4551static inline uint32_t z_impl_k_msgq_num_used_get(struct k_msgq *msgq)
4552{
4553 return msgq->used_msgs;
4554}
4555
4570 uint32_t _mailbox;
4572 size_t size;
4576 void *tx_data;
4578 void *_rx_data;
4586 k_tid_t _syncing_thread;
4587#if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0)
4589 struct k_sem *_async_sem;
4590#endif
4591};
4596struct k_mbox {
4598 _wait_q_t tx_msg_queue;
4600 _wait_q_t rx_msg_queue;
4602
4603};
4608#define Z_MBOX_INITIALIZER(obj) \
4609 { \
4610 .tx_msg_queue = Z_WAIT_Q_INIT(&obj.tx_msg_queue), \
4611 .rx_msg_queue = Z_WAIT_Q_INIT(&obj.rx_msg_queue), \
4612 }
4613
4627#define K_MBOX_DEFINE(name) \
4628 STRUCT_SECTION_ITERABLE(k_mbox, name) = \
4629 Z_MBOX_INITIALIZER(name) \
4630
4640extern void k_mbox_init(struct k_mbox *mbox);
4641
4661extern int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
4663
4679extern void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
4680 struct k_sem *sem);
4681
4699extern int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg,
4700 void *buffer, k_timeout_t timeout);
4701
4717extern void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer);
4718
4728struct k_pipe {
4729 unsigned char *buffer;
4730 size_t size;
4731 size_t bytes_used;
4732 size_t read_index;
4736 struct {
4737 _wait_q_t readers;
4738 _wait_q_t writers;
4742};
4743
4747#define K_PIPE_FLAG_ALLOC BIT(0)
4749#define Z_PIPE_INITIALIZER(obj, pipe_buffer, pipe_buffer_size) \
4750 { \
4751 .buffer = pipe_buffer, \
4752 .size = pipe_buffer_size, \
4753 .bytes_used = 0, \
4754 .read_index = 0, \
4755 .write_index = 0, \
4756 .lock = {}, \
4757 .wait_q = { \
4758 .readers = Z_WAIT_Q_INIT(&obj.wait_q.readers), \
4759 .writers = Z_WAIT_Q_INIT(&obj.wait_q.writers) \
4760 }, \
4761 .flags = 0 \
4762 }
4763
4781#define K_PIPE_DEFINE(name, pipe_buffer_size, pipe_align) \
4782 static unsigned char __noinit __aligned(pipe_align) \
4783 _k_pipe_buf_##name[pipe_buffer_size]; \
4784 STRUCT_SECTION_ITERABLE(k_pipe, name) = \
4785 Z_PIPE_INITIALIZER(name, _k_pipe_buf_##name, pipe_buffer_size)
4786
4800void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size);
4801
4814
4830__syscall int k_pipe_alloc_init(struct k_pipe *pipe, size_t size);
4831
4850__syscall int k_pipe_put(struct k_pipe *pipe, void *data,
4851 size_t bytes_to_write, size_t *bytes_written,
4852 size_t min_xfer, k_timeout_t timeout);
4853
4873__syscall int k_pipe_get(struct k_pipe *pipe, void *data,
4874 size_t bytes_to_read, size_t *bytes_read,
4875 size_t min_xfer, k_timeout_t timeout);
4876
4885__syscall size_t k_pipe_read_avail(struct k_pipe *pipe);
4886
4895__syscall size_t k_pipe_write_avail(struct k_pipe *pipe);
4896
4903struct k_mem_slab {
4904 _wait_q_t wait_q;
4905 struct k_spinlock lock;
4906 uint32_t num_blocks;
4907 size_t block_size;
4908 char *buffer;
4909 char *free_list;
4910 uint32_t num_used;
4911#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
4912 uint32_t max_used;
4913#endif
4914
4915};
4916
4917#define Z_MEM_SLAB_INITIALIZER(obj, slab_buffer, slab_block_size, \
4918 slab_num_blocks) \
4919 { \
4920 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
4921 .lock = {}, \
4922 .num_blocks = slab_num_blocks, \
4923 .block_size = slab_block_size, \
4924 .buffer = slab_buffer, \
4925 .free_list = NULL, \
4926 .num_used = 0, \
4927 }
4928
4929
4959#define K_MEM_SLAB_DEFINE(name, slab_block_size, slab_num_blocks, slab_align) \
4960 char __noinit_named(k_mem_slab_buf_##name) \
4961 __aligned(WB_UP(slab_align)) \
4962 _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
4963 STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
4964 Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
4965 WB_UP(slab_block_size), slab_num_blocks)
4966
4988extern int k_mem_slab_init(struct k_mem_slab *slab, void *buffer,
4989 size_t block_size, uint32_t num_blocks);
4990
5013extern int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem,
5015
5027extern void k_mem_slab_free(struct k_mem_slab *slab, void **mem);
5028
5039static inline uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
5040{
5041 return slab->num_used;
5042}
5043
5054static inline uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
5055{
5056#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5057 return slab->max_used;
5058#else
5059 ARG_UNUSED(slab);
5060 return 0;
5061#endif
5062}
5063
5074static inline uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
5075{
5076 return slab->num_blocks - slab->num_used;
5077}
5078
5086/* kernel synchronized heap struct */
5087
5088struct k_heap {
5090 _wait_q_t wait_q;
5092};
5093
5107void k_heap_init(struct k_heap *h, void *mem, size_t bytes);
5108
5128void *k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes,
5130
5151void *k_heap_alloc(struct k_heap *h, size_t bytes,
5153
5164void k_heap_free(struct k_heap *h, void *mem);
5165
5166/* Hand-calculated minimum heap sizes needed to return a successful
5167 * 1-byte allocation. See details in lib/os/heap.[ch]
5168 */
5169#define Z_HEAP_MIN_SIZE (sizeof(void *) > 4 ? 56 : 44)
5170
5187#define Z_HEAP_DEFINE_IN_SECT(name, bytes, in_section) \
5188 char in_section \
5189 __aligned(8) /* CHUNK_UNIT */ \
5190 kheap_##name[MAX(bytes, Z_HEAP_MIN_SIZE)]; \
5191 STRUCT_SECTION_ITERABLE(k_heap, name) = { \
5192 .heap = { \
5193 .init_mem = kheap_##name, \
5194 .init_bytes = MAX(bytes, Z_HEAP_MIN_SIZE), \
5195 }, \
5196 }
5197
5212#define K_HEAP_DEFINE(name, bytes) \
5213 Z_HEAP_DEFINE_IN_SECT(name, bytes, \
5214 __noinit_named(kheap_buf_##name))
5215
5230#define K_HEAP_DEFINE_NOCACHE(name, bytes) \
5231 Z_HEAP_DEFINE_IN_SECT(name, bytes, __nocache)
5232
5261extern void *k_aligned_alloc(size_t align, size_t size);
5262
5273extern void *k_malloc(size_t size);
5274
5288extern void k_free(void *ptr);
5289
5301extern void *k_calloc(size_t nmemb, size_t size);
5302
5305/* polling API - PRIVATE */
5306
5307#ifdef CONFIG_POLL
5308#define _INIT_OBJ_POLL_EVENT(obj) do { (obj)->poll_event = NULL; } while (false)
5309#else
5310#define _INIT_OBJ_POLL_EVENT(obj) do { } while (false)
5311#endif
5312
5313/* private - types bit positions */
5314enum _poll_types_bits {
5315 /* can be used to ignore an event */
5316 _POLL_TYPE_IGNORE,
5317
5318 /* to be signaled by k_poll_signal_raise() */
5319 _POLL_TYPE_SIGNAL,
5320
5321 /* semaphore availability */
5322 _POLL_TYPE_SEM_AVAILABLE,
5323
5324 /* queue/FIFO/LIFO data availability */
5325 _POLL_TYPE_DATA_AVAILABLE,
5326
5327 /* msgq data availability */
5328 _POLL_TYPE_MSGQ_DATA_AVAILABLE,
5329
5330 _POLL_NUM_TYPES
5331};
5332
5333#define Z_POLL_TYPE_BIT(type) (1U << ((type) - 1U))
5334
5335/* private - states bit positions */
5336enum _poll_states_bits {
5337 /* default state when creating event */
5338 _POLL_STATE_NOT_READY,
5339
5340 /* signaled by k_poll_signal_raise() */
5341 _POLL_STATE_SIGNALED,
5342
5343 /* semaphore is available */
5344 _POLL_STATE_SEM_AVAILABLE,
5345
5346 /* data is available to read on queue/FIFO/LIFO */
5347 _POLL_STATE_DATA_AVAILABLE,
5348
5349 /* queue/FIFO/LIFO wait was cancelled */
5350 _POLL_STATE_CANCELLED,
5351
5352 /* data is available to read on a message queue */
5353 _POLL_STATE_MSGQ_DATA_AVAILABLE,
5354
5355 _POLL_NUM_STATES
5356};
5357
5358#define Z_POLL_STATE_BIT(state) (1U << ((state) - 1U))
5359
5360#define _POLL_EVENT_NUM_UNUSED_BITS \
5361 (32 - (0 \
5362 + 8 /* tag */ \
5363 + _POLL_NUM_TYPES \
5364 + _POLL_NUM_STATES \
5365 + 1 /* modes */ \
5366 ))
5367
5368/* end of polling API - PRIVATE */
5369
5370
5377/* Public polling API */
5378
5379/* public - values for k_poll_event.type bitfield */
5380#define K_POLL_TYPE_IGNORE 0
5381#define K_POLL_TYPE_SIGNAL Z_POLL_TYPE_BIT(_POLL_TYPE_SIGNAL)
5382#define K_POLL_TYPE_SEM_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_SEM_AVAILABLE)
5383#define K_POLL_TYPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_DATA_AVAILABLE)
5384#define K_POLL_TYPE_FIFO_DATA_AVAILABLE K_POLL_TYPE_DATA_AVAILABLE
5385#define K_POLL_TYPE_MSGQ_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_MSGQ_DATA_AVAILABLE)
5386
5387/* public - polling modes */
5389 /* polling thread does not take ownership of objects when available */
5391
5394
5395/* public - values for k_poll_event.state bitfield */
5396#define K_POLL_STATE_NOT_READY 0
5397#define K_POLL_STATE_SIGNALED Z_POLL_STATE_BIT(_POLL_STATE_SIGNALED)
5398#define K_POLL_STATE_SEM_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_SEM_AVAILABLE)
5399#define K_POLL_STATE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_DATA_AVAILABLE)
5400#define K_POLL_STATE_FIFO_DATA_AVAILABLE K_POLL_STATE_DATA_AVAILABLE
5401#define K_POLL_STATE_MSGQ_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_MSGQ_DATA_AVAILABLE)
5402#define K_POLL_STATE_CANCELLED Z_POLL_STATE_BIT(_POLL_STATE_CANCELLED)
5403
5404/* public - poll signal object */
5408
5413 unsigned int signaled;
5414
5417};
5418
5419#define K_POLL_SIGNAL_INITIALIZER(obj) \
5420 { \
5421 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events), \
5422 .signaled = 0, \
5423 .result = 0, \
5424 }
5431 sys_dnode_t _node;
5432
5434 struct z_poller *poller;
5435
5438
5440 uint32_t type:_POLL_NUM_TYPES;
5441
5443 uint32_t state:_POLL_NUM_STATES;
5444
5447
5449 uint32_t unused:_POLL_EVENT_NUM_UNUSED_BITS;
5450
5452 union {
5453 void *obj;
5455 struct k_sem *sem;
5456 struct k_fifo *fifo;
5457 struct k_queue *queue;
5458 struct k_msgq *msgq;
5459 };
5460};
5461
5462#define K_POLL_EVENT_INITIALIZER(_event_type, _event_mode, _event_obj) \
5463 { \
5464 .poller = NULL, \
5465 .type = _event_type, \
5466 .state = K_POLL_STATE_NOT_READY, \
5467 .mode = _event_mode, \
5468 .unused = 0, \
5469 { \
5470 .obj = _event_obj, \
5471 }, \
5472 }
5473
5474#define K_POLL_EVENT_STATIC_INITIALIZER(_event_type, _event_mode, _event_obj, \
5475 event_tag) \
5476 { \
5477 .tag = event_tag, \
5478 .type = _event_type, \
5479 .state = K_POLL_STATE_NOT_READY, \
5480 .mode = _event_mode, \
5481 .unused = 0, \
5482 { \
5483 .obj = _event_obj, \
5484 }, \
5485 }
5486
5504extern void k_poll_event_init(struct k_poll_event *event, uint32_t type,
5505 int mode, void *obj);
5506
5550__syscall int k_poll(struct k_poll_event *events, int num_events,
5552
5563__syscall void k_poll_signal_init(struct k_poll_signal *sig);
5564
5565/*
5566 * @brief Reset a poll signal object's state to unsignaled.
5567 *
5568 * @param sig A poll signal object
5569 */
5570__syscall void k_poll_signal_reset(struct k_poll_signal *sig);
5571
5582__syscall void k_poll_signal_check(struct k_poll_signal *sig,
5583 unsigned int *signaled, int *result);
5584
5609__syscall int k_poll_signal_raise(struct k_poll_signal *sig, int result);
5610
5614extern void z_handle_obj_poll_events(sys_dlist_t *events, uint32_t state);
5615
5638static inline void k_cpu_idle(void)
5639{
5640 arch_cpu_idle();
5641}
5642
5659static inline void k_cpu_atomic_idle(unsigned int key)
5660{
5662}
5663
5671#ifdef ARCH_EXCEPT
5672/* This architecture has direct support for triggering a CPU exception */
5673#define z_except_reason(reason) ARCH_EXCEPT(reason)
5674#else
5675
5676#if !defined(CONFIG_ASSERT_NO_FILE_INFO)
5677#define __EXCEPT_LOC() __ASSERT_PRINT("@ %s:%d\n", __FILE__, __LINE__)
5678#else
5679#define __EXCEPT_LOC()
5680#endif
5681
5682/* NOTE: This is the implementation for arches that do not implement
5683 * ARCH_EXCEPT() to generate a real CPU exception.
5684 *
5685 * We won't have a real exception frame to determine the PC value when
5686 * the oops occurred, so print file and line number before we jump into
5687 * the fatal error handler.
5688 */
5689#define z_except_reason(reason) do { \
5690 __EXCEPT_LOC(); \
5691 z_fatal_error(reason, NULL); \
5692 } while (false)
5693
5694#endif /* _ARCH__EXCEPT */
5695
5707#define k_oops() z_except_reason(K_ERR_KERNEL_OOPS)
5708
5717#define k_panic() z_except_reason(K_ERR_KERNEL_PANIC)
5718
5719/*
5720 * private APIs that are utilized by one or more public APIs
5721 */
5722
5726extern void z_init_thread_base(struct _thread_base *thread_base,
5727 int priority, uint32_t initial_state,
5728 unsigned int options);
5729
5730#ifdef CONFIG_MULTITHREADING
5734extern void z_init_static_threads(void);
5735#else
5739#define z_init_static_threads() do { } while (false)
5740#endif
5741
5745extern bool z_is_thread_essential(void);
5746
5747#ifdef CONFIG_SMP
5748void z_smp_thread_init(void *arg, struct k_thread *thread);
5749void z_smp_thread_swap(void);
5750#endif
5751
5755extern void z_timer_expiration_handler(struct _timeout *t);
5756
5757#ifdef CONFIG_PRINTK
5765__syscall void k_str_out(char *c, size_t n);
5766#endif
5767
5788__syscall int k_float_disable(struct k_thread *thread);
5789
5828__syscall int k_float_enable(struct k_thread *thread, unsigned int options);
5829
5830#ifdef CONFIG_THREAD_RUNTIME_STATS
5831
5839int k_thread_runtime_stats_get(k_tid_t thread,
5840 k_thread_runtime_stats_t *stats);
5841
5848int k_thread_runtime_stats_all_get(k_thread_runtime_stats_t *stats);
5849
5850#endif
5851
5852#ifdef __cplusplus
5853}
5854#endif
5855
5856#include <tracing/tracing.h>
5857#include <syscalls/kernel.h>
5858
5859#endif /* !_ASMLANGUAGE */
5860
5861#endif /* ZEPHYR_INCLUDE_KERNEL_H_ */
static uint32_t arch_k_cycle_get_32(void)
Definition: misc.h:26
struct z_thread_stack_element k_thread_stack_t
Typedef of struct z_thread_stack_element.
Definition: arch_interface.h:44
void(* k_thread_entry_t)(void *p1, void *p2, void *p3)
Thread entry point function type.
Definition: arch_interface.h:46
static struct k_thread thread[2]
Definition: atomic.c:22
int atomic_t
Definition: atomic.h:21
ZTEST_BMEM int timeout
Definition: main.c:31
ZTEST_BMEM int count
Definition: main.c:33
System error numbers.
void
Definition: eswifi_shell.c:15
void arch_cpu_atomic_idle(unsigned int key)
Atomically re-enable interrupts and enter low power mode.
void arch_cpu_idle(void)
Power save idle routine.
static bool atomic_test_bit(const atomic_t *target, int bit)
Atomically test a bit.
Definition: atomic.h:127
static void atomic_clear_bit(atomic_t *target, int bit)
Atomically clear a bit.
Definition: atomic.h:187
static bool atomic_test_and_set_bit(atomic_t *target, int bit)
Atomically set a bit.
Definition: atomic.h:166
static uint32_t k_cycle_get_32(void)
Read the hardware clock.
Definition: kernel.h:1637
int64_t k_uptime_ticks(void)
Get system uptime, in system ticks.
static uint32_t k_uptime_get_32(void)
Get system uptime (32-bit version).
Definition: kernel.h:1602
uint32_t k_ticks_t
Tick precision used in timeout APIs.
Definition: sys_clock.h:48
static int64_t k_uptime_delta(int64_t *reftime)
Get elapsed time.
Definition: kernel.h:1618
static int64_t k_uptime_get(void)
Get system uptime.
Definition: kernel.h:1578
int k_condvar_signal(struct k_condvar *condvar)
Signals one thread that is pending on the condition variable.
int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex, k_timeout_t timeout)
Waits on the condition variable releasing the mutex lock.
int k_condvar_init(struct k_condvar *condvar)
Initialize a condition variable.
int k_condvar_broadcast(struct k_condvar *condvar)
Unblock all threads that are pending on the condition variable.
static void k_cpu_idle(void)
Make the CPU idle.
Definition: kernel.h:5638
static void k_cpu_atomic_idle(unsigned int key)
Make the CPU idle in an atomic fashion.
Definition: kernel.h:5659
struct _dnode sys_dnode_t
Definition: dlist.h:49
struct _dnode sys_dlist_t
Definition: dlist.h:48
uint32_t k_event_wait(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for any of the specified events.
void k_event_set(struct k_event *event, uint32_t events)
Set the events in an event object.
void k_event_post(struct k_event *event, uint32_t events)
Post one or more events to an event object.
void k_event_init(struct k_event *event)
Initialize an event object.
uint32_t k_event_wait_all(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for any of the specified events.
static bool sys_sflist_is_empty(sys_sflist_t *list)
Test if the given list is empty.
Definition: sflist.h:323
int k_futex_wait(struct k_futex *futex, int expected, k_timeout_t timeout)
Pend the current thread on a futex.
int k_futex_wake(struct k_futex *futex, bool wake_all)
Wake one/all threads pending on a futex.
void * k_heap_alloc(struct k_heap *h, size_t bytes, k_timeout_t timeout)
Allocate memory from a k_heap.
void k_heap_free(struct k_heap *h, void *mem)
Free memory allocated by k_heap_alloc()
void k_free(void *ptr)
Free memory allocated from heap.
void k_heap_init(struct k_heap *h, void *mem, size_t bytes)
Initialize a k_heap.
void * k_malloc(size_t size)
Allocate memory from the heap.
void * k_calloc(size_t nmemb, size_t size)
Allocate memory from heap, array style.
void * k_aligned_alloc(size_t align, size_t size)
Allocate memory from the heap with a specified alignment.
void * k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes, k_timeout_t timeout)
Allocate aligned memory from a k_heap.
bool k_is_in_isr(void)
Determine if code is running at interrupt level.
int k_is_preempt_thread(void)
Determine if code is running in a preemptible thread.
static bool k_is_pre_kernel(void)
Test whether startup is in the before-main-task phase.
Definition: kernel.h:938
static ZTEST_BMEM char buffer[8]
Test mailbox enhance capabilities.
Definition: test_mbox_api.c:566
int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg, void *buffer, k_timeout_t timeout)
Receive a mailbox message.
void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer)
Retrieve mailbox message data into a buffer.
void k_mbox_init(struct k_mbox *mbox)
Initialize a mailbox.
int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, k_timeout_t timeout)
Send a mailbox message in a synchronous manner.
void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, struct k_sem *sem)
Send a mailbox message in an asynchronous manner.
int k_mem_slab_init(struct k_mem_slab *slab, void *buffer, size_t block_size, uint32_t num_blocks)
Initialize a memory slab.
void k_mem_slab_free(struct k_mem_slab *slab, void **mem)
Free memory allocated from a memory slab.
int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem, k_timeout_t timeout)
Allocate memory from a memory slab.
static uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
Get the number of used blocks in a memory slab.
Definition: kernel.h:5039
static uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
Get the number of maximum used blocks so far in a memory slab.
Definition: kernel.h:5054
static uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
Get the number of unused blocks in a memory slab.
Definition: kernel.h:5074
int k_msgq_peek(struct k_msgq *msgq, void *data)
Peek/read a message from a message queue.
uint32_t k_msgq_num_used_get(struct k_msgq *msgq)
Get the number of messages in a message queue.
void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout)
Send a message to a message queue.
uint32_t k_msgq_num_free_get(struct k_msgq *msgq)
Get the amount of free space in a message queue.
void k_msgq_get_attrs(struct k_msgq *msgq, struct k_msgq_attrs *attrs)
Get basic attributes of a message queue.
void k_msgq_purge(struct k_msgq *msgq)
Purge a message queue.
int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout)
Receive a message from a message queue.
int k_msgq_cleanup(struct k_msgq *msgq)
Release allocated buffer for a queue.
int k_mutex_unlock(struct k_mutex *mutex)
Unlock a mutex.
int k_mutex_init(struct k_mutex *mutex)
Initialize a mutex.
int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout)
Lock a mutex.
size_t k_pipe_read_avail(struct k_pipe *pipe)
Query the number of bytes that may be read from pipe.
int k_pipe_alloc_init(struct k_pipe *pipe, size_t size)
Initialize a pipe and allocate a buffer for it.
int k_pipe_put(struct k_pipe *pipe, void *data, size_t bytes_to_write, size_t *bytes_written, size_t min_xfer, k_timeout_t timeout)
Write data to a pipe.
int k_pipe_cleanup(struct k_pipe *pipe)
Release a pipe's allocated buffer.
int k_pipe_get(struct k_pipe *pipe, void *data, size_t bytes_to_read, size_t *bytes_read, size_t min_xfer, k_timeout_t timeout)
Read data from a pipe.
void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size)
Initialize a pipe.
size_t k_pipe_write_avail(struct k_pipe *pipe)
Query the number of bytes that may be written to pipe.
void k_poll_signal_reset(struct k_poll_signal *sig)
k_poll_modes
Definition: kernel.h:5388
void k_poll_signal_check(struct k_poll_signal *sig, unsigned int *signaled, int *result)
Fetch the signaled state and result value of a poll signal.
void k_poll_event_init(struct k_poll_event *event, uint32_t type, int mode, void *obj)
Initialize one struct k_poll_event instance.
int k_poll(struct k_poll_event *events, int num_events, k_timeout_t timeout)
Wait for one or many of multiple poll events to occur.
int k_poll_signal_raise(struct k_poll_signal *sig, int result)
Signal a poll signal object.
void k_poll_signal_init(struct k_poll_signal *sig)
Initialize a poll signal object.
@ K_POLL_MODE_NOTIFY_ONLY
Definition: kernel.h:5390
@ K_POLL_NUM_MODES
Definition: kernel.h:5392
void k_queue_init(struct k_queue *queue)
Initialize a queue.
void * k_queue_get(struct k_queue *queue, k_timeout_t timeout)
Get an element from a queue.
void * k_queue_peek_tail(struct k_queue *queue)
Peek element at the tail of queue.
bool k_queue_unique_append(struct k_queue *queue, void *data)
Append an element to a queue only if it's not present already.
bool k_queue_remove(struct k_queue *queue, void *data)
Remove an element from a queue.
int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list)
Atomically add a list of elements to a queue.
int32_t k_queue_alloc_append(struct k_queue *queue, void *data)
Append an element to a queue.
void k_queue_cancel_wait(struct k_queue *queue)
Cancel waiting on a queue.
void * k_queue_peek_head(struct k_queue *queue)
Peek element at the head of queue.
void k_queue_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
int k_queue_append_list(struct k_queue *queue, void *head, void *tail)
Atomically append a list of elements to a queue.
void k_queue_append(struct k_queue *queue, void *data)
Append an element to the end of a queue.
int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
void k_queue_insert(struct k_queue *queue, void *prev, void *data)
Inserts an element to a queue.
int k_queue_is_empty(struct k_queue *queue)
Query a queue to see if it has data available.
void k_sem_reset(struct k_sem *sem)
Resets a semaphore's count to zero.
unsigned int k_sem_count_get(struct k_sem *sem)
Get a semaphore's count.
void k_sem_give(struct k_sem *sem)
Give a semaphore.
int k_sem_take(struct k_sem *sem, k_timeout_t timeout)
Take a semaphore.
int k_sem_init(struct k_sem *sem, unsigned int initial_count, unsigned int limit)
Initialize a semaphore.
int k_stack_pop(struct k_stack *stack, stack_data_t *data, k_timeout_t timeout)
Pop an element from a stack.
void k_stack_init(struct k_stack *stack, stack_data_t *buffer, uint32_t num_entries)
Initialize a stack.
int k_stack_cleanup(struct k_stack *stack)
Release a stack's allocated buffer.
int k_stack_push(struct k_stack *stack, stack_data_t data)
Push an element onto a stack.
int32_t k_stack_alloc_init(struct k_stack *stack, uint32_t num_entries)
Initialize a stack.
#define BIT(n)
Unsigned integer with bit position n set (signed in assembly language).
Definition: util_macro.h:44
#define CONTAINER_OF(ptr, type, field)
Get a pointer to a container structure from an element.
Definition: util.h:131
#define EINVAL
Definition: errno.h:61
#define EBUSY
Definition: errno.h:55
#define EALREADY
Definition: errno.h:105
int k_thread_name_copy(k_tid_t thread, char *buf, size_t size)
Copy the thread name into a supplied buffer.
void k_yield(void)
Yield the current thread.
void k_thread_resume(k_tid_t thread)
Resume a suspended thread.
void * k_thread_custom_data_get(void)
Get current thread's custom data.
void k_thread_abort(k_tid_t thread)
Abort a thread.
void k_thread_system_pool_assign(struct k_thread *thread)
Assign the system heap as a thread's resource pool.
int k_thread_name_set(k_tid_t thread, const char *str)
Set current thread name.
void k_thread_priority_set(k_tid_t thread, int prio)
Set a thread's priority.
int k_thread_cpu_mask_enable(k_tid_t thread, int cpu)
Enable thread to run on specified CPU.
void k_thread_foreach_unlocked(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system without locking.
int k_thread_priority_get(k_tid_t thread)
Get a thread's priority.
static void k_thread_heap_assign(struct k_thread *thread, struct k_heap *heap)
Assign a resource memory pool to a thread.
Definition: kernel.h:344
FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry, void *p1, void *p2, void *p3)
Drop a thread's privileges permanently to user mode.
int k_thread_join(struct k_thread *thread, k_timeout_t timeout)
Sleep until a thread exits.
void k_thread_custom_data_set(void *value)
Set current thread's custom data.
int32_t k_sleep(k_timeout_t timeout)
Put the current thread to sleep.
k_ticks_t k_thread_timeout_remaining_ticks(const struct k_thread *t)
Get time remaining before a thread wakes up, in system ticks.
void k_sched_lock(void)
Lock the scheduler.
static int32_t k_msleep(int32_t ms)
Put the current thread to sleep.
Definition: kernel.h:437
void k_busy_wait(uint32_t usec_to_wait)
Cause the current thread to busy wait.
void k_thread_suspend(k_tid_t thread)
Suspend a thread.
void k_sched_unlock(void)
Unlock the scheduler.
static __attribute_const__ k_tid_t k_current_get(void)
Get thread ID of the current thread.
Definition: kernel.h:521
k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *t)
Get time when a thread wakes up, in system ticks.
int k_thread_cpu_mask_clear(k_tid_t thread)
Sets all CPU enable masks to zero.
void k_sched_time_slice_set(int32_t slice, int prio)
Set time-slicing period and scope.
void k_thread_start(k_tid_t thread)
Start an inactive thread.
int k_thread_cpu_mask_disable(k_tid_t thread, int cpu)
Prevent thread to run on specified CPU.
void k_wakeup(k_tid_t thread)
Wake up a sleeping thread.
k_tid_t k_thread_create(struct k_thread *new_thread, k_thread_stack_t *stack, size_t stack_size, k_thread_entry_t entry, void *p1, void *p2, void *p3, int prio, uint32_t options, k_timeout_t delay)
Create a thread.
void k_thread_deadline_set(k_tid_t thread, int deadline)
Set deadline expiration time for scheduler.
const char * k_thread_name_get(k_tid_t thread)
Get thread name.
void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system.
const char * k_thread_state_str(k_tid_t thread_id)
Get thread state string.
int32_t k_usleep(int32_t us)
Put the current thread to sleep with microsecond resolution.
int k_thread_cpu_mask_enable_all(k_tid_t thread)
Sets all CPU enable masks to one.
void(* k_thread_user_cb_t)(const struct k_thread *thread, void *user_data)
Definition: kernel.h:99
k_ticks_t k_timer_expires_ticks(const struct k_timer *timer)
Get next expiration time of a timer, in system ticks.
k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer)
Get time remaining before a timer next expires, in system ticks.
void(* k_timer_stop_t)(struct k_timer *timer)
Timer stop function type.
Definition: kernel.h:1351
void * k_timer_user_data_get(const struct k_timer *timer)
Retrieve the user-specific data from a timer.
void k_timer_init(struct k_timer *timer, k_timer_expiry_t expiry_fn, k_timer_stop_t stop_fn)
Initialize a timer.
void(* k_timer_expiry_t)(struct k_timer *timer)
Timer expiry function type.
Definition: kernel.h:1333
void k_timer_start(struct k_timer *timer, k_timeout_t duration, k_timeout_t period)
Start a timer.
static uint32_t k_timer_remaining_get(struct k_timer *timer)
Get time remaining before a timer next expires.
Definition: kernel.h:1500
uint32_t k_timer_status_sync(struct k_timer *timer)
Synchronize thread to timer expiration.
void k_timer_stop(struct k_timer *timer)
Stop a timer.
uint32_t k_timer_status_get(struct k_timer *timer)
Read timer status.
void k_timer_user_data_set(struct k_timer *timer, void *user_data)
Associate user-specific data with a timer.
static int k_delayed_work_cancel(struct k_delayed_work *work)
Definition: kernel.h:3881
int k_work_poll_submit_to_queue(struct k_work_q *work_q, struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item.
static k_tid_t k_work_queue_thread_get(struct k_work_q *queue)
Access the thread that animates a work queue.
Definition: kernel.h:3822
static bool k_work_is_pending(const struct k_work *work)
Test whether a work item is currently pending.
Definition: kernel.h:3793
int k_work_queue_drain(struct k_work_q *queue, bool plug)
Wait until the work queue has drained, optionally plugging it.
static k_ticks_t k_work_delayable_expires_get(const struct k_work_delayable *dwork)
Get the absolute tick count at which a scheduled delayable work will be submitted.
Definition: kernel.h:3810
int k_work_schedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to a queue after a delay.
int k_work_delayable_busy_get(const struct k_work_delayable *dwork)
Busy state flags from the delayable work item.
static k_ticks_t k_delayed_work_remaining_ticks(struct k_delayed_work *work)
Definition: kernel.h:3944
void k_work_init_delayable(struct k_work_delayable *dwork, k_work_handler_t handler)
Initialize a delayable work structure.
int k_work_poll_cancel(struct k_work_poll *work)
Cancel a triggered work item.
void k_work_user_queue_start(struct k_work_user_q *work_q, k_thread_stack_t *stack, size_t stack_size, int prio, const char *name)
Start a workqueue in user mode.
void k_work_poll_init(struct k_work_poll *work, k_work_handler_t handler)
Initialize a triggered work item.
int k_work_cancel(struct k_work *work)
Cancel a work item.
static int32_t k_delayed_work_remaining_get(struct k_delayed_work *work)
Definition: kernel.h:3928
static bool k_delayed_work_pending(struct k_delayed_work *work)
Definition: kernel.h:3922
static int k_work_user_submit_to_queue(struct k_work_user_q *work_q, struct k_work_user *work)
Submit a work item to a user mode workqueue.
Definition: kernel.h:4072
int k_work_submit_to_queue(struct k_work_q *queue, struct k_work *work)
Submit a work item to a queue.
static bool k_work_user_is_pending(struct k_work_user *work)
Check if a userspace work item is pending.
Definition: kernel.h:4049
void(* k_work_handler_t)(struct k_work *work)
The signature for a work item handler function.
Definition: kernel.h:3031
int k_work_schedule(struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to the system work queue after a delay.
static bool k_work_delayable_is_pending(const struct k_work_delayable *dwork)
Test whether a delayed work item is currently pending.
Definition: kernel.h:3804
static bool k_work_pending(const struct k_work *work)
Definition: kernel.h:3830
bool k_work_cancel_delayable_sync(struct k_work_delayable *dwork, struct k_work_sync *sync)
Cancel delayable work and wait.
int k_work_cancel_delayable(struct k_work_delayable *dwork)
Cancel delayable work.
static int k_delayed_work_submit_to_queue(struct k_work_q *work_q, struct k_delayed_work *work, k_timeout_t delay)
Definition: kernel.h:3860
static void k_work_user_init(struct k_work_user *work, k_work_user_handler_t handler)
Initialize a userspace work item.
Definition: kernel.h:4027
int k_work_queue_unplug(struct k_work_q *queue)
Release a work queue to accept new submissions.
int k_work_reschedule(struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to the system work queue after a delay.
bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync)
Cancel a work item and wait for it to complete.
int k_work_busy_get(const struct k_work *work)
Busy state flags from the work item.
static int k_delayed_work_submit(struct k_delayed_work *work, k_timeout_t delay)
Definition: kernel.h:3871
static struct k_work_delayable * k_work_delayable_from_work(struct k_work *work)
Get the parent delayable work structure from a work pointer.
Definition: kernel.h:3799
static k_ticks_t k_work_delayable_remaining_get(const struct k_work_delayable *dwork)
Get the number of ticks until a scheduled delayable work will be submitted.
Definition: kernel.h:3816
bool k_work_flush(struct k_work *work, struct k_work_sync *sync)
Wait for last-submitted instance to complete.
int k_work_reschedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to a queue after a delay.
static k_ticks_t k_delayed_work_expires_ticks(struct k_delayed_work *work)
Definition: kernel.h:3937
int k_work_submit(struct k_work *work)
Submit a work item to the system queue.
bool k_work_flush_delayable(struct k_work_delayable *dwork, struct k_work_sync *sync)
Flush delayable work.
static void k_work_q_start(struct k_work_q *work_q, k_thread_stack_t *stack, size_t stack_size, int prio)
Definition: kernel.h:3836
int k_work_poll_submit(struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item to the system workqueue.
void k_work_queue_init(struct k_work_q *queue)
Initialize a work queue structure.
void k_work_queue_start(struct k_work_q *queue, k_thread_stack_t *stack, size_t stack_size, int prio, const struct k_work_queue_config *cfg)
Initialize a work queue.
void k_work_init(struct k_work *work, k_work_handler_t handler)
Initialize a (non-delayable) work structure.
static void k_delayed_work_init(struct k_delayed_work *work, k_work_handler_t handler)
Definition: kernel.h:3853
void(* k_work_user_handler_t)(struct k_work_user *work)
Work item handler function type for user work queues.
Definition: kernel.h:3970
@ K_WORK_CANCELING
Flag indicating a work item that is being canceled.
Definition: kernel.h:3605
@ K_WORK_QUEUED
Flag indicating a work item that has been submitted to a queue but has not started running.
Definition: kernel.h:3612
@ K_WORK_DELAYED
Flag indicating a delayed work item that is scheduled for submission to a queue.
Definition: kernel.h:3619
@ K_WORK_RUNNING
Flag indicating a work item that is running under a work queue thread.
Definition: kernel.h:3599
flags
Definition: http_parser.h:131
state
Definition: http_parser_state.h:30
int k_float_disable(struct k_thread *thread)
Disable preservation of floating point context information.
int k_float_enable(struct k_thread *thread, unsigned int options)
Enable preservation of floating point context information.
execution_context_types
Definition: kernel.h:84
@ K_ISR
Definition: kernel.h:85
@ K_COOP_THREAD
Definition: kernel.h:86
@ K_PREEMPT_THREAD
Definition: kernel.h:87
static ZTEST_BMEM volatile int ret
Definition: k_float_disable.c:28
Header files included by kernel.h.
struct k_mem_slab ms
Definition: kobject.c:1308
struct k_mutex mutex
Definition: kobject.c:1310
struct k_thread t
Definition: kobject.c:1316
struct k_msgq msgq
Definition: test_msgq_contexts.c:12
char c
Definition: printk.c:71
void * ptr
Definition: printk.c:79
static struct k_work work[2]
Definition: main.c:16
struct _sfnode sys_sfnode_t
Definition: sflist.h:39
struct _sflist sys_sflist_t
Definition: sflist.h:46
struct _slist sys_slist_t
Definition: slist.h:40
struct _snode sys_snode_t
Definition: slist.h:33
static struct k_spinlock lock
Definition: spinlock_error_case.c:12
static k_spinlock_key_t key
Definition: spinlock_error_case.c:14
struct k_stack stack
Definition: test_stack_contexts.c:18
__UINT32_TYPE__ uint32_t
Definition: stdint.h:60
__INT32_TYPE__ int32_t
Definition: stdint.h:44
__UINT8_TYPE__ uint8_t
Definition: stdint.h:58
__UINTPTR_TYPE__ uintptr_t
Definition: stdint.h:75
__INT64_TYPE__ int64_t
Definition: stdint.h:45
Static init entry structure for each device driver or services.
Definition: init.h:43
Definition: kernel.h:2786
_wait_q_t wait_q
Definition: kernel.h:2787
Definition: kernel.h:3844
struct k_work_delayable work
Definition: kernel.h:3845
Definition: kernel.h:2028
struct k_spinlock lock
Definition: kernel.h:2031
uint32_t events
Definition: kernel.h:2030
_wait_q_t wait_q
Definition: kernel.h:2029
Definition: kernel.h:2153
futex structure
Definition: kernel.h:1949
atomic_t val
Definition: kernel.h:1950
Definition: kernel.h:5088
struct k_spinlock lock
Definition: kernel.h:5091
struct sys_heap heap
Definition: kernel.h:5089
_wait_q_t wait_q
Definition: kernel.h:5090
Definition: kernel.h:2397
Mailbox Message Structure.
Definition: kernel.h:4568
struct k_mem_block tx_block
Definition: kernel.h:4580
k_tid_t tx_target_thread
Definition: kernel.h:4584
void * tx_data
Definition: kernel.h:4576
k_tid_t rx_source_thread
Definition: kernel.h:4582
uint32_t info
Definition: kernel.h:4574
size_t size
Definition: kernel.h:4572
Mailbox Structure.
Definition: kernel.h:4596
_wait_q_t tx_msg_queue
Definition: kernel.h:4598
struct k_spinlock lock
Definition: kernel.h:4601
_wait_q_t rx_msg_queue
Definition: kernel.h:4600
Definition: mempool_heap.h:24
Memory Domain.
Definition: mem_domain.h:80
Memory Partition.
Definition: mem_domain.h:55
Message Queue Attributes.
Definition: kernel.h:4343
uint32_t used_msgs
Definition: kernel.h:4349
size_t msg_size
Definition: kernel.h:4345
uint32_t max_msgs
Definition: kernel.h:4347
Message Queue Structure.
Definition: kernel.h:4290
size_t msg_size
Definition: kernel.h:4296
char * read_ptr
Definition: kernel.h:4304
uint32_t used_msgs
Definition: kernel.h:4308
char * buffer_end
Definition: kernel.h:4302
struct k_spinlock lock
Definition: kernel.h:4294
char * write_ptr
Definition: kernel.h:4306
char * buffer_start
Definition: kernel.h:4300
uint8_t flags
Definition: kernel.h:4313
_wait_q_t wait_q
Definition: kernel.h:4292
uint32_t max_msgs
Definition: kernel.h:4298
Definition: kernel.h:2680
uint32_t lock_count
Definition: kernel.h:2687
_wait_q_t wait_q
Definition: kernel.h:2682
int owner_orig_prio
Definition: kernel.h:2690
struct k_thread * owner
Definition: kernel.h:2684
Definition: kernel.h:4728
uint8_t flags
Definition: kernel.h:4741
struct k_pipe::@112 wait_q
_wait_q_t readers
Definition: kernel.h:4737
size_t write_index
Definition: kernel.h:4733
size_t bytes_used
Definition: kernel.h:4731
struct k_spinlock lock
Definition: kernel.h:4734
_wait_q_t writers
Definition: kernel.h:4738
size_t size
Definition: kernel.h:4730
unsigned char * buffer
Definition: kernel.h:4729
size_t read_index
Definition: kernel.h:4732
Poll Event.
Definition: kernel.h:5429
struct k_poll_signal * signal
Definition: kernel.h:5454
uint32_t tag
Definition: kernel.h:5437
struct k_fifo * fifo
Definition: kernel.h:5456
struct k_msgq * msgq
Definition: kernel.h:5458
struct k_queue * queue
Definition: kernel.h:5457
uint32_t unused
Definition: kernel.h:5449
uint32_t type
Definition: kernel.h:5440
struct k_sem * sem
Definition: kernel.h:5455
uint32_t state
Definition: kernel.h:5443
uint32_t mode
Definition: kernel.h:5446
struct z_poller * poller
Definition: kernel.h:5434
void * obj
Definition: kernel.h:5453
Definition: kernel.h:5405
sys_dlist_t poll_events
Definition: kernel.h:5407
int result
Definition: kernel.h:5416
unsigned int signaled
Definition: kernel.h:5413
Kernel Spin Lock.
Definition: spinlock.h:29
Definition: thread.h:201
struct _thread_base base
Definition: thread.h:203
struct k_heap * resource_pool
Definition: thread.h:281
struct __thread_entry entry
Definition: thread.h:227
Kernel timeout type.
Definition: sys_clock.h:65
A structure used to submit work after a delay.
Definition: kernel.h:3651
struct _timeout timeout
Definition: kernel.h:3656
struct k_work_q * queue
Definition: kernel.h:3659
struct k_work work
Definition: kernel.h:3653
A structure used to hold work until it can be processed.
Definition: kernel.h:3770
sys_slist_t pending
Definition: kernel.h:3779
_wait_q_t drainq
Definition: kernel.h:3785
_wait_q_t notifyq
Definition: kernel.h:3782
uint32_t flags
Definition: kernel.h:3788
struct k_thread thread
Definition: kernel.h:3772
A structure holding optional configuration items for a work queue.
Definition: kernel.h:3747
const char * name
Definition: kernel.h:3752
bool no_yield
Definition: kernel.h:3766
A structure holding internal state for a pending synchronous operation on a work item or queue.
Definition: kernel.h:3734
struct z_work_canceller canceller
Definition: kernel.h:3737
struct z_work_flusher flusher
Definition: kernel.h:3736
A structure used to submit work.
Definition: kernel.h:3623
k_work_handler_t handler
Definition: kernel.h:3632
uint32_t flags
Definition: kernel.h:3643
struct k_work_q * queue
Definition: kernel.h:3635
sys_snode_t node
Definition: kernel.h:3629
Definition: errno.c:36
Definition: sys_heap.h:51
static fdata_t data[2]
Definition: test_fifo_contexts.c:15
static struct k_mbox mbox
Definition: test_mbox_api.c:28
static struct k_pipe pipe
Definition: test_mutex_error.c:18
struct k_queue queue
Definition: test_queue_contexts.c:17
static int init_prio
Definition: test_sched_timeslice_and_lock.c:15
static ZTEST_BMEM struct thread_data expected
static uint64_t k_ticks_to_ms_floor64(uint64_t t)
Convert ticks to milliseconds.
Definition: time_units.h:1069
static uint32_t k_ticks_to_ms_floor32(uint32_t t)
Convert ticks to milliseconds.
Definition: time_units.h:1055
static struct k_timer timer[3]
Definition: timeout_order.c:13
static struct k_sem sem[3]
Definition: timeout_order.c:14
static void handler(struct k_timer *timer)
Definition: main.c:19
static const intptr_t user_data[5]
Definition: main.c:590
Macros to abstract toolchain specific capabilities.
static struct k_work_delayable dwork
Definition: main.c:47