
Zephyr Project Documentation
Release 2.7.0-rc2

The Zephyr Project Contributors
Oct 09, 2022

Table of contents

1 Introduction 1
1.1 Licensing . 1
1.2 Distinguishing Features . 1
1.3 Community Support . 3
1.4 Resources . 3
1.5 Fundamental Terms and Concepts . 4

2 Getting Started Guide 5
2.1 Select and Update OS . 5
2.2 Install dependencies . 5
2.3 Get Zephyr and install Python dependencies . 7
2.4 Install a Toolchain . 10
2.5 Build the Blinky Sample . 11
2.6 Flash the Sample . 11
2.7 Next Steps . 12
2.8 Asking for Help . 12

2.8.1 How to Ask . 12
2.8.2 Use Copy/Paste . 13

3 Contribution Guidelines 15
3.1 Licensing . 15

3.1.1 Components using other Licenses . 15
3.2 Copyrights Notices . 16
3.3 Developer Certification of Origin (DCO) . 16

3.3.1 DCO Sign-Off Methods . 17
3.3.2 Notes . 17

3.4 Prerequisites . 17
3.5 Repository layout . 17
3.6 Pull Requests and Issues . 18
3.7 Tools and Git Setup . 18

3.7.1 Signed-off-by . 18
3.7.2 gitlint . 18
3.7.3 twister . 18
3.7.4 uncrustify . 19

3.8 Coding Style . 19
3.9 Other Guidelines . 20

3.9.1 Coding Guidelines . 20
3.9.2 Documentation Guidelines . 39

3.10 Contribution Workflow . 49
3.11 Commit Guidelines . 51

3.11.1 Commit Message Body . 52
3.11.2 Other Commit Expectations . 52
3.11.3 Submitting Proposals . 52
3.11.4 Identifying Contribution Origin . 53

3.12 Continuous Integration (CI) . 53
3.13 Contributions to External Modules . 54
3.14 Contributing External Components . 54

i

3.14.1 Contributing source code from external projects 54

4 Development and Contribution Process 57
4.1 TSC Project Roles . 57

4.1.1 Main Roles . 57
4.1.2 Role Retirement . 58
4.1.3 Teams and Supporting Activities . 58
4.1.4 MAINTAINERS File . 60
4.1.5 Release Activity . 61

4.2 Release Process . 62
4.2.1 Merge Window . 63
4.2.2 Release Quality Criteria . 64
4.2.3 Releases . 64
4.2.4 Release Procedure . 67

4.3 Feature Tracking . 70
4.3.1 Proposals and RFCs . 71
4.3.2 Roadmap and Release Plans . 72

4.4 Code Flow and Branches . 72
4.4.1 Introduction . 72
4.4.2 Roles and Responsibilities . 73

4.5 Modifying Contributions made by other developers . 73
4.5.1 Scenarios . 73
4.5.2 Accepted policies . 73

4.6 Development Environment and Tools . 74
4.6.1 Code Review . 74
4.6.2 Continuous Integration . 77
4.6.3 Labeling issues and pull requests in GitHub . 78

4.7 Bug Reporting . 80
4.7.1 Reporting a regression issue . 80

4.8 Communication and Collaboration . 81
4.9 Code Documentation . 81

4.9.1 API Documentation . 81
4.9.2 Reference to Requirements . 81
4.9.3 Test Documentation . 81
4.9.4 Documentation Guidelines . 81

4.10 Terminology . 83

5 Build and Configuration Systems 85
5.1 Build System (CMake) . 85

5.1.1 Build and Configuration Phases . 85
5.1.2 Supporting Scripts and Tools . 90

5.2 Configuration System (Kconfig) . 93
5.2.1 Interactive Kconfig interfaces . 93
5.2.2 Setting Kconfig configuration values . 98
5.2.3 Kconfig - Tips and Best Practices . 102
5.2.4 Custom Kconfig Preprocessor Functions . 116
5.2.5 Kconfig extensions . 117

6 Application Development 119
6.1 Overview . 119
6.2 Source Tree Structure . 120
6.3 Example standalone application . 121
6.4 Creating an Application . 121
6.5 Setting Variables . 122

6.5.1 Option 1: Just Once . 122
6.5.2 Option 2: In all Terminals . 122
6.5.3 Option 3: Using zephyrrc files . 123
6.5.4 Option 4: Using Zephyr Build Configuration CMake package 123

6.6 Important Build System Variables . 124

ii

6.7 Application CMakeLists.txt . 124
6.8 CMakeCache.txt . 126
6.9 Application Configuration . 126

6.9.1 Kconfig Configuration . 126
6.9.2 Devicetree Overlays . 127

6.10 Application-Specific Code . 127
6.10.1 Third-party Library Code . 127

6.11 Building an Application . 127
6.11.1 Basics . 128
6.11.2 Build Directory Contents . 129
6.11.3 Rebuilding an Application . 129
6.11.4 Building for a board revision . 130

6.12 Run an Application . 130
6.12.1 Running on a Board . 131
6.12.2 Running in an Emulator . 131

6.13 Application Debugging . 132
6.14 Custom Board, Devicetree and SOC Definitions . 133

6.14.1 Boards . 134
6.14.2 SOC Definitions . 134
6.14.3 Devicetree Definitions . 135

6.15 Debug with Eclipse . 136
6.15.1 Overview . 136
6.15.2 Set Up the Eclipse Development Environment . 137
6.15.3 Generate and Import an Eclipse Project . 137
6.15.4 Create a Debugger Configuration . 137
6.15.5 RTOS Awareness . 138

7 API Reference 139
7.1 API Status / Guidelines . 139

7.1.1 API Overview . 139
7.1.2 API Lifecycle . 140
7.1.3 API Design Guidelines . 144
7.1.4 API Terminology . 145

7.2 Audio . 148
7.2.1 Audio Codec . 148
7.2.2 Audio DMIC . 151
7.2.3 I2S . 154

7.3 Asynchronous Notification APIs . 163
7.3.1 API Reference . 163

7.4 Bluetooth . 166
7.4.1 Connection Management . 166
7.4.2 Bluetooth Controller . 189
7.4.3 Cryptography . 190
7.4.4 Data Buffers . 192
7.4.5 Generic Access Profile (GAP) . 194
7.4.6 Generic Attribute Profile (GATT) . 235
7.4.7 HCI Drivers . 263
7.4.8 HCI RAW channel . 267
7.4.9 Hands Free Profile (HFP) . 269
7.4.10 Logical Link Control and Adaptation Protocol (L2CAP) 272
7.4.11 Bluetooth Mesh Profile . 280
7.4.12 Serial Port Emulation (RFCOMM) . 364
7.4.13 Service Discovery Protocol (SDP) . 367
7.4.14 Universal Unique Identifiers (UUIDs) . 380

7.5 Crypto . 403
7.5.1 Overview . 403
7.5.2 API Reference . 403

7.6 Devicetree . 409

iii

7.6.1 Devicetree API . 410
7.6.2 Bindings index . 504

7.7 Device Driver Model . 533
7.7.1 Introduction . 533
7.7.2 Standard Drivers . 534
7.7.3 Synchronous Calls . 534
7.7.4 Driver APIs . 534
7.7.5 Driver Data Structures . 535
7.7.6 Subsystems and API Structures . 535
7.7.7 Device-Specific API Extensions . 536
7.7.8 Single Driver, Multiple Instances . 537
7.7.9 Initialization Levels . 539
7.7.10 System Drivers . 539
7.7.11 Error handling . 539
7.7.12 Memory Mapping . 539
7.7.13 API Reference . 542

7.8 Display Interface . 550
7.8.1 API Reference . 550

7.9 Error Detection And Correction (EDAC) API . 562
7.9.1 API Reference . 562

7.10 File Systems . 566
7.10.1 Samples . 567
7.10.2 API Reference . 567

7.11 Iterable Sections . 577
7.11.1 Usage . 577
7.11.2 API Reference . 578

7.12 Formatted Output . 579
7.12.1 Cbprintf Packaging . 580
7.12.2 API Reference . 581

7.13 Kernel Services . 588
7.13.1 Scheduling, Interrupts, and Synchronization . 588
7.13.2 Data Passing . 679
7.13.3 Memory Management . 721
7.13.4 Timing . 730
7.13.5 Other . 745

7.14 C standard library . 765
7.14.1 API Reference . 765

7.15 Logging . 771
7.15.1 Global Kconfig Options . 773
7.15.2 Usage . 774
7.15.3 Logging panic . 776
7.15.4 Architecture . 777
7.15.5 Limitations and recommendations . 781
7.15.6 Benchmark . 781
7.15.7 API Reference . 782

7.16 Memory Management . 803
7.16.1 Demand Paging . 803

7.17 Miscellaneous APIs . 809
7.17.1 Checksum APIs . 809
7.17.2 Structured Data APIs . 812

7.18 Data Structures . 821
7.18.1 Single-linked List . 821
7.18.2 Double-linked List . 832
7.18.3 Multi Producer Single Consumer Packet Buffer . 839
7.18.4 Balanced Red/Black Tree . 841
7.18.5 Ring Buffers . 844

7.19 MODBUS . 856
7.19.1 Samples . 856

iv

7.19.2 API Reference . 856
7.20 Networking . 864

7.20.1 Network APIs . 864
7.20.2 Network Buffer Management . 925
7.20.3 Networking Technologies . 970
7.20.4 Protocols . 1000
7.20.5 Network System Management . 1052
7.20.6 Time Sensitive Networking . 1093
7.20.7 Controller Area Network . 1100
7.20.8 Generic GSM Modem . 1121

7.21 Peripherals . 1122
7.21.1 ADC . 1122
7.21.2 Counter . 1128
7.21.3 Clock Control . 1134
7.21.4 DAC . 1136
7.21.5 DMA . 1137
7.21.6 EC Host Command . 1143
7.21.7 EEPROM . 1147
7.21.8 Entropy . 1148
7.21.9 Flash . 1149
7.21.10 GNA . 1154
7.21.11 GPIO . 1157
7.21.12 Hardware Information . 1172
7.21.13 I2C EEPROM Slave . 1174
7.21.14 I2C . 1175
7.21.15 IPM . 1188
7.21.16 KSCAN . 1191
7.21.17 LED . 1192
7.21.18 Pinmux . 1197
7.21.19 PWM . 1199
7.21.20 PS/2 . 1206
7.21.21 PECI . 1208
7.21.22 Regulators . 1214
7.21.23 RTC . 1216
7.21.24 Sensors . 1222
7.21.25 SPI . 1237
7.21.26 UART . 1246
7.21.27 MDIO . 1260
7.21.28 Watchdog . 1262
7.21.29 Video . 1264
7.21.30 eSPI . 1272

7.22 Power Management . 1288
7.22.1 Terminology . 1288
7.22.2 Overview . 1288
7.22.3 System Power Management . 1289
7.22.4 Device Power Management Infrastructure . 1293
7.22.5 Device Runtime Power Management . 1297
7.22.6 Power Management Configuration Flags . 1298
7.22.7 API Reference . 1298

7.23 Random Number Generation . 1304
7.23.1 Kconfig Options . 1304
7.23.2 API Reference . 1305

7.24 Resource Management . 1305
7.24.1 On-Off Manager . 1306

7.25 Shell . 1314
7.25.1 Overview . 1314
7.25.2 Commands . 1315
7.25.3 Tab Feature . 1321

v

7.25.4 History Feature . 1321
7.25.5 Wildcards Feature . 1321
7.25.6 Meta Keys Feature . 1322
7.25.7 Getopt Feature . 1322
7.25.8 Obscured Input Feature . 1322
7.25.9 Shell Logger Backend Feature . 1323
7.25.10 Usage . 1323
7.25.11 API Reference . 1324

7.26 Storage . 1341
7.26.1 Non-Volatile Storage (NVS) . 1341
7.26.2 Disk Access . 1345
7.26.3 Flash map . 1349
7.26.4 Flash Circular Buffer (FCB) . 1354
7.26.5 Stream Flash . 1359

7.27 Task Watchdog . 1362
7.27.1 Overview . 1362
7.27.2 Configuration Options . 1362
7.27.3 API Reference . 1362

7.28 Time Utilities . 1364
7.28.1 Overview . 1364
7.28.2 Time Utility APIs . 1364
7.28.3 Concepts Underlying Time Support in Zephyr . 1369

7.29 USB device stack . 1371
7.29.1 USB Vendor and Product identifiers . 1371
7.29.2 USB device controller drivers . 1372
7.29.3 USB device core layer . 1378
7.29.4 USB device class drivers . 1384
7.29.5 Testing USB over USP/IP in native_posix . 1387
7.29.6 USB Human Interface Devices (HID) support . 1387
7.29.7 HID Class Device API . 1400

7.30 User Mode . 1401
7.30.1 Overview . 1402
7.30.2 Memory Protection Design . 1404
7.30.3 Kernel Objects . 1413
7.30.4 System Calls . 1418
7.30.5 MPU Stack Objects . 1427
7.30.6 MPU Backed Userspace . 1428

7.31 Utilities . 1428
7.32 Settings . 1440

7.32.1 Handlers . 1440
7.32.2 Backends . 1441
7.32.3 Zephyr Storage Backends . 1441
7.32.4 Loading data from persisted storage . 1441
7.32.5 Storing data to persistent storage . 1441
7.32.6 Example: Device Configuration . 1442
7.32.7 Example: Persist Runtime State . 1443
7.32.8 Example: Custom Backend Implementation . 1444
7.32.9 API Reference . 1444

7.33 Executing Time Functions . 1453
7.33.1 Configuration . 1453
7.33.2 Usage . 1453
7.33.3 API documentation . 1454

7.34 Virtualization . 1455
7.34.1 Inter-VM Shared Memory . 1455

8 User and Developer Guides 1459
8.1 Beyond the Getting Started Guide . 1459

8.1.1 Python and pip . 1459

vi

8.1.2 Advanced Setup and tool chain alternatives . 1459
8.1.3 Set Up a Toolchain . 1464
8.1.4 Cloning the Zephyr Repositories . 1468
8.1.5 Export Zephyr CMake package . 1469
8.1.6 Board Aliases . 1469
8.1.7 Build and Run an Application . 1469

8.2 Architecture-related Guides . 1471
8.2.1 Zephyr support status on ARC processors . 1471
8.2.2 Arm Cortex-M Developer Guide . 1472
8.2.3 x86 Developer Guide . 1482

8.3 Bluetooth . 1483
8.3.1 Overview . 1483
8.3.2 Bluetooth Stack Architecture . 1485
8.3.3 Bluetooth Qualification . 1491
8.3.4 Bluetooth tools . 1512
8.3.5 Developing Bluetooth Applications . 1514
8.3.6 AutoPTS on Windows 10 with nRF52 board . 1518
8.3.7 AutoPTS on Linux . 1530

8.4 Documentation Generation . 1542
8.4.1 Documentation overview . 1542
8.4.2 Installing the documentation processors . 1543
8.4.3 Documentation presentation theme . 1544
8.4.4 Running the documentation processors . 1544
8.4.5 Filtering expected warnings . 1545
8.4.6 Developer-mode Document Building . 1545

8.5 Coccinelle . 1546
8.5.1 Getting Coccinelle . 1546
8.5.2 Supplemental documentation . 1547
8.5.3 Using Coccinelle on Zephyr . 1547
8.5.4 Examples . 1547
8.5.5 Coccinelle parallelization . 1547
8.5.6 Using Coccinelle with a single semantic patch . 1548
8.5.7 Controlling which files are processed by Coccinelle 1548
8.5.8 Debugging Coccinelle SmPL patches . 1548
8.5.9 Additional Flags . 1548
8.5.10 SmPL patch specific options . 1549
8.5.11 Proposing new semantic patches . 1549
8.5.12 Detailed description of the report mode . 1550
8.5.13 Detailed description of the patch mode . 1551
8.5.14 Detailed description of the context mode . 1552
8.5.15 Detailed description of the org mode . 1553
8.5.16 Coccinelle Mailing List . 1554

8.6 Code And Data Relocation . 1554
8.6.1 Overview . 1554
8.6.2 Details . 1554

8.7 Cryptography . 1555
8.7.1 TinyCrypt Cryptographic Library . 1555

8.8 Flashing and Hardware Debugging . 1560
8.8.1 Flash & Debug Host Tools . 1560
8.8.2 Debug Probes . 1564

8.9 Debugging and Tracing . 1567
8.9.1 Thread analyzer . 1567
8.9.2 Core Dump . 1569
8.9.3 GDB stub . 1575
8.9.4 Tracing . 1576

8.10 Device Management . 1608
8.10.1 MCUmgr . 1608
8.10.2 Device Firmware Upgrade . 1616

vii

8.11 Devicetree Guide . 1617
8.11.1 Introduction to devicetree . 1617
8.11.2 Design goals . 1626
8.11.3 Devicetree bindings . 1627
8.11.4 Devicetree access from C/C++ . 1641
8.11.5 Devicetree HOWTOs . 1652
8.11.6 Troubleshooting devicetree . 1660
8.11.7 Devicetree versus Kconfig . 1662

8.12 Peripheral and Hardware Emulators . 1663
8.12.1 Overview . 1663
8.12.2 Concept . 1663
8.12.3 Available emulators . 1665
8.12.4 Samples . 1666

8.13 Modules (External projects) . 1666
8.13.1 Module Repositories . 1667
8.13.2 Contributing to Zephyr modules . 1668
8.13.3 Licensing requirements and policies . 1669
8.13.4 Documentation requirements . 1670
8.13.5 Testing requirements . 1670
8.13.6 Deprecating and removing modules . 1671
8.13.7 Integrate modules in Zephyr build system . 1671
8.13.8 Module yaml file description . 1671
8.13.9 Submitting changes to modules . 1677

8.14 Networking . 1678
8.14.1 Overview . 1678
8.14.2 Network Stack Architecture . 1680
8.14.3 Network Connectivity API . 1686
8.14.4 Networking with the host system . 1686
8.14.5 Monitor Network Traffic . 1699

8.15 Using with PlatformIO . 1702
8.15.1 What is PlatformIO? . 1702
8.15.2 Installation . 1702
8.15.3 Configuration . 1702
8.15.4 Tutorials . 1703
8.15.5 Project Examples . 1703
8.15.6 Next Steps . 1703

8.16 OS Abstraction . 1703
8.16.1 POSIX Support . 1703
8.16.2 CMSIS RTOS v1 . 1714
8.16.3 CMSIS RTOS v2 . 1714

8.17 Porting . 1715
8.17.1 Architecture Porting Guide . 1715
8.17.2 Board Porting Guide . 1741
8.17.3 Shields . 1750

8.18 Testing . 1753
8.18.1 Test Framework . 1753
8.18.2 Test Runner (Twister) . 1765
8.18.3 Generating coverage reports . 1775

8.19 Trusted Firmware-M . 1777
8.19.1 Trusted Firmware-M Overview . 1777
8.19.2 TF-M Requirements . 1781
8.19.3 TF-M Build System . 1782
8.19.4 Trusted Firmware-M Integration . 1784

8.20 West (Zephyr’s meta-tool) . 1785
8.20.1 Installing west . 1785
8.20.2 West Release Notes . 1786
8.20.3 Troubleshooting West . 1794
8.20.4 Basics . 1797

viii

8.20.5 Built-in commands . 1799
8.20.6 Workspaces . 1803
8.20.7 West Manifests . 1807
8.20.8 Configuration . 1834
8.20.9 Extensions . 1836
8.20.10 Building, Flashing and Debugging . 1840
8.20.11 Signing Binaries . 1852
8.20.12 Additional Zephyr extension commands . 1853
8.20.13 History and Motivation . 1855
8.20.14 Moving to West . 1857
8.20.15 Using Zephyr without west . 1857

8.21 Optimizations . 1859
8.21.1 Optimizing for Footprint . 1859
8.21.2 Optimization Tools . 1860

8.22 Zephyr CMake Package . 1865
8.22.1 Zephyr CMake package export (west) . 1865
8.22.2 Zephyr CMake package export (without west) . 1865
8.22.3 Zephyr application structure . 1865
8.22.4 Zephyr Base Environment Setting . 1867
8.22.5 Zephyr CMake Package Search Order . 1867
8.22.6 Zephyr CMake Package Version . 1868
8.22.7 Multiple Zephyr Installations (Zephyr workspace) 1869
8.22.8 Zephyr Build Configuration CMake package . 1870
8.22.9 Zephyr Build Configuration CMake package (Freestanding application) 1871
8.22.10 Zephyr CMake package source code . 1871

9 Security 1873
9.1 Zephyr Security Overview . 1873

9.1.1 Introduction . 1873
9.1.2 Current Security Definition . 1874
9.1.3 Secure Development Process . 1876
9.1.4 Secure Design . 1880
9.1.5 Security Certification . 1882

9.2 Security Vulnerability Reporting . 1883
9.2.1 Introduction . 1883
9.2.2 Security Issue Management . 1883
9.2.3 Vulnerability Notification . 1885
9.2.4 Backporting of Security Vulnerabilities . 1885
9.2.5 Need to Know . 1885

9.3 Secure Coding . 1886
9.3.1 Introduction and Scope . 1886
9.3.2 Secure Coding . 1886
9.3.3 Secure development knowledge . 1887
9.3.4 Code Review . 1888
9.3.5 Issues and Bug Tracking . 1888
9.3.6 Modifications to This Document . 1889

9.4 Sensor Device Threat Model . 1889
9.4.1 Assets . 1889
9.4.2 Communication . 1891
9.4.3 Other Considerations . 1893
9.4.4 Threats . 1893
9.4.5 Notes . 1893

9.5 Hardening Tool . 1893
9.5.1 Usage . 1893

9.6 Vulnerabilities . 1894
9.6.1 CVE-2017 . 1894
9.6.2 CVE-2019 . 1895
9.6.3 CVE-2020 . 1895

ix

9.6.4 CVE-2021 . 1903

Bibliography 1907

Python Module Index 1909

Index 1911

x

Chapter 1

Introduction

The Zephyr OS is based on a small-footprint kernel designed for use on resource-constrained and em-
bedded systems: from simple embedded environmental sensors and LED wearables to sophisticated
embedded controllers, smart watches, and IoT wireless applications.

The Zephyr kernel supports multiple architectures, including:

• ARC EM and HS

• ARMv6-M, ARMv7-M, and ARMv8-M (Cortex-M)

• ARMv7-A and ARMv8-A (Cortex-A, 32- and 64-bit)

• ARMv7-R, ARMv8-R (Cortex-R, 32- and 64-bit)

• Intel x86 (32- and 64-bit)

• NIOS II Gen 2

• RISC-V (32- and 64-bit)

• SPARC V8

• Tensilica Xtensa

The full list of supported boards based on these architectures can be found here.

1.1 Licensing

Zephyr is permissively licensed using the Apache 2.0 license (as found in the LICENSE file in the project’s
GitHub repo). There are some imported or reused components of the Zephyr project that use other
licensing, as described in Licensing of Zephyr Project components.

1.2 Distinguishing Features

Zephyr offers a large and ever growing number of features including:

Extensive suite of Kernel services Zephyr offers a number of familiar services for development:

• Multi-threading Services for cooperative, priority-based, non-preemptive, and preemptive
threads with optional round robin time-slicing. Includes POSIX pthreads compatible API sup-
port.

• Interrupt Services for compile-time registration of interrupt handlers.

• Memory Allocation Services for dynamic allocation and freeing of fixed-size or variable-size
memory blocks.

1

https://github.com/zephyrproject-rtos/zephyr/blob/main/LICENSE
https://github.com/zephyrproject-rtos/zephyr

Zephyr Project Documentation, Release 2.7.0-rc2

• Inter-thread Synchronization Services for binary semaphores, counting semaphores, and mutex
semaphores.

• Inter-thread Data Passing Services for basic message queues, enhanced message queues, and
byte streams.

• Power Management Services such as tickless idle and an advanced idling infrastructure.

Multiple Scheduling Algorithms Zephyr provides a comprehensive set of thread scheduling choices:

• Cooperative and Preemptive Scheduling

• Earliest Deadline First (EDF)

• Meta IRQ scheduling implementing “interrupt bottom half” or “tasklet” behavior

• Timeslicing: Enables time slicing between preemptible threads of equal priority

• Multiple queuing strategies:

– Simple linked-list ready queue

– Red/black tree ready queue

– Traditional multi-queue ready queue

Highly configurable / Modular for flexibility Allows an application to incorporate only the capabilities
it needs as it needs them, and to specify their quantity and size.

Cross Architecture Supports a wide variety of supported boards with different CPU architectures and
developer tools. Contributions have added support for an increasing number of SoCs, platforms,
and drivers.

Memory Protection Implements configurable architecture-specific stack-overflow protection, kernel ob-
ject and device driver permission tracking, and thread isolation with thread-level memory protec-
tion on x86, ARC, and ARM architectures, userspace, and memory domains.

For platforms without MMU/MPU and memory constrained devices, supports combining
application-specific code with a custom kernel to create a monolithic image that gets loaded and
executed on a system’s hardware. Both the application code and kernel code execute in a single
shared address space.

Compile-time resource definition Allows system resources to be defined at compile-time, which re-
duces code size and increases performance for resource-limited systems.

Optimized Device Driver Model Provides a consistent device model for configuring the drivers that are
part of the platform/system and a consistent model for initializing all the drivers configured into
the system and Allows the reuse of drivers across platforms that have common devices/IP blocks

Devicetree Support Use of devicetree to describe hardware. Information from devicetree is used to
create the application image.

Native Networking Stack supporting multiple protocols Networking support is fully featured and op-
timized, including LwM2M and BSD sockets compatible support. OpenThread support (on Nordic
chipsets) is also provided - a mesh network designed to securely and reliably connect hundreds of
products around the home.

Bluetooth Low Energy 5.0 support Bluetooth 5.0 compliant (ESR10) and Bluetooth Low Energy Con-
troller support (LE Link Layer). Includes Bluetooth mesh and a Bluetooth qualification-ready Blue-
tooth controller.

• Generic Access Profile (GAP) with all possible LE roles.

• GATT (Generic Attribute Profile)

• Pairing support, including the Secure Connections feature from Bluetooth 4.2

• Clean HCI driver abstraction

• Raw HCI interface to run Zephyr as a Controller instead of a full Host stack

2 Chapter 1. Introduction

Zephyr Project Documentation, Release 2.7.0-rc2

• Verified with multiple popular controllers

• Highly configurable

Mesh Support:

• Relay, Friend Node, Low-Power Node (LPN) and GATT Proxy features

• Both Provisioning bearers supported (PB-ADV & PB-GATT)

• Highly configurable, fitting in devices with at least 16k RAM

Native Linux, macOS, and Windows Development A command-line CMake build environment runs
on popular developer OS systems. A native POSIX port, lets you build and run Zephyr as a na-
tive application on Linux and other OSes, aiding development and testing.

Virtual File System Interface with LittleFS and FATFS Support LittleFS and FATFS Support, FCB
(Flash Circular Buffer) for memory constrained applications, and file system enhancements for
logging and configuration.

Powerful multi-backend logging Framework Support for log filtering, object dumping, panic mode,
multiple backends (memory, networking, filesystem, console, ..) and integration with the shell
subsystem.

User friendly and full-featured Shell interface A multi-instance shell subsystem with user-friendly
features such as autocompletion, wildcards, coloring, metakeys (arrows, backspace, ctrl+u, etc.)
and history. Support for static commands and dynamic sub-commands.

Settings on non-volatile storage The settings subsystem gives modules a way to store persistent per-
device configuration and runtime state. Settings items are stored as key-value pair strings.

Non-volatile storage (NVS) NVS allows storage of binary blobs, strings, integers, longs, and any com-
bination of these.

Native POSIX port Supports running Zephyr as a Linux application with support for various subsystems
and networking.

1.3 Community Support

Community support is provided via mailing lists and Discord; see the Resources below for details.

1.4 Resources

Here’s a quick summary of resources to help you find your way around:

• Help: Asking for Help Tips

• Documentation: http://docs.zephyrproject.org (Getting Started Guide)

• Source Code: https://github.com/zephyrproject-rtos/zephyr is the main repository; https://elixir.
bootlin.com/zephyr/latest/source contains a searchable index

• Releases: https://github.com/zephyrproject-rtos/zephyr/releases

• Samples and example code: see Sample and Demo Code Examples

• Mailing Lists: users@lists.zephyrproject.org and devel@lists.zephyrproject.org are the main user
and developer mailing lists, respectively. You can join the developer’s list and search its archives at
Zephyr Development mailing list. The other Zephyr mailing list subgroups have their own archives
and sign-up pages.

• Nightly CI Build Status: https://lists.zephyrproject.org/g/builds The
builds@lists.zephyrproject.org mailing list archives the CI (buildkite) nightly build results.

1.3. Community Support 3

https://docs.zephyrproject.org/latest/getting_started/index.html#asking-for-help
http://docs.zephyrproject.org
http://docs.zephyrproject.org/latest/getting_started/index.html
https://github.com/zephyrproject-rtos/zephyr
https://elixir.bootlin.com/zephyr/latest/source
https://elixir.bootlin.com/zephyr/latest/source
https://github.com/zephyrproject-rtos/zephyr/releases
http://docs.zephyrproject.org/latest/samples/index.html
mailto:users@lists.zephyrproject.org
mailto:devel@lists.zephyrproject.org
https://lists.zephyrproject.org/g/devel
https://lists.zephyrproject.org/g/main/subgroups
https://lists.zephyrproject.org/g/builds
mailto:builds@lists.zephyrproject.org

Zephyr Project Documentation, Release 2.7.0-rc2

• Chat: Real-time chat happens in Zephyr’s Discord Server. Use this Discord Invite to register.

• Contributing: see the Contribution Guide

• Wiki: Zephyr GitHub wiki

• Issues: https://github.com/zephyrproject-rtos/zephyr/issues

• Security Issues: Email vulnerabilities@zephyrproject.org to report security issues; also see our Se-
curity documentation. Security issues are tracked separately at https://zephyrprojectsec.atlassian.
net.

• Zephyr Project Website: https://zephyrproject.org

1.5 Fundamental Terms and Concepts

See glossary

4 Chapter 1. Introduction

https://chat.zephyrproject.org
http://docs.zephyrproject.org/latest/contribute/index.html
https://github.com/zephyrproject-rtos/zephyr/wiki
https://github.com/zephyrproject-rtos/zephyr/issues
mailto:vulnerabilities@zephyrproject.org
http://docs.zephyrproject.org/latest/security/index.html
http://docs.zephyrproject.org/latest/security/index.html
https://zephyrprojectsec.atlassian.net
https://zephyrprojectsec.atlassian.net
https://zephyrproject.org

Chapter 2

Getting Started Guide

Follow this guide to:

• Set up a command-line Zephyr development environment on Ubuntu, macOS, or Windows (in-
structions for other Linux distributions are discussed in Install Linux Host Dependencies)

• Get the source code

• Build, flash, and run a sample application

2.1 Select and Update OS

Click the operating system you are using.

Ubuntu

This guide covers Ubuntu version 18.04 LTS and later.

sudo apt update
sudo apt upgrade

macOS

On macOS Mojave or later, select System Preferences > Software Update. Click Update Now if necessary.

On other versions, see this Apple support topic.

Windows

Select Start > Settings > Update & Security > Windows Update. Click Check for updates and install any
that are available.

2.2 Install dependencies

Next, you’ll install some host dependencies using your package manager.

The current minimum required version for the main dependencies are:

Tool Min. Version
CMake 3.20.0
Python 3.6
Devicetree compiler 1.4.6

Ubuntu

5

https://support.apple.com/en-us/HT201541
https://cmake.org/
https://www.python.org/
https://www.devicetree.org/

Zephyr Project Documentation, Release 2.7.0-rc2

1. Download, inspect and execute the Kitware archive script to add the Kitware APT repository to your
sources list. A detailed explanation of kitware-archive.sh can be found here kitware third-party
apt repository:

wget https://apt.kitware.com/kitware-archive.sh
sudo bash kitware-archive.sh

2. Use apt to install the required dependencies:

sudo apt install --no-install-recommends git cmake ninja-build gperf \
ccache dfu-util device-tree-compiler wget \
python3-dev python3-pip python3-setuptools python3-tk python3-wheel xz-utils␣

→˓file \
make gcc gcc-multilib g++-multilib libsdl2-dev

3. Verify the versions of the main dependencies installed on your system by entering:

cmake --version
python3 --version
dtc --version

Check those against the versions in the table in the beginning of this section. Refer to the Install
Linux Host Dependencies page for additional information on updating the dependencies manually.

macOS

1. Install Homebrew:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
→˓HEAD/install.sh)"

2. Use brew to install the required dependencies:

brew install cmake ninja gperf python3 ccache qemu dtc

Windows

Note: Due to issues finding executables, the Zephyr Project doesn’t currently support application flash-
ing using the Windows Subsystem for Linux (WSL) (WSL).

Therefore, we don’t recommend using WSL when getting started.

These instructions must be run in a cmd.exe command prompt. The required commands differ on
PowerShell.

These instructions rely on Chocolatey. If Chocolatey isn’t an option, you can install dependencies from
their respective websites and ensure the command line tools are on your PATH environment variable.

1. Install chocolatey.

2. Open a cmd.exe window as Administrator. To do so, press the Windows key, type “cmd.exe”,
right-click the result, and choose Run as Administrator.

3. Disable global confirmation to avoid having to confirm the installation of individual programs:

choco feature enable -n allowGlobalConfirmation

4. Use choco to install the required dependencies:

choco install cmake --installargs 'ADD_CMAKE_TO_PATH=System'
choco install ninja gperf python git dtc-msys2

6 Chapter 2. Getting Started Guide

https://apt.kitware.com/
https://apt.kitware.com/
https://brew.sh/
https://msdn.microsoft.com/en-us/commandline/wsl/install_guide
https://chocolatey.org/
https://chocolatey.org/install

Zephyr Project Documentation, Release 2.7.0-rc2

5. Close the window and open a new cmd.exe window as a regular user to continue.

2.3 Get Zephyr and install Python dependencies

Next, clone Zephyr and its modules into a new west workspace named zephyrproject. You’ll also install
Zephyr’s additional Python dependencies.

Python is used by the west meta-tool as well as by many scripts invoked by the build system. It is easy to
run into package incompatibilities when installing dependencies at a system or user level. This situation
can happen, for example, if working on multiple Zephyr versions at the same time. For this reason it is
suggested to use Python virtual environments.

Ubuntu

Install globally

1. Install west, and make sure ~/.local/bin is on your PATH environment variable:

pip3 install --user -U west
echo 'export PATH=~/.local/bin:"$PATH"' >> ~/.bashrc
source ~/.bashrc

2. Get the Zephyr source code:

west init ~/zephyrproject
cd ~/zephyrproject
west update

3. Export a Zephyr CMake package. This allows CMake to automatically load boilerplate code required
for building Zephyr applications.

west zephyr-export

4. Zephyr’s scripts/requirements.txt file declares additional Python dependencies. Install them
with pip3.

pip3 install --user -r ~/zephyrproject/zephyr/scripts/requirements.txt

Install within virtual environment

1. Create a new virtual environment:

python3 -m venv ~/zephyrproject/.venv

2. Activate the virtual environment:

source ~/zephyrproject/.venv/bin/activate

Once activated your shell will be prefixed with (.venv). The virtual environment can be deacti-
vated at any time by running deactivate.

Note: Remember to activate the virtual environment every time you start working.

3. Install west:

pip install west

4. Get the Zephyr source code:

2.3. Get Zephyr and install Python dependencies 7

https://docs.python.org/3/library/venv.html

Zephyr Project Documentation, Release 2.7.0-rc2

west init ~/zephyrproject
cd ~/zephyrproject
west update

5. Export a Zephyr CMake package. This allows CMake to automatically load boilerplate code required
for building Zephyr applications.

west zephyr-export

6. Zephyr’s scripts/requirements.txt file declares additional Python dependencies. Install them
with pip.

pip install -r ~/zephyrproject/zephyr/scripts/requirements.txt

macOS

Install globally

1. Install west:

pip3 install -U west

2. Get the Zephyr source code:

west init ~/zephyrproject
cd ~/zephyrproject
west update

3. Export a Zephyr CMake package. This allows CMake to automatically load boilerplate code required
for building Zephyr applications.

west zephyr-export

4. Zephyr’s scripts/requirements.txt file declares additional Python dependencies. Install them
with pip3.

pip3 install -r ~/zephyrproject/zephyr/scripts/requirements.txt

Install within virtual environment

1. Create a new virtual environment:

python3 -m venv ~/zephyrproject/.venv

2. Activate the virtual environment:

source ~/zephyrproject/.venv/bin/activate

Once activated your shell will be prefixed with (.venv). The virtual environment can be deacti-
vated at any time by running deactivate.

Note: Remember to activate the virtual environment every time you start working.

3. Install west:

pip install west

4. Get the Zephyr source code:

8 Chapter 2. Getting Started Guide

Zephyr Project Documentation, Release 2.7.0-rc2

west init ~/zephyrproject
cd ~/zephyrproject
west update

5. Export a Zephyr CMake package. This allows CMake to automatically load boilerplate code required
for building Zephyr applications.

west zephyr-export

6. Zephyr’s scripts/requirements.txt file declares additional Python dependencies. Install them
with pip.

pip install -r ~/zephyrproject/zephyr/scripts/requirements.txt

Windows

Install globally

1. Install west:

pip3 install -U west

2. Get the Zephyr source code:

cd %HOMEPATH%
west init zephyrproject
cd zephyrproject
west update

3. Export a Zephyr CMake package. This allows CMake to automatically load boilerplate code required
for building Zephyr applications.

west zephyr-export

4. Zephyr’s scripts\requirements.txt file declares additional Python dependencies. Install them
with pip3.

pip3 install -r %HOMEPATH%\zephyrproject\zephyr\scripts\requirements.txt

Install within virtual environment

1. Create a new virtual environment:

cd %HOMEPATH%
python3 -m venv zephyrproject\.venv

2. Activate the virtual environment:

:: cmd.exe
zephyrproject\.venv\Scripts\activate.bat
:: PowerShell
zephyrproject\.venv\Scripts\Activate.ps1

Once activated your shell will be prefixed with (.venv). The virtual environment can be deacti-
vated at any time by running deactivate.

Note: Remember to activate the virtual environment every time you start working.

3. Install west:

2.3. Get Zephyr and install Python dependencies 9

Zephyr Project Documentation, Release 2.7.0-rc2

pip install west

4. Get the Zephyr source code:

west init zephyrproject
cd zephyrproject
west update

5. Export a Zephyr CMake package. This allows CMake to automatically load boilerplate code required
for building Zephyr applications.

west zephyr-export

6. Zephyr’s scripts\requirements.txt file declares additional Python dependencies. Install them
with pip.

pip install -r %HOMEPATH%\zephyrproject\zephyr\scripts\requirements.txt

2.4 Install a Toolchain

A toolchain provides a compiler, assembler, linker, and other programs required to build Zephyr applica-
tions.

Ubuntu

The Zephyr Software Development Kit (SDK) contains toolchains for each of Zephyr’s supported archi-
tectures. It also includes additional host tools, such as custom QEMU binaries and a host compiler.

1. Download the latest SDK installer:

cd ~
wget https://github.com/zephyrproject-rtos/sdk-ng/releases/download/v0.13.1/
→˓zephyr-sdk-0.13.1-linux-x86_64-setup.run

2. Run the installer, installing the SDK in ~/zephyr-sdk-0.13.1:

chmod +x zephyr-sdk-0.13.1-linux-x86_64-setup.run
./zephyr-sdk-0.13.1-linux-x86_64-setup.run -- -d ~/zephyr-sdk-0.13.1

Note: It is recommended to install the Zephyr SDK at one of the following locations:

• $HOME/zephyr-sdk[-x.y.z]

• $HOME/.local/zephyr-sdk[-x.y.z]

• $HOME/.local/opt/zephyr-sdk[-x.y.z]

• $HOME/bin/zephyr-sdk[-x.y.z]

• /opt/zephyr-sdk[-x.y.z]

• /usr/zephyr-sdk[-x.y.z]

• /usr/local/zephyr-sdk[-x.y.z]

where [-x.y.z] is optional text, and can be any text, for example -0.13.1.

If installing the Zephyr SDK outside any of those locations, please read: Install the Zephyr Software
Development Kit (SDK)

10 Chapter 2. Getting Started Guide

https://github.com/zephyrproject-rtos/sdk-ng/releases

Zephyr Project Documentation, Release 2.7.0-rc2

You cannot move the SDK directory after you have installed it.

3. Install udev rules, which allow you to flash most Zephyr boards as a regular user:

sudo cp ~/zephyr-sdk-0.13.1/sysroots/x86_64-pokysdk-linux/usr/share/openocd/
→˓contrib/60-openocd.rules /etc/udev/rules.d
sudo udevadm control --reload

macOS

Follow the instructions in Set Up a Toolchain. Note that the Zephyr SDK is not available on macOS.

Do not forget to set the required environment variables (ZEPHYR_TOOLCHAIN_VARIANT and toolchain spe-
cific ones).

Windows

Follow the instructions in Set Up a Toolchain. Note that the Zephyr SDK is not available on Windows.

Do not forget to set the required environment variables (ZEPHYR_TOOLCHAIN_VARIANT and toolchain spe-
cific ones).

2.5 Build the Blinky Sample

Note: Blinky is compatible with most, but not all, boards. If your board does not meet Blinky’s blinky-
sample-requirements, then hello_world is a good alternative.

Build the blinky-sample with west build, changing <your-board-name> appropriately for your board:

Ubuntu

cd ~/zephyrproject/zephyr
west build -p auto -b <your-board-name> samples/basic/blinky

macOS

cd ~/zephyrproject/zephyr
west build -p auto -b <your-board-name> samples/basic/blinky

Windows

cd %HOMEPATH%\zephyrproject\zephyr
west build -p auto -b <your-board-name> samples\basic\blinky

The -p auto option automatically cleans byproducts from a previous build if necessary, which is useful
if you try building another sample.

2.6 Flash the Sample

Connect your board, usually via USB, and turn it on if there’s a power switch. If in doubt about what to
do, check your board’s page in boards.

Then flash the sample using west flash:

west flash

2.5. Build the Blinky Sample 11

https://en.wikipedia.org/wiki/Udev

Zephyr Project Documentation, Release 2.7.0-rc2

You may need to install additional host tools required by your board. The west flash command will
print an error if any required dependencies are missing.

If you’re using blinky, the LED will start to blink as shown in this figure:

Fig. 1: Phytec reel_board running blinky

2.7 Next Steps

Here are some next steps for exploring Zephyr:

• Try other samples-and-demos

• Learn about Application Development and the west tool

• Find out about west’s flashing and debugging features, or more about Flashing and Hardware De-
bugging in general

• Check out Beyond the Getting Started Guide for additional setup alternatives and ideas

• Discover Resources for getting help from the Zephyr community

2.8 Asking for Help

You can ask for help on a mailing list or on Discord. Please send bug reports and feature requests to
GitHub.

• Mailing Lists: users@lists.zephyrproject.org is usually the right list to ask for help. Search archives
and sign up here.

• Discord: You can join with this Discord invite.

• GitHub: Use GitHub issues for bugs and feature requests.

2.8.1 How to Ask

Important: Please search this documentation and the mailing list archives first. Your question may have
an answer there.

12 Chapter 2. Getting Started Guide

mailto:users@lists.zephyrproject.org
https://lists.zephyrproject.org/g/users
https://lists.zephyrproject.org/g/users
https://chat.zephyrproject.org
https://github.com/zephyrproject-rtos/zephyr/issues

Zephyr Project Documentation, Release 2.7.0-rc2

Don’t just say “this isn’t working” or ask “is this working?”. Include as much detail as you can about:

1. What you want to do

2. What you tried (commands you typed, etc.)

3. What happened (output of each command, etc.)

2.8.2 Use Copy/Paste

Please copy/paste text instead of taking a picture or a screenshot of it. Text includes source code,
terminal commands, and their output.

Doing this makes it easier for people to help you, and also helps other users search the archives.

When copy/pasting more than 5 lines of text into Discord, create a snippet using three backticks to
delimit the snippet.

2.8. Asking for Help 13

Zephyr Project Documentation, Release 2.7.0-rc2

14 Chapter 2. Getting Started Guide

Chapter 3

Contribution Guidelines

As an open-source project, we welcome and encourage the community to submit patches directly to the
project. In our collaborative open source environment, standards and methods for submitting changes
help reduce the chaos that can result from an active development community.

This document explains how to participate in project conversations, log bugs and enhancement requests,
and submit patches to the project so your patch will be accepted quickly in the codebase.

3.1 Licensing

Licensing is very important to open source projects. It helps ensure the software continues to be available
under the terms that the author desired.

Zephyr uses the Apache 2.0 license (as found in the LICENSE file in the project’s GitHub repo) to strike a
balance between open contribution and allowing you to use the software however you would like to. The
Apache 2.0 license is a permissive open source license that allows you to freely use, modify, distribute
and sell your own products that include Apache 2.0 licensed software. (For more information about
this, check out articles such as Why choose Apache 2.0 licensing and Top 10 Apache License Questions
Answered).

A license tells you what rights you have as a developer, as provided by the copyright holder. It is important
that the contributor fully understands the licensing rights and agrees to them. Sometimes the copyright
holder isn’t the contributor, such as when the contributor is doing work on behalf of a company.

3.1.1 Components using other Licenses

There are some imported or reused components of the Zephyr project that use other licensing, as de-
scribed in Licensing of Zephyr Project components.

Importing code into the Zephyr OS from other projects that use a license other than the Apache 2.0
license needs to be fully understood in context and approved by the Zephyr governing board.

By carefully reviewing potential contributions and also enforcing a Developer Certification of Origin (DCO)
for contributed code, we can ensure that the Zephyr community can develop products with the Zephyr
Project without concerns over patent or copyright issues.

See Contributing source code from external projects for more information about this contributing and
review process for imported components.

15

https://github.com/zephyrproject-rtos/zephyr/blob/main/LICENSE
https://github.com/zephyrproject-rtos/zephyr
https://www.zephyrproject.org/faqs/#1571346989065-9216c551-f523
https://www.whitesourcesoftware.com/whitesource-blog/top-10-apache-license-questions-answered/
https://www.whitesourcesoftware.com/whitesource-blog/top-10-apache-license-questions-answered/

Zephyr Project Documentation, Release 2.7.0-rc2

Licensing of Zephyr Project components

The Zephyr kernel tree imports or reuses packages, scripts and other files that are not covered by the
Apache 2.0 License. In some places there is no LICENSE file or way to put a LICENSE file there, so we
describe the licensing in this document.

scripts/{checkpatch.pl,checkstack.pl,get_maintainers.pl,spelling.txt} Origin: Linux Kernel

Licensing: GPLv2 License

3.2 Copyrights Notices

Please follow this Community Best Practice for Copyright Notices from the Linux Foundation.

3.3 Developer Certification of Origin (DCO)

To make a good faith effort to ensure licensing criteria are met, the Zephyr project requires the Developer
Certificate of Origin (DCO) process to be followed.

The DCO is an attestation attached to every contribution made by every developer. In the commit
message of the contribution, (described more fully later in this document), the developer simply adds a
Signed-off-by statement and thereby agrees to the DCO.

When a developer submits a patch, it is a commitment that the contributor has the right to submit the
patch per the license. The DCO agreement is shown below and at http://developercertificate.org/.

Developer's Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or

(b) The contribution is based upon previous work that, to the
best of my knowledge, is covered under an appropriate open
source license and I have the right under that license to
submit that work with modifications, whether created in whole
or in part by me, under the same open source license (unless
I am permitted to submit under a different license), as
Indicated in the file; or

(c) The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified
it.

(d) I understand and agree that this project and the contribution
are public and that a record of the contribution (including
all personal information I submit with it, including my
sign-off) is maintained indefinitely and may be redistributed
consistent with this project or the open source license(s)
involved.

16 Chapter 3. Contribution Guidelines

https://github.com/zephyrproject-rtos/zephyr/blob/main/LICENSE
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/plain/COPYING
https://www.linuxfoundation.org/blog/copyright-notices-in-open-source-software-projects/
http://developercertificate.org/

Zephyr Project Documentation, Release 2.7.0-rc2

3.3.1 DCO Sign-Off Methods

The DCO requires a sign-off message in the following format appear on each commit in the pull request:

Signed-off-by: Zephyrus Zephyr <zephyrus@zephyrproject.org>

The DCO text can either be manually added to your commit body, or you can add either -s or --signoff
to your usual Git commit commands. If you forget to add the sign-off you can also amend a previous
commit with the sign-off by running git commit --amend -s. If you’ve pushed your changes to GitHub
already you’ll need to force push your branch after this with git push -f.

3.3.2 Notes

Any contributions made as part of submitted pull requests are considered free for the Project to use.
Developers are permitted to cherry-pick patches that are included in pull requests submitted by other
contributors. It is expected that

• the content of the patches will not be substantially modified,

• the cherry-picked commits or portions of a commit shall preserve the original sign-off messages
and the author identity.

Modifying Contributions made by other developers describes additional recommended policies around
working with contributions submitted by other developers.

3.4 Prerequisites

As a contributor, you’ll want to be familiar with the Zephyr project, how to configure, install, and use it as
explained in the Zephyr Project website and how to set up your development environment as introduced
in the Zephyr Getting Started Guide.

You should be familiar with common developer tools such as Git and CMake, and platforms such as
GitHub.

If you haven’t already done so, you’ll need to create a (free) GitHub account on https://github.com and
have Git tools available on your development system.

Note: The Zephyr development workflow supports all 3 major operating systems (Linux, macOS, and
Windows) but some of the tools used in the sections below are only available on Linux and macOS. On
Windows, instead of running these tools yourself, you will need to rely on the Continuous Integration
(CI) service buildkite, which runs automatically on GitHub when you submit your Pull Request (PR).
You can see any failure results in the Buildkite details link near the end of the PR conversation list. See
Continuous Integration for more information

3.5 Repository layout

To clone the main Zephyr Project repositories use the instructions in Get Zephyr and install Python depen-
dencies.

The Zephyr project directory structure is described in Source Tree Structure documentation. In addition to
the Zephyr kernel itself, you’ll also find the sources for technical documentation, sample code, supported
board configurations, and a collection of subsystem tests. All of these are available for developers to
contribute to and enhance.

3.4. Prerequisites 17

https://zephyrproject.org
https://github.com

Zephyr Project Documentation, Release 2.7.0-rc2

3.6 Pull Requests and Issues

Before starting on a patch, first check in our issues Zephyr Project Issues system to see what’s been
reported on the issue you’d like to address. Have a conversation on the Zephyr devel mailing list (or the
the Zephyr Discord Server) to see what others think of your issue (and proposed solution). You may find
others that have encountered the issue you’re finding, or that have similar ideas for changes or additions.
Send a message to the Zephyr devel mailing list to introduce and discuss your idea with the development
community.

It’s always a good practice to search for existing or related issues before submitting your own. When you
submit an issue (bug or feature request), the triage team will review and comment on the submission,
typically within a few business days.

You can find all open pull requests on GitHub and open Zephyr Project Issues in Github issues.

3.7 Tools and Git Setup

3.7.1 Signed-off-by

The name in the commit message Signed-off-by: line and your email must match the change author-
ship information. Make sure your .gitconfig is set up correctly:

git config --global user.name "David Developer"
git config --global user.email "david.developer@company.com"

3.7.2 gitlint

When you submit a pull request to the project, a series of checks are performed to verify your commit
messages meet the requirements. The same step done during the CI process can be performed locally
using the the gitlint command.

Run gitlint locally in your tree and branch where your patches have been committed:

gitlint

Note, gitlint only checks HEAD (the most recent commit), so you should run it after each commit, or use
the --commits option to specify a commit range covering all the development patches to be submitted.

3.7.3 twister

Note: twister does not currently run on Windows.

To verify that your changes did not break any tests or samples, please run the twister script locally
before submitting your pull request to GitHub. To run the same tests the CI system runs, follow these
steps from within your local Zephyr source working directory:

source zephyr-env.sh
./scripts/twister

The above will execute the basic twister script, which will run various kernel tests using the QEMU
emulator. It will also do some build tests on various samples with advanced features that can’t run in
QEMU.

18 Chapter 3. Contribution Guidelines

https://github.com/zephyrproject-rtos/zephyr/issues
https://lists.zephyrproject.org/g/devel
https://chat.zephyrproject.org
https://lists.zephyrproject.org/g/devel
https://github.com/zephyrproject-rtos/zephyr/pulls
https://github.com/zephyrproject-rtos/zephyr/issues

Zephyr Project Documentation, Release 2.7.0-rc2

We highly recommend you run these tests locally to avoid any CI failures.

3.7.4 uncrustify

The uncrustify tool can be helpful to quickly reformat large amounts of new source code to our Coding
Style standards together with a configuration file we’ve provided:

On Linux/macOS
uncrustify --replace --no-backup -l C -c $ZEPHYR_BASE/.uncrustify.cfg my_source_file.c
On Windows
uncrustify --replace --no-backup -l C -c %ZEPHYR_BASE%\.uncrustify.cfg my_source_file.
→˓c

But note that you should not use uncrustify to reformat existing Zephyr code, or to modify files in which
you only introduce a small fix. This would create a lot of unwelcome extra changed lines.

On Linux systems, you can install uncrustify with

sudo apt install uncrustify

For Windows installation instructions see the sourceforge listing for uncrustify.

3.8 Coding Style

Use these coding guidelines to ensure that your development complies with the project’s style and naming
conventions.

In general, follow the Linux kernel coding style, with the following exceptions:

• Add braces to every if, else, do, while, for and switch body, even for single-line code blocks.
Use the --ignore BRACES flag to make checkpatch stop complaining.

• Use spaces instead of tabs to align comments after declarations, as needed.

• Use C89-style single line comments, /* */. The C99-style single line comment, //, is not allowed.

• Use /** */ for doxygen comments that need to appear in the documentation.

The Linux kernel GPL-licensed tool checkpatch is used to check coding style conformity.

Note: checkpatch does not currently run on Windows.

Checkpatch is available in the scripts directory. To invoke it when committing code, make the file
$ZEPHYR_BASE/.git/hooks/pre-commit executable and edit it to contain:

#!/bin/sh
set -e exec
exec git diff --cached | ${ ZEPHYR_BASE} /scripts/checkpatch.pl -

Instead of running checkpatch at each commit, you may prefer to run it only before pushing on zephyr
repo. To do this, make the file $ZEPHYR_BASE/.git/hooks/pre-push executable and edit it to contain:

#!/bin/sh
remote="$1"
url="$2"

z40=00

(continues on next page)

3.8. Coding Style 19

https://sourceforge.net/projects/uncrustify
https://sourceforge.net/projects/uncrustify
https://kernel.org/doc/html/latest/process/coding-style.html

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

echo "Run push hook"

while read local_ref local_sha remote_ref remote_sha
do

args="$remote $url $local_ref $local_sha $remote_ref $remote_sha"
exec ${ ZEPHYR_BASE} /scripts/series-push-hook.sh $args

done

exit 0

If you want to override checkpatch verdict and push you branch despite reported issues, you can add
option –no-verify to the git push command.

A more complete alternative to this is using check_compliance.py script from ci-tools repo.

3.9 Other Guidelines

Beyond the Coding Style that Zephyr enforces for all code that is submitted for inclusion, the project
targets compliance with a series of coding guidelines. Refer to the Coding Guidelines section of the
documentation for additional details.

3.9.1 Coding Guidelines

The project TSC and the Safety Committee of the project agreed to implement a staged and incremental
approach for complying with a set of coding rules (AKA Coding Guidelines) to improve quality and
consistency of the code base. Below are the agreed upon stages and the approximate timelines:

Stage I Coding guideline rules are available to be followed and referenced, but not enforced. Rules
are not yet enforced in CI and pull-requests cannot be blocked by reviewers/approvers due to
violations.

Stage II Begin enforcement on a limited scope of the code base. Initially this would be the safety certi-
fication scope. For rules easily applied across codebase, we should not limit compliance to initial
scope. This step requires tooling and CI setup. This stage will begin during the 2.4 development
cycle and end with the Zephyr LTS2 (2.6) to achieve and LTS2 that is ready for certification.

Stage III Revisit the coding guideline rules and based on experience from previous stages, refine/iterate
on selected rules. This stage is to start after LTS2.

Stage IV Expand enforcement to the wider codebase. Exceptions may be granted on some areas of the
codebase with a proper justification. Exception would require TSC approval.

Note: Coding guideline rules may be removed/changed at any time by filing a GH issue/RFC.

Main rules

The coding guideline rules are based on MISRA-C 2012 and are a subset of MISRA-C. The subset is listed
in the table below with a summary of the rules, its severity and the equivlent rules from other standards
for reference.

Note: For existing Zephyr maintainers and collaborators, if you are unable to obtain a copy through
your employer, a limited number of copies will be made available through the project. If you need a copy
of MISRA-C 2012, please send email to safety@lists.zephyrproject.org and provide details on reason why

20 Chapter 3. Contribution Guidelines

mailto:safety@lists.zephyrproject.org

Zephyr Project Documentation, Release 2.7.0-rc2

you can’t obtain one through other options and expected contributions once you have one. The safety
committee will review all requests.

Table 1: Main rules
MISRA C 2012 Severity Description CERT C Example
Dir 1.1 Required Any

implementation-
defined be-
haviour on which
the output of
the program
depends shall be
documented and
understood

MSC09-C Dir 1.1

Dir 2.1 Required All source files
shall compile
without any com-
pilation errors

N/A Dir 2.1

Dir 3.1 Required All code shall be
traceable to doc-
umented require-
ments

N/A Dir 3.1

Dir 4.1 Required Run-time fail-
ures shall be
minimized

N/A Dir 4.1

Dir 4.2 Advisory All usage of as-
sembly language
should be docu-
mented

N/A Dir 4.2

Dir 4.4 Advisory Sections of code
should not be
“commented out”

MSC04-C Dir 4.4

Dir 4.5 Advisory Identifiers in the
same name space
with overlap-
ping visibility
should be ty-
pographically
unambiguous

DCL02-C Dir 4.5

Dir 4.6 Advisory typedefs that
indicate size
and signedness
should be used in
place of the basic
numerical types

N/A Dir 4.6

Dir 4.7 Required If a function re-
turns error infor-
mation, then that
error information
shall be tested

N/A Dir 4.7

continues on next page

3.9. Other Guidelines 21

https://wiki.sei.cmu.edu/confluence/display/c/MSC09-C.+Character+encoding%3A+Use+subset+of+ASCII+for+safety
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_01_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_02_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_03_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_02.c
https://wiki.sei.cmu.edu/confluence/display/c/MSC04-C.+Use+comments+consistently+and+in+a+readable+fashion
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_04.c
https://wiki.sei.cmu.edu/confluence/display/c/DCL02-C.+Use+visually+distinct+identifiers
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_05.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_06.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_07.c

Zephyr Project Documentation, Release 2.7.0-rc2

Table 1 – continued from previous page
MISRA C 2012 Severity Description CERT C Example
Dir 4.8 Advisory If a pointer to a

structure or union
is never derefer-
enced within a
translation unit,
then the imple-
mentation of the
object should be
hidden

DCL12-C
Dir 4.8 example 1
Dir 4.8 example 2

Dir 4.9 Advisory A function should
be used in pref-
erence to a
function-like
macro where they
are interchange-
able

PRE00-C Dir 4.9

Dir 4.10 Required Precautions shall
be taken in order
to prevent the
contents of a
header file being
included more
than once

PRE06-C Dir 4.10

Dir 4.11 Required The validity of
values passed to
library functions
shall be checked

N/A Dir 4.11

Dir 4.12 Required Dynamic memory
allocation shall
not be used

STR01-C Dir 4.12

Dir 4.13 Advisory Functions which
are designed
to provide op-
erations on a
resource should
be called in
an appropriate
sequence

N/A Dir 4.13

Dir 4.14 Required The validity of
values received
from external
sources shall be
checked

N/A Dir 4.14

Rule 1.2 Advisory Language exten-
sions should not
be used

MSC04-C Rule 1.2

Rule 1.3 Required There shall be
no occurrence of
undefined or crit-
ical unspecified
behaviour

N/A Rule 1.3

continues on next page

22 Chapter 3. Contribution Guidelines

https://wiki.sei.cmu.edu/confluence/display/c/DCL12-C.+Implement+abstract+data+types+using+opaque+types
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_08_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_08_2.c
https://wiki.sei.cmu.edu/confluence/display/c/PRE00-C.+Prefer+inline+or+static+functions+to+function-like+macros
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_09.c
https://wiki.sei.cmu.edu/confluence/display/c/PRE06-C.+Enclose+header+files+in+an+include+guard
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_10.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_11.c
https://wiki.sei.cmu.edu/confluence/display/c/STR01-C.+Adopt+and+implement+a+consistent+plan+for+managing+strings
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_12.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_13.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_14.c
https://wiki.sei.cmu.edu/confluence/display/c/MSC04-C.+Use+comments+consistently+and+in+a+readable+fashion
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_01_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_01_03.c

Zephyr Project Documentation, Release 2.7.0-rc2

Table 1 – continued from previous page
MISRA C 2012 Severity Description CERT C Example
Rule 2.1 Required A project shall not

contain unreach-
able code

MSC07-C
Rule 2.1 example
1
Rule 2.1 example
2

Rule 2.2 Required There shall be no
dead code

MSC12-C Rule 2.2

Rule 2.3 Advisory A project should
not contain un-
used type decla-
rations

N/A Rule 2.3

Rule 2.6 Advisory A function should
not contain un-
used label decla-
rations

N/A Rule 2.6

Rule 2.7 Advisory There should be
no unused param-
eters in functions

N/A Rule 2.7

Rule 3.1 Required The character se-
quences /* and //
shall not be used
within a comment

MSC04-C Rule 3.1

Rule 3.2 Required Line-splicing shall
not be used in //
comments

N/A Rule 3.2

Rule 4.1 Required Octal and hex-
adecimal escape
sequences shall
be terminated

MSC09-C Rule 4.1

Rule 4.2 Advisory Trigraphs should
not be used

PRE07-C Rule 4.2

Rule 5.1 Required External iden-
tifiers shall be
distinct

DCL23-C
Rule 5.1 example
1
Rule 5.1 example
2

Rule 5.2 Required Identifiers de-
clared in the
same scope and
name space shall
be distinct

DCL23-C Rule 5.2

Rule 5.3 Required An identifier de-
clared in an in-
ner scope shall
not hide an iden-
tifier declared in
an outer scope

DCL23-C Rule 5.3

Rule 5.4 Required Macro identifiers
shall be distinct

DCL23-C Rule 5.4

Rule 5.5 Required Identifiers shall
be distinct from
macro names

DCL23-C Rule 5.5

continues on next page

3.9. Other Guidelines 23

https://wiki.sei.cmu.edu/confluence/display/c/MSC07-C.+Detect+and+remove+dead+code
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_02_01_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_02_01_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_02_01_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_02_01_2.c
https://wiki.sei.cmu.edu/confluence/display/c/MSC12-C.+Detect+and+remove+code+that+has+no+effect+or+is+never+executed
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_02_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_02_03.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_02_06.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_02_07.c
https://wiki.sei.cmu.edu/confluence/display/c/MSC04-C.+Use+comments+consistently+and+in+a+readable+fashion
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_03_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_03_02.c
https://wiki.sei.cmu.edu/confluence/display/c/MSC09-C.+Character+encoding%3A+Use+subset+of+ASCII+for+safety
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_04_01.c
https://wiki.sei.cmu.edu/confluence/display/c/PRE07-C.+Avoid+using+repeated+question+marks
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_04_02.c
https://wiki.sei.cmu.edu/confluence/display/c/DCL23-C.+Guarantee+that+mutually+visible+identifiers+are+unique
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_01_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_01_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_01_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_01_2.c
https://wiki.sei.cmu.edu/confluence/display/c/DCL23-C.+Guarantee+that+mutually+visible+identifiers+are+unique
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_02.c
https://wiki.sei.cmu.edu/confluence/display/c/DCL23-C.+Guarantee+that+mutually+visible+identifiers+are+unique
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_03.c
https://wiki.sei.cmu.edu/confluence/display/c/DCL23-C.+Guarantee+that+mutually+visible+identifiers+are+unique
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_04.c
https://wiki.sei.cmu.edu/confluence/display/c/DCL23-C.+Guarantee+that+mutually+visible+identifiers+are+unique
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_05.c

Zephyr Project Documentation, Release 2.7.0-rc2

Table 1 – continued from previous page
MISRA C 2012 Severity Description CERT C Example
Rule 5.6 Required A typedef name

shall be a unique
identifier

N/A Rule 5.6

Rule 5.7 Required A tag name shall
be a unique iden-
tifier

N/A Rule 5.7

Rule 5.8 Required Identifiers that
define objects or
functions with
external linkage
shall be unique

N/A
Rule 5.8 example
1
Rule 5.8 example
2

Rule 5.9 Advisory Identifiers that
define objects or
functions with
internal linkage
should be unique

N/A
Rule 5.9 example
1
Rule 5.9 example
2

Rule 6.1 Required Bit-fields shall
only be declared
with an appropri-
ate type

INT14-C Rule 6.1

Rule 6.2 Required Single-bit named
bit fields shall not
be of a signed
type

INT14-C Rule 6.2

Rule 7.1 Required Octal constants
shall not be used

DCL18-C Rule 7.1

Rule 7.2 Required A u or U suf-
fix shall be ap-
plied to all inte-
ger constants that
are represented in
an unsigned type

N/A Rule 7.2

Rule 7.3 Required The lowercase
character l shall
not be used in a
literal suffix

DCL16-C Rule 7.3

Rule 7.4 Required A string literal
shall not be
assigned to an
object unless
the objects type
is pointer to
const-qualified
char

N/A Rule 7.4

Rule 8.1 Required Types shall be ex-
plicitly specified

N/A Rule 8.1

Rule 8.2 Required Function types
shall be in pro-
totype form with
named parame-
ters

DCL20-C Rule 8.2

continues on next page

24 Chapter 3. Contribution Guidelines

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_06.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_07.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_08_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_08_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_08_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_08_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_09_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_09_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_09_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_09_2.c
https://wiki.sei.cmu.edu/confluence/display/c/INT14-C.+Avoid+performing+bitwise+and+arithmetic+operations+on+the+same+data
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_06_01.c
https://wiki.sei.cmu.edu/confluence/display/c/INT14-C.+Avoid+performing+bitwise+and+arithmetic+operations+on+the+same+data
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_06_02.c
https://wiki.sei.cmu.edu/confluence/display/c/DCL18-C.+Do+not+begin+integer+constants+with+0+when+specifying+a+decimal+value
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_07_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_07_02.c
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152241
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_07_03.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_07_04.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_01.c
https://wiki.sei.cmu.edu/confluence/display/c/DCL20-C.+Explicitly+specify+void+when+a+function+accepts+no+arguments
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_02.c

Zephyr Project Documentation, Release 2.7.0-rc2

Table 1 – continued from previous page
MISRA C 2012 Severity Description CERT C Example
Rule 8.3 Required All declarations of

an object or func-
tion shall use the
same names and
type qualifiers

N/A Rule 8.3

Rule 8.4 Required A compatible dec-
laration shall be
visible when an
object or function
with external
linkage is defined

N/A Rule 8.4

Rule 8.5 Required An external object
or function shall
be declared once
in one and only
one file

N/A
Rule 8.5 example
1
Rule 8.5 example
2

Rule 8.6 Required An identifier with
external linkage
shall have exactly
one external
definition

N/A
Rule 8.6 example
1
Rule 8.6 example
2

Rule 8.8 Required The static stor-
age class specifier
shall be used in
all declarations of
objects and func-
tions that have in-
ternal linkage

DCL15-C Rule 8.8

Rule 8.9 Advisory An object should
be defined at
block scope if its
identifier only ap-
pears in a single
function

DCL19-C Rule 8.9

Rule 8.10 Required An inline function
shall be declared
with the static
storage class

N/A Rule 8.10

Rule 8.12 Required Within an enu-
merator list,
the value of
an implicitly-
specified enumer-
ation constant
shall be unique

INT09-C Rule 8.12

Rule 8.14 Required The restrict type
qualifier shall not
be used

N/A Rule 8.14

continues on next page

3.9. Other Guidelines 25

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_03.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_04.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_05_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_05_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_05_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_05_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_06_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_06_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_06_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_06_2.c
https://wiki.sei.cmu.edu/confluence/display/c/DCL15-C.+Declare+file-scope+objects+or+functions+that+do+not+need+external+linkage+as+static
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_08.c
https://wiki.sei.cmu.edu/confluence/display/c/DCL19-C.+Minimize+the+scope+of+variables+and+functions
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_09.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_10.c
https://wiki.sei.cmu.edu/confluence/display/c/INT09-C.+Ensure+enumeration+constants+map+to+unique+values
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_12.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_14.c

Zephyr Project Documentation, Release 2.7.0-rc2

Table 1 – continued from previous page
MISRA C 2012 Severity Description CERT C Example
Rule 9.1 Mandatory The value of an

object with auto-
matic storage du-
ration shall not be
read before it has
been set

N/A Rule 9.1

Rule 9.2 Required The initializer for
an aggregate or
union shall be en-
closed in braces

N/A Rule 9.2

Rule 9.3 Required Arrays shall not
be partially ini-
tialized

N/A Rule 9.3

Rule 9.4 Required An element of
an object shall
not be initialized
more than once

N/A Rule 9.4

Rule 9.5 Required Where desig-
nated initializers
are used to ini-
tialize an array
object the size
of the array
shall be specified
explicitly

N/A Rule 9.5

Rule 10.1 Required Operands shall
not be of an
inappropriate
essential type

STR04-C Rule 10.1

Rule 10.2 Required Expressions of es-
sentially charac-
ter type shall not
be used inappro-
priately in addi-
tion and subtrac-
tion operations

STR04-C Rule 10.2

Rule 10.3 Required The value of an
expression shall
not be assigned
to an object with
a narrower essen-
tial type or of a
dierent essential
type category

STR04-C Rule 10.3

Rule 10.4 Required Both operands
of an operator
in which the
usual arithmetic
conversions are
performed shall
have the same
essential type
category

STR04-C Rule 10.4

continues on next page

26 Chapter 3. Contribution Guidelines

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_09_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_09_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_09_03.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_09_04.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_09_05.c
https://wiki.sei.cmu.edu/confluence/display/c/STR04-C.+Use+plain+char+for+characters+in+the+basic+character+set
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_10_01.c
https://wiki.sei.cmu.edu/confluence/display/c/STR04-C.+Use+plain+char+for+characters+in+the+basic+character+set
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_10_02.c
https://wiki.sei.cmu.edu/confluence/display/c/STR04-C.+Use+plain+char+for+characters+in+the+basic+character+set
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_10_03.c
https://wiki.sei.cmu.edu/confluence/display/c/STR04-C.+Use+plain+char+for+characters+in+the+basic+character+set
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_10_04.c

Zephyr Project Documentation, Release 2.7.0-rc2

Table 1 – continued from previous page
MISRA C 2012 Severity Description CERT C Example
Rule 10.5 Advisory The value of an

expression should
not be cast to an
inappropriate es-
sential type

N/A Rule 10.5

Rule 10.6 Required The value of a
composite expres-
sion shall not be
assigned to an ob-
ject with wider
essential type

INT02-C Rule 10.6

Rule 10.7 Required If a composite
expression is used
as one operand
of an operator
in which the
usual arithmetic
conversions are
performed then
the other operand
shall not have
wider essential
type

INT02-C Rule 10.7

Rule 10.8 Required The value of a
composite expres-
sion shall not be
cast to a different
essential type cat-
egory or a wider
essential type

INT02-C Rule 10.8

Rule 11.2 Required Conversions shall
not be performed
between a pointer
to an incomplete
type and any
other type

N/A Rule 11.2

Rule 11.6 Required A cast shall not
be performed be-
tween pointer to
void and an arith-
metic type

N/A Rule 11.6

Rule 11.7 Required A cast shall not
be performed be-
tween pointer to
object and a non-
integer arithmetic
type

N/A Rule 11.7

Rule 11.8 Required A cast shall not
remove any const
or volatile quali-
fication from the
type pointed to by
a pointer

EXP05-C Rule 11.8

continues on next page

3.9. Other Guidelines 27

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_10_05.c
https://wiki.sei.cmu.edu/confluence/display/c/INT02-C.+Understand+integer+conversion+rules
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_10_06.c
https://wiki.sei.cmu.edu/confluence/display/c/INT02-C.+Understand+integer+conversion+rules
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_10_07.c
https://wiki.sei.cmu.edu/confluence/display/c/INT02-C.+Understand+integer+conversion+rules
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_10_08.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_11_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_11_06.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_11_07.c
https://wiki.sei.cmu.edu/confluence/display/c/EXP05-C.+Do+not+cast+away+a+const+qualification
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_11_08.c

Zephyr Project Documentation, Release 2.7.0-rc2

Table 1 – continued from previous page
MISRA C 2012 Severity Description CERT C Example
Rule 11.9 Required The macro NULL

shall be the only
permitted form
of integer null
pointer constant

N/A Rule 11.9

Rule 12.1 Advisory The precedence
of operators
within expres-
sions should be
made explicit

EXP00-C Rule 12.1

Rule 12.2 Required The right hand
operand of a shift
operator shall lie
in the range zero
to one less than
the width in bits
of the essential
type of the left
hand operand

N/A Rule 12.2

Rule 12.4 Advisory Evaluation of con-
stant expressions
should not lead to
unsigned integer
wrap-around

N/A Rule 12.4

Rule 12.5 Mandatory The sizeof opera-
tor shall not have
an operand which
is a function pa-
rameter declared
as “array of type”

N/A Rule 12.5

Rule 13.1 Required Initializer lists
shall not contain
persistent side
effects

N/A
Rule 13.1
example 1
Rule 13.1
example 2

Rule 13.2 Required The value of an
expression and its
persistent side ef-
fects shall be the
same under all
permitted evalua-
tion orders

N/A Rule 13.2

Rule 13.3 Advisory A full expression
containing an
increment (++)
or decrement (–)
operator should
have no other
potential side
effects other than
that caused by
the increment
or decrement
operator

N/A Rule 13.3

continues on next page

28 Chapter 3. Contribution Guidelines

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_11_09.c
https://wiki.sei.cmu.edu/confluence/display/c/EXP00-C.+Use+parentheses+for+precedence+of+operation
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_12_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_12_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_12_04.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_12_05.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_01_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_01_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_01_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_01_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_03.c

Zephyr Project Documentation, Release 2.7.0-rc2

Table 1 – continued from previous page
MISRA C 2012 Severity Description CERT C Example
Rule 13.4 Advisory The result of an

assignment oper-
ator should not be
used

N/A Rule 13.4

Rule 13.5 Required The right hand
operand of a log-
ical && or || op-
erator shall not
contain persistent
side effects

EXP10-C
Rule 13.5
example 1
Rule 13.5
example 2

Rule 13.6 Mandatory The operand of
the sizeof opera-
tor shall not con-
tain any expres-
sion which has
potential side ef-
fects

N/A Rule 13.6

Rule 14.1 Required A loop counter
shall not have es-
sentially floating
type

N/A Rule 14.1

Rule 14.2 Required A for loop shall be
well-formed

N/A Rule 14.2

Rule 14.3 Required Controlling ex-
pressions shall
not be invariant

N/A Rule 14.3

Rule 14.4 Required The controlling
expression of
an if statement
and the control-
ling expression
of an iteration-
statement shall
have essentially
Boolean type

N/A Rule 14.4

Rule 15.2 Required The goto state-
ment shall jump
to a label de-
clared later in the
same function

N/A Rule 15.2

Rule 15.3 Required Any label refer-
enced by a goto
statement shall be
declared in the
same block, or in
any block enclos-
ing the goto state-
ment

N/A Rule 15.3

Rule 15.6 Required The body of
an iteration-
statement or
a selection-
statement shall
be a compound-
statement

EXP19-C Rule 15.6

continues on next page

3.9. Other Guidelines 29

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_04.c
https://wiki.sei.cmu.edu/confluence/display/c/EXP10-C.+Do+not+depend+on+the+order+of+evaluation+of+subexpressions+or+the+order+in+which+side+effects+take+place
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_05_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_05_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_05_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_05_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_06.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_14_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_14_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_14_03.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_14_04.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_15_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_15_03.c
https://wiki.sei.cmu.edu/confluence/display/c/EXP19-C.+Use+braces+for+the+body+of+an+if%2C+for%2C+or+while+statement
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_15_06.c

Zephyr Project Documentation, Release 2.7.0-rc2

Table 1 – continued from previous page
MISRA C 2012 Severity Description CERT C Example
Rule 15.7 Required All if else if con-

structs shall be
terminated with
an else statement

N/A Rule 15.7

Rule 16.1 Required All switch state-
ments shall be
well-formed

N/A Rule 16.1

Rule 16.2 Required A switch label
shall only be used
when the most
closely-enclosing
compound state-
ment is the
body of a switch
statement

MSC20-C Rule 16.2

Rule 16.3 Required An unconditional
break statement
shall terminate
every switch-
clause

N/A Rule 16.3

Rule 16.4 Required Every switch
statement shall
have a default
label

N/A Rule 16.4

Rule 16.5 Required A default label
shall appear as ei-
ther the first or
the last switch la-
bel of a switch
statement

N/A Rule 16.5

Rule 16.6 Required Every switch
statement shall
have at least two
switch-clauses

N/A Rule 16.6

Rule 16.7 Required A switch-
expression shall
not have essen-
tially Boolean
type

N/A Rule 16.7

Rule 17.1 Required The features of
<stdarg.h> shall
not be used

ERR00-C Rule 17.1

Rule 17.2 Required Functions shall
not call them-
selves, either
directly or indi-
rectly

MEM05-C Rule 17.2

Rule 17.3 Mandatory A function shall
not be declared
implicitly

N/A Rule 17.3

continues on next page

30 Chapter 3. Contribution Guidelines

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_15_07.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_16_01.c
https://wiki.sei.cmu.edu/confluence/display/c/MSC20-C.+Do+not+use+a+switch+statement+to+transfer+control+into+a+complex+block
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_16_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_16_03.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_16_04.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_16_05.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_16_06.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_16_07.c
https://wiki.sei.cmu.edu/confluence/display/c/ERR00-C.+Adopt+and+implement+a+consistent+and+comprehensive+error-handling+policy
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_17_01.c
https://wiki.sei.cmu.edu/confluence/display/c/MEM05-C.+Avoid+large+stack+allocations
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_17_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_17_03.c

Zephyr Project Documentation, Release 2.7.0-rc2

Table 1 – continued from previous page
MISRA C 2012 Severity Description CERT C Example
Rule 17.4 Mandatory All exit paths

from a function
with non-void
return type shall
have an explicit
return state-
ment with an
expression

N/A Rule 17.4

Rule 17.5 Advisory The function
argument cor-
responding to a
parameter de-
clared to have an
array type shall
have an appro-
priate number of
elements

N/A Rule 17.5

Rule 17.6 Mandatory The declaration
of an array pa-
rameter shall not
contain the static
keyword between
the []

N/A Rule 17.6

Rule 17.7 Required The value re-
turned by a
function having
non-void return
type shall be used

N/A Rule 17.7

Rule 18.1 Required A pointer result-
ing from arith-
metic on a pointer
operand shall ad-
dress an element
of the same ar-
ray as that pointer
operand

EXP08-C Rule 18.1

Rule 18.2 Required Subtraction be-
tween pointers
shall only be
applied to point-
ers that address
elements of the
same array

EXP08-C Rule 18.2

Rule 18.3 Required The relational op-
erators >, >=,
< and <= shall
not be applied to
objects of pointer
type except where
they point into
the same object

EXP08-C Rule 18.3

continues on next page

3.9. Other Guidelines 31

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_17_04.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_17_05.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_17_06.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_17_07.c
https://wiki.sei.cmu.edu/confluence/display/c/EXP08-C.+Ensure+pointer+arithmetic+is+used+correctly
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_18_01.c
https://wiki.sei.cmu.edu/confluence/display/c/EXP08-C.+Ensure+pointer+arithmetic+is+used+correctly
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_18_02.c
https://wiki.sei.cmu.edu/confluence/display/c/EXP08-C.+Ensure+pointer+arithmetic+is+used+correctly
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_18_03.c

Zephyr Project Documentation, Release 2.7.0-rc2

Table 1 – continued from previous page
MISRA C 2012 Severity Description CERT C Example
Rule 18.5 Advisory Declarations

should contain no
more than two
levels of pointer
nesting

N/A Rule 18.5

Rule 18.6 Required The address of
an object with
automatic stor-
age shall not be
copied to another
object that per-
sists after the first
object has ceased
to exist

N/A
Rule 18.6
example 1
Rule 18.6
example 2

Rule 18.8 Required Variable-length
array types shall
not be used

N/A Rule 18.8

Rule 19.1 Mandatory An object shall
not be assigned or
copied to an over-
lapping object

N/A Rule 19.1

Rule 20.2 Required The ‘, or charac-
ters and the /*
or // character se-
quences shall not
occur in a header
file name”

N/A Rule 20.2

Rule 20.3 Required The #include
directive shall be
followed by either
a <filename> or
“filename” se-
quence

N/A Rule 20.3

Rule 20.4 Required A macro shall not
be defined with
the same name as
a keyword

N/A Rule 20.4

Rule 20.7 Required Expressions re-
sulting from
the expansion
of macro pa-
rameters shall
be enclosed in
parentheses

PRE01-C Rule 20.7

Rule 20.8 Required The controlling
expression of
a #if or #elif
preprocessing
directive shall
evaluate to 0 or 1

N/A Rule 20.8

continues on next page

32 Chapter 3. Contribution Guidelines

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_18_05.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_18_06_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_18_06_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_18_06_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_18_06_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_18_08.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_19_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_03.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_04.c
https://wiki.sei.cmu.edu/confluence/display/c/PRE01-C.+Use+parentheses+within+macros+around+parameter+names
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_07.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_08.c

Zephyr Project Documentation, Release 2.7.0-rc2

Table 1 – continued from previous page
MISRA C 2012 Severity Description CERT C Example
Rule 20.9 Required All identifiers

used in the
controlling ex-
pression of #if
or #elif prepro-
cessing directives
shall be #defined
before evaluation

N/A Rule 20.9

Rule 20.11 Required A macro param-
eter immediately
following a #
operator shall not
immediately be
followed by a ##
operator

N/A Rule 20.11

Rule 20.12 Required A macro param-
eter used as an
operand to the
or ## oper-
ators, which is
itself subject to
further macro re-
placement, shall
only be used as an
operand to these
operators

N/A Rule 20.12

Rule 20.13 Required A line whose first
token is # shall
be a valid prepro-
cessing directive

N/A Rule 20.13

Rule 20.14 Required All #else, #elif
and #endif
preprocessor
directives shall
reside in the same
file as the #if,
#ifdef or #ifndef
directive to which
they are related

N/A Rule 20.14

Rule 21.1 Required #define and
#undef shall not
be used on a re-
served identifier
or reserved macro
name

N/A Rule 21.1

Rule 21.2 Required A reserved iden-
tifier or macro
name shall not be
declared

N/A Rule 21.2

Rule 21.3 Required The memory
allocation and
deallocation
functions of
<stdlib.h> shall
not be used

MSC24-C Rule 21.3

continues on next page

3.9. Other Guidelines 33

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_09.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_11.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_12.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_13.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_14.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_02.c
https://wiki.sei.cmu.edu/confluence/display/c/MSC24-C.+Do+not+use+deprecated+or+obsolescent+functions
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_03.c

Zephyr Project Documentation, Release 2.7.0-rc2

Table 1 – continued from previous page
MISRA C 2012 Severity Description CERT C Example
Rule 21.4 Required The standard

header file
<setjmp.h>
shall not be used

N/A Rule 21.4

Rule 21.6 Required The Standard
Library in-
put/output
functions shall
not be used

N/A Rule 21.6

Rule 21.7 Required The atof, atoi,
atol and atoll
functions of
<stdlib.h> shall
not be used

N/A Rule 21.7

Rule 21.9 Required The library func-
tions bsearch
and qsort of
<stdlib.h> shall
not be used

N/A Rule 21.9

Rule 21.11 Required The standard
header file <tg-
math.h> shall
not be used

N/A Rule 21.11

Rule 21.12 Advisory The exception
handling features
of <fenv.h>
should not be
used

N/A Rule 21.12

Rule 21.13 Mandatory Any value passed
to a function in
<ctype.h> shall
be representable
as an unsigned
char or be the
value EO

N/A Rule 21.13

Rule 21.14 Required The Standard
Library function
memcmp shall
not be used to
compare null ter-
minated strings

N/A Rule 21.14

Rule 21.15 Required The pointer ar-
guments to the
Standard Library
functions mem-
cpy, memmove
and memcmp
shall be pointers
to qualified or un-
qualified versions
of compatible
types

N/A Rule 21.15

continues on next page

34 Chapter 3. Contribution Guidelines

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_04.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_06.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_07.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_09.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_11.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_12.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_13.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_14.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_15.c

Zephyr Project Documentation, Release 2.7.0-rc2

Table 1 – continued from previous page
MISRA C 2012 Severity Description CERT C Example
Rule 21.16 Required The pointer ar-

guments to the
Standard Library
function mem-
cmp shall point to
either a pointer
type, an essen-
tially signed type,
an essentially
unsigned type,
an essentially
Boolean type or
an essentially
enum type

N/A Rule 21.16

Rule 21.17 Mandatory Use of the
string handling
functions from
<string.h> shall
not result in ac-
cesses beyond the
bounds of the ob-
jects referenced
by their pointer
parameters

N/A Rule 21.17

Rule 21.18 Mandatory The size_t argu-
ment passed to
any function in
<string.h> shall
have an appropri-
ate value

N/A Rule 21.18

Rule 21.19 Mandatory The pointers
returned by the
Standard Library
functions locale-
conv, getenv,
setlocale or, str-
error shall only
be used as if they
have pointer to
const-qualified
type

N/A Rule 21.19

Rule 21.20 Mandatory The pointer re-
turned by the
Standard Li-
brary functions
asctime, ctime,
gmtime, local-
time, localeconv,
getenv, setlo-
cale or strerror
shall not be used
following a sub-
sequent call to
the same function

N/A Rule 21.20

continues on next page

3.9. Other Guidelines 35

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_16.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_17.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_18.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_19.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_20.c

Zephyr Project Documentation, Release 2.7.0-rc2

Table 1 – continued from previous page
MISRA C 2012 Severity Description CERT C Example
Rule 22.1 Required All resources

obtained dynami-
cally by means of
Standard Library
functions shall be
explicitly released

N/A Rule 22.1

Rule 22.2 Mandatory A block of mem-
ory shall only be
freed if it was al-
located by means
of a Standard Li-
brary function

N/A Rule 22.2

Rule 22.3 Required The same file
shall not be open
for read and
write access at
the same time on
different streams

N/A Rule 22.3

Rule 22.4 Mandatory There shall be no
attempt to write
to a stream which
has been opened
as read-only

N/A Rule 22.4

Rule 22.5 Mandatory A pointer to a
FILE object shall
not be derefer-
enced

N/A Rule 22.5

Rule 22.6 Mandatory The value of a
pointer to a FILE
shall not be used
after the associ-
ated stream has
been closed

N/A Rule 22.6

Rule 22.7 Required The macro EOF
shall only be
compared with
the unmodified
return value from
any Standard
Library func-
tion capable of
returning EOF

N/A Rule 22.7

Rule 22.8 Required The value of er-
rno shall be set
to zero prior to a
call to an errno-
setting-function

N/A Rule 22.8

Rule 22.9 Required The value of er-
rno shall be tested
against zero after
calling an errno-
setting-function

N/A Rule 22.9

continues on next page

36 Chapter 3. Contribution Guidelines

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_03.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_04.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_05.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_06.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_07.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_08.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_09.c

Zephyr Project Documentation, Release 2.7.0-rc2

Table 1 – continued from previous page
MISRA C 2012 Severity Description CERT C Example
Rule 22.10 Required The value of

errno shall only
be tested when
the last function
to be called was
an errno-setting-
function

N/A Rule 22.10

Additional rules

Rule A.1: Conditional Compilation

Severity Required

Description Do not conditionally compile function declarations in header files. Do not conditionally
compile structure declarations in header files. You may conditionally exclude fields within structure
definitions to avoid wasting memory when the feature they support is not enabled.

Rationale Excluding declarations from the header based on compile-time options may pre-
vent their documentation from being generated. Their absence also prevents use of if
(IS_ENABLED(CONFIG_FOO)) {} as an alternative to preprocessor conditionals when the code path
should change based on the selected options.

Rule A.2: Inclusive Language

Severity Required

Description Do not introduce new usage of offensive terms listed below. This rule applies but is not
limited to source code, comments, documentation, and branch names. Replacement terms may vary by
area or subsystem, but should aim to follow updated industry standards when possible.

Exceptions are allowed for maintaining existing implementations or adding new implementations of
industry standard specifications governed externally to the Zephyr Project.

Existing usage is recommended to change as soon as updated industry standard specifications become
available or new terms are publicly announced by the governing body, or immediately if no specifications
apply.

3.9. Other Guidelines 37

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_10.c

Zephyr Project Documentation, Release 2.7.0-rc2

Offensive Terms Recommended Replacements
{master,leader} / slave

• {primary,main} / {secondary,
replica}

• {initiator,requester} / {target,
responder}

• {controller,host} / {device,worker,
proxy,target}

• director / performer
• central / peripheral

blacklist / whitelist
• denylist / allowlist
• blocklist / allowlist
• rejectlist / acceptlist

grandfather policy
• legacy

sanity
• coherence
• confidence

Rationale Offensive terms do not create an inclusive community environment and therefore violate
the Zephyr Project Code of Conduct. This coding rule was inspired by a similar rule in Linux.

Status Related GitHub Issues and Pull Requests are tagged with the Inclusive Language Label.

38 Chapter 3. Contribution Guidelines

https://github.com/zephyrproject-rtos/zephyr/blob/main/CODE_OF_CONDUCT.md
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=49decddd39e5f6132ccd7d9fdc3d7c470b0061bb
https://github.com/zephyrproject-rtos/zephyr/issues?q=label%3A%22Inclusive+Language%22

Zephyr Project Documentation, Release 2.7.0-rc2

Area Selected Replacements Status
Bluetooth See Bluetooth Appropriate Lan-

guage Mapping Tables
eSPI

• master / slave => TBD

gPTP
• master / slave => TBD

I2C
• master / slave => TBD

NXP publishes the I2C Spec-
ification and has selected
controller / target as
replacement terms, but the
timing to publish an announce-
ment or new specification is
TBD. Zephyr will update I2C
when replacement terminol-
ogy is confirmed by a public
announcement or updated
specification.
See Zephyr issue 27033.

I2S
• master / slave => TBD

SMP/AMP
• master / slave => TBD

SPI
• master / slave

=> controller /
peripheral

• MOSI / MISO / SS =>
SDO / SDI / CS

The Open Source Hardware As-
sociation has selected these re-
placement terms. See OSHWA
Resolution to Redefine SPI Sig-
nal Names

Test Runner (Twister)
• platform_whitelist =>

platform_allow
• sanitycheck =>

twister

3.9.2 Documentation Guidelines

Note: For instructions on building the documentation, see Documentation Generation.

Zephyr Project content is written using the reStructuredText markup language (.rst file extension) with
Sphinx extensions, and processed using Sphinx to create a formatted standalone website. Developers
can view this content either in its raw form as .rst markup files, or (with Sphinx installed) they can build
the documentation using the Makefile on Linux systems, or make.bat on Windows, to generate the HTML
content. The HTML content can then be viewed using a web browser. This same .rst content is also fed
into the Zephyr documentation website (with a different theme applied).

You can read details about reStructuredText and about Sphinx extensions from their respective websites.

This document provides a quick reference for commonly used reST and Sphinx-defined directives and
roles used to create the documentation you’re reading.

3.9. Other Guidelines 39

https://btprodspecificationrefs.blob.core.windows.net/language-mapping/Appropriate_Language_Mapping_Table.pdf
https://btprodspecificationrefs.blob.core.windows.net/language-mapping/Appropriate_Language_Mapping_Table.pdf
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://github.com/zephyrproject-rtos/zephyr/issues/27033
https://www.oshwa.org/a-resolution-to-redefine-spi-signal-names/
https://www.oshwa.org/a-resolution-to-redefine-spi-signal-names/
https://www.oshwa.org/a-resolution-to-redefine-spi-signal-names/
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html
https://docs.zephyrproject.org
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html
http://www.sphinx-doc.org/en/stable/contents.html

Zephyr Project Documentation, Release 2.7.0-rc2

Headings

While reST allows use of both and overline and matching underline to indicate a heading, we only use
an underline indicator for headings.

• Document title (h1) use “#” for the underline character

• First section heading level (h2) use “*”

• Second section heading level (h3) use “=”

• Third section heading level (h4) use “-“

The heading underline must be at least as long as the title it’s under.

For example:

This is a title heading
#######################

some content goes here

First section heading

Content Highlighting

Some common reST inline markup samples:

• one asterisk: *text* for emphasis (italics),

• two asterisks: **text** for strong emphasis (boldface), and

• two backquotes: ``text`` for inline code samples.

If asterisks or backquotes appear in running text and could be confused with inline markup delimiters,
you can eliminate the confusion by adding a backslash (\) before it.

Lists

For bullet lists, place an asterisk (*) or hyphen (-) at the start of a paragraph and indent continuation
lines with two spaces.

The first item in a list (or sublist) must have a blank line before it and should be indented at the same
level as the preceding paragraph (and not indented itself).

For numbered lists start with a 1. or a. for example, and continue with autonumbering by using a # sign.
Indent continuation lines with three spaces:

* This is a bulleted list.
* It has two items, the second

item and has more than one line of reST text. Additional lines
are indented to the first character of the
text of the bullet list.

1. This is a new numbered list. If the wasn't a blank line before it,
it would be a continuation of the previous list (or paragraph).

#. It has two items too.

a. This is a numbered list using alphabetic list headings
#. It has three items (and uses autonumbering for the rest of the list)

(continues on next page)

40 Chapter 3. Contribution Guidelines

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

#. Here's the third item

#. This is an autonumbered list (default is to use numbers starting
with 1).

#. This is a second-level list under the first item (also
autonumbered). Notice the indenting.

#. And a second item in the nested list.
#. And a second item back in the containing list. No blank line

needed, but it wouldn't hurt for readability.

Definition lists (with a term and its definition) are a convenient way to document a word or phrase with
an explanation. For example this reST content:

The Makefile has targets that include:

html
Build the HTML output for the project

clean
Remove all generated output, restoring the folders to a
clean state.

Would be rendered as:

The Makefile has targets that include:

html Build the HTML output for the project

clean Remove all generated output, restoring the folders to a clean state.

Multi-column lists

If you have a long bullet list of items, where each item is short, you can indicate the list items should be
rendered in multiple columns with a special .. rst-class:: rst-columns directive. The directive will
apply to the next non-comment element (e.g., paragraph), or to content indented under the directive.
For example, this unordered list:

.. rst-class:: rst-columns

* A list of
* short items
* that should be
* displayed
* horizontally
* so it doesn't
* use up so much
* space on
* the page

would be rendered as:

• A list of

• short items

• that should be

• displayed

• horizontally

3.9. Other Guidelines 41

Zephyr Project Documentation, Release 2.7.0-rc2

• so it doesn’t

• use up so much

• space on

• the page

A maximum of three columns will be displayed, and change based on the available width of the display
window, reducing to one column on narrow (phone) screens if necessary. We’ve deprecated use of the
hlist directive because it misbehaves on smaller screens.

Tables

There are a few ways to create tables, each with their limitations or quirks. Grid tables offer the most
capability for defining merged rows and columns, but are hard to maintain:

+------------------------+------------+----------+----------+
| Header row, column 1 | Header 2 | Header 3 | Header 4 |
| (header rows optional) | | | |
+========================+============+==========+==========+
| body row 1, column 1 | column 2 | column 3 | column 4 |
+------------------------+------------+----------+----------+
| body row 2 | ... | ... | you can |
+------------------------+------------+----------+ easily +
| body row 3 with a two column span | ... | span |
+------------------------+------------+----------+ rows +
| body row 4 | ... | ... | too |
+------------------------+------------+----------+----------+

This example would render as:

Header row, column 1 (header rows op-
tional)

Header 2 Header 3 Header 4

body row 1, column 1 column 2 column
3

column 4

body row 2 you can easily span rows
toobody row 3 with a two column span . . .

body row 4

List tables are much easier to maintain, but don’t support row or column spans:

.. list-table:: Table title
:widths: 15 20 40
:header-rows: 1

* - Heading 1
- Heading 2
- Heading 3

* - body row 1, column 1
- body row 1, column 2
- body row 1, column 3

* - body row 2, column 1
- body row 2, column 2
- body row 2, column 3

This example would render as:

42 Chapter 3. Contribution Guidelines

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#grid-tables
http://docutils.sourceforge.net/docs/ref/rst/directives.html#list-table

Zephyr Project Documentation, Release 2.7.0-rc2

Table 2: Table title
Heading 1 Heading 2 Heading 3
body row 1, col-
umn 1

body row 1, column 2 body row 1, column 3

body row 2, col-
umn 1

body row 2, column 2 body row 2, column 3

The :widths: parameter lets you define relative column widths. The default is equal column widths. If
you have a three-column table and you want the first column to be half as wide as the other two equal-
width columns, you can specify :widths: 1 2 2. If you’d like the browser to set the column widths
automatically based on the column contents, you can use :widths: auto.

File names and Commands

Sphinx extends reST by supporting additional inline markup elements (called “roles”) used to tag text
with special meanings and allow style output formatting. (You can refer to the Sphinx Inline Markup
documentation for the full list).

For example, there are roles for marking filenames (:file:`name`) and command names such as make
(:command:`make`). You can also use the ``inline code`` markup (double backticks) to indicate a
filename.

For references to files that are in the Zephyr GitHub tree, a special role can be used that creates a
hyperlink to that file. For example a reference to the reST file used to create this document can
be generated using :zephyr_file:\`doc/guides/documentation/index.rst\` that will show up as
doc/guides/documentation/index.rst, a link to the “blob” file in the github repo. There’s also a
:zephyr_raw:\`doc/guides/documentation/index.rst\` role that will link to the “raw” content,
doc/guides/documentation/index.rst. (You can click on these links to see the difference.)

Internal Cross-Reference Linking

Traditional ReST links are only supported within the current file using the notation:

Refer to the `internal-linking`_ page

which renders as,

Refer to the internal-linking page

Note the use of a trailing underscore to indicate an outbound link. In this example, the label was added
immediately before a heading, so the text that’s displayed is the heading text itself. You can change the
text that’s displayed as the link writing this as:

Refer to the `show this text instead <internal-linking>`_ page

which renders as,

Refer to the show this text instead page

External Cross-Reference Linking

With Sphinx’s help, we can create link-references to any tagged text within the Zephyr Project documen-
tation.

Target locations in a document are defined with a label directive:

3.9. Other Guidelines 43

http://sphinx-doc.org/markup/inline.html#inline-markup
https://github.com/zephyrproject-rtos/zephyr/blob/main/doc/guides/documentation/index.rst
https://github.com/zephyrproject-rtos/zephyr/blob/main/doc/guides/documentation/index.rst

Zephyr Project Documentation, Release 2.7.0-rc2

.. _my label name:

Heading
=======

Note the leading underscore indicating an inbound link. The content immediately following this label
must be a heading, and is the target for a :ref:`my label name` reference from anywhere within the
Zephyr documentation. The heading text is shown when referencing this label. You can also change the
text that’s displayed for this link, such as:

:ref:`some other text <my label name>`

To enable easy cross-page linking within the site, each file should have a reference label before its title
so it can be referenced from another file. These reference labels must be unique across the whole site, so
generic names such as “samples” should be avoided. For example the top of this document’s .rst file is:

.. _doc_guidelines:

Documentation Guidelines for the Zephyr Project
###

Other .rst documents can link to this document using the :ref:`doc_guidelines` tag and it will show
up as Documentation Guidelines. This type of internal cross reference works across multiple files, and the
link text is obtained from the document source so if the title changes, the link text will update as well.

You can also define links to any URL and then reference it in your document. For example, with this
label definition in the document:

.. _Zephyr Wikipedia Page:
https://en.wikipedia.org/wiki/Zephyr_(operating_system)

you can reference it with:

Read the `Zephyr Wikipedia Page`_ for more information about the
project.

`any` links

Within the Zephyr project, we’ve defined the default role to be “any”, meaning if you just write a phrase
in back-ticks, e.g., `doc_guidelines`, Sphinx will search through all domains looking for something
called doc_guidelines to link to. In this case it will find the label at the top of this document, and link to
Documentation Guidelines. This can be useful for linking to doxygen-generated links for function names
and such, but will cause a warning such as:

WARNING: 'any' reference target not found: doc_giudelines

if you misspelled `doc_guidelines` as `doc_giudelines`.

Non-ASCII Characters

You can insert non-ASCII characters such as a Trademark symbol (™), by using the notation |trade|.
Available replacement names are defined in an include file used during the Sphinx processing of the
reST files. The names of these replacement characters are the same as used in HTML entities used to
insert characters in HTML, e.g., ™ and are defined in the file sphinx_build/substitutions.txt
as listed here:

44 Chapter 3. Contribution Guidelines

Zephyr Project Documentation, Release 2.7.0-rc2

.. |br| raw:: html .. force a line break in HTML output (blank lines␣
→˓needed here)

.. |p| raw:: html .. force a blank line in HTML output (blank lines needed␣
→˓here)

<p></p>

.. These are replacement strings for non-ASCII characters used within the project
using the same name as the html entity names (e.g., ©) for that character

.. |copy| unicode:: U+000A9 .. COPYRIGHT SIGN
:ltrim:

.. |trade| unicode:: U+02122 .. TRADEMARK SIGN
:ltrim:

.. |reg| unicode:: U+000AE .. REGISTERED TRADEMARK SIGN
:ltrim:

.. |deg| unicode:: U+000B0 .. DEGREE SIGN
:ltrim:

.. |plusminus| unicode:: U+000B1 .. PLUS-MINUS SIGN
:rtrim:

.. |micro| unicode:: U+000B5 .. MICRO SIGN
:rtrim:

.. |sup2| unicode:: U+00B2 .. SUPERSCRIPT TWO
:ltrim:

We’ve kept the substitutions list small but others can be added as needed by submitting a change to the
substitutions.txt file.

Code and Command Examples

Use the reST code-block directive to create a highlighted block of fixed-width text, typically used for
showing formatted code or console commands and output. Smart syntax highlighting is also supported
(using the Pygments package). You can also directly specify the highlighting language. For example:

.. code-block:: c

struct z_object {
char *name;
uint8_t perms[CONFIG_MAX_THREAD_BYTES];
uint8_t type;
uint8_t flags;
uint32_t data;

} __packed;

Note the blank line between the code-block directive and the first line of the code-block body, and the
body content is indented three spaces (to the first non-white space of the directive name).

This would be rendered as:

struct z_object {
char *name;
uint8_t perms[CONFIG_MAX_THREAD_BYTES];
uint8_t type;
uint8_t flags;

(continues on next page)

3.9. Other Guidelines 45

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

uint32_t data;
} __packed;

You can specify other languages for the code-block directive, including c, python, and rst, and also
console, bash, or shell. If you want no syntax highlighting, use the language none, for example:

.. code-block:: none

This would be a block of text styled with a background
and box, but with no syntax highlighting.

Would display as:

This would be a block of text styled with a background
and box, but with no syntax highlighting.

There’s a shorthand for writing code blocks too: end the introductory paragraph with a double colon
(::) and indent the code block content by three spaces. On output, only one colon will be shown. The
highlighting package makes a best guess at the type of content in the block and highlighting purposes.

Images

Images are included in documentation by using an image directive:

.. image:: ../../../../images/doc-gen-flow.png
:align: center
:alt: alt text for the image

or if you’d like to add an image caption, use:

.. figure:: ../../../../images/doc-gen-flow.png
:alt: image description

Caption for the figure

The file name specified is relative to the document source file, and we recommend putting images into an
images folder where the document source is found. The usual image formats handled by a web browser
are supported: JPEG, PNG, GIF, and SVG. Keep the image size only as large as needed, generally at least
500 px wide but no more than 1000 px, and no more than 250 KB unless a particularly large image is
needed for clarity.

Tabs, spaces, and indenting

Indenting is significant in reST file content, and using spaces is preferred. Extra indenting can (uninten-
tionally) change the way content is rendered too. For lists and directives, indent the content text to the
first non-white space in the preceding line. For example:

* List item that spans multiple lines of text
showing where to indent the continuation line.

1. And for numbered list items, the continuation
line should align with the text of the line above.

.. code-block::

(continues on next page)

46 Chapter 3. Contribution Guidelines

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

The text within a directive block should align with the
first character of the directive name.

Keep the line length for documentation less than 80 characters to make it easier for reviewing in GitHub.
Long lines because of URL references are an allowed exception.

zephyr-app-commands Directive

This is a Zephyr directive for generating consistent documentation of the shell commands
needed to manage (build, flash, etc.) an application.

For example, to generate commands to build samples/hello_world for qemu_x86 use:

.. zephyr-app-commands::
:zephyr-app: samples/hello_world
:board: qemu_x86
:goals: build

Directive options:

:tool: which tool to use. Valid options are currently ‘cmake’, ‘west’ and ‘all’. The default is
‘west’.

:app: path to the application to build.

:zephyr-app: path to the application to build, this is an app present in the upstream zephyr
repository. Mutually exclusive with :app:.

:cd-into: if set, build instructions are given from within the :app: folder, instead of outside
of it.

:generator: which build system to generate. Valid options are currently ‘ninja’ and ‘make’.
The default is ‘ninja’. This option is not case sensitive.

:host-os: which host OS the instructions are for. Valid options are ‘unix’, ‘win’ and ‘all’. The
default is ‘all’.

:board: if set, the application build will target the given board.

:shield: if set, the application build will target the given shield.

:conf: if set, the application build will use the given configuration file. If multiple conf files
are provided, enclose the space-separated list of files with quotes, e.g., “a.conf b.conf”.

:gen-args: if set, additional arguments to the CMake invocation

:build-args: if set, additional arguments to the build invocation

:build-dir: if set, the application build directory will APPEND this (relative, Unix-separated)
path to the standard build directory. This is mostly useful for distinguishing builds for
one application within a single page.

:goals: a whitespace-separated list of what to do with the app (in ‘build’, ‘flash’, ‘debug’,
‘debugserver’, ‘run’). Commands to accomplish these tasks will be generated in the right
order.

:maybe-skip-config: if set, this indicates the reader may have already created a build di-
rectory and changed there, and will tweak the text to note that doing so again is not
necessary.

:compact: if set, the generated output is a single code block with no additional comment
lines

For example, the .. zephyr-app-commands listed above would render like this in the generated HTML
output:

3.9. Other Guidelines 47

Zephyr Project Documentation, Release 2.7.0-rc2

From the root of the zephyr repository
west build -b qemu_x86 samples/hello_world

Alternative Tabbed Content

As introduced in the Getting Started Guide, you can provide alternative content to the reader via a tabbed
interface. When the reader clicks on a tab, the content for that tab is displayed, for example:

.. tabs::

.. tab:: Apples

Apples are green, or sometimes red.

.. tab:: Pears

Pears are green.

.. tab:: Oranges

Oranges are orange.

will display as:

Apples

Apples are green, or sometimes red.

Pears

Pears are green.

Oranges

Oranges are orange.

Tabs can also be grouped, so that changing the current tab in one area changes all tabs with the same
name throughout the page. For example:

Linux

Linux Line 1

macOS

macOS Line 1

Windows

Windows Line 1

Linux

Linux Line 2

macOS

macOS Line 2

Windows

Windows Line 2

In this latter case, we’re using .. group-tab:: instead of simply .. tab::. Under the hood, we’re
using the sphinx-tabs extension that’s included in the Zephyr setup. Within a tab, you can have most any
content other than a heading (code-blocks, ordered and unordered lists, pictures, paragraphs, and such).
You can read more about sphinx-tabs from the link above.

48 Chapter 3. Contribution Guidelines

https://github.com/djungelorm/sphinx-tabs

Zephyr Project Documentation, Release 2.7.0-rc2

Instruction Steps

Also introduced in the Getting Started Guide is a style that makes it easy to create tutorial guides
with clearly identified steps. Add the .. rst-class:: numbered-step directive immediately before
a second-level heading (by project convention, a heading underlined with asterisks ******, and it will
be displayed as a numbered step, sequentially numbered within the document. For example:

.. rst-class:: numbered-step

Put your right hand in

Put your right hand in

See the doc/getting_started/index.rst source file and compare with the Getting Started Guide to see a full
example. As implemented, only one set of numbered steps is intended per document.

For instructions on building the documentation, see Documentation Generation.

3.10 Contribution Workflow

One general practice we encourage, is to make small, controlled changes. This practice simplifies review,
makes merging and rebasing easier, and keeps the change history clear and clean.

When contributing to the Zephyr Project, it is also important you provide as much information as you
can about your change, update appropriate documentation, and test your changes thoroughly before
submitting.

The general GitHub workflow used by Zephyr developers uses a combination of command line Git com-
mands and browser interaction with GitHub. As it is with Git, there are multiple ways of getting a task
done. We’ll describe a typical workflow here:

1. Create a Fork of Zephyr to your personal account on GitHub. (Click on the fork button in the top
right corner of the Zephyr project repo page in GitHub.)

2. On your development computer, change into the zephyr folder that was created when you obtained
the code:

cd zephyrproject/zephyr

Rename the default remote pointing to the upstream repository from origin to upstream:

git remote rename origin upstream

Let Git know about the fork you just created, naming it origin:

git remote add origin https://github.com/<your github id>/zephyr

and verify the remote repos:

git remote -v

The output should look similar to:

origin https://github.com/<your github id>/zephyr (fetch)
origin https://github.com/<your github id>/zephyr (push)
upstream https://github.com/zephyrproject-rtos/zephyr (fetch)
upstream https://github.com/zephyrproject-rtos/zephyr (push)

3.10. Contribution Workflow 49

https://github.com/zephyrproject-rtos/zephyr/raw/main/doc/getting_started/index.rst
https://github.com/zephyrproject-rtos/zephyr#fork-destination-box
https://github.com/zephyrproject-rtos/zephyr

Zephyr Project Documentation, Release 2.7.0-rc2

3. Create a topic branch (off of main) for your work (if you’re addressing an issue, we suggest includ-
ing the issue number in the branch name):

git checkout main
git checkout -b fix_comment_typo

Some Zephyr subsystems do development work on a separate branch from main so you may need
to indicate this in your checkout:

git checkout -b fix_out_of_date_patch origin/net

4. Make changes, test locally, change, test, test again, . . . (Check out the prior chapter on twister as
well).

5. When things look good, start the pull request process by adding your changed files:

git add [file(s) that changed, add -p if you want to be more specific]

You can see files that are not yet staged using:

git status

6. Verify changes to be committed look as you expected:

git diff --cached

7. Commit your changes to your local repo:

git commit -s

The -s option automatically adds your Signed-off-by: to your commit message. Your commit
will be rejected without this line that indicates your agreement with the DCO. See the Commit
Guidelines section for specific guidelines for writing your commit messages.

8. Push your topic branch with your changes to your fork in your personal GitHub account:

git push origin fix_comment_typo

9. In your web browser, go to your forked repo and click on the Compare & pull request button for
the branch you just worked on and you want to open a pull request with.

10. Review the pull request changes, and verify that you are opening a pull request for the appropriate
branch. The title and message from your commit message should appear as well.

11. If you’re working on a subsystem branch that’s not main, you may need to change the intended
branch for the pull request here, for example, by changing the base branch from main to net.

12. GitHub will assign one or more suggested reviewers (based on the CODEOWNERS file in the repo).
If you are a project member, you can select additional reviewers now too.

13. Click on the submit button and your pull request is sent and awaits review. Email will be sent
as review comments are made, or you can check on your pull request at https://github.com/
zephyrproject-rtos/zephyr/pulls.

14. While you’re waiting for your pull request to be accepted and merged, you can create another
branch to work on another issue. (Be sure to make your new branch off of main and not the
previous branch.):

git checkout main
git checkout -b fix_another_issue

and use the same process described above to work on this new topic branch.

50 Chapter 3. Contribution Guidelines

https://github.com/zephyrproject-rtos/zephyr/pulls
https://github.com/zephyrproject-rtos/zephyr/pulls

Zephyr Project Documentation, Release 2.7.0-rc2

15. If reviewers do request changes to your patch, you can interactively rebase commit(s) to fix review
issues. In your development repo:

git fetch --all
git rebase --ignore-whitespace upstream/main

The --ignore-whitespace option stops git apply (called by rebase) from changing any whites-
pace. Continuing:

git rebase -i <offending-commit-id>^

In the interactive rebase editor, replace pick with edit to select a specific commit (if there’s more
than one in your pull request), or remove the line to delete a commit entirely. Then edit files to fix
the issues in the review.

As before, inspect and test your changes. When ready, continue the patch submission:

git add [file(s)]
git rebase --continue

Update commit comment if needed, and continue:

git push --force origin fix_comment_typo

By force pushing your update, your original pull request will be updated with your changes so you
won’t need to resubmit the pull request.

Note: While amending commits and force pushing is a common review model outside GitHub,
and the one recommended by Zephyr, it’s not the main model supported by GitHub. Forced pushes
can cause unexpected behavior, such as not being able to use “View Changes” buttons except for
the last one - GitHub complains it can’t find older commits. You’re also not always able to compare
the latest reviewed version with the latest submitted version. When rewriting history GitHub only
guarantees access to the latest version.

16. If the CI run fails, you will need to make changes to your code in order to fix the issues and amend
your commits by rebasing as described above. Additional information about the CI system can be
found in Continuous Integration.

3.11 Commit Guidelines

Changes are submitted as Git commits. Each commit message must contain:

• A short and descriptive subject line that is less than 72 characters, followed by a blank line. The
subject line must include a prefix that identifies the subsystem being changed, followed by a colon,
and a short title, for example: doc: update wiki references to new site. (If you’re updating
an existing file, you can use git log <filename> to see what developers used as the prefix for
previous patches of this file.)

• A change description with your logic or reasoning for the changes, followed by a blank line.

• A Signed-off-by line, Signed-off-by: <name> <email> typically added automatically by using
git commit -s

• If the change addresses an issue, include a line of the form:

Fixes #<issue number>.

All changes and topics sent to GitHub must be well-formed, as described above.

3.11. Commit Guidelines 51

Zephyr Project Documentation, Release 2.7.0-rc2

3.11.1 Commit Message Body

When editing the commit message, please briefly explain what your change does and why it’s needed. A
change summary of "Fixes stuff" will be rejected.

Warning: An empty change summary body is not permitted. Even for trivial changes, please include
a summary body in the commit message.

The description body of the commit message must include:

• what the change does,

• why you chose that approach,

• what assumptions were made, and

• how you know it works – for example, which tests you ran.

For examples of accepted commit messages, you can refer to the Zephyr GitHub changelog.

3.11.2 Other Commit Expectations

• Commits must build cleanly when applied on top of each other, thus avoiding breaking bisectability.

• Commits must pass all CI checks (see Continuous Integration for more information)

• Each commit must address a single identifiable issue and must be logically self-contained. Unre-
lated changes should be submitted as separate commits.

• You may submit pull request RFCs (requests for comments) to send work proposals, progress snap-
shots of your work, or to get early feedback on features or changes that will affect multiple areas
in the code base.

• When major new functionality is added, tests for the new functionality MUST be added to the
automated test suite. All new APIs MUST be documented and tested and tests MUST cover at least
80% of the added functionality using the code coverage tool and reporting provided by the project.

3.11.3 Submitting Proposals

You can request a new feature or submit a proposal by submitting an issue to our GitHub Repository. If
you would like to implement a new feature, please submit an issue with a proposal (RFC) for your work
first, to be sure that we can use it. Please consider what kind of change it is:

• For a Major Feature, first open an issue and outline your proposal so that it can be discussed. This
will also allow us to better coordinate our efforts, prevent duplication of work, and help you to craft
the change so that it is successfully accepted into the project. Providing the following information
will increase the chances of your issue being dealt with quickly:

– Overview of the Proposal

– Motivation for or Use Case

– Design Details

– Alternatives

– Test Strategy

• Small Features can be crafted and directly submitted as a Pull Request.

52 Chapter 3. Contribution Guidelines

https://github.com/zephyrproject-rtos/zephyr/commits/main

Zephyr Project Documentation, Release 2.7.0-rc2

3.11.4 Identifying Contribution Origin

When adding a new file to the tree, it is important to detail the source of origin on the file, provide
attributions, and detail the intended usage. In cases where the file is an original to Zephyr, the commit
message should include the following (“Original” is the assumption if no Origin tag is present):

Origin: Original

In cases where the file is imported from an external project, the commit message shall contain details
regarding the original project, the location of the project, the SHA-id of the origin commit for the file
and the intended purpose.

For example, a copy of a locally maintained import:

Origin: Contiki OS
License: BSD 3-Clause
URL: http://www.contiki-os.org/
commit: 853207acfdc6549b10eb3e44504b1a75ae1ad63a
Purpose: Introduction of networking stack.

For example, a copy of an externally maintained import in a module repository:

Origin: Tiny Crypt
License: BSD 3-Clause
URL: https://github.com/01org/tinycrypt
commit: 08ded7f21529c39e5133688ffb93a9d0c94e5c6e
Purpose: Introduction of TinyCrypt

3.12 Continuous Integration (CI)

The Zephyr Project operates a Continuous Integration (CI) system that runs on every Pull Request (PR)
in order to verify several aspects of the PR:

• Git commit formatting

• Coding Style

• Twister builds for multiple architectures and boards

• Documentation build to verify any doc changes

CI is run both on the buildkite cloud service and Github Actions and it uses the same tools described
in the Contribution Tools section. The CI results must be green indicating “All checks have passed” before
the Pull Request can be merged. CI is run when the PR is created, and again every time the PR is modified
with a commit.

The current status of the CI run can always be found at the bottom of the GitHub PR page, below the
review status. Depending on the success or failure of the run you will see:

• “All checks have passed”

• “All checks have failed”

In case of failure you can click on the “Details” link presented below the failure message in order to
navigate to buildkite or Github Actions and inspect the results. Once you click on the link you will be
taken to the buildkite summary results page where a table with all the different builds will be shown.
To see what build or test failed click on the row that contains the failed (i.e. non-green) build and then
click on the “Tests” tab to see the console output messages indicating the failure.

The builds@lists.zephyrproject.org mailing list archives the CI (buildkite) nightly build results.

3.12. Continuous Integration (CI) 53

https://lists.zephyrproject.org/g/builds

Zephyr Project Documentation, Release 2.7.0-rc2

3.13 Contributions to External Modules

Follow the guidelines in the Modules (External projects) section for contributing new modules and submit-
ting changes to existing modules.

3.14 Contributing External Components

3.14.1 Contributing source code from external projects

In some cases it is desirable to leverage existing, external source code in order to avoid re-implementing
basic functionality or features that are readily available in other open source projects.

This section describes the circumstances under which external source code can be imported into Zephyr,
and the process that governs the inclusion.

There are three main factors that will be considered during the inclusion process in order to determine
whether it will be accepted. These will be described in the following sections.

Software License

Note: External source code licensed under the Apache-2.0 license is not subject to this section.

Integrating code into the Zephyr Project from other projects that use a license other than the Apache
2.0 license needs to be fully understood in context and approved by the Zephyr governing board, as
described in the Zephyr project charter. The board will automatically reject licenses that have not been
approved by the Open Source Initiative (OSI). See the Submission and review process section for more
details.

By carefully reviewing potential contributions and also enforcing a Developer Certification of Origin (DCO)
for contributed code, we ensure that the Zephyr community can develop products with the Zephyr Project
without concerns over patent or copyright issues.

Merit

Just like with any other regular contribution, one that contains external code needs to be evaluated for
merit. However, in the particular case of code that comes from an existing project, there are additional
questions that must be answered in order to accept the contribution. More specifically, the following will
be considered by the Technical Steering Committee and evaluated carefully before the external source
code is accepted into the project:

• Is this the most optimal way to introduce the functionality to the project? Both the cost of im-
plementing this internally and the one incurred in maintaining an externally developed codebase
need to be evaluated.

• Is the external project being actively maintained? This is particularly important for source code
that deals with security or cryptography.

• Have alternatives to the particular implementation proposed been considered? Are there other
open source project that implement the same functionality?

Mode of integration

There are two ways of integrating external source code into the Zephyr Project, and careful consideration
must be taken to choose the appropriate one for each particular case.

54 Chapter 3. Contribution Guidelines

https://www.zephyrproject.org/governance/
https://www.zephyrproject.org/wp-content/uploads/sites/38/2020/09/CLEAN-LF-Zephyr-Charter-20200624-effective-20200901.pdf
https://opensource.org/licenses/alphabetical

Zephyr Project Documentation, Release 2.7.0-rc2

Integration in the main tree The first way to integrate external source code into the project is to
simply import the source code files into the main zephyr repository. This automatically implies that the
imported source code becomes part of the “mainline” codebase, which in turn requires that:

• The code is formatted according to the Zephyr Coding Style

• The code adheres to the project’s Coding Guidelines

• The code is subject to the same checks and verification requirements as the rest of the code in the
main tree, including static analysis

• All files contain an SPDX tag if not already present

• An entry is added to the licensing page

This mode of integration can be applicable to both small and large external codebases, but it is typically
used more commonly with the former.

Integration as a module The second way of integrating external source code into the project is to
import the whole or parts of the third-party open source project into a separate repository, and then
include it under the form of a module. With this approach the code is considered as being developed
externally, and thus it is not automatically subject to the requirements of the previous section.

Ongoing maintenance

Regardless of the mode of integration, external source code that is integrated in Zephyr requires regular
ongoing maintenance. The submitter of the proposal to integrate external source code must therefore
commit to maintain the integration of such code for the foreseeable future. This may require adding an
entry in the MAINTAINERS.yaml as part of the process.

Submission and review process

Before external source code can be included in the project, it must be reviewed and accepted by the
Technical Steering Committee (TSC) and, in some cases, by the Zephyr governing board.

A request for external source code integration must be made by creating a new issue in the Zephyr
project issue tracking system on GitHub with details about the source code and how it integrates into the
project.

Follow the steps below to begin the submission process:

1. Make sure to read through the Contributing source code from external projects section in detail, so
that you are informed of the criteria used by the TSC and board in order to approve or reject a
request

2. Use the New External Source Code Issue to open an issue

3. Fill out all required sections, making sure you provide enough detail for the TSC to assess the merit
of the request. Optionally you can also create a Pull Request that demonstrates the integration of
the external source code and link to it from the issue

4. Wait for feedback from the TSC, respond to any additional questions added as GitHub issue com-
ments

If, after consideration by the TSC, the conclusion is that integrating external source code is the best
solution, and the external source code is licensed under the Apache-2.0 license, the submission process
is complete and the external source code can be integrated.

If, however, the external source code uses a license other than Apache-2.0, then these additional steps
must be followed:

1. The TSC chair will forward the link to the GitHub issue created during the early submission process
to the Zephyr governing board for further review

3.14. Contributing External Components 55

https://github.com/zephyrproject-rtos/zephyr/issues/new?assignees=&labels=RFC&template=ext-source.md&title=

Zephyr Project Documentation, Release 2.7.0-rc2

2. The Zephyr governing board has two weeks to review and ask questions:

• If there are no objections, the matter is closed. Approval can be accelerated by unanimous
approval of the board before the two weeks are up

• If a governing board member raises an objection that cannot be resolved via email, the board
will meet to discuss whether to override the TSC approval or identify other approaches that
can resolve the objections

3. On approval of the Zephyr TSC and governing board the submission process is complete

The flowchart below shows an overview of the process:

Want to contribute e...

Yes

No

License is OSI c...

RejectedTSC deliberates TSC approves?

License is...

Create GitHub issue

Cannot be contributed...
No

Yes

Yes

No

Board deliberates Board approves?

Approved

No

Yes

Viewer does not support full SVG 1.1

Fig. 1: Submission process

56 Chapter 3. Contribution Guidelines

Chapter 4

Development and Contribution Process

4.1 TSC Project Roles

4.1.1 Main Roles

TSC projects generally will involve Maintainers, Collaborators, and Contributors:

Maintainer: lead Collaborators on an area identified by the TSC (e.g. Architecture, code subsystems,
etc.). Maintainers shall also serve as the area’s representative on the TSC as needed. Maintainers may
become voting members of the TSC under the guidelines stated in the project Charter.

Collaborator: A highly involved Contributor in one or more areas. May become a Maintainer with
approval of existing TSC voting members.

Contributor: anyone in the community that contributes code or documentation to the project. Con-
tributors may become Collaborators by approval of the existing Collaborators and Maintainers of the
particular code base areas or subsystems.

Contributor

A Contributor is a developer who wishes to contribute to the project, at any level. Contributors who show
dedication and skill are rewarded with additional rights and responsibilities.

Contributors are granted the following rights and responsibilities:

• Right to contribute code, documentation, translations, artwork, etc.

• Right to report defects (bugs) and suggestions for enhancement.

• Right to participate in the process of reviewing contributions by others.

• Right to initiate and participate in discussions in any communication methods.

• Right to approach any member of the community with matters they believe to be important.

• Right to participate in the feature development process.

• Responsibility to abide by decisions, once made. They are welcome to provide new, relevant infor-
mation to reopen decisions.

• Responsibility for issues and bugs introduced by one’s own contributions.

• Responsibility to respect the rules of the community.

• Responsibility to provide constructive advice whenever participating in discussions and in the re-
view of contributions.

57

Zephyr Project Documentation, Release 2.7.0-rc2

• Responsibility to follow the project’s code of conduct (https://github.com/zephyrproject-rtos/
zephyr/blob/main/CODE_OF_CONDUCT.md)

Collaborator

A Collaborator is a Contributor who is also responsible for the maintenance of Zephyr source code. Their
opinions weigh more when decisions are made, in a fully meritocratic fashion.

Collaborators have the following rights and responsibilities, in addition to those listed for Contributors:

• Right to set goals for the short and medium terms for the project being maintained, alongside the
Maintainer.

• Responsibility to participate in the feature development process.

• Responsibility to review relevant code changes within reasonable time.

• Responsibility to ensure the quality of the code to expected levels.

• Responsibility to participate in community discussions.

• Responsibility to mentor new contributors when appropriate

• Responsibility to participate in the quality verification and release process, when those happen.

Maintainer

A Maintainer is a Collaborator who is also responsible for knowing, directing and anticipating the needs
of a given zephyr source code area.

Maintainers have the following rights and responsibilities, in addition to those listed for Contributors
and Collaborators:

• Right to set the overall architecture of the relevant subsystems or areas of involvement.

• Right to make decisions in the relevant subsystems or areas of involvement, in conjunction with
the collaborators.

• Responsibility to convey the direction of the relevant subsystem or areas to the TSC

• Responsibility to ensure all contributions of the project have been reviewed within reasonable time.

• Responsibility to enforce the code of conduct.

4.1.2 Role Retirement

• Individuals elected to the following Project roles, including, Maintainer, Release Engineering Team
member, Release Manager, but are no longer engaged in the project as described by the rights and
responsibilities of that role, may be requested by the TSC to retire from the role they are elected.

• Such a request needs to be raised as a motion in the TSC and be approved by the TSC voting
members. By approval of the TSC the individual is considered to be retired from the role they have
been elected.

• The above applies to elected TSC Project roles that may be defined in addition.

4.1.3 Teams and Supporting Activities

58 Chapter 4. Development and Contribution Process

https://github.com/zephyrproject-rtos/zephyr/blob/main/CODE_OF_CONDUCT.md
https://github.com/zephyrproject-rtos/zephyr/blob/main/CODE_OF_CONDUCT.md

Zephyr Project Documentation, Release 2.7.0-rc2

Assignee

An Assignee is one of the maintainers of a subsystem or code being changed. Assignees are set either
automatically based on the code being changed or set by the other Maintainers, the Release Engineering
team can set an assignee when the latter is not possible.

• Right to dismiss stale reviews and seek reviews from additional maintainers, developers and con-
tributors

• Right to block pull requests from being merged

• Responsibility to re-assign a pull request if they are the original submitter of the code

• Responsibility to drive the pull request to a mergeable state

• Solicit approvals from maintainers of the subsystems affected

• Responsibility to drive the escalation process

Release Engineering Team

A team of active Maintainers involved in multiple areas.

• The members of the Release Engineering team are expected to fill the Release Manager role based
on a defined cadence and selection process.

• The cadence and selection process are defined by the Release Engineering team and are approved
by the TSC.

• The team reports directly into the TSC.

Release Engineering team has the following rights and responsibilities:

• Right to merge code changes to the zephyr tree following the project rules.

• Right to revert any changes that have broken the code base

• Right to close any stale changes after <N> months of no activity

• Responsibility to take directions from the TSC and follow them.

• Responsibility to coordinate code merges with maintainers.

• Responsibility to merge all contributions regardless of their origin and area if they have been
approved by the respective maintainers and follow the merge criteria of a change.

• Responsibility to keep the Zephyr code base in a working and passing state (as per CI)

Joining the Release Engineering team

• Maintainers highly involved in the project may be nominated by a TSC voting member to join the
Release Engineering team. Nominees may become members of the team by approval of the existing
TSC voting members.

• To ensure a functional Release Engineering team the TSC shall periodically review the team’s fol-
lowed processes, the appropriate size, and the membership composition (ensure, for example, that
team members are geographically distributed across multiple locations and time-zones).

Release Manager

A Maintainer responsible for driving a specific release to completion following the milestones and the
roadmap of the project for this specific release.

• TSC has to approve a release manager.

A Release Manager is a member of the Release Engineering team and has the rights and responsibilities
of that team in addition to the following:

4.1. TSC Project Roles 59

Zephyr Project Documentation, Release 2.7.0-rc2

• Right to manage and coordinate all code merges after the code freeze milestone (M3, see program
management overview.)

• Responsibility to drive and coordinate the triaging process for the release

• Responsibility to create the release notes of the release

• Responsibility to notify all stakeholders of the project, including the community at large about the
status of the release in a timely manner.

• Responsibility to coordinate with QA and validation and verify changes either directly or through
QA before major changes and major milestones.

Roles / Permissions

Table 1: Project Roles vs Github Permissions
Admin Merge

Rights
Member Owner Collabo-

rator
Main Roles Contributor x

Collaborator x
Maintainer x

Supportive Roles QA/Validation x x
DevOps x
System Admin x x
Release Engineering x x x

4.1.4 MAINTAINERS File

Generic guidelines for deciding and filling in the Maintainers’ list

• The MAINTAINERS file shall replace the CODEOWNERS file and will be used for both setting
assignees and reviewers.

• We should keep the granularity of code maintainership at a manageable level

• We should be looking for maintainers for areas of code that are orphaned (i.e. without an explicit
maintainer)

– Un-maintained areas should be indicated clearly in the MAINTAINERS file

• All submitted pull-requests should have an assignee

• We Introduce an area/subsystem hierarchy to address the above point

– Parent-area maintainer should be acting as default substitute/fallback assignee for un-
maintained sub-areas

– Area maintainer gets precedence over parent-area maintainer

• Pull-requests may be re-assigned if this is needed or more appropriate

– Re-assigned by original assignee (see “Assignee” slide)

• In general, updates to the MAINTAINERS file should be in a standalone commit alongside other
changes introducing new files and directories to the tree.

• Major changes to the file, including the addition of new areas with new maintainers should come
in as standalone pull-requests and require TSC review.

• If additional review by the TSC is required, the maintainers of the file should send the requested
changes to the TSC and give members of the TSC two (2) days to object to any of the changes to
maintainership of areas or the addition of new maintainers or areas.

• Path, collaborator and name changes do not require a review by the TSC.

60 Chapter 4. Development and Contribution Process

https://wiki.zephyrproject.org/Program-Management
https://wiki.zephyrproject.org/Program-Management

Zephyr Project Documentation, Release 2.7.0-rc2

• Addition of new areas without a maintainer do not require review by the TSC.

• The MAINTAINERS file itself shall have a maintainer

• Architectures, core components, sub-systems, samples, tests

– Each area shall have an explicit maintainer

• Boards (incl relevant samples, tests), SoCs (incl DTS) * May have a maintainer, shall have a higher-
level platform maintainer

• Drivers

– Shall have a driver-area (and API) maintainer

– Could have individual driver implementation maintainers but preferably collabora-
tor/contributors

– In the above case, platform-specific PRs may be re-assigned to respective collabora-
tor/contributor of driver implementation

4.1.5 Release Activity

Merge Criteria

• All continuous integration checks have passed

– Codeowners

– Device Tree

– Documentation

4.1. TSC Project Roles 61

Zephyr Project Documentation, Release 2.7.0-rc2

– Gitlint

– Identity/Emails

– Kconfig

– License

– Checkpatch (Coding Style)

– Pylint

– Integration Tests (Via twister) on emulation/simulation platforms

– Simulated Bluetooth Tests

• Planned

– Footprint

– Code coverage

– Coding Guidelines

– Static Analysis (Coverity)

– Documentation coverage (APIs)

• PR template with checklist

• Minimal of 2 approvals

– A collaborator from the same subsystem.

– Alternately another maintainer of another subsystem

– Approval by the assignee

• A minimum review period of 2 days, 4 hours for trivial changes (see Give reviewers time to review
before code merge). Hotfixes can be merged at any time after CI passes.

• All required checks are passing

Escalation Process

• Contributors may object to change requests or decisions made by Maintainers.

• Process

– Resolve in the PR among assignee, maintainers and reviewer

* Assignee to act as moderator if applicable

– Optionally resolve in the dev review meeting with more Maintainers and project stakeholders

* The involved parties and the Assignee to be present when the (escalated) issue is dis-
cussed

– TSC: Assignees can escalate to the TSC voting members and get a binding resolution in the
TSC.

– Assignee to ensure the resolution of the escalation is reflected in the PR review.

4.2 Release Process

The Zephyr project releases on a time-based cycle, rather than a feature-driven one. Zephyr releases
represent an aggregation of the work of many contributors, companies, and individuals from the com-
munity.

62 Chapter 4. Development and Contribution Process

Zephyr Project Documentation, Release 2.7.0-rc2

A time-based release process enables the Zephyr project to provide users with a balance of the latest
technologies and features and excellent overall quality. A roughly 4-month release cycle allows the
project to coordinate development of the features that have actually been implemented, allowing the
project to maintain the quality of the overall release without delays because of one or two features that
are not ready yet.

The Zephyr release model is loosely based on the Linux kernel model:

• Release tagging procedure:

– linear mode on main branch,

– release branches for maintenance after release tagging.

• Each release period will consist of a merge window period followed by one or more release candi-
dates on which only stabilization changes, bug fixes, and documentation can be merged in.

– Merge window mode: all changes are accepted (subject to approval from the respective main-
tainers.)

– When the merge window is closed, the release owner lays a vN-rc1 tag and the tree enters the
release candidate phase

– CI sees the tag, builds and runs tests; QA analyses the report from the build and test run and
gives an ACK/NAK to the build

– The release owner, with QA and any other needed input, determines if the release candidate
is a go for release

– If it is a go for a release, the release owner lays a tag release vN at the same point

• Development on new features continues in topic branches. Once features are ready, they are sub-
mitted to mainline during the merge window period and after the release is tagged.

Fig. 1: Release Cycle

4.2.1 Merge Window

A relatively straightforward discipline is followed with regard to the merging of patches for each release.
At the beginning of each development cycle, the “merge window” is said to be open. At that time, code
which is deemed to be sufficiently stable (and which is accepted by the development community) is
merged into the mainline tree. The bulk of changes for a new development cycle (and all of the major
changes) will be merged during this time.

The merge window lasts for approximately two months. At the end of this time, the release owner will
declare that the window is closed and release the first of the release candidates. For the codebase release
which is destined to be 0.4.0, for example, the release which happens at the end of the merge window
will be called 0.4.0-rc1. The -rc1 release is the signal that the time to merge new features has passed,
and that the time to stabilize the next release of the code base has begun.

Over the next weeks, only patches which fix problems should be submitted to the mainline. On occasion,
a more significant change will be allowed, but such occasions are rare and require a TSC approval
(Change Control Board). As a general rule, if you miss the merge window for a given feature, the best
thing to do is to wait for the next development cycle. (An occasional exception is made for drivers

4.2. Release Process 63

Zephyr Project Documentation, Release 2.7.0-rc2

for previously unsupported hardware; if they do not touch any other in-tree code, they cannot cause
regressions and should be safe to add at any time).

As fixes make their way into the mainline, the patch rate will slow over time. The mainline release
owner releases new -rc drops once or twice a week; a normal series will get up to somewhere between
-rc4 and -rc6 before the code base is considered to be sufficiently stable and the quality metrics have
been achieved at which point the final 0.4.x release is made.

At that point, the whole process starts over again.

Here is the description of the various moderation levels:

• Low:

– Major New Features

– Bug Fixes

– Refactoring

– Structure/Directory Changes

• Medium:

– Bug Fixes, all priorities

– Enhancements

– Minor “self-contained” New Features

• High:

– Bug Fixes: P1 and P2

– Documentation + Test Coverage

4.2.2 Release Quality Criteria

The current backlog of prioritized bugs shall be used as a quality metric to gate the final release. The
following counts shall be used:

Table 2: Bug Count Release Thresholds
High Medium Low
0 <20 <50

Note: The “low” bug count target of <50 will be a phased appoach starting with 150 for release 2.4.0,
100 for release 2.5.0, and 50 for release 2.6.0

4.2.3 Releases

The following syntax should be used for releases and tags in Git:

• Release [Major].[Minor].[Patch Level]

• Release Candidate [Major].[Minor].[Patch Level]-rc[RC Number]

• Tagging:

– v[Major].[Minor].[Patch Level]-rc[RC Number]

– v[Major].[Minor].[Patch Level]

64 Chapter 4. Development and Contribution Process

Zephyr Project Documentation, Release 2.7.0-rc2

– v[Major].[Minor].99 - A tag applied to main branch to signify that work on
v[Major].[Minor+1] has started. For example, v1.7.99 will be tagged at the start of v1.8
process. The tag corresponds to VERSION_MAJOR/VERSION_MINOR/PATCHLEVEL macros
as defined for a work-in-progress main branch version. Presence of this tag allows generation
of sensible output for “git describe” on main branch, as typically used for automated builds
and CI tools.

Fig. 2: Zephyr Code and Releases

Long Term Support (LTS)

Long-term support releases are designed to be supported and maintained for an extended period and is
the recommended release for products and the auditable branch used for certification.

An LTS release is defined as:

• Product focused

• Extended Stabilisation period: Allow for more testing and bug fixing

• Stable APIs

• Quality Driven Process

• Long Term: Maintained for an extended period of time (at least 2.5 years) overlapping previous
LTS release for at least half a year.

Product Focused Zephyr LTS is the recommended release for product makers with an extended support
and maintenance which includes general stability and bug fixes, security fixes.

An LTS includes both mature and new features. API and feature maturity is documented and tracked.
The footprint and scope of mature and stable APIs expands as we move from one LTS to the next giving
users access to bleading edge features and new hardware while keeping a stable foundation that evolves
over time.

Extended Stabilisation Period Zephyr LTS development cycle differs from regular releases and has an
extended stabilization period. Feature freeze of regular releases happens 3-4 weeks before the scheduled
release date. The stabilisation period for LTS is extended by 3 weeks with the feature freeze occurring 6-
7 weeks before the anticipated release date. The time between code freeze and release date is extended
in this case.

4.2. Release Process 65

Zephyr Project Documentation, Release 2.7.0-rc2

Stable APIs Zephyr LTS provides a stable and long-lived foundation for developing products. To guar-
antee stability of the APIs and the implementation of such APIs it is required that any release software
that makes the core of the OS went through the Zephyr API lifecycle and stabilised over at least 2 re-
leases. This guarantees that we release many of the highlighted and core features with mature and
well-established implementations with stable APIs that are supported during the lifetime of the release
LTS.

• API Freeze (LTS - 2)

– All stable APIs need to be frozen 2 releases before an LTS. APIs can be extended with addi-
tional features, but the core implementation is not modified. This is valid for the following
subsystems for example:

* Device Drivers (i2c.h, spi.h). . .

* Kernel (k_*):

* OS services (logging,debugging, ..)

* DTS: API and bindings stability

* Kconfig

– New APIs for experimental features can be added at any time as long as they are standalone
and documented as experimental or unstable features/APIs.

• Feature Freeze (LTS - 1) - No new features or overhaul/restructuring of code covering major LTS
features.

– Kernel + Base OS

– Additional advertised LTS features

– Auxiliary features on top of and/or extending the base OS and advertised LTS features can be
added at any time and should be marked as experimental if applicable

Quality Driven Process The Zephyr project follows industry standards and processes with the goal
of providing a quality oriented releases. This is achieved by providing the following products to track
progress, integrity and quality of the software components provided by the project:

• Compliance with pubished coding guidelines, style guides and naming conventions and documen-
tation of deviations.

• Regular static analysis on the complete tree using available commercial and open-source tools and
documentation of deviations and false positives.

• Documented components and APIS

• Requirements Catalog

• Verification Plans

• Verification Reports

• Coverage Reports

• Requirements Traceability Matrix (RTM)

• SPDX License Reports

Each release is created with the above products to document the quality and the state of the software
when it was released.

Long Term Support and Maintenance A Zephyr LTS release is published every 2 years and is branched
and maintained independently from the main tree for at least 2.5 years after it was released. Support
and maintenance for an LTS release stops at least half a year after the following LTS release is published.

66 Chapter 4. Development and Contribution Process

Zephyr Project Documentation, Release 2.7.0-rc2

Fig. 3: Long Term Support Release

Changes and fixes flow in both directions. However, changes from main branch to an LTS branch will be
limited to fixes that apply to both branches and for existing features only.

All fixes for an LTS branch that apply to the mainline tree shall be submitted to mainline tree as well.

Auditable Code Base

An auditable code base is to be established from a defined subset of Zephyr OS features and will be
limited in scope. The LTS, development tree, and the auditable code bases shall be kept in sync after the
audit branch is created, but with a more rigorous process in place for adding new features into the audit
branch used for certification.

This process will be applied before new features move into the auditable code base.

The initial and subsequent certification targets will be decided by the Zephyr project governing board.

Processes to achieve selected certification will be determined by the Security and Safety Working Groups
and coordinated with the TSC.

4.2.4 Release Procedure

This section documents the Release manager responsibilities so that it serves as a knowledge repository
for Release managers.

Milestones

The following graphic shows the timeline of phases and milestones associated with each release:

Fig. 4: Release milestones

This shows how the phases and milestones of one release overlap with those of the next release:

4.2. Release Process 67

Zephyr Project Documentation, Release 2.7.0-rc2

Fig. 5: Release milestones with planning

Table 3: Milestone Description
Mile-
stone

Descrip-
tion

Definition

P0 Planning
Kickoff

Start Entering Requirements

P1 TSC Agrees on Major Features and Schedule
M0 Merge

Window
Open

All features, Sized, and AssignedMerge Window Is Opened

M1 M1
Check-
point

Major Features Ready for Code Reviews Test Plans Reviewed and Approved

M2 Feature
Merge
Window
Close

Feature Freeze Feature Development Complete (including Code Reviews and Unit
Tests Passing) P1 Stories Implemented Feature Merge Window Is Closed Test De-
velopment Complete Technical Documentation Created/Updated and Ready for Re-
view CCB Control Starts

M3 Code
Freeze

Code Freeze RC3 Tagged and Built

M4 Release TSC Reviews the Release Criteria Report and Approves Release Final RC Tagged
Make the Release

Release Checklist

Each release has a GitHub issue associated with it that contains the full checklist. After a release is
complete, a checklist for the next release is created.

Tagging

The final release and each release candidate shall be tagged using the following steps:

Note: Tagging needs to be done via explicit git commands and not via GitHub’s release interface. The
GitHub release interface does not generate annotated tags (it generates ‘lightweight’ tags regardless of
release or pre-release). You should also upload your gpg public key to your GitHub account, since the
instructions below involve creating signed tags. However, if you do not have a gpg public key you can
opt to remove the -s option from the commands below.

Release Candidate

Note: This section uses tagging 1.11.0-rc1 as an example, replace with the appropriate release candidate

68 Chapter 4. Development and Contribution Process

Zephyr Project Documentation, Release 2.7.0-rc2

version.

1. Update the version variables in the VERSION file located in the root of the Git repository to match
the version for this release candidate. The EXTRAVERSION variable is used to identify the rc[RC
Number] value for this candidate:

EXTRAVERSION = rc1

2. Post a PR with the updated VERSION file using release: Zephyr 1.11.0-rc1 as the commit
subject. Merge the PR after successful CI.

3. Tag and push the version, using an annotated tag:

$ git pull
$ git tag -s -m "Zephyr 1.11.0-rc1" v1.11.0-rc1
$ git push git@github.com:zephyrproject-rtos/zephyr.git v1.11.0-rc1

4. Once the tag is pushed, a github action will create a draft release in Github with a shortlog since
the last tag. The action will also create a SPDX manifest of the Zephyr tree and will add the file as
an asset in the release.

Go to the draft release that was created and edit as needed. If this step fails for a reason, it can be
done manually following the steps below:

1. Create a shortlog of changes between the previous release (use rc1..rc2 between release can-
didates):

$ git shortlog v1.10.0..v1.11.0-rc1

2. Find the new tag at the top of the releases page and edit the release with the Edit tag button
with the following:

• Name it Zephyr 1.11.0-rc1

• Copy the shortlog into the release notes textbox (don’t forget to quote it properly so it
shows as unformatted text in Markdown)

• Check the “This is a pre-release” checkbox

5. Send an email to the mailing lists (announce and devel) with a link to the release

Final Release

Note: This section uses tagging 1.11.0 as an example, replace with the appropriate final release version.

When all final release criteria has been met and the final release notes have been approved and merged
into the repository, the final release version will be set and repository tagged using the following proce-
dure:

1. Update the version variables in the VERSION file located in the root of the Git repository. Set
EXTRAVERSION variable to an empty string to indicate final release:

EXTRAVERSION =

2. Post a PR with the updated VERSION file using release: Zephyr 1.11.0 as the commit subject.
Merge the PR after successful CI.

3. Tag and push the version, using two annotated tags:

$ git pull
$ git tag -s -m "Zephyr 1.11.0" v1.11.0
$ git push git@github.com:zephyrproject-rtos/zephyr.git v1.11.0

(continues on next page)

4.2. Release Process 69

https://github.com/zephyrproject-rtos/zephyr/blob/main/VERSION
https://github.com/zephyrproject-rtos/zephyr/blob/main/VERSION
https://github.com/zephyrproject-rtos/zephyr/blob/main/VERSION
https://github.com/zephyrproject-rtos/zephyr/blob/main/VERSION

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

This is the tag that will represent the release on GitHub, so that
the file you can download is named ``zephyr-v1.11.0.zip`` and not
just ``v1.11.0.zip``
$ git tag -s -m "Zephyr 1.11.0" zephyr-v1.11.0
$ git push git@github.com:zephyrproject-rtos/zephyr.git zephyr-v1.11.0

4. Find the new zephyr-v1.11.0 tag at the top of the releases page and edit the release with the Edit
tag button with the following:

• Name it Zephyr 1.11.0

• Copy the full content of docs/releases/release-notes-1.11.rst into the release notes
textbox

5. Send an email to the mailing lists (announce and devel) with a link to the release

Listing all closed GitHub issues

The release notes for a final release contain the list of GitHub issues that have been closed during the
development process of that release.

In order to obtain the list of issues closed during the release development cycle you can do the following:

1. Look for the last release before the current one and find the day it was tagged:

$ git show -s --format=%ci zephyr-v1.10.0
tag zephyr-v1.10.0
Tagger: Kumar Gala <kumar.gala@linaro.org>

Zephyr 1.10.0
2017-12-08 13:32:22 -0600

2. Use available release tools to list all the issues that have been closed between that date and the day
of the release.

4.3 Feature Tracking

For feature tracking we use Github labels to classify new features and enhancements. The following is
the description of each category:

Enhancement Changes to existing features that are not considered a bug and would not block a release.
This is an incremental enhancement to a feature that already exists in Zephyr.

Feature request A request for the implementation or inclusion of a new unit of functionality that is not
part of any release plans yet, that has not been vetted, and needs further discussion and details.

Feature A committed and planned unit of functionality with a detailed design and implementation pro-
posal and an owner. Features must go through an RFC process and must be vetted and discussed
in the TSC before a target milestone is set.

Hardware Support A request or plan to port an existing feature or enhancement to a particular hard-
ware platform. This ranges from porting Zephyr itself to a new architecture, SoC or board to adding
an implementation of a peripheral driver API for an existing hardware platform.

Meta A label to group other GitHub issues that are part of a single feature or unit of work.

The following workflow should be used to process features:.

70 Chapter 4. Development and Contribution Process

Zephyr Project Documentation, Release 2.7.0-rc2

This is the formal way for asking for a new feature in Zephyr and indicating its importance to the project.
Often, the requester may have a readiness and willingness to drive implementation of the feature in an
upcoming release, and should assign the request to themselves. If not though, an owner will be assigned
after evaluation by the TSC. A feature request can also have a companion RFC with more details on the
feature and a proposed design or implementation.

• Label new features requests as feature-request

• The TSC discusses new feature-request items regularly and triages them. Items are examined
for similarity with existing features, how they fit with the project goals and other timeline consid-
erations. The priority is determined as follows:

– High = Next milestone

– Medium = As soon as possible

– Low = Best effort

• After the initial discussion and triaging, the label is moved from feature-request to feature with
the target milestone and an assignee.

All items marked as feature-request are non-binding and those without an assignee are open for grabs,
meaning that they can be picked up and implemented by any project member or the community. You
should contact an assigned owner if you’d like to discuss or contribute to that feature’s implementation

4.3.1 Proposals and RFCs

Many changes, including bug fixes and documentation improvements can be implemented and reviewed
via the normal GitHub pull request workflow.

Many changes however are “substantial” and need to go through a design process and produce a con-
sensus among the project stakeholders.

The “RFC” (request for comments) process is intended to provide a consistent and controlled path for
new features to enter the project.

Contributors and project stakeholders should consider using this process if they intend to make “substan-
tial” changes to Zephyr or its documentation. Some examples that would benefit from an RFC are:

• A new feature that creates new API surface area, and would require a feature flag if introduced.

• The modification of an existing stable API

• The removal of features that already shipped as part of Zephyr.

• The introduction of new idiomatic usage or conventions, even if they do not include code changes
to Zephyr itself.

The RFC process is a great opportunity to get more eyeballs on proposals coming from contributors
before it becomes a part of Zephyr. Quite often, even proposals that seem “obvious” can be significantly
improved once a wider group of interested people have a chance to weigh in.

The RFC process can also be helpful to encourage discussions about a proposed feature as it is being
designed, and incorporate important constraints into the design while it’s easier to change, before the
design has been fully implemented.

Some changes do not require an RFC:

• Rephrasing, reorganizing or refactoring

• Addition or removal of warnings

• Addition of new boards, SoCs or drivers to existing subsystems

• . . .

4.3. Feature Tracking 71

Zephyr Project Documentation, Release 2.7.0-rc2

The process in itself consists in creating a GitHub issue with the RFC label that documents the proposal
thoroughly. There is an RFC template included in the main Zephyr GitHub repository that serves as a
guideline to write a new RFC.

As with Pull Requests, RFCs might require discussion in the context of one of the Zephyr meetings in
order to move it forward in cases where there is either disagreement or not enough voiced opinions in
order to proceed. Make sure to either label it appropriately or include it in the corresponding GitHub
project in order for it to be examined during the next meeting.

4.3.2 Roadmap and Release Plans

Project roadmaps and release plans are both important tools for the project, but they have very different
purposes and should not be confused. A project roadmap communicates the high-level overview of a
project’s strategy, while a release plan is a tactical document designed to capture and track the features
planned for upcoming releases.

• The project roadmap communicates the why; a release plan details the what

• A release plan spans only a few months; a product roadmap might cover a year or more

Project Roadmap

The project roadmap should serve as a high-level, visual summary of the project’s strategic objectives
and expectations.

If built properly, the roadmap can be a valuable tool for several reasons. It can help the project present
its plan in a compelling way to existing and new stakeholders, to help recruit new members and it can be
a helpful resource the team and community can refer to throughout the project’s development, to ensure
they are still executing according to plan.

As such, the roadmap should contain only strategic-level details, major project themes, epics, and goals.

Release Plans

The release plan comes into play when the project roadmap’s high-level strategy is translated into an
actionable plan built on specific features, enhancements, and fixes that need to go into a specific release
or milestone.

The release plan communicates those features and enhancements slated for your project’ next release
(or the next few releases). So it acts as more of a project plan, breaking the big ideas down into smaller
projects the community and main stakeholders of the project can make progress on.

Items labeled as features are short or long term release items that shall have an assignee and a milestone
set.

4.4 Code Flow and Branches

4.4.1 Introduction

The zephyr Git repository has three types of branches:

main Which contains the latest state of development

topic-* Topic branches that are used for shared development of a new feature

vx.y-branch Branches which track maintenance releases based on a major release

72 Chapter 4. Development and Contribution Process

https://github.com/zephyrproject-rtos/zephyr/blob/main/.github/ISSUE_TEMPLATE/rfc-proposal.md
https://github.com/zephyrproject-rtos/zephyr/wiki/Zephyr-Committee-and-Working-Group-Meetings

Zephyr Project Documentation, Release 2.7.0-rc2

Development in topic branches before features go to mainline allows teams to work independently on
a subsystem or a feature, improves efficiency and turnaround time, and encourages collaboration and
streamlines communication between developers.

Changes submitted to a development topic branch can evolve and improve incrementally in a branch,
before they are submitted to the mainline tree for final integration.

By dedicating an isolated branch to complex features, it’s possible to initiate in-depth discussions around
new additions before integrating them into the official project.

4.4.2 Roles and Responsibilities

Development topic branch owners have the following responsibilities:

• Use the infrastructure and tools provided by the project (GitHub, Git)

• Review changes coming from team members and request review from branch owners when sub-
mitting changes.

• Keep the branch in sync with upstream and update on a regular basis.

• Push changes frequently to upstream using the following methods:

– GitHub pull requests: for example, when reviews have not been done in the local branch
(one-man branch).

– Merge requests: When a set of changes has been done in a local branch and has been reviewed
and tested in a topic branch.

4.5 Modifying Contributions made by other developers

4.5.1 Scenarios

Zephyr contributors and collaborators are encouraged to assist as reviewers in pull requests, so that
patches may be approved and merged to Zephyr’s main branch as part of the original pull requests. The
authors of the pull requests are responsible for amending their original commits following the review
process.

There are occasions, however, when a contributor might need to modify patches included in pull requests
that are submitted by other Zephyr contributors. For instance, this is the case when:

• a developer cherry-picks commits submitted by other contributors into their own pull requests in
order to:

– integrate useful content which is part of a stale pull request, or

– get content merged to the project’s main branch as part of a larger patch

• a developer pushes to a branch or pull request opened by another contributor in order to:

– assist in updating pull requests in order to get the patches merged to the project’s main branch

– drive stale pull requests to completion so they can be merged

4.5.2 Accepted policies

A developer who intends to cherry-pick and potentially modify patches sent by another contributor shall:

• clarify in their pull request the reason for cherry-picking the patches, instead of assisting in getting
the patches merged in their original pull request, and

• invite the original author of the patches to their pull request review.

4.5. Modifying Contributions made by other developers 73

Zephyr Project Documentation, Release 2.7.0-rc2

A developer who intends to force-push to a branch or pull request of another Zephyr contributor shall
clarify in the pull request the reason for pushing and for modifying the existing patches (e.g. stating that
it is done to drive the pull request review to completion, when the pull request author is not able to do
so).

Note: Developers should try to limit the above practice to pull requests identified as stale. Read about
how to identify pull requests as stale in development processes and tools

If the original patches are substantially modified, the developer can either:

• (preferably) reach out to the original author and request them to acknowledge that the modified
patches may be merged while having the original sign-off line and author identity, or

• submit the modified patches as their own work (i.e. with their own sign-off line and author iden-
tity). In this case, the developer shall identify in the commit message(s) the original source the
submitted work is based on (mentioning, for example, the original PR number).

Note: Contributors should uncheck the box “Allow Edits By Maintainers” to indicate that they do not wish
their patches to be amended, inside their original branch or pull request, by other Zephyr developers.

4.6 Development Environment and Tools

4.6.1 Code Review

GitHub is intended to provide a framework for reviewing every commit before it is accepted into the
code base. Changes, in the form of Pull Requests (PR) are uploaded to GitHub but don’t actually become
a part of the project until they’ve been reviewed, passed a series of checks (CI), and are approved by
maintainers. GitHub is used to support the standard open source practice of submitting patches, which
are then reviewed by the project members before being applied to the code base.

Pull requests should be appropriately labeled, and linked to any relevant bug or feature tracking issues .

The Zephyr project uses GitHub for code reviews and Git tree management. When submitting a change
or an enhancement to any Zephyr component, a developer should use GitHub. GitHub automatically
assigns a responsible reviewer on a component basis, as defined in the CODEOWNERS file stored with
the code tree in the Zephyr project repository. A limited set of release managers are allowed to merge a
pull request into the main branch once reviews are complete.

Give reviewers time to review before code merge

The Zephyr project is a global project that is not tied to a certain geography or timezone. We have
developers and contributors from across the globe. When changes are proposed using pull request, we
need to allow for a minimal review time to give developers and contributors the opportunity to review
and comment on changes. There are different categories of changes and we know that some changes do
require reviews by subject matter experts and owners of the subsystem being changed. Many changes fall
under the “trivial” category that can be addressed with general reviews and do not need to be queued
for a maintainer or code-owner review. Additionally, some changes might require further discussions
and a decision by the TSC or the Security working group. To summarize the above, the diagram below
proposes minimal review times for each category:

Workflow

74 Chapter 4. Development and Contribution Process

https://github.com/zephyrproject-rtos/zephyr/blob/main/CODEOWNERS

Zephyr Project Documentation, Release 2.7.0-rc2

Fig. 6: Pull request classes

• An author of a change can suggest in his pull-request which category a change should belong to.
A project maintainers or TSC member monitoring the inflow of changes can change the label of a
pull request by adding a comment justifying why a change should belong to another category.

• The project will use the label system to categorize the pull requests.

• Changes should not be merged before the minimal time has expired.

Categories/Labels

Hotfix Any change that is a fix to an issue that blocks developers from doing their daily work, for
example CI breakage, Test breakage, Minor documentation fixes that impact the user experience.

Such fixes can be merged at any time after they have passed CI checks. Depending on the fix, severity,
and availability of someone to review them (other than the author) they can be merged with justification
without review by one of the project owners.

Trivial Trivial changes are those that appear obvious enough and do not require maintainer or code-
owner involvement. Such changes should not change the logic or the design of a subsystem or compo-
nent. For example a trivial change can be:

• Documentation changes

• Configuration changes

• Minor Build System tweaks

• Minor optimization to code logic without changing the logic

4.6. Development Environment and Tools 75

Zephyr Project Documentation, Release 2.7.0-rc2

• Test changes and fixes

• Sample modifications to support additional configuration or boards etc.

Maintainer Any changes that touch the logic or the original design of a subsystem or component will
need to be reviewed by the code owner or the designated subsystem maintainer. If the code changes is
initiated by a contributor or developer other than the owner the pull request needs to be assigned to the
code owner who will have to drive the pull request to a mergeable state by giving feedback to the author
and asking for more reviews from other developers.

Security Changes that appear to have an impact to the overall security of the system need to be re-
viewed by a security expert from the security working group.

TSC and Working Groups Changes that introduce new features or functionality or change the way the
overall system works need to be reviewed by the TSC or the responsible Working Group. For example for
stable API changes, the proposal needs to be presented in the API meeting so that the relevant stakeholders
are made aware of the change.

A Pull-Request should have an Assignee

• An assignee to a pull request should not be the same as the author of the pull-request

• An assignee to a pull request is responsible for driving the pull request to a mergeable state

• An assignee is responsible for dismissing stale reviews and seeking reviews from additional devel-
opers and contributors

• Pull requests should not be merged without an approval by the assignee.

Pull Request should not be merged by author without review

All pull requests need to be reviewed and should not be merged by the author without a review. The
following exceptions apply:

• Hot fixes: Fixing CI issues, reverts, and system breakage

• Release related changes: Changing version file, applying tags and release related activities without
any code changes.

Developers and contributors should always seek review, however there are cases when reviewers are not
available and there is a need to get a code change into the tree as soon as possible.

Reviewers shall not ‘Request Changes’ without comments or justification

Any change requests (-1) on a pull request have to be justified. A reviewer should avoid blocking a
pull-request with no justification. If a reviewer feels that a change should not be merged without their
review, then: Request change of the category: for example:

• Trivial -> Maintainer

• Assign Pull Request to yourself, this will mean that a pull request should not be merged without
your approval.

76 Chapter 4. Development and Contribution Process

Zephyr Project Documentation, Release 2.7.0-rc2

Pull Requests should have at least 2 approvals before they are merged

A pull-request shall be merged only with two positive reviews (approval). Beside the person merging
the pull-request (merging != approval), two additional approvals are required to be able to merge a pull
request. The person merging the request can merge without approving or approve and merge to get to
the 2 approvals required.

Reviewers should keep track of pull requests they have provided feedback to

If a reviewer has requested changes in a pull request, he or she should monitor the state of the pull
request and/or respond to mention requests to see if his feedback has been addressed. Failing to do
so, negative reviews shall be dismissed by the assignee or an owner of the repository. Reviews will be
dismissed following the criteria below:

• The feedback or concerns were visibly addressed by the author

• The reviewer did not revisit the pull request after 2 week and multiple pings by the author

• The review is unrelated to the code change or asking for unjustified structural changes such as:

– Split the PR

– Split the commits

– Can you fix this unrelated code that happens to appear in the diff

– Can you fix unrelated issues

– Etc.

Closing Stale Issues and Pull Requests

• The Pull requests and issues sections on Github are NOT discussion forums. They are items that
we need to execute and drive to closure. Use the mailing lists for discussions.

• In case of both issues and pull-requests the original poster needs to respond to questions and
provide clarifications regarding the issue or the change. After one week without a response to
a request, a second attempt to elicit a response from the contributor will be made. After one
more week without a response the item may be closed (draft and DNM tagged pull requests are
excluded).

4.6.2 Continuous Integration

All changes submitted to GitHub are subject to tests that are run on emulated platforms and architectures
to identify breakage and regressions that can be immediately identified. Testing using Twister addition-
ally performs build tests of all boards and platforms. Documentation changes are also verified through
review and build testing to verify doc generation will be successful.

Any failures found during the CI test run will result in a negative review assigned automatically by the
CI system. Developers are expected to fix issues and rework their patches and submit again.

The CI infrastructure currently runs the following tests:

• Run ‘’checkpatch” for code style issues (can vote -1 on errors; see note)

• Gitlint: Git commit style based on project requirements

• License Check: Check for conflicting licenses

• Run ‘’twister” script

– Run kernel tests in QEMU (can vote -1 on errors)

– Build various samples for different boards (can vote -1 on errors)

4.6. Development Environment and Tools 77

Zephyr Project Documentation, Release 2.7.0-rc2

• Verify documentation builds correctly.

Note: ‘’checkpatch” is a Perl script that uses regular expressions to extract information that requires a C
language parser to process accurately. As such it sometimes issues false positives. Known cases include
constructs like:

static uint8_t __aligned(PAGE_SIZE) page_pool[PAGE_SIZE * POOL_PAGES];
IOPCTL_Type *base = config->base;

Both lines produce a diagnostic regarding spaces around the * operator: the first is misidentifed as a
pointer type declaration that would be correct as PAGE_SIZE *POOL_PAGES while the second is misiden-
tified as a multiplication expression that would be correct as IOPCTL_Type * base.

Maintainers can override the -1 in cases where the CI infrastructure gets the wrong answer.

4.6.3 Labeling issues and pull requests in GitHub

The project uses GitHub issues and pull requests (PRs) to track and manage daily and long-term work
and contributions to the Zephyr project. We use GitHub labels to classify and organize these issues and
PRs by area, type, priority, and more, making it easier to find and report on relevant items.

All GitHub issues or pull requests must be appropriately labeled. Issues and PRs often have multiple
labels assigned, to help classify them in the different available categories. When reviewing a PR, if it has
missing or incorrect labels, maintainers shall fix it.

This saves us all time when searching, reduces the chances of the PR or issue being forgotten, speeds up
reviewing, avoids duplicate issue reports, etc.

These are the labels we currently have, grouped by type:

Area

La-
bels

Area:*

Ap-
plica-
ble to

PRs and issues

De-
scrip-
tion

Indicates subsystems (e.g., Kernel, I2C, Memory Management), project functions (e.g., De-
bugging, Documentation, Process), or other categories (e.g., Coding Style, MISRA-C) affected
by the bug or pull request.

An area maintainer should be able to filter by an area label and find all issues and PRs which relate to
that area.

Platform

Labels Platform:*
Applicable to PRs and issues
Description An issue or PR which affects only a particular platform

78 Chapter 4. Development and Contribution Process

Zephyr Project Documentation, Release 2.7.0-rc2

To be discussed in a meeting

Labels dev-review, TSC
Applicable to PRs and issues
Description The issue is to be discussed in the following dev-review/TSC meeting if time permits

Stable API changes

Labels Stable API Change
Applica-
ble to

PRs and issues

Descrip-
tion

The issue or PR describes a change to a stable API. See additional information in Intro-
ducing incompatible changes

Minimum PR review time

Labels Hot Fix, Trivial, Maintainer, Security Review, TSC
Applica-
ble to

PRs only

Descrip-
tion

Depending on the PR complexity, an indication of how long a merge should be held to
ensure proper review. See review process

Issue priority labels

Labels priority:{high|medium|low}
Applicable to Issues only
Description To classify the impact and importance of a bug or feature

Note: Issue priorities are generally set or changed during the bug-triage or TSC meetings.

Miscellaneous labels

For both PRs and issues

Bug The issue is a bug, or the PR is fixing a bug
Coverity A Coverity detected issue or its fix
Waiting for
response

The Zephyr developers are waiting for the submitter to respond to a question,
or address an issue.

Blocked Blocked by another PR or issue
In progress For PRs: is work in progress and should not be merged yet. For issues: Is being

worked on
RFC The author would like input from the community. For a PR it should be consid-

ered a draft
LTS Long term release branch related
EXT Related to an external component (in ext/)

4.6. Development Environment and Tools 79

https://github.com/zephyrproject-rtos/zephyr/wiki/Zephyr-Committee-and-Working-Group-Meetings

Zephyr Project Documentation, Release 2.7.0-rc2

PR only labels

DNM This PR should not be merged (Do Not Merge). For work in progress, GitHub “draft”
PRs are preferred

Stale PR PR which seems abandoned, and requires attention by the author
Needs
review

The PR needs attention from the maintainers

Backport The PR is a backport or should be backported
Licensing The PR has licensing issues which require a licensing expert to review it

Issue only labels

Regression Something, which was working, but does not anymore (bug subtype)
Question This issue is a question to the Zephyr developers
Enhancement Changes/Updates/Additions to existing features
Feature
request

A request for a new feature

Feature A planned feature with a milestone
Duplicate This issue is a duplicate of another issue (please specify)
Good first
issue

Good for a first time contributor to take

Release Notes Issues that need to be mentioned in release notes as known issues with additional
information

Any issue must be classified and labeled as either Bug, Question, Enhancement, Feature, or Feature
Request. More information on how feature requests are handled and become features can be found in
Feature Tracking.

4.7 Bug Reporting

To maintain traceability and relation between proposals, changes, features, and issues, it is recommended
to cross-reference source code commits with the relevant GitHub issues and vice versa. Any changes that
originate from a tracked feature or issue should contain a reference to the feature by mentioning the
corresponding issue or pull-request identifiers.

At any time it should be possible to establish the origin of a change and the reason behind it by following
the references in the code.

4.7.1 Reporting a regression issue

It could happen that the issue being reported is identified as a regression, as the use case is known to be
working on earlier commit or release. In this case, providing directly the guilty commit when submitting
the bug gains a lot of time in the eventual bug fixing.

To identify the commit causing the regression, several methods could be used, but tree bisecting method
is an efficient one that doesn’t require deep code expertise and can be used by every one.

For this, git bisect is the recommended tool.

Recommendations on the process:

• Run west update on each bisection step.

• Once the bisection is over and a culprit identifed, verify manually the result.

80 Chapter 4. Development and Contribution Process

https://git-scm.com/docs/git-bisect

Zephyr Project Documentation, Release 2.7.0-rc2

4.8 Communication and Collaboration

The Zephyr project mailing lists are used as the primary communication tool by project members, con-
tributors, and the community. The mailing list is open for topics related to the project and should be
used for collaboration among team members working on the same feature or subsystem or for discussing
project direction and daily development of the code base. In general, bug reports and issues should be
entered and tracked in the bug tracking system (GitHub Issues) and not broadcasted to the mailing list,
the same applies to code reviews. Code should be submitted to GitHub using the appropriate tools.

4.9 Code Documentation

4.9.1 API Documentation

Well documented APIs enhance the experience for developers and are an essential requirement for defin-
ing an API’s success. Doxygen is a general purpose documentation tool that the zephyr project uses
for documenting APIs. It generates either an on-line documentation browser (in HTML) and/or pro-
vides input for other tools that is used to generate a reference manual from documented source files.
In particular, doxygen’s XML output is used as an input when producing the Zephyr project’s online
documentation.

4.9.2 Reference to Requirements

APIs for the most part document the implementation of requirements or advertised features and can be
traced back to features. We use the API documentation as the main interface to trace implementation
back to documented features. This is done using custom _doxygen_ tags that reference requirements
maintained somewhere else in a requirement catalogue.

4.9.3 Test Documentation

To help understand what each test does and which functionality it tests we also document all test code us-
ing the same tools and in the same context and generate documentation for all unit and integration tests
maintained in the same environment. Tests are documented using references to the APIs or functionality
they validate by creating a link back to the APIs and by adding a reference to the original requirements.

4.9.4 Documentation Guidelines

Test Code

The Zephyr project uses several test methodologies, the most common being the Ztest framework. Test
documentation should only be done on the entry test functions (usually prefixed with test_) and those
that are called directly by the Ztest framework. Those tests are going to appear in test reports and using
their name and identifier is the best way to identify them and trace back to them from requirements.

Test documentation should not interfere with the actual API documentation and needs to follow a new
structure to avoid confusion. Using a consistent naming scheme and following a well-defined structure
we will be able to group this documentation in its own module and identify it uniquely when parsing
test data for traceability reports. Here are a few guidelines to be followed:

• All test code documentation should be grouped under the all_tests doxygen group

• All test documentation should be under doxygen groups that are prefixed with tests_

The custom doxygen @verify directive signifies that a test verifies a requirement:

4.8. Communication and Collaboration 81

https://lists.zephyrproject.org/g/main/subgroups
https://github.com/zephyrproject-rtos/zephyr/issues

Zephyr Project Documentation, Release 2.7.0-rc2

/**
* @brief Tests for the Semaphore kernel object
* @defgroup kernel_semaphore_tests Semaphore
* @ingroup all_tests
* @{
*/

...
/**
* @brief A brief description of the tests
* Some details about the test
* more details
*
* @verify{@req{1111}}
*/
void test_sema_thread2thread(void)
{
...
}
...

/**
* @}
*/

To get coverage of how an implementation or a piece of code satisfies a requirements, we use the satisfy
alias in doxygen:

/**
* @brief Give a semaphore.
*
* This routine gives @a sem, unless the semaphore is already at its maximum
* permitted count.
*
* @note Can be called by ISRs.
*
* @param sem Address of the semaphore.
*
* @return N/A
* @satisfy{@req{015}}
*/
__syscall void k_sem_give(struct k_sem *sem);

To generate the matrix, you will first need to build the documentation, specifically you will need to build
the doxygen XML output:

$ make doxygen

Parse the generated XML data from doxygen to generate the traceability matrix.

The Zephyr project defines a development process workflow using GitHub Issues to track feature, en-
hancement, and bug reports together with GitHub Pull Requests (PRs) for submitting and reviewing
changes. Zephyr community members work together to review these Issues and PRs, managing fea-
ture enhancements and quality improvements of Zephyr through its regular releases, as outlined in the
program management overview.

We can only manage the volume of Issues and PRs, by requiring timely reviews, feedback, and responses
from the community and contributors, both for initial submissions and for followup questions and clari-
fications. Read about the project’s development processes and tools and specifics about review timelines to

82 Chapter 4. Development and Contribution Process

https://wiki.zephyrproject.org/Program-Management

Zephyr Project Documentation, Release 2.7.0-rc2

learn about the project’s goals and guidelines for our active developer community.

TSC Project Roles describes in detail the Zephyr project roles and associated permissions with respect to
the development process workflow.

4.10 Terminology

• mainline: The main tree where the core functionality and core features are being developed.

• subsystem/feature branch: is a branch within the same repository. In our case, we will use the term
branch also when referencing branches not in the same repository, which are a copy of a repository
sharing the same history.

• upstream: A parent branch the source code is based on. This is the branch you pull from and push
to, basically your upstream.

• LTS: Long Term Support

4.10. Terminology 83

Zephyr Project Documentation, Release 2.7.0-rc2

84 Chapter 4. Development and Contribution Process

Chapter 5

Build and Configuration Systems

5.1 Build System (CMake)

CMake is used to build your application together with the Zephyr kernel. A CMake build is done in two
stages. The first stage is called configuration. During configuration, the CMakeLists.txt build scripts
are executed. After configuration is finished, CMake has an internal model of the Zephyr build, and can
generate build scripts that are native to the host platform.

CMake supports generating scripts for several build systems, but only Ninja and Make are tested and
supported by Zephyr. After configuration, you begin the build stage by executing the generated build
scripts. These build scripts can recompile the application without involving CMake following most code
changes. However, after certain changes, the configuration step must be executed again before building.
The build scripts can detect some of these situations and reconfigure automatically, but there are cases
when this must be done manually.

Zephyr uses CMake’s concept of a ‘target’ to organize the build. A target can be an executable, a library,
or a generated file. For application developers, the library target is the most important to understand. All
source code that goes into a Zephyr build does so by being included in a library target, even application
code.

Library targets have source code, that is added through CMakeLists.txt build scripts like this:

target_sources(app PRIVATE src/main.c)

In the above CMakeLists.txt, an existing library target named app is configured to include the source
file src/main.c. The PRIVATE keyword indicates that we are modifying the internals of how the library is
being built. Using the keyword PUBLIC would modify how other libraries that link with app are built. In
this case, using PUBLIC would cause libraries that link with app to also include the source file src/main.
c, behavior that we surely do not want. The PUBLIC keyword could however be useful when modifying
the include paths of a target library.

5.1.1 Build and Configuration Phases

The Zephyr build process can be divided into two main phases: a configuration phase (driven by CMake)
and a build phase (driven by Make or Ninja).

Configuration Phase

The configuration phase begins when the user invokes CMake, specifying a source application directory
and a board target.

85

Zephyr Project Documentation, Release 2.7.0-rc2

C preprocessor

.dts/.dtsi files

Bindings in dts/bindings/

Kconfig files

*.dts.pre.tmp file

devicetree_unfixed.h...

autoconf.h

dts_fixup.h files

devicetree_fixups.h

Configuration overview...

Scripts in scripts/d...

devicetree.h...

prj.conf...

Scripts in scripts/kconf...

.config

dtc compiler (just to catc...

Kconfig can rea...

Outputs

Makefile or Ninja file (...

Merged devicetree in zephyr.dts (debugging a...

86 Chapter 5. Build and Configuration Systems

Zephyr Project Documentation, Release 2.7.0-rc2

CMake begins by processing the CMakeLists.txt file in the application directory, which refers to the
CMakeLists.txt file in the Zephyr top-level directory, which in turn refers to CMakeLists.txt files
throughout the build tree (directly and indirectly). Its primary output is a set of Makefiles or Ninja files
to drive the build process, but the CMake scripts also do some processing of their own:

Devicetree *.dts (devicetree source) and *.dtsi (devicetree source include) files are collected from the
target’s architecture, SoC, board, and application directories.

*.dtsi files are included by *.dts files via the C preprocessor (often abbreviated cpp, which should
not be confused with C++). The C preprocessor is also used to merge in any devicetree *.overlay
files, and to expand macros in *.dts, *.dtsi, and *.overlay files.

The preprocessed devicetree sources (stored in *.dts.pre.tmp) are parsed by gen_defines.py to
generate a devicetree_unfixed.h header with preprocessor macros.

As a debugging aid, gen_defines.py writes the final devicetree to zephyr.dts. This file is just for
reference. It is not used anywhere.

The dtc devicetree compiler also gets run on the preprocessed devicetree sources to catch any extra
warnings and errors generated by it. The output from dtc is unused otherwise.

The above is just a brief overview. For more information on devicetree, see Devicetree Guide.

Devicetree fixups Files named dts_fixup.h from the target’s architecture, SoC, board, and application
directories are concatenated into a single devicetree_fixups.h file. dts_fixup.h files are used
to rename generated macros to names expected by the source code.

Source code accesses preprocessor macros generated from devicetree by including the devicetree.h
header, which includes devicetree_unfixed.h and devicetree_fixups.h.

Kconfig Kconfig files define available configuration options for for the target architecture, SoC, board,
and application, as well as dependencies between options.

Kconfig configurations are stored in configuration files. The initial configuration is generated by
merging configuration fragments from the board and application (e.g. prj.conf).

The output from Kconfig is an autoconf.h header with preprocessor assignments, and a .config
file that acts both as a saved configuration and as configuration output (used by CMake).

Information from devicetree is available to Kconfig, through the functions defined in kconfigfunc-
tions.py.

See the Kconfig section of the manual for more information.

Build Phase

The build phase begins when the user invokes make or ninja. Its ultimate output is a complete Zephyr
application in a format suitable for loading/flashing on the desired target board (zephyr.elf, zephyr.
hex, etc.) The build phase can be broken down, conceptually, into four stages: the pre-build, first-pass
binary, final binary, and post-processing.

Pre-build Pre-build occurs before any source files are compiled, because during this phase header files
used by the source files are generated.

Offset generation Access to high-level data structures and members is sometimes required when the
definitions of those structures is not immediately accessible (e.g., assembly language). The gener-
ation of offsets.h (by gen_offset_header.py) facilitates this.

System call boilerplate The gen_syscall.py and parse_syscalls.py scripts work together to bind potential
system call functions with their implementations.

5.1. Build System (CMake) 87

https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/dts/gen_defines.py
https://github.com/zephyrproject-rtos/zephyr/blob/main/include/devicetree.h
https://github.com/zephyrproject-rtos/zephyr/blob/main/include/devicetree.h
https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/kconfig/kconfigfunctions.py
https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/kconfig/kconfigfunctions.py

Zephyr Project Documentation, Release 2.7.0-rc2

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer] [Not supported by viewer] [Not supported by viewer]

[Not supported by viewer] [Not supported by viewer]

[Not supported by viewer] [Not supported by viewer][Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

First-pass binary Compilation proper begins with the first-pass binary. Source files (C and assembly)
are collected from various subsystems (which ones is decided during the configuration phase), and com-
piled into archives (with reference to header files in the tree, as well as those generated during the
configuration phase and the pre-build stage).

If memory protection is enabled, then:

Partition grouping The gen_app_partitions.py script scans all the generated archives and outputs linker
scripts to ensure that application partitions are properly grouped and aligned for the target’s mem-
ory protection hardware.

Then cpp is used to combine linker script fragments from the target’s architecture/SoC, the kernel tree,
optionally the partition output if memory protection is enabled, and any other fragments selected during
the configuration process, into a linker.cmd file. The compiled archives are then linked with ld as specified
in the linker.cmd.

In some configurations, this is the final binary, and the next stage is skipped.

Final binary The binary from the previous stage is incomplete, with empty and/or placeholder sections
that must be filled in by, essentially, reflection.

Device dependencies The gen_handles.py script scans the first-pass binary to determine relationships
between devices that were recorded from devicetree data, and replaces the encoded relationships
with values that are optimized to locate the devices actually present in the application.

When User Mode is enabled:

Kernel object hashing The gen_kobject_list.py scans the ELF DWARF debug data to find the address of
the all kernel objects. This list is passed to gperf, which generates a perfect hash function and table
of those addresses, then that output is optimized by process_gperf.py, using known properties of
our special case.

Then, the link from the previous stage is repeated, this time with the missing pieces populated.

Post processing Finally, if necessary, the completed kernel is converted from ELF to the format expected
by the loader and/or flash tool required by the target. This is accomplished in a straightforward manner
with objdump.

88 Chapter 5. Build and Configuration Systems

Zephyr Project Documentation, Release 2.7.0-rc2

[Not supported by viewer]
[Not supported by viewer][Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer][Not supported by viewer] [Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer][Not supported by viewer] [Not supported by viewer]

[Not supported by viewer] [Not supported by viewer] [Not supported by viewer]

[Not supported by viewer] [Not supported by viewer] [Not supported by viewer][Not supported by viewer] [Not supported by viewer]

[Not supported by viewer] [Not supported by viewer]
[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer][Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]
[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]
[Not supported by viewer]

[Not supported by viewer] [Not supported by viewer]

[Not supported by viewer][Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]
[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer][Not supported by viewer]

[Not supported by viewer] [Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

5.1. Build System (CMake) 89

Zephyr Project Documentation, Release 2.7.0-rc2

5.1.2 Supporting Scripts and Tools

The following is a detailed description of the scripts used during the build process.

scripts/gen_syscalls.py

Script to generate system call invocation macros

This script parses the system call metadata JSON file emitted by parse_syscalls.py to create several files:

• A file containing weak aliases of any potentially unimplemented system calls, as well as the system
call dispatch table, which maps system call type IDs to their handler functions.

• A header file defining the system call type IDs, as well as function prototypes for all system call
handler functions.

• A directory containing header files. Each header corresponds to a header that was identified as con-
taining system call declarations. These generated headers contain the inline invocation functions
for each system call in that header.

scripts/gen_handles.py

Translate generic handles into ones optimized for the application.

Immutable device data includes information about dependencies, e.g. that a particular sensor is con-
trolled through a specific I2C bus and that it signals event on a pin on a specific GPIO controller. This
information is encoded in the first-pass binary using identifiers derived from the devicetree. This script
extracts those identifiers and replaces them with ones optimized for use with the devices actually present.

For example the sensor might have a first-pass handle defined by its devicetree ordinal 52, with the I2C
driver having ordinal 24 and the GPIO controller ordinal 14. The runtime ordinal is the index of the
corresponding device in the static devicetree array, which might be 6, 5, and 3, respectively.

The output is a C source file that provides alternative definitions for the array contents referenced from
the immutable device objects. In the final link these definitions supersede the ones in the driver-specific
object file.

scripts/gen_kobject_list.py

Script to generate gperf tables of kernel object metadata

User mode threads making system calls reference kernel objects by memory address, as the kernel/driver
APIs in Zephyr are the same for both user and supervisor contexts. It is necessary for the kernel to be
able to validate accesses to kernel objects to make the following assertions:

• That the memory address points to a kernel object

• The kernel object is of the expected type for the API being invoked

• The kernel object is of the expected initialization state

• The calling thread has sufficient permissions on the object

For more details see the Kernel Objects section in the documentation.

The zephyr build generates an intermediate ELF binary, zephyr_prebuilt.elf, which this script scans look-
ing for kernel objects by examining the DWARF debug information to look for instances of data structures
that are considered kernel objects. For device drivers, the API struct pointer populated at build time is
also examined to disambiguate between various device driver instances since they are all ‘struct device’.

This script can generate five different output files:

90 Chapter 5. Build and Configuration Systems

Zephyr Project Documentation, Release 2.7.0-rc2

• A gperf script to generate the hash table mapping kernel object memory addresses to kernel object
metadata, used to track permissions, object type, initialization state, and any object-specific data.

• A header file containing generated macros for validating driver instances inside the system call
handlers for the driver subsystem APIs.

• A code fragment included by kernel.h with one enum constant for each kernel object type and each
driver instance.

• The inner cases of a switch/case C statement, included by kernel/userspace.c, mapping the kernel
object types and driver instances to their human-readable representation in the otype_to_str()
function.

• The inner cases of a switch/case C statement, included by kernel/userspace.c, mapping ker-
nel object types to their sizes. This is used for allocating instances of them at runtime (CON-
FIG_DYNAMIC_OBJECTS) in the obj_size_get() function.

scripts/gen_offset_header.py

This script scans a specified object file and generates a header file that defined macros for the offsets
of various found structure members (particularly symbols ending with _OFFSET or _SIZEOF), primarily
intended for use in assembly code.

scripts/parse_syscalls.py

Script to scan Zephyr include directories and emit system call and subsystem metadata

System calls require a great deal of boilerplate code in order to implement completely. This script is the
first step in the build system’s process of auto-generating this code by doing a text scan of directories
containing C or header files, and building up a database of system calls and their function call prototypes.
This information is emitted to a generated JSON file for further processing.

This script also scans for struct definitions such as __subsystem and __net_socket, emitting a JSON
dictionary mapping tags to all the struct declarations found that were tagged with them.

If the output JSON file already exists, its contents are checked against what information this script would
have outputted; if the result is that the file would be unchanged, it is not modified to prevent unnecessary
incremental builds.

arch/x86/gen_idt.py

Generate Interrupt Descriptor Table for x86 CPUs.

This script generates the interrupt descriptor table (IDT) for x86. Please consult the IA Architecture SW
Developer Manual, volume 3, for more details on this data structure.

This script accepts as input the zephyr_prebuilt.elf binary, which is a link of the Zephyr kernel without
various build-time generated data structures (such as the IDT) inserted into it. This kernel image has
been properly padded such that inserting these data structures will not disturb the memory addresses
of other symbols. From the kernel binary we read a special section “intList” which contains the desired
interrupt routing configuration for the kernel, populated by instances of the IRQ_CONNECT() macro.

This script outputs three binary tables:

1. The interrupt descriptor table itself.

2. A bitfield indicating which vectors in the IDT are free for installation of dynamic interrupts at
runtime.

3. An array which maps configured IRQ lines to their associated vector entries in the IDT, used to
program the APIC at runtime.

5.1. Build System (CMake) 91

Zephyr Project Documentation, Release 2.7.0-rc2

arch/x86/gen_gdt.py

Generate a Global Descriptor Table (GDT) for x86 CPUs.

For additional detail on GDT and x86 memory management, please consult the IA Architecture SW
Developer Manual, vol. 3.

This script accepts as input the zephyr_prebuilt.elf binary, which is a link of the Zephyr kernel without
various build-time generated data structures (such as the GDT) inserted into it. This kernel image has
been properly padded such that inserting these data structures will not disturb the memory addresses of
other symbols.

The input kernel ELF binary is used to obtain the following information:

• Memory addresses of the Main and Double Fault TSS structures so GDT descriptors can be created
for them

• Memory addresses of where the GDT lives in memory, so that this address can be populated in the
GDT pseudo descriptor

• whether userspace or HW stack protection are enabled in Kconfig

The output is a GDT whose contents depend on the kernel configuration. With no memory protection
features enabled, we generate flat 32-bit code and data segments. If hardware- based stack overflow
protection or userspace is enabled, we additionally create descriptors for the main and double- fault IA
tasks, needed for userspace privilege elevation and double-fault handling. If userspace is enabled, we
also create flat code/data segments for ring 3 execution.

scripts/gen_relocate_app.py

This script will relocate .text, .rodata, .data and .bss sections from required files and places it in the
required memory region. This memory region and file are given to this python script in the form of a
string.

Example of such a string would be:

SRAM2:/home/xyz/zephyr/samples/hello_world/src/main.c,\
SRAM1:/home/xyz/zephyr/samples/hello_world/src/main2.c

To invoke this script:

python3 gen_relocate_app.py -i input_string -o generated_linker -c generated_code

Configuration that needs to be sent to the python script.

• If the memory is like SRAM1/SRAM2/CCD/AON then place full object in the sections

• If the memory type is appended with _DATA / _TEXT/ _RODATA/ _BSS only the selected memory
is placed in the required memory region. Others are ignored.

Multiple regions can be appended together like SRAM2_DATA_BSS this will place data and bss inside
SRAM2.

scripts/process_gperf.py

gperf C file post-processor

We use gperf to build up a perfect hashtable of pointer values. The way gperf does this is to create a
table ‘wordlist’ indexed by a string representation of a pointer address, and then doing memcmp() on a
string passed in for comparison

We are exclusively working with 4-byte pointer values. This script adjusts the generated code so that we
work with pointers directly and not strings. This saves a considerable amount of space.

92 Chapter 5. Build and Configuration Systems

Zephyr Project Documentation, Release 2.7.0-rc2

scripts/gen_app_partitions.py

Script to generate a linker script organizing application memory partitions

Applications may declare build-time memory domain partitions with K_APPMEM_PARTITION_DEFINE,
and assign globals to them using K_APP_DMEM or K_APP_BMEM macros. For each of these partitions,
we need to route all their data into appropriately-sized memory areas which meet the size/alignment
constraints of the memory protection hardware.

This linker script is created very early in the build process, before the build attempts to link the kernel
binary, as the linker script this tool generates is a necessary pre-condition for kernel linking. We extract
the set of memory partitions to generate by looking for variables which have been assigned to input
sections that follow a defined naming convention. We also allow entire libraries to be pulled in to assign
their globals to a particular memory partition via command line directives.

This script takes as inputs:

• The base directory to look for compiled objects

• key/value pairs mapping static library files to what partitions their globals should end up in.

The output is a linker script fragment containing the definition of the app shared memory section, which
is further divided, for each partition found, into data and BSS for each partition.

5.2 Configuration System (Kconfig)

The Zephyr kernel and subsystems can be configured at build time to adapt them for specific application
and platform needs. Configuration is handled through Kconfig, which is the same configuration system
used by the Linux kernel. The goal is to support configuration without having to change any source code.

Configuration options (often called symbols) are defined in Kconfig files, which also specify dependen-
cies between symbols that determine what configurations are valid. Symbols can be grouped into menus
and sub-menus to keep the interactive configuration interfaces organized.

The output from Kconfig is a header file autoconf.h with macros that can be tested at build time. Code
for unused features can be compiled out to save space.

The following sections explain how to set Kconfig configuration options, go into detail on how Kconfig is
used within the Zephyr project, and have some tips and best practices for writing Kconfig files.

5.2.1 Interactive Kconfig interfaces

There are two interactive configuration interfaces available for exploring the available Kconfig options
and making temporary changes: menuconfig and guiconfig. menuconfig is a curses-based interface
that runs in the terminal, while guiconfig is a graphical configuration interface.

Note: The configuration can also be changed by editing zephyr/.config in the application build
directory by hand. Using one of the configuration interfaces is often handier, as they correctly handle
dependencies between configuration symbols.

If you try to enable a symbol with unsatisfied dependencies in zephyr/.config, the assignment will be
ignored and overwritten when re-configuring.

To make a setting permanent, you should set it in a *.conf file, as described in Setting Kconfig configu-
ration values.

Tip: Saving a minimal configuration file (with e.g. D in menuconfig) and inspecting it can be handy
when making settings permanent. The minimal configuration file only lists symbols that differ from their

5.2. Configuration System (Kconfig) 93

Zephyr Project Documentation, Release 2.7.0-rc2

default value.

To run one of the configuration interfaces, do this:

1. Build your application as usual using either west or cmake:

Using west:

west build -b <board>

Using CMake and ninja:

mkdir build && cd build
cmake -GNinja -DBOARD=<board> ..
ninja

2. To run the terminal-based menuconfig interface, use either of these commands:

west build -t menuconfig

ninja menuconfig

To run the graphical guiconfig, use either of these commands:

west build -t guiconfig

ninja guiconfig

Note: If you get an import error for tkinter when trying to run guiconfig, you are missing
required packages. See Install Linux Host Dependencies. The package you need is usually called
something like python3-tk/python3-tkinter.

tkinter is not included by default in many Python installations, despite being part of the standard
library.

The two interfaces are shown below:

94 Chapter 5. Build and Configuration Systems

Zephyr Project Documentation, Release 2.7.0-rc2

guiconfig always shows the help text and other information related to the currently selected item
in the bottom window pane. In the terminal interface, press ? to view the same information.

Note: If you prefer to work in the guiconfig interface, then it’s a good idea to check any changes
to Kconfig files you make in single-menu mode, which is toggled via a checkbox at the top. Un-
like full-tree mode, single-menu mode will distinguish between symbols defined with config and
symbols defined with menuconfig, showing you what things would look like in the menuconfig
interface.

3. Change configuration values in the menuconfig interface as follows:

• Navigate the menu with the arrow keys. Common Vim key bindings are supported as well.

• Use Space and Enter to enter menus and toggle values. Menus appear with ---> next to
them. Press ESC to return to the parent menu.

Boolean configuration options are shown with [] brackets, while numeric and string-valued
configuration symbols are shown with () brackets. Symbol values that can’t be changed are
shown as - - or -*-.

Note: You can also press Y or N to set a boolean configuration symbol to the corresponding
value.

• Press ? to display information about the currently selected symbol, including its help text.
Press ESC or Q to return from the information display to the menu.

In the guiconfig interface, either click on the image next to the symbol to change its value, or

5.2. Configuration System (Kconfig) 95

https://www.vim.org

Zephyr Project Documentation, Release 2.7.0-rc2

double-click on the row with the symbol (this only works if the symbol has no children, as double-
clicking a symbol with children open/closes its menu instead).

guiconfig also supports keyboard controls, which are similar to menuconfig.

4. Pressing Q in the menuconfig interface will bring up the save-and-quit dialog (if there are changes
to save):

Press Y to save the kernel configuration options to the default filename (zephyr/.config). You will
typically save to the default filename unless you are experimenting with different configurations.

The guiconfig interface will also prompt for saving the configuration on exit if it has been modi-
fied.

Note: The configuration file used during the build is always zephyr/.config. If you have another
saved configuration that you want to build with, copy it to zephyr/.config. Make sure to back up
your original configuration file.

Also note that filenames starting with . are not listed by ls by default on Linux and macOS. Use
the -a flag to see them.

Finding a symbol in the menu tree and navigating to it can be tedious. To jump directly to a symbol, press
the / key (this also works in guiconfig). This brings up the following dialog, where you can search for
symbols by name and jump to them. In guiconfig, you can also change symbol values directly within
the dialog.

If you jump to a symbol that isn’t currently visible (e.g., due to having unsatisfied dependencies), then
show-all mode will be enabled. In show-all mode, all symbols are displayed, including currently invisible
symbols. To turn off show-all mode, press A in menuconfig or Ctrl-A in guiconfig.

Note: Show-all mode can’t be turned off if there are no visible items in the current menu.

To figure out why a symbol you jumped to isn’t visible, inspect its dependencies, either by pressing ?
in menuconfig or in the information pane at the bottom in guiconfig. If you discover that the symbol
depends on another symbol that isn’t enabled, you can jump to that symbol in turn to see if it can be
enabled.

96 Chapter 5. Build and Configuration Systems

Zephyr Project Documentation, Release 2.7.0-rc2

5.2. Configuration System (Kconfig) 97

Zephyr Project Documentation, Release 2.7.0-rc2

Note: In menuconfig, you can press Ctrl-F to view the help of the currently selected item in the
jump-to dialog without leaving the dialog.

For more information on menuconfig and guiconfig, see the Python docstrings at the top of menucon-
fig.py and guiconfig.py.

5.2.2 Setting Kconfig configuration values

The menuconfig and guiconfig interfaces can be used to test out configurations during application devel-
opment. This page explains how to make settings permanent.

All Kconfig options can be searched in the Kconfig search page.

Note: Before making changes to Kconfig files, it’s a good idea to also go through the Kconfig - Tips and
Best Practices page.

Visible and invisible Kconfig symbols

When making Kconfig changes, it’s important to understand the difference between visible and invisible
symbols.

• A visible symbol is a symbol defined with a prompt. Visible symbols show up in the interactive
configuration interfaces (hence visible), and can be set in configuration files.

Here’s an example of a visible symbol:

config FPU
bool "Support floating point operations"
depends on HAS_FPU

The symbol is shown like this in menuconfig, where it can be toggled:

[] Support floating point operations

• An invisible symbol is a symbol without a prompt. Invisible symbols are not shown in the interactive
configuration interfaces, and users have no direct control over their value. They instead get their
value from defaults or from other symbols.

Here’s an example or an invisible symbol:

config CPU_HAS_FPU
bool
help

This symbol is y if the CPU has a hardware floating point unit.

In this case, CPU_HAS_FPU is enabled through other symbols having select CPU_HAS_FPU.

Setting symbols in configuration files

Visible symbols can be configured by setting them in configuration files. The initial configuration is
produced by merging a *_defconfig file for the board with application settings, usually from prj.conf.
See The Initial Configuration below for more details.

Assignments in configuration files use this syntax:

98 Chapter 5. Build and Configuration Systems

https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/kconfig/menuconfig.py
https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/kconfig/menuconfig.py
https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/kconfig/guiconfig.py

Zephyr Project Documentation, Release 2.7.0-rc2

CONFIG_<symbol name>=<value>

There should be no spaces around the equals sign.

bool symbols can be enabled or disabled by setting them to y or n, respectively. The FPU symbol from
the example above could be enabled like this:

CONFIG_FPU=y

Note: A boolean symbol can also be set to n with a comment formatted like this:

CONFIG_SOME_OTHER_BOOL is not set

This is the format you will see in the merged configuration in zephyr/.config.

This style is accepted for historical reasons: Kconfig configuration files can be parsed as makefiles (though
Zephyr doesn’t use this). Having n-valued symbols correspond to unset variables simplifies tests in Make.

Other symbol types are assigned like this:

CONFIG_SOME_STRING="cool value"
CONFIG_SOME_INT=123

Comments use a #:

This is a comment

Assignments in configuration files are only respected if the dependencies for the symbol are satisfied.
A warning is printed otherwise. To figure out what the dependencies of a symbol are, use one of the
interactive configuration interfaces (you can jump directly to a symbol with /), or look up the symbol in
the Kconfig search page.

The Initial Configuration

The initial configuration for an application comes from merging configuration settings from three
sources:

1. A BOARD-specific configuration file stored in boards/<architecture>/<BOARD>/
<BOARD>_defconfig

2. Any CMake cache entries prefix with CONFIG_

3. The application configuration

The application configuration can come from the sources below. By default, prj.conf is used.

1. If CONF_FILE is set, the configuration file(s) specified in it are merged and used as the application
configuration. CONF_FILE can be set in various ways:

1. In CMakeLists.txt, before calling find_package(Zephyr)

2. By passing -DCONF_FILE=<conf file(s)>, either directly or via west

3. From the CMake variable cache

2. Otherwise if CONF_FILE is set, and a single configuration file of the form prj_<build>.conf is
used, then if file boards/<BOARD>_<build>.conf exists in same folder as file prj_<build>.conf,
the result of merging prj_<build>.conf and boards/<BOARD>_<build>.conf is used.

3. Otherwise, prj_<BOARD>.conf is used if it exists in the application directory.

4. Otherwise, if boards/<BOARD>.conf exists in the application directory, the result of merging it with
prj.conf is used.

5.2. Configuration System (Kconfig) 99

Zephyr Project Documentation, Release 2.7.0-rc2

5. Otherwise, if board revisions are used and boards/<BOARD>_<revision>.conf exists in the appli-
cation directory, the result of merging it with prj.conf and boards/<BOARD>.conf is used.

6. Otherwise, prj.conf is used if it exists in the application directory

If a symbol is assigned both in <BOARD>_defconfig and in the application configuration, the value set in
the application configuration takes precedence.

The merged configuration is saved to zephyr/.config in the build directory.

As long as zephyr/.config exists and is up-to-date (is newer than any BOARD and application configu-
ration files), it will be used in preference to producing a new merged configuration. zephyr/.config is
also the configuration that gets modified when making changes in the interactive configuration interfaces.

Configuring invisible Kconfig symbols

When making changes to the default configuration for a board, you might have to configure invisible
symbols. This is done in boards/<architecture>/<BOARD>/Kconfig.defconfig, which is a regular
Kconfig file.

Note: Assignments in .config files have no effect on invisible symbols, so this scheme is not just an
organizational issue.

Assigning values in Kconfig.defconfig relies on defining a Kconfig symbol in multiple locations. As an
example, say we want to set FOO_WIDTH below to 32:

config FOO_WIDTH
int

To do this, we extend the definition of FOO_WIDTH as follows, in Kconfig.defconfig:

if BOARD_MY_BOARD

config FOO_WIDTH
default 32

endif

Note: Since the type of the symbol (int) has already been given at the first definition location, it does
not need to be repeated here. Only giving the type once at the “base” definition of the symbol is a good
idea for reasons explained in Common Kconfig shorthands.

default values in Kconfig.defconfig files have priority over default values given on the “base” defini-
tion of a symbol. Internally, this is implemented by including the Kconfig.defconfig files first. Kconfig
uses the first default with a satisfied condition, where an empty condition corresponds to if y (is
always satisfied).

Note that conditions from surrounding top-level ifs are propagated to symbol properties, so the above
default is equivalent to default 32 if BOARD_MY_BOARD.

Warning: When defining a symbol in multiple locations, dependencies are ORed together rather
than ANDed together. It is not possible to make the dependencies of a symbol more restrictive by
defining it in multiple locations.

For example, the direct dependencies of the symbol below becomes DEP1 || DEP2:

100 Chapter 5. Build and Configuration Systems

Zephyr Project Documentation, Release 2.7.0-rc2

config FOO
...
depends on DEP1

config FOO
...
depends on DEP2

When making changes to Kconfig.defconfig files, always check the symbol’s direct dependencies in
one of the interactive configuration interfaces afterwards. It is often necessary to repeat dependencies
from the base definition of the symbol to avoid weakening a symbol’s dependencies.

Motivation for Kconfig.defconfig files One motivation for this configuration scheme is to avoid mak-
ing fixed BOARD-specific settings configurable in the interactive configuration interfaces. If all board
configuration were done via <BOARD>_defconfig, all symbols would have to be visible, as values given
in <BOARD>_defconfig have no effect on invisible symbols.

Having fixed settings be user-configurable would clutter up the configuration interfaces and make them
harder to understand, and would make it easier to accidentally create broken configurations.

When dealing with fixed board-specific settings, also consider whether they should be handled via de-
vicetree instead.

Configuring choices There are two ways to configure a Kconfig choice:

1. By setting one of the choice symbols to y in a configuration file.

Setting one choice symbol to y automatically gives all other choice symbols the value n.

If multiple choice symbols are set to y, only the last one set to y will be honored (the rest will get
the value n). This allows a choice selection from a board defconfig file to be overridden from an
application prj.conf file.

2. By changing the default of the choice in Kconfig.defconfig.

As with symbols, changing the default for a choice is done by defining the choice in multiple
locations. For this to work, the choice must have a name.

As an example, assume that a choice has the following base definition (here, the name of the choice
is FOO):

choice FOO
bool "Foo choice"
default B

config A
bool "A"

config B
bool "B"

endchoice

To change the default symbol of FOO to A, you would add the following definition to Kconfig.
defconfig:

choice FOO
default A

endchoice

5.2. Configuration System (Kconfig) 101

Zephyr Project Documentation, Release 2.7.0-rc2

The Kconfig.defconfig method should be used when the dependencies of the choice might not be
satisfied. In that case, you’re setting the default selection whenever the user makes the choice visible.

More Kconfig resources The Kconfig - Tips and Best Practices page has some tips for writing Kconfig
files.

The kconfiglib.py docstring docstring (at the top of the file) goes over how symbol values are calculated
in detail.

5.2.3 Kconfig - Tips and Best Practices

This page covers some Kconfig best practices and explains some Kconfig behaviors and features that
might be cryptic or that are easily overlooked.

Note: The official Kconfig documentation is kconfig-language.rst and kconfig-macro-language.rst.

• What to turn into Kconfig options

• What not to turn into Kconfig options

– Options enabling individual devices

– Options that specify a device in the system by name

– Options that specify fixed hardware configuration

• select statements

– select pitfalls

– Alternatives to select

– Using select for helper symbols

– select recommendations

• (Lack of) conditional includes

• “Stuck” symbols in menuconfig and guiconfig

• Assignments to promptless symbols in configuration files

• depends on and string/int/hex symbols

• menuconfig symbols

• Checking changes in menuconfig/guiconfig

• Checking changes with scripts/kconfig/lint.py

• Style recommendations and shorthands

– Factoring out common dependencies

– Redundant defaults

– Common Kconfig shorthands

– Prompt strings

– Header comments and other nits

• Lesser-known/used Kconfig features

– The imply statement

102 Chapter 5. Build and Configuration Systems

https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/kconfig/kconfiglib.py
https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html
https://www.kernel.org/doc/html/latest/kbuild/kconfig-macro-language.html

Zephyr Project Documentation, Release 2.7.0-rc2

– Optional prompts

– Optional choices

– visible if conditions

• Other resources

What to turn into Kconfig options

When deciding whether something belongs in Kconfig, it helps to distinguish between symbols that have
prompts and symbols that don’t.

If a symbol has a prompt (e.g. bool "Enable foo"), then the user can change the symbol’s value
in the menuconfig or guiconfig interface (see Interactive Kconfig interfaces), or by manually editing
configuration files. Conversely, a symbol without a prompt can never be changed directly by the user,
not even by manually editing configuration files.

Only put a prompt on a symbol if it makes sense for the user to change its value.

Symbols without prompts are called hidden or invisible symbols, because they don’t show up in
menuconfig and guiconfig. Symbols that have prompts can also be invisible, when their dependen-
cies are not satisfied.

Symbols without prompts can’t be configured directly by the user (they derive their value from other
symbols), so less restrictions apply to them. If some derived setting is easier to calculate in Kconfig than
e.g. during the build, then do it in Kconfig, but keep the distinction between symbols with and without
prompts in mind.

See the optional prompts section for a way to deal with settings that are fixed on some machines and
configurable on other machines.

What not to turn into Kconfig options

In Zephyr, Kconfig configuration is done after selecting a target board. In general, it does not make sense
to use Kconfig for a value that corresponds to a fixed machine-specific setting. Usually, such settings
should be handled via devicetree instead.

In particular, avoid adding new Kconfig options of the following types:

Options enabling individual devices Existing examples like :kconfig:`CONFIG_I2C_0` and :kcon-
fig:`CONFIG_I2C_1` were introduced before Zephyr supported devicetree, and new cases are discour-
aged. See Write device drivers using devicetree APIs for details on how to do this with devicetree instead.

Options that specify a device in the system by name For example, if you are writing an I2C device
driver, avoid creating an option named MY_DEVICE_I2C_BUS_NAME for specifying the bus node your device
is controlled by. See Device drivers that depend on other devices for alternatives.

Similarly, if your application depends on a hardware-specific PWM device to control an RGB LED, avoid
creating an option like MY_PWM_DEVICE_NAME. See Applications that depend on board-specific devices for
alternatives.

Options that specify fixed hardware configuration For example, avoid Kconfig options specifying a
GPIO pin.

An alternative applicable to device drivers is to define a GPIO specifier with type phandle-array in the
device binding, and using the GPIO devicetree API from C. Similar advice applies to other cases where

5.2. Configuration System (Kconfig) 103

Zephyr Project Documentation, Release 2.7.0-rc2

devicetree.h provides Hardware specific APIs for referring to other nodes in the system. Search the source
code for drivers using these APIs for examples.

An application-specific devicetree binding to identify board specific properties may be appropriate. See
tests/drivers/gpio/gpio_basic_api for an example.

For applications, see blinky-sample for a devicetree-based alternative.

select statements

The select statement is used to force one symbol to y whenever another symbol is y. For example, the
following code forces CONSOLE to y whenever USB_CONSOLE is y:

config CONSOLE
bool "Console support"

...

config USB_CONSOLE
bool "USB console support"
select CONSOLE

This section covers some pitfalls and good uses for select.

select pitfalls select might seem like a generally useful feature at first, but can cause configuration
issues if overused.

For example, say that a new dependency is added to the CONSOLE symbol above, by a developer who is
unaware of the USB_CONSOLE symbol (or simply forgot about it):

config CONSOLE
bool "Console support"
depends on STRING_ROUTINES

Enabling USB_CONSOLE now forces CONSOLE to y, even if STRING_ROUTINES is n.

To fix the problem, the STRING_ROUTINES dependency needs to be added to USB_CONSOLE as well:

config USB_CONSOLE
bool "USB console support"
select CONSOLE
depends on STRING_ROUTINES

...

config STRING_ROUTINES
bool "Include string routines"

More insidious cases with dependencies inherited from if and menu statements are common.

An alternative attempt to solve the issue might be to turn the depends on into another select:

config CONSOLE
bool "Console support"
select STRING_ROUTINES

...

config USB_CONSOLE
(continues on next page)

104 Chapter 5. Build and Configuration Systems

https://github.com/zephyrproject-rtos/zephyr/blob/main/tests/drivers/gpio/gpio_basic_api

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

bool "USB console support"
select CONSOLE

In practice, this often amplifies the problem, because any dependencies added to STRING_ROUTINES now
need to be copied to both CONSOLE and USB_CONSOLE.

In general, whenever the dependencies of a symbol are updated, the dependencies of all symbols that
(directly or indirectly) select it have to be updated as well. This is very often overlooked in practice,
even for the simplest case above.

Chains of symbols selecting each other should be avoided in particular, except for simple helper symbols,
as covered below in Using select for helper symbols.

Liberal use of select also tends to make Kconfig files harder to read, both due to the extra dependencies
and due to the non-local nature of select, which hides ways in which a symbol might get enabled.

Alternatives to select For the example in the previous section, a better solution is usually to turn the
select into a depends on:

config CONSOLE
bool "Console support"

...

config USB_CONSOLE
bool "USB console support"
depends on CONSOLE

This makes it impossible to generate an invalid configuration, and means that dependencies only ever
have to be updated in a single spot.

An objection to using depends on here might be that configuration files that enable USB_CONSOLE now
also need to enable CONSOLE:

CONFIG_CONSOLE=y
CONFIG_USB_CONSOLE=y

This comes down to a trade-off, but if enabling CONSOLE is the norm, then a mitigation is to make CONSOLE
default to y:

config CONSOLE
bool "Console support"
default y

This gives just a single assignment in configuration files:

CONFIG_USB_CONSOLE=y

Note that configuration files that do not want CONSOLE enabled now have to explicitly disable it:

CONFIG_CONSOLE=n

Using select for helper symbols A good and safe use of select is for setting “helper” symbols that
capture some condition. Such helper symbols should preferably have no prompt or dependencies.

For example, a helper symbol for indicating that a particular CPU/SoC has an FPU could be defined as
follows:

5.2. Configuration System (Kconfig) 105

Zephyr Project Documentation, Release 2.7.0-rc2

config CPU_HAS_FPU
bool
help

If y, the CPU has an FPU

...

config SOC_FOO
bool "FOO SoC"
select CPU_HAS_FPU

...

config SOC_BAR
bool "BAR SoC"
select CPU_HAS_FPU

This makes it possible for other symbols to check for FPU support in a generic way, without having to
look for particular architectures:

config FPU
bool "Support floating point operations"
depends on CPU_HAS_FPU

The alternative would be to have dependencies like the following, possibly duplicated in several spots:

config FPU
bool "Support floating point operations"
depends on SOC_FOO || SOC_BAR || ...

Invisible helper symbols can also be useful without select. For example, the following code defines a
helper symbol that has the value y if the machine has some arbitrarily-defined “large” amount of memory:

config LARGE_MEM
def_bool MEM_SIZE >= 64

Note: This is short for the following:

config LARGE_MEM
bool
default MEM_SIZE >= 64

select recommendations In summary, here are some recommended practices for select:

• Avoid selecting symbols with prompts or dependencies. Prefer depends on. If depends on causes
annoying bloat in configuration files, consider adding a Kconfig default for the most common value.

Rare exceptions might include cases where you’re sure that the dependencies of the selecting and
selected symbol will never drift out of sync, e.g. when dealing with two simple symbols defined
close to one another within the same if.

Common sense applies, but be aware that select often causes issues in practice. depends on is
usually a cleaner and safer solution.

• Select simple helper symbols without prompts and dependencies however much you like. They’re
a great tool for simplifying Kconfig files.

106 Chapter 5. Build and Configuration Systems

Zephyr Project Documentation, Release 2.7.0-rc2

(Lack of) conditional includes

if blocks add dependencies to each item within the if, as if depends on was used.

A common misunderstanding related to if is to think that the following code conditionally includes the
file Kconfig.other:

if DEP
source "Kconfig.other"
endif

In reality, there are no conditional includes in Kconfig. if has no special meaning around a source.

Note: Conditional includes would be impossible to implement, because if conditions may contain
(either directly or indirectly) forward references to symbols that haven’t been defined yet.

Say that Kconfig.other above contains this definition:

config FOO
bool "Support foo"

In this case, FOO will end up with this definition:

config FOO
bool "Support foo"
depends on DEP

Note that it is redundant to add depends on DEP to the definition of FOO in Kconfig.other, because the
DEP dependency has already been added by if DEP.

In general, try to avoid adding redundant dependencies. They can make the structure of the Kconfig
files harder to understand, and also make changes more error-prone, since it can be hard to spot that the
same dependency is added twice.

“Stuck” symbols in menuconfig and guiconfig

There is a common subtle gotcha related to interdependent configuration symbols with prompts. Con-
sider these symbols:

config FOO
bool "Foo"

config STACK_SIZE
hex "Stack size"
default 0x200 if FOO
default 0x100

Assume that the intention here is to use a larger stack whenever FOO is enabled, and that the configuration
initially has FOO disabled. Also, remember that Zephyr creates an initial configuration in zephyr/.config
in the build directory by merging configuration files (including e.g. prj.conf). This configuration file
exists before menuconfig or guiconfig is run.

When first entering the configuration interface, the value of STACK_SIZE is 0x100, as expected. After
enabling FOO, you might reasonably expect the value of STACK_SIZE to change to 0x200, but it stays as
0x100.

To understand what’s going on, remember that STACK_SIZE has a prompt, meaning it is user-
configurable, and consider that all Kconfig has to go on from the initial configuration is this:

5.2. Configuration System (Kconfig) 107

Zephyr Project Documentation, Release 2.7.0-rc2

CONFIG_STACK_SIZE=0x100

Since Kconfig can’t know if the 0x100 value came from a default or was typed in by the user, it has to
assume that it came from the user. Since STACK_SIZE is user-configurable, the value from the configura-
tion file is respected, and any symbol defaults are ignored. This is why the value of STACK_SIZE appears
to be “frozen” at 0x100 when toggling FOO.

The right fix depends on what the intention is. Here’s some different scenarios with suggestions:

• If STACK_SIZE can always be derived automatically and does not need to be user-configurable, then
just remove the prompt:

config STACK_SIZE
hex
default 0x200 if FOO
default 0x100

Symbols without prompts ignore any value from the saved configuration.

• If STACK_SIZE should usually be user-configurable, but needs to be set to 0x200 when FOO is
enabled, then disable its prompt when FOO is enabled, as described in optional prompts:

config STACK_SIZE
hex "Stack size" if !FOO
default 0x200 if FOO
default 0x100

• If STACK_SIZE should usually be derived automatically, but needs to be set to a custom value in
rare circumstances, then add another option for making STACK_SIZE user-configurable:

config CUSTOM_STACK_SIZE
bool "Use a custom stack size"
help

Enable this if you need to use a custom stack size. When disabled, a
suitable stack size is calculated automatically.

config STACK_SIZE
hex "Stack size" if CUSTOM_STACK_SIZE
default 0x200 if FOO
default 0x100

As long as CUSTOM_STACK_SIZE is disabled, STACK_SIZE will ignore the value from the saved con-
figuration.

It is a good idea to try out changes in the menuconfig or guiconfig interface, to make sure that things
behave the way you expect. This is especially true when making moderately complex changes like these.

Assignments to promptless symbols in configuration files

Assignments to hidden (promptless, also called invisible) symbols in configuration files are always ig-
nored. Hidden symbols get their value indirectly from other symbols, via e.g. default and select.

A common source of confusion is opening the output configuration file (zephyr/.config), seeing a
bunch of assignments to hidden symbols, and assuming that those assignments must be respected when
the configuration is read back in by Kconfig. In reality, all assignments to hidden symbols in zephyr/.
config are ignored by Kconfig, like for other configuration files.

To understand why zephyr/.config still includes assignments to hidden symbols, it helps to realize that
zephyr/.config serves two separate purposes:

1. It holds the saved configuration, and

108 Chapter 5. Build and Configuration Systems

Zephyr Project Documentation, Release 2.7.0-rc2

2. it holds configuration output. zephyr/.config is parsed by the CMake files to let them query
configuration settings, for example.

The assignments to hidden symbols in zephyr/.config are just configuration output. Kconfig itself
ignores assignments to hidden symbols when calculating symbol values.

Note: A minimal configuration, which can be generated from within the menuconfig and guiconfig
interfaces, could be considered closer to just a saved configuration, without the full configuration output.

depends on and string/int/hex symbols

depends on works not just for bool symbols, but also for string, int, and hex symbols (and for choices).

The Kconfig definitions below will hide the FOO_DEVICE_FREQUENCY symbol and disable any configuration
output for it when FOO_DEVICE is disabled.

config FOO_DEVICE
bool "Foo device"

config FOO_DEVICE_FREQUENCY
int "Foo device frequency"
depends on FOO_DEVICE

In general, it’s a good idea to check that only relevant symbols are ever shown in the
menuconfig/guiconfig interface. Having FOO_DEVICE_FREQUENCY show up when FOO_DEVICE is dis-
abled (and possibly hidden) makes the relationship between the symbols harder to understand, even if
code never looks at FOO_DEVICE_FREQUENCY when FOO_DEVICE is disabled.

menuconfig symbols

If the definition of a symbol FOO is immediately followed by other symbols that depend on FOO, then
those symbols become children of FOO. If FOO is defined with config FOO, then the children are shown
indented relative to FOO. Defining FOO with menuconfig FOO instead puts the children in a separate menu
rooted at FOO.

menuconfig has no effect on evaluation. It’s just a display option.

menuconfig can cut down on the number of menus and make the menu structure easier to navigate. For
example, say you have the following definitions:

menu "Foo subsystem"

config FOO_SUBSYSTEM
bool "Foo subsystem"

if FOO_SUBSYSTEM

config FOO_FEATURE_1
bool "Foo feature 1"

config FOO_FEATURE_2
bool "Foo feature 2"

config FOO_FREQUENCY
int "Foo frequency"

(continues on next page)

5.2. Configuration System (Kconfig) 109

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

... lots of other FOO-related symbols

endif # FOO_SUBSYSTEM

endmenu

In this case, it’s probably better to get rid of the menu and turn FOO_SUBSYSTEM into a menuconfig symbol:

menuconfig FOO_SUBSYSTEM
bool "Foo subsystem"

if FOO_SUBSYSTEM

config FOO_FEATURE_1
bool "Foo feature 1"

config FOO_FEATURE_2
bool "Foo feature 2"

config FOO_FREQUENCY
int "Foo frequency"

... lots of other FOO-related symbols

endif # FOO_SUBSYSTEM

In the menuconfig interface, this will be displayed as follows:

[*] Foo subsystem --->

Note that making a symbol without children a menuconfig is meaningless. It should be avoided, because
it looks identical to a symbol with all children invisible:

[*] I have no children ----
[*] All my children are invisible ----

Checking changes in menuconfig/guiconfig

When adding new symbols or making other changes to Kconfig files, it is a good idea to look up the
symbols in menuconfig or guiconfig afterwards. To get to a symbol quickly, use the jump-to feature (press
/).

Here are some things to check:

• Are the symbols placed in a good spot? Check that they appear in a menu where they make sense,
close to related symbols.

If one symbol depends on another, then it’s often a good idea to place it right after the symbol it
depends on. It will then be shown indented relative to the symbol it depends on in the menuconfig
interface, and in a separate menu rooted at the symbol in guiconfig. This also works if several
symbols are placed after the symbol they depend on.

• Is it easy to guess what the symbols do from their prompts?

• If many symbols are added, do all combinations of values they can be set to make sense?

For example, if two symbols FOO_SUPPORT and NO_FOO_SUPPORT are added, and both can be enabled
at the same time, then that makes a nonsensical configuration. In this case, it’s probably better to
have a single FOO_SUPPORT symbol.

110 Chapter 5. Build and Configuration Systems

Zephyr Project Documentation, Release 2.7.0-rc2

• Are there any duplicated dependencies?

This can be checked by selecting a symbol and pressing ? to view the symbol information. If
there are duplicated dependencies, then use the Included via ... path shown in the symbol
information to figure out where they come from.

Checking changes with scripts/kconfig/lint.py

After you make Kconfig changes, you can use the scripts/kconfig/lint.py script to check for some potential
issues, like unused symbols and symbols that are impossible to enable. Use --help to see available
options.

Some checks are necessarily a bit heuristic, so a symbol being flagged by a check does not neces-
sarily mean there’s a problem. If a check returns a false positive e.g. due to token pasting in C
(CONFIG_FOO_##index##_BAR), just ignore it.

When investigating an unknown symbol FOO_BAR, it is a good idea to run git grep FOO_BAR to look for
references. It is also a good idea to search for some components of the symbol name with e.g. git grep
FOO and git grep BAR, as it can help uncover token pasting.

Style recommendations and shorthands

This section gives some style recommendations and explains some common Kconfig shorthands.

Factoring out common dependencies If a sequence of symbols/choices share a common dependency,
the dependency can be factored out with an if.

As an example, consider the following code:

config FOO
bool "Foo"
depends on DEP

config BAR
bool "Bar"
depends on DEP

choice
prompt "Choice"
depends on DEP

config BAZ
bool "Baz"

config QAZ
bool "Qaz"

endchoice

Here, the DEP dependency can be factored out like this:

if DEP

config FOO
bool "Foo"

config BAR
(continues on next page)

5.2. Configuration System (Kconfig) 111

https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/kconfig/lint.py

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

bool "Bar"

choice
prompt "Choice"

config BAZ
bool "Baz"

config QAZ
bool "Qaz"

endchoice

endif # DEP

Note: Internally, the second version of the code is transformed into the first.

If a sequence of symbols/choices with shared dependencies are all in the same menu, the dependency
can be put on the menu itself:

menu "Foo features"
depends on FOO_SUPPORT

config FOO_FEATURE_1
bool "Foo feature 1"

config FOO_FEATURE_2
bool "Foo feature 2"

endmenu

If FOO_SUPPORT is n, the entire menu disappears.

Redundant defaults bool symbols implicitly default to n, and string symbols implicitly default to the
empty string. Therefore, default n and default "" are (almost) always redundant.

The recommended style in Zephyr is to skip redundant defaults for bool and string symbols. That
also generates clearer documentation: (Implicitly defaults to n instead of n if <dependencies, possibly
inherited>).

Note: The one case where default n/default "" is not redundant is when defining a symbol in
multiple locations and wanting to override e.g. a default y on a later definition.

Defaults should always be given for int and hex symbols, however, as they implicitly default to the empty
string. This is partly for compatibility with the C Kconfig tools, though an implicit 0 default might be less
likely to be what was intended compared to other symbol types as well.

Common Kconfig shorthands Kconfig has two shorthands that deal with prompts and defaults.

• <type> "prompt" is a shorthand for giving a symbol/choice a type and a prompt at the same time.
These two definitions are equal:

config FOO
bool "foo"

112 Chapter 5. Build and Configuration Systems

Zephyr Project Documentation, Release 2.7.0-rc2

config FOO
bool
prompt "foo"

The first style, with the shorthand, is preferred in Zephyr.

• def_<type> <value> is a shorthand for giving a type and a value at the same time. These two
definitions are equal:

config FOO
def_bool BAR && BAZ

config FOO
bool
default BAR && BAZ

Using both the <type> "prompt" and the def_<type> <value> shorthand in the same definition is
redundant, since it gives the type twice.

The def_<type> <value> shorthand is generally only useful for symbols without prompts, and some-
what obscure.

Note: For a symbol defined in multiple locations (e.g., in a Kconfig.defconfig file in Zephyr), it is
best to only give the symbol type for the “base” definition of the symbol, and to use default (instead
of def_<type> value) for the remaining definitions. That way, if the base definition of the symbol
is removed, the symbol ends up without a type, which generates a warning that points to the other
definitions. That makes the extra definitions easier to discover and remove.

Prompt strings For a Kconfig symbol that enables a driver/subsystem FOO, consider having just “Foo”
as the prompt, instead of “Enable Foo support” or the like. It will usually be clear in the context of an
option that can be toggled on/off, and makes things consistent.

Header comments and other nits A few formatting nits, to help keep things consistent:

• Use this format for any header comments at the top of Kconfig files:

<Overview of symbols defined in the file, preferably in plain English>
(Blank line)
Copyright (c) 2019 ...
SPDX-License-Identifier: <License>
(Blank line)
(Kconfig definitions)

• Format comments as # Comment rather than #Comment

• Put a blank line before/after each top-level if and endif

• Use a single tab for each indentation

• Indent help text with two extra spaces

Lesser-known/used Kconfig features

This section lists some more obscure Kconfig behaviors and features that might still come in handy.

5.2. Configuration System (Kconfig) 113

Zephyr Project Documentation, Release 2.7.0-rc2

The imply statement The imply statement is similar to select, but respects dependencies and doesn’t
force a value. For example, the following code could be used to enable USB keyboard support by default
on the FOO SoC, while still allowing the user to turn it off:

config SOC_FOO
bool "FOO SoC"
imply USB_KEYBOARD

...

config USB_KEYBOARD
bool "USB keyboard support"

imply acts like a suggestion, whereas select forces a value.

Optional prompts A condition can be put on a symbol’s prompt to make it optionally configurable by
the user. For example, a value MASK that’s hardcoded to 0xFF on some boards and configurable on others
could be expressed as follows:

config MASK
hex "Bitmask" if HAS_CONFIGURABLE_MASK
default 0xFF

Note: This is short for the following:

config MASK
hex
prompt "Bitmask" if HAS_CONFIGURABLE_MASK
default 0xFF

The HAS_CONFIGURABLE_MASK helper symbol would get selected by boards to indicate that MASK is con-
figurable. When MASK is configurable, it will also default to 0xFF.

Optional choices Defining a choice with the optional keyword allows the whole choice to be toggled
off to select none of the symbols:

choice
prompt "Use legacy protocol"
optional

config LEGACY_PROTOCOL_1
bool "Legacy protocol 1"

config LEGACY_PROTOCOL_2
bool "Legacy protocol 2"

endchoice

In the menuconfig interface, this will be displayed e.g. as [*] Use legacy protocol (Legacy
protocol 1) --->, where the choice can be toggled off to enable neither of the symbols.

visible if conditions Putting a visible if condition on a menu hides the menu and all the symbols
within it, while still allowing symbol default values to kick in.

As a motivating example, consider the following code:

114 Chapter 5. Build and Configuration Systems

Zephyr Project Documentation, Release 2.7.0-rc2

menu "Foo subsystem"
depends on HAS_CONFIGURABLE_FOO

config FOO_SETTING_1
int "Foo setting 1"
default 1

config FOO_SETTING_2
int "Foo setting 2"
default 2

endmenu

When HAS_CONFIGURABLE_FOO is n, no configuration output is generated for FOO_SETTING_1 and
FOO_SETTING_2, as the code above is logically equivalent to the following code:

config FOO_SETTING_1
int "Foo setting 1"
default 1
depends on HAS_CONFIGURABLE_FOO

config FOO_SETTING_2
int "Foo setting 2"
default 2
depends on HAS_CONFIGURABLE_FOO

If we want the symbols to still get their default values even when HAS_CONFIGURABLE_FOO is n, but not
be configurable by the user, then we can use visible if instead:

menu "Foo subsystem"
visible if HAS_CONFIGURABLE_FOO

config FOO_SETTING_1
int "Foo setting 1"
default 1

config FOO_SETTING_2
int "Foo setting 2"
default 2

endmenu

This is logically equivalent to the following:

config FOO_SETTING_1
int "Foo setting 1" if HAS_CONFIGURABLE_FOO
default 1

config FOO_SETTING_2
int "Foo setting 2" if HAS_CONFIGURABLE_FOO
default 2

Note: See the optional prompts section for the meaning of the conditions on the prompts.

When HAS_CONFIGURABLE is n, we now get the following configuration output for the symbols, instead
of no output:

5.2. Configuration System (Kconfig) 115

Zephyr Project Documentation, Release 2.7.0-rc2

...
CONFIG_FOO_SETTING_1=1
CONFIG_FOO_SETTING_2=2
...

Other resources

The Intro to symbol values section in the Kconfiglib docstring goes over how symbols values are calculated
in more detail.

5.2.4 Custom Kconfig Preprocessor Functions

Kconfiglib supports custom Kconfig preprocessor functions written in Python. These functions are defined
in scripts/kconfig/kconfigfunctions.py.

Note: The official Kconfig preprocessor documentation can be found here.

Most of the custom preprocessor functions are used to get devicetree information into Kconfig. For
example, the default value of a Kconfig symbol can be fetched from a devicetree reg property.

Devicetree-related Functions

The functions listed below are used to get devicetree information into Kconfig. See the Python docstrings
in scripts/kconfig/kconfigfunctions.py for detailed documentation.

The *_int version of each function returns the value as a decimal integer, while the *_hex version returns
a hexadecimal value starting with 0x.

$(dt_chosen_reg_addr_int,<property in /chosen>[,<index>,<unit>])
$(dt_chosen_reg_addr_hex,<property in /chosen>[,<index>,<unit>])
$(dt_chosen_reg_size_int,<property in /chosen>[,<index>,<unit>])
$(dt_chosen_reg_size_hex,<property in /chosen>[,<index>,<unit>])
$(dt_node_reg_addr_int,<node path>[,<index>,<unit>])
$(dt_node_reg_addr_hex,<node path>[,<index>,<unit>])
$(dt_node_reg_size_int,<node path>[,<index>,<unit>])
$(dt_node_reg_size_hex,<node path>[,<index>,<unit>])
$(dt_compat_enabled,<compatible string>)
$(dt_chosen_enabled,<property in /chosen>)
$(dt_node_has_bool_prop,<node path>,<prop>)
$(dt_node_has_prop,<node path>,<prop>)

Example Usage Assume that the devicetree for some board looks like this:

{
soc {

#address-cells = <1>;
#size-cells = <1>;

spi0: spi@10014000 {
compatible = "sifive,spi0";
reg = <0x10014000 0x1000 0x20010000 0x3c0900>;
reg-names = "control", "mem";

(continues on next page)

116 Chapter 5. Build and Configuration Systems

https://github.com/ulfalizer/Kconfiglib/blob/master/kconfiglib.py
https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/kconfig/kconfigfunctions.py
https://www.kernel.org/doc/html/latest/kbuild/kconfig-macro-language.html
https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/kconfig/kconfigfunctions.py

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

...
};

};

The second entry in reg in spi@1001400 (<0x20010000 0x3c0900>) corresponds to mem, and has the
address 0x20010000. This address can be inserted into Kconfig as follows:

config FLASH_BASE_ADDRESS
default $(dt_node_reg_addr_hex,/soc/spi@1001400,1)

After preprocessor expansion, this turns into the definition below:

config FLASH_BASE_ADDRESS
default 0x20010000

5.2.5 Kconfig extensions

Zephyr uses the Kconfiglib implementation of Kconfig, which includes some Kconfig extensions:

• Environment variables in source statements are expanded directly, meaning no “bounce” symbols
with option env="ENV_VAR" need to be defined.

Note: option env has been removed from the C tools as of Linux 4.18 as well.

The recommended syntax for referencing environment variables is $(FOO) rather than $FOO. This
uses the new Kconfig preprocessor. The $FOO syntax for expanding environment variables is only
supported for backwards compatibility.

• The source statement supports glob patterns and includes each matching file. A pattern is required
to match at least one file.

Consider the following example:

source "foo/bar/*/Kconfig"

If the pattern foo/bar/*/Kconfig matches the files foo/bar/baz/Kconfig and foo/bar/qaz/
Kconfig, the statement above is equivalent to the following two source statements:

source "foo/bar/baz/Kconfig"
source "foo/bar/qaz/Kconfig"

If no files match the pattern, an error is generated.

The wildcard patterns accepted are the same as for the Python glob module.

For cases where it’s okay for a pattern to match no files (or for a plain filename to not exist), a
separate osource (optional source) statement is available. osource is a no-op if no file matches.

Note: source and osource are analogous to include and -include in Make.

• An rsource statement is available for including files specified with a relative path. The path is
relative to the directory of the Kconfig file that contains the rsource statement.

As an example, assume that foo/Kconfig is the top-level Kconfig file, and that foo/bar/Kconfig
has the following statements:

5.2. Configuration System (Kconfig) 117

https://github.com/ulfalizer/Kconfiglib
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://raw.githubusercontent.com/torvalds/linux/master/Documentation/kbuild/kconfig-macro-language.txt
https://docs.python.org/3/library/glob.html

Zephyr Project Documentation, Release 2.7.0-rc2

source "qaz/Kconfig1"
rsource "qaz/Kconfig2"

This will include the two files foo/qaz/Kconfig1 and foo/bar/qaz/Kconfig2.

rsource can be used to create Kconfig “subtrees” that can be moved around freely.

rsource also supports glob patterns.

A drawback of rsource is that it can make it harder to figure out where a file gets included, so only
use it if you need it.

• An orsource statement is available that combines osource and rsource.

For example, the following statement will include Kconfig1 and Kconfig2 from the current direc-
tory (if they exist):

orsource "Kconfig[12]"

• def_int, def_hex, and def_string keywords are available, analogous to def_bool. These set the
type and add a default at the same time.

Users interested in optimizing their configuraion for security should refer to the Zephyr Security Guide’s
section on the Hardening Tool.

118 Chapter 5. Build and Configuration Systems

Chapter 6

Application Development

Note: In this document, we’ll assume your application directory is <home>/app, and that its build
directory is <home>/app/build. (These terms are defined in the following Overview.) On Linux/macOS,
<home> is equivalent to ~, whereas on Windows it’s %userprofile%.

6.1 Overview

Zephyr’s build system is based on CMake.

The build system is application-centric, and requires Zephyr-based applications to initiate building the
kernel source tree. The application build controls the configuration and build process of both the appli-
cation and Zephyr itself, compiling them into a single binary.

Zephyr’s base directory hosts Zephyr’s own source code, its kernel configuration options, and its build
definitions.

The files in the application directory link Zephyr with the application. This directory contains all
application-specific files, such as configuration options and source code.

An application in its simplest form has the following contents:

<home>/app
CMakeLists.txt
prj.conf
src

main.c

These contents are:

• CMakeLists.txt: This file tells the build system where to find the other application files, and links
the application directory with Zephyr’s CMake build system. This link provides features supported
by Zephyr’s build system, such as board-specific kernel configuration files, the ability to run and
debug compiled binaries on real or emulated hardware, and more.

• Kernel configuration files: An application typically provides a Kconfig configuration file (usually
called prj.conf) that specifies application-specific values for one or more kernel configuration
options. These application settings are merged with board-specific settings to produce a kernel
configuration.

See Kconfig Configuration below for more information.

119

https://www.cmake.org

Zephyr Project Documentation, Release 2.7.0-rc2

• Application source code files: An application typically provides one or more application-specific
files, written in C or assembly language. These files are usually located in a sub-directory called
src.

Once an application has been defined, you can use CMake to create project files for building it from a
directory where you want to host these files. This is known as the build directory. Application build
artifacts are always generated in a build directory; Zephyr does not support “in-tree” builds.

The following sections describe how to create, build, and run Zephyr applications, followed by more
detailed reference material.

6.2 Source Tree Structure

Understanding the Zephyr source tree can be helpful in locating the code associated with a particular
Zephyr feature.

At the top of the tree there are several files that are of importance:

CMakeLists.txt The top-level file for the CMake build system, containing a lot of the logic required to
build Zephyr.

Kconfig The top-level Kconfig file, which refers to the file Kconfig.zephyr also found at the top-level
directory.

See the Kconfig section of the manual for detailed Kconfig documentation.

west.yml The West (Zephyr’s meta-tool) manifest, listing the external repositories managed by the west
command-line tool.

The Zephyr source tree also contains the following top-level directories, each of which may have one or
more additional levels of subdirectories which are not described here.

arch Architecture-specific kernel and system-on-chip (SoC) code. Each supported architecture (for ex-
ample, x86 and ARM) has its own subdirectory, which contains additional subdirectories for the
following areas:

• architecture-specific kernel source files

• architecture-specific kernel include files for private APIs

soc SoC related code and configuration files.

boards Board related code and configuration files.

doc Zephyr technical documentation source files and tools used to generate the https://docs.
zephyrproject.org web content.

drivers Device driver code.

dts devicetree source files used to describe non-discoverable board-specific hardware details.

include Include files for all public APIs, except those defined under lib.

kernel Architecture-independent kernel code.

lib Library code, including the minimal standard C library.

misc Miscellaneous code that doesn’t belong to any of the other top-level directories.

samples Sample applications that demonstrate the use of Zephyr features.

scripts Various programs and other files used to build and test Zephyr applications.

cmake Additional build scripts needed to build Zephyr.

subsys Subsystems of Zephyr, including:

• USB device stack code.

120 Chapter 6. Application Development

https://docs.zephyrproject.org
https://docs.zephyrproject.org

Zephyr Project Documentation, Release 2.7.0-rc2

• Networking code, including the Bluetooth stack and networking stacks.

• File system code.

• Bluetooth host and controller

tests Test code and benchmarks for Zephyr features.

share Additional architecture independent data. Currently containing Zephyr CMake package.

6.3 Example standalone application

A reference standalone application contained in its own Git repository can be found in the Example
Application repository. It can be used as a reference on how to structure out-of-tree, Zephyr-based
applications using the T2 star topology. It also demonstrates the out-of-tree use of features commonly
used in applications such as:

• Custom boards

• Custom devicetree bindings

• Custom drivers

• Continuous Integration (CI) setup

6.4 Creating an Application

Follow these steps to create a new application directory. (Refer to the Example Application repository
for a reference standalone application in its own Git repository or to samples-and-demos for existing
applications provided as part of Zephyr.)

1. Create an application directory on your workstation computer, outside of the Zephyr base directory.
Usually you’ll want to create it somewhere under your user’s home directory.

For example, in a Unix shell or Windows cmd.exe prompt, navigate to where you want to create
your application, then enter:

mkdir app

Warning: Building Zephyr or creating an application in a directory with spaces anywhere
on the path is not supported. So the Windows path C:\Users\YourName\app will work, but
C:\Users\Your Name\app will not.

2. It’s recommended to place all application source code in a subdirectory named src. This makes it
easier to distinguish between project files and sources.

Continuing the previous example, enter:

cd app
mkdir src

3. Place your application source code in the src sub-directory. For this example, we’ll assume you
created a file named src/main.c.

4. Create a file named CMakeLists.txt in the app directory with the following contents:

6.3. Example standalone application 121

https://github.com/zephyrproject-rtos/example-application
https://github.com/zephyrproject-rtos/example-application
https://github.com/zephyrproject-rtos/example-application

Zephyr Project Documentation, Release 2.7.0-rc2

Find Zephyr. This also loads Zephyr's build system.
cmake_minimum_required(VERSION 3.13.1)
find_package(Zephyr)
project(my_zephyr_app)

Add your source file to the "app" target. This must come after
find_package(Zephyr) which defines the target.
target_sources(app PRIVATE src/main.c)

find_package(Zephyr) sets the minimum CMake version and pulls in the Zephyr build system,
which creates a CMake target named app (see Zephyr CMake Package). Adding sources to this
target is how you include them in the build.

Note: cmake_minimum_required() is also invoked by the Zephyr package. The most recent of the
two versions will be enforced by CMake.

5. Set Kconfig configuration options. See Kconfig Configuration.

6. Configure any devicetree overlays needed by your application. See Set devicetree overlays.

Note: include($ENV{ZEPHYR_BASE}/cmake/app/boilerplate.cmake NO_POLICY_SCOPE) is still sup-
ported for backward compatibility with older applications. Including boilerplate.cmake directly in
the sample still requires to run source zephyr-env.sh or execute zephyr-env.cmd before building the
application.

6.5 Setting Variables

6.5.1 Option 1: Just Once

To set the environment variable MY_VARIABLE to foo for the lifetime of your current terminal window:

Linux and macOS
export MY_VARIABLE=foo

Windows
set MY_VARIABLE=foo

Warning: This is best for experimentation. If you close your terminal window, use another terminal
window or tab, restart your computer, etc., this setting will be lost forever.

Using options 2 or 3 is recommended if you want to keep using the setting.

6.5.2 Option 2: In all Terminals

macOS and Linux:

Add the export MY_VARIABLE=foo line to your shell’s startup script in your home directory. For Bash,
this is usually ~/.bashrc on Linux or ~/.bash_profile on macOS. Changes in these startup scripts don’t
affect shell instances already started; try opening a new terminal window to get the new settings.

Windows:

You can use the setx program in cmd.exe or the third-party RapidEE program.

122 Chapter 6. Application Development

Zephyr Project Documentation, Release 2.7.0-rc2

To use setx, type this command, then close the terminal window. Any new cmd.exe windows will have
MY_VARIABLE set to foo.

setx MY_VARIABLE foo

To install RapidEE, a freeware graphical environment variable editor, using Chocolatey in an Adminis-
trator command prompt:

choco install rapidee

You can then run rapidee from your terminal to launch the program and set environment variables.
Make sure to use the “User” environment variables area – otherwise, you have to run RapidEE as admin-
istrator. Also make sure to save your changes by clicking the Save button at top left before exiting.Settings
you make in RapidEE will be available whenever you open a new terminal window.

6.5.3 Option 3: Using zephyrrc files

Choose this option if you don’t want to make the variable’s setting available to all of your terminals, but
still want to save the value for loading into your environment when you are using Zephyr.

macOS and Linux:

Create a file named ~/.zephyrrc if it doesn’t exist, then add this line to it:

export MY_VARIABLE=foo

To get this value back into your current terminal environment, you must run source zephyr-env.sh
from the main zephyr repository. Among other things, this script sources ~/.zephyrrc.

The value will be lost if you close the window, etc.; run source zephyr-env.sh again to get it back.

Windows:

Add the line set MY_VARIABLE=foo to the file %userprofile%\zephyrrc.cmd using a text editor such as
Notepad to save the value.

To get this value back into your current terminal environment, you must run zephyr-env.cmd in a cmd.
exe window after changing directory to the main zephyr repository. Among other things, this script runs
%userprofile%\zephyrrc.cmd.

The value will be lost if you close the window, etc.; run zephyr-env.cmd again to get it back.

These scripts:

• set ZEPHYR_BASE (see below) to the location of the zephyr repository

• adds some Zephyr-specific locations (such as zephyr’s scripts directory) to your PATH environment
variable

• loads any settings from the zephyrrc files described above in Option 3: Using zephyrrc files.

You can thus use them any time you need any of these settings.

6.5.4 Option 4: Using Zephyr Build Configuration CMake package

Choose this option if you want to make those variable settings shared among all users of your project.

Using a Zephyr Build Configuration CMake package allows you to commit the shared settings into the
repository, so that all users can share them.

It also removes the need for running source zephyr-env.sh or zephyr-env.cmd when opening a new
terminal.

6.5. Setting Variables 123

https://chocolatey.org/packages/RapidEE

Zephyr Project Documentation, Release 2.7.0-rc2

6.6 Important Build System Variables

You can control the Zephyr build system using many variables. This section describes the most important
ones that every Zephyr developer should know about.

Note: The variables BOARD, CONF_FILE, and DTC_OVERLAY_FILE can be supplied to the build system in
3 ways (in order of precedence):

• As a parameter to the west build or cmake invocation via the -D command-line switch. If you
have multiple overlay files, you should use quotations, "file1.overlay;file2.overlay"

• As Setting Variables.

• As a set(<VARIABLE> <VALUE>) statement in your CMakeLists.txt

• ZEPHYR_BASE: Zephyr base variable used by the build system. find_package(Zephyr) will auto-
matically set this as a cached CMake variable. But ZEPHYR_BASE can also be set as an environment
variable in order to force CMake to use a specific Zephyr installation.

• BOARD: Selects the board that the application’s build will use for the default configuration. See
boards for built-in boards, and Board Porting Guide for information on adding board support.

• CONF_FILE: Indicates the name of one or more Kconfig configuration fragment files. Multiple file-
names can be separated with either spaces or semicolons. Each file includes Kconfig configuration
values that override the default configuration values.

See The Initial Configuration for more information.

• OVERLAY_CONFIG: Additional Kconfig configuration fragment files. Multiple filenames can be sepa-
rated with either spaces or semicolons. This can be useful in order to leave CONF_FILE at its default
value, but “mix in” some additional configuration options.

• DTC_OVERLAY_FILE: One or more devicetree overlay files to use. Multiple files can be separated
with semicolons. See Set devicetree overlays for examples and Introduction to devicetree for infor-
mation about devicetree and Zephyr.

• ZEPHYR_MODULES: A CMake list containing absolute paths of additional directories with source code,
Kconfig, etc. that should be used in the application build. See Modules (External projects) for details.

6.7 Application CMakeLists.txt

Every application must have a CMakeLists.txt file. This file is the entry point, or top level, of the build
system. The final zephyr.elf image contains both the application and the kernel libraries.

This section describes some of what you can do in your CMakeLists.txt. Make sure to follow these
steps in order.

1. If you only want to build for one board, add the name of the board configuration for your applica-
tion on a new line. For example:

set(BOARD qemu_x86)

Refer to boards for more information on available boards.

The Zephyr build system determines a value for BOARD by checking the following, in order (when
a BOARD value is found, CMake stops looking further down the list):

• Any previously used value as determined by the CMake cache takes highest precedence. This
ensures you don’t try to run a build with a different BOARD value than you set during the build
configuration step.

124 Chapter 6. Application Development

Zephyr Project Documentation, Release 2.7.0-rc2

• Any value given on the CMake command line (directly or indirectly via west build) using
-DBOARD=YOUR_BOARD will be checked for and used next.

• If an environment variable BOARD is set, its value will then be used.

• Finally, if you set BOARD in your application CMakeLists.txt as described in this step, this
value will be used.

2. If your application uses a configuration file or files other than the usual prj.conf (or
prj_YOUR_BOARD.conf, where YOUR_BOARD is a board name), add lines setting the CONF_FILE vari-
able to these files appropriately. If multiple filenames are given, separate them by a single space
or semicolon. CMake lists can be used to build up configuration fragment files in a modular way
when you want to avoid setting CONF_FILE in a single place. For example:

set(CONF_FILE "fragment_file1.conf")
list(APPEND CONF_FILE "fragment_file2.conf")

See The Initial Configuration for more information.

3. If your application uses devicetree overlays, you may need to set DTC_OVERLAY_FILE. See Set
devicetree overlays.

4. If your application has its own kernel configuration options, create a Kconfig file in the same
directory as your application’s CMakeLists.txt.

See the Kconfig section of the manual for detailed Kconfig documentation.

An (unlikely) advanced use case would be if your application has its own unique configuration
options that are set differently depending on the build configuration.

If you just want to set application specific values for existing Zephyr configuration options, refer
to the CONF_FILE description above.

Structure your Kconfig file like this:

SPDX-License-Identifier: Apache-2.0

mainmenu "Your Application Name"

Your application configuration options go here

Sources Kconfig.zephyr in the Zephyr root directory.
#
Note: All 'source' statements work relative to the Zephyr root directory (due
to the $srctree environment variable being set to $ZEPHYR_BASE). If you want
to 'source' relative to the current Kconfig file instead, use 'rsource' (or a
path relative to the Zephyr root).
source "Kconfig.zephyr"

Note: Environment variables in source statements are expanded directly, so you do not need to
define an option env="ZEPHYR_BASE" Kconfig “bounce” symbol. If you use such a symbol, it must
have the same name as the environment variable.

See Kconfig extensions for more information.

The Kconfig file is automatically detected when placed in the application directory, but it is also
possible for it to be found elsewhere if the CMake variable KCONFIG_ROOT is set with an absolute
path.

5. Specify that the application requires Zephyr on a new line, after any lines added from the steps
above:

6.7. Application CMakeLists.txt 125

Zephyr Project Documentation, Release 2.7.0-rc2

find_package(Zephyr)
project(my_zephyr_app)

Note: find_package(Zephyr REQUIRED HINTS $ENV{ZEPHYR_BASE}) can be used if enforcing a
specific Zephyr installation by explicitly setting the ZEPHYR_BASE environment variable should be
supported. All samples in Zephyr supports the ZEPHYR_BASE environment variable.

6. Now add any application source files to the ‘app’ target library, each on their own line, like so:

target_sources(app PRIVATE src/main.c)

Below is a simple example CMakeList.txt:

set(BOARD qemu_x86)

find_package(Zephyr)
project(my_zephyr_app)

target_sources(app PRIVATE src/main.c)

The Cmake property HEX_FILES_TO_MERGE leverages the application configuration provided by Kconfig
and CMake to let you merge externally built hex files with the hex file generated when building the
Zephyr application. For example:

set_property(GLOBAL APPEND PROPERTY HEX_FILES_TO_MERGE
${app_bootloader_hex}
${PROJECT_BINARY_DIR}/${KERNEL_HEX_NAME}
${app_provision_hex})

6.8 CMakeCache.txt

CMake uses a CMakeCache.txt file as persistent key/value string storage used to cache values between
runs, including compile and build options and paths to library dependencies. This cache file is created
when CMake is run in an empty build folder.

For more details about the CMakeCache.txt file see the official CMake documentation runningcmake .

6.9 Application Configuration

6.9.1 Kconfig Configuration

Application configuration options are usually set in prj.conf in the application directory. For example,
C++ support could be enabled with this assignment:

CONFIG_CPLUSPLUS=y

Looking at existing samples is a good way to get started.

See Setting Kconfig configuration values for detailed documentation on setting Kconfig configuration val-
ues. The The Initial Configuration section on the same page explains how the initial configuration is
derived. See configuration_options for a complete list of configuration options. See Hardening Tool for
security information related with Kconfig options.

The other pages in the Kconfig section of the manual are also worth going through, especially if you
planning to add new configuration options.

126 Chapter 6. Application Development

http://cmake.org/runningcmake/

Zephyr Project Documentation, Release 2.7.0-rc2

6.9.2 Devicetree Overlays

See Set devicetree overlays.

6.10 Application-Specific Code

Application-specific source code files are normally added to the application’s src directory. If the ap-
plication adds a large number of files the developer can group them into sub-directories under src, to
whatever depth is needed.

Application-specific source code should not use symbol name prefixes that have been reserved by the
kernel for its own use. For more information, see Naming Conventions.

6.10.1 Third-party Library Code

It is possible to build library code outside the application’s src directory but it is important that both
application and library code targets the same Application Binary Interface (ABI). On most architectures
there are compiler flags that control the ABI targeted, making it important that both libraries and ap-
plications have certain compiler flags in common. It may also be useful for glue code to have access to
Zephyr kernel header files.

To make it easier to integrate third-party components, the Zephyr build system has defined CMake
functions that give application build scripts access to the zephyr compiler options. The func-
tions are documented and defined in cmake/extensions.cmake and follow the naming convention
zephyr_get_<type>_<format>.

The following variables will often need to be exported to the third-party build system.

• CMAKE_C_COMPILER, CMAKE_AR.

• ARCH and BOARD, together with several variables that identify the Zephyr kernel version.

samples/application_development/external_lib is a sample project that demonstrates some of these fea-
tures.

6.11 Building an Application

The Zephyr build system compiles and links all components of an application into a single application
image that can be run on simulated hardware or real hardware.

Like any other CMake-based system, the build process takes place in two stages. First, build files (also
known as a buildsystem) are generated using the cmake command-line tool while specifying a generator.
This generator determines the native build tool the buildsystem will use in the second stage. The second
stage runs the native build tool to actually build the source files and generate an image. To learn more
about these concepts refer to the CMake introduction in the official CMake documentation.

Although the default build tool in Zephyr is west, Zephyr’s meta-tool, which invokes cmake and the
underlying build tool (ninja or make) behind the scenes, you can also choose to invoke cmake directly
if you prefer. On Linux and macOS you can choose between the make and ninja generators (i.e. build
tools), whereas on Windows you need to use ninja, since make is not supported on this platform. For
simplicity we will use ninja throughout this guide, and if you choose to use west build to build your
application know that it will default to ninja under the hood.

As an example, let’s build the Hello World sample for the reel_board:

Using west:

6.10. Application-Specific Code 127

https://github.com/zephyrproject-rtos/zephyr/wiki/Naming-Conventions
https://github.com/zephyrproject-rtos/zephyr/blob/main/cmake/extensions.cmake
https://github.com/zephyrproject-rtos/zephyr/blob/main/samples/application_development/external_lib
https://cmake.org/cmake/help/latest/manual/cmake.1.html#description

Zephyr Project Documentation, Release 2.7.0-rc2

west build -b reel_board samples/hello_world

Using CMake and ninja:

Use cmake to configure a Ninja-based buildsystem:
cmake -B build -GNinja -DBOARD=reel_board samples/hello_world

Now run ninja on the generated build system:
ninja -C build

On Linux and macOS, you can also build with make instead of ninja:

Using west:

• to use make just once, add -- -G"Unix Makefiles" to the west build command line; see the west
build documentation for an example.

• to use make by default from now on, run west config build.generator "Unix Makefiles".

Using CMake directly:

Use cmake to configure a Make-based buildsystem:
cmake -B build -DBOARD=reel_board samples/hello_world

Now run ninja on the generated build system:
make -C build

6.11.1 Basics

Note: In the below example, west is used outside of a west workspace. For this to work, you must
set the ZEPHYR_BASE environment variable to the path of your zephyr git repository, using one of the
methods on the Environment Variables page.

1. Navigate to the application directory <home>/app.

2. Enter the following commands to build the application’s zephyr.elf image for the board specified
in the command-line parameters:

Using west:

west build -b <board>

Using CMake and ninja:

mkdir build && cd build

Use cmake to configure a Ninja-based buildsystem:
cmake -GNinja -DBOARD=<board> ..

Now run ninja on the generated build system:
ninja

If desired, you can build the application using the configuration settings specified in an alternate
.conf file using the CONF_FILE parameter. These settings will override the settings in the applica-
tion’s .config file or its default .conf file. For example:

Using west:

128 Chapter 6. Application Development

Zephyr Project Documentation, Release 2.7.0-rc2

west build -b <board> -- -DCONF_FILE=prj.alternate.conf

Using CMake and ninja:

mkdir build && cd build
cmake -GNinja -DBOARD=<board> -DCONF_FILE=prj.alternate.conf ..
ninja

As described in the previous section, you can instead choose to permanently set the board and
configuration settings by either exporting BOARD and CONF_FILE environment variables or by setting
their values in your CMakeLists.txt using set() statements. Additionally, west allows you to set
a default board.

6.11.2 Build Directory Contents

When using the Ninja generator a build directory looks like this:

<home>/app/build
build.ninja
CMakeCache.txt
CMakeFiles
cmake_install.cmake
rules.ninja
zephyr

The most notable files in the build directory are:

• build.ninja, which can be invoked to build the application.

• A zephyr directory, which is the working directory of the generated build system, and where most
generated files are created and stored.

After running ninja, the following build output files will be written to the zephyr sub-directory of the
build directory. (This is not the Zephyr base directory, which contains the Zephyr source code etc. and
is described above.)

• .config, which contains the configuration settings used to build the application.

Note: The previous version of .config is saved to .config.old whenever the configuration is
updated. This is for convenience, as comparing the old and new versions can be handy.

• Various object files (.o files and .a files) containing compiled kernel and application code.

• zephyr.elf, which contains the final combined application and kernel binary. Other binary output
formats, such as .hex and .bin, are also supported.

6.11.3 Rebuilding an Application

Application development is usually fastest when changes are continually tested. Frequently rebuilding
your application makes debugging less painful as the application becomes more complex. It’s usually a
good idea to rebuild and test after any major changes to the application’s source files, CMakeLists.txt
files, or configuration settings.

Important: The Zephyr build system rebuilds only the parts of the application image potentially affected
by the changes. Consequently, rebuilding an application is often significantly faster than building it the
first time.

6.11. Building an Application 129

Zephyr Project Documentation, Release 2.7.0-rc2

Sometimes the build system doesn’t rebuild the application correctly because it fails to recompile one or
more necessary files. You can force the build system to rebuild the entire application from scratch with
the following procedure:

1. Open a terminal console on your host computer, and navigate to the build directory <home>/app/
build.

2. Enter one of the following commands, depending on whether you want to use west or cmake
directly to delete the application’s generated files, except for the .config file that contains the
application’s current configuration information.

west build -t clean

or

ninja clean

Alternatively, enter one of the following commands to delete all generated files, including the .
config files that contain the application’s current configuration information for those board types.

west build -t pristine

or

ninja pristine

If you use west, you can take advantage of its capability to automatically make the build folder
pristine whenever it is required.

3. Rebuild the application normally following the steps specified in Building an Application above.

6.11.4 Building for a board revision

The Zephyr build system has support for specifying multiple hardware revisions of a single board with
small variations. Using revisions allows the board support files to make minor adjustments to a board
configuration without duplicating all the files described in Create your board directory for each revision.

To build for a particular revision, use <board>@<revision> instead of plain <board>. For example:

Using west:

west build -b <board>@<revision>

Using CMake and ninja:

mkdir build && cd build
cmake -GNinja -DBOARD=<board>@<revision> ..
ninja

Check your board’s documentation for details on whether it has multiple revisions, and what revisions
are supported.

When targeting a board revision, the active revision will be printed at CMake configure time, like this:

-- Board: plank, Revision: 1.5.0

6.12 Run an Application

An application image can be run on a real board or emulated hardware.

130 Chapter 6. Application Development

Zephyr Project Documentation, Release 2.7.0-rc2

6.12.1 Running on a Board

Most boards supported by Zephyr let you flash a compiled binary using the flash target to copy the
binary to the board and run it. Follow these instructions to flash and run an application on real hardware:

1. Build your application, as described in Building an Application.

2. Make sure your board is attached to your host computer. Usually, you’ll do this via USB.

3. Run one of these console commands from the build directory, <home>/app/build, to flash the
compiled Zephyr image and run it on your board:

west flash

or

ninja flash

The Zephyr build system integrates with the board support files to use hardware-specific tools to flash
the Zephyr binary to your hardware, then run it.

Each time you run the flash command, your application is rebuilt and flashed again.

In cases where board support is incomplete, flashing via the Zephyr build system may not be supported. If
you receive an error message about flash support being unavailable, consult your board’s documentation
for additional information on how to flash your board.

Note: When developing on Linux, it’s common to need to install board-specific udev rules to enable
USB device access to your board as a non-root user. If flashing fails, consult your board’s documentation
to see if this is necessary.

6.12.2 Running in an Emulator

The kernel has built-in emulator support for QEMU (on Linux/macOS only, this is not yet supported
on Windows). It allows you to run and test an application virtually, before (or in lieu of) loading and
running it on actual target hardware. Follow these instructions to run an application via QEMU:

1. Build your application for one of the QEMU boards, as described in Building an Application.

For example, you could set BOARD to:

• qemu_x86 to emulate running on an x86-based board

• qemu_cortex_m3 to emulate running on an ARM Cortex M3-based board

2. Run one of these console commands from the build directory, <home>/app/build, to run the Zephyr
binary in QEMU:

west build -t run

or

ninja run

3. Press Ctrl A, X to stop the application from running in QEMU.

The application stops running and the terminal console prompt redisplays.

Each time you execute the run command, your application is rebuilt and run again.

6.12. Run an Application 131

Zephyr Project Documentation, Release 2.7.0-rc2

Note: If the (Linux only) Zephyr SDK is installed, the run target will use the SDK’s QEMU binary by
default. To use another version of QEMU, set the environment variable QEMU_BIN_PATH to the path of the
QEMU binary you want to use instead.

6.13 Application Debugging

This section is a quick hands-on reference to start debugging your application with QEMU. Most content
in this section is already covered in QEMU and GNU_Debugger reference manuals.

In this quick reference, you’ll find shortcuts, specific environmental variables, and parameters that can
help you to quickly set up your debugging environment.

The simplest way to debug an application running in QEMU is using the GNU Debugger and setting a
local GDB server in your development system through QEMU.

You will need an Executable and Linkable Format (ELF) binary image for debugging purposes. The build
system generates the image in the build directory. By default, the kernel binary name is zephyr.elf.
The name can be changed using a Kconfig option.

We will use the standard 1234 TCP port to open a GDB (GNU Debugger) server instance. This port
number can be changed for a port that best suits the development environment.

You can run QEMU to listen for a “gdb connection” before it starts executing any code to debug it.

qemu -s -S <image>

will setup Qemu to listen on port 1234 and wait for a GDB connection to it.

The options used above have the following meaning:

• -S Do not start CPU at startup; rather, you must type ‘c’ in the monitor.

• -s Shorthand for -gdb tcp::1234: open a GDB server on TCP port 1234.

To debug with QEMU and to start a GDB server and wait for a remote connect, run either of the following
inside the build directory of an application:

ninja debugserver

The build system will start a QEMU instance with the CPU halted at startup and with a GDB server
instance listening at the TCP port 1234.

Using a local GDB configuration .gdbinit can help initialize your GDB instance on every run. In this
example, the initialization file points to the GDB server instance. It configures a connection to a remote
target at the local host on the TCP port 1234. The initialization sets the kernel’s root directory as a
reference.

The .gdbinit file contains the following lines:

target remote localhost:1234
dir ZEPHYR_BASE

Note: Substitute the correct ZEPHYR_BASE for your system.

Execute the application to debug from the same directory that you chose for the gdbinit file. The
command can include the --tui option to enable the use of a terminal user interface. The following
commands connects to the GDB server using gdb. The command loads the symbol table from the elf
binary file. In this example, the elf binary file name corresponds to zephyr.elf file:

132 Chapter 6. Application Development

http://wiki.qemu.org/Main_Page
http://www.gnu.org/software/gdb

Zephyr Project Documentation, Release 2.7.0-rc2

..../path/to/gdb --tui zephyr.elf

Note: The GDB version on the development system might not support the –tui option. Please make sure
you use the GDB binary from the SDK which corresponds to the toolchain that has been used to build
the binary.

If you are not using a .gdbinit file, issue the following command inside GDB to connect to the remote
GDB server on port 1234:

(gdb) target remote localhost:1234

Finally, the command below connects to the GDB server using the Data Displayer Debugger (ddd). The
command loads the symbol table from the elf binary file, in this instance, the zephyr.elf file.

The DDD (Data Displayer Debugger) may not be installed in your development system by default. Fol-
low your system instructions to install it. For example, use sudo apt-get install ddd on an Ubuntu
system.

ddd --gdb --debugger "gdb zephyr.elf"

Both commands execute the GDB (GNU Debugger). The command name might change depending on the
toolchain you are using and your cross-development tools.

6.14 Custom Board, Devicetree and SOC Definitions

In cases where the board or platform you are developing for is not yet supported by Zephyr, you can
add board, Devicetree and SOC definitions to your application without having to add them to the Zephyr
tree.

The structure needed to support out-of-tree board and SOC development is similar to how boards and
SOCs are maintained in the Zephyr tree. By using this structure, it will be much easier to upstream your
platform related work into the Zephyr tree after your initial development is done.

Add the custom board to your application or a dedicated repository using the following structure:

boards/
soc/
CMakeLists.txt
prj.conf
README.rst
src/

where the boards directory hosts the board you are building for:

.
boards

x86
my_custom_board

doc
img

support
src

and the soc directory hosts any SOC code. You can also have boards that are supported by a SOC that is
available in the Zephyr tree.

6.14. Custom Board, Devicetree and SOC Definitions 133

Zephyr Project Documentation, Release 2.7.0-rc2

6.14.1 Boards

Use the proper architecture folder name (e.g., x86, arm, etc.) under boards for my_custom_board. (See
boards for a list of board architectures.)

Documentation (under doc/) and support files (under support/) are optional, but will be needed when
submitting to Zephyr.

The contents of my_custom_board should follow the same guidelines for any Zephyr board, and provide
the following files:

my_custom_board_defconfig
my_custom_board.dts
my_custom_board.yaml
board.cmake
board.h
CMakeLists.txt
doc/
dts_fixup.h
Kconfig.board
Kconfig.defconfig
pinmux.c
support/

Once the board structure is in place, you can build your application targeting this board by specifying
the location of your custom board information with the -DBOARD_ROOT parameter to the CMake build
system:

Using west:

west build -b <board name> -- -DBOARD_ROOT=<path to boards>

Using CMake and ninja:

cmake -B build -GNinja -DBOARD=<board name> -DBOARD_ROOT=<path to boards> .
ninja -C build

This will use your custom board configuration and will generate the Zephyr binary into your application
directory.

You can also define the BOARD_ROOT variable in the application CMakeLists.txt file. Make sure to do so
before pulling in the Zephyr boilerplate with find_package(Zephyr ...).

Note: When specifying BOARD_ROOT in a CMakeLists.txt, then an absolute path must be provided,
for example list(APPEND BOARD_ROOT ${CMAKE_CURRENT_SOURCE_DIR}/<extra-board-root>. When
using -DBOARD_ROOT=<board-root> both absolute and relative paths can be used. Relative paths are
treated relatively to the application directory.

6.14.2 SOC Definitions

Similar to board support, the structure is similar to how SOCs are maintained in the Zephyr tree, for
example:

soc
arm

st_stm32
common
stm32l0

134 Chapter 6. Application Development

Zephyr Project Documentation, Release 2.7.0-rc2

The file soc/Kconfig will create the top-level SoC/CPU/Configuration Selection menu in Kconfig.

Out of tree SoC definitions can be added to this menu using the SOC_ROOT CMake variable. This variable
contains a semicolon-separated list of directories which contain SoC support files.

Following the structure above, the following files can be added to load more SoCs into the menu.

soc
arm

st_stm32
Kconfig
Kconfig.soc
Kconfig.defconfig

The Kconfig files above may describe the SoC or load additional SoC Kconfig files.

An example of loading stm31l0 specific Kconfig files in this structure:

soc
arm

st_stm32
Kconfig.soc
stm32l0

Kconfig.series

can be done with the following content in st_stm32/Kconfig.soc:

rsource "*/Kconfig.series"

Once the SOC structure is in place, you can build your application targeting this platform by specifying
the location of your custom platform information with the -DSOC_ROOT parameter to the CMake build
system:

Using west:

west build -b <board name> -- -DSOC_ROOT=<path to soc> -DBOARD_ROOT=<path to boards>

Using CMake and ninja:

cmake -B build -GNinja -DBOARD=<board name> -DSOC_ROOT=<path to soc> -DBOARD_ROOT=
→˓<path to boards> .
ninja -C build

This will use your custom platform configurations and will generate the Zephyr binary into your appli-
cation directory.

See Build settings for information on setting SOC_ROOT in a module’s zephyr/module.yml file.

Or you can define the SOC_ROOT variable in the application CMakeLists.txt file. Make sure to do so
before pulling in the Zephyr boilerplate with find_package(Zephyr ...).

Note: When specifying SOC_ROOT in a CMakeLists.txt, then an absolute path must be provided,
for example list(APPEND SOC_ROOT ${CMAKE_CURRENT_SOURCE_DIR}/<extra-soc-root>. When us-
ing -DSOC_ROOT=<soc-root> both absolute and relative paths can be used. Relative paths are treated
relatively to the application directory.

6.14.3 Devicetree Definitions

Devicetree directory trees are found in APPLICATION_SOURCE_DIR, BOARD_DIR, and ZEPHYR_BASE, but
additional trees, or DTS_ROOTs, can be added by creating this directory tree:

6.14. Custom Board, Devicetree and SOC Definitions 135

https://github.com/zephyrproject-rtos/zephyr/blob/main/soc/Kconfig

Zephyr Project Documentation, Release 2.7.0-rc2

include/
dts/common/
dts/arm/
dts/
dts/bindings/

Where ‘arm’ is changed to the appropriate architecture. Each directory is optional. The binding directory
contains bindings and the other directories contain files that can be included from DT sources.

Once the directory structure is in place, you can use it by specifying its location through the DTS_ROOT
CMake Cache variable:

Using west:

west build -b <board name> -- -DDTS_ROOT=<path to dts root>

Using CMake and ninja:

cmake -B build -GNinja -DBOARD=<board name> -DDTS_ROOT=<path to dts root> .
ninja -C build

You can also define the variable in the application CMakeLists.txt file. Make sure to do so before
pulling in the Zephyr boilerplate with find_package(Zephyr ...).

Note: When specifying DTS_ROOT in a CMakeLists.txt, then an absolute path must be provided,
for example list(APPEND DTS_ROOT ${CMAKE_CURRENT_SOURCE_DIR}/<extra-dts-root>. When us-
ing -DDTS_ROOT=<dts-root> both absolute and relative paths can be used. Relative paths are treated
relatively to the application directory.

Devicetree source are passed through the C preprocessor, so you can include files that can be located in
a DTS_ROOT directory. By convention devicetree include files have a .dtsi extension.

You can also use the preprocessor to control the content of a devicetree file, by specifying directives
through the DTS_EXTRA_CPPFLAGS CMake Cache variable:

Using west:

west build -b <board name> -- -DDTS_EXTRA_CPPFLAGS=-DTEST_ENABLE_FEATURE

Using CMake and ninja:

cmake -B build -GNinja -DBOARD=<board name> -DDTS_EXTRA_CPPFLAGS=-DTEST_ENABLE_
→˓FEATURE .
ninja -C build

6.15 Debug with Eclipse

6.15.1 Overview

CMake supports generating a project description file that can be imported into the Eclipse Integrated
Development Environment (IDE) and used for graphical debugging.

The GNU MCU Eclipse plug-ins provide a mechanism to debug ARM projects in Eclipse with pyOCD,
Segger J-Link, and OpenOCD debugging tools.

The following tutorial demonstrates how to debug a Zephyr application in Eclipse with pyOCD in Win-
dows. It assumes you have already installed the GCC ARM Embedded toolchain and pyOCD.

136 Chapter 6. Application Development

https://gnu-mcu-eclipse.github.io/plugins/install/

Zephyr Project Documentation, Release 2.7.0-rc2

6.15.2 Set Up the Eclipse Development Environment

1. Download and install Eclipse IDE for C/C++ Developers.

2. In Eclipse, install the GNU MCU Eclipse plug-ins by opening the menu Window->Eclipse
Marketplace..., searching for GNU MCU Eclipse, and clicking Install on the matching result.

3. Configure the path to the pyOCD GDB server by opening the menu Window->Preferences, navi-
gating to MCU, and setting the Global pyOCD Path.

6.15.3 Generate and Import an Eclipse Project

1. Set up a GNU Arm Embedded toolchain as described in 3rd Party Toolchains.

2. Navigate to a folder outside of the Zephyr tree to build your application.

On Windows
cd %userprofile%

Note: If the build directory is a subdirectory of the source directory, as is usually done in Zephyr,
CMake will warn:

“The build directory is a subdirectory of the source directory.

This is not supported well by Eclipse. It is strongly recommended to use a build directory which is
a sibling of the source directory.”

3. Configure your application with CMake and build it with ninja. Note the different CMake gener-
ator specified by the -G"Eclipse CDT4 - Ninja" argument. This will generate an Eclipse project
description file, .project, in addition to the usual ninja build files.

Using west:

west build -b frdm_k64f %ZEPHYR_BASE%\samples\synchronization -- -G"Eclipse CDT4␣
→˓- Ninja"

Using CMake and ninja:

cmake -B build -GNinja -DBOARD=frdm_k64f -G"Eclipse CDT4 - Ninja" %ZEPHYR_BASE%\
→˓samples\synchronization
ninja -C build

4. In Eclipse, import your generated project by opening the menu File->Import... and selecting the
option Existing Projects into Workspace. Browse to your application build directory in the
choice, Select root directory:. Check the box for your project in the list of projects found and
click the Finish button.

6.15.4 Create a Debugger Configuration

1. Open the menu Run->Debug Configurations....

2. Select GDB PyOCD Debugging, click the New button, and configure the following options:

• In the Main tab:

– Project: my_zephyr_app@build

– C/C++ Application: zephyr/zephyr.elf

• In the Debugger tab:

6.15. Debug with Eclipse 137

https://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers/oxygen2
mailto:my_zephyr_app@build

Zephyr Project Documentation, Release 2.7.0-rc2

– pyOCD Setup

* Executable path: $pyocd_path \$pyocd_executable

* Uncheck “Allocate console for semihosting”

– Board Setup

* Bus speed: 8000000 Hz

* Uncheck “Enable semihosting”

– GDB Client Setup

* Executable path example (use your GNUARMEMB_TOOLCHAIN_PATH): C:\
gcc-arm-none-eabi-6_2017-q2-update\bin\arm-none-eabi-gdb.exe

• In the SVD Path tab:

– File path: <workspace top>\modules\hal\nxp\mcux\devices\MK64F12\MK64F12.xml

Note: This is optional. It provides the SoC’s memory-mapped register addresses and bitfields
to the debugger.

3. Click the Debug button to start debugging.

6.15.5 RTOS Awareness

Support for Zephyr RTOS awareness is implemented in pyOCD v0.11.0 and later. It is compatible with
GDB PyOCD Debugging in Eclipse, but you must enable CONFIG_DEBUG_THREAD_INFO=y in your
application.

138 Chapter 6. Application Development

https://github.com/mbedmicro/pyOCD/releases/tag/v0.11.0

Chapter 7

API Reference

7.1 API Status / Guidelines

7.1.1 API Overview

The table lists Zephyr’s APIs and information about them, including their current stability level.

API Status Version Introduced Version Modified
ADC Stable 1.0 2.6
Audio Codec Experimental 1.13 1.13
Audio DMIC Experimental 1.13 1.13
Bluetooth Stable 1.0 2.4
Clock Control Stable 1.0 2.6
CoAP Unstable 1.10 2.4
Controller Area Network (CAN) Unstable 1.14 2.6
Counter Unstable 1.14 2.6
Crypto Stable 1.7 2.2
DAC Experimental 2.3 2.3
DMA Stable 1.5 2.6
Device Driver Model Stable 1.0 2.4
Devicetree API Stable 2.2 2.6
Disk Access Stable 1.6 2.0
Display Interface Unstable 1.14 2.2
EC Host Command Experimental 2.4 2.4
Error Detection And Correction (EDAC) API Experimental 2.5 2.5
EEPROM Stable 2.1 2.1
Entropy Stable 1.10 1.12
File Systems Stable 1.5 2.4
Flash Stable 1.2 2.6
Flash Circular Buffer (FCB) Stable 1.11 2.1
Flash map Stable 1.11 2.6
GNA Experimental 1.14 1.14
GPIO Stable 1.0 2.6
Hardware Information Stable 1.14 2.3
I2C EEPROM Slave Stable 1.13 1.13
I2C Stable 1.0 2.6
I2C Slave API Experimental 1.12 1.12
I2S Stable 1.9 2.6
IPM Stable 1.0 2.4

continues on next page

139

Zephyr Project Documentation, Release 2.7.0-rc2

Table 1 – continued from previous page
API Status Version Introduced Version Modified
KSCAN Stable 2.1 2.6
Kernel Services Stable 1.0 2.6
LED Stable 1.12 2.6
Lightweight M2M (LWM2M) Unstable 1.9 2.5
Logging Stable 1.13 1.14
MQTT Unstable 1.14 2.4
Miscellaneous APIs Stable 1.0 2.2
Networking Stable 1.0 2.4
Non-Volatile Storage (NVS) Stable 1.12 1.14
PECI Stable 2.1 2.6
PS/2 Stable 2.1 2.6
PWM Stable 1.0 2.6
Pinmux Stable 1.0 1.11
Power Management Experimental 1.2 2.2
Random Number Generation Stable 1.0 2.1
Regulators Experimental 2.4 2.4
SPI Stable 1.0 2.6
Sensors Stable 1.2 2.6
Settings Stable 1.12 2.1
Shell Stable 1.14 2.4
Stream Flash Experimental 2.3 2.3
Task Watchdog Experimental 2.5 2.5
UART Stable 1.0 2.6
UART async Unstable 1.14 2.2
USB device stack Stable 1.5 2.4
User Mode Stable 1.11 1.11
Utilities Experimental 2.4 2.4
Video Stable 2.1 2.6
Watchdog Stable 1.0 2.0

7.1.2 API Lifecycle

Developers using Zephyr’s APIs need to know how long they can trust that a given API will not change
in future releases. At the same time, developers maintaining and extending Zephyr’s APIs need to be
able to introduce new APIs that aren’t yet fully proven, and to potentially retire old APIs when they’re no
longer optimal or supported by the underlying platforms.

An up-to-date table of all APIs and their maturity level can be found in the API Overview page.

Experimental

Experimental APIs denote that a feature was introduced recently, and may change or be removed in
future versions. Try it out and provide feedback to the community via the Developer mailing list.

The following requirements apply to all new APIs:

• Documentation of the API (usage) explaining its design and assumptions, how it is to be used,
current implementation limitations, and future potential, if appropriate.

• The API introduction should be accompanied by at least one implementation of said API (in the
case of peripheral APIs, this corresponds to one driver)

• At least one sample using the new API (may only build on one single board)

140 Chapter 7. API Reference

https://lists.zephyrproject.org/g/devel

Zephyr Project Documentation, Release 2.7.0-rc2

Fig. 1: API Life Cycle

Peripheral APIs (Hardware Related) When introducing an API (public header file with documenta-
tion) for a new peripheral or driver subsystem, review of the API is enforced and is driven by the API
working group consisting of representatives from different vendors.

The API shall be promoted to unstable when it has at least two implementations on different hardware
platforms.

Unstable

The API is in the process of settling, but has not yet had sufficient real-world testing to be considered
stable. The API is considered generic in nature and can be used on different hardware platforms.

Note: Changes will not be announced.

Peripheral APIs (Hardware Related) The API shall be promoted from experimental to unstable
when it has at least two implementations on different hardware platforms.

Hardware Agnostic APIs For hardware agnostic APIs, multiple applications using it are required to
promote an API from experimental to unstable.

Stable

The API has proven satisfactory, but cleanup in the underlying code may cause minor changes.
Backwards-compatibility will be maintained if reasonable.

An API can be declared stable after fulfilling the following requirements:

• Test cases for the new API with 100% coverage

• Complete documentation in code. All public interfaces shall be documented and available in online
documentation.

• The API has been in-use and was available in at least 2 development releases

7.1. API Status / Guidelines 141

Zephyr Project Documentation, Release 2.7.0-rc2

• Stable APIs can get backward compatible updates, bug fixes and security fixes at any time.

In order to declare an API stable, the following steps need to be followed:

1. A Pull Request must be opened that changes the corresponding entry in the API Overview table

2. An email must be sent to the devel mailing list announcing the API upgrade request

3. The Pull Request must be submitted for discussion in the next Zephyr API meeting where, barring
any objections, the Pull Request will be merged

Introducing incompatible changes A stable API, as described above strives to remain backwards-
compatible through its life-cycle. There are however cases where fulfilling this objective prevents tech-
nical progress or is simply unfeasible without unreasonable burden on the maintenance of the API and
its implementation(s).

An incompatible change is defined as one that forces users to modify their existing code in order to
maintain the current behavior of their application. The need for recompilation of applications (without
changing the application itself) is not considered an incompatible change.

In order to restrict and control the introduction of a change that breaks the promise of backwards com-
patibility the following steps must be followed whenever such a change is considered necessary in order
to accept it in the project:

1. An RFC issue must be opened on GitHub with the following content:

Title: RFC: API Change: <subsystem>
Contents: - Problem Description:

- Background information on why the change is required
- Proposed Change (detailed):

- Brief description of the API change
- Detailed RFC:

- Function call changes
- Device Tree changes (source and bindings)
- Kconfig option changes

- Dependencies:
- Impact to users of the API, including the steps required

to adapt out-of-tree users of the API to the change

Instead of a written description of the changes, the RFC issue may link to a Pull Request containing
those changes in code form.

2. The RFC issue must be labeled with the GitHub Stable API Change label

3. The RFC issue must be submitted for discussion in the next Zephyr API meeting

4. An email must be sent to the devel mailing list with a subject identical to the RFC issue title and
that links to the RFC issue

The RFC will then receive feedback through issue comments and will also be discussed in the Zephyr API
meeting, where the stakeholders and the community at large will have a chance to discuss it in detail.

Finally, and if not done as part of the first step, a Pull Request must be opened on GitHub. It is left to
the person proposing the change to decide whether to introduce both the RFC and the Pull Request at
the same time or to wait until the RFC has gathered consensus enough so that the implementation can
proceed with confidence that it will be accepted. The Pull Request must include the following:

• A title that matches the RFC issue

• A link to the RFC issue

• The actual changes to the API

– Changes to the API header file

– Changes to the API implementation(s)

142 Chapter 7. API Reference

https://github.com/zephyrproject-rtos/zephyr/wiki/Zephyr-Committee-and-Working-Group-Meetings#zephyr-api-meeting
https://github.com/zephyrproject-rtos/zephyr/wiki/Zephyr-Committee-and-Working-Group-Meetings#zephyr-api-meeting

Zephyr Project Documentation, Release 2.7.0-rc2

– Changes to the relevant API documentation

– Changes to Device Tree source and bindings

• The changes required to adapt in-tree users of the API to the change. Depending on the scope of
this task this might require additional help from the corresponding maintainers

• An entry in the “API Changes” section of the release notes for the next upcoming release

• The labels API, Stable API Change and Release Notes, as well as any others that are applicable

Once the steps above have been completed, the outcome of the proposal will depend on the approval of
the actual Pull Request by the maintainer of the corresponding subystem. As with any other Pull Request,
the author can request for it to be discussed and ultimately even voted on in the Zephyr TSC meeting.

If the Pull Request is merged then an email must be sent to the devel and user mailing lists informing
them of the change.

Note: Incompatible changes will be announced in the “API Changes” section of the release notes.

Deprecated

Note: Unstable APIs can be removed without deprecation at any time. Deprecation and removal of APIs
will be announced in the “API Changes” section of the release notes.

The following are the requirements for deprecating an existing API:

• Deprecation Time (stable APIs): 2 Releases The API needs to be marked as deprecated in at least
two full releases. For example, if an API was first deprecated in release 1.14, it will be ready to
be removed in 1.16 at the earliest. There may be special circumstances, determined by the API
working group, where an API is deprecated sooner.

• What is required when deprecating:

– Mark as deprecated. This can be done by using the compiler itself (__deprecated for function
declarations and __DEPRECATED_MACRO for macro definitions), or by introducing a Kconfig
option (typically one that contains the DEPRECATED word in it) that, when enabled, reverts the
APIs back to their previous form

– Document the deprecation

– Include the deprecation in the “API Changes” of the release notes for the next upcoming release

– Code using the deprecated API needs to be modified to remove usage of said API

– The change needs to be atomic and bisectable

– Create a GitHub issue to track the removal of the deprecated API, and add it to the roadmap
targeting the appropriate release (in the example above, 1.16).

During the deprecation waiting period, the API will be in the deprecated state. The Zephyr maintainers
will track usage of deprecated APIs on docs.zephyrproject.org and support developers migrating their
code. Zephyr will continue to provide warnings:

• API documentation will inform users that the API is deprecated.

• Attempts to use a deprecated API at build time will log a warning to the console.

Retired

In this phase, the API is removed.

7.1. API Status / Guidelines 143

https://github.com/zephyrproject-rtos/zephyr/wiki/Zephyr-Committee-and-Working-Group-Meetings#technical-steering-committee-tsc

Zephyr Project Documentation, Release 2.7.0-rc2

The target removal date is 2 releases after deprecation is announced. The Zephyr maintainers will decide
when to actually remove the API: this will depend on how many developers have successfully migrated
from the deprecated API, and on how urgently the API needs to be removed.

If it’s OK to remove the API, it will be removed. The maintainers will remove the corresponding doc-
umentation, and communicate the removal in the usual ways: the release notes, mailing lists, Github
issues and pull-requests.

If it’s not OK to remove the API, the maintainers will continue to support migration and update the
roadmap with the aim to remove the API in the next release.

7.1.3 API Design Guidelines

Zephyr development and evolution is a group effort, and to simplify maintenance and enhancements
there are some general policies that should be followed when developing a new capability or interface.

Using Callbacks

Many APIs involve passing a callback as a parameter or as a member of a configuration structure. The
following policies should be followed when specifying the signature of a callback:

• The first parameter should be a pointer to the object most closely associated with the callback. In
the case of device drivers this would be struct device *dev. For library functions it may be a
pointer to another object that was referenced when the callback was provided.

• The next parameter(s) should be additional information specific to the callback invocation, such as
a channel identifier, new status value, and/or a message pointer followed by the message length.

• The final parameter should be a void *user_data pointer carrying context that allows a shared
callback function to locate additional material necessary to process the callback.

An exception to providing user_data as the last parameter may be allowed when the callback itself was
provided through a structure that will be embedded in another structure. An example of such a case is
gpio_callback , normally defined within a data structure specific to the code that also defines the call-
back function. In those cases further context can accessed by the callback indirectly by CONTAINER_OF .

Examples

• The requirements of k_timer_expiry_t invoked when a system timer alarm fires are satisfied by:

void handle_timeout(struct k_timer *timer)
{ ... }

The assumption here, as with gpio_callback , is that the timer is embedded in a structure reach-
able from CONTAINER_OF that can provide additional context to the callback.

• The requirements of counter_alarm_callback_t invoked when a counter device alarm fires are
satisfied by:

void handle_alarm(const struct device *dev,
uint8_t chan_id,
uint32_t ticks,
void *user_data)

{ ... }

This provides more complete useful information, including which counter channel timed-out and
the counter value at which the timeout occurred, as well as user context which may or may not be
the counter_alarm_cfg used to register the callback, depending on user needs.

144 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Conditional Data and APIs

APIs and libraries may provide features that are expensive in RAM or code size but are optional in
the sense that some applications can be implemented without them. Examples of such feature include
:kconfig:`capturing a timestamp <CONFIG_CAN_RX_TIMESTAMP>` or :kconfig:`providing an al-
ternative interface <CONFIG_SPI_ASYNC>`. The developer in coordination with the community must
determine whether enabling the features is to be controllable through a Kconfig option.

In the case where a feature is determined to be optional the following practices should be followed.

• Any data that is accessed only when the feature is enabled should be conditionally included via
#ifdef CONFIG_MYFEATURE in the structure or union declaration. This reduces memory use for
applications that don’t need the capability.

• Function declarations that are available only when the option is enabled should be provided un-
conditionally. Add a note in the description that the function is available only when the specified
feature is enabled, referencing the required Kconfig symbol by name. In the cases where the func-
tion is used but not enabled the definition of the function shall be excluded from compilation, so
references to the unsupported API will result in a link-time error.

• Where code specific to the feature is isolated in a source file that has no other content that file
should be conditionally included in CMakeLists.txt:

zephyr_sources_ifdef(CONFIG_MYFEATURE foo_funcs.c)

• Where code specific to the feature is part of a source file that has other content the feature-specific
code should be conditionally processed using #ifdef CONFIG_MYFEATURE.

The Kconfig flag used to enable the feature should be added to the PREDEFINED variable in doc/zephyr.
doxyfile.in to ensure the conditional API and functions appear in generated documentation.

Return Codes

Implementations of an API, for example an API for accessing a peripheral might implement only a subset
of the functions that is required for minimal operation. A distinction is needed between APIs that are not
supported and those that are not implemented or optional:

• APIs that are supported but not implemented shall return -ENOSYS.

• Optional APIs that are not supported by the hardware should be implemented and the return code
in this case shall be -ENOTSUP.

• When an API is implemented, but the particular combination of options requested in the call cannot
be satisfied by the implementation the call shall return -ENOTSUP. (For example, a request for a
level-triggered GPIO interrupt on hardware that supports only edge-triggered interrupts)

7.1.4 API Terminology

The following terms may be used as shorthand API tags to indicate the allowed calling context (thread,
ISR, pre-kernel), the effect of a call on the current thread state, and other behavioral characteristics.

reschedule if executing the function reaches a reschedule point

sleep if executing the function can cause the invoking thread to sleep

no-wait if a parameter to the function can prevent the invoking thread from trying to sleep

isr-ok if the function can be safely called and will have its specified effect whether invoked from interrupt
or thread context

pre-kernel-ok if the function can be safely called before the kernel has been fully initialized and will
have its specified effect when invoked from that context.

7.1. API Status / Guidelines 145

Zephyr Project Documentation, Release 2.7.0-rc2

async if the function may return before the operation it initializes is complete (i.e. function return and
operation completion are asynchronous)

supervisor if the calling thread must have supervisor privileges to execute the function

Details on the behavioral impact of each attribute are in the following sections.

reschedule

The reschedule attribute is used on a function that can reach a reschedule point within its execution.

Details The significance of this attribute is that when a rescheduling function is invoked by a thread
it is possible for that thread to be suspended as a consequence of a higher-priority thread being made
ready. Whether the suspension actually occurs depends on the operation associated with the reschedule
point and the relative priorities of the invoking thread and the head of the ready queue.

Note that in the case of timeslicing, or reschedule points executed from interrupts, any thread may be
suspended in any function.

Functions that are not reschedule may be invoked from either thread or interrupt context.

Functions that are reschedule may be invoked from thread context.

Functions that are reschedule but not sleep may be invoked from interrupt context.

sleep

The sleep attribute is used on a function that can cause the invoking thread to sleep.

Explanation This attribute is of relevance specifically when considering applications that use only non-
preemptible threads, because the kernel will not replace a running cooperative-only thread at a resched-
ule point unless that thread has explicitly invoked an operation that caused it to sleep.

This attribute does not imply the function will sleep unconditionally, but that the operation may require
an invoking thread that would have to suspend, wait, or invoke k_yield() before it can complete its
operation. This behavior may be mediated by no-wait.

Functions that are sleep are implicitly reschedule.

Functions that are sleep may be invoked from thread context.

Functions that are sleep may be invoked from interrupt and pre-kernel contexts if and only if invoked in
no-wait mode.

no-wait

The no-wait attribute is used on a function that is also sleep to indicate that a parameter to the function
can force an execution path that will not cause the invoking thread to sleep.

Explanation The paradigmatic case of a no-wait function is a function that takes a timeout, to which
K_NO_WAIT can be passed. The semantics of this special timeout value are to execute the function’s
operation as long as it can be completed immediately, and to return an error code rather than sleep if it
cannot.

It is use of the no-wait feature that allows functions like k_sem_take() to be invoked from ISRs, since it
is not permitted to sleep in interrupt context.

A function with a no-wait path does not imply that taking that path guarantees the function is syn-
chronous.

146 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Functions with this attribute may be invoked from interrupt and pre-kernel contexts only when the
parameter selects the no-wait path.

isr-ok

The isr-ok attribute is used on a function to indicate that it works whether it is being invoked from
interrupt or thread context.

Explanation Any function that is not sleep is inherently isr-ok. Functions that are sleep are isr-ok
if the implementation ensures that the documented behavior is implemented even if called from an
interrupt context. This may be achieved by having the implementation detect the calling context and
transfer the operation that would sleep to a thread, or by documenting that when invoked from a non-
thread context the function will return a specific error (generally -EWOULDBLOCK).

Note that a function that is no-wait is safe to call from interrupt context only when the no-wait path is
selected. isr-ok functions need not provide a no-wait path.

pre-kernel-ok

The pre-kernel-ok attribute is used on a function to indicate that it works as documented even when
invoked before the kernel main thread has been started.

Explanation This attribute is similar to isr-ok in function, but is intended for use by any API that is
expected to be called in DEVICE_DEFINE() or SYS_INIT() calls that may be invoked with PRE_KERNEL_1
or PRE_KERNEL_2 initialization levels.

Generally a function that is pre-kernel-ok checks k_is_pre_kernel() when determining whether it can
fulfill its required behavior. In many cases it would also check k_is_in_isr() so it can be isr-ok as well.

async

A function is async (i.e. asynchronous) if it may return before the operation it initiates has completed. An
asynchronous function will generally provide a mechanism by which operation completion is reported,
e.g. a callback or event.

A function that is not asynchronous is synchronous, i.e. the operation will always be complete when the
function returns. As most functions are synchronous this behavior does not have a distinct attribute to
identify it.

Explanation Be aware that async is orthogonal to context-switching. Some APIs may provide comple-
tion information through a callback, but may suspend while waiting for the resource necessary to initiate
the operation; an example is spi_transceive_async() .

If a function is both no-wait and async then selecting the no-wait path only guarantees that the function
will not sleep. It does not affect whether the operation will be completed before the function returns.

supervisor

The supervisor attribute is relevant only in user-mode applications, and indicates that the function cannot
be invoked from user mode.

7.1. API Status / Guidelines 147

Zephyr Project Documentation, Release 2.7.0-rc2

7.2 Audio

7.2.1 Audio Codec

Overview

The Audio Codec API provides access to digital audio codecs.

Configuration Options

Related configuration options:

• :kconfig:`CONFIG_AUDIO_CODEC`

API Reference

group audio_codec_interface

Abstraction for audio codecs.

Enums

enum audio_pcm_rate_t

PCM audio sample rates

Values:

enumerator AUDIO_PCM_RATE_8K = 8000

enumerator AUDIO_PCM_RATE_16K = 16000

enumerator AUDIO_PCM_RATE_24K = 24000

enumerator AUDIO_PCM_RATE_32K = 32000

enumerator AUDIO_PCM_RATE_44P1K = 44100

enumerator AUDIO_PCM_RATE_48K = 48000

enumerator AUDIO_PCM_RATE_96K = 96000

enumerator AUDIO_PCM_RATE_192K = 192000

enum audio_pcm_width_t

PCM audio sample bit widths

Values:

enumerator AUDIO_PCM_WIDTH_16_BITS = 16

148 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator AUDIO_PCM_WIDTH_20_BITS = 20

enumerator AUDIO_PCM_WIDTH_24_BITS = 24

enumerator AUDIO_PCM_WIDTH_32_BITS = 32

enum audio_dai_type_t

Digital Audio Interface (DAI) type

Values:

enumerator AUDIO_DAI_TYPE_I2S

enumerator AUDIO_DAI_TYPE_INVALID

enum audio_property_t

Codec properties that can be set by audio_codec_set_property()

Values:

enumerator AUDIO_PROPERTY_OUTPUT_VOLUME

enumerator AUDIO_PROPERTY_OUTPUT_MUTE

enum audio_channel_t

Audio channel identifiers to use in audio_codec_set_property()

Values:

enumerator AUDIO_CHANNEL_FRONT_LEFT

enumerator AUDIO_CHANNEL_FRONT_RIGHT

enumerator AUDIO_CHANNEL_LFE

enumerator AUDIO_CHANNEL_FRONT_CENTER

enumerator AUDIO_CHANNEL_REAR_LEFT

enumerator AUDIO_CHANNEL_REAR_RIGHT

enumerator AUDIO_CHANNEL_REAR_CENTER

enumerator AUDIO_CHANNEL_SIDE_LEFT

enumerator AUDIO_CHANNEL_SIDE_RIGHT

enumerator AUDIO_CHANNEL_ALL

7.2. Audio 149

Zephyr Project Documentation, Release 2.7.0-rc2

Functions

static inline int audio_codec_configure(const struct device *dev, struct audio_codec_cfg *cfg)

Configure the audio codec.

Configure the audio codec device according to the configuration parameters provided as input

Parameters

• dev – Pointer to the device structure for codec driver instance.

• cfg – Pointer to the structure containing the codec configuration.

Returns 0 on success, negative error code on failure

static inline void audio_codec_start_output(const struct device *dev)

Set codec to start output audio playback.

Setup the audio codec device to start the audio playback

Parameters

• dev – Pointer to the device structure for codec driver instance.

Returns none

static inline void audio_codec_stop_output(const struct device *dev)

Set codec to stop output audio playback.

Setup the audio codec device to stop the audio playback

Parameters

• dev – Pointer to the device structure for codec driver instance.

Returns none

static inline int audio_codec_set_property(const struct device *dev, audio_property_t property,
audio_channel_t channel, audio_property_value_t
val)

Set a codec property defined by audio_property_t.

Set a property such as volume level, clock configuration etc.

Parameters

• dev – Pointer to the device structure for codec driver instance.

• property – The codec property to set

• channel – The audio channel for which the property has to be set

• val – pointer to a property value of type audio_codec_property_value_t

Returns 0 on success, negative error code on failure

static inline int audio_codec_apply_properties(const struct device *dev)

Atomically apply any cached properties.

Following one or more invocations of audio_codec_set_property, that may have been cached
by the driver, audio_codec_apply_properties can be invoked to apply all the properties as
atomic as possible

Parameters

• dev – Pointer to the device structure for codec driver instance.

Returns 0 on success, negative error code on failure

150 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

union audio_dai_cfg_t

#include <codec.h> Digital Audio Interface Configuration Configuration is dependent on DAI
type

Public Members

struct i2s_config i2s

struct audio_codec_cfg

#include <codec.h> Codec configuration parameters

union audio_property_value_t

#include <codec.h> Codec property values

Public Members

int vol

bool mute

7.2.2 Audio DMIC

Overview

The audio DMIC interface provides access to digital microphones.

Configuration Options

Related configuration options:

• :kconfig:`CONFIG_AUDIO_DMIC`

API Reference

group audio_dmic_interface

Abstraction for digital microphones.

Enums

enum dmic_state

DMIC driver states

Values:

enumerator DMIC_STATE_UNINIT

7.2. Audio 151

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator DMIC_STATE_INITIALIZED

enumerator DMIC_STATE_CONFIGURED

enumerator DMIC_STATE_ACTIVE

enumerator DMIC_STATE_PAUSED

enum dmic_trigger

DMIC driver trigger commands

Values:

enumerator DMIC_TRIGGER_STOP

enumerator DMIC_TRIGGER_START

enumerator DMIC_TRIGGER_PAUSE

enumerator DMIC_TRIGGER_RELEASE

enumerator DMIC_TRIGGER_RESET

enum pdm_lr

PDM Channels LEFT / RIGHT

Values:

enumerator PDM_CHAN_LEFT

enumerator PDM_CHAN_RIGHT

Functions

static inline uint32_t dmic_build_channel_map(uint8_t channel, uint8_t pdm, enum pdm_lr lr)

Build the channel map to populate struct pdm_chan_cfg

Returns the map of PDM controller and LEFT/RIGHT channel shifted to the bit position cor-
responding to the input logical channel value

Parameters

• channel – The logical channel number

• pdm – The PDM hardware controller number

• lr – LEFT/RIGHT channel within the chosen PDM hardware controller

Returns Bit-map containing the PDM and L/R channel information

152 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline void dmic_parse_channel_map(uint32_t channel_map_lo, uint32_t channel_map_hi,
uint8_t channel, uint8_t *pdm, enum pdm_lr *lr)

Helper function to parse the channel map in pdm_chan_cfg

Returns the PDM controller and LEFT/RIGHT channel corresponding to the channel map and
the logical channel provided as input

Parameters

• channel_map_lo – Lower order/significant bits of the channel map

• channel_map_hi – Higher order/significant bits of the channel map

• channel – The logical channel number

• pdm – Pointer to the PDM hardware controller number

• lr – Pointer to the LEFT/RIGHT channel within the PDM controller

Returns none

static inline uint32_t dmic_build_clk_skew_map(uint8_t pdm, uint8_t skew)

Build a bit map of clock skew values for each PDM channel

Returns the bit-map of clock skew value shifted to the bit position corresponding to the input
PDM controller value

Parameters

• pdm – The PDM hardware controller number

• skew – The skew to apply for the clock output from the PDM controller

Returns Bit-map containing the clock skew information

static inline int dmic_configure(const struct device *dev, struct dmic_cfg *cfg)

Configure the DMIC driver and controller(s)

Configures the DMIC driver device according to the number of channels, channel mapping,
PDM I/O configuration, PCM stream configuration, etc.

Parameters

• dev – Pointer to the device structure for DMIC driver instance

• cfg – Pointer to the structure containing the DMIC configuration

Returns 0 on success, a negative error code on failure

static inline int dmic_trigger(const struct device *dev, enum dmic_trigger cmd)

Send a command to the DMIC driver

Sends a command to the driver to perform a specific action

Parameters

• dev – Pointer to the device structure for DMIC driver instance

• cmd – The command to be sent to the driver instance

Returns 0 on success, a negative error code on failure

static inline int dmic_read(const struct device *dev, uint8_t stream, void **buffer, size_t *size,
int32_t timeout)

Read received decimated PCM data stream

Optionally waits for audio to be received and provides the received audio buffer from the
requested stream

Parameters

• dev – Pointer to the device structure for DMIC driver instance

7.2. Audio 153

Zephyr Project Documentation, Release 2.7.0-rc2

• stream – Stream identifier

• buffer – Pointer to the received buffer address

• size – Pointer to the received buffer size

• timeout – Timeout in milliseconds to wait in case audio is not yet received, or
SYS_FOREVER_MS

Returns 0 on success, a negative error code on failure

struct pdm_io_cfg

#include <dmic.h> PDM Input/Output signal configuration

struct pcm_stream_cfg

#include <dmic.h> Configuration of the PCM streams to be output by the PDM hardware

struct pdm_chan_cfg

#include <dmic.h> Mapping/ordering of the PDM channels to logical PCM output channel

struct dmic_cfg

#include <dmic.h> Input configuration structure for the DMIC configuration API

7.2.3 I2S

Overview

The I2S (Inter-IC Sound) API provides support for the standard I2S interface as well as common non-
standard extensions such as PCM Short/Long Frame Sync and Left/Right Justified Data Formats.

Configuration Options

Related configuration options:

• :kconfig:`CONFIG_I2S`

API Reference

group i2s_interface

I2S (Inter-IC Sound) Interface.

The I2S API provides support for the standard I2S interface standard as well as common non-
standard extensions such as PCM Short/Long Frame Sync, Left/Right Justified Data Format.

Defines

I2S_FMT_DATA_FORMAT_SHIFT

Data Format bit field position.

I2S_FMT_DATA_FORMAT_MASK

Data Format bit field mask.

154 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

I2S_FMT_DATA_FORMAT_I2S

Standard I2S Data Format.

Serial data is transmitted in two’s complement with the MSB first. Both Word Select (WS) and
Serial Data (SD) signals are sampled on the rising edge of the clock signal (SCK). The MSB is
always sent one clock period after the WS changes. Left channel data are sent first indicated
by WS = 0, followed by right channel data indicated by WS = 1.

-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-.
SCK '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '

-. .-------------------------------.
WS '-------------------------------' '----

-.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.
SD | |MSB| |...| |LSB| x |...| x |MSB| |...| |LSB| x |...| x |

-'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'
| Left channel | Right channel |

I2S_FMT_DATA_FORMAT_PCM_SHORT

PCM Short Frame Sync Data Format.

Serial data is transmitted in two’s complement with the MSB first. Both Word Select (WS) and
Serial Data (SD) signals are sampled on the falling edge of the clock signal (SCK). The falling
edge of the frame sync signal (WS) indicates the start of the PCM word. The frame sync is
one clock cycle long. An arbitrary number of data words can be sent in one frame.

.-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-.
SCK -' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-

.---. .---.
WS -' '- -' '-

-.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---
SD | |MSB| |...| |LSB|MSB| |...| |LSB|MSB| |...| |LSB|

-'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---
| Word 1 | Word 2 | Word 3 | Word n |

I2S_FMT_DATA_FORMAT_PCM_LONG

PCM Long Frame Sync Data Format.

Serial data is transmitted in two’s complement with the MSB first. Both Word Select (WS)
and Serial Data (SD) signals are sampled on the falling edge of the clock signal (SCK). The
rising edge of the frame sync signal (WS) indicates the start of the PCM word. The frame sync
has an arbitrary length, however it has to fall before the start of the next frame. An arbitrary
number of data words can be sent in one frame.

.-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-.
SCK -' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-

.--- ---. ---. ---. .---
WS -' '- '- '- -'

-.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---
SD | |MSB| |...| |LSB|MSB| |...| |LSB|MSB| |...| |LSB|

-'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---
| Word 1 | Word 2 | Word 3 | Word n |

I2S_FMT_DATA_FORMAT_LEFT_JUSTIFIED

Left Justified Data Format.

Serial data is transmitted in two’s complement with the MSB first. Both Word Select (WS)
and Serial Data (SD) signals are sampled on the rising edge of the clock signal (SCK). The

7.2. Audio 155

Zephyr Project Documentation, Release 2.7.0-rc2

bits within the data word are left justified such that the MSB is always sent in the clock period
following the WS transition. Left channel data are sent first indicated by WS = 1, followed by
right channel data indicated by WS = 0.

.-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-.
SCK -' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-

.-------------------------------. .-
WS ---' '-------------------------------'

---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.-
SD |MSB| |...| |LSB| x |...| x |MSB| |...| |LSB| x |...| x |

---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'-
| Left channel | Right channel |

I2S_FMT_DATA_FORMAT_RIGHT_JUSTIFIED

Right Justified Data Format.

Serial data is transmitted in two’s complement with the MSB first. Both Word Select (WS)
and Serial Data (SD) signals are sampled on the rising edge of the clock signal (SCK). The bits
within the data word are right justified such that the LSB is always sent in the clock period
preceding the WS transition. Left channel data are sent first indicated by WS = 1, followed
by right channel data indicated by WS = 0.

.-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-. .-.
SCK -' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-' '-

.-------------------------------. .-
WS ---' '-------------------------------'

---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.-
SD | x |...| x |MSB| |...| |LSB| x |...| x |MSB| |...| |LSB|

---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'-
| Left channel | Right channel |

I2S_FMT_DATA_ORDER_MSB

Send MSB first

I2S_FMT_DATA_ORDER_LSB

Send LSB first

I2S_FMT_DATA_ORDER_INV

Invert bit ordering, send LSB first

I2S_FMT_CLK_FORMAT_SHIFT

Data Format bit field position.

I2S_FMT_CLK_FORMAT_MASK

Data Format bit field mask.

I2S_FMT_BIT_CLK_INV

Invert bit clock

I2S_FMT_FRAME_CLK_INV

Invert frame clock

I2S_FMT_CLK_NF_NB

156 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

NF represents “Normal Frame” whereas IF represents “Inverted Frame” NB represents “Normal
Bit Clk” whereas IB represents “Inverted Bit clk”

I2S_FMT_CLK_NF_IB

I2S_FMT_CLK_IF_NB

I2S_FMT_CLK_IF_IB

I2S_OPT_BIT_CLK_CONT

Run bit clock continuously

I2S_OPT_BIT_CLK_GATED

Run bit clock when sending data only

I2S_OPT_BIT_CLK_MASTER

I2S driver is bit clock master

I2S_OPT_BIT_CLK_SLAVE

I2S driver is bit clock slave

I2S_OPT_FRAME_CLK_MASTER

I2S driver is frame clock master

I2S_OPT_FRAME_CLK_SLAVE

I2S driver is frame clock slave

I2S_OPT_LOOPBACK

Loop back mode.

In loop back mode RX input will be connected internally to TX output. This is used primarily
for testing.

I2S_OPT_PINGPONG

Ping pong mode.

In ping pong mode TX output will keep alternating between a ping buffer and a pong buffer.
This is normally used in audio streams when one buffer is being populated while the other
is being played (DMAed) and vice versa. So, in this mode, 2 sets of buffers fixed in size are
used. Static Arrays are used to achieve this and hence they are never freed.

Typedefs

typedef uint8_t i2s_fmt_t

typedef uint8_t i2s_opt_t

7.2. Audio 157

Zephyr Project Documentation, Release 2.7.0-rc2

Enums

enum i2s_dir

I2C Direction.

Values:

enumerator I2S_DIR_RX

Receive data

enumerator I2S_DIR_TX

Transmit data

enumerator I2S_DIR_BOTH

Both receive and transmit data

enum i2s_state

Interface state

Values:

enumerator I2S_STATE_NOT_READY

The interface is not ready.

The interface was initialized but is not yet ready to receive /
transmit data. Call i2s_configure() to configure interface and change
its state to READY.

enumerator I2S_STATE_READY

The interface is ready to receive / transmit data.

enumerator I2S_STATE_RUNNING

The interface is receiving / transmitting data.

enumerator I2S_STATE_STOPPING

The interface is draining its transmit queue.

enumerator I2S_STATE_ERROR

TX buffer underrun or RX buffer overrun has occurred.

enum i2s_trigger_cmd

Trigger command

Values:

enumerator I2S_TRIGGER_START

Start the transmission / reception of data.

158 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

If I2S_DIR_TX is set some data has to be queued for transmission by
the i2s_write() function. This trigger can be used in READY state
only and changes the interface state to RUNNING.

enumerator I2S_TRIGGER_STOP

Stop the transmission / reception of data.

Stop the transmission / reception of data at the end of the current
memory block. This trigger can be used in RUNNING state only and at
first changes the interface state to STOPPING. When the current TX /
RX block is transmitted / received the state is changed to READY.
Subsequent START trigger will resume transmission / reception where
it stopped.

enumerator I2S_TRIGGER_DRAIN

Empty the transmit queue.

Send all data in the transmit queue and stop the transmission.
If the trigger is applied to the RX queue it has the same effect as
I2S_TRIGGER_STOP. This trigger can be used in RUNNING state only and
at first changes the interface state to STOPPING. When all TX blocks
are transmitted the state is changed to READY.

enumerator I2S_TRIGGER_DROP

Discard the transmit / receive queue.

Stop the transmission / reception immediately and discard the
contents of the respective queue. This trigger can be used in any
state other than NOT_READY and changes the interface state to READY.

enumerator I2S_TRIGGER_PREPARE

Prepare the queues after underrun/overrun error has occurred.

This trigger can be used in ERROR state only and changes the
interface state to READY.

Functions

int i2s_configure(const struct device *dev, enum i2s_dir dir, const struct i2s_config *cfg)
Configure operation of a host I2S controller.

The dir parameter specifies if Transmit (TX) or Receive (RX) direction will be configured by
data provided via cfg parameter.

The function can be called in NOT_READY or READY state only. If executed successfully the
function will change the interface state to READY.

If the function is called with the parameter cfg->frame_clk_freq set to 0 the interface state
will be changed to NOT_READY.

7.2. Audio 159

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• dev – Pointer to the device structure for the driver instance.

• dir – Stream direction: RX, TX, or both, as defined by I2S_DIR_*. The
I2S_DIR_BOTH value may not be supported by some drivers. For those, the
RX and TX streams need to be configured separately.

• cfg – Pointer to the structure containing configuration parameters.

Return values

• 0 – If successful.

• -EINVAL – Invalid argument.

• -ENOSYS – I2S_DIR_BOTH value is not supported.

static inline const struct i2s_config *i2s_config_get(const struct device *dev, enum i2s_dir dir)

Fetch configuration information of a host I2S controller.

Parameters

• dev – Pointer to the device structure for the driver instance

• dir – Stream direction: RX or TX as defined by I2S_DIR_*

Return values Pointer – to the structure containing configuration parameters, or
NULL if un-configured

static inline int i2s_read(const struct device *dev, void **mem_block, size_t *size)

Read data from the RX queue.

Data received by the I2S interface is stored in the RX queue consisting of memory blocks
preallocated by this function from rx_mem_slab (as defined by i2s_configure). Ownership of
the RX memory block is passed on to the user application which has to release it.

The data is read in chunks equal to the size of the memory block. If the interface is in READY
state the number of bytes read can be smaller.

If there is no data in the RX queue the function will block waiting for the next RX memory
block to fill in. This operation can timeout as defined by i2s_configure. If the timeout value is
set to K_NO_WAIT the function is non-blocking.

Reading from the RX queue is possible in any state other than NOT_READY. If the interface is
in the ERROR state it is still possible to read all the valid data stored in RX queue. Afterwards
the function will return -EIO error.

Parameters

• dev – Pointer to the device structure for the driver instance.

• mem_block – Pointer to the RX memory block containing received data.

• size – Pointer to the variable storing the number of bytes read.

Return values

• 0 – If successful.

• -EIO – The interface is in NOT_READY or ERROR state and there are no more
data blocks in the RX queue.

• -EBUSY – Returned without waiting.

• -EAGAIN – Waiting period timed out.

160 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

int i2s_buf_read(const struct device *dev, void *buf, size_t *size)

Read data from the RX queue into a provided buffer.

Data received by the I2S interface is stored in the RX queue consisting of memory blocks
preallocated by this function from rx_mem_slab (as defined by i2s_configure). Calling this
function removes one block from the queue which is copied into the provided buffer and then
freed.

The provided buffer must be large enough to contain a full memory block of data, which is
parameterized for the channel via i2s_configure().

This function is otherwise equivalent to i2s_read().

Parameters

• dev – Pointer to the device structure for the driver instance.

• buf – Destination buffer for read data, which must be at least the as large as
the configured memory block size for the RX channel.

• size – Pointer to the variable storing the number of bytes read.

Return values

• 0 – If successful.

• -EIO – The interface is in NOT_READY or ERROR state and there are no more
data blocks in the RX queue.

• -EBUSY – Returned without waiting.

• -EAGAIN – Waiting period timed out.

static inline int i2s_write(const struct device *dev, void *mem_block, size_t size)

Write data to the TX queue.

Data to be sent by the I2S interface is stored first in the TX queue. TX queue consists of
memory blocks preallocated by the user from tx_mem_slab (as defined by i2s_configure).
This function takes ownership of the memory block and will release it when all data are
transmitted.

If there are no free slots in the TX queue the function will block waiting for the next TX
memory block to be send and removed from the queue. This operation can timeout as defined
by i2s_configure. If the timeout value is set to K_NO_WAIT the function is non-blocking.

Writing to the TX queue is only possible if the interface is in READY or RUNNING state.

Parameters

• dev – Pointer to the device structure for the driver instance.

• mem_block – Pointer to the TX memory block containing data to be sent.

• size – Number of bytes to write. This value has to be equal or smaller than the
size of the memory block.

Return values

• 0 – If successful.

• -EIO – The interface is not in READY or RUNNING state.

• -EBUSY – Returned without waiting.

• -EAGAIN – Waiting period timed out.

int i2s_buf_write(const struct device *dev, void *buf, size_t size)

Write data to the TX queue from a provided buffer.

This function acquires a memory block from the I2S channel TX queue and copies the provided
data buffer into it. It is otherwise equivalent to i2s_write().

7.2. Audio 161

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• dev – Pointer to the device structure for the driver instance.

• buf – Pointer to a buffer containing the data to transmit.

• size – Number of bytes to write. This value has to be equal or smaller than the
size of the channel’s TX memory block configuration.

Return values

• 0 – If successful.

• -EIO – The interface is not in READY or RUNNING state.

• -EBUSY – Returned without waiting.

• -EAGAIN – Waiting period timed out.

• -ENOMEM – No memory in TX slab queue.

• -EINVAL – Size parameter larger than TX queue memory block.

int i2s_trigger(const struct device *dev, enum i2s_dir dir, enum i2s_trigger_cmd cmd)

Send a trigger command.

Parameters

• dev – Pointer to the device structure for the driver instance.

• dir – Stream direction: RX, TX, or both, as defined by I2S_DIR_*. The
I2S_DIR_BOTH value may not be supported by some drivers. For those, trig-
gering need to be done separately for the RX and TX streams.

• cmd – Trigger command.

Return values

• 0 – If successful.

• -EINVAL – Invalid argument.

• -EIO – The trigger cannot be executed in the current state or a DMA channel
cannot be allocated.

• -ENOMEM – RX/TX memory block not available.

• -ENOSYS – I2S_DIR_BOTH value is not supported.

struct i2s_config

#include <i2s.h> Interface configuration options.

Memory slab pointed to by the mem_slab field has to be defined and initialized by the user.
For I2S driver to function correctly number of memory blocks in a slab has to be at least 2
per queue. Size of the memory block should be multiple of frame_size where frame_size =
(channels * word_size_bytes). As an example 16 bit word will occupy 2 bytes, 24 or 32 bit
word will occupy 4 bytes.

Please check Zephyr Kernel Primer for more information on memory slabs.

Remark

When I2S data format is selected parameter channels is ignored, number of words in a frame
is always 2.

Param word_size Number of bits representing one data word.

162 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Param channels Number of words per frame.

Param format Data stream format as defined by I2S_FMT_* constants.

Param options Configuration options as defined by I2S_OPT_* constants.

Param frame_clk_freq Frame clock (WS) frequency, this is sampling rate.

Param mem_slab memory slab to store RX/TX data.

Param block_size Size of one RX/TX memory block (buffer) in bytes.

Param timeout Read/Write timeout. Number of milliseconds to wait in case TX
queue is full or RX queue is empty, or 0, or SYS_FOREVER_MS.

7.3 Asynchronous Notification APIs

Zephyr APIs often include async functions where an operation is initiated and the application needs to
be informed when it completes, and whether it succeeded. Using k_poll() is often a good method, but
some application architectures may be more suited to a callback notification, and operations like enabling
clocks and power rails may need to be invoked before kernel functions are available so a busy-wait for
completion may be needed.

This API is intended to be embedded within specific subsystems such as On-Off Manager and other APIs
that support async transactions. The subsystem wrappers are responsible for extracting operation-specific
data from requests that include a notification element, and for invoking callbacks with the parameters
required by the API.

A limitation is that this API is not suitable for System Calls because:

• sys_notify is not a kernel object;

• copying the notification content from userspace will break use of CONTAINER_OF in the implement-
ing function;

• neither the spin-wait nor callback notification methods can be accepted from userspace callers.

Where a notification is required for an asynchronous operation invoked from a user mode thread the
subsystem or driver should provide a syscall API that uses k_poll_signal for notification.

7.3.1 API Reference

group sys_notify_apis

Typedefs

typedef void (*sys_notify_generic_callback)()

Generic signature used to notify of result completion by callback.

Functions with this role may be invoked from any context including pre-kernel, ISR, or coop-
erative or pre-emptible threads. Compatible functions must be isr-ok and not sleep.

Parameters that should generally be passed to such functions include:

• a pointer to a specific client request structure, i.e. the one that contains the sys_notify
structure.

7.3. Asynchronous Notification APIs 163

Zephyr Project Documentation, Release 2.7.0-rc2

• the result of the operation, either as passed to sys_notify_finalize() or extracted afterwards
using sys_notify_fetch_result(). Expected values are service-specific, but the value shall be
non-negative if the operation succeeded, and negative if the operation failed.

Functions

static inline uint32_t sys_notify_get_method(const struct sys_notify *notify)

int sys_notify_validate(struct sys_notify *notify)

Validate and initialize the notify structure.

This should be invoked at the start of any service-specific configuration validation. It ensures
that the basic asynchronous notification configuration is consistent, and clears the result.

Note that this function does not validate extension bits (zeroed by async notify API init func-
tions like sys_notify_init_callback()). It may fail to recognize that an uninitialized structure
has been passed because only method bits of flags are tested against method settings. To re-
duce the chance of accepting an uninititalized operation service validation of structures that
contain an sys_notify instance should confirm that the extension bits are set or cleared as
expected.

Return values

• 0 – on successful validation and reinitialization

• -EINVAL – if the configuration is not valid.

sys_notify_generic_callback sys_notify_finalize(struct sys_notify *notify, int res)

Record and signal the operation completion.

Parameters

• notify – pointer to the notification state structure.

• res – the result of the operation. Expected values are service-specific, but the
value shall be non-negative if the operation succeeded, and negative if the
operation failed.

Returns If the notification is to be done by callback this returns the generic version
of the function to be invoked. The caller must immediately invoke that function
with whatever arguments are expected by the callback. If notification is by spin-
wait or signal, the notification has been completed by the point this function
returns, and a null pointer is returned.

static inline int sys_notify_fetch_result(const struct sys_notify *notify, int *result)

Check for and read the result of an asynchronous operation.

Parameters

• notify – pointer to the object used to specify asynchronous function behavior
and store completion information.

• result – pointer to storage for the result of the operation. The result is stored
only if the operation has completed.

Return values

• 0 – if the operation has completed.

• -EAGAIN – if the operation has not completed.

static inline void sys_notify_init_spinwait(struct sys_notify *notify)

Initialize a notify object for spin-wait notification.

Clients that use this initialization receive no asynchronous notification, and instead must pe-
riodically check for completion using sys_notify_fetch_result().

164 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

On completion of the operation the client object must be reinitialized before it can be re-used.

Parameters

• notify – pointer to the notification configuration object.

static inline void sys_notify_init_signal(struct sys_notify *notify, struct k_poll_signal *sigp)

Initialize a notify object for (k_poll) signal notification.

Clients that use this initialization will be notified of the completion of operations through the
provided signal.

On completion of the operation the client object must be reinitialized before it can be re-used.

Note: This capability is available only when :kconfig:`CONFIG_POLL` is selected.

Parameters

• notify – pointer to the notification configuration object.

• sigp – pointer to the signal to use for notification. The value must not be null.
The signal must be reset before the client object is passed to the on-off service
API.

static inline void sys_notify_init_callback(struct sys_notify *notify, sys_notify_generic_callback
handler)

Initialize a notify object for callback notification.

Clients that use this initialization will be notified of the completion of operations through the
provided callback. Note that callbacks may be invoked from various contexts depending on
the specific service; see sys_notify_generic_callback.

On completion of the operation the client object must be reinitialized before it can be re-used.

Parameters

• notify – pointer to the notification configuration object.

• handler – a function pointer to use for notification.

static inline bool sys_notify_uses_callback(const struct sys_notify *notify)

Detect whether a particular notification uses a callback.

The generic handler does not capture the signature expected by the callback, and the transla-
tion to a service-specific callback must be provided by the service. This check allows abstracted
services to reject callback notification requests when the service doesn’t provide a translation
function.

Returns true if and only if a callback is to be used for notification.

struct sys_notify

#include <notify.h> State associated with notification for an asynchronous operation.

Objects of this type are allocated by a client, which must use an initialization function (e.g.
sys_notify_init_signal()) to configure them. Generally the structure is a member of a service-
specific client structure, such as onoff_client.

Control of the containing object transfers to the service provider when a pointer to the ob-
ject is passed to a service function that is documented to take control of the object, such as
onoff_service_request(). While the service provider controls the object the client must not
change any object fields. Control reverts to the client:

• if the call to the service API returns an error;

7.3. Asynchronous Notification APIs 165

Zephyr Project Documentation, Release 2.7.0-rc2

• when operation completion is posted. This may occur before the call to the service API
returns.

Operation completion is technically posted when the flags field is updated so that
sys_notify_fetch_result() returns success. This will happen before the signal is posted or call-
back is invoked. Note that although the manager will no longer reference the sys_notify object
past this point, the containing object may have state that will be referenced within the call-
back. Where callbacks are used control of the containing object does not revert to the client
until the callback has been invoked. (Re-use within the callback is explicitly permitted.)

After control has reverted to the client the notify object must be reinitialized for the next
operation.

The content of this structure is not public API to clients: all configuration and inspection
should be done with functions like sys_notify_init_callback() and sys_notify_fetch_result().
However, services that use this structure may access certain fields directly.

union method

#include <notify.h>

Public Members

struct k_poll_signal *signal

sys_notify_generic_callback callback

7.4 Bluetooth

7.4.1 Connection Management

The Zephyr Bluetooth stack uses an abstraction called bt_conn to represent connections to other devices.
The internals of this struct are not exposed to the application, but a limited amount of information (such
as the remote address) can be acquired using the bt_conn_get_info() API. Connection objects are
reference counted, and the application is expected to use the bt_conn_ref() API whenever storing a
connection pointer for a longer period of time, since this ensures that the object remains valid (even if the
connection would get disconnected). Similarly the bt_conn_unref() API is to be used when releasing a
reference to a connection.

An application may track connections by registering a bt_conn_cb struct using the
bt_conn_cb_register() or c:func:BT_CONN_CB_DEFINE() APIs. This struct lets the application
define callbacks for connection & disconnection events, as well as other events related to a connection
such as a change in the security level or the connection parameters. When acting as a central the appli-
cation will also get hold of the connection object through the return value of the bt_conn_create_le()
API.

API Reference

group bt_conn

Connection management.

166 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Defines

BT_LE_CONN_PARAM_INIT(int_min, int_max, lat, to)

Initialize connection parameters.

Parameters

• int_min – Minimum Connection Interval (N * 1.25 ms)

• int_max – Maximum Connection Interval (N * 1.25 ms)

• lat – Connection Latency

• to – Supervision Timeout (N * 10 ms)

BT_LE_CONN_PARAM(int_min, int_max, lat, to)

Helper to declare connection parameters inline

Parameters

• int_min – Minimum Connection Interval (N * 1.25 ms)

• int_max – Maximum Connection Interval (N * 1.25 ms)

• lat – Connection Latency

• to – Supervision Timeout (N * 10 ms)

BT_LE_CONN_PARAM_DEFAULT

Default LE connection parameters: Connection Interval: 30-50 ms Latency: 0 Timeout: 4 s

BT_CONN_LE_PHY_PARAM_INIT(_pref_tx_phy, _pref_rx_phy)

Initialize PHY parameters

Parameters

• _pref_tx_phy – Bitmask of preferred transmit PHYs.

• _pref_rx_phy – Bitmask of preferred receive PHYs.

BT_CONN_LE_PHY_PARAM(_pref_tx_phy, _pref_rx_phy)

Helper to declare PHY parameters inline

Parameters

• _pref_tx_phy – Bitmask of preferred transmit PHYs.

• _pref_rx_phy – Bitmask of preferred receive PHYs.

BT_CONN_LE_PHY_PARAM_1M

Only LE 1M PHY

BT_CONN_LE_PHY_PARAM_2M

Only LE 2M PHY

BT_CONN_LE_PHY_PARAM_CODED

Only LE Coded PHY.

BT_CONN_LE_PHY_PARAM_ALL

All LE PHYs.

7.4. Bluetooth 167

Zephyr Project Documentation, Release 2.7.0-rc2

BT_CONN_LE_DATA_LEN_PARAM_INIT(_tx_max_len, _tx_max_time)

Initialize transmit data length parameters

Parameters

• _tx_max_len – Maximum Link Layer transmission payload size in bytes.

• _tx_max_time – Maximum Link Layer transmission payload time in us.

BT_CONN_LE_DATA_LEN_PARAM(_tx_max_len, _tx_max_time)

Helper to declare transmit data length parameters inline

Parameters

• _tx_max_len – Maximum Link Layer transmission payload size in bytes.

• _tx_max_time – Maximum Link Layer transmission payload time in us.

BT_LE_DATA_LEN_PARAM_DEFAULT

Default LE data length parameters.

BT_LE_DATA_LEN_PARAM_MAX

Maximum LE data length parameters.

BT_CONN_ROLE_MASTER

Connection role (central or peripheral)

BT_CONN_ROLE_SLAVE

BT_CONN_LE_CREATE_PARAM_INIT(_options, _interval, _window)

Initialize create connection parameters.

Parameters

• _options – Create connection options.

• _interval – Create connection scan interval (N * 0.625 ms).

• _window – Create connection scan window (N * 0.625 ms).

BT_CONN_LE_CREATE_PARAM(_options, _interval, _window)

Helper to declare create connection parameters inline

Parameters

• _options – Create connection options.

• _interval – Create connection scan interval (N * 0.625 ms).

• _window – Create connection scan window (N * 0.625 ms).

BT_CONN_LE_CREATE_CONN

Default LE create connection parameters. Scan continuously by setting scan interval equal to
scan window.

BT_CONN_LE_CREATE_CONN_AUTO

Default LE create connection using filter accept list parameters. Scan window: 30 ms. Scan
interval: 60 ms.

BT_CONN_CB_DEFINE(_name)

Register a callback structure for connection events.

Parameters

168 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• _name – Name of callback structure.

BT_PASSKEY_INVALID

Special passkey value that can be used to disable a previously set fixed passkey.

BT_BR_CONN_PARAM_INIT(role_switch)

Initialize BR/EDR connection parameters.

Parameters

• role_switch – True if role switch is allowed

BT_BR_CONN_PARAM(role_switch)

Helper to declare BR/EDR connection parameters inline

Parameters

• role_switch – True if role switch is allowed

BT_BR_CONN_PARAM_DEFAULT

Default BR/EDR connection parameters: Role switch allowed

Enums

enum [anonymous]

Connection PHY options

Values:

enumerator BT_CONN_LE_PHY_OPT_NONE = 0

Convenience value when no options are specified.

enumerator BT_CONN_LE_PHY_OPT_CODED_S2 = BIT(0)

LE Coded using S=2 coding preferred when transmitting.

enumerator BT_CONN_LE_PHY_OPT_CODED_S8 = BIT(1)

LE Coded using S=8 coding preferred when transmitting.

enum [anonymous]

Connection Type

Values:

enumerator BT_CONN_TYPE_LE = BIT(0)

LE Connection Type

enumerator BT_CONN_TYPE_BR = BIT(1)

BR/EDR Connection Type

enumerator BT_CONN_TYPE_SCO = BIT(2)

SCO Connection Type

enumerator BT_CONN_TYPE_ISO = BIT(3)

ISO Connection Type

7.4. Bluetooth 169

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator BT_CONN_TYPE_ALL = BT_CONN_TYPE_LE | BT_CONN_TYPE_BR |
BT_CONN_TYPE_SCO | BT_CONN_TYPE_ISO

All Connection Type

enum [anonymous]

Values:

enumerator BT_CONN_ROLE_CENTRAL = 0

enumerator BT_CONN_ROLE_PERIPHERAL = 1

enum bt_conn_le_tx_power_phy

Values:

enumerator BT_CONN_LE_TX_POWER_PHY_NONE

Convenience macro for when no PHY is set.

enumerator BT_CONN_LE_TX_POWER_PHY_1M

LE 1M PHY

enumerator BT_CONN_LE_TX_POWER_PHY_2M

LE 2M PHY

enumerator BT_CONN_LE_TX_POWER_PHY_CODED_S8

LE Coded PHY using S=8 coding.

enumerator BT_CONN_LE_TX_POWER_PHY_CODED_S2

LE Coded PHY using S=2 coding.

enum [anonymous]

Values:

enumerator BT_CONN_LE_OPT_NONE = 0

Convenience value when no options are specified.

enumerator BT_CONN_LE_OPT_CODED = BIT(0)

Enable LE Coded PHY.

Enable scanning on the LE Coded PHY.

enumerator BT_CONN_LE_OPT_NO_1M = BIT(1)

Disable LE 1M PHY.

Disable scanning on the LE 1M PHY.

@note Requires @ref BT_CONN_LE_OPT_CODED.

170 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enum bt_security_t

Security level.

Values:

enumerator BT_SECURITY_L0

Level 0: Only for BR/EDR special cases, like SDP

enumerator BT_SECURITY_L1

Level 1: No encryption and no authentication.

enumerator BT_SECURITY_L2

Level 2: Encryption and no authentication (no MITM).

enumerator BT_SECURITY_L3

Level 3: Encryption and authentication (MITM).

enumerator BT_SECURITY_L4

Level 4: Authenticated Secure Connections and 128-bit key.

enumerator BT_SECURITY_FORCE_PAIR = BIT(7)

Bit to force new pairing procedure, bit-wise OR with requested security level.

enum bt_security_err

Values:

enumerator BT_SECURITY_ERR_SUCCESS

Security procedure successful.

enumerator BT_SECURITY_ERR_AUTH_FAIL

Authentication failed.

enumerator BT_SECURITY_ERR_PIN_OR_KEY_MISSING

PIN or encryption key is missing.

enumerator BT_SECURITY_ERR_OOB_NOT_AVAILABLE

OOB data is not available.

enumerator BT_SECURITY_ERR_AUTH_REQUIREMENT

The requested security level could not be reached.

enumerator BT_SECURITY_ERR_PAIR_NOT_SUPPORTED

Pairing is not supported

enumerator BT_SECURITY_ERR_PAIR_NOT_ALLOWED

Pairing is not allowed.

enumerator BT_SECURITY_ERR_INVALID_PARAM

Invalid parameters.

7.4. Bluetooth 171

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator BT_SECURITY_ERR_UNSPECIFIED

Pairing failed but the exact reason could not be specified.

Functions

struct bt_conn *bt_conn_ref(struct bt_conn *conn)

Increment a connection’s reference count.

Increment the reference count of a connection object.

Note: Will return NULL if the reference count is zero.

Parameters

• conn – Connection object.

Returns Connection object with incremented reference count, or NULL if the refer-
ence count is zero.

void bt_conn_unref(struct bt_conn *conn)

Decrement a connection’s reference count.

Decrement the reference count of a connection object.

Parameters

• conn – Connection object.

void bt_conn_foreach(int type, void (*func)(struct bt_conn *conn, void *data), void *data)

Iterate through all existing connections.

Parameters

• type – Connection Type

• func – Function to call for each connection.

• data – Data to pass to the callback function.

struct bt_conn *bt_conn_lookup_addr_le(uint8_t id, const bt_addr_le_t *peer)

Look up an existing connection by address.

Look up an existing connection based on the remote address.

The caller gets a new reference to the connection object which must be released with
bt_conn_unref() once done using the object.

Parameters

• id – Local identity (in most cases BT_ID_DEFAULT).

• peer – Remote address.

Returns Connection object or NULL if not found.

const bt_addr_le_t *bt_conn_get_dst(const struct bt_conn *conn)

Get destination (peer) address of a connection.

Parameters

• conn – Connection object.

Returns Destination address.

172 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

uint8_t bt_conn_index(struct bt_conn *conn)

Get array index of a connection.

This function is used to map bt_conn to index of an array of connections. The array has
CONFIG_BT_MAX_CONN elements.

Parameters

• conn – Connection object.

Returns Index of the connection object. The range of the returned value is
0..CONFIG_BT_MAX_CONN-1

int bt_conn_get_info(const struct bt_conn *conn, struct bt_conn_info *info)

Get connection info.

Parameters

• conn – Connection object.

• info – Connection info object.

Returns Zero on success or (negative) error code on failure.

int bt_conn_get_remote_info(struct bt_conn *conn, struct bt_conn_remote_info *remote_info)

Get connection info for the remote device.

Note: In order to retrieve the remote version (version, manufacturer and subversion) :kcon-
fig:`CONFIG_BT_REMOTE_VERSION` must be enabled

Note: The remote information is exchanged directly after the connection has been es-
tablished. The application can be notified about when the remote information is available
through the remote_info_available callback.

Parameters

• conn – Connection object.

• remote_info – Connection remote info object.

Returns Zero on success or (negative) error code on failure.

Returns -EBUSY The remote information is not yet available.

int bt_conn_le_get_tx_power_level(struct bt_conn *conn, struct bt_conn_le_tx_power
*tx_power_level)

Get connection transmit power level.

Parameters

• conn – Connection object.

• tx_power_level – Transmit power level descriptor.

Returns Zero on success or (negative) error code on failure.

Returns -ENOBUFS HCI command buffer is not available.

int bt_conn_le_param_update(struct bt_conn *conn, const struct bt_le_conn_param *param)

Update the connection parameters.

If the local device is in the peripheral role then updating the connection pa-
rameters will be delayed. This delay can be configured by through the :kcon-
fig:`CONFIG_BT_CONN_PARAM_UPDATE_TIMEOUT` option.

7.4. Bluetooth 173

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• conn – Connection object.

• param – Updated connection parameters.

Returns Zero on success or (negative) error code on failure.

int bt_conn_le_data_len_update(struct bt_conn *conn, const struct bt_conn_le_data_len_param
*param)

Update the connection transmit data length parameters.

Parameters

• conn – Connection object.

• param – Updated data length parameters.

Returns Zero on success or (negative) error code on failure.

int bt_conn_le_phy_update(struct bt_conn *conn, const struct bt_conn_le_phy_param *param)

Update the connection PHY parameters.

Update the preferred transmit and receive PHYs of the connection. Use
BT_GAP_LE_PHY_NONE to indicate no preference.

Parameters

• conn – Connection object.

• param – Updated connection parameters.

Returns Zero on success or (negative) error code on failure.

int bt_conn_disconnect(struct bt_conn *conn, uint8_t reason)

Disconnect from a remote device or cancel pending connection.

Disconnect an active connection with the specified reason code or cancel pending outgoing
connection.

The disconnect reason for a normal disconnect should be:
BT_HCI_ERR_REMOTE_USER_TERM_CONN.

The following disconnect reasons are accepted:

• BT_HCI_ERR_AUTH_FAIL

• BT_HCI_ERR_REMOTE_USER_TERM_CONN

• BT_HCI_ERR_REMOTE_LOW_RESOURCES

• BT_HCI_ERR_REMOTE_POWER_OFF

• BT_HCI_ERR_UNSUPP_REMOTE_FEATURE

• BT_HCI_ERR_PAIRING_NOT_SUPPORTED

• BT_HCI_ERR_UNACCEPT_CONN_PARAM

Parameters

• conn – Connection to disconnect.

• reason – Reason code for the disconnection.

Returns Zero on success or (negative) error code on failure.

174 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

int bt_conn_le_create(const bt_addr_le_t *peer, const struct bt_conn_le_create_param
*create_param, const struct bt_le_conn_param *conn_param, struct
bt_conn **conn)

Initiate an LE connection to a remote device.

Allows initiate new LE link to remote peer using its address.

The caller gets a new reference to the connection object which must be released with
bt_conn_unref() once done using the object.

This uses the General Connection Establishment procedure.

The application must disable explicit scanning before initiating a new LE connection.

Parameters

• peer – [in] Remote address.

• create_param – [in] Create connection parameters.

• conn_param – [in] Initial connection parameters.

• conn – [out] Valid connection object on success.

Returns Zero on success or (negative) error code on failure.

int bt_conn_le_create_auto(const struct bt_conn_le_create_param *create_param, const struct
bt_le_conn_param *conn_param)

Automatically connect to remote devices in the filter accept list..

This uses the Auto Connection Establishment procedure. The procedure will continue until a
single connection is established or the procedure is stopped through bt_conn_create_auto_stop.
To establish connections to all devices in the the filter accept list the procedure should be
started again in the connected callback after a new connection has been established.

Parameters

• create_param – Create connection parameters

• conn_param – Initial connection parameters.

Returns Zero on success or (negative) error code on failure.

Returns -ENOMEM No free connection object available.

int bt_conn_create_auto_stop(void)
Stop automatic connect creation.

Returns Zero on success or (negative) error code on failure.

int bt_le_set_auto_conn(const bt_addr_le_t *addr, const struct bt_le_conn_param *param)
Automatically connect to remote device if it’s in range.

This function enables/disables automatic connection initiation. Every time the device loses
the connection with peer, this connection will be re-established if connectable advertisement
from peer is received.

Note: Auto connect is disabled during explicit scanning.

Parameters

• addr – Remote Bluetooth address.

• param – If non-NULL, auto connect is enabled with the given parameters. If
NULL, auto connect is disabled.

Returns Zero on success or error code otherwise.

7.4. Bluetooth 175

Zephyr Project Documentation, Release 2.7.0-rc2

int bt_conn_set_security(struct bt_conn *conn, bt_security_t sec)
Set security level for a connection.

This function enable security (encryption) for a connection. If the device has bond information
for the peer with sufficiently strong key encryption will be enabled. If the connection is already
encrypted with sufficiently strong key this function does nothing.

If the device has no bond information for the peer and is not already paired then the pairing
procedure will be initiated. If the device has bond information or is already paired and the
keys are too weak then the pairing procedure will be initiated.

This function may return error if required level of security is not possible to achieve due to
local or remote device limitation (e.g., input output capabilities), or if the maximum number
of paired devices has been reached.

This function may return error if the pairing procedure has already been initiated by the local
device or the peer device.

Note: When :kconfig:`CONFIG_BT_SMP_SC_ONLY` is enabled then the security level will
always be level 4.

Note: When :kconfig:`CONFIG_BT_SMP_OOB_LEGACY_PAIR_ONLY` is enabled then the
security level will always be level 3.

Parameters

• conn – Connection object.

• sec – Requested security level.

Returns 0 on success or negative error

bt_security_t bt_conn_get_security(struct bt_conn *conn)
Get security level for a connection.

Returns Connection security level

uint8_t bt_conn_enc_key_size(struct bt_conn *conn)
Get encryption key size.

This function gets encryption key size. If there is no security (encryption) enabled 0 will be
returned.

Parameters

• conn – Existing connection object.

Returns Encryption key size.

void bt_conn_cb_register(struct bt_conn_cb *cb)
Register connection callbacks.

Register callbacks to monitor the state of connections.

Parameters

• cb – Callback struct. Must point to memory that remains valid.

void bt_set_bondable(bool enable)
Enable/disable bonding.

Set/clear the Bonding flag in the Authentication Requirements of SMP Pairing Re-
quest/Response data. The initial value of this flag depends on BT_BONDABLE Kconfig setting.
For the vast majority of applications calling this function shouldn’t be needed.

176 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• enable – Value allowing/disallowing to be bondable.

void bt_set_oob_data_flag(bool enable)

Allow/disallow remote OOB data to be used for pairing.

Set/clear the OOB data flag for SMP Pairing Request/Response data. The initial value of this
flag depends on BT_OOB_DATA_PRESENT Kconfig setting.

Parameters

• enable – Value allowing/disallowing remote OOB data.

int bt_le_oob_set_legacy_tk(struct bt_conn *conn, const uint8_t *tk)

Set OOB Temporary Key to be used for pairing.

This function allows to set OOB data for the LE legacy pairing procedure. The function should
only be called in response to the oob_data_request() callback provided that the legacy method
is user pairing.

Parameters

• conn – Connection object

• tk – Pointer to 16 byte long TK array

Returns Zero on success or -EINVAL if NULL

int bt_le_oob_set_sc_data(struct bt_conn *conn, const struct bt_le_oob_sc_data *oobd_local,
const struct bt_le_oob_sc_data *oobd_remote)

Set OOB data during LE Secure Connections (SC) pairing procedure.

This function allows to set OOB data during the LE SC pairing procedure. The function should
only be called in response to the oob_data_request() callback provided that LE SC method is
used for pairing.

The user should submit OOB data according to the information received in the callback. This
may yield three different configurations: with only local OOB data present, with only remote
OOB data present or with both local and remote OOB data present.

Parameters

• conn – Connection object

• oobd_local – Local OOB data or NULL if not present

• oobd_remote – Remote OOB data or NULL if not present

Returns Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error.

int bt_le_oob_get_sc_data(struct bt_conn *conn, const struct bt_le_oob_sc_data **oobd_local,
const struct bt_le_oob_sc_data **oobd_remote)

Get OOB data used for LE Secure Connections (SC) pairing procedure.

This function allows to get OOB data during the LE SC pairing procedure that were set by the
bt_le_oob_set_sc_data() API.

Note: The OOB data will only be available as long as the connection object associated with
it is valid.

Parameters

• conn – Connection object

• oobd_local – Local OOB data or NULL if not set

7.4. Bluetooth 177

Zephyr Project Documentation, Release 2.7.0-rc2

• oobd_remote – Remote OOB data or NULL if not set

Returns Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error.

int bt_passkey_set(unsigned int passkey)

Set a fixed passkey to be used for pairing.

This API is only available when the CONFIG_BT_FIXED_PASSKEY configuration option has
been enabled.

Sets a fixed passkey to be used for pairing. If set, the pairing_confim() callback will be called
for all incoming pairings.

Parameters

• passkey – A valid passkey (0 - 999999) or BT_PASSKEY_INVALID to disable a
previously set fixed passkey.

Returns 0 on success or a negative error code on failure.

int bt_conn_auth_cb_register(const struct bt_conn_auth_cb *cb)

Register authentication callbacks.

Register callbacks to handle authenticated pairing. Passing NULL unregisters a previous call-
backs structure.

Parameters

• cb – Callback struct.

Returns Zero on success or negative error code otherwise

int bt_conn_auth_passkey_entry(struct bt_conn *conn, unsigned int passkey)

Reply with entered passkey.

This function should be called only after passkey_entry callback from bt_conn_auth_cb struc-
ture was called.

Parameters

• conn – Connection object.

• passkey – Entered passkey.

Returns Zero on success or negative error code otherwise

int bt_conn_auth_cancel(struct bt_conn *conn)

Cancel ongoing authenticated pairing.

This function allows to cancel ongoing authenticated pairing.

Parameters

• conn – Connection object.

Returns Zero on success or negative error code otherwise

int bt_conn_auth_passkey_confirm(struct bt_conn *conn)

Reply if passkey was confirmed to match by user.

This function should be called only after passkey_confirm callback from bt_conn_auth_cb
structure was called.

Parameters

• conn – Connection object.

Returns Zero on success or negative error code otherwise

178 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

int bt_conn_auth_pairing_confirm(struct bt_conn *conn)

Reply if incoming pairing was confirmed by user.

This function should be called only after pairing_confirm callback from bt_conn_auth_cb struc-
ture was called if user confirmed incoming pairing.

Parameters

• conn – Connection object.

Returns Zero on success or negative error code otherwise

int bt_conn_auth_pincode_entry(struct bt_conn *conn, const char *pin)

Reply with entered PIN code.

This function should be called only after PIN code callback from bt_conn_auth_cb structure
was called. It’s for legacy 2.0 devices.

Parameters

• conn – Connection object.

• pin – Entered PIN code.

Returns Zero on success or negative error code otherwise

struct bt_conn *bt_conn_create_br(const bt_addr_t *peer, const struct bt_br_conn_param
*param)

Initiate an BR/EDR connection to a remote device.

Allows initiate new BR/EDR link to remote peer using its address.

The caller gets a new reference to the connection object which must be released with
bt_conn_unref() once done using the object.

Parameters

• peer – Remote address.

• param – Initial connection parameters.

Returns Valid connection object on success or NULL otherwise.

struct bt_conn *bt_conn_create_sco(const bt_addr_t *peer)

Initiate an SCO connection to a remote device.

Allows initiate new SCO link to remote peer using its address.

The caller gets a new reference to the connection object which must be released with
bt_conn_unref() once done using the object.

Parameters

• peer – Remote address.

Returns Valid connection object on success or NULL otherwise.

struct bt_le_conn_param

#include <conn.h> Connection parameters for LE connections

struct bt_conn_le_phy_info

#include <conn.h> Connection PHY information for LE connections

7.4. Bluetooth 179

Zephyr Project Documentation, Release 2.7.0-rc2

Public Members

uint8_t rx_phy

Connection transmit PHY

struct bt_conn_le_phy_param

#include <conn.h> Preferred PHY parameters for LE connections

Public Members

uint8_t pref_tx_phy

Connection PHY options.

uint8_t pref_rx_phy

Bitmask of preferred transmit PHYs

struct bt_conn_le_data_len_info

#include <conn.h> Connection data length information for LE connections

Public Members

uint16_t tx_max_len

Maximum Link Layer transmission payload size in bytes.

uint16_t tx_max_time

Maximum Link Layer transmission payload time in us.

uint16_t rx_max_len

Maximum Link Layer reception payload size in bytes.

uint16_t rx_max_time

Maximum Link Layer reception payload time in us.

struct bt_conn_le_data_len_param

#include <conn.h> Connection data length parameters for LE connections

Public Members

uint16_t tx_max_len

Maximum Link Layer transmission payload size in bytes.

uint16_t tx_max_time

Maximum Link Layer transmission payload time in us.

struct bt_conn_le_info

#include <conn.h> LE Connection Info Structure

180 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Public Members

const bt_addr_le_t *src

Source (Local) Identity Address

const bt_addr_le_t *dst

Destination (Remote) Identity Address or remote Resolvable Private Address (RPA) before
identity has been resolved.

const bt_addr_le_t *local

Local device address used during connection setup.

const bt_addr_le_t *remote

Remote device address used during connection setup.

uint16_t latency

Connection interval

uint16_t timeout

Connection peripheral latency

const struct bt_conn_le_phy_info *phy

Connection supervision timeout

struct bt_conn_br_info

#include <conn.h> BR/EDR Connection Info Structure

struct bt_conn_info

#include <conn.h> Connection Info Structure

Public Members

uint8_t type

Connection Type.

uint8_t role

Connection Role.

uint8_t id

Which local identity the connection was created with

struct bt_conn_le_info le

LE Connection specific Info.

struct bt_conn_br_info br

BR/EDR Connection specific Info.

7.4. Bluetooth 181

Zephyr Project Documentation, Release 2.7.0-rc2

union bt_conn_info.[anonymous] [anonymous]

Connection Type specific Info.

struct bt_conn_le_remote_info

#include <conn.h> LE Connection Remote Info Structure

Public Members

const uint8_t *features

Remote LE feature set (bitmask).

struct bt_conn_br_remote_info

#include <conn.h> BR/EDR Connection Remote Info structure

Public Members

const uint8_t *features

Remote feature set (pages of bitmasks).

uint8_t num_pages

Number of pages in the remote feature set.

struct bt_conn_remote_info

#include <conn.h> Connection Remote Info Structure.

Note: The version, manufacturer and subversion fields will only contain valid data if :kcon-
fig:`CONFIG_BT_REMOTE_VERSION` is enabled.

Public Members

uint8_t type

Connection Type

uint8_t version

Remote Link Layer version

uint16_t manufacturer

Remote manufacturer identifier

uint16_t subversion

Per-manufacturer unique revision

struct bt_conn_le_remote_info le

LE connection remote info

182 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

struct bt_conn_br_remote_info br

BR/EDR connection remote info

struct bt_conn_le_tx_power

#include <conn.h> LE Transmit Power Level Structure

Public Members

uint8_t phy

Input: 1M, 2M, Coded S2 or Coded S8

int8_t current_level

Output: current transmit power level

int8_t max_level

Output: maximum transmit power level

struct bt_conn_le_create_param

#include <conn.h>

Public Members

uint32_t options

Bit-field of create connection options.

uint16_t interval

Scan interval (N * 0.625 ms)

uint16_t window

Scan window (N * 0.625 ms)

uint16_t interval_coded

Scan interval LE Coded PHY (N * 0.625 MS)

Set zero to use same as LE 1M PHY scan interval

uint16_t window_coded

Scan window LE Coded PHY (N * 0.625 MS)

Set zero to use same as LE 1M PHY scan window.

uint16_t timeout

Connection initiation timeout (N * 10 MS)

Set zero to use the default :kconfig:`CONFIG_BT_CREATE_CONN_TIMEOUT` timeout.

Note: Unused in bt_conn_le_create_auto

7.4. Bluetooth 183

Zephyr Project Documentation, Release 2.7.0-rc2

struct bt_conn_cb

#include <conn.h> Connection callback structure.

This structure is used for tracking the state of a connection. It is registered with the help of
the bt_conn_cb_register() API. It’s permissible to register multiple instances of this bt_conn_cb
type, in case different modules of an application are interested in tracking the connection
state. If a callback is not of interest for an instance, it may be set to NULL and will as a
consequence not be used for that instance.

Public Members

void (*connected)(struct bt_conn *conn, uint8_t err)

A new connection has been established.

This callback notifies the application of a new connection. In case the err parameter is
non-zero it means that the connection establishment failed.

err can mean either of the following:
• BT_HCI_ERR_UNKNOWN_CONN_ID Creating the connection started by

bt_conn_le_create was canceled either by the user through bt_conn_disconnect
or by the timeout in the host through bt_conn_le_create_param timeout parameter,
which defaults to :kconfig:`CONFIG_BT_CREATE_CONN_TIMEOUT` seconds.

• BT_HCI_ERR_ADV_TIMEOUT High duty cycle directed connectable advertiser started by
bt_le_adv_start failed to be connected within the timeout.

Note: If the connection was established from an advertising set then the advertising set
cannot be restarted directly from this callback. Instead use the connected callback of the
advertising set.

Param conn New connection object.
Param err HCI error. Zero for success, non-zero otherwise.

void (*disconnected)(struct bt_conn *conn, uint8_t reason)

A connection has been disconnected.

This callback notifies the application that a connection has been disconnected.

When this callback is called the stack still has one reference to the connection object. If
the application in this callback tries to start either a connectable advertiser or create a
new connection this might fail because there are no free connection objects available. To
avoid this issue it is recommended to either start connectable advertise or create a new
connection using k_work_submit or increase :kconfig:`CONFIG_BT_MAX_CONN` .

Param conn Connection object.
Param reason HCI reason for the disconnection.

bool (*le_param_req)(struct bt_conn *conn, struct bt_le_conn_param *param)

LE connection parameter update request.

This callback notifies the application that a remote device is requesting to update the
connection parameters. The application accepts the parameters by returning true, or
rejects them by returning false. Before accepting, the application may also adjust the
parameters to better suit its needs.

It is recommended for an application to have just one of these callbacks for simplicity.
However, if an application registers multiple it needs to manage the potentially different
requirements for each callback. Each callback gets the parameters as returned by previous
callbacks, i.e. they are not necessarily the same ones as the remote originally sent.

184 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

If the application does not have this callback then the default is to accept the parameters.
Param conn Connection object.
Param param Proposed connection parameters.
Return true to accept the parameters, or false to reject them.

void (*le_param_updated)(struct bt_conn *conn, uint16_t interval, uint16_t latency,
uint16_t timeout)

The parameters for an LE connection have been updated.

This callback notifies the application that the connection parameters for an LE connection
have been updated.

Param conn Connection object.
Param interval Connection interval.
Param latency Connection latency.
Param timeout Connection supervision timeout.

void (*identity_resolved)(struct bt_conn *conn, const bt_addr_le_t *rpa, const
bt_addr_le_t *identity)

Remote Identity Address has been resolved.

This callback notifies the application that a remote Identity Address has been resolved
Param conn Connection object.
Param rpa Resolvable Private Address.
Param identity Identity Address.

void (*security_changed)(struct bt_conn *conn, bt_security_t level, enum bt_security_err
err)

The security level of a connection has changed.

This callback notifies the application that the security of a connection has changed.

The security level of the connection can either have been increased or remain unchanged.
An increased security level means that the pairing procedure has been performed or the
bond information from a previous connection has been applied. If the security level re-
mains unchanged this means that the encryption key has been refreshed for the connec-
tion.

Param conn Connection object.
Param level New security level of the connection.
Param err Security error. Zero for success, non-zero otherwise.

void (*remote_info_available)(struct bt_conn *conn, struct bt_conn_remote_info
*remote_info)

Remote information procedures has completed.

This callback notifies the application that the remote information has been retrieved from
the remote peer.

Param conn Connection object.
Param remote_info Connection information of remote device.

void (*le_phy_updated)(struct bt_conn *conn, struct bt_conn_le_phy_info *param)

The PHY of the connection has changed.

This callback notifies the application that the PHY of the connection has changed.
Param conn Connection object.
Param info Connection LE PHY information.

void (*le_data_len_updated)(struct bt_conn *conn, struct bt_conn_le_data_len_info *info)

The data length parameters of the connection has changed.

7.4. Bluetooth 185

Zephyr Project Documentation, Release 2.7.0-rc2

This callback notifies the application that the maximum Link Layer payload length or
transmission time has changed.

Param conn Connection object.
Param info Connection data length information.

struct bt_conn_oob_info

#include <conn.h> Info Structure for OOB pairing

Public Types

enum [anonymous]

Type of OOB pairing method

Values:

enumerator BT_CONN_OOB_LE_LEGACY

LE legacy pairing

enumerator BT_CONN_OOB_LE_SC

LE SC pairing

Public Members

enum bt_conn_oob_info.[anonymous] type

Type of OOB pairing method

enum bt_conn_oob_info.[anonymous].[anonymous].[anonymous] oob_config

OOB data configuration

struct bt_conn_oob_info.[anonymous].[anonymous] lesc

LE Secure Connections OOB pairing parameters

struct bt_conn_pairing_feat

#include <conn.h> Pairing request and pairing response info structure.

This structure is the same for both smp_pairing_req and smp_pairing_rsp and a subset of the
packet data, except for the initial Code octet. It is documented in Core Spec. Vol. 3, Part H,
3.5.1 and 3.5.2.

Public Members

uint8_t io_capability

IO Capability, Core Spec. Vol 3, Part H, 3.5.1, Table 3.4

uint8_t oob_data_flag

OOB data flag, Core Spec. Vol 3, Part H, 3.5.1, Table 3.5

uint8_t auth_req

AuthReq, Core Spec. Vol 3, Part H, 3.5.1, Fig. 3.3

186 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

uint8_t max_enc_key_size

Maximum Encryption Key Size, Core Spec. Vol 3, Part H, 3.5.1

uint8_t init_key_dist

Initiator Key Distribution/Generation, Core Spec. Vol 3, Part H, 3.6.1, Fig. 3.11

uint8_t resp_key_dist

Responder Key Distribution/Generation, Core Spec. Vol 3, Part H 3.6.1, Fig. 3.11

struct bt_conn_auth_cb

#include <conn.h> Authenticated pairing callback structure

Public Members

enum bt_security_err (*pairing_accept)(struct bt_conn *conn, const struct
bt_conn_pairing_feat *const feat)

Query to proceed incoming pairing or not.

On any incoming pairing req/rsp this callback will be called for the application to decide
whether to allow for the pairing to continue.

The pairing info received from the peer is passed to assist making the decision.

As this callback is synchronous the application should return a response value immedi-
ately. Otherwise it may affect the timing during pairing. Hence, this information should
not be conveyed to the user to take action.

The remaining callbacks are not affected by this, but do notice that other callbacks can
be called during the pairing. Eg. if pairing_confirm is registered both will be called for
Just-Works pairings.

This callback may be unregistered in which case pairing continues as if the Kconfig flag
was not set.

This callback is not called for BR/EDR Secure Simple Pairing (SSP).
Param conn Connection where pairing is initiated.
Param feat Pairing req/resp info.

void (*passkey_display)(struct bt_conn *conn, unsigned int passkey)

Display a passkey to the user.

When called the application is expected to display the given passkey to the user, with the
expectation that the passkey will then be entered on the peer device. The passkey will be
in the range of 0 - 999999, and is expected to be padded with zeroes so that six digits are
always shown. E.g. the value 37 should be shown as 000037.

This callback may be set to NULL, which means that the local device lacks the ability do
display a passkey. If set to non-NULL the cancel callback must also be provided, since this
is the only way the application can find out that it should stop displaying the passkey.

Param conn Connection where pairing is currently active.
Param passkey Passkey to show to the user.

void (*passkey_entry)(struct bt_conn *conn)

Request the user to enter a passkey.

When called the user is expected to enter a passkey. The passkey must be in the range of
0 - 999999, and should be expected to be zero-padded, as that’s how the peer device will
typically be showing it (e.g. 37 would be shown as 000037).

7.4. Bluetooth 187

Zephyr Project Documentation, Release 2.7.0-rc2

Once the user has entered the passkey its value should be given to the stack using the
bt_conn_auth_passkey_entry() API.

This callback may be set to NULL, which means that the local device lacks the ability to
enter a passkey. If set to non-NULL the cancel callback must also be provided, since this is
the only way the application can find out that it should stop requesting the user to enter
a passkey.

Param conn Connection where pairing is currently active.

void (*passkey_confirm)(struct bt_conn *conn, unsigned int passkey)

Request the user to confirm a passkey.

When called the user is expected to confirm that the given passkey is also shown on the
peer device.. The passkey will be in the range of 0 - 999999, and should be zero-padded
to always be six digits (e.g. 37 would be shown as 000037).

Once the user has confirmed the passkey to match, the bt_conn_auth_passkey_confirm()
API should be called. If the user concluded that the passkey doesn’t match the
bt_conn_auth_cancel() API should be called.

This callback may be set to NULL, which means that the local device lacks the ability to
confirm a passkey. If set to non-NULL the cancel callback must also be provided, since
this is the only way the application can find out that it should stop requesting the user to
confirm a passkey.

Param conn Connection where pairing is currently active.
Param passkey Passkey to be confirmed.

void (*oob_data_request)(struct bt_conn *conn, struct bt_conn_oob_info *info)

Request the user to provide Out of Band (OOB) data.

When called the user is expected to provide OOB data. The required data are indicated
by the information structure.

For LE Secure Connections OOB pairing, the user should provide local OOB data, remote
OOB data or both depending on their availability. Their value should be given to the stack
using the bt_le_oob_set_sc_data() API.

This callback must be set to non-NULL in order to support OOB pairing.
Param conn Connection where pairing is currently active.
Param info OOB pairing information.

void (*cancel)(struct bt_conn *conn)

Cancel the ongoing user request.

This callback will be called to notify the application that it should cancel any previous
user request (passkey display, entry or confirmation).

This may be set to NULL, but must always be provided whenever the passkey_display,
passkey_entry passkey_confirm or pairing_confirm callback has been provided.

Param conn Connection where pairing is currently active.

void (*pairing_confirm)(struct bt_conn *conn)

Request confirmation for an incoming pairing.

This callback will be called to confirm an incoming pairing request where none of the
other user callbacks is applicable.

If the user decides to accept the pairing the bt_conn_auth_pairing_confirm() API should
be called. If the user decides to reject the pairing the bt_conn_auth_cancel() API should
be called.

188 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

This callback may be set to NULL, which means that the local device lacks the ability to
confirm a pairing request. If set to non-NULL the cancel callback must also be provided,
since this is the only way the application can find out that it should stop requesting the
user to confirm a pairing request.

Param conn Connection where pairing is currently active.

void (*pincode_entry)(struct bt_conn *conn, bool highsec)

Request the user to enter a passkey.

This callback will be called for a BR/EDR (Bluetooth Classic) connection where pairing
is being performed. Once called the user is expected to enter a PIN code with a length
between 1 and 16 digits. If the highsec parameter is set to true the PIN code must be 16
digits long.

Once entered, the PIN code should be given to the stack using the
bt_conn_auth_pincode_entry() API.

This callback may be set to NULL, however in that case pairing over BR/EDR will not be
possible. If provided, the cancel callback must be provided as well.

Param conn Connection where pairing is currently active.
Param highsec true if 16 digit PIN is required.

void (*pairing_complete)(struct bt_conn *conn, bool bonded)

notify that pairing procedure was complete.

This callback notifies the application that the pairing procedure has been completed.
Param conn Connection object.
Param bonded Bond information has been distributed during the pairing proce-

dure.

void (*pairing_failed)(struct bt_conn *conn, enum bt_security_err reason)

notify that pairing process has failed.
Param conn Connection object.
Param reason Pairing failed reason

void (*bond_deleted)(uint8_t id, const bt_addr_le_t *peer)

Notify that bond has been deleted.

This callback notifies the application that the bond information for the remote peer has
been deleted

Param id Which local identity had the bond.
Param peer Remote address.

struct bt_br_conn_param

#include <conn.h> Connection parameters for BR/EDR connections

7.4.2 Bluetooth Controller

API Reference

group bt_ctrl

Bluetooth Controller.

Functions

7.4. Bluetooth 189

Zephyr Project Documentation, Release 2.7.0-rc2

void bt_ctlr_set_public_addr(const uint8_t *addr)

Set public address for controller.

Should be called before bt_enable().

Parameters

• addr – Public address

7.4.3 Cryptography

API Reference

group bt_crypto

Cryptography.

Functions

int bt_rand(void *buf, size_t len)

Generate random data.

A random number generation helper which utilizes the Bluetooth controller’s own RNG.

Parameters

• buf – Buffer to insert the random data

• len – Length of random data to generate

Returns Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error

int bt_encrypt_le(const uint8_t key[16], const uint8_t plaintext[16], uint8_t enc_data[16])

AES encrypt little-endian data.

An AES encrypt helper is used to request the Bluetooth controller’s own hardware to encrypt
the plaintext using the key and returns the encrypted data.

Parameters

• key – 128 bit LS byte first key for the encryption of the plaintext

• plaintext – 128 bit LS byte first plaintext data block to be encrypted

• enc_data – 128 bit LS byte first encrypted data block

Returns Zero on success or error code otherwise.

int bt_encrypt_be(const uint8_t key[16], const uint8_t plaintext[16], uint8_t enc_data[16])

AES encrypt big-endian data.

An AES encrypt helper is used to request the Bluetooth controller’s own hardware to encrypt
the plaintext using the key and returns the encrypted data.

Parameters

• key – 128 bit MS byte first key for the encryption of the plaintext

• plaintext – 128 bit MS byte first plaintext data block to be encrypted

• enc_data – 128 bit MS byte first encrypted data block

Returns Zero on success or error code otherwise.

190 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

int bt_ccm_decrypt(const uint8_t key[16], uint8_t nonce[13], const uint8_t *enc_data, size_t
len, const uint8_t *aad, size_t aad_len, uint8_t *plaintext, size_t mic_size)

Decrypt big-endian data with AES-CCM.

Decrypts and authorizes enc_data with AES-CCM, as described in https://tools.ietf.org/html/
rfc3610.

Assumes that the MIC follows directly after the encrypted data.

Parameters

• key – 128 bit MS byte first key

• nonce – 13 byte MS byte first nonce

• enc_data – Encrypted data

• len – Length of the encrypted data

• aad – Additional input data

• aad_len – Additional input data length

• plaintext – Plaintext buffer to place result in

• mic_size – Size of the trailing MIC (in bytes)

Return values

• 0 – Successfully decrypted the data.

• -EINVAL – Invalid parameters.

• -EBADMSG – Authentication failed.

int bt_ccm_encrypt(const uint8_t key[16], uint8_t nonce[13], const uint8_t *plaintext, size_t
len, const uint8_t *aad, size_t aad_len, uint8_t *enc_data, size_t mic_size)

Encrypt big-endian data with AES-CCM.

Encrypts and generates a MIC from plaintext with AES-CCM, as described in https://tools.
ietf.org/html/rfc3610.

Places the MIC directly after the encrypted data.

Parameters

• key – 128 bit MS byte first key

• nonce – 13 byte MS byte first nonce

• plaintext – Plaintext buffer to encrypt

• len – Length of the encrypted data

• aad – Additional input data

• aad_len – Additional input data length

• enc_data – Buffer to place encrypted data in

• mic_size – Size of the trailing MIC (in bytes)

Return values

• 0 – Successfully encrypted the data.

• -EINVAL – Invalid parameters.

7.4. Bluetooth 191

https://tools.ietf.org/html/rfc3610
https://tools.ietf.org/html/rfc3610
https://tools.ietf.org/html/rfc3610
https://tools.ietf.org/html/rfc3610

Zephyr Project Documentation, Release 2.7.0-rc2

7.4.4 Data Buffers

API Reference

group bt_buf

Data buffers.

Defines

BT_BUF_RESERVE

BT_BUF_SIZE(size)

Helper to include reserved HCI data in buffer calculations

BT_BUF_ACL_SIZE(size)

Helper to calculate needed buffer size for HCI ACL packets

BT_BUF_EVT_SIZE(size)

Helper to calculate needed buffer size for HCI Event packets.

BT_BUF_CMD_SIZE(size)

Helper to calculate needed buffer size for HCI Command packets.

BT_BUF_ACL_RX_SIZE

Data size needed for HCI ACL RX buffers

BT_BUF_EVT_RX_SIZE

Data size needed for HCI Event RX buffers

BT_BUF_RX_SIZE

Data size needed for HCI ACL or Event RX buffers

BT_BUF_CMD_TX_SIZE

Data size needed for HCI Command buffers.

Enums

enum bt_buf_type

Possible types of buffers passed around the Bluetooth stack

Values:

enumerator BT_BUF_CMD

HCI command

enumerator BT_BUF_EVT

HCI event

enumerator BT_BUF_ACL_OUT

Outgoing ACL data

192 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator BT_BUF_ACL_IN

Incoming ACL data

enumerator BT_BUF_ISO_OUT

Outgoing ISO data

enumerator BT_BUF_ISO_IN

Incoming ISO data

enumerator BT_BUF_H4

H:4 data

Functions

struct net_buf *bt_buf_get_rx(enum bt_buf_type type, k_timeout_t timeout)

Allocate a buffer for incoming data

This will set the buffer type so bt_buf_set_type() does not need to be explicitly called before
bt_recv_prio().

Parameters

• type – Type of buffer. Only BT_BUF_EVT and BT_BUF_ACL_IN are allowed.

• timeout – Non-negative waiting period to obtain a buffer or one of the special
values K_NO_WAIT and K_FOREVER.

Returns A new buffer.

struct net_buf *bt_buf_get_tx(enum bt_buf_type type, k_timeout_t timeout, const void *data,
size_t size)

Allocate a buffer for outgoing data

This will set the buffer type so bt_buf_set_type() does not need to be explicitly called before
bt_send().

Parameters

• type – Type of buffer. Only BT_BUF_CMD, BT_BUF_ACL_OUT or BT_BUF_H4,
when operating on H:4 mode, are allowed.

• timeout – Non-negative waiting period to obtain a buffer or one of the special
values K_NO_WAIT and K_FOREVER.

• data – Initial data to append to buffer.

• size – Initial data size.

Returns A new buffer.

struct net_buf *bt_buf_get_cmd_complete(k_timeout_t timeout)

Allocate a buffer for an HCI Command Complete/Status Event

This will set the buffer type so bt_buf_set_type() does not need to be explicitly called before
bt_recv_prio().

Parameters

• timeout – Non-negative waiting period to obtain a buffer or one of the special
values K_NO_WAIT and K_FOREVER.

Returns A new buffer.

7.4. Bluetooth 193

Zephyr Project Documentation, Release 2.7.0-rc2

struct net_buf *bt_buf_get_evt(uint8_t evt, bool discardable, k_timeout_t timeout)

Allocate a buffer for an HCI Event

This will set the buffer type so bt_buf_set_type() does not need to be explicitly called before
bt_recv_prio() or bt_recv().

Parameters

• evt – HCI event code

• discardable – Whether the driver considers the event discardable.

• timeout – Non-negative waiting period to obtain a buffer or one of the special
values K_NO_WAIT and K_FOREVER.

Returns A new buffer.

static inline void bt_buf_set_type(struct net_buf *buf, enum bt_buf_type type)

Set the buffer type

Parameters

• buf – Bluetooth buffer

• type – The BT_* type to set the buffer to

static inline enum bt_buf_type bt_buf_get_type(struct net_buf *buf)

Get the buffer type

Parameters

• buf – Bluetooth buffer

Returns The BT_* type to of the buffer

struct bt_buf_data

#include <buf.h> This is a base type for bt_buf user data.

7.4.5 Generic Access Profile (GAP)

API Reference

group bt_gap

Generic Access Profile.

Defines

BT_ID_DEFAULT

Convenience macro for specifying the default identity. This helps make the code more read-
able, especially when only one identity is supported.

BT_DATA(_type, _data, _data_len)

Helper to declare elements of bt_data arrays.

This macro is mainly for creating an array of struct bt_data elements which is then passed to
e.g. bt_le_adv_start().

Parameters

• _type – Type of advertising data field

• _data – Pointer to the data field payload

194 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• _data_len – Number of bytes behind the _data pointer

BT_DATA_BYTES(_type, _bytes...)

Helper to declare elements of bt_data arrays.

This macro is mainly for creating an array of struct bt_data elements which is then passed to
e.g. bt_le_adv_start().

Parameters

• _type – Type of advertising data field

• _bytes – Variable number of single-byte parameters

BT_LE_ADV_PARAM_INIT(_options, _int_min, _int_max, _peer)

Initialize advertising parameters.

Parameters

• _options – Advertising Options

• _int_min – Minimum advertising interval

• _int_max – Maximum advertising interval

• _peer – Peer address, set to NULL for undirected advertising or address of peer
for directed advertising.

BT_LE_ADV_PARAM(_options, _int_min, _int_max, _peer)

Helper to declare advertising parameters inline.

Parameters

• _options – Advertising Options

• _int_min – Minimum advertising interval

• _int_max – Maximum advertising interval

• _peer – Peer address, set to NULL for undirected advertising or address of peer
for directed advertising.

BT_LE_ADV_CONN_DIR(_peer)

BT_LE_ADV_CONN

BT_LE_ADV_CONN_NAME

BT_LE_ADV_CONN_NAME_AD

BT_LE_ADV_CONN_DIR_LOW_DUTY(_peer)

BT_LE_ADV_NCONN

Non-connectable advertising with private address

BT_LE_ADV_NCONN_NAME

Non-connectable advertising with BT_LE_ADV_OPT_USE_NAME

BT_LE_ADV_NCONN_IDENTITY

Non-connectable advertising with BT_LE_ADV_OPT_USE_IDENTITY

7.4. Bluetooth 195

Zephyr Project Documentation, Release 2.7.0-rc2

BT_LE_EXT_ADV_CONN_NAME

Connectable extended advertising with BT_LE_ADV_OPT_USE_NAME

BT_LE_EXT_ADV_SCAN_NAME

Scannable extended advertising with BT_LE_ADV_OPT_USE_NAME

BT_LE_EXT_ADV_NCONN

Non-connectable extended advertising with private address

BT_LE_EXT_ADV_NCONN_NAME

Non-connectable extended advertising with BT_LE_ADV_OPT_USE_NAME

BT_LE_EXT_ADV_NCONN_IDENTITY

Non-connectable extended advertising with BT_LE_ADV_OPT_USE_IDENTITY

BT_LE_EXT_ADV_CODED_NCONN

Non-connectable extended advertising on coded PHY with private address

BT_LE_EXT_ADV_CODED_NCONN_NAME

Non-connectable extended advertising on coded PHY with BT_LE_ADV_OPT_USE_NAME

BT_LE_EXT_ADV_CODED_NCONN_IDENTITY

Non-connectable extended advertising on coded PHY with BT_LE_ADV_OPT_USE_IDENTITY

BT_LE_EXT_ADV_START_PARAM_INIT(_timeout, _n_evts)

Helper to initialize extended advertising start parameters inline

Parameters

• _timeout – Advertiser timeout

• _n_evts – Number of advertising events

BT_LE_EXT_ADV_START_PARAM(_timeout, _n_evts)

Helper to declare extended advertising start parameters inline

Parameters

• _timeout – Advertiser timeout

• _n_evts – Number of advertising events

BT_LE_EXT_ADV_START_DEFAULT

BT_LE_PER_ADV_PARAM_INIT(_int_min, _int_max, _options)

Helper to declare periodic advertising parameters inline

Parameters

• _int_min – Minimum periodic advertising interval

• _int_max – Maximum periodic advertising interval

• _options – Periodic advertising properties bitfield.

BT_LE_PER_ADV_PARAM(_int_min, _int_max, _options)

Helper to declare periodic advertising parameters inline

Parameters

196 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• _int_min – Minimum periodic advertising interval

• _int_max – Maximum periodic advertising interval

• _options – Periodic advertising properties bitfield.

BT_LE_PER_ADV_DEFAULT

BT_LE_SCAN_OPT_FILTER_WHITELIST

BT_LE_SCAN_PARAM_INIT(_type, _options, _interval, _window)

Initialize scan parameters.

Parameters

• _type – Scan Type, BT_LE_SCAN_TYPE_ACTIVE or
BT_LE_SCAN_TYPE_PASSIVE.

• _options – Scan options

• _interval – Scan Interval (N * 0.625 ms)

• _window – Scan Window (N * 0.625 ms)

BT_LE_SCAN_PARAM(_type, _options, _interval, _window)

Helper to declare scan parameters inline.

Parameters

• _type – Scan Type, BT_LE_SCAN_TYPE_ACTIVE or
BT_LE_SCAN_TYPE_PASSIVE.

• _options – Scan options

• _interval – Scan Interval (N * 0.625 ms)

• _window – Scan Window (N * 0.625 ms)

BT_LE_SCAN_ACTIVE

Helper macro to enable active scanning to discover new devices.

BT_LE_SCAN_PASSIVE

Helper macro to enable passive scanning to discover new devices.

This macro should be used if information required for device identification (e.g., UUID) are
known to be placed in Advertising Data.

BT_LE_SCAN_CODED_ACTIVE

Helper macro to enable active scanning to discover new devices. Include scanning on Coded
PHY in addition to 1M PHY.

BT_LE_SCAN_CODED_PASSIVE

Helper macro to enable passive scanning to discover new devices. Include scanning on Coded
PHY in addition to 1M PHY.

This macro should be used if information required for device identification (e.g., UUID) are
known to be placed in Advertising Data.

Typedefs

7.4. Bluetooth 197

Zephyr Project Documentation, Release 2.7.0-rc2

typedef void (*bt_ready_cb_t)(int err)

Callback for notifying that Bluetooth has been enabled.

Param err zero on success or (negative) error code otherwise.

typedef void bt_le_scan_cb_t(const bt_addr_le_t *addr, int8_t rssi, uint8_t adv_type, struct
net_buf_simple *buf)

Callback type for reporting LE scan results.

A function of this type is given to the bt_le_scan_start() function and will be called for any
discovered LE device.

Param addr Advertiser LE address and type.

Param rssi Strength of advertiser signal.

Param adv_type Type of advertising response from advertiser.

Param buf Buffer containing advertiser data.

typedef void bt_br_discovery_cb_t(struct bt_br_discovery_result *results, size_t count)

Callback type for reporting BR/EDR discovery (inquiry) results.

A callback of this type is given to the bt_br_discovery_start() function and will be called at the
end of the discovery with information about found devices populated in the results array.

Param results Storage used for discovery results

Param count Number of valid discovery results.

Enums

enum [anonymous]

Advertising options

Values:

enumerator BT_LE_ADV_OPT_NONE = 0

Convenience value when no options are specified.

enumerator BT_LE_ADV_OPT_CONNECTABLE = BIT(0)

Advertise as connectable.

Advertise as connectable. If not connectable then the type of advertising is determined
by providing scan response data. The advertiser address is determined by the type of
advertising and/or enabling privacy :kconfig:`CONFIG_BT_PRIVACY` .

enumerator BT_LE_ADV_OPT_ONE_TIME = BIT(1)

Advertise one time.

Don’t try to resume connectable advertising after a connection. This option is only mean-
ingful when used together with BT_LE_ADV_OPT_CONNECTABLE. If set the advertising
will be stopped when bt_le_adv_stop() is called or when an incoming (peripheral) con-
nection happens. If this option is not set the stack will take care of keeping advertising
enabled even as connections occur. If Advertising directed or the advertiser was started
with bt_le_ext_adv_start then this behavior is the default behavior and this flag has no
effect.

198 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator BT_LE_ADV_OPT_USE_IDENTITY = BIT(2)

Advertise using identity address.

Advertise using the identity address as the advertiser address.

Note: The address used for advertising will not be the same as returned by
bt_le_oob_get_local, instead bt_id_get should be used to get the LE address.

Warning: This will compromise the privacy of the device, so care must be taken when
using this option.

enumerator BT_LE_ADV_OPT_USE_NAME = BIT(3)

Advertise using GAP device name.

Include the GAP device name automatically when advertising.
By default the GAP device name is put at the end of the scan
response data.
When advertising using @ref BT_LE_ADV_OPT_EXT_ADV and not
@ref BT_LE_ADV_OPT_SCANNABLE then it will be put at the end of the
advertising data.
If the GAP device name does not fit into advertising data it will be
converted to a shortened name if possible.
@ref BT_LE_ADV_OPT_FORCE_NAME_IN_AD can be used to force the device
name to appear in the advertising data of an advert with scan
response data.

The application can set the device name itself by including the
following in the advertising data.
@code
BT_DATA(BT_DATA_NAME_COMPLETE, name, sizeof(name) - 1)
@endcode

enumerator BT_LE_ADV_OPT_DIR_MODE_LOW_DUTY = BIT(4)

Low duty cycle directed advertising.

Use low duty directed advertising mode, otherwise high duty mode will be used.

enumerator BT_LE_ADV_OPT_DIR_ADDR_RPA = BIT(5)

Directed advertising to privacy-enabled peer.

Enable use of Resolvable Private Address (RPA) as the target address in directed adver-
tisements. This is required if the remote device is privacy-enabled and supports address
resolution of the target address in directed advertisement. It is the responsibility of the
application to check that the remote device supports address resolution of directed adver-
tisements by reading its Central Address Resolution characteristic.

enumerator BT_LE_ADV_OPT_FILTER_SCAN_REQ = BIT(6)

Use filter accept list to filter devices that can request scan response data.

enumerator BT_LE_ADV_OPT_FILTER_CONN = BIT(7)

Use filter accept list to filter devices that can connect.

7.4. Bluetooth 199

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator BT_LE_ADV_OPT_NOTIFY_SCAN_REQ = BIT(8)

Notify the application when a scan response data has been sent to an active scanner.

enumerator BT_LE_ADV_OPT_SCANNABLE = BIT(9)

Support scan response data.

When used together with BT_LE_ADV_OPT_EXT_ADV then this option cannot be used
together with the BT_LE_ADV_OPT_CONNECTABLE option. When used together with
BT_LE_ADV_OPT_EXT_ADV then scan response data must be set.

enumerator BT_LE_ADV_OPT_EXT_ADV = BIT(10)

Advertise with extended advertising.

This options enables extended advertising in the advertising set. In extended advertising
the advertising set will send a small header packet on the three primary advertising chan-
nels. This small header points to the advertising data packet that will be sent on one of
the 37 secondary advertising channels. The advertiser will send primary advertising on
LE 1M PHY, and secondary advertising on LE 2M PHY. Connections will be established on
LE 2M PHY.

Without this option the advertiser will send advertising data on the three primary adver-
tising channels.

Note: Enabling this option requires extended advertising support in the peer devices
scanning for advertisement packets.

enumerator BT_LE_ADV_OPT_NO_2M = BIT(11)

Disable use of LE 2M PHY on the secondary advertising channel.

Disabling the use of LE 2M PHY could be necessary if scanners don’t support the LE
2M PHY. The advertiser will send primary advertising on LE 1M PHY, and secondary
advertising on LE 1M PHY. Connections will be established on LE 1M PHY.

Note: Cannot be set if BT_LE_ADV_OPT_CODED is set.

Note: Requires BT_LE_ADV_OPT_EXT_ADV.

enumerator BT_LE_ADV_OPT_CODED = BIT(12)

Advertise on the LE Coded PHY (Long Range).

The advertiser will send both primary and secondary advertising on the LE Coded PHY.
This gives the advertiser increased range with the trade-off of lower data rate and higher
power consumption. Connections will be established on LE Coded PHY.

Note: Requires BT_LE_ADV_OPT_EXT_ADV

enumerator BT_LE_ADV_OPT_ANONYMOUS = BIT(13)

Advertise without a device address (identity or RPA).

Note: Requires BT_LE_ADV_OPT_EXT_ADV

200 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator BT_LE_ADV_OPT_USE_TX_POWER = BIT(14)

Advertise with transmit power.

Note: Requires BT_LE_ADV_OPT_EXT_ADV

enumerator BT_LE_ADV_OPT_DISABLE_CHAN_37 = BIT(15)

Disable advertising on channel index 37.

enumerator BT_LE_ADV_OPT_DISABLE_CHAN_38 = BIT(16)

Disable advertising on channel index 38.

enumerator BT_LE_ADV_OPT_DISABLE_CHAN_39 = BIT(17)

Disable advertising on channel index 39.

enumerator BT_LE_ADV_OPT_FORCE_NAME_IN_AD = BIT(18)

Put GAP device name into advert data.

Will place the GAP device name into the advertising data rather than the scan response
data.

Note: Requires BT_LE_ADV_OPT_USE_NAME

enum [anonymous]

Periodic Advertising options

Values:

enumerator BT_LE_PER_ADV_OPT_NONE = 0

Convenience value when no options are specified.

enumerator BT_LE_PER_ADV_OPT_USE_TX_POWER = BIT(1)

Advertise with transmit power.

Note: Requires BT_LE_ADV_OPT_EXT_ADV

enum [anonymous]

Periodic advertising sync options

Values:

enumerator BT_LE_PER_ADV_SYNC_OPT_NONE = 0

Convenience value when no options are specified.

enumerator BT_LE_PER_ADV_SYNC_OPT_USE_PER_ADV_LIST = BIT(0)

Use the periodic advertising list to sync with advertiser.

When this option is set, the address and SID of the parameters are ignored.

7.4. Bluetooth 201

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator BT_LE_PER_ADV_SYNC_OPT_REPORTING_INITIALLY_DISABLED = BIT(1)

Disables periodic advertising reports.

No advertisement reports will be handled until enabled.

enumerator BT_LE_PER_ADV_SYNC_OPT_DONT_SYNC_AOA = BIT(2)

Sync with Angle of Arrival (AoA) constant tone extension

enumerator BT_LE_PER_ADV_SYNC_OPT_DONT_SYNC_AOD_1US = BIT(3)

Sync with Angle of Departure (AoD) 1 us constant tone extension

enumerator BT_LE_PER_ADV_SYNC_OPT_DONT_SYNC_AOD_2US = BIT(4)

Sync with Angle of Departure (AoD) 2 us constant tone extension

enumerator BT_LE_PER_ADV_SYNC_OPT_SYNC_ONLY_CONST_TONE_EXT = BIT(5)

Do not sync to packets without a constant tone extension

enum [anonymous]

Periodic Advertising Sync Transfer options

Values:

enumerator BT_LE_PER_ADV_SYNC_TRANSFER_OPT_NONE = 0

Convenience value when no options are specified.

enumerator BT_LE_PER_ADV_SYNC_TRANSFER_OPT_SYNC_NO_AOA = BIT(0)

No Angle of Arrival (AoA)

Do not sync with Angle of Arrival (AoA) constant tone extension

enumerator BT_LE_PER_ADV_SYNC_TRANSFER_OPT_SYNC_NO_AOD_1US = BIT(1)

No Angle of Departure (AoD) 1 us.

Do not sync with Angle of Departure (AoD) 1 us constant tone extension

enumerator BT_LE_PER_ADV_SYNC_TRANSFER_OPT_SYNC_NO_AOD_2US = BIT(2)

No Angle of Departure (AoD) 2.

Do not sync with Angle of Departure (AoD) 2 us constant tone extension

enumerator BT_LE_PER_ADV_SYNC_TRANSFER_OPT_SYNC_ONLY_CTE = BIT(3)

Only sync to packets with constant tone extension

enum [anonymous]

Values:

enumerator BT_LE_SCAN_OPT_NONE = 0

Convenience value when no options are specified.

enumerator BT_LE_SCAN_OPT_FILTER_DUPLICATE = BIT(0)

Filter duplicates.

202 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator BT_LE_SCAN_OPT_FILTER_ACCEPT_LIST = BIT(1)

Filter using filter accept list.

enumerator BT_LE_SCAN_OPT_CODED = BIT(2)

Enable scan on coded PHY (Long Range).

enumerator BT_LE_SCAN_OPT_NO_1M = BIT(3)

Disable scan on 1M phy.

Note: Requires BT_LE_SCAN_OPT_CODED.

enum [anonymous]

Values:

enumerator BT_LE_SCAN_TYPE_PASSIVE = 0x00

Scan without requesting additional information from advertisers.

enumerator BT_LE_SCAN_TYPE_ACTIVE = 0x01

Scan and request additional information from advertisers.

Functions

int bt_enable(bt_ready_cb_t cb)

Enable Bluetooth.

Enable Bluetooth. Must be the called before any calls that require communication with the
local Bluetooth hardware.

When :kconfig:`CONFIG_BT_SETTINGS` has been enabled and the application is not man-
aging identities of the stack itself then the application must call settings_load() before the
stack is fully enabled. See bt_id_create() for more information.

Parameters

• cb – Callback to notify completion or NULL to perform the enabling syn-
chronously.

Returns Zero on success or (negative) error code otherwise.

int bt_set_name(const char *name)

Set Bluetooth Device Name.

Set Bluetooth GAP Device Name.

When advertising with device name in the advertising data the name should be updated by
calling bt_le_adv_update_data or bt_le_ext_adv_set_data.

Parameters

• name – New name

Returns Zero on success or (negative) error code otherwise.

const char *bt_get_name(void)

Get Bluetooth Device Name.

Get Bluetooth GAP Device Name.

7.4. Bluetooth 203

Zephyr Project Documentation, Release 2.7.0-rc2

Returns Bluetooth Device Name

void bt_id_get(bt_addr_le_t *addrs, size_t *count)

Get the currently configured identities.

Returns an array of the currently configured identity addresses. To make sure all avail-
able identities can be retrieved, the number of elements in the addrs array should be CON-
FIG_BT_ID_MAX. The identity identifier that some APIs expect (such as advertising parame-
ters) is simply the index of the identity in the addrs array.

If addrs is passed as NULL, then returned count contains the count of all available identities
that can be retrieved with a subsequent call to this function with non-NULL addrs parameter.

Note: Deleted identities may show up as BT_LE_ADDR_ANY in the returned array.

Parameters

• addrs – Array where to store the configured identities.

• count – Should be initialized to the array size. Once the function returns it will
contain the number of returned identities.

int bt_id_create(bt_addr_le_t *addr, uint8_t *irk)

Create a new identity.

Create a new identity using the given address and IRK. This function can be called before
calling bt_enable(), in which case it can be used to override the controller’s public address
(in case it has one). However, the new identity will only be stored persistently in flash when
this API is used after bt_enable(). The reason is that the persistent settings are loaded after
bt_enable() and would therefore cause potential conflicts with the stack blindly overwriting
what’s stored in flash. The identity will also not be written to flash in case a pre-defined
address is provided, since in such a situation the app clearly has some place it got the address
from and will be able to repeat the procedure on every power cycle, i.e. it would be redundant
to also store the information in flash.

Generating random static address or random IRK is not supported when calling this function
before bt_enable().

If the application wants to have the stack randomly generate identities and store them in flash
for later recovery, the way to do it would be to first initialize the stack (using bt_enable), then
call settings_load(), and after that check with bt_id_get() how many identities were recovered.
If an insufficient amount of identities were recovered the app may then call bt_id_create() to
create new ones.

Parameters

• addr – Address to use for the new identity. If NULL or initialized to
BT_ADDR_LE_ANY the stack will generate a new random static address for
the identity and copy it to the given parameter upon return from this function
(in case the parameter was non-NULL).

• irk – Identity Resolving Key (16 bytes) to be used with this identity. If set
to all zeroes or NULL, the stack will generate a random IRK for the identity
and copy it back to the parameter upon return from this function (in case the
parameter was non-NULL). If privacy :kconfig:`CONFIG_BT_PRIVACY` is not
enabled this parameter must be NULL.

Returns Identity identifier (>= 0) in case of success, or a negative error code on
failure.

204 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

int bt_id_reset(uint8_t id, bt_addr_le_t *addr, uint8_t *irk)

Reset/reclaim an identity for reuse.

The semantics of the addr and irk parameters of this function are the same as with
bt_id_create(). The difference is the first id parameter that needs to be an existing identity
(if it doesn’t exist this function will return an error). When given an existing identity this
function will disconnect any connections created using it, remove any pairing keys or other
data associated with it, and then create a new identity in the same slot, based on the addr and
irk parameters.

Note: the default identity (BT_ID_DEFAULT) cannot be reset, i.e. this API will return an
error if asked to do that.

Parameters

• id – Existing identity identifier.

• addr – Address to use for the new identity. If NULL or initialized to
BT_ADDR_LE_ANY the stack will generate a new static random address for
the identity and copy it to the given parameter upon return from this function
(in case the parameter was non-NULL).

• irk – Identity Resolving Key (16 bytes) to be used with this identity. If set
to all zeroes or NULL, the stack will generate a random IRK for the identity
and copy it back to the parameter upon return from this function (in case the
parameter was non-NULL). If privacy :kconfig:`CONFIG_BT_PRIVACY` is not
enabled this parameter must be NULL.

Returns Identity identifier (>= 0) in case of success, or a negative error code on
failure.

int bt_id_delete(uint8_t id)

Delete an identity.

When given a valid identity this function will disconnect any connections created using it,
remove any pairing keys or other data associated with it, and then flag is as deleted, so that it
can not be used for any operations. To take back into use the slot the identity was occupying
the bt_id_reset() API needs to be used.

Note: the default identity (BT_ID_DEFAULT) cannot be deleted, i.e. this API will return an
error if asked to do that.

Parameters

• id – Existing identity identifier.

Returns 0 in case of success, or a negative error code on failure.

int bt_le_adv_start(const struct bt_le_adv_param *param, const struct bt_data *ad, size_t
ad_len, const struct bt_data *sd, size_t sd_len)

Start advertising.

Set advertisement data, scan response data, advertisement parameters and start advertising.

When the advertisement parameter peer address has been set the advertising will
be directed to the peer. In this case advertisement data and scan response data
parameters are ignored. If the mode is high duty cycle the timeout will be
BT_GAP_ADV_HIGH_DUTY_CYCLE_MAX_TIMEOUT.

Parameters

7.4. Bluetooth 205

Zephyr Project Documentation, Release 2.7.0-rc2

• param – Advertising parameters.

• ad – Data to be used in advertisement packets.

• ad_len – Number of elements in ad

• sd – Data to be used in scan response packets.

• sd_len – Number of elements in sd

Returns Zero on success or (negative) error code otherwise.

Returns -ENOMEM No free connection objects available for connectable advertiser.

Returns -ECONNREFUSED When connectable advertising is requested and there is
already maximum number of connections established in the controller. This error
code is only guaranteed when using Zephyr controller, for other controllers code
returned in this case may be -EIO.

int bt_le_adv_update_data(const struct bt_data *ad, size_t ad_len, const struct bt_data *sd,
size_t sd_len)

Update advertising.

Update advertisement and scan response data.

Parameters

• ad – Data to be used in advertisement packets.

• ad_len – Number of elements in ad

• sd – Data to be used in scan response packets.

• sd_len – Number of elements in sd

Returns Zero on success or (negative) error code otherwise.

int bt_le_adv_stop(void)

Stop advertising.

Stops ongoing advertising.

Returns Zero on success or (negative) error code otherwise.

int bt_le_ext_adv_create(const struct bt_le_adv_param *param, const struct bt_le_ext_adv_cb
*cb, struct bt_le_ext_adv **adv)

Create advertising set.

Create a new advertising set and set advertising parameters. Advertising parameters can be
updated with bt_le_ext_adv_update_param.

Parameters

• param – [in] Advertising parameters.

• cb – [in] Callback struct to notify about advertiser activity. Can be NULL. Must
point to valid memory during the lifetime of the advertising set.

• adv – [out] Valid advertising set object on success.

Returns Zero on success or (negative) error code otherwise.

int bt_le_ext_adv_start(struct bt_le_ext_adv *adv, struct bt_le_ext_adv_start_param *param)

Start advertising with the given advertising set.

If the advertiser is limited by either the timeout or number of advertising events the applica-
tion will be notified by the advertiser sent callback once the limit is reached. If the advertiser
is limited by both the timeout and the number of advertising events then the limit that is
reached first will stop the advertiser.

Parameters

206 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• adv – Advertising set object.

• param – Advertise start parameters.

int bt_le_ext_adv_stop(struct bt_le_ext_adv *adv)

Stop advertising with the given advertising set.

Stop advertising with a specific advertising set. When using this function the advertising sent
callback will not be called.

Parameters

• adv – Advertising set object.

Returns Zero on success or (negative) error code otherwise.

int bt_le_ext_adv_set_data(struct bt_le_ext_adv *adv, const struct bt_data *ad, size_t ad_len,
const struct bt_data *sd, size_t sd_len)

Set an advertising set’s advertising or scan response data.

Set advertisement data or scan response data. If the advertising set is currently advertising
then the advertising data will be updated in subsequent advertising events.

When both BT_LE_ADV_OPT_EXT_ADV and BT_LE_ADV_OPT_SCANNABLE are enabled then
advertising data is ignored. When BT_LE_ADV_OPT_SCANNABLE is not enabled then scan
response data is ignored.

If the advertising set has been configured to send advertising data on the primary ad-
vertising channels then the maximum data length is BT_GAP_ADV_MAX_ADV_DATA_LEN
bytes. If the advertising set has been configured for extended advertising, then the
maximum data length is defined by the controller with the maximum possible of
BT_GAP_ADV_MAX_EXT_ADV_DATA_LEN bytes.

Note: Not all scanners support extended data length advertising data.

Note: When updating the advertising data while advertising the advertising data and scan
response data length must be smaller or equal to what can be fit in a single advertising packet.
Otherwise the advertiser must be stopped.

Parameters

• adv – Advertising set object.

• ad – Data to be used in advertisement packets.

• ad_len – Number of elements in ad

• sd – Data to be used in scan response packets.

• sd_len – Number of elements in sd

Returns Zero on success or (negative) error code otherwise.

int bt_le_ext_adv_update_param(struct bt_le_ext_adv *adv, const struct bt_le_adv_param
*param)

Update advertising parameters.

Update the advertising parameters. The function will return an error if the advertiser set is
currently advertising. Stop the advertising set before calling this function.

7.4. Bluetooth 207

Zephyr Project Documentation, Release 2.7.0-rc2

Note: When changing the option BT_LE_ADV_OPT_USE_NAME then bt_le_ext_adv_set_data
needs to be called in order to update the advertising data and scan response data.

Parameters

• adv – Advertising set object.

• param – Advertising parameters.

Returns Zero on success or (negative) error code otherwise.

int bt_le_ext_adv_delete(struct bt_le_ext_adv *adv)

Delete advertising set.

Delete advertising set. This will free up the advertising set and make it possible to create a
new advertising set.

Returns Zero on success or (negative) error code otherwise.

uint8_t bt_le_ext_adv_get_index(struct bt_le_ext_adv *adv)

Get array index of an advertising set.

This function is used to map bt_adv to index of an array of advertising sets. The array has
CONFIG_BT_EXT_ADV_MAX_ADV_SET elements.

Parameters

• adv – Advertising set.

Returns Index of the advertising set object. The range of the returned value is
0..CONFIG_BT_EXT_ADV_MAX_ADV_SET-1

int bt_le_ext_adv_get_info(const struct bt_le_ext_adv *adv, struct bt_le_ext_adv_info *info)

Get advertising set info.

Parameters

• adv – Advertising set object

• info – Advertising set info object

Returns Zero on success or (negative) error code on failure.

int bt_le_per_adv_set_param(struct bt_le_ext_adv *adv, const struct bt_le_per_adv_param
*param)

Set or update the periodic advertising parameters.

The periodic advertising parameters can only be set or updated on an extended advertisement
set which is neither scannable, connectable nor anonymous.

Parameters

• adv – Advertising set object.

• param – Advertising parameters.

Returns Zero on success or (negative) error code otherwise.

int bt_le_per_adv_set_data(const struct bt_le_ext_adv *adv, const struct bt_data *ad, size_t
ad_len)

Set or update the periodic advertising data.

The periodic advertisement data can only be set or updated on an extended advertisement set
which is neither scannable, connectable nor anonymous.

Parameters

208 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• adv – Advertising set object.

• ad – Advertising data.

• ad_len – Advertising data length.

Returns Zero on success or (negative) error code otherwise.

int bt_le_per_adv_start(struct bt_le_ext_adv *adv)

Starts periodic advertising.

Enabling the periodic advertising can be done independently of extended advertising, but both
periodic advertising and extended advertising shall be enabled before any periodic advertising
data is sent. The periodic advertising and extended advertising can be enabled in any order.

Once periodic advertising has been enabled, it will continue advertising un-
til bt_le_per_adv_stop() has been called, or if the advertising set is deleted by
bt_le_ext_adv_delete(). Calling bt_le_ext_adv_stop() will not stop the periodic advertis-
ing.

Parameters

• adv – Advertising set object.

Returns Zero on success or (negative) error code otherwise.

int bt_le_per_adv_stop(struct bt_le_ext_adv *adv)

Stops periodic advertising.

Disabling the periodic advertising can be done independently of extended advertising. Dis-
abling periodic advertising will not disable extended advertising.

Parameters

• adv – Advertising set object.

Returns Zero on success or (negative) error code otherwise.

uint8_t bt_le_per_adv_sync_get_index(struct bt_le_per_adv_sync *per_adv_sync)

Get array index of an periodic advertising sync object.

This function is get the index of an array of periodic advertising sync objects. The array has
CONFIG_BT_PER_ADV_SYNC_MAX elements.

Parameters

• per_adv_sync – The periodic advertising sync object.

Returns Index of the periodic advertising sync object. The range of the returned
value is 0..CONFIG_BT_PER_ADV_SYNC_MAX-1

int bt_le_per_adv_sync_get_info(struct bt_le_per_adv_sync *per_adv_sync, struct
bt_le_per_adv_sync_info *info)

Get periodic adv sync information.

Parameters

• per_adv_sync – Periodic advertising sync object.

• info – Periodic advertising sync info object

Returns Zero on success or (negative) error code on failure.

struct bt_le_per_adv_sync *bt_le_per_adv_sync_lookup_addr(const bt_addr_le_t *adv_addr,
uint8_t sid)

Look up an existing periodic advertising sync object by advertiser address.

Parameters

• adv_addr – Advertiser address.

7.4. Bluetooth 209

Zephyr Project Documentation, Release 2.7.0-rc2

• sid – The advertising set ID.

Returns Periodic advertising sync object or NULL if not found.

int bt_le_per_adv_sync_create(const struct bt_le_per_adv_sync_param *param, struct
bt_le_per_adv_sync **out_sync)

Create a periodic advertising sync object.

Create a periodic advertising sync object that can try to synchronize to periodic advertising
reports from an advertiser. Scan shall either be disabled or extended scan shall be enabled.

Parameters

• param – [in] Periodic advertising sync parameters.

• out_sync – [out] Periodic advertising sync object on.

Returns Zero on success or (negative) error code otherwise.

int bt_le_per_adv_sync_delete(struct bt_le_per_adv_sync *per_adv_sync)

Delete periodic advertising sync.

Delete the periodic advertising sync object. Can be called regardless of the state of the sync.
If the syncing is currently syncing, the syncing is cancelled. If the sync has been established,
it is terminated. The periodic advertising sync object will be invalidated afterwards.

If the state of the sync object is syncing, then a new periodic advertising sync object may not
be created until the controller has finished canceling this object.

Parameters

• per_adv_sync – The periodic advertising sync object.

Returns Zero on success or (negative) error code otherwise.

void bt_le_per_adv_sync_cb_register(struct bt_le_per_adv_sync_cb *cb)

Register periodic advertising sync callbacks.

Adds the callback structure to the list of callback structures for periodic adverising syncs.

This callback will be called for all periodic advertising sync activity, such as synced, terminated
and when data is received.

Parameters

• cb – Callback struct. Must point to memory that remains valid.

int bt_le_per_adv_sync_recv_enable(struct bt_le_per_adv_sync *per_adv_sync)

Enables receiving periodic advertising reports for a sync.

If the sync is already receiving the reports, -EALREADY is returned.

Parameters

• per_adv_sync – The periodic advertising sync object.

Returns Zero on success or (negative) error code otherwise.

int bt_le_per_adv_sync_recv_disable(struct bt_le_per_adv_sync *per_adv_sync)

Disables receiving periodic advertising reports for a sync.

If the sync report receiving is already disabled, -EALREADY is returned.

Parameters

• per_adv_sync – The periodic advertising sync object.

Returns Zero on success or (negative) error code otherwise.

210 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

int bt_le_per_adv_sync_transfer(const struct bt_le_per_adv_sync *per_adv_sync, const struct
bt_conn *conn, uint16_t service_data)

Transfer the periodic advertising sync information to a peer device.

This will allow another device to quickly synchronize to the same periodic advertising train
that this device is currently synced to.

Parameters

• per_adv_sync – The periodic advertising sync to transfer.

• conn – The peer device that will receive the sync information.

• service_data – Application service data provided to the remote host.

Returns Zero on success or (negative) error code otherwise.

int bt_le_per_adv_set_info_transfer(const struct bt_le_ext_adv *adv, const struct bt_conn
*conn, uint16_t service_data)

Transfer the information about a periodic advertising set.

This will allow another device to quickly synchronize to periodic advertising set from this
device.

Parameters

• adv – The periodic advertising set to transfer info of.

• conn – The peer device that will receive the information.

• service_data – Application service data provided to the remote host.

Returns Zero on success or (negative) error code otherwise.

int bt_le_per_adv_sync_transfer_subscribe(const struct bt_conn *conn, const struct
bt_le_per_adv_sync_transfer_param *param)

Subscribe to periodic advertising sync transfers (PASTs).

Sets the parameters and allow other devices to transfer periodic advertising syncs.

Parameters

• conn – The connection to set the parameters for. If NULL default parameters for
all connections will be set. Parameters set for specific connection will always
have precedence.

• param – The periodic advertising sync transfer parameters.

Returns Zero on success or (negative) error code otherwise.

int bt_le_per_adv_sync_transfer_unsubscribe(const struct bt_conn *conn)

Unsubscribe from periodic advertising sync transfers (PASTs).

Remove the parameters that allow other devices to transfer periodic advertising syncs.

Parameters

• conn – The connection to remove the parameters for. If NULL default param-
eters for all connections will be removed. Unsubscribing for a specific device,
will still allow other devices to transfer periodic advertising syncs.

Returns Zero on success or (negative) error code otherwise.

int bt_le_per_adv_list_add(const bt_addr_le_t *addr, uint8_t sid)

Add a device to the periodic advertising list.

Add peer device LE address to the periodic advertising list. This will make it possibly to
automatically create a periodic advertising sync to this device.

Parameters

7.4. Bluetooth 211

Zephyr Project Documentation, Release 2.7.0-rc2

• addr – Bluetooth LE identity address.

• sid – The advertising set ID. This value is obtained from the
bt_le_scan_recv_info in the scan callback.

Returns Zero on success or (negative) error code otherwise.

int bt_le_per_adv_list_remove(const bt_addr_le_t *addr, uint8_t sid)

Remove a device from the periodic advertising list.

Removes peer device LE address from the periodic advertising list.

Parameters

• addr – Bluetooth LE identity address.

• sid – The advertising set ID. This value is obtained from the
bt_le_scan_recv_info in the scan callback.

Returns Zero on success or (negative) error code otherwise.

int bt_le_per_adv_list_clear(void)

Clear the periodic advertising list.

Clears the entire periodic advertising list.

Returns Zero on success or (negative) error code otherwise.

int bt_le_scan_start(const struct bt_le_scan_param *param, bt_le_scan_cb_t cb)

Start (LE) scanning.

Start LE scanning with given parameters and provide results through the specified callback.

Note: The LE scanner by default does not use the Identity Address of the local
device when :kconfig:`CONFIG_BT_PRIVACY` is disabled. This is to prevent the ac-
tive scanner from disclosing the identity information when requesting additional infor-
mation from advertisers. In order to enable directed advertiser reports then :kcon-
fig:`CONFIG_BT_SCAN_WITH_IDENTITY` must be enabled.

Parameters

• param – Scan parameters.

• cb – Callback to notify scan results. May be NULL if callback registration
through bt_le_scan_cb_register is preferred.

Returns Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error.

int bt_le_scan_stop(void)

Stop (LE) scanning.

Stops ongoing LE scanning.

Returns Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error.

void bt_le_scan_cb_register(struct bt_le_scan_cb *cb)

Register scanner packet callbacks.

Adds the callback structure to the list of callback structures that monitors scanner activity.

This callback will be called for all scanner activity, regardless of what API was used to start
the scanner.

Parameters

212 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• cb – Callback struct. Must point to memory that remains valid.

void bt_le_scan_cb_unregister(struct bt_le_scan_cb *cb)

Unregister scanner packet callbacks.

Remove the callback structure from the list of scanner callbacks.

Parameters

• cb – Callback struct. Must point to memory that remains valid.

int bt_le_filter_accept_list_add(const bt_addr_le_t *addr)

Add device (LE) to filter accept list.

Add peer device LE address to the filter accept list.

Note: The filter accept list cannot be modified when an LE role is using the filter accept
list, i.e advertiser or scanner using a filter accept list or automatic connecting to devices using
filter accept list.

Parameters

• addr – Bluetooth LE identity address.

Returns Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error.

static inline int bt_le_whitelist_add(const bt_addr_le_t *addr)

int bt_le_filter_accept_list_remove(const bt_addr_le_t *addr)

Remove device (LE) from filter accept list.

Remove peer device LE address from the filter accept list.

Note: The filter accept list cannot be modified when an LE role is using the filter accept
list, i.e advertiser or scanner using a filter accept list or automatic connecting to devices using
filter accept list.

Parameters

• addr – Bluetooth LE identity address.

Returns Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error.

static inline int bt_le_whitelist_rem(const bt_addr_le_t *addr)

int bt_le_filter_accept_list_clear(void)

Clear filter accept list.

Clear all devices from the filter accept list.

Note: The filter accept list cannot be modified when an LE role is using the filter accept
list, i.e advertiser or scanner using a filter accept list or automatic connecting to devices using
filter accept list.

Returns Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error.

7.4. Bluetooth 213

Zephyr Project Documentation, Release 2.7.0-rc2

static inline int bt_le_whitelist_clear(void)

int bt_le_set_chan_map(uint8_t chan_map[5])

Set (LE) channel map.

Parameters

• chan_map – Channel map.

Returns Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error.

void bt_data_parse(struct net_buf_simple *ad, bool (*func)(struct bt_data *data, void
*user_data), void *user_data)

Helper for parsing advertising (or EIR or OOB) data.

A helper for parsing the basic data types used for Extended Inquiry Response (EIR), Advertis-
ing Data (AD), and OOB data blocks. The most common scenario is to call this helper on the
advertising data received in the callback that was given to bt_le_scan_start().

Parameters

• ad – Advertising data as given to the bt_le_scan_cb_t callback.

• func – Callback function which will be called for each element that’s found in
the data. The callback should return true to continue parsing, or false to stop
parsing.

• user_data – User data to be passed to the callback.

int bt_le_oob_get_local(uint8_t id, struct bt_le_oob *oob)

Get local LE Out of Band (OOB) information.

This function allows to get local information that are useful for Out of Band pairing or con-
nection creation.

If privacy :kconfig:`CONFIG_BT_PRIVACY` is enabled this will result in generating new Re-
solvable Private Address (RPA) that is valid for :kconfig:`CONFIG_BT_RPA_TIMEOUT` sec-
onds. This address will be used for advertising started by bt_le_adv_start, active scanning and
connection creation.

Note: If privacy is enabled the RPA cannot be refreshed in the following cases:

• Creating a connection in progress, wait for the connected callback. In addition when
extended advertising :kconfig:`CONFIG_BT_EXT_ADV` is not enabled or not supported
by the controller:

• Advertiser is enabled using a Random Static Identity Address for a different local identity.

• The local identity conflicts with the local identity used by other roles.

Parameters

• id – [in] Local identity, in most cases BT_ID_DEFAULT.

• oob – [out] LE OOB information

Returns Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error.

int bt_le_ext_adv_oob_get_local(struct bt_le_ext_adv *adv, struct bt_le_oob *oob)

Get local LE Out of Band (OOB) information.

This function allows to get local information that are useful for Out of Band pairing or con-
nection creation.

214 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

If privacy :kconfig:`CONFIG_BT_PRIVACY` is enabled this will result in generating new Re-
solvable Private Address (RPA) that is valid for :kconfig:`CONFIG_BT_RPA_TIMEOUT` sec-
onds. This address will be used by the advertising set.

Note: When generating OOB information for multiple advertising set all OOB information
needs to be generated at the same time.

Note: If privacy is enabled the RPA cannot be refreshed in the following cases:

• Creating a connection in progress, wait for the connected callback.

Parameters

• adv – [in] The advertising set object

• oob – [out] LE OOB information

Returns Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error.

int bt_br_discovery_start(const struct bt_br_discovery_param *param, struct
bt_br_discovery_result *results, size_t count, bt_br_discovery_cb_t
cb)

Start BR/EDR discovery.

Start BR/EDR discovery (inquiry) and provide results through the specified callback. When
bt_br_discovery_cb_t is called it indicates that discovery has completed. If more inquiry results
were received during session than fits in provided result storage, only ones with highest RSSI
will be reported.

Parameters

• param – Discovery parameters.

• results – Storage for discovery results.

• count – Number of results in storage. Valid range: 1-255.

• cb – Callback to notify discovery results.

Returns Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error

int bt_br_discovery_stop(void)

Stop BR/EDR discovery.

Stops ongoing BR/EDR discovery. If discovery was stopped by this call results won’t be re-
ported

Returns Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error.

int bt_br_oob_get_local(struct bt_br_oob *oob)

Get BR/EDR local Out Of Band information.

This function allows to get local controller information that are useful for Out Of Band pairing
or connection creation process.

Parameters

• oob – Out Of Band information

7.4. Bluetooth 215

Zephyr Project Documentation, Release 2.7.0-rc2

int bt_br_set_discoverable(bool enable)

Enable/disable set controller in discoverable state.

Allows make local controller to listen on INQUIRY SCAN channel and responds to devices
making general inquiry. To enable this state it’s mandatory to first be in connectable state.

Parameters

• enable – Value allowing/disallowing controller to become discoverable.

Returns Negative if fail set to requested state or requested state has been already
set. Zero if done successfully.

int bt_br_set_connectable(bool enable)

Enable/disable set controller in connectable state.

Allows make local controller to be connectable. It means the controller start listen to devices
requests on PAGE SCAN channel. If disabled also resets discoverability if was set.

Parameters

• enable – Value allowing/disallowing controller to be connectable.

Returns Negative if fail set to requested state or requested state has been already
set. Zero if done successfully.

int bt_unpair(uint8_t id, const bt_addr_le_t *addr)

Clear pairing information.

Parameters

• id – Local identity (mostly just BT_ID_DEFAULT).

• addr – Remote address, NULL or BT_ADDR_LE_ANY to clear all remote de-
vices.

Returns 0 on success or negative error value on failure.

void bt_foreach_bond(uint8_t id, void (*func)(const struct bt_bond_info *info, void *user_data),
void *user_data)

Iterate through all existing bonds.

Parameters

• id – Local identity (mostly just BT_ID_DEFAULT).

• func – Function to call for each bond.

• user_data – Data to pass to the callback function.

struct bt_le_ext_adv_sent_info

#include <bluetooth.h>

Public Members

uint8_t num_sent

The number of advertising events completed.

struct bt_le_ext_adv_connected_info

#include <bluetooth.h>

216 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Public Members

struct bt_conn *conn

Connection object of the new connection

struct bt_le_ext_adv_scanned_info

#include <bluetooth.h>

Public Members

bt_addr_le_t *addr

Active scanner LE address and type

struct bt_le_ext_adv_cb

#include <bluetooth.h>

Public Members

void (*sent)(struct bt_le_ext_adv *adv, struct bt_le_ext_adv_sent_info *info)

The advertising set has finished sending adv data.

This callback notifies the application that the advertising set has finished sending adver-
tising data. The advertising set can either have been stopped by a timeout or because the
specified number of advertising events has been reached.

Param adv The advertising set object.
Param info Information about the sent event.

void (*connected)(struct bt_le_ext_adv *adv, struct bt_le_ext_adv_connected_info *info)

The advertising set has accepted a new connection.

This callback notifies the application that the advertising set has accepted a new connec-
tion.

Param adv The advertising set object.
Param info Information about the connected event.

void (*scanned)(struct bt_le_ext_adv *adv, struct bt_le_ext_adv_scanned_info *info)

The advertising set has sent scan response data.

This callback notifies the application that the advertising set has has received a Scan
Request packet, and has sent a Scan Response packet.

Param adv The advertising set object.
Param addr Information about the scanned event.

struct bt_data

#include <bluetooth.h> Bluetooth data.

Description of different data types that can be encoded into advertising data. Used to form
arrays that are passed to the bt_le_adv_start() function.

struct bt_le_adv_param

#include <bluetooth.h> LE Advertising Parameters.

7.4. Bluetooth 217

Zephyr Project Documentation, Release 2.7.0-rc2

Public Members

uint8_t id

Local identity.

Note: When extended advertising :kconfig:`CONFIG_BT_EXT_ADV` is not enabled or
not supported by the controller it is not possible to scan and advertise simultaneously
using two different random addresses.

uint8_t sid

Advertising Set Identifier, valid range 0x00 - 0x0f.

Note: Requires BT_LE_ADV_OPT_EXT_ADV

uint8_t secondary_max_skip

Secondary channel maximum skip count.

Maximum advertising events the advertiser can skip before it must send advertising data
on the secondary advertising channel.

Note: Requires BT_LE_ADV_OPT_EXT_ADV

uint32_t options

Bit-field of advertising options

uint32_t interval_min

Minimum Advertising Interval (N * 0.625 milliseconds) Minimum Advertising Interval
shall be less than or equal to the Maximum Advertising Interval. The Minimum Advertis-
ing Interval and Maximum Advertising Interval should not be the same value (as stated
in Bluetooth Core Spec 5.2, section 7.8.5) Range: 0x0020 to 0x4000

uint32_t interval_max

Maximum Advertising Interval (N * 0.625 milliseconds) Minimum Advertising Interval
shall be less than or equal to the Maximum Advertising Interval. The Minimum Advertis-
ing Interval and Maximum Advertising Interval should not be the same value (as stated
in Bluetooth Core Spec 5.2, section 7.8.5) Range: 0x0020 to 0x4000

const bt_addr_le_t *peer

Directed advertising to peer.

When this parameter is set the advertiser will send directed advertising to the remote
device.

The advertising type will either be high duty cycle, or low duty cycle if
the BT_LE_ADV_OPT_DIR_MODE_LOW_DUTY option is enabled. When using
BT_LE_ADV_OPT_EXT_ADV then only low duty cycle is allowed.

In case of connectable high duty cycle if the connection could not be established
within the timeout the connected() callback will be called with the status set to
BT_HCI_ERR_ADV_TIMEOUT.

218 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

struct bt_le_per_adv_param

#include <bluetooth.h>

Public Members

uint16_t interval_min

Minimum Periodic Advertising Interval (N * 1.25 ms)

Shall be greater or equal to BT_GAP_PER_ADV_MIN_INTERVAL and less or equal to in-
terval_max.

uint16_t interval_max

Maximum Periodic Advertising Interval (N * 1.25 ms)

Shall be less or equal to BT_GAP_PER_ADV_MAX_INTERVAL and greater or equal to in-
terval_min.

uint32_t options

Bit-field of periodic advertising options

struct bt_le_ext_adv_start_param

#include <bluetooth.h>

Public Members

uint16_t timeout

Advertiser timeout (N * 10 ms).

Application will be notified by the advertiser sent callback. Set to zero for no timeout.

When using high duty cycle directed connectable advertising then this parame-
ters must be set to a non-zero value less than or equal to the maximum of
BT_GAP_ADV_HIGH_DUTY_CYCLE_MAX_TIMEOUT.

If privacy :kconfig:`CONFIG_BT_PRIVACY` is enabled then the timeout must be less
than :kconfig:`CONFIG_BT_RPA_TIMEOUT` .

uint8_t num_events

Number of advertising events.

Application will be notified by the advertiser sent callback. Set to zero for no limit.

struct bt_le_ext_adv_info

#include <bluetooth.h> Advertising set info structure.

Public Members

int8_t tx_power

Currently selected Transmit Power (dBM).

struct bt_le_per_adv_sync_synced_info

#include <bluetooth.h>

7.4. Bluetooth 219

Zephyr Project Documentation, Release 2.7.0-rc2

Public Members

const bt_addr_le_t *addr

Advertiser LE address and type.

uint8_t sid

Advertiser SID

uint16_t interval

Periodic advertising interval (N * 1.25 ms)

uint8_t phy

Advertiser PHY

bool recv_enabled

True if receiving periodic advertisements, false otherwise.

uint16_t service_data

Service Data provided by the peer when sync is transferred.

Will always be 0 when the sync is locally created.

struct bt_conn *conn

Peer that transferred the periodic advertising sync.

Will always be 0 when the sync is locally created.

struct bt_le_per_adv_sync_term_info

#include <bluetooth.h>

Public Members

const bt_addr_le_t *addr

Advertiser LE address and type.

uint8_t sid

Advertiser SID

struct bt_le_per_adv_sync_recv_info

#include <bluetooth.h>

Public Members

const bt_addr_le_t *addr

Advertiser LE address and type.

uint8_t sid

Advertiser SID

220 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

int8_t tx_power

The TX power of the advertisement.

int8_t rssi

The RSSI of the advertisement excluding any CTE.

uint8_t cte_type

The Constant Tone Extension (CTE) of the advertisement (bt_df_cte_type)

struct bt_le_per_adv_sync_state_info

#include <bluetooth.h>

Public Members

bool recv_enabled

True if receiving periodic advertisements, false otherwise.

struct bt_le_per_adv_sync_cb

#include <bluetooth.h>

Public Members

void (*synced)(struct bt_le_per_adv_sync *sync, struct bt_le_per_adv_sync_synced_info
*info)

The periodic advertising has been successfully synced.

This callback notifies the application that the periodic advertising set has been successfully
synced, and will now start to receive periodic advertising reports.

Param sync The periodic advertising sync object.
Param info Information about the sync event.

void (*term)(struct bt_le_per_adv_sync *sync, const struct bt_le_per_adv_sync_term_info
*info)

The periodic advertising sync has been terminated.

This callback notifies the application that the periodic advertising sync has been termi-
nated, either by local request, remote request or because due to missing data, e.g. by
being out of range or sync.

Param sync The periodic advertising sync object.

void (*recv)(struct bt_le_per_adv_sync *sync, const struct bt_le_per_adv_sync_recv_info
*info, struct net_buf_simple *buf)

Periodic advertising data received.

This callback notifies the application of an periodic advertising report.
Param sync The advertising set object.
Param info Information about the periodic advertising event.
Param buf Buffer containing the periodic advertising data.

void (*state_changed)(struct bt_le_per_adv_sync *sync, const struct
bt_le_per_adv_sync_state_info *info)

7.4. Bluetooth 221

Zephyr Project Documentation, Release 2.7.0-rc2

The periodic advertising sync state has changed.

This callback notifies the application about changes to the sync state. Initialize sync and
termination is handled by their individual callbacks, and won’t be notified here.

Param sync The periodic advertising sync object.
Param info Information about the state change.

void (*biginfo)(struct bt_le_per_adv_sync *sync, const struct bt_iso_biginfo *biginfo)

BIGInfo advertising report received.

This callback notifies the application of a BIGInfo advertising report. This is received if the
advertiser is broadcasting isochronous streams in a BIG. See iso.h for more information.

Param sync The advertising set object.
Param biginfo The BIGInfo report.

void (*cte_report_cb)(struct bt_le_per_adv_sync *sync, struct
bt_df_per_adv_sync_iq_samples_report const *info)

Callback for IQ samples report collected when sampling CTE received with periodic ad-
vertising PDU.

Param sync The periodic advertising sync object.
Param info Information about the sync event.

struct bt_le_per_adv_sync_param

#include <bluetooth.h>

Public Members

bt_addr_le_t addr

Periodic Advertiser Address.

Only valid if not using the periodic advertising list

uint8_t sid

Advertiser SID.

Only valid if not using the periodic advertising list

uint32_t options

Bit-field of periodic advertising sync options.

uint16_t skip

Maximum event skip.

Maximum number of periodic advertising events that can be skipped after a successful
receive

uint16_t timeout

Synchronization timeout (N * 10 ms)

Synchronization timeout for the periodic advertising sync. Range 0x000A to 0x4000 (100
ms to 163840 ms)

struct bt_le_per_adv_sync_info

#include <bluetooth.h> Advertising set info structure.

222 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Public Members

bt_addr_le_t addr

Periodic Advertiser Address

uint8_t sid

Advertiser SID

uint16_t interval

Periodic advertising interval (N * 1.25 ms)

uint8_t phy

Advertiser PHY

struct bt_le_per_adv_sync_transfer_param

#include <bluetooth.h>

Public Members

uint16_t skip

Maximum event skip.

The number of periodic advertising packets that can be skipped after a successful receive.

uint16_t timeout

Synchronization timeout (N * 10 ms)

Synchronization timeout for the periodic advertising sync. Range 0x000A to 0x4000 (100
ms to 163840 ms)

uint32_t options

Periodic Advertising Sync Transfer options

struct bt_le_scan_param

#include <bluetooth.h> LE scan parameters

Public Members

uint8_t type

Scan type (BT_LE_SCAN_TYPE_ACTIVE or BT_LE_SCAN_TYPE_PASSIVE)

uint32_t options

Bit-field of scanning options.

uint16_t interval

Scan interval (N * 0.625 ms)

uint16_t window

Scan window (N * 0.625 ms)

7.4. Bluetooth 223

Zephyr Project Documentation, Release 2.7.0-rc2

uint16_t timeout

Scan timeout (N * 10 ms)

Application will be notified by the scan timeout callback. Set zero to disable timeout.

uint16_t interval_coded

Scan interval LE Coded PHY (N * 0.625 MS)

Set zero to use same as LE 1M PHY scan interval.

uint16_t window_coded

Scan window LE Coded PHY (N * 0.625 MS)

Set zero to use same as LE 1M PHY scan window.

struct bt_le_scan_recv_info

#include <bluetooth.h> LE advertisement packet information

Public Members

const bt_addr_le_t *addr

Advertiser LE address and type.

If advertiser is anonymous then this address will be BT_ADDR_LE_ANY.

uint8_t sid

Advertising Set Identifier.

int8_t rssi

Strength of advertiser signal.

int8_t tx_power

Transmit power of the advertiser.

uint8_t adv_type

Advertising packet type.

uint16_t adv_props

Advertising packet properties.

uint16_t interval

Periodic advertising interval.

If 0 there is no periodic advertising.

uint8_t primary_phy

Primary advertising channel PHY.

uint8_t secondary_phy

Secondary advertising channel PHY.

224 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

struct bt_le_scan_cb

#include <bluetooth.h> Listener context for (LE) scanning.

Public Members

void (*recv)(const struct bt_le_scan_recv_info *info, struct net_buf_simple *buf)

Advertisement packet received callback.
Param info Advertiser packet information.
Param buf Buffer containing advertiser data.

void (*timeout)(void)

The scanner has stopped scanning after scan timeout.

struct bt_le_oob_sc_data

#include <bluetooth.h> LE Secure Connections pairing Out of Band data.

Public Members

uint8_t r[16]

Random Number.

uint8_t c[16]

Confirm Value.

struct bt_le_oob

#include <bluetooth.h> LE Out of Band information.

Public Members

bt_addr_le_t addr

LE address. If privacy is enabled this is a Resolvable Private Address.

struct bt_le_oob_sc_data le_sc_data

LE Secure Connections pairing Out of Band data.

struct bt_br_discovery_result

#include <bluetooth.h> BR/EDR discovery result structure.

Public Members

bt_addr_t addr

Remote device address

int8_t rssi

RSSI from inquiry

7.4. Bluetooth 225

Zephyr Project Documentation, Release 2.7.0-rc2

uint8_t cod[3]

Class of Device

uint8_t eir[240]

Extended Inquiry Response

struct bt_br_discovery_param

#include <bluetooth.h> BR/EDR discovery parameters

Public Members

uint8_t length

Maximum length of the discovery in units of 1.28 seconds. Valid range is 0x01 - 0x30.

bool limited

True if limited discovery procedure is to be used.

struct bt_br_oob

#include <bluetooth.h>

Public Members

bt_addr_t addr

BR/EDR address.

struct bt_bond_info

#include <bluetooth.h> Information about a bond with a remote device.

Public Members

bt_addr_le_t addr

Address of the remote device.

group bt_addr

Bluetooth device address definitions and utilities.

Defines

BT_ADDR_LE_PUBLIC

BT_ADDR_LE_RANDOM

BT_ADDR_LE_PUBLIC_ID

226 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

BT_ADDR_LE_RANDOM_ID

BT_ADDR_ANY

Bluetooth device “any” address, not a valid address

BT_ADDR_NONE

Bluetooth device “none” address, not a valid address

BT_ADDR_LE_ANY

Bluetooth LE device “any” address, not a valid address

BT_ADDR_LE_NONE

Bluetooth LE device “none” address, not a valid address

BT_ADDR_IS_RPA(a)

Check if a Bluetooth LE random address is resolvable private address.

BT_ADDR_IS_NRPA(a)

Check if a Bluetooth LE random address is a non-resolvable private address.

BT_ADDR_IS_STATIC(a)

Check if a Bluetooth LE random address is a static address.

BT_ADDR_SET_RPA(a)

Set a Bluetooth LE random address as a resolvable private address.

BT_ADDR_SET_NRPA(a)

Set a Bluetooth LE random address as a non-resolvable private address.

BT_ADDR_SET_STATIC(a)

Set a Bluetooth LE random address as a static address.

BT_ADDR_STR_LEN

Recommended length of user string buffer for Bluetooth address.

The recommended length guarantee the output of address conversion will not lose valuable
information about address being processed.

BT_ADDR_LE_STR_LEN

Recommended length of user string buffer for Bluetooth LE address.

The recommended length guarantee the output of address conversion will not lose valuable
information about address being processed.

Functions

static inline int bt_addr_cmp(const bt_addr_t *a, const bt_addr_t *b)

Compare Bluetooth device addresses.

Parameters

• a – First Bluetooth device address to compare

• b – Second Bluetooth device address to compare

Returns negative value if a < b, 0 if a == b, else positive

7.4. Bluetooth 227

Zephyr Project Documentation, Release 2.7.0-rc2

static inline int bt_addr_le_cmp(const bt_addr_le_t *a, const bt_addr_le_t *b)

Compare Bluetooth LE device addresses.

Parameters

• a – First Bluetooth LE device address to compare

• b – Second Bluetooth LE device address to compare

Returns negative value if a < b, 0 if a == b, else positive

static inline void bt_addr_copy(bt_addr_t *dst, const bt_addr_t *src)

Copy Bluetooth device address.

Parameters

• dst – Bluetooth device address destination buffer.

• src – Bluetooth device address source buffer.

static inline void bt_addr_le_copy(bt_addr_le_t *dst, const bt_addr_le_t *src)

Copy Bluetooth LE device address.

Parameters

• dst – Bluetooth LE device address destination buffer.

• src – Bluetooth LE device address source buffer.

int bt_addr_le_create_nrpa(bt_addr_le_t *addr)

Create a Bluetooth LE random non-resolvable private address.

int bt_addr_le_create_static(bt_addr_le_t *addr)

Create a Bluetooth LE random static address.

static inline bool bt_addr_le_is_rpa(const bt_addr_le_t *addr)

Check if a Bluetooth LE address is a random private resolvable address.

Parameters

• addr – Bluetooth LE device address.

Returns true if address is a random private resolvable address.

static inline bool bt_addr_le_is_identity(const bt_addr_le_t *addr)

Check if a Bluetooth LE address is valid identity address.

Valid Bluetooth LE identity addresses are either public address or random static address.

Parameters

• addr – Bluetooth LE device address.

Returns true if address is a valid identity address.

static inline int bt_addr_to_str(const bt_addr_t *addr, char *str, size_t len)

Converts binary Bluetooth address to string.

Parameters

• addr – Address of buffer containing binary Bluetooth address.

• str – Address of user buffer with enough room to store formatted string con-
taining binary address.

• len – Length of data to be copied to user string buffer. Refer to
BT_ADDR_STR_LEN about recommended value.

Returns Number of successfully formatted bytes from binary address.

228 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline int bt_addr_le_to_str(const bt_addr_le_t *addr, char *str, size_t len)

Converts binary LE Bluetooth address to string.

Parameters

• addr – Address of buffer containing binary LE Bluetooth address.

• str – Address of user buffer with enough room to store formatted string con-
taining binary LE address.

• len – Length of data to be copied to user string buffer. Refer to
BT_ADDR_LE_STR_LEN about recommended value.

Returns Number of successfully formatted bytes from binary address.

int bt_addr_from_str(const char *str, bt_addr_t *addr)

Convert Bluetooth address from string to binary.

Parameters

• str – [in] The string representation of a Bluetooth address.

• addr – [out] Address of buffer to store the Bluetooth address

Returns Zero on success or (negative) error code otherwise.

int bt_addr_le_from_str(const char *str, const char *type, bt_addr_le_t *addr)

Convert LE Bluetooth address from string to binary.

Parameters

• str – [in] The string representation of an LE Bluetooth address.

• type – [in] The string representation of the LE Bluetooth address type.

• addr – [out] Address of buffer to store the LE Bluetooth address

Returns Zero on success or (negative) error code otherwise.

struct bt_addr_t

#include <addr.h> Bluetooth Device Address

struct bt_addr_le_t

#include <addr.h> Bluetooth LE Device Address

group bt_gap_defines

Bluetooth Generic Access Profile defines and Assigned Numbers.

Defines

BT_COMP_ID_LF

Company Identifiers (see Bluetooth Assigned Numbers)

BT_DATA_FLAGS

EIR/AD data type definitions

BT_DATA_UUID16_SOME

BT_DATA_UUID16_ALL

7.4. Bluetooth 229

Zephyr Project Documentation, Release 2.7.0-rc2

BT_DATA_UUID32_SOME

BT_DATA_UUID32_ALL

BT_DATA_UUID128_SOME

BT_DATA_UUID128_ALL

BT_DATA_NAME_SHORTENED

BT_DATA_NAME_COMPLETE

BT_DATA_TX_POWER

BT_DATA_SM_TK_VALUE

BT_DATA_SM_OOB_FLAGS

BT_DATA_SOLICIT16

BT_DATA_SOLICIT128

BT_DATA_SVC_DATA16

BT_DATA_GAP_APPEARANCE

BT_DATA_LE_BT_DEVICE_ADDRESS

BT_DATA_LE_ROLE

BT_DATA_SOLICIT32

BT_DATA_SVC_DATA32

BT_DATA_SVC_DATA128

BT_DATA_LE_SC_CONFIRM_VALUE

BT_DATA_LE_SC_RANDOM_VALUE

BT_DATA_URI

BT_DATA_CHANNEL_MAP_UPDATE_IND

BT_DATA_MESH_PROV

230 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

BT_DATA_MESH_MESSAGE

BT_DATA_MESH_BEACON

BT_DATA_BIG_INFO

BT_DATA_BROADCAST_CODE

BT_DATA_MANUFACTURER_DATA

BT_LE_AD_LIMITED

BT_LE_AD_GENERAL

BT_LE_AD_NO_BREDR

BT_GAP_SCAN_FAST_INTERVAL

BT_GAP_SCAN_FAST_WINDOW

BT_GAP_SCAN_SLOW_INTERVAL_1

BT_GAP_SCAN_SLOW_WINDOW_1

BT_GAP_SCAN_SLOW_INTERVAL_2

BT_GAP_SCAN_SLOW_WINDOW_2

BT_GAP_ADV_FAST_INT_MIN_1

BT_GAP_ADV_FAST_INT_MAX_1

BT_GAP_ADV_FAST_INT_MIN_2

BT_GAP_ADV_FAST_INT_MAX_2

BT_GAP_ADV_SLOW_INT_MIN

BT_GAP_ADV_SLOW_INT_MAX

BT_GAP_PER_ADV_FAST_INT_MIN_1

BT_GAP_PER_ADV_FAST_INT_MAX_1

BT_GAP_PER_ADV_FAST_INT_MIN_2

7.4. Bluetooth 231

Zephyr Project Documentation, Release 2.7.0-rc2

BT_GAP_PER_ADV_FAST_INT_MAX_2

BT_GAP_PER_ADV_SLOW_INT_MIN

BT_GAP_PER_ADV_SLOW_INT_MAX

BT_GAP_INIT_CONN_INT_MIN

BT_GAP_INIT_CONN_INT_MAX

BT_GAP_ADV_MAX_ADV_DATA_LEN

Maximum advertising data length.

BT_GAP_ADV_MAX_EXT_ADV_DATA_LEN

Maximum extended advertising data length.

Note: The maximum advertising data length that can be sent by an extended advertiser is
defined by the controller.

BT_GAP_TX_POWER_INVALID

BT_GAP_RSSI_INVALID

BT_GAP_SID_INVALID

BT_GAP_NO_TIMEOUT

BT_GAP_ADV_HIGH_DUTY_CYCLE_MAX_TIMEOUT

BT_GAP_DATA_LEN_DEFAULT

BT_GAP_DATA_LEN_MAX

BT_GAP_DATA_TIME_DEFAULT

BT_GAP_DATA_TIME_MAX

BT_GAP_SID_MAX

BT_GAP_PER_ADV_MAX_SKIP

BT_GAP_PER_ADV_MIN_TIMEOUT

BT_GAP_PER_ADV_MAX_TIMEOUT

232 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

BT_GAP_PER_ADV_MIN_INTERVAL

Minimum Periodic Advertising Interval (N * 1.25 ms)

BT_GAP_PER_ADV_MAX_INTERVAL

Maximum Periodic Advertising Interval (N * 1.25 ms)

Enums

enum [anonymous]

LE PHY types

Values:

enumerator BT_GAP_LE_PHY_NONE = 0

Convenience macro for when no PHY is set.

enumerator BT_GAP_LE_PHY_1M = BIT(0)

LE 1M PHY

enumerator BT_GAP_LE_PHY_2M = BIT(1)

LE 2M PHY

enumerator BT_GAP_LE_PHY_CODED = BIT(2)

LE Coded PHY

enum [anonymous]

Advertising PDU types

Values:

enumerator BT_GAP_ADV_TYPE_ADV_IND = 0x00

Scannable and connectable advertising.

enumerator BT_GAP_ADV_TYPE_ADV_DIRECT_IND = 0x01

Directed connectable advertising.

enumerator BT_GAP_ADV_TYPE_ADV_SCAN_IND = 0x02

Non-connectable and scannable advertising.

enumerator BT_GAP_ADV_TYPE_ADV_NONCONN_IND = 0x03

Non-connectable and non-scannable advertising.

enumerator BT_GAP_ADV_TYPE_SCAN_RSP = 0x04

Additional advertising data requested by an active scanner.

enumerator BT_GAP_ADV_TYPE_EXT_ADV = 0x05

Extended advertising, see advertising properties.

7.4. Bluetooth 233

Zephyr Project Documentation, Release 2.7.0-rc2

enum [anonymous]

Advertising PDU properties

Values:

enumerator BT_GAP_ADV_PROP_CONNECTABLE = BIT(0)

Connectable advertising.

enumerator BT_GAP_ADV_PROP_SCANNABLE = BIT(1)

Scannable advertising.

enumerator BT_GAP_ADV_PROP_DIRECTED = BIT(2)

Directed advertising.

enumerator BT_GAP_ADV_PROP_SCAN_RESPONSE = BIT(3)

Additional advertising data requested by an active scanner.

enumerator BT_GAP_ADV_PROP_EXT_ADV = BIT(4)

Extended advertising.

enum [anonymous]

Constant Tone Extension (CTE) types

Values:

enumerator BT_GAP_CTE_AOA = 0x00

Angle of Arrival

enumerator BT_GAP_CTE_AOD_1US = 0x01

Angle of Departure with 1 us slots

enumerator BT_GAP_CTE_AOD_2US = 0x02

Angle of Departure with 2 us slots

enumerator BT_GAP_CTE_NONE = 0xFF

No extensions

enum [anonymous]

Peripheral sleep clock accuracy (SCA) in ppm (parts per million)

Values:

enumerator BT_GAP_SCA_UNKNOWN = 0

enumerator BT_GAP_SCA_251_500 = 0

enumerator BT_GAP_SCA_151_250 = 1

enumerator BT_GAP_SCA_101_150 = 2

234 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator BT_GAP_SCA_76_100 = 3

enumerator BT_GAP_SCA_51_75 = 4

enumerator BT_GAP_SCA_31_50 = 5

enumerator BT_GAP_SCA_21_30 = 6

enumerator BT_GAP_SCA_0_20 = 7

7.4.6 Generic Attribute Profile (GATT)

GATT layer manages the service database providing APIs for service registration and attribute declara-
tion.

Services can be registered using bt_gatt_service_register() API which takes the bt_gatt_service
struct that provides the list of attributes the service contains. The helper macro BT_GATT_SERVICE() can
be used to declare a service.

Attributes can be declared using the bt_gatt_attr struct or using one of the helper macros:

BT_GATT_PRIMARY_SERVICE Declares a Primary Service.

BT_GATT_SECONDARY_SERVICE Declares a Secondary Service.

BT_GATT_INCLUDE_SERVICE Declares a Include Service.

BT_GATT_CHARACTERISTIC Declares a Characteristic.

BT_GATT_DESCRIPTOR Declares a Descriptor.

BT_GATT_ATTRIBUTE Declares an Attribute.

BT_GATT_CCC Declares a Client Characteristic Configuration.

BT_GATT_CEP Declares a Characteristic Extended Properties.

BT_GATT_CUD Declares a Characteristic User Format.

Each attribute contain a uuid, which describes their type, a read callback, a write callback and a set
of permission. Both read and write callbacks can be set to NULL if the attribute permission don’t allow
their respective operations.

Note: Attribute read and write callbacks are called directly from RX Thread thus it is not recommended
to block for long periods of time in them.

Attribute value changes can be notified using bt_gatt_notify() API, alternatively there is
bt_gatt_notify_cb() where is is possible to pass a callback to be called when it is necessary to
know the exact instant when the data has been transmitted over the air. Indications are supported
by bt_gatt_indicate() API.

Client procedures can be enabled with the configuration option: :kconfig:`CONFIG_BT_GATT_CLIENT`

Discover procedures can be initiated with the use of bt_gatt_discover() API which takes the
bt_gatt_discover_params struct which describes the type of discovery. The parameters also serves
as a filter when setting the uuid field only attributes which matches will be discovered, in contrast
setting it to NULL allows all attributes to be discovered.

Note: Caching discovered attributes is not supported.

7.4. Bluetooth 235

Zephyr Project Documentation, Release 2.7.0-rc2

Read procedures are supported by bt_gatt_read() API which takes the bt_gatt_read_params struct
as parameters. In the parameters one or more attributes can be set, though setting multiple handles
requires the option: :kconfig:`CONFIG_BT_GATT_READ_MULTIPLE`

Write procedures are supported by bt_gatt_write() API and takes bt_gatt_write_params struct as
parameters. In case the write operation don’t require a response bt_gatt_write_without_response()
or bt_gatt_write_without_response_cb() APIs can be used, with the later working similarly to
bt_gatt_notify_cb() .

Subscriptions to notification and indication can be initiated with use of bt_gatt_subscribe() API which
takes bt_gatt_subscribe_params as parameters. Multiple subscriptions to the same attribute are sup-
ported so there could be multiple notify callback being triggered for the same attribute. Subscriptions
can be removed with use of bt_gatt_unsubscribe() API.

Note: When subscriptions are removed notify callback is called with the data set to NULL.

API Reference

group bt_gatt

Generic Attribute Profile (GATT)

Defines

BT_GATT_ERR(_att_err)

Construct error return value for attribute read and write callbacks.

Parameters

• _att_err – ATT error code

Returns Appropriate error code for the attribute callbacks.

BT_GATT_CHRC_BROADCAST

Characteristic broadcast property.

Characteristic Properties Bit field values

If set, permits broadcasts of the Characteristic Value using Server Characteristic Configuration
Descriptor.

BT_GATT_CHRC_READ

Characteristic read property.

If set, permits reads of the Characteristic Value.

BT_GATT_CHRC_WRITE_WITHOUT_RESP

Characteristic write without response property.

If set, permits write of the Characteristic Value without response.

BT_GATT_CHRC_WRITE

Characteristic write with response property.

If set, permits write of the Characteristic Value with response.

236 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

BT_GATT_CHRC_NOTIFY

Characteristic notify property.

If set, permits notifications of a Characteristic Value without acknowledgment.

BT_GATT_CHRC_INDICATE

Characteristic indicate property.

If set, permits indications of a Characteristic Value with acknowledgment.

BT_GATT_CHRC_AUTH

Characteristic Authenticated Signed Writes property.

If set, permits signed writes to the Characteristic Value.

BT_GATT_CHRC_EXT_PROP

Characteristic Extended Properties property.

If set, additional characteristic properties are defined in the Characteristic Extended Properties
Descriptor.

BT_GATT_CEP_RELIABLE_WRITE

Characteristic Extended Properties Bit field values

BT_GATT_CEP_WRITABLE_AUX

BT_GATT_CCC_NOTIFY

Client Characteristic Configuration Notification.

Client Characteristic Configuration Values

If set, changes to Characteristic Value shall be notified.

BT_GATT_CCC_INDICATE

Client Characteristic Configuration Indication.

If set, changes to Characteristic Value shall be indicated.

BT_GATT_SCC_BROADCAST

Server Characteristic Configuration Broadcast.

Server Characteristic Configuration Values

If set, the characteristic value shall be broadcast in the advertising data when the server is
advertising.

Enums

enum [anonymous]

GATT attribute permission bit field values

Values:

enumerator BT_GATT_PERM_NONE = 0

No operations supported, e.g. for notify-only

7.4. Bluetooth 237

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator BT_GATT_PERM_READ = BIT(0)

Attribute read permission.

enumerator BT_GATT_PERM_WRITE = BIT(1)

Attribute write permission.

enumerator BT_GATT_PERM_READ_ENCRYPT = BIT(2)

Attribute read permission with encryption.

If set, requires encryption for read access.

enumerator BT_GATT_PERM_WRITE_ENCRYPT = BIT(3)

Attribute write permission with encryption.

If set, requires encryption for write access.

enumerator BT_GATT_PERM_READ_AUTHEN = BIT(4)

Attribute read permission with authentication.

If set, requires encryption using authenticated link-key for read
access.

enumerator BT_GATT_PERM_WRITE_AUTHEN = BIT(5)

Attribute write permission with authentication.

If set, requires encryption using authenticated link-key for write
access.

enumerator BT_GATT_PERM_PREPARE_WRITE = BIT(6)

Attribute prepare write permission.

If set, allows prepare writes with use of BT_GATT_WRITE_FLAG_PREPARE
passed to write callback.

enum [anonymous]

GATT attribute write flags

Values:

enumerator BT_GATT_WRITE_FLAG_PREPARE = BIT(0)

Attribute prepare write flag.

238 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

If set, write callback should only check if the device is
authorized but no data shall be written.

enumerator BT_GATT_WRITE_FLAG_CMD = BIT(1)

Attribute write command flag.

If set, indicates that write operation is a command (Write without
response) which doesn't generate any response.

struct bt_gatt_attr

#include <gatt.h> GATT Attribute structure.

Public Members

const struct bt_uuid *uuid

Attribute UUID

ssize_t (*read)(struct bt_conn *conn, const struct bt_gatt_attr *attr, void *buf, uint16_t len,
uint16_t offset)

Attribute read callback.

The callback can also be used locally to read the contents of the attribute in which case
no connection will be set.

Param conn The connection that is requesting to read
Param attr The attribute that’s being read
Param buf Buffer to place the read result in
Param len Length of data to read
Param offset Offset to start reading from
Return Number fo bytes read, or in case of an error BT_GATT_ERR() with a spe-

cific ATT error code.

ssize_t (*write)(struct bt_conn *conn, const struct bt_gatt_attr *attr, const void *buf,
uint16_t len, uint16_t offset, uint8_t flags)

Attribute write callback.
Param conn The connection that is requesting to write
Param attr The attribute that’s being written
Param buf Buffer with the data to write
Param len Number of bytes in the buffer
Param offset Offset to start writing from
Param flags Flags (BT_GATT_WRITE_*)
Return Number of bytes written, or in case of an error BT_GATT_ERR() with a

specific ATT error code.

void *user_data

Attribute user data

uint16_t handle

Attribute handle

uint8_t perm

Attribute permissions

7.4. Bluetooth 239

Zephyr Project Documentation, Release 2.7.0-rc2

struct bt_gatt_service_static

#include <gatt.h> GATT Service structure.

Public Members

const struct bt_gatt_attr *attrs

Service Attributes

size_t attr_count

Service Attribute count

struct bt_gatt_service

#include <gatt.h> GATT Service structure.

Public Members

struct bt_gatt_attr *attrs

Service Attributes

size_t attr_count

Service Attribute count

struct bt_gatt_service_val

#include <gatt.h> Service Attribute Value.

Public Members

const struct bt_uuid *uuid

Service UUID.

uint16_t end_handle

Service end handle.

struct bt_gatt_include

#include <gatt.h> Include Attribute Value.

Public Members

const struct bt_uuid *uuid

Service UUID.

uint16_t start_handle

Service start handle.

240 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

uint16_t end_handle

Service end handle.

struct bt_gatt_cb

#include <gatt.h> GATT callback structure.

Public Members

void (*att_mtu_updated)(struct bt_conn *conn, uint16_t tx, uint16_t rx)

The maximum ATT MTU on a connection has changed.

This callback notifies the application that the maximum TX or RX ATT MTU has increased.
Param conn Connection object.
Param tx Updated TX ATT MTU.
Param rx Updated RX ATT MTU.

struct bt_gatt_chrc

#include <gatt.h> Characteristic Attribute Value.

Public Members

const struct bt_uuid *uuid

Characteristic UUID.

uint16_t value_handle

Characteristic Value handle.

uint8_t properties

Characteristic properties.

struct bt_gatt_cep

#include <gatt.h> Characteristic Extended Properties Attribute Value.

Public Members

uint16_t properties

Characteristic Extended properties

struct bt_gatt_ccc

#include <gatt.h> Client Characteristic Configuration Attribute Value

Public Members

uint16_t flags

Client Characteristic Configuration flags

7.4. Bluetooth 241

Zephyr Project Documentation, Release 2.7.0-rc2

struct bt_gatt_scc

#include <gatt.h> Server Characterestic Configuration Attribute Value

Public Members

uint16_t flags

Server Characteristic Configuration flags

struct bt_gatt_cpf

#include <gatt.h> GATT Characteristic Presentation Format Attribute Value.

Public Members

uint8_t format

Format of the value of the characteristic

int8_t exponent

Exponent field to determine how the value of this characteristic is further formatted

uint16_t unit

Unit of the characteristic

uint8_t name_space

Name space of the description

uint16_t description

Description of the characteristic as defined in a higher layer profile

GATT Server

group bt_gatt_server

Defines

BT_GATT_SERVICE_DEFINE(_name, ...)

Statically define and register a service.

Helper macro to statically define and register a service.

Parameters

• _name – Service name.

BT_GATT_SERVICE_INSTANCE_DEFINE(_name, _instances, _instance_num, _attrs_def)

Statically define service structure array.

Helper macro to statically define service structure array. Each element of the array is linked
to the service attribute array which is also defined in this scope using _attrs_def macro.

Parameters

• _name – Name of service structure array.

242 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• _instances – Array of instances to pass as user context to the attribute call-
backs.

• _instance_num – Number of elements in instance array.

• _attrs_def – Macro provided by the user that defines attribute array for the
serivce. This macro should accept single parameter which is the instance con-
text.

BT_GATT_SERVICE(_attrs)

Service Structure Declaration Macro.

Helper macro to declare a service structure.

Parameters

• _attrs – Service attributes.

BT_GATT_PRIMARY_SERVICE(_service)

Primary Service Declaration Macro.

Helper macro to declare a primary service attribute.

Parameters

• _service – Service attribute value.

BT_GATT_SECONDARY_SERVICE(_service)

Secondary Service Declaration Macro.

Helper macro to declare a secondary service attribute.

Parameters

• _service – Service attribute value.

BT_GATT_INCLUDE_SERVICE(_service_incl)

Include Service Declaration Macro.

Helper macro to declare database internal include service attribute.

Parameters

• _service_incl – the first service attribute of service to include

BT_GATT_CHRC_INIT(_uuid, _handle, _props)

BT_GATT_CHARACTERISTIC(_uuid, _props, _perm, _read, _write, _user_data)

Characteristic and Value Declaration Macro.

Helper macro to declare a characteristic attribute along with its attribute value.

Parameters

• _uuid – Characteristic attribute uuid.

• _props – Characteristic attribute properties.

• _perm – Characteristic Attribute access permissions.

• _read – Characteristic Attribute read callback.

• _write – Characteristic Attribute write callback.

• _user_data – Characteristic Attribute user data.

BT_GATT_CCC_MAX

7.4. Bluetooth 243

Zephyr Project Documentation, Release 2.7.0-rc2

BT_GATT_CCC_INITIALIZER(_changed, _write, _match)

Initialize Client Characteristic Configuration Declaration Macro.

Helper macro to initialize a Managed CCC attribute value.

Parameters

• _changed – Configuration changed callback.

• _write – Configuration write callback.

• _match – Configuration match callback.

BT_GATT_CCC_MANAGED(_ccc, _perm)

Managed Client Characteristic Configuration Declaration Macro.

Helper macro to declare a Managed CCC attribute.

Parameters

• _ccc – CCC attribute user data, shall point to a _bt_gatt_ccc.

• _perm – CCC access permissions.

BT_GATT_CCC(_changed, _perm)

Client Characteristic Configuration Declaration Macro.

Helper macro to declare a CCC attribute.

Parameters

• _changed – Configuration changed callback.

• _perm – CCC access permissions.

BT_GATT_CEP(_value)

Characteristic Extended Properties Declaration Macro.

Helper macro to declare a CEP attribute.

Parameters

• _value – Pointer to a struct bt_gatt_cep.

BT_GATT_CUD(_value, _perm)

Characteristic User Format Descriptor Declaration Macro.

Helper macro to declare a CUD attribute.

Parameters

• _value – User description NULL-terminated C string.

• _perm – Descriptor attribute access permissions.

BT_GATT_CPF(_value)

Characteristic Presentation Format Descriptor Declaration Macro.

Helper macro to declare a CPF attribute.

Parameters

• _value – Pointer to a struct bt_gatt_cpf .

BT_GATT_DESCRIPTOR(_uuid, _perm, _read, _write, _user_data)

Descriptor Declaration Macro.

Helper macro to declare a descriptor attribute.

Parameters

• _uuid – Descriptor attribute uuid.

244 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• _perm – Descriptor attribute access permissions.

• _read – Descriptor attribute read callback.

• _write – Descriptor attribute write callback.

• _user_data – Descriptor attribute user data.

BT_GATT_ATTRIBUTE(_uuid, _perm, _read, _write, _user_data)

Attribute Declaration Macro.

Helper macro to declare an attribute.

Parameters

• _uuid – Attribute uuid.

• _perm – Attribute access permissions.

• _read – Attribute read callback.

• _write – Attribute write callback.

• _user_data – Attribute user data.

Typedefs

typedef uint8_t (*bt_gatt_attr_func_t)(const struct bt_gatt_attr *attr, uint16_t handle, void
*user_data)

Attribute iterator callback.

Param attr Attribute found.

Param handle Attribute handle found.

Param user_data Data given.

Return BT_GATT_ITER_CONTINUE if should continue to the next attribute.

Return BT_GATT_ITER_STOP to stop.

typedef void (*bt_gatt_complete_func_t)(struct bt_conn *conn, void *user_data)

Notification complete result callback.

Param conn Connection object.

Param user_data Data passed in by the user.

typedef void (*bt_gatt_indicate_func_t)(struct bt_conn *conn, struct bt_gatt_indicate_params
*params, uint8_t err)

Indication complete result callback.

Param conn Connection object.

Param params Indication params object.

Param err ATT error code

typedef void (*bt_gatt_indicate_params_destroy_t)(struct bt_gatt_indicate_params *params)

7.4. Bluetooth 245

Zephyr Project Documentation, Release 2.7.0-rc2

Enums

enum [anonymous]

Values:

enumerator BT_GATT_ITER_STOP = 0

enumerator BT_GATT_ITER_CONTINUE

Functions

void bt_gatt_cb_register(struct bt_gatt_cb *cb)

Register GATT callbacks.

Register callbacks to monitor the state of GATT.

Parameters

• cb – Callback struct.

int bt_gatt_service_register(struct bt_gatt_service *svc)

Register GATT service.

Register GATT service. Applications can make use of macros such as
BT_GATT_PRIMARY_SERVICE, BT_GATT_CHARACTERISTIC, BT_GATT_DESCRIPTOR,
etc.

When using :kconfig:`CONFIG_BT_SETTINGS` then all services that should have bond con-
figuration loaded, i.e. CCC values, must be registered before calling settings_load.

When using :kconfig:`CONFIG_BT_GATT_CACHING` and :kcon-
fig:`CONFIG_BT_SETTINGS` then all services that should be included in the GATT
Database Hash calculation should be added before calling settings_load. All services reg-
istered after settings_load will trigger a new database hash calculation and a new hash
stored.

Parameters

• svc – Service containing the available attributes

Returns 0 in case of success or negative value in case of error.

int bt_gatt_service_unregister(struct bt_gatt_service *svc)

Unregister GATT service. *.

Parameters

• svc – Service to be unregistered.

Returns 0 in case of success or negative value in case of error.

void bt_gatt_foreach_attr_type(uint16_t start_handle, uint16_t end_handle, const struct
bt_uuid *uuid, const void *attr_data, uint16_t num_matches,
bt_gatt_attr_func_t func, void *user_data)

Attribute iterator by type.

Iterate attributes in the given range matching given UUID and/or data.

Parameters

• start_handle – Start handle.

• end_handle – End handle.

246 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• uuid – UUID to match, passing NULL skips UUID matching.

• attr_data – Attribute data to match, passing NULL skips data matching.

• num_matches – Number matches, passing 0 makes it unlimited.

• func – Callback function.

• user_data – Data to pass to the callback.

static inline void bt_gatt_foreach_attr(uint16_t start_handle, uint16_t end_handle,
bt_gatt_attr_func_t func, void *user_data)

Attribute iterator.

Iterate attributes in the given range.

Parameters

• start_handle – Start handle.

• end_handle – End handle.

• func – Callback function.

• user_data – Data to pass to the callback.

struct bt_gatt_attr *bt_gatt_attr_next(const struct bt_gatt_attr *attr)

Iterate to the next attribute.

Iterate to the next attribute following a given attribute.

Parameters

• attr – Current Attribute.

Returns The next attribute or NULL if it cannot be found.

struct bt_gatt_attr *bt_gatt_find_by_uuid(const struct bt_gatt_attr *attr, uint16_t attr_count,
const struct bt_uuid *uuid)

Find Attribute by UUID.

Find the attribute with the matching UUID. To limit the search to a service set the attr to the
service attributes and the attr_count to the service attribute count .

Parameters

• attr – Pointer to an attribute that serves as the starting point for the search of
a match for the UUID. Passing NULL will search the entire range.

• attr_count – The number of attributes from the starting point to search for a
match for the UUID. Set to 0 to search until the end.

• uuid – UUID to match.

uint16_t bt_gatt_attr_get_handle(const struct bt_gatt_attr *attr)

Get Attribute handle.

Parameters

• attr – Attribute object.

Returns Handle of the corresponding attribute or zero if the attribute could not be
found.

uint16_t bt_gatt_attr_value_handle(const struct bt_gatt_attr *attr)

Get the handle of the characteristic value descriptor.

Note: The user_data of the attribute must of type bt_gatt_chrc.

7.4. Bluetooth 247

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• attr – A Characteristic Attribute.

Returns the handle of the corresponding Characteristic Value. The value will be zero
(the invalid handle) if attr was not a characteristic attribute.

ssize_t bt_gatt_attr_read(struct bt_conn *conn, const struct bt_gatt_attr *attr, void *buf,
uint16_t buf_len, uint16_t offset, const void *value, uint16_t
value_len)

Generic Read Attribute value helper.

Read attribute value from local database storing the result into buffer.

Parameters

• conn – Connection object.

• attr – Attribute to read.

• buf – Buffer to store the value.

• buf_len – Buffer length.

• offset – Start offset.

• value – Attribute value.

• value_len – Length of the attribute value.

Returns number of bytes read in case of success or negative values in case of error.

ssize_t bt_gatt_attr_read_service(struct bt_conn *conn, const struct bt_gatt_attr *attr, void
*buf, uint16_t len, uint16_t offset)

Read Service Attribute helper.

Read service attribute value from local database storing the result into buffer after encoding
it.

Note: Only use this with attributes which user_data is a bt_uuid.

Parameters

• conn – Connection object.

• attr – Attribute to read.

• buf – Buffer to store the value read.

• len – Buffer length.

• offset – Start offset.

Returns number of bytes read in case of success or negative values in case of error.

ssize_t bt_gatt_attr_read_included(struct bt_conn *conn, const struct bt_gatt_attr *attr, void
*buf, uint16_t len, uint16_t offset)

Read Include Attribute helper.

Read include service attribute value from local database storing the result into buffer after
encoding it.

Note: Only use this with attributes which user_data is a bt_gatt_include.

Parameters

248 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• conn – Connection object.

• attr – Attribute to read.

• buf – Buffer to store the value read.

• len – Buffer length.

• offset – Start offset.

Returns number of bytes read in case of success or negative values in case of error.

ssize_t bt_gatt_attr_read_chrc(struct bt_conn *conn, const struct bt_gatt_attr *attr, void *buf,
uint16_t len, uint16_t offset)

Read Characteristic Attribute helper.

Read characteristic attribute value from local database storing the result into buffer after
encoding it.

Note: Only use this with attributes which user_data is a bt_gatt_chrc.

Parameters

• conn – Connection object.

• attr – Attribute to read.

• buf – Buffer to store the value read.

• len – Buffer length.

• offset – Start offset.

Returns number of bytes read in case of success or negative values in case of error.

ssize_t bt_gatt_attr_read_ccc(struct bt_conn *conn, const struct bt_gatt_attr *attr, void *buf,
uint16_t len, uint16_t offset)

Read Client Characteristic Configuration Attribute helper.

Read CCC attribute value from local database storing the result into buffer after encoding it.

Note: Only use this with attributes which user_data is a _bt_gatt_ccc.

Parameters

• conn – Connection object.

• attr – Attribute to read.

• buf – Buffer to store the value read.

• len – Buffer length.

• offset – Start offset.

Returns number of bytes read in case of success or negative values in case of error.

ssize_t bt_gatt_attr_write_ccc(struct bt_conn *conn, const struct bt_gatt_attr *attr, const void
*buf, uint16_t len, uint16_t offset, uint8_t flags)

Write Client Characteristic Configuration Attribute helper.

Write value in the buffer into CCC attribute.

7.4. Bluetooth 249

Zephyr Project Documentation, Release 2.7.0-rc2

Note: Only use this with attributes which user_data is a _bt_gatt_ccc.

Parameters

• conn – Connection object.

• attr – Attribute to read.

• buf – Buffer to store the value read.

• len – Buffer length.

• offset – Start offset.

• flags – Write flags.

Returns number of bytes written in case of success or negative values in case of error.

ssize_t bt_gatt_attr_read_cep(struct bt_conn *conn, const struct bt_gatt_attr *attr, void *buf,
uint16_t len, uint16_t offset)

Read Characteristic Extended Properties Attribute helper.

Read CEP attribute value from local database storing the result into buffer after encoding it.

Note: Only use this with attributes which user_data is a bt_gatt_cep.

Parameters

• conn – Connection object

• attr – Attribute to read

• buf – Buffer to store the value read

• len – Buffer length

• offset – Start offset

Returns number of bytes read in case of success or negative values in case of error.

ssize_t bt_gatt_attr_read_cud(struct bt_conn *conn, const struct bt_gatt_attr *attr, void *buf,
uint16_t len, uint16_t offset)

Read Characteristic User Description Descriptor Attribute helper.

Read CUD attribute value from local database storing the result into buffer after encoding it.

Note: Only use this with attributes which user_data is a NULL-terminated C string.

Parameters

• conn – Connection object

• attr – Attribute to read

• buf – Buffer to store the value read

• len – Buffer length

• offset – Start offset

Returns number of bytes read in case of success or negative values in case of error.

250 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

ssize_t bt_gatt_attr_read_cpf(struct bt_conn *conn, const struct bt_gatt_attr *attr, void *buf,
uint16_t len, uint16_t offset)

Read Characteristic Presentation format Descriptor Attribute helper.

Read CPF attribute value from local database storing the result into buffer after encoding it.

Note: Only use this with attributes which user_data is a bt_gatt_pf.

Parameters

• conn – Connection object

• attr – Attribute to read

• buf – Buffer to store the value read

• len – Buffer length

• offset – Start offset

Returns number of bytes read in case of success or negative values in case of error.

int bt_gatt_notify_cb(struct bt_conn *conn, struct bt_gatt_notify_params *params)

Notify attribute value change.

This function works in the same way as bt_gatt_notify. With the addition that after sending
the notification the callback function will be called.

The callback is run from System Workqueue context. When called from the System
Workqueue context this API will not wait for resources for the callback but instead re-
turn an error. The number of pending callbacks can be increased with the :kcon-
fig:`CONFIG_BT_CONN_TX_MAX` option.

Alternatively it is possible to notify by UUID by setting it on the parameters, when using
this method the attribute if provided is used as the start range when looking up for possible
matches.

Parameters

• conn – Connection object.

• params – Notification parameters.

Returns 0 in case of success or negative value in case of error.

int bt_gatt_notify_multiple(struct bt_conn *conn, uint16_t num_params, struct
bt_gatt_notify_params *params)

Notify multiple attribute value change.

This function works in the same way as bt_gatt_notify_cb.

Parameters

• conn – Connection object.

• num_params – Number of notification parameters.

• params – Array of notification parameters.

Returns 0 in case of success or negative value in case of error.

static inline int bt_gatt_notify(struct bt_conn *conn, const struct bt_gatt_attr *attr, const void
*data, uint16_t len)

Notify attribute value change.

Send notification of attribute value change, if connection is NULL notify all peer that have
notification enabled via CCC otherwise do a direct notification only the given connection.

7.4. Bluetooth 251

Zephyr Project Documentation, Release 2.7.0-rc2

The attribute object on the parameters can be the so called Characteristic Declaration, which is
usually declared with BT_GATT_CHARACTERISTIC followed by BT_GATT_CCC, or the Char-
acteristic Value Declaration which is automatically created after the Characteristic Declaration
when using BT_GATT_CHARACTERISTIC.

Parameters

• conn – Connection object.

• attr – Characteristic or Characteristic Value attribute.

• data – Pointer to Attribute data.

• len – Attribute value length.

Returns 0 in case of success or negative value in case of error.

static inline int bt_gatt_notify_uuid(struct bt_conn *conn, const struct bt_uuid *uuid, const
struct bt_gatt_attr *attr, const void *data, uint16_t len)

Notify attribute value change by UUID.

Send notification of attribute value change, if connection is NULL notify all peer that have
notification enabled via CCC otherwise do a direct notification only on the given connection.

The attribute object is the starting point for the search of the UUID.

Parameters

• conn – Connection object.

• uuid – The UUID. If the server contains multiple services with the same UUID,
then the first occurrence, starting from the attr given, is used.

• attr – Pointer to an attribute that serves as the starting point for the search of
a match for the UUID.

• data – Pointer to Attribute data.

• len – Attribute value length.

Returns 0 in case of success or negative value in case of error.

int bt_gatt_indicate(struct bt_conn *conn, struct bt_gatt_indicate_params *params)

Indicate attribute value change.

Send an indication of attribute value change. if connection is NULL indicate all peer that have
notification enabled via CCC otherwise do a direct indication only the given connection.

The attribute object on the parameters can be the so called Characteristic Declaration, which is
usually declared with BT_GATT_CHARACTERISTIC followed by BT_GATT_CCC, or the Char-
acteristic Value Declaration which is automatically created after the Characteristic Declaration
when using BT_GATT_CHARACTERISTIC.

Alternatively it is possible to indicate by UUID by setting it on the parameters, when using
this method the attribute if provided is used as the start range when looking up for possible
matches.

Note: This procedure is asynchronous therefore the parameters need to remains valid while
it is active. The procedure is active until the destroy callback is run.

Parameters

• conn – Connection object.

• params – Indicate parameters.

Returns 0 in case of success or negative value in case of error.

252 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

bool bt_gatt_is_subscribed(struct bt_conn *conn, const struct bt_gatt_attr *attr, uint16_t
ccc_value)

Check if connection have subscribed to attribute.

Check if connection has subscribed to attribute value change.

The attribute object can be the so called Characteristic Declaration, which is usually declared
with BT_GATT_CHARACTERISTIC followed by BT_GATT_CCC, or the Characteristic Value
Declaration which is automatically created after the Characteristic Declaration when using
BT_GATT_CHARACTERISTIC, or the Client Characteristic Configuration Descriptor (CCCD)
which is created by BT_GATT_CCC.

Parameters

• conn – Connection object.

• attr – Attribute object.

• ccc_value – The subscription type, either notifications or indications.

Returns true if the attribute object has been subscribed.

uint16_t bt_gatt_get_mtu(struct bt_conn *conn)
Get ATT MTU for a connection.

Get negotiated ATT connection MTU, note that this does not equal the largest amount of
attribute data that can be transferred within a single packet.

Parameters

• conn – Connection object.

Returns MTU in bytes

struct bt_gatt_ccc_cfg

#include <gatt.h> GATT CCC configuration entry.

Public Members

uint8_t id

Local identity, BT_ID_DEFAULT in most cases.

bt_addr_le_t peer

Remote peer address.

uint16_t value

Configuration value.

struct bt_gatt_notify_params

#include <gatt.h>

Public Members

const struct bt_uuid *uuid

Notification Attribute UUID type.

Optional, use to search for an attribute with matching UUID when the attribute object
pointer is not known.

7.4. Bluetooth 253

Zephyr Project Documentation, Release 2.7.0-rc2

const struct bt_gatt_attr *attr

Notification Attribute object.

Optional if uuid is provided, in this case it will be used as start range to search for the
attribute with the given UUID.

const void *data

Notification Value data

uint16_t len

Notification Value length

bt_gatt_complete_func_t func

Notification Value callback

void *user_data

Notification Value callback user data

struct bt_gatt_indicate_params

#include <gatt.h> GATT Indicate Value parameters.

Public Members

const struct bt_uuid *uuid

Indicate Attribute UUID type.

Optional, use to search for an attribute with matching UUID when the attribute object
pointer is not known.

const struct bt_gatt_attr *attr

Indicate Attribute object.

Optional if uuid is provided, in this case it will be used as start range to search for the
attribute with the given UUID.

bt_gatt_indicate_func_t func

Indicate Value callback

bt_gatt_indicate_params_destroy_t destroy

Indicate operation complete callback

const void *data

Indicate Value data

uint16_t len

Indicate Value length

GATT Client

group bt_gatt_client

254 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Typedefs

typedef uint8_t (*bt_gatt_discover_func_t)(struct bt_conn *conn, const struct bt_gatt_attr
*attr, struct bt_gatt_discover_params *params)

Discover attribute callback function.

If discovery procedure has completed this callback will be called with attr set to NULL. This
will not happen if procedure was stopped by returning BT_GATT_ITER_STOP.

The attribute object as well as its UUID and value objects are temporary and must be copied
to in order to cache its information. Only the following fields of the attribute contains valid
information:

• uuid UUID representing the type of attribute.

• handle Handle in the remote database.

• user_data The value of the attribute. Will be NULL when discovering descriptors

To be able to read the value of the discovered attribute the user_data must be cast to an
appropriate type.

• bt_gatt_service_val when UUID is BT_UUID_GATT_PRIMARY or
BT_UUID_GATT_SECONDARY.

• bt_gatt_include when UUID is BT_UUID_GATT_INCLUDE.

• bt_gatt_chrc when UUID is BT_UUID_GATT_CHRC.

Param conn Connection object.

Param attr Attribute found, or NULL if not found.

Param params Discovery parameters given.

Return BT_GATT_ITER_CONTINUE to continue discovery procedure.

Return BT_GATT_ITER_STOP to stop discovery procedure.

typedef uint8_t (*bt_gatt_read_func_t)(struct bt_conn *conn, uint8_t err, struct
bt_gatt_read_params *params, const void *data, uint16_t length)

Read callback function.

Param conn Connection object.

Param err ATT error code.

Param params Read parameters used.

Param data Attribute value data. NULL means read has completed.

Param length Attribute value length.

Return BT_GATT_ITER_CONTINUE if should continue to the next attribute.

Return BT_GATT_ITER_STOP to stop.

typedef void (*bt_gatt_write_func_t)(struct bt_conn *conn, uint8_t err, struct
bt_gatt_write_params *params)

Write callback function.

Param conn Connection object.

Param err ATT error code.

Param params Write parameters used.

7.4. Bluetooth 255

Zephyr Project Documentation, Release 2.7.0-rc2

typedef uint8_t (*bt_gatt_notify_func_t)(struct bt_conn *conn, struct
bt_gatt_subscribe_params *params, const void *data, uint16_t length)

Notification callback function.

In the case of an empty notification, the data pointer will be non-NULL while the length will
be 0, which is due to the special case where a data NULL pointer means unsubscribed.

Param conn Connection object. May be NULL, indicating that the peer is being un-
paired

Param params Subscription parameters.

Param data Attribute value data. If NULL then subscription was removed.

Param length Attribute value length.

Return BT_GATT_ITER_CONTINUE to continue receiving value notifications.
BT_GATT_ITER_STOP to unsubscribe from value notifications.

Enums

enum [anonymous]

GATT Discover types

Values:

enumerator BT_GATT_DISCOVER_PRIMARY

Discover Primary Services.

enumerator BT_GATT_DISCOVER_SECONDARY

Discover Secondary Services.

enumerator BT_GATT_DISCOVER_INCLUDE

Discover Included Services.

enumerator BT_GATT_DISCOVER_CHARACTERISTIC

Discover Characteristic Values.

Discover Characteristic Value and its properties.

enumerator BT_GATT_DISCOVER_DESCRIPTOR

Discover Descriptors.

Discover Attributes which are not services or characteristics.

@note The use of this type of discover is not recommended for
discovering in ranges across multiple services/characteristics
as it may incur in extra round trips.

enumerator BT_GATT_DISCOVER_ATTRIBUTE

Discover Attributes.

256 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Discover Attributes of any type.

@note The use of this type of discover is not recommended for
discovering in ranges across multiple services/characteristics
as it may incur in more round trips.

enumerator BT_GATT_DISCOVER_STD_CHAR_DESC

Discover standard characteristic descriptor values.

Discover standard characterestic descriptor values and their
properties.
Supported descriptors:
- Characteristic Extended Properties
- Client Characteristic Configuration
- Server Characteristic Configuration
- Characteristic Presentation Format

enum [anonymous]

Subscription flags

Values:

enumerator BT_GATT_SUBSCRIBE_FLAG_VOLATILE

Persistence flag.

If set, indicates that the subscription is not saved
on the GATT server side. Therefore, upon disconnection,
the subscription will be automatically removed
from the client's subscriptions list and
when the client reconnects, it will have to
issue a new subscription.

enumerator BT_GATT_SUBSCRIBE_FLAG_NO_RESUB

No resubscribe flag.

By default when BT_GATT_SUBSCRIBE_FLAG_VOLATILE is unset, the
subscription will be automatically renewed when the client
reconnects, as a workaround for GATT servers that do not persist
subscriptions.

This flag will disable the automatic resubscription. It is useful
if the application layer knows that the GATT server remembers
subscriptions from previous connections and wants to avoid renewing
the subscriptions.

enumerator BT_GATT_SUBSCRIBE_FLAG_WRITE_PENDING

Write pending flag.

7.4. Bluetooth 257

Zephyr Project Documentation, Release 2.7.0-rc2

If set, indicates write operation is pending waiting remote end to
respond.

enumerator BT_GATT_SUBSCRIBE_NUM_FLAGS

Functions

int bt_gatt_exchange_mtu(struct bt_conn *conn, struct bt_gatt_exchange_params *params)

Exchange MTU.

This client procedure can be used to set the MTU to the maximum possible size the buffers
can hold.

Note: Shall only be used once per connection.

Parameters

• conn – Connection object.

• params – Exchange MTU parameters.

Returns 0 in case of success or negative value in case of error.

int bt_gatt_discover(struct bt_conn *conn, struct bt_gatt_discover_params *params)

GATT Discover function.

This procedure is used by a client to discover attributes on a server.

Primary Service Discovery: Procedure allows to discover specific Primary Service based on
UUID. Include Service Discovery: Procedure allows to discover all Include Services within
specified range. Characteristic Discovery: Procedure allows to discover all characteristics
within specified handle range as well as discover characteristics with specified UUID. Descrip-
tors Discovery: Procedure allows to discover all characteristic descriptors within specified
range.

For each attribute found the callback is called which can then decide whether to continue
discovering or stop.

Note: This procedure is asynchronous therefore the parameters need to remains valid while
it is active.

Parameters

• conn – Connection object.

• params – Discover parameters.

Returns 0 in case of success or negative value in case of error.

int bt_gatt_read(struct bt_conn *conn, struct bt_gatt_read_params *params)

Read Attribute Value by handle.

This procedure read the attribute value and return it to the callback.

When reading attributes by UUID the callback can be called multiple times depending on
how many instances of given the UUID exists with the start_handle being updated for each
instance.

258 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

If an instance does contain a long value which cannot be read entirely the caller will need to
read the remaining data separately using the handle and offset.

Note: This procedure is asynchronous therefore the parameters need to remains valid while
it is active.

Parameters

• conn – Connection object.

• params – Read parameters.

Returns 0 in case of success or negative value in case of error.

int bt_gatt_write(struct bt_conn *conn, struct bt_gatt_write_params *params)

Write Attribute Value by handle.

This procedure write the attribute value and return the result in the callback.

Note: This procedure is asynchronous therefore the parameters need to remains valid while
it is active.

Parameters

• conn – Connection object.

• params – Write parameters.

Returns 0 in case of success or negative value in case of error.

int bt_gatt_write_without_response_cb(struct bt_conn *conn, uint16_t handle, const void
*data, uint16_t length, bool sign,
bt_gatt_complete_func_t func, void *user_data)

Write Attribute Value by handle without response with callback.

This function works in the same way as bt_gatt_write_without_response. With the addition
that after sending the write the callback function will be called.

The callback is run from System Workqueue context. When called from the System
Workqueue context this API will not wait for resources for the callback but instead re-
turn an error. The number of pending callbacks can be increased with the :kcon-
fig:`CONFIG_BT_CONN_TX_MAX` option.

Note: By using a callback it also disable the internal flow control which would prevent
sending multiple commands without waiting for their transmissions to complete, so if that is
required the caller shall not submit more data until the callback is called.

Parameters

• conn – Connection object.

• handle – Attribute handle.

• data – Data to be written.

• length – Data length.

• sign – Whether to sign data

• func – Transmission complete callback.

7.4. Bluetooth 259

Zephyr Project Documentation, Release 2.7.0-rc2

• user_data – User data to be passed back to callback.

Returns 0 in case of success or negative value in case of error.

static inline int bt_gatt_write_without_response(struct bt_conn *conn, uint16_t handle, const
void *data, uint16_t length, bool sign)

Write Attribute Value by handle without response.

This procedure write the attribute value without requiring an acknowledgment that the write
was successfully performed

Parameters

• conn – Connection object.

• handle – Attribute handle.

• data – Data to be written.

• length – Data length.

• sign – Whether to sign data

Returns 0 in case of success or negative value in case of error.

int bt_gatt_subscribe(struct bt_conn *conn, struct bt_gatt_subscribe_params *params)

Subscribe Attribute Value Notification.

This procedure subscribe to value notification using the Client Characteristic Configuration
handle. If notification received subscribe value callback is called to return notified value. One
may then decide whether to unsubscribe directly from this callback. Notification callback with
NULL data will not be called if subscription was removed by this method.

Note: Notifications are asynchronous therefore the parameters need to remain valid while
subscribed.

Parameters

• conn – Connection object.

• params – Subscribe parameters.

Returns 0 in case of success or negative value in case of error.

int bt_gatt_resubscribe(uint8_t id, const bt_addr_le_t *peer, struct bt_gatt_subscribe_params
*params)

Resubscribe Attribute Value Notification subscription.

Resubscribe to Attribute Value Notification when already subscribed from a previous connec-
tion. The GATT server will remember subscription from previous connections when bonded,
so resubscribing can be done without performing a new subscribe procedure after a power
cycle.

Note: Notifications are asynchronous therefore the parameters need to remain valid while
subscribed.

Parameters

• id – Local identity (in most cases BT_ID_DEFAULT).

• peer – Remote address.

• params – Subscribe parameters.

260 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Returns 0 in case of success or negative value in case of error.

int bt_gatt_unsubscribe(struct bt_conn *conn, struct bt_gatt_subscribe_params *params)

Unsubscribe Attribute Value Notification.

This procedure unsubscribe to value notification using the Client Characteristic Configuration
handle. Notification callback with NULL data will be called if subscription was removed by
this call, until then the parameters cannot be reused.

Parameters

• conn – Connection object.

• params – Subscribe parameters.

Returns 0 in case of success or negative value in case of error.

void bt_gatt_cancel(struct bt_conn *conn, void *params)

Cancel GATT pending request.

Parameters

• conn – Connection object.

• params – Requested params address.

struct bt_gatt_exchange_params

#include <gatt.h> GATT Exchange MTU parameters.

Public Members

void (*func)(struct bt_conn *conn, uint8_t err, struct bt_gatt_exchange_params *params)

Response callback

struct bt_gatt_discover_params

#include <gatt.h> GATT Discover Attributes parameters.

Public Members

const struct bt_uuid *uuid

Discover UUID type

bt_gatt_discover_func_t func

Discover attribute callback

uint16_t attr_handle

Include service attribute declaration handle

uint16_t start_handle

Included service start handle

Discover start handle

7.4. Bluetooth 261

Zephyr Project Documentation, Release 2.7.0-rc2

uint16_t end_handle

Included service end handle

Discover end handle

uint8_t type

Discover type

struct bt_gatt_read_params

#include <gatt.h> GATT Read parameters.

Public Members

bt_gatt_read_func_t func

Read attribute callback.

size_t handle_count

If equals to 1 single.handle and single.offset are used. If greater than 1 multiple.handles
are used. If equals to 0 by_uuid is used for Read Using Characteristic UUID.

uint16_t handle

Attribute handle.

uint16_t offset

Attribute data offset.

uint16_t *handles

Attribute handles to read with Read Multiple Characteristic Values.

bool variable

If true use Read Multiple Variable Length Characteristic Values procedure. The values of
the set of attributes may be of variable or unknown length. If false use Read Multiple
Characteristic Values procedure. The values of the set of attributes must be of a known
fixed length, with the exception of the last value that can have a variable length.

uint16_t start_handle

First requested handle number.

uint16_t end_handle

Last requested handle number.

const struct bt_uuid *uuid

2 or 16 octet UUID.

struct bt_gatt_write_params

#include <gatt.h> GATT Write parameters.

262 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Public Members

bt_gatt_write_func_t func

Response callback

uint16_t handle

Attribute handle

uint16_t offset

Attribute data offset

const void *data

Data to be written

uint16_t length

Length of the data

struct bt_gatt_subscribe_params

#include <gatt.h> GATT Subscribe parameters.

Public Members

bt_gatt_notify_func_t notify

Notification value callback

bt_gatt_write_func_t write

Subscribe CCC write request response callback

uint16_t value_handle

Subscribe value handle

uint16_t ccc_handle

Subscribe CCC handle

uint16_t value

Subscribe value

atomic_t flags[ATOMIC_BITMAP_SIZE(BT_GATT_SUBSCRIBE_NUM_FLAGS)]

Subscription flags

7.4.7 HCI Drivers

API Reference

group bt_hci_driver

HCI drivers.

7.4. Bluetooth 263

Zephyr Project Documentation, Release 2.7.0-rc2

Defines

IS_BT_QUIRK_NO_AUTO_DLE(bt_dev)

BT_HCI_EVT_FLAG_RECV_PRIO

BT_HCI_EVT_FLAG_RECV

Enums

enum [anonymous]

Values:

enumerator BT_QUIRK_NO_RESET = BIT(0)

enumerator BT_QUIRK_NO_AUTO_DLE = BIT(1)

enum bt_hci_driver_bus

Possible values for the ‘bus’ member of the bt_hci_driver struct

Values:

enumerator BT_HCI_DRIVER_BUS_VIRTUAL = 0

enumerator BT_HCI_DRIVER_BUS_USB = 1

enumerator BT_HCI_DRIVER_BUS_PCCARD = 2

enumerator BT_HCI_DRIVER_BUS_UART = 3

enumerator BT_HCI_DRIVER_BUS_RS232 = 4

enumerator BT_HCI_DRIVER_BUS_PCI = 5

enumerator BT_HCI_DRIVER_BUS_SDIO = 6

enumerator BT_HCI_DRIVER_BUS_SPI = 7

enumerator BT_HCI_DRIVER_BUS_I2C = 8

enumerator BT_HCI_DRIVER_BUS_IPM = 9

Functions

264 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline uint8_t bt_hci_evt_get_flags(uint8_t evt)

Get HCI event flags.

Helper for the HCI driver to get HCI event flags that describes rules that. must be followed.

When CONFIG_BT_RECV_IS_RX_THREAD is enabled the flags BT_HCI_EVT_FLAG_RECV
and BT_HCI_EVT_FLAG_RECV_PRIO indicates if the event should be given to bt_recv or
bt_recv_prio.

Parameters

• evt – HCI event code.

Returns HCI event flags for the specified event.

int bt_recv(struct net_buf *buf)

Receive data from the controller/HCI driver.

This is the main function through which the HCI driver provides the host with data from the
controller. The buffer needs to have its type set with the help of bt_buf_set_type() before
calling this API.

When CONFIG_BT_RECV_IS_RX_THREAD is defined then this API should not be used for so-
called high priority HCI events, which should instead be delivered to the host stack through
bt_recv_prio().

Parameters

• buf – Network buffer containing data from the controller.

Returns 0 on success or negative error number on failure.

int bt_recv_prio(struct net_buf *buf)

Receive high priority data from the controller/HCI driver.

This is the same as bt_recv(), except that it should be used for so-called high priority HCI
events. There’s a separate bt_hci_evt_get_flags() helper that can be used to identify which
events have the BT_HCI_EVT_FLAG_RECV_PRIO flag set.

As with bt_recv(), the buffer needs to have its type set with the help of bt_buf_set_type()
before calling this API. The only exception is so called high priority HCI events which should
be delivered to the host stack through bt_recv_prio() instead.

Parameters

• buf – Network buffer containing data from the controller.

Returns 0 on success or negative error number on failure.

uint8_t bt_read_static_addr(struct bt_hci_vs_static_addr addrs[], uint8_t size)

Read static addresses from the controller.

Parameters

• addrs – Random static address and Identity Root (IR) array.

• size – Size of array.

Returns Number of addresses read.

int bt_hci_driver_register(const struct bt_hci_driver *drv)

Register a new HCI driver to the Bluetooth stack.

This needs to be called before any application code runs. The bt_enable() API will fail if there
is no driver registered.

Parameters

• drv – A bt_hci_driver struct representing the driver.

7.4. Bluetooth 265

Zephyr Project Documentation, Release 2.7.0-rc2

Returns 0 on success or negative error number on failure.

int bt_hci_transport_setup(const struct device *dev)

Setup the HCI transport, which usually means to reset the Bluetooth IC.

Note: A weak version of this function is included in the H4 driver, so defining it is optional
per board.

Parameters

• dev – The device structure for the bus connecting to the IC

Returns 0 on success, negative error value on failure

struct net_buf *bt_hci_evt_create(uint8_t evt, uint8_t len)

Allocate an HCI event buffer.

This function allocates a new buffer for an HCI event. It is given the avent code and the total
length of the parameters. Upon successful return the buffer is ready to have the parameters
encoded into it.

Parameters

• evt – Event OpCode.

• len – Length of event parameters.

Returns Newly allocated buffer.

struct net_buf *bt_hci_cmd_complete_create(uint16_t op, uint8_t plen)

Allocate an HCI Command Complete event buffer.

This function allocates a new buffer for HCI Command Complete event. It is given the OpCode
(encoded e.g. using the BT_OP macro) and the total length of the parameters. Upon successful
return the buffer is ready to have the parameters encoded into it.

Parameters

• op – Command OpCode.

• plen – Length of command parameters.

Returns Newly allocated buffer.

struct net_buf *bt_hci_cmd_status_create(uint16_t op, uint8_t status)

Allocate an HCI Command Status event buffer.

This function allocates a new buffer for HCI Command Status event. It is given the OpCode
(encoded e.g. using the BT_OP macro) and the status code. Upon successful return the buffer
is ready to have the parameters encoded into it.

Parameters

• op – Command OpCode.

• status – Status code.

Returns Newly allocated buffer.

struct bt_hci_driver

#include <hci_driver.h> Abstraction which represents the HCI transport to the controller.

This struct is used to represent the HCI transport to the Bluetooth controller.

266 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Public Members

const char *name

Name of the driver

enum bt_hci_driver_bus bus

Bus of the transport (BT_HCI_DRIVER_BUS_*)

uint32_t quirks

Specific controller quirks. These are set by the HCI driver and acted upon by the host.
They can either be statically set at buildtime, or set at runtime before the HCI driver’s
open() callback returns.

int (*open)(void)

Open the HCI transport.

Opens the HCI transport for operation. This function must not return until the transport
is ready for operation, meaning it is safe to start calling the send() handler.

If the driver uses its own RX thread, i.e. CONFIG_BT_RECV_IS_RX_THREAD is set, then
this function is expected to start that thread.

Return 0 on success or negative error number on failure.

int (*send)(struct net_buf *buf)

Send HCI buffer to controller.

Send an HCI command or ACL data to the controller. The exact type of the data can be
checked with the help of bt_buf_get_type().

Note: This function must only be called from a cooperative thread.

Param buf Buffer containing data to be sent to the controller.
Return 0 on success or negative error number on failure.

7.4.8 HCI RAW channel

Overview

HCI RAW channel API is intended to expose HCI interface to the remote entity. The local Bluetooth
controller gets owned by the remote entity and host Bluetooth stack is not used. RAW API provides
direct access to packets which are sent and received by the Bluetooth HCI driver.

API Reference

group hci_raw

HCI RAW channel.

Defines

BT_HCI_ERR_EXT_HANDLED

7.4. Bluetooth 267

Zephyr Project Documentation, Release 2.7.0-rc2

BT_HCI_RAW_CMD_EXT(_op, _min_len, _func)

Helper macro to define a command extension

Parameters

• _op – Opcode of the command.

• _min_len – Minimal length of the command.

• _func – Handler function to be called.

Enums

enum [anonymous]

Values:

enumerator BT_HCI_RAW_MODE_PASSTHROUGH = 0x00

Passthrough mode

While in this mode the buffers are passed as is between the stack
and the driver.

enumerator BT_HCI_RAW_MODE_H4 = 0x01

H:4 mode

While in this mode H:4 headers will added into the buffers
according to the buffer type when coming from the stack and will be
removed and used to set the buffer type.

Functions

int bt_send(struct net_buf *buf)

Send packet to the Bluetooth controller.

Send packet to the Bluetooth controller. Caller needs to implement netbuf pool.

Parameters

• buf – netbuf packet to be send

Returns Zero on success or (negative) error code otherwise.

int bt_hci_raw_set_mode(uint8_t mode)

Set Bluetooth RAW channel mode.

Set access mode of Bluetooth RAW channel.

Parameters

• mode – Access mode.

Returns Zero on success or (negative) error code otherwise.

uint8_t bt_hci_raw_get_mode(void)

Get Bluetooth RAW channel mode.

Get access mode of Bluetooth RAW channel.

Returns Access mode.

268 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

void bt_hci_raw_cmd_ext_register(struct bt_hci_raw_cmd_ext *cmds, size_t size)

Register Bluetooth RAW command extension table.

Register Bluetooth RAW channel command extension table, opcodes in this table are inter-
cepted to sent to the handler function.

Parameters

• cmds – Pointer to the command extension table.

• size – Size of the command extension table.

int bt_enable_raw(struct k_fifo *rx_queue)

Enable Bluetooth RAW channel:

Enable Bluetooth RAW HCI channel.

Parameters

• rx_queue – netbuf queue where HCI packets received from the Bluetooth con-
troller are to be queued. The queue is defined in the caller while the available
buffers pools are handled in the stack.

Returns Zero on success or (negative) error code otherwise.

struct bt_hci_raw_cmd_ext

#include <hci_raw.h>

Public Members

uint16_t op

Opcode of the command

size_t min_len

Minimal length of the command

uint8_t (*func)(struct net_buf *buf)

Handler function.

Handler function to be called when a command is intercepted.
Param buf Buffer containing the command.
Return HCI Status code or BT_HCI_ERR_EXT_HANDLED if command has

been handled already and a response has been sent as oppose to
BT_HCI_ERR_SUCCESS which just indicates that the command can be sent to
the controller to be processed.

7.4.9 Hands Free Profile (HFP)

API Reference

group bt_hfp

Hands Free Profile (HFP)

7.4. Bluetooth 269

Zephyr Project Documentation, Release 2.7.0-rc2

Defines

HFP_HF_CMD_OK

HFP_HF_CMD_ERROR

HFP_HF_CMD_CME_ERROR

HFP_HF_CMD_UNKNOWN_ERROR

Enums

enum bt_hfp_hf_at_cmd

Values:

enumerator BT_HFP_HF_ATA

enumerator BT_HFP_HF_AT_CHUP

Functions

int bt_hfp_hf_register(struct bt_hfp_hf_cb *cb)

Register HFP HF profile.

Register Handsfree profile callbacks to monitor the state and get the required HFP details to
display.

Parameters

• cb – callback structure.

Returns 0 in case of success or negative value in case of error.

int bt_hfp_hf_send_cmd(struct bt_conn *conn, enum bt_hfp_hf_at_cmd cmd)

Handsfree client Send AT.

Send specific AT commands to handsfree client profile.

Parameters

• conn – Connection object.

• cmd – AT command to be sent.

Returns 0 in case of success or negative value in case of error.

struct bt_hfp_hf_cmd_complete

#include <hfp_hf.h> HFP HF Command completion field.

struct bt_hfp_hf_cb

#include <hfp_hf.h> HFP profile application callback.

270 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Public Members

void (*connected)(struct bt_conn *conn)

HF connected callback to application

If this callback is provided it will be called whenever the connection completes.
Param conn Connection object.

void (*disconnected)(struct bt_conn *conn)

HF disconnected callback to application

If this callback is provided it will be called whenever the connection gets disconnected,
including when a connection gets rejected or cancelled or any error in SLC establisment.

Param conn Connection object.

void (*service)(struct bt_conn *conn, uint32_t value)

HF indicator Callback

This callback provides service indicator value to the application
Param conn Connection object.
Param value service indicator value received from the AG.

void (*call)(struct bt_conn *conn, uint32_t value)

HF indicator Callback

This callback provides call indicator value to the application
Param conn Connection object.
Param value call indicator value received from the AG.

void (*call_setup)(struct bt_conn *conn, uint32_t value)

HF indicator Callback

This callback provides call setup indicator value to the application
Param conn Connection object.
Param value call setup indicator value received from the AG.

void (*call_held)(struct bt_conn *conn, uint32_t value)

HF indicator Callback

This callback provides call held indicator value to the application
Param conn Connection object.
Param value call held indicator value received from the AG.

void (*signal)(struct bt_conn *conn, uint32_t value)

HF indicator Callback

This callback provides signal indicator value to the application
Param conn Connection object.
Param value signal indicator value received from the AG.

void (*roam)(struct bt_conn *conn, uint32_t value)

HF indicator Callback

This callback provides roaming indicator value to the application
Param conn Connection object.
Param value roaming indicator value received from the AG.

7.4. Bluetooth 271

Zephyr Project Documentation, Release 2.7.0-rc2

void (*battery)(struct bt_conn *conn, uint32_t value)

HF indicator Callback

This callback battery service indicator value to the application
Param conn Connection object.
Param value battery indicator value received from the AG.

void (*ring_indication)(struct bt_conn *conn)

HF incoming call Ring indication callback to application

If this callback is provided it will be called whenever there is an incoming call.
Param conn Connection object.

void (*cmd_complete_cb)(struct bt_conn *conn, struct bt_hfp_hf_cmd_complete *cmd)

HF notify command completed callback to application

The command sent from the application is notified about its status
Param conn Connection object.
Param cmd structure contains status of the command including cme.

7.4.10 Logical Link Control and Adaptation Protocol (L2CAP)

L2CAP layer enables connection-oriented channels which can be enable with the configuration option:
:kconfig:`CONFIG_BT_L2CAP_DYNAMIC_CHANNEL`. This channels support segmentation and re-
assembly transparently, they also support credit based flow control making it suitable for data streams.

Channels instances are represented by the bt_l2cap_chan struct which contains the callbacks in the
bt_l2cap_chan_ops struct to inform when the channel has been connected, disconnected or when the
encryption has changed. In addition to that it also contains the recv callback which is called whenever
an incoming data has been received. Data received this way can be marked as processed by returning 0
or using bt_l2cap_chan_recv_complete() API if processing is asynchronous.

Note: The recv callback is called directly from RX Thread thus it is not recommended to block for long
periods of time.

For sending data the bt_l2cap_chan_send() API can be used noting that it may block if no credits are
available, and resuming as soon as more credits are available.

Servers can be registered using bt_l2cap_server_register() API passing the bt_l2cap_server struct
which informs what psm it should listen to, the required security level sec_level, and the callback
accept which is called to authorize incoming connection requests and allocate channel instances.

Client channels can be initiated with use of bt_l2cap_chan_connect() API and can be disconnected
with the bt_l2cap_chan_disconnect() API. Note that the later can also disconnect channel instances
created by servers.

API Reference

group bt_l2cap

L2CAP.

Defines

272 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

BT_L2CAP_HDR_SIZE

L2CAP PDU header size, used for buffer size calculations

BT_L2CAP_TX_MTU

Maximum Transmission Unit (MTU) for an outgoing L2CAP PDU.

BT_L2CAP_RX_MTU

Maximum Transmission Unit (MTU) for an incoming L2CAP PDU.

BT_L2CAP_BUF_SIZE(mtu)

Helper to calculate needed buffer size for L2CAP PDUs. Useful for creating buffer pools.

Parameters

• mtu – Needed L2CAP PDU MTU.

Returns Needed buffer size to match the requested L2CAP PDU MTU.

BT_L2CAP_SDU_HDR_SIZE

L2CAP SDU header size, used for buffer size calculations

BT_L2CAP_SDU_TX_MTU

Maximum Transmission Unit for an unsegmented outgoing L2CAP SDU.

The Maximum Transmission Unit for an outgoing L2CAP SDU when sent without segmenta-
tion, i.e a single L2CAP SDU will fit inside a single L2CAP PDU.

The MTU for outgoing L2CAP SDUs with segmentation is defined by the size of the application
buffer pool.

BT_L2CAP_SDU_RX_MTU

Maximum Transmission Unit for an unsegmented incoming L2CAP SDU.

The Maximum Transmission Unit for an incoming L2CAP SDU when sent without segmenta-
tion, i.e a single L2CAP SDU will fit inside a single L2CAP PDU.

The MTU for incoming L2CAP SDUs with segmentation is defined by the size of the application
buffer pool. The application will have to define an alloc_buf callback for the channel in order
to support receiving segmented L2CAP SDUs.

BT_L2CAP_SDU_BUF_SIZE(mtu)

Helper to calculate needed buffer size for L2CAP SDUs. Useful for creating buffer pools.

Parameters

• mtu – Required BT_L2CAP_*_SDU.

Returns Needed buffer size to match the requested L2CAP SDU MTU.

BT_L2CAP_LE_CHAN(_ch)

Helper macro getting container object of type bt_l2cap_le_chan address having the same con-
tainer chan member address as object in question.

Parameters

• _ch – Address of object of bt_l2cap_chan type

Returns Address of in memory bt_l2cap_le_chan object type containing the address
of in question object.

7.4. Bluetooth 273

Zephyr Project Documentation, Release 2.7.0-rc2

BT_L2CAP_CHAN_SEND_RESERVE

Headroom needed for outgoing L2CAP PDUs.

BT_L2CAP_SDU_CHAN_SEND_RESERVE

Headroom needed for outgoing L2CAP SDUs.

Typedefs

typedef void (*bt_l2cap_chan_destroy_t)(struct bt_l2cap_chan *chan)

Channel destroy callback.

Param chan Channel object.

typedef enum bt_l2cap_chan_state bt_l2cap_chan_state_t

Life-span states of L2CAP CoC channel.

Used only by internal APIs dealing with setting channel to proper state depending on opera-
tional context.

typedef enum bt_l2cap_chan_status bt_l2cap_chan_status_t

Status of L2CAP channel.

Enums

enum bt_l2cap_chan_state

Life-span states of L2CAP CoC channel.

Used only by internal APIs dealing with setting channel to proper state depending on opera-
tional context.

Values:

enumerator BT_L2CAP_DISCONNECTED

Channel disconnected

enumerator BT_L2CAP_CONNECT

Channel in connecting state

enumerator BT_L2CAP_CONFIG

Channel in config state, BR/EDR specific

enumerator BT_L2CAP_CONNECTED

Channel ready for upper layer traffic on it

enumerator BT_L2CAP_DISCONNECT

Channel in disconnecting state

enum bt_l2cap_chan_status

Status of L2CAP channel.

Values:

274 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator BT_L2CAP_STATUS_OUT

Channel output status

enumerator BT_L2CAP_STATUS_SHUTDOWN

Channel shutdown status.

Once this status is notified it means the channel will no longer be
able to transmit or receive data.

enumerator BT_L2CAP_STATUS_ENCRYPT_PENDING

Channel encryption pending status.

enumerator BT_L2CAP_NUM_STATUS

Functions

int bt_l2cap_server_register(struct bt_l2cap_server *server)

Register L2CAP server.

Register L2CAP server for a PSM, each new connection is authorized using the accept() call-
back which in case of success shall allocate the channel structure to be used by the new
connection.

For fixed, SIG-assigned PSMs (in the range 0x0001-0x007f) the PSM should be assigned to
server->psm before calling this API. For dynamic PSMs (in the range 0x0080-0x00ff) server-
>psm may be pre-set to a given value (this is however not recommended) or be left as 0, in
which case upon return a newly allocated value will have been assigned to it. For dynamically
allocated values the expectation is that it’s exposed through a GATT service, and that’s how
L2CAP clients discover how to connect to the server.

Parameters

• server – Server structure.

Returns 0 in case of success or negative value in case of error.

int bt_l2cap_br_server_register(struct bt_l2cap_server *server)

Register L2CAP server on BR/EDR oriented connection.

Register L2CAP server for a PSM, each new connection is authorized using the accept() call-
back which in case of success shall allocate the channel structure to be used by the new
connection.

Parameters

• server – Server structure.

Returns 0 in case of success or negative value in case of error.

int bt_l2cap_ecred_chan_connect(struct bt_conn *conn, struct bt_l2cap_chan **chans, uint16_t
psm)

Connect Enhanced Credit Based L2CAP channels.

Connect up to 5 L2CAP channels by PSM, once the connection is completed each channel
connected() callback will be called. If the connection is rejected disconnected() callback is
called instead.

Parameters

7.4. Bluetooth 275

Zephyr Project Documentation, Release 2.7.0-rc2

• conn – Connection object.

• chans – Array of channel objects.

• psm – Channel PSM to connect to.

Returns 0 in case of success or negative value in case of error.

int bt_l2cap_chan_connect(struct bt_conn *conn, struct bt_l2cap_chan *chan, uint16_t psm)

Connect L2CAP channel.

Connect L2CAP channel by PSM, once the connection is completed channel connected() call-
back will be called. If the connection is rejected disconnected() callback is called instead.
Channel object passed (over an address of it) as second parameter shouldn’t be instantiated
in application as standalone. Instead of, application should create transport dedicated L2CAP
objects, i.e. type of bt_l2cap_le_chan for LE and/or type of bt_l2cap_br_chan for BR/EDR.
Then pass to this API the location (address) of bt_l2cap_chan type object which is a member
of both transport dedicated objects.

Parameters

• conn – Connection object.

• chan – Channel object.

• psm – Channel PSM to connect to.

Returns 0 in case of success or negative value in case of error.

int bt_l2cap_chan_disconnect(struct bt_l2cap_chan *chan)

Disconnect L2CAP channel.

Disconnect L2CAP channel, if the connection is pending it will be canceled and as a result
the channel disconnected() callback is called. Regarding to input parameter, to get details see
reference description to bt_l2cap_chan_connect() API above.

Parameters

• chan – Channel object.

Returns 0 in case of success or negative value in case of error.

int bt_l2cap_chan_send(struct bt_l2cap_chan *chan, struct net_buf *buf)

Send data to L2CAP channel.

Send data from buffer to the channel. If credits are not available, buf will be queued and sent
as and when credits are received from peer. Regarding to first input parameter, to get details
see reference description to bt_l2cap_chan_connect() API above.

When sending L2CAP data over an BR/EDR connection the application is sending L2CAP
PDUs. The application is required to have reserved BT_L2CAP_CHAN_SEND_RESERVE bytes
in the buffer before sending. The application should use the BT_L2CAP_BUF_SIZE() helper to
correctly size the buffers for the for the outgoing buffer pool.

When sending L2CAP data over an LE connection the applicatios is sending L2CAP SDUs.
The application can optionally reserve BT_L2CAP_SDU_CHAN_SEND_RESERVE bytes in the
buffer before sending. By reserving bytes in the buffer the stack can use this buffer as a
segment directly, otherwise it will have to allocate a new segment for the first segment. If the
application is reserving the bytes it should use the BT_L2CAP_BUF_SIZE() helper to correctly
size the buffers for the for the outgoing buffer pool. When segmenting an L2CAP SDU into
L2CAP PDUs the stack will first attempt to allocate buffers from the original buffer pool of the
L2CAP SDU before using the stacks own buffer pool.

Note: Buffer ownership is transferred to the stack in case of success, in case of an error the
caller retains the ownership of the buffer.

276 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Returns Bytes sent in case of success or negative value in case of error.

int bt_l2cap_chan_recv_complete(struct bt_l2cap_chan *chan, struct net_buf *buf)

Complete receiving L2CAP channel data.

Complete the reception of incoming data. This shall only be called if the channel recv callback
has returned -EINPROGRESS to process some incoming data. The buffer shall contain the
original user_data as that is used for storing the credits/segments used by the packet.

Parameters

• chan – Channel object.

• buf – Buffer containing the data.

Returns 0 in case of success or negative value in case of error.

struct bt_l2cap_chan

#include <l2cap.h> L2CAP Channel structure.

Public Members

struct bt_conn *conn

Channel connection reference

const struct bt_l2cap_chan_ops *ops

Channel operations reference

struct bt_l2cap_le_endpoint

#include <l2cap.h> LE L2CAP Endpoint structure.

Public Members

uint16_t cid

Endpoint Channel Identifier (CID)

uint16_t mtu

Endpoint Maximum Transmission Unit

uint16_t mps

Endpoint Maximum PDU payload Size

uint16_t init_credits

Endpoint initial credits

atomic_t credits

Endpoint credits

struct bt_l2cap_le_chan

#include <l2cap.h> LE L2CAP Channel structure.

7.4. Bluetooth 277

Zephyr Project Documentation, Release 2.7.0-rc2

Public Members

struct bt_l2cap_chan chan

Common L2CAP channel reference object

struct bt_l2cap_le_endpoint rx

Channel Receiving Endpoint.

If the application has set an alloc_buf channel callback for the channel to support re-
ceiving segmented L2CAP SDUs the application should inititalize the MTU of the Re-
ceiving Endpoint. Otherwise the MTU of the receiving endpoint will be initialized to
BT_L2CAP_SDU_RX_MTU by the stack.

struct bt_l2cap_le_endpoint tx

Channel Transmission Endpoint

struct k_fifo tx_queue

Channel Transmission queue

struct net_buf *tx_buf

Channel Pending Transmission buffer

struct k_work tx_work

Channel Transmission work

struct bt_l2cap_br_endpoint

#include <l2cap.h> BREDR L2CAP Endpoint structure.

Public Members

uint16_t cid

Endpoint Channel Identifier (CID)

uint16_t mtu

Endpoint Maximum Transmission Unit

struct bt_l2cap_br_chan

#include <l2cap.h> BREDR L2CAP Channel structure.

Public Members

struct bt_l2cap_chan chan

Common L2CAP channel reference object

struct bt_l2cap_br_endpoint rx

Channel Receiving Endpoint

278 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

struct bt_l2cap_br_endpoint tx

Channel Transmission Endpoint

struct bt_l2cap_chan_ops

#include <l2cap.h> L2CAP Channel operations structure.

Public Members

void (*connected)(struct bt_l2cap_chan *chan)

Channel connected callback.

If this callback is provided it will be called whenever the connection completes.
Param chan The channel that has been connected

void (*disconnected)(struct bt_l2cap_chan *chan)

Channel disconnected callback.

If this callback is provided it will be called whenever the channel is disconnected, includ-
ing when a connection gets rejected.

Param chan The channel that has been Disconnected

void (*encrypt_change)(struct bt_l2cap_chan *chan, uint8_t hci_status)

Channel encrypt_change callback.

If this callback is provided it will be called whenever the security level changed (indirectly
link encryption done) or authentication procedure fails. In both cases security initiator
and responder got the final status (HCI status) passed by related to encryption and au-
thentication events from local host’s controller.

Param chan The channel which has made encryption status changed.
Param status HCI status of performed security procedure caused by channel

security requirements. The value is populated by HCI layer and set to 0
when success and to non-zero (reference to HCI Error Codes) when secu-
rity/authentication failed.

struct net_buf *(*alloc_buf)(struct bt_l2cap_chan *chan)

Channel alloc_buf callback.

If this callback is provided the channel will use it to allocate buffers to store incoming
data. Channels that requires segmentation must set this callback. If the application has
not set a callback the L2CAP SDU MTU will be truncated to BT_L2CAP_SDU_RX_MTU.

Param chan The channel requesting a buffer.
Return Allocated buffer.

int (*recv)(struct bt_l2cap_chan *chan, struct net_buf *buf)

Channel recv callback.
Param chan The channel receiving data.
Param buf Buffer containing incoming data.
Return 0 in case of success or negative value in case of error.
Return -EINPROGRESS in case where user has to confirm once the data has

been processed by calling bt_l2cap_chan_recv_complete passing back the buffer
received with its original user_data which contains the number of seg-
ments/credits used by the packet.

7.4. Bluetooth 279

Zephyr Project Documentation, Release 2.7.0-rc2

void (*sent)(struct bt_l2cap_chan *chan)

Channel sent callback.

If this callback is provided it will be called whenever a SDU has been completely sent.
Param chan The channel which has sent data.

void (*status)(struct bt_l2cap_chan *chan, atomic_t *status)

Channel status callback.

If this callback is provided it will be called whenever the channel status changes.
Param chan The channel which status changed
Param status The channel status

struct bt_l2cap_server

#include <l2cap.h> L2CAP Server structure.

Public Members

uint16_t psm

Server PSM.

Possible values: 0 A dynamic value will be auto-allocated when bt_l2cap_server_register()
is called.

0x0001-0x007f Standard, Bluetooth SIG-assigned fixed values.

0x0080-0x00ff Dynamically allocated. May be pre-set by the application before server
registration (not recommended however), or auto-allocated by the stack if the app gave
0 as the value.

bt_security_t sec_level

Required minimum security level

int (*accept)(struct bt_conn *conn, struct bt_l2cap_chan **chan)

Server accept callback.

This callback is called whenever a new incoming connection requires authorization.
Param conn The connection that is requesting authorization
Param chan Pointer to received the allocated channel
Return 0 in case of success or negative value in case of error.
Return -ENOMEM if no available space for new channel.
Return -EACCES if application did not authorize the connection.
Return -EPERM if encryption key size is too short.

7.4.11 Bluetooth Mesh Profile

The Bluetooth mesh profile adds secure wireless multi-hop communication for Bluetooth Low Energy.
This module implements the Bluetooth Mesh Profile Specification v1.0.1.

Read more about Bluetooth mesh on the Bluetooth SIG Website.

Core

The core provides functionality for managing the general Bluetooth mesh state.

280 Chapter 7. API Reference

https://www.bluetooth.com/specifications/mesh-specifications/
https://www.bluetooth.com/bluetooth-resources/?tags=mesh

Zephyr Project Documentation, Release 2.7.0-rc2

Low Power Node The Low Power Node (LPN) role allows battery powered devices to participate in a
mesh network as a leaf node. An LPN interacts with the mesh network through a Friend node, which
is responsible for relaying any messages directed to the LPN. The LPN saves power by keeping its radio
turned off, and only wakes up to either send messages or poll the Friend node for any incoming messages.

The radio control and polling is managed automatically by the mesh stack, but the LPN API allows
the application to trigger the polling at any time through bt_mesh_lpn_poll() . The LPN operation
parameters, including poll interval, poll event timing and Friend requirements is controlled through the
:kconfig:`CONFIG_BT_MESH_LOW_POWER` option and related configuration options.

Replay Protection List The Replay Protection List (RPL) is used to hold recently received sequence
numbers from elements within the mesh network to perform protection against replay attacks.

To keep a node protected against replay attacks after reboot, it needs to store the entire RPL in the
persistent storage before it is powered off. Depending on the amount of traffic in a mesh network,
storing recently seen sequence numbers can make flash wear out sooner or later. To mitigate this, @ref
CONFIG_BT_MESH_RPL_STORE_TIMEOUT can be used. This option postpones storing of RPL entries
in the persistent storage.

This option, however, doesn’t completely solve the issue as the node may get powered off before the
timer to store the RPL is fired. To ensure that messages can not be replayed, the node can initiate storage
of the pending RPL entry (or entries) at any time (or sufficiently before power loss) by calling @ref
bt_mesh_rpl_pending_store. This is up to the node to decide, which RPL entries are to be stored in this
case.

Setting @ref CONFIG_BT_MESH_RPL_STORE_TIMEOUT to -1 allows to completely switch off the timer,
which can help to significantly reduce flash wear out. This moves the responsibility of storing RPL to the
user application and requires that sufficient power backup is available from the time this API is called
until all RPL entries are written to the flash.

Finding the right balance between @ref CONFIG_BT_MESH_RPL_STORE_TIMEOUT and calling @ref
bt_mesh_rpl_pending_store may reduce a risk of security volnurability and flash wear out.

API reference

group bt_mesh

Bluetooth mesh.

Defines

BT_MESH_NET_PRIMARY

BT_MESH_FEAT_RELAY

Relay feature

BT_MESH_FEAT_PROXY

GATT Proxy feature

BT_MESH_FEAT_FRIEND

Friend feature

BT_MESH_FEAT_LOW_POWER

Low Power Node feature

7.4. Bluetooth 281

Zephyr Project Documentation, Release 2.7.0-rc2

BT_MESH_FEAT_SUPPORTED

BT_MESH_LPN_CB_DEFINE(_name)

Register a callback structure for Friendship events.

Parameters

• _name – Name of callback structure.

BT_MESH_FRIEND_CB_DEFINE(_name)

Register a callback structure for Friendship events.

Registers a callback structure that will be called whenever Friendship gets established or ter-
minated.

Parameters

• _name – Name of callback structure.

Functions

int bt_mesh_init(const struct bt_mesh_prov *prov, const struct bt_mesh_comp *comp)

Initialize Mesh support.

After calling this API, the node will not automatically advertise as unprovisioned, rather the
bt_mesh_prov_enable() API needs to be called to enable unprovisioned advertising on one or
more provisioning bearers.

Parameters

• prov – Node provisioning information.

• comp – Node Composition.

Returns Zero on success or (negative) error code otherwise.

void bt_mesh_reset(void)

Reset the state of the local Mesh node.

Resets the state of the node, which means that it needs to be reprovisioned to become an
active node in a Mesh network again.

After calling this API, the node will not automatically advertise as unprovisioned, rather the
bt_mesh_prov_enable() API needs to be called to enable unprovisioned advertising on one or
more provisioning bearers.

int bt_mesh_suspend(void)

Suspend the Mesh network temporarily.

This API can be used for power saving purposes, but the user should be aware that leaving
the local node suspended for a long period of time may cause it to become permanently
disconnected from the Mesh network. If at all possible, the Friendship feature should be used
instead, to make the node into a Low Power Node.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_resume(void)

Resume a suspended Mesh network.

This API resumes the local node, after it has been suspended using the bt_mesh_suspend() API.

Returns 0 on success, or (negative) error code on failure.

282 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

void bt_mesh_iv_update_test(bool enable)
Toggle the IV Update test mode.

This API is only available if the IV Update test mode has been enabled in Kconfig. It is needed
for passing most of the IV Update qualification test cases.

Parameters

• enable – true to enable IV Update test mode, false to disable it.

bool bt_mesh_iv_update(void)
Toggle the IV Update state.

This API is only available if the IV Update test mode has been enabled in Kconfig. It is needed
for passing most of the IV Update qualification test cases.

Returns true if IV Update In Progress state was entered, false otherwise.

int bt_mesh_lpn_set(bool enable)
Toggle the Low Power feature of the local device.

Enables or disables the Low Power feature of the local device. This is exposed as a run-time
feature, since the device might want to change this e.g. based on being plugged into a stable
power source or running from a battery power source.

Parameters

• enable – true to enable LPN functionality, false to disable it.

Returns Zero on success or (negative) error code otherwise.

int bt_mesh_lpn_poll(void)
Send out a Friend Poll message.

Send a Friend Poll message to the Friend of this node. If there is no established Friendship
the function will return an error.

Returns Zero on success or (negative) error code otherwise.

int bt_mesh_friend_terminate(uint16_t lpn_addr)
Terminate Friendship.

Terminated Friendship for given LPN.

Parameters

• lpn_addr – Low Power Node address.

Returns Zero on success or (negative) error code otherwise.

void bt_mesh_rpl_pending_store(uint16_t addr)
Store pending RPL entry(ies) in the persistent storage.

This API allows the user to store pending RPL entry(ies) in the persistent storage without
waiting for the timeout.

Note: When flash is used as the persistent storage, calling this API too frequently may wear
it out.

Parameters

• addr – Address of the node which RPL entry needs to be stored or
BT_MESH_ADDR_ALL_NODES to store all pending RPL entries.

struct bt_mesh_lpn_cb

#include <main.h> Low Power Node callback functions.

7.4. Bluetooth 283

Zephyr Project Documentation, Release 2.7.0-rc2

Public Members

void (*established)(uint16_t net_idx, uint16_t friend_addr, uint8_t queue_size, uint8_t
recv_window)

Friendship established.

This callback notifies the application that friendship has been successfully established.
Param net_idx NetKeyIndex used during friendship establishment.
Param friend_addr Friend address.
Param queue_size Friend queue size.
Param recv_window Low Power Node’s listens duration for Friend response.

void (*terminated)(uint16_t net_idx, uint16_t friend_addr)

Friendship terminated.

This callback notifies the application that friendship has been terminated.
Param net_idx NetKeyIndex used during friendship establishment.
Param friend_addr Friend address.

void (*polled)(uint16_t net_idx, uint16_t friend_addr, bool retry)

Local Poll Request.

This callback notifies the application that the local node has polled the friend node.

This callback will be called before bt_mesh_lpn_cb::established when attempting to estab-
lish a friendship.

Param net_idx NetKeyIndex used during friendship establishment.
Param friend_addr Friend address.
Param retry Retry or first poll request for each transaction.

struct bt_mesh_friend_cb

#include <main.h> Friend Node callback functions.

Public Members

void (*established)(uint16_t net_idx, uint16_t lpn_addr, uint8_t recv_delay, uint32_t
polltimeout)

Friendship established.

This callback notifies the application that friendship has been successfully established.
Param net_idx NetKeyIndex used during friendship establishment.
Param lpn_addr Low Power Node address.
Param recv_delay Receive Delay in units of 1 millisecond.
Param polltimeout PollTimeout in units of 1 millisecond.

void (*terminated)(uint16_t net_idx, uint16_t lpn_addr)

Friendship terminated.

This callback notifies the application that friendship has been terminated.
Param net_idx NetKeyIndex used during friendship establishment.
Param lpn_addr Low Power Node address.

void (*polled)(uint16_t net_idx, uint16_t lpn_addr)

Friend Poll Request.

This callback notifies the application that the low power node has polled the friend node.

284 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

This callback will be called before bt_mesh_friend_cb::established when attempting to es-
tablish a friendship.

Param net_idx NetKeyIndex used during friendship establishment.
Param lpn_addr LPN address.

Access layer

The access layer is the application’s interface to the Bluetooth mesh network. The access layer provides
mechanisms for compartmentalizing the node behavior into elements and models, which are imple-
mented by the application.

Mesh models The functionality of a mesh node is represented by models. A model implements a single
behavior the node supports, like being a light, a sensor or a thermostat. The mesh models are grouped
into elements. Each element is assigned its own unicast address, and may only contain one of each type of
model. Conventionally, each element represents a single aspect of the mesh node behavior. For instance,
a node that contains a sensor, two lights and a power outlet would spread this functionality across four
elements, with each element instantiating all the models required for a single aspect of the supported
behavior.

The node’s element and model structure is specified in the node composition data, which is passed to
bt_mesh_init() during initialization. The Bluetooth SIG have defined a set of foundation models (see
Foundation models) and a set of models for implementing common behavior in the Bluetooth Mesh Model
Specification. All models not specified by the Bluetooth SIG are vendor models, and must be tied to a
Company ID.

Mesh models have several parameters that can be configured either through initialization of the mesh
stack or with the Configuration Server:

Opcode list The opcode list contains all message opcodes the model can receive, as well as the min-
imum acceptable payload length and the callback to pass them to. Models can support any number of
opcodes, but each opcode can only be listed by one model in each element.

The full opcode list must be passed to the model structure in the composition data, and cannot be
changed at runtime. The end of the opcode list is determined by the special BT_MESH_MODEL_OP_END
entry. This entry must always be present in the opcode list, unless the list is empty. In that case,
BT_MESH_MODEL_NO_OPS should be used in place of a proper opcode list definition.

AppKey list The AppKey list contains all the application keys the model can receive messages on. Only
messages encrypted with application keys in the AppKey list will be passed to the model.

The maximum number of supported application keys each model can hold is configured with the :kcon-
fig:`CONFIG_BT_MESH_MODEL_KEY_COUNT` configuration option. The contents of the AppKey list
is managed by the Configuration Server.

Subscription list A model will process all messages addressed to the unicast address of their element
(given that the utilized application key is present in the AppKey list). Additionally, the model will process
packets addressed to any group or virtual address in its subscription list. This allows nodes to address
multiple nodes throughout the mesh network with a single message.

The maximum number of supported addresses in the Subscription list each model can hold is configured
with the :kconfig:`CONFIG_BT_MESH_MODEL_GROUP_COUNT` configuration option. The contents
of the subscription list is managed by the Configuration Server.

7.4. Bluetooth 285

https://www.bluetooth.com/specifications/mesh-specifications/
https://www.bluetooth.com/specifications/mesh-specifications/

Zephyr Project Documentation, Release 2.7.0-rc2

Model publication The models may send messages in two ways:

• By specifying a set of message parameters in a bt_mesh_msg_ctx , and calling
bt_mesh_model_send() .

• By setting up a bt_mesh_model_pub structure and calling bt_mesh_model_publish() .

When publishing messages with bt_mesh_model_publish() , the model will use the publication param-
eters configured by the Configuration Server. This is the recommended way to send unprompted model
messages, as it passes the responsibility of selecting message parameters to the network administrator,
which likely knows more about the mesh network than the individual nodes will.

To support publishing with the publication parameters, the model must allocate a packet buffer for
publishing, and pass it to bt_mesh_model_pub.msg . The Config Server may also set up period publication
for the publication message. To support this, the model must populate the bt_mesh_model_pub.update
callback. The bt_mesh_model_pub.update callback will be called right before the message is published,
allowing the model to change the payload to reflect its current state.

Extended models The Bluetooth mesh specification allows the mesh models to extend each other.
When a model extends another, it inherits that model’s functionality, and extension can be used to con-
struct complex models out of simple ones, leveraging the existing model functionality to avoid defining
new opcodes. Models may extend any number of models, from any element. When one model extends
another in the same element, the two models will share subscription lists. The mesh stack implements
this by merging the subscription lists of the two models into one, combining the number of subscriptions
the models can have in total. Models may extend models that extend others, creating an “extension
tree”. All models in an extension tree share a single subscription list per element it spans.

Model extensions are done by calling bt_mesh_model_extend() during initialization. A model can only
be extended by one other model, and extensions cannot be circular. Note that binding of node states and
other relationships between the models must be defined by the model implementations.

The model extension concept adds some overhead in the access layer packet processing, and must be
explicitly enabled with :kconfig:`CONFIG_BT_MESH_MODEL_EXTENSIONS` to have any effect.

Model data storage Mesh models may have data associated with each model instance that needs to
be stored persistently. The access API provides a mechanism for storing this data, leveraging the internal
model instance encoding scheme. Models can store one user defined data entry per instance by calling
bt_mesh_model_data_store() . To be able to read out the data the next time the device reboots, the
model’s bt_mesh_model_cb.settings_set callback must be populated. This callback gets called when
model specific data is found in the persistent storage. The model can retrieve the data by calling the
read_cb passed as a parameter to the callback. See the Settings module documentation for details.

API reference

group bt_mesh_access

Access layer.

Defines

BT_MESH_ADDR_UNASSIGNED

BT_MESH_ADDR_ALL_NODES

BT_MESH_ADDR_PROXIES

286 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

BT_MESH_ADDR_FRIENDS

BT_MESH_ADDR_RELAYS

BT_MESH_KEY_UNUSED

BT_MESH_KEY_ANY

BT_MESH_KEY_DEV

BT_MESH_KEY_DEV_LOCAL

BT_MESH_KEY_DEV_REMOTE

BT_MESH_KEY_DEV_ANY

BT_MESH_ADDR_IS_UNICAST(addr)

BT_MESH_ADDR_IS_GROUP(addr)

BT_MESH_ADDR_IS_VIRTUAL(addr)

BT_MESH_ADDR_IS_RFU(addr)

BT_MESH_IS_DEV_KEY(key)

BT_MESH_APP_SEG_SDU_MAX

Maximum payload size of an access message (in octets).

BT_MESH_TX_SDU_MAX

Maximum possible payload size of an outgoing access message (in octets).

BT_MESH_RX_SDU_MAX

Maximum possible payload size of an incoming access message (in octets).

BT_MESH_ELEM(_loc, _mods, _vnd_mods)
Helper to define a mesh element within an array.

In case the element has no SIG or Vendor models the helper macro BT_MESH_MODEL_NONE
can be given instead.

Parameters

• _loc – Location Descriptor.

• _mods – Array of models.

• _vnd_mods – Array of vendor models.

BT_MESH_MODEL_ID_CFG_SRV

BT_MESH_MODEL_ID_CFG_CLI

BT_MESH_MODEL_ID_HEALTH_SRV

7.4. Bluetooth 287

Zephyr Project Documentation, Release 2.7.0-rc2

BT_MESH_MODEL_ID_HEALTH_CLI

BT_MESH_MODEL_ID_GEN_ONOFF_SRV

BT_MESH_MODEL_ID_GEN_ONOFF_CLI

BT_MESH_MODEL_ID_GEN_LEVEL_SRV

BT_MESH_MODEL_ID_GEN_LEVEL_CLI

BT_MESH_MODEL_ID_GEN_DEF_TRANS_TIME_SRV

BT_MESH_MODEL_ID_GEN_DEF_TRANS_TIME_CLI

BT_MESH_MODEL_ID_GEN_POWER_ONOFF_SRV

BT_MESH_MODEL_ID_GEN_POWER_ONOFF_SETUP_SRV

BT_MESH_MODEL_ID_GEN_POWER_ONOFF_CLI

BT_MESH_MODEL_ID_GEN_POWER_LEVEL_SRV

BT_MESH_MODEL_ID_GEN_POWER_LEVEL_SETUP_SRV

BT_MESH_MODEL_ID_GEN_POWER_LEVEL_CLI

BT_MESH_MODEL_ID_GEN_BATTERY_SRV

BT_MESH_MODEL_ID_GEN_BATTERY_CLI

BT_MESH_MODEL_ID_GEN_LOCATION_SRV

BT_MESH_MODEL_ID_GEN_LOCATION_SETUPSRV

BT_MESH_MODEL_ID_GEN_LOCATION_CLI

BT_MESH_MODEL_ID_GEN_ADMIN_PROP_SRV

BT_MESH_MODEL_ID_GEN_MANUFACTURER_PROP_SRV

BT_MESH_MODEL_ID_GEN_USER_PROP_SRV

BT_MESH_MODEL_ID_GEN_CLIENT_PROP_SRV

BT_MESH_MODEL_ID_GEN_PROP_CLI

288 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

BT_MESH_MODEL_ID_SENSOR_SRV

BT_MESH_MODEL_ID_SENSOR_SETUP_SRV

BT_MESH_MODEL_ID_SENSOR_CLI

BT_MESH_MODEL_ID_TIME_SRV

BT_MESH_MODEL_ID_TIME_SETUP_SRV

BT_MESH_MODEL_ID_TIME_CLI

BT_MESH_MODEL_ID_SCENE_SRV

BT_MESH_MODEL_ID_SCENE_SETUP_SRV

BT_MESH_MODEL_ID_SCENE_CLI

BT_MESH_MODEL_ID_SCHEDULER_SRV

BT_MESH_MODEL_ID_SCHEDULER_SETUP_SRV

BT_MESH_MODEL_ID_SCHEDULER_CLI

BT_MESH_MODEL_ID_LIGHT_LIGHTNESS_SRV

BT_MESH_MODEL_ID_LIGHT_LIGHTNESS_SETUP_SRV

BT_MESH_MODEL_ID_LIGHT_LIGHTNESS_CLI

BT_MESH_MODEL_ID_LIGHT_CTL_SRV

BT_MESH_MODEL_ID_LIGHT_CTL_SETUP_SRV

BT_MESH_MODEL_ID_LIGHT_CTL_CLI

BT_MESH_MODEL_ID_LIGHT_CTL_TEMP_SRV

BT_MESH_MODEL_ID_LIGHT_HSL_SRV

BT_MESH_MODEL_ID_LIGHT_HSL_SETUP_SRV

BT_MESH_MODEL_ID_LIGHT_HSL_CLI

BT_MESH_MODEL_ID_LIGHT_HSL_HUE_SRV

7.4. Bluetooth 289

Zephyr Project Documentation, Release 2.7.0-rc2

BT_MESH_MODEL_ID_LIGHT_HSL_SAT_SRV

BT_MESH_MODEL_ID_LIGHT_XYL_SRV

BT_MESH_MODEL_ID_LIGHT_XYL_SETUP_SRV

BT_MESH_MODEL_ID_LIGHT_XYL_CLI

BT_MESH_MODEL_ID_LIGHT_LC_SRV

BT_MESH_MODEL_ID_LIGHT_LC_SETUPSRV

BT_MESH_MODEL_ID_LIGHT_LC_CLI

BT_MESH_MODEL_OP_1(b0)

BT_MESH_MODEL_OP_2(b0, b1)

BT_MESH_MODEL_OP_3(b0, cid)

BT_MESH_LEN_EXACT(len)

Macro for encoding exact message length for fixed-length messages.

BT_MESH_LEN_MIN(len)

Macro for encoding minimum message length for variable-length messages.

BT_MESH_MODEL_OP_END

End of the opcode list. Must always be present.

BT_MESH_MODEL_NO_OPS

Helper to define an empty opcode list.

BT_MESH_MODEL_NONE

Helper to define an empty model array

BT_MESH_MODEL_CB(_id, _op, _pub, _user_data, _cb)

Composition data SIG model entry with callback functions.

Parameters

• _id – Model ID.

• _op – Array of model opcode handlers.

• _pub – Model publish parameters.

• _user_data – User data for the model.

• _cb – Callback structure, or NULL to keep no callbacks.

BT_MESH_MODEL_VND_CB(_company, _id, _op, _pub, _user_data, _cb)

Composition data vendor model entry with callback functions.

Parameters

• _company – Company ID.

• _id – Model ID.

290 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• _op – Array of model opcode handlers.

• _pub – Model publish parameters.

• _user_data – User data for the model.

• _cb – Callback structure, or NULL to keep no callbacks.

BT_MESH_MODEL(_id, _op, _pub, _user_data)

Composition data SIG model entry.

Parameters

• _id – Model ID.

• _op – Array of model opcode handlers.

• _pub – Model publish parameters.

• _user_data – User data for the model.

BT_MESH_MODEL_VND(_company, _id, _op, _pub, _user_data)

Composition data vendor model entry.

Parameters

• _company – Company ID.

• _id – Model ID.

• _op – Array of model opcode handlers.

• _pub – Model publish parameters.

• _user_data – User data for the model.

BT_MESH_TRANSMIT(count, int_ms)

Encode transmission count & interval steps.

Parameters

• count – Number of retransmissions (first transmission is excluded).

• int_ms – Interval steps in milliseconds. Must be greater than 0, less than or
equal to 320, and a multiple of 10.

Returns Mesh transmit value that can be used e.g. for the default values of the
configuration model data.

BT_MESH_TRANSMIT_COUNT(transmit)

Decode transmit count from a transmit value.

Parameters

• transmit – Encoded transmit count & interval value.

Returns Transmission count (actual transmissions is N + 1).

BT_MESH_TRANSMIT_INT(transmit)

Decode transmit interval from a transmit value.

Parameters

• transmit – Encoded transmit count & interval value.

Returns Transmission interval in milliseconds.

BT_MESH_PUB_TRANSMIT(count, int_ms)

Encode Publish Retransmit count & interval steps.

Parameters

• count – Number of retransmissions (first transmission is excluded).

7.4. Bluetooth 291

Zephyr Project Documentation, Release 2.7.0-rc2

• int_ms – Interval steps in milliseconds. Must be greater than 0 and a multiple
of 50.

Returns Mesh transmit value that can be used e.g. for the default values of the
configuration model data.

BT_MESH_PUB_TRANSMIT_COUNT(transmit)

Decode Publish Retransmit count from a given value.

Parameters

• transmit – Encoded Publish Retransmit count & interval value.

Returns Retransmission count (actual transmissions is N + 1).

BT_MESH_PUB_TRANSMIT_INT(transmit)

Decode Publish Retransmit interval from a given value.

Parameters

• transmit – Encoded Publish Retransmit count & interval value.

Returns Transmission interval in milliseconds.

BT_MESH_MODEL_PUB_DEFINE(_name, _update, _msg_len)

Define a model publication context.

Parameters

• _name – Variable name given to the context.

• _update – Optional message update callback (may be NULL).

• _msg_len – Length of the publication message.

BT_MESH_TTL_DEFAULT

Special TTL value to request using configured default TTL

BT_MESH_TTL_MAX

Maximum allowed TTL value

Functions

int bt_mesh_model_send(struct bt_mesh_model *model, struct bt_mesh_msg_ctx *ctx, struct
net_buf_simple *msg, const struct bt_mesh_send_cb *cb, void *cb_data)

Send an Access Layer message.

Parameters

• model – Mesh (client) Model that the message belongs to.

• ctx – Message context, includes keys, TTL, etc.

• msg – Access Layer payload (the actual message to be sent).

• cb – Optional “message sent” callback.

• cb_data – User data to be passed to the callback.

Returns 0 on success, or (negative) error code on failure.

292 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

int bt_mesh_model_publish(struct bt_mesh_model *model)

Send a model publication message.

Before calling this function, the user needs to ensure that the model publication message
(bt_mesh_model_pub::msg) contains a valid message to be sent. Note that this API is only to be
used for non-period publishing. For periodic publishing the app only needs to make sure that
bt_mesh_model_pub::msg contains a valid message whenever the bt_mesh_model_pub::update
callback is called.

Parameters

• model – Mesh (client) Model that’s publishing the message.

Returns 0 on success, or (negative) error code on failure.

struct bt_mesh_elem *bt_mesh_model_elem(struct bt_mesh_model *mod)

Get the element that a model belongs to.

Parameters

• mod – Mesh model.

Returns Pointer to the element that the given model belongs to.

struct bt_mesh_model *bt_mesh_model_find(const struct bt_mesh_elem *elem, uint16_t id)

Find a SIG model.

Parameters

• elem – Element to search for the model in.

• id – Model ID of the model.

Returns A pointer to the Mesh model matching the given parameters, or NULL if no
SIG model with the given ID exists in the given element.

struct bt_mesh_model *bt_mesh_model_find_vnd(const struct bt_mesh_elem *elem, uint16_t
company, uint16_t id)

Find a vendor model.

Parameters

• elem – Element to search for the model in.

• company – Company ID of the model.

• id – Model ID of the model.

Returns A pointer to the Mesh model matching the given parameters, or NULL if no
vendor model with the given ID exists in the given element.

static inline bool bt_mesh_model_in_primary(const struct bt_mesh_model *mod)

Get whether the model is in the primary element of the device.

Parameters

• mod – Mesh model.

Returns true if the model is on the primary element, false otherwise.

int bt_mesh_model_data_store(struct bt_mesh_model *mod, bool vnd, const char *name, const
void *data, size_t data_len)

Immediately store the model’s user data in persistent storage.

Parameters

• mod – Mesh model.

• vnd – This is a vendor model.

7.4. Bluetooth 293

Zephyr Project Documentation, Release 2.7.0-rc2

• name – Name/key of the settings item. Only SETTINGS_MAX_DIR_DEPTH bytes
will be used at most.

• data – Model data to store, or NULL to delete any model data.

• data_len – Length of the model data.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_model_extend(struct bt_mesh_model *extending_mod, struct bt_mesh_model
*base_mod)

Let a model extend another.

Mesh models may be extended to reuse their functionality, forming a more complex model. A
Mesh model may extend any number of models, in any element. The extensions may also be
nested, ie a model that extends another may itself be extended.

A set of models that extend each other form a model extension list.

All models in an extension list share one subscription list per element. The access layer will
utilize the combined subscription list of all models in an extension list and element, giving the
models extended subscription list capacity.

Parameters

• extending_mod – Mesh model that is extending the base model.

• base_mod – The model being extended.

Return values 0 – Successfully extended the base_mod model.

bool bt_mesh_model_is_extended(struct bt_mesh_model *model)

Check if model is extended by another model.

Parameters

• model – The model to check.

Return values true – If model is extended by another model, otherwise false

struct bt_mesh_elem

#include <access.h> Abstraction that describes a Mesh Element

Public Members

uint16_t addr

Unicast Address. Set at runtime during provisioning.

const uint16_t loc

Location Descriptor (GATT Bluetooth Namespace Descriptors)

const uint8_t model_count

The number of SIG models in this element

const uint8_t vnd_model_count

The number of vendor models in this element

struct bt_mesh_model *const models

The list of SIG models in this element

294 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

struct bt_mesh_model *const vnd_models

The list of vendor models in this element

struct bt_mesh_model_op

#include <access.h> Model opcode handler.

Public Members

const uint32_t opcode

OpCode encoded using the BT_MESH_MODEL_OP_* macros

const ssize_t len

Message length. If the message has variable length then this value indicates minimum
message length and should be positive. Handler function should verify precise length
based on the contents of the message. If the message has fixed length then this value
should be negative. Use BT_MESH_LEN_* macros when defining this value.

int (*const func)(struct bt_mesh_model *model, struct bt_mesh_msg_ctx *ctx, struct
net_buf_simple *buf)

Handler function for this opcode.
Param model Model instance receiving the message.
Param ctx Message context for the message.
Param buf Message buffer containing the message payload, not including the

opcode.
Return Zero on success or (negative) error code otherwise.

struct bt_mesh_model_pub

#include <access.h> Model publication context.

The context should primarily be created using the BT_MESH_MODEL_PUB_DEFINE macro.

Public Members

struct bt_mesh_model *mod

The model the context belongs to. Initialized by the stack.

uint16_t addr

Publish Address.

uint16_t key

Publish AppKey Index.

uint16_t cred

Friendship Credentials Flag.

uint16_t send_rel

Force reliable sending (segment acks)

7.4. Bluetooth 295

Zephyr Project Documentation, Release 2.7.0-rc2

uint16_t fast_period

Use FastPeriodDivisor

uint8_t ttl

Publish Time to Live.

uint8_t retransmit

Retransmit Count & Interval Steps.

uint8_t period

Publish Period.

uint8_t period_div

Divisor for the Period.

uint8_t count

Transmissions left.

uint32_t period_start

Start of the current period.

struct net_buf_simple *msg

Publication buffer, containing the publication message.

This will get correctly created when the publication context has been defined using the
BT_MESH_MODEL_PUB_DEFINE macro.

BT_MESH_MODEL_PUB_DEFINE(name, update, size);

int (*update)(struct bt_mesh_model *mod)

Callback for updating the publication buffer.

When set to NULL, the model is assumed not to support periodic publishing. When
set to non-NULL the callback will be called periodically and is expected to update
bt_mesh_model_pub::msg with a valid publication message.

If the callback returns non-zero, the publication is skipped and will resume on the next
periodic publishing interval.

Param mod The Model the Publication Context belogs to.
Return Zero on success or (negative) error code otherwise.

struct k_work_delayable timer

Publish Period Timer. Only for stack-internal use.

struct bt_mesh_model_cb

#include <access.h> Model callback functions.

Public Members

int (*const settings_set)(struct bt_mesh_model *model, const char *name, size_t len_rd,
settings_read_cb read_cb, void *cb_arg)

296 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Set value handler of user data tied to the model.

See also:

settings_handler::h_set

Param model Model to set the persistent data of.
Param name Name/key of the settings item.
Param len_rd The size of the data found in the backend.
Param read_cb Function provided to read the data from the backend.
Param cb_arg Arguments for the read function provided by the backend.
Return 0 on success, error otherwise.

int (*const start)(struct bt_mesh_model *model)

Callback called when the mesh is started.

This handler gets called after the node has been provisioned, or after all mesh data has
been loaded from persistent storage.

When this callback fires, the mesh model may start its behavior, and all Access APIs are
ready for use.

Param model Model this callback belongs to.
Return 0 on success, error otherwise.

int (*const init)(struct bt_mesh_model *model)

Model init callback.

Called on every model instance during mesh initialization.

If any of the model init callbacks return an error, the Mesh subsystem initialization will
be aborted, and the error will be returned to the caller of bt_mesh_init.

Param model Model to be initialized.
Return 0 on success, error otherwise.

void (*const reset)(struct bt_mesh_model *model)

Model reset callback.

Called when the mesh node is reset. All model data is deleted on reset, and the model
should clear its state.

Note: If the model stores any persistent data, this needs to be erased manually.

Param model Model this callback belongs to.

struct bt_mesh_mod_id_vnd

#include <access.h> Vendor model ID

Public Members

uint16_t company

Vendor’s company ID

uint16_t id

Model ID

7.4. Bluetooth 297

Zephyr Project Documentation, Release 2.7.0-rc2

struct bt_mesh_model

#include <access.h> Abstraction that describes a Mesh Model instance

Public Members

const uint16_t id

SIG model ID

const struct bt_mesh_mod_id_vnd vnd

Vendor model ID

struct bt_mesh_model_pub *const pub

Model Publication

uint16_t keys[CONFIG_BT_MESH_MODEL_KEY_COUNT]

AppKey List

uint16_t groups[CONFIG_BT_MESH_MODEL_GROUP_COUNT]

Subscription List (group or virtual addresses)

const struct bt_mesh_model_op *const op

Opcode handler list

const struct bt_mesh_model_cb *const cb

Model callback structure.

void *user_data

Model-specific user data

struct bt_mesh_send_cb

#include <access.h> Callback structure for monitoring model message sending

Public Members

void (*start)(uint16_t duration, int err, void *cb_data)

Handler called at the start of the transmission.
Param duration The duration of the full transmission.
Param err Error occurring during sending.
Param cb_data Callback data, as passed to the send API.

void (*end)(int err, void *cb_data)

Handler called at the end of the transmission.
Param err Error occurring during sending.
Param cb_data Callback data, as passed to the send API.

struct bt_mesh_comp

#include <access.h> Node Composition

298 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Public Members

uint16_t cid

Company ID

uint16_t pid

Product ID

uint16_t vid

Version ID

size_t elem_count

The number of elements in this device.

struct bt_mesh_elem *elem

List of elements.

Foundation models

The Bluetooth mesh specification defines four foundation models that can be used by network adminis-
trators to configure and diagnose mesh nodes.

Configuration Server The Configuration Server model is a foundation model defined by the Bluetooth
mesh specification. The Configuration Server model controls most parameters of the mesh node. It does
not have an API of its own, but relies on a Configuration Client to control it.

..note:: The bt_mesh_cfg_srv structure has been deprecated. The initial values of the Relay, Beacon,
Friend, Network transmit and Relay retransmit should be set through Kconfig, and the Heartbeat
feature should be controlled through the Heartbeat API.

The Configuration Server model is mandatory on all Bluetooth mesh nodes, and should be instantiated
in the first element.

API reference

group bt_mesh_cfg_srv

Configuration Server Model.

Defines

BT_MESH_MODEL_CFG_SRV

Generic Configuration Server model composition data entry.

Configuration Client The Configuration Client model is a foundation model defined by the Bluetooth
mesh specification. It provides functionality for configuring most parameters of a mesh node, including
encryption keys, model configuration and feature enabling.

The Configuration Client model communicates with a Configuration Server model using the device key
of the target node. The Configuration Client model may communicate with servers on other nodes or
self-configure through the local Configuration Server model.

7.4. Bluetooth 299

Zephyr Project Documentation, Release 2.7.0-rc2

All configuration functions in the Configuration Client API have net_idx and addr as their first param-
eters. These should be set to the network index and primary unicast address that the target node was
provisioned with.

The Configuration Client model is optional, but should be instantiated on the first element if it is present
in the composition data.

API reference

group bt_mesh_cfg_cli

Configuration Client Model.

Defines

BT_MESH_MODEL_CFG_CLI(cli_data)
Generic Configuration Client model composition data entry.

Parameters

• cli_data – Pointer to a Configuration Client Model instance.

BT_MESH_PUB_PERIOD_100MS(steps)
Helper macro to encode model publication period in units of 100ms.

Parameters

• steps – Number of 100ms steps.

Returns Encoded value that can be assigned to bt_mesh_cfg_mod_pub.period

BT_MESH_PUB_PERIOD_SEC(steps)
Helper macro to encode model publication period in units of 1 second.

Parameters

• steps – Number of 1 second steps.

Returns Encoded value that can be assigned to bt_mesh_cfg_mod_pub.period

BT_MESH_PUB_PERIOD_10SEC(steps)
Helper macro to encode model publication period in units of 10 seconds.

Parameters

• steps – Number of 10 second steps.

Returns Encoded value that can be assigned to bt_mesh_cfg_mod_pub.period

BT_MESH_PUB_PERIOD_10MIN(steps)
Helper macro to encode model publication period in units of 10 minutes.

Parameters

• steps – Number of 10 minute steps.

Returns Encoded value that can be assigned to bt_mesh_cfg_mod_pub.period

Functions

int bt_mesh_cfg_node_reset(uint16_t net_idx, uint16_t addr, bool *status)
Reset the target node and remove it from the network.

Parameters

• net_idx – Network index to encrypt with.

300 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• addr – Target node address.

• status – Status response parameter

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_comp_data_get(uint16_t net_idx, uint16_t addr, uint8_t page, uint8_t *rsp,
struct net_buf_simple *comp)

Get the target node’s composition data.

If the other device does not have the given composition data page, it will return the largest
page number it supports that is less than the requested page index. The actual page the device
responds with is returned in rsp.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• page – Composition data page, or 0xff to request the first available page.

• rsp – Return parameter for the returned page number, or NULL.

• comp – Composition data buffer to fill.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_beacon_get(uint16_t net_idx, uint16_t addr, uint8_t *status)

Get the target node’s network beacon state.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• status – Status response parameter, returns one of
BT_MESH_BEACON_DISABLED or BT_MESH_BEACON_ENABLED on suc-
cess.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_krp_get(uint16_t net_idx, uint16_t addr, uint16_t key_net_idx, uint8_t *status,
uint8_t *phase)

Get the target node’s network key refresh phase state.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• key_net_idx – Network key index.

• status – Status response parameter.

• phase – Pointer to the Key Refresh variable to fill.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_krp_set(uint16_t net_idx, uint16_t addr, uint16_t key_net_idx, uint8_t
transition, uint8_t *status, uint8_t *phase)

Set the target node’s network key refresh phase parameters.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• key_net_idx – Network key index.

7.4. Bluetooth 301

Zephyr Project Documentation, Release 2.7.0-rc2

• transition – Transition parameter.

• status – Status response parameter.

• phase – Pointer to the new Key Refresh phase. Will return the actual Key
Refresh phase after updating.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_beacon_set(uint16_t net_idx, uint16_t addr, uint8_t val, uint8_t *status)

Set the target node’s network beacon state.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• val – New network beacon state, should be one of
BT_MESH_BEACON_DISABLED or BT_MESH_BEACON_ENABLED.

• status – Status response parameter. Returns one of
BT_MESH_BEACON_DISABLED or BT_MESH_BEACON_ENABLED on suc-
cess.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_ttl_get(uint16_t net_idx, uint16_t addr, uint8_t *ttl)

Get the target node’s Time To Live value.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• ttl – TTL response buffer.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_ttl_set(uint16_t net_idx, uint16_t addr, uint8_t val, uint8_t *ttl)

Set the target node’s Time To Live value.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• val – New Time To Live value.

• ttl – TTL response buffer.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_friend_get(uint16_t net_idx, uint16_t addr, uint8_t *status)

Get the target node’s Friend feature status.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• status – Status response parameter. Returns one of
BT_MESH_FRIEND_DISABLED, BT_MESH_FRIEND_ENABLED or
BT_MESH_FRIEND_NOT_SUPPORTED on success.

Returns 0 on success, or (negative) error code on failure.

302 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

int bt_mesh_cfg_friend_set(uint16_t net_idx, uint16_t addr, uint8_t val, uint8_t *status)

Set the target node’s Friend feature state.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• val – New Friend feature state. Should be one of
BT_MESH_FRIEND_DISABLED or BT_MESH_FRIEND_ENABLED.

• status – Status response parameter. Returns one of
BT_MESH_FRIEND_DISABLED, BT_MESH_FRIEND_ENABLED or
BT_MESH_FRIEND_NOT_SUPPORTED on success.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_gatt_proxy_get(uint16_t net_idx, uint16_t addr, uint8_t *status)

Get the target node’s Proxy feature state.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• status – Status response parameter. Returns one of
BT_MESH_GATT_PROXY_DISABLED, BT_MESH_GATT_PROXY_ENABLED
or BT_MESH_GATT_PROXY_NOT_SUPPORTED on success.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_gatt_proxy_set(uint16_t net_idx, uint16_t addr, uint8_t val, uint8_t *status)

Set the target node’s Proxy feature state.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• val – New Proxy feature state. Must be one of
BT_MESH_GATT_PROXY_DISABLED or BT_MESH_GATT_PROXY_ENABLED.

• status – Status response parameter. Returns one of
BT_MESH_GATT_PROXY_DISABLED, BT_MESH_GATT_PROXY_ENABLED
or BT_MESH_GATT_PROXY_NOT_SUPPORTED on success.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_net_transmit_get(uint16_t net_idx, uint16_t addr, uint8_t *transmit)

Get the target node’s network_transmit state.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• transmit – Network transmit response parameter. Returns the en-
coded network transmission parameters on success. Decoded with
BT_MESH_TRANSMIT_COUNT and BT_MESH_TRANSMIT_INT.

Returns 0 on success, or (negative) error code on failure.

7.4. Bluetooth 303

Zephyr Project Documentation, Release 2.7.0-rc2

int bt_mesh_cfg_net_transmit_set(uint16_t net_idx, uint16_t addr, uint8_t val, uint8_t
*transmit)

Set the target node’s network transmit parameters.

See also:

BT_MESH_TRANSMIT.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• val – New encoded network transmit parameters.

• transmit – Network transmit response parameter. Returns the en-
coded network transmission parameters on success. Decoded with
BT_MESH_TRANSMIT_COUNT and BT_MESH_TRANSMIT_INT.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_relay_get(uint16_t net_idx, uint16_t addr, uint8_t *status, uint8_t *transmit)

Get the target node’s Relay feature state.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• status – Status response parameter. Returns one of
BT_MESH_RELAY_DISABLED, BT_MESH_RELAY_ENABLED or
BT_MESH_RELAY_NOT_SUPPORTED on success.

• transmit – Transmit response parameter. Returns the encoded relay transmis-
sion parameters on success. Decoded with BT_MESH_TRANSMIT_COUNT and
BT_MESH_TRANSMIT_INT.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_relay_set(uint16_t net_idx, uint16_t addr, uint8_t new_relay, uint8_t
new_transmit, uint8_t *status, uint8_t *transmit)

Set the target node’s Relay parameters.

See also:

BT_MESH_TRANSMIT.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• new_relay – New relay state. Must be one of BT_MESH_RELAY_DISABLED or
BT_MESH_RELAY_ENABLED.

• new_transmit – New encoded relay transmit parameters.

• status – Status response parameter. Returns one of
BT_MESH_RELAY_DISABLED, BT_MESH_RELAY_ENABLED or
BT_MESH_RELAY_NOT_SUPPORTED on success.

304 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• transmit – Transmit response parameter. Returns the encoded relay transmis-
sion parameters on success. Decoded with BT_MESH_TRANSMIT_COUNT and
BT_MESH_TRANSMIT_INT.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_net_key_add(uint16_t net_idx, uint16_t addr, uint16_t key_net_idx, const
uint8_t net_key[16], uint8_t *status)

Add a network key to the target node.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• key_net_idx – Network key index.

• net_key – Network key.

• status – Status response parameter.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_net_key_get(uint16_t net_idx, uint16_t addr, uint16_t *keys, size_t *key_cnt)

Get a list of the target node’s network key indexes.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• keys – Net key index list response parameter. Will be filled with all the returned
network key indexes it can fill.

• key_cnt – Net key index list length. Should be set to the capacity of the keys
list when calling. Will return the number of returned network key indexes upon
success.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_net_key_del(uint16_t net_idx, uint16_t addr, uint16_t key_net_idx, uint8_t
*status)

Delete a network key from the target node.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• key_net_idx – Network key index.

• status – Status response parameter.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_app_key_add(uint16_t net_idx, uint16_t addr, uint16_t key_net_idx, uint16_t
key_app_idx, const uint8_t app_key[16], uint8_t *status)

Add an application key to the target node.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• key_net_idx – Network key index the application key belongs to.

• key_app_idx – Application key index.

7.4. Bluetooth 305

Zephyr Project Documentation, Release 2.7.0-rc2

• app_key – Application key.

• status – Status response parameter.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_app_key_get(uint16_t net_idx, uint16_t addr, uint16_t key_net_idx, uint8_t
*status, uint16_t *keys, size_t *key_cnt)

Get a list of the target node’s application key indexes for a specific network key.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• key_net_idx – Network key index to request the app key indexes of.

• status – Status response parameter.

• keys – App key index list response parameter. Will be filled with all the re-
turned application key indexes it can fill.

• key_cnt – App key index list length. Should be set to the capacity of the keys
list when calling. Will return the number of returned application key indexes
upon success.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_app_key_del(uint16_t net_idx, uint16_t addr, uint16_t key_net_idx, uint16_t
key_app_idx, uint8_t *status)

Delete an application key from the target node.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• key_net_idx – Network key index the application key belongs to.

• key_app_idx – Application key index.

• status – Status response parameter.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_mod_app_bind(uint16_t net_idx, uint16_t addr, uint16_t elem_addr, uint16_t
mod_app_idx, uint16_t mod_id, uint8_t *status)

Bind an application to a SIG model on the target node.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• mod_app_idx – Application index to bind.

• mod_id – Model ID.

• status – Status response parameter.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_mod_app_unbind(uint16_t net_idx, uint16_t addr, uint16_t elem_addr, uint16_t
mod_app_idx, uint16_t mod_id, uint8_t *status)

Unbind an application from a SIG model on the target node.

Parameters

306 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• mod_app_idx – Application index to unbind.

• mod_id – Model ID.

• status – Status response parameter.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_mod_app_bind_vnd(uint16_t net_idx, uint16_t addr, uint16_t elem_addr,
uint16_t mod_app_idx, uint16_t mod_id, uint16_t cid,
uint8_t *status)

Bind an application to a vendor model on the target node.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• mod_app_idx – Application index to bind.

• mod_id – Model ID.

• cid – Company ID of the model.

• status – Status response parameter.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_mod_app_unbind_vnd(uint16_t net_idx, uint16_t addr, uint16_t elem_addr,
uint16_t mod_app_idx, uint16_t mod_id, uint16_t cid,
uint8_t *status)

Unbind an application from a vendor model on the target node.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• mod_app_idx – Application index to unbind.

• mod_id – Model ID.

• cid – Company ID of the model.

• status – Status response parameter.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_mod_app_get(uint16_t net_idx, uint16_t addr, uint16_t elem_addr, uint16_t
mod_id, uint8_t *status, uint16_t *apps, size_t *app_cnt)

Get a list of all applications bound to a SIG model on the target node.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• mod_id – Model ID.

7.4. Bluetooth 307

Zephyr Project Documentation, Release 2.7.0-rc2

• status – Status response parameter.

• apps – App index list response parameter. Will be filled with all the returned
application key indexes it can fill.

• app_cnt – App index list length. Should be set to the capacity of the apps list
when calling. Will return the number of returned application key indexes upon
success.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_mod_app_get_vnd(uint16_t net_idx, uint16_t addr, uint16_t elem_addr,
uint16_t mod_id, uint16_t cid, uint8_t *status, uint16_t
*apps, size_t *app_cnt)

Get a list of all applications bound to a vendor model on the target node.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• mod_id – Model ID.

• cid – Company ID of the model.

• status – Status response parameter.

• apps – App index list response parameter. Will be filled with all the returned
application key indexes it can fill.

• app_cnt – App index list length. Should be set to the capacity of the apps list
when calling. Will return the number of returned application key indexes upon
success.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_mod_pub_get(uint16_t net_idx, uint16_t addr, uint16_t elem_addr, uint16_t
mod_id, struct bt_mesh_cfg_mod_pub *pub, uint8_t *status)

Get publish parameters for a SIG model on the target node.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• mod_id – Model ID.

• pub – Publication parameter return buffer.

• status – Status response parameter.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_mod_pub_get_vnd(uint16_t net_idx, uint16_t addr, uint16_t elem_addr,
uint16_t mod_id, uint16_t cid, struct bt_mesh_cfg_mod_pub
*pub, uint8_t *status)

Get publish parameters for a vendor model on the target node.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

308 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• mod_id – Model ID.

• cid – Company ID of the model.

• pub – Publication parameter return buffer.

• status – Status response parameter.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_mod_pub_set(uint16_t net_idx, uint16_t addr, uint16_t elem_addr, uint16_t
mod_id, struct bt_mesh_cfg_mod_pub *pub, uint8_t *status)

Set publish parameters for a SIG model on the target node.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• mod_id – Model ID.

• pub – Publication parameters.

• status – Status response parameter.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_mod_pub_set_vnd(uint16_t net_idx, uint16_t addr, uint16_t elem_addr,
uint16_t mod_id, uint16_t cid, struct bt_mesh_cfg_mod_pub
*pub, uint8_t *status)

Set publish parameters for a vendor model on the target node.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• mod_id – Model ID.

• cid – Company ID of the model.

• pub – Publication parameters.

• status – Status response parameter.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_mod_sub_add(uint16_t net_idx, uint16_t addr, uint16_t elem_addr, uint16_t
sub_addr, uint16_t mod_id, uint8_t *status)

Add a group address to a SIG model’s subscription list.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• sub_addr – Group address to add to the subscription list.

• mod_id – Model ID.

• status – Status response parameter.

Returns 0 on success, or (negative) error code on failure.

7.4. Bluetooth 309

Zephyr Project Documentation, Release 2.7.0-rc2

int bt_mesh_cfg_mod_sub_add_vnd(uint16_t net_idx, uint16_t addr, uint16_t elem_addr,
uint16_t sub_addr, uint16_t mod_id, uint16_t cid, uint8_t
*status)

Add a group address to a vendor model’s subscription list.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• sub_addr – Group address to add to the subscription list.

• mod_id – Model ID.

• cid – Company ID of the model.

• status – Status response parameter.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_mod_sub_del(uint16_t net_idx, uint16_t addr, uint16_t elem_addr, uint16_t
sub_addr, uint16_t mod_id, uint8_t *status)

Delete a group address in a SIG model’s subscription list.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• sub_addr – Group address to add to the subscription list.

• mod_id – Model ID.

• status – Status response parameter.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_mod_sub_del_vnd(uint16_t net_idx, uint16_t addr, uint16_t elem_addr,
uint16_t sub_addr, uint16_t mod_id, uint16_t cid, uint8_t
*status)

Delete a group address in a vendor model’s subscription list.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• sub_addr – Group address to add to the subscription list.

• mod_id – Model ID.

• cid – Company ID of the model.

• status – Status response parameter.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_mod_sub_overwrite(uint16_t net_idx, uint16_t addr, uint16_t elem_addr,
uint16_t sub_addr, uint16_t mod_id, uint8_t *status)

Overwrite all addresses in a SIG model’s subscription list with a group address.

Deletes all subscriptions in the model’s subscription list, and adds a single group address
instead.

310 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• sub_addr – Group address to add to the subscription list.

• mod_id – Model ID.

• status – Status response parameter.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_mod_sub_overwrite_vnd(uint16_t net_idx, uint16_t addr, uint16_t elem_addr,
uint16_t sub_addr, uint16_t mod_id, uint16_t cid,
uint8_t *status)

Overwrite all addresses in a vendor model’s subscription list with a group address.

Deletes all subscriptions in the model’s subscription list, and adds a single group address
instead.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• sub_addr – Group address to add to the subscription list.

• mod_id – Model ID.

• cid – Company ID of the model.

• status – Status response parameter.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_mod_sub_va_add(uint16_t net_idx, uint16_t addr, uint16_t elem_addr, const
uint8_t label[16], uint16_t mod_id, uint16_t *virt_addr,
uint8_t *status)

Add a virtual address to a SIG model’s subscription list.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• label – Virtual address label to add to the subscription list.

• mod_id – Model ID.

• virt_addr – Virtual address response parameter.

• status – Status response parameter.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_mod_sub_va_add_vnd(uint16_t net_idx, uint16_t addr, uint16_t elem_addr,
const uint8_t label[16], uint16_t mod_id, uint16_t cid,
uint16_t *virt_addr, uint8_t *status)

Add a virtual address to a vendor model’s subscription list.

Parameters

• net_idx – Network index to encrypt with.

7.4. Bluetooth 311

Zephyr Project Documentation, Release 2.7.0-rc2

• addr – Target node address.

• elem_addr – Element address the model is in.

• label – Virtual address label to add to the subscription list.

• mod_id – Model ID.

• cid – Company ID of the model.

• virt_addr – Virtual address response parameter.

• status – Status response parameter.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_mod_sub_va_del(uint16_t net_idx, uint16_t addr, uint16_t elem_addr, const
uint8_t label[16], uint16_t mod_id, uint16_t *virt_addr,
uint8_t *status)

Delete a virtual address in a SIG model’s subscription list.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• label – Virtual address parameter to add to the subscription list.

• mod_id – Model ID.

• virt_addr – Virtual address response parameter.

• status – Status response parameter.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_mod_sub_va_del_vnd(uint16_t net_idx, uint16_t addr, uint16_t elem_addr,
const uint8_t label[16], uint16_t mod_id, uint16_t cid,
uint16_t *virt_addr, uint8_t *status)

Delete a virtual address in a vendor model’s subscription list.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• label – Virtual address label to add to the subscription list.

• mod_id – Model ID.

• cid – Company ID of the model.

• virt_addr – Virtual address response parameter.

• status – Status response parameter.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_mod_sub_va_overwrite(uint16_t net_idx, uint16_t addr, uint16_t elem_addr,
const uint8_t label[16], uint16_t mod_id, uint16_t
*virt_addr, uint8_t *status)

Overwrite all addresses in a SIG model’s subscription list with a virtual address.

Deletes all subscriptions in the model’s subscription list, and adds a single group address
instead.

Parameters

312 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• label – Virtual address label to add to the subscription list.

• mod_id – Model ID.

• virt_addr – Virtual address response parameter.

• status – Status response parameter.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_mod_sub_va_overwrite_vnd(uint16_t net_idx, uint16_t addr, uint16_t
elem_addr, const uint8_t label[16], uint16_t
mod_id, uint16_t cid, uint16_t *virt_addr, uint8_t
*status)

Overwrite all addresses in a vendor model’s subscription list with a virtual address.

Deletes all subscriptions in the model’s subscription list, and adds a single group address
instead.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• label – Virtual address label to add to the subscription list.

• mod_id – Model ID.

• cid – Company ID of the model.

• virt_addr – Virtual address response parameter.

• status – Status response parameter.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_mod_sub_get(uint16_t net_idx, uint16_t addr, uint16_t elem_addr, uint16_t
mod_id, uint8_t *status, uint16_t *subs, size_t *sub_cnt)

Get the subscription list of a SIG model on the target node.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• mod_id – Model ID.

• status – Status response parameter.

• subs – Subscription list response parameter. Will be filled with all the returned
subscriptions it can fill.

• sub_cnt – Subscription list element count. Should be set to the capacity of the
subs list when calling. Will return the number of returned subscriptions upon
success.

Returns 0 on success, or (negative) error code on failure.

7.4. Bluetooth 313

Zephyr Project Documentation, Release 2.7.0-rc2

int bt_mesh_cfg_mod_sub_get_vnd(uint16_t net_idx, uint16_t addr, uint16_t elem_addr,
uint16_t mod_id, uint16_t cid, uint8_t *status, uint16_t
*subs, size_t *sub_cnt)

Get the subscription list of a vendor model on the target node.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• mod_id – Model ID.

• cid – Company ID of the model.

• status – Status response parameter.

• subs – Subscription list response parameter. Will be filled with all the returned
subscriptions it can fill.

• sub_cnt – Subscription list element count. Should be set to the capacity of the
subs list when calling. Will return the number of returned subscriptions upon
success.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_hb_sub_set(uint16_t net_idx, uint16_t addr, struct bt_mesh_cfg_hb_sub *sub,
uint8_t *status)

Set the target node’s Heartbeat subscription parameters.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• sub – New Heartbeat subscription parameters.

• status – Status response parameter.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_hb_sub_get(uint16_t net_idx, uint16_t addr, struct bt_mesh_cfg_hb_sub *sub,
uint8_t *status)

Get the target node’s Heartbeta subscription parameters.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• sub – Heartbeat subscription parameter return buffer.

• status – Status response parameter.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_hb_pub_set(uint16_t net_idx, uint16_t addr, const struct bt_mesh_cfg_hb_pub
*pub, uint8_t *status)

Set the target node’s Heartbeat publication parameters.

Note: The target node must already have received the specified network key.

Parameters

314 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• net_idx – Network index to encrypt with.

• addr – Target node address.

• pub – New Heartbeat publication parameters.

• status – Status response parameter.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_hb_pub_get(uint16_t net_idx, uint16_t addr, struct bt_mesh_cfg_hb_pub *pub,
uint8_t *status)

Get the target node’s Heartbeat publication parameters.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• pub – Heartbeat publication parameter return buffer.

• status – Status response parameter.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_mod_sub_del_all(uint16_t net_idx, uint16_t addr, uint16_t elem_addr,
uint16_t mod_id, uint8_t *status)

Delete all group addresses in a SIG model’s subscription list.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• mod_id – Model ID.

• status – Status response parameter.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_mod_sub_del_all_vnd(uint16_t net_idx, uint16_t addr, uint16_t elem_addr,
uint16_t mod_id, uint16_t cid, uint8_t *status)

Delete all group addresses in a vendor model’s subscription list.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• elem_addr – Element address the model is in.

• mod_id – Model ID.

• cid – Company ID of the model.

• status – Status response parameter.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_net_key_update(uint16_t net_idx, uint16_t addr, uint16_t key_net_idx, const
uint8_t net_key[16], uint8_t *status)

Update a network key to the target node.

Parameters

• net_idx – Network index to encrypt with.

7.4. Bluetooth 315

Zephyr Project Documentation, Release 2.7.0-rc2

• addr – Target node address.

• key_net_idx – Network key index.

• net_key – Network key.

• status – Status response parameter.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_app_key_update(uint16_t net_idx, uint16_t addr, uint16_t key_net_idx,
uint16_t key_app_idx, const uint8_t app_key[16], uint8_t
*status)

Update an application key to the target node.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• key_net_idx – Network key index the application key belongs to.

• key_app_idx – Application key index.

• app_key – Application key.

• status – Status response parameter.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_node_identity_set(uint16_t net_idx, uint16_t addr, uint16_t key_net_idx,
uint8_t new_identity, uint8_t *status, uint8_t *identity)

Set the Node Identity parameters.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• new_identity – New identity state. Must
be one of BT_MESH_NODE_IDENTITY_STOPPED or
BT_MESH_NODE_IDENTITY_RUNNING

• key_net_idx – Network key index the application key belongs to.

• status – Status response parameter.

• identity – Identity response parameter.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_cfg_node_identity_get(uint16_t net_idx, uint16_t addr, uint16_t key_net_idx,
uint8_t *status, uint8_t *identity)

Get the Node Identity parameters.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• key_net_idx – Network key index the application key belongs to.

• status – Status response parameter.

• identity – Identity response parameter. Must
be one of BT_MESH_NODE_IDENTITY_STOPPED or
BT_MESH_NODE_IDENTITY_RUNNING

Returns 0 on success, or (negative) error code on failure.

316 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

int bt_mesh_cfg_lpn_timeout_get(uint16_t net_idx, uint16_t addr, uint16_t unicast_addr,
int32_t *polltimeout)

Get the Low Power Node Polltimeout parameters.

Parameters

• net_idx – Network index to encrypt with.

• addr – Target node address.

• unicast_addr – LPN unicast address.

• polltimeout – Poltimeout response parameter.

Returns 0 on success, or (negative) error code on failure.

int32_t bt_mesh_cfg_cli_timeout_get(void)
Get the current transmission timeout value.

Returns The configured transmission timeout in milliseconds.

void bt_mesh_cfg_cli_timeout_set(int32_t timeout)
Set the transmission timeout value.

Parameters

• timeout – The new transmission timeout.

int bt_mesh_comp_p0_get(struct bt_mesh_comp_p0 *comp, struct net_buf_simple *buf)
Create a composition data page 0 representation from a buffer.

The composition data page object will take ownership over the buffer, which should not be
manipulated directly after this call.

This function can be used in combination with bt_mesh_cfg_comp_data_get to read out com-
position data page 0 from other devices:

NET_BUF_SIMPLE_DEFINE(buf, BT_MESH_RX_SDU_MAX);
struct bt_mesh_comp_p0 comp;

err = bt_mesh_cfg_comp_data_get(net_idx, addr, 0, &page, &buf);
if (!err) {

bt_mesh_comp_p0_get(&comp, &buf);
}

Parameters

• buf – Network buffer containing composition data.

• comp – Composition data structure to fill.

Returns 0 on success, or (negative) error code on failure.

struct bt_mesh_comp_p0_elem *bt_mesh_comp_p0_elem_pull(const struct bt_mesh_comp_p0
*comp, struct
bt_mesh_comp_p0_elem *elem)

Pull a composition data page 0 element from a composition data page 0 instance.

Each call to this function will pull out a new element from the composition data page, until
all elements have been pulled.

Parameters

• comp – Composition data page

• elem – Element to fill.

7.4. Bluetooth 317

Zephyr Project Documentation, Release 2.7.0-rc2

Returns A pointer to elem on success, or NULL if no more elements could be pulled.

uint16_t bt_mesh_comp_p0_elem_mod(struct bt_mesh_comp_p0_elem *elem, int idx)

Get a SIG model from the given composition data page 0 element.

Parameters

• elem – Element to read the model from.

• idx – Index of the SIG model to read.

Returns The Model ID of the SIG model at the given index, or 0xffff if the index is
out of bounds.

struct bt_mesh_mod_id_vnd bt_mesh_comp_p0_elem_mod_vnd(struct bt_mesh_comp_p0_elem
*elem, int idx)

Get a vendor model from the given composition data page 0 element.

Parameters

• elem – Element to read the model from.

• idx – Index of the vendor model to read.

Returns The model ID of the vendor model at the given index, or {0xffff, 0xffff} if
the index is out of bounds.

struct bt_mesh_cfg_cli

#include <cfg_cli.h> Mesh Configuration Client Model Context

Public Members

struct bt_mesh_model *model

Composition data model entry pointer.

struct bt_mesh_cfg_mod_pub

#include <cfg_cli.h> Model publication configuration parameters.

Public Members

uint16_t addr

Publication destination address.

const uint8_t *uuid

Virtual address UUID, or NULL if this is not a virtual address.

uint16_t app_idx

Application index to publish with.

bool cred_flag

Friendship credential flag.

uint8_t ttl

Time To Live to publish with.

318 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

uint8_t period

Encoded publish period.

See also:

BT_MESH_PUB_PERIOD_100MS, BT_MESH_PUB_PERIOD_SEC,
BT_MESH_PUB_PERIOD_10SEC, BT_MESH_PUB_PERIOD_10MIN

uint8_t transmit

Encoded transmit parameters.

See also:

BT_MESH_TRANSMIT

struct bt_mesh_cfg_hb_sub

#include <cfg_cli.h> Heartbeat subscription configuration parameters.

Public Members

uint16_t src

Source address to receive Heartbeat messages from.

uint16_t dst

Destination address to receive Heartbeat messages on.

uint8_t period

Logarithmic subscription period to keep listening for. The decoded subscription period is
(1 << (period - 1)) seconds, or 0 seconds if period is 0.

uint8_t count

Logarithmic Heartbeat subscription receive count. The decoded Heartbeat count is (1 <<
(count - 1)) if count is between 1 and 0xfe, 0 if count is 0 and 0xffff if count is 0xff.

Ignored in Heartbeat subscription set.

uint8_t min

Minimum hops in received messages, ie the shortest registered path from the publishing
node to the subscribing node. A Heartbeat received from an immediate neighbor has hop
count = 1.

Ignored in Heartbeat subscription set.

uint8_t max

Maximum hops in received messages, ie the longest registered path from the publishing
node to the subscribing node. A Heartbeat received from an immediate neighbor has hop
count = 1.

Ignored in Heartbeat subscription set.

struct bt_mesh_cfg_hb_pub

#include <cfg_cli.h> Heartbeat publication configuration parameters.

7.4. Bluetooth 319

Zephyr Project Documentation, Release 2.7.0-rc2

Public Members

uint16_t dst

Heartbeat destination address.

uint8_t count

Logarithmic Heartbeat count. Decoded as (1 << (count - 1)) if count is between 1 and
0x11, 0 if count is 0, or “indefinitely” if count is 0xff.

When used in Heartbeat publication set, this parameter denotes the number of Heartbeat
messages to send.

When returned from Heartbeat publication get, this parameter denotes the number of
Heartbeat messages remaining to be sent.

uint8_t period

Logarithmic Heartbeat publication transmit interval in seconds. Decoded as (1 << (pe-
riod - 1)) if period is between 1 and 0x11. If period is 0, Heartbeat publication is disabled.

uint8_t ttl

Publication message Time To Live value.

uint16_t feat

Bitmap of features that trigger Heartbeat publications. Legal values are
BT_MESH_FEAT_RELAY, BT_MESH_FEAT_PROXY, BT_MESH_FEAT_FRIEND and
BT_MESH_FEAT_LOW_POWER

uint16_t net_idx

Network index to publish with.

struct bt_mesh_comp_p0

#include <cfg_cli.h> Parsed Composition data page 0 representation.

Should be pulled from the return buffer passed to bt_mesh_cfg_comp_data_get using
bt_mesh_comp_p0_get.

Public Members

uint16_t cid

Company ID

uint16_t pid

Product ID

uint16_t vid

Version ID

uint16_t crpl

Replay protection list size

320 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

uint16_t feat

Supported features, see BT_MESH_FEAT_SUPPORTED.

struct bt_mesh_comp_p0_elem

#include <cfg_cli.h> Composition data page 0 element representation

Public Members

uint16_t loc

Element location

size_t nsig

The number of SIG models in this element

size_t nvnd

The number of vendor models in this element

Health Server The Health Server model provides attention callbacks and node diagnostics for Health
Client models. It is primarily used to report faults in the mesh node and map the mesh nodes to their
physical location.

Faults The Health Server model may report a list of faults that have occurred in the device’s lifetime.
Typically, the faults are events or conditions that may alter the behavior of the node, like power outages
or faulty peripherals. Faults are split into warnings and errors. Warnings indicate conditions that are
close to the limits of what the node is designed to withstand, but not necessarily damaging to the device.
Errors indicate conditions that are outside of the node’s design limits, and may have caused invalid
behavior or permanent damage to the device.

Fault values 0x01 to 0x7f are reserved for the Bluetooth mesh specification, and the full list of specifica-
tion defined faults are available in Health faults. Fault values 0x80 to 0xff are vendor specific. The list
of faults are always reported with a company ID to help interpreting the vendor specific faults.

Attention state The attention state is used to make the device call attention to itself through some
physical behavior like blinking, playing a sound or vibrating. The attention state may be used during
provisioning to let the user know which device they’re provisioning, as well as through the Health models
at runtime.

The attention state is always assigned a timeout in the range of one to 255 seconds when en-
abled. The Health Server API provides two callbacks for the application to run their attention call-
ing behavior: bt_mesh_health_srv_cb.attn_on is called at the beginning of the attention period,
bt_mesh_health_srv_cb.attn_off is called at the end.

The remaining time for the attention period may be queried through bt_mesh_health_srv.attn_timer .

API reference

group bt_mesh_health_srv

Health Server Model.

7.4. Bluetooth 321

Zephyr Project Documentation, Release 2.7.0-rc2

Defines

BT_MESH_HEALTH_PUB_DEFINE(_name, _max_faults)
A helper to define a health publication context

Parameters

• _name – Name given to the publication context variable.

• _max_faults – Maximum number of faults the element can have.

BT_MESH_MODEL_HEALTH_SRV(srv, pub)
Define a new health server model. Note that this API needs to be repeated for each element
that the application wants to have a health server model on. Each instance also needs a unique
bt_mesh_health_srv and bt_mesh_model_pub context.

Parameters

• srv – Pointer to a unique struct bt_mesh_health_srv.

• pub – Pointer to a unique struct bt_mesh_model_pub.

Returns New mesh model instance.

Functions

int bt_mesh_fault_update(struct bt_mesh_elem *elem)
Notify the stack that the fault array state of the given element has changed.

This prompts the Health server on this element to publish the current fault array if periodic
publishing is disabled.

Parameters

• elem – Element to update the fault state of.

Returns 0 on success, or (negative) error code otherwise.

struct bt_mesh_health_srv_cb

#include <health_srv.h> Callback function for the Health Server model

Public Members

int (*fault_get_cur)(struct bt_mesh_model *model, uint8_t *test_id, uint16_t
*company_id, uint8_t *faults, uint8_t *fault_count)

Callback for fetching current faults.

Fault values may either be defined by the specification, or by a vendor. Vendor specific
faults should be interpreted in the context of the accompanying Company ID. Specification
defined faults may be reported for any Company ID, and the same fault may be presented
for multiple Company IDs.

All faults shall be associated with at least one Company ID, representing the device vendor
or some other vendor whose vendor specific fault values are used.

If there are multiple Company IDs that have active faults, return only the faults associated
with one of them at the time. To report faults for multiple Company IDs, interleave which
Company ID is reported for each call.

Param model Health Server model instance to get faults of.
Param test_id Test ID response buffer.
Param company_id Company ID response buffer.
Param faults Array to fill with current faults.

322 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Param fault_count The number of faults the fault array can fit. Should be up-
dated to reflect the number of faults copied into the array.

Return 0 on success, or (negative) error code otherwise.

int (*fault_get_reg)(struct bt_mesh_model *model, uint16_t company_id, uint8_t *test_id,
uint8_t *faults, uint8_t *fault_count)

Callback for fetching all registered faults.

Registered faults are all past and current faults since the last call to fault_clear. Only
faults associated with the given Company ID should be reported.

Fault values may either be defined by the specification, or by a vendor. Vendor specific
faults should be interpreted in the context of the accompanying Company ID. Specification
defined faults may be reported for any Company ID, and the same fault may be presented
for multiple Company IDs.

Param model Health Server model instance to get faults of.
Param company_id Company ID to get faults for.
Param test_id Test ID response buffer.
Param faults Array to fill with registered faults.
Param fault_count The number of faults the fault array can fit. Should be up-

dated to reflect the number of faults copied into the array.
Return 0 on success, or (negative) error code otherwise.

int (*fault_clear)(struct bt_mesh_model *model, uint16_t company_id)

Clear all registered faults associated with the given Company ID.
Param model Health Server model instance to clear faults of.
Param company_id Company ID to clear faults for.
Return 0 on success, or (negative) error code otherwise.

int (*fault_test)(struct bt_mesh_model *model, uint8_t test_id, uint16_t company_id)

Run a self-test.

The Health server may support up to 256 self-tests for each Company ID. The behavior
for all test IDs are vendor specific, and should be interpreted based on the accompanying
Company ID. Test failures should result in changes to the fault array.

Param model Health Server model instance to run test for.
Param test_id Test ID to run.
Param company_id Company ID to run test for.
Return 0 if the test execution was started successfully, or (negative) error code

otherwise. Note that the fault array will not be reported back to the client if the
test execution didn’t start.

void (*attn_on)(struct bt_mesh_model *model)

Start calling attention to the device.

The attention state is used to map an element address to a physical device. When this
callback is called, the device should start some physical procedure meant to call attention
to itself, like blinking, buzzing, vibrating or moving. If there are multiple Health server
instances on the device, the attention state should also help identify the specific element
the server is in.

The attention calling behavior should continue until the attn_off callback is called.
Param model Health Server model to start the attention state of.

void (*attn_off)(struct bt_mesh_model *model)

Stop the attention state.

Any physical activity started to call attention to the device should be stopped.
Param model

7.4. Bluetooth 323

Zephyr Project Documentation, Release 2.7.0-rc2

struct bt_mesh_health_srv

#include <health_srv.h> Mesh Health Server Model Context

Public Members

struct bt_mesh_model *model

Composition data model entry pointer.

const struct bt_mesh_health_srv_cb *cb

Optional callback struct

struct k_work_delayable attn_timer

Attention Timer state

Health faults Fault values defined by the Bluetooth mesh specification.

group bt_mesh_health_faults

List of specification defined Health fault values.

Defines

BT_MESH_HEALTH_FAULT_NO_FAULT

No fault has occurred.

BT_MESH_HEALTH_FAULT_BATTERY_LOW_WARNING

BT_MESH_HEALTH_FAULT_BATTERY_LOW_ERROR

BT_MESH_HEALTH_FAULT_SUPPLY_VOLTAGE_TOO_LOW_WARNING

BT_MESH_HEALTH_FAULT_SUPPLY_VOLTAGE_TOO_LOW_ERROR

BT_MESH_HEALTH_FAULT_SUPPLY_VOLTAGE_TOO_HIGH_WARNING

BT_MESH_HEALTH_FAULT_SUPPLY_VOLTAGE_TOO_HIGH_ERROR

BT_MESH_HEALTH_FAULT_POWER_SUPPLY_INTERRUPTED_WARNING

BT_MESH_HEALTH_FAULT_POWER_SUPPLY_INTERRUPTED_ERROR

BT_MESH_HEALTH_FAULT_NO_LOAD_WARNING

BT_MESH_HEALTH_FAULT_NO_LOAD_ERROR

BT_MESH_HEALTH_FAULT_OVERLOAD_WARNING

324 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

BT_MESH_HEALTH_FAULT_OVERLOAD_ERROR

BT_MESH_HEALTH_FAULT_OVERHEAT_WARNING

BT_MESH_HEALTH_FAULT_OVERHEAT_ERROR

BT_MESH_HEALTH_FAULT_CONDENSATION_WARNING

BT_MESH_HEALTH_FAULT_CONDENSATION_ERROR

BT_MESH_HEALTH_FAULT_VIBRATION_WARNING

BT_MESH_HEALTH_FAULT_VIBRATION_ERROR

BT_MESH_HEALTH_FAULT_CONFIGURATION_WARNING

BT_MESH_HEALTH_FAULT_CONFIGURATION_ERROR

BT_MESH_HEALTH_FAULT_ELEMENT_NOT_CALIBRATED_WARNING

BT_MESH_HEALTH_FAULT_ELEMENT_NOT_CALIBRATED_ERROR

BT_MESH_HEALTH_FAULT_MEMORY_WARNING

BT_MESH_HEALTH_FAULT_MEMORY_ERROR

BT_MESH_HEALTH_FAULT_SELF_TEST_WARNING

BT_MESH_HEALTH_FAULT_SELF_TEST_ERROR

BT_MESH_HEALTH_FAULT_INPUT_TOO_LOW_WARNING

BT_MESH_HEALTH_FAULT_INPUT_TOO_LOW_ERROR

BT_MESH_HEALTH_FAULT_INPUT_TOO_HIGH_WARNING

BT_MESH_HEALTH_FAULT_INPUT_TOO_HIGH_ERROR

BT_MESH_HEALTH_FAULT_INPUT_NO_CHANGE_WARNING

BT_MESH_HEALTH_FAULT_INPUT_NO_CHANGE_ERROR

BT_MESH_HEALTH_FAULT_ACTUATOR_BLOCKED_WARNING

BT_MESH_HEALTH_FAULT_ACTUATOR_BLOCKED_ERROR

7.4. Bluetooth 325

Zephyr Project Documentation, Release 2.7.0-rc2

BT_MESH_HEALTH_FAULT_HOUSING_OPENED_WARNING

BT_MESH_HEALTH_FAULT_HOUSING_OPENED_ERROR

BT_MESH_HEALTH_FAULT_TAMPER_WARNING

BT_MESH_HEALTH_FAULT_TAMPER_ERROR

BT_MESH_HEALTH_FAULT_DEVICE_MOVED_WARNING

BT_MESH_HEALTH_FAULT_DEVICE_MOVED_ERROR

BT_MESH_HEALTH_FAULT_DEVICE_DROPPED_WARNING

BT_MESH_HEALTH_FAULT_DEVICE_DROPPED_ERROR

BT_MESH_HEALTH_FAULT_OVERFLOW_WARNING

BT_MESH_HEALTH_FAULT_OVERFLOW_ERROR

BT_MESH_HEALTH_FAULT_EMPTY_WARNING

BT_MESH_HEALTH_FAULT_EMPTY_ERROR

BT_MESH_HEALTH_FAULT_INTERNAL_BUS_WARNING

BT_MESH_HEALTH_FAULT_INTERNAL_BUS_ERROR

BT_MESH_HEALTH_FAULT_MECHANISM_JAMMED_WARNING

BT_MESH_HEALTH_FAULT_MECHANISM_JAMMED_ERROR

BT_MESH_HEALTH_FAULT_VENDOR_SPECIFIC_START

Start of the vendor specific fault values.

All values below this are reserved for the Bluetooth Specification.

Health Client The Health Client model interacts with a Health Server model to read out diagnostics
and control the node’s attention state.

All message passing functions in the Health Client API have net_idx and addr as their first parame-
ters. These should be set to the network index and primary unicast address that the target node was
provisioned with.

The Health Client model is optional, and may be instantiated in any element. However, if a Health Client
model is instantiated in an element other than the first, an instance must also be present in the first
element.

See Health faults for a list of specification defined fault values.

326 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

API reference

group bt_mesh_health_cli

Health Client Model.

Defines

BT_MESH_MODEL_HEALTH_CLI(cli_data)

Generic Health Client model composition data entry.

Parameters

• cli_data – Pointer to a Health Client Model instance.

Functions

int bt_mesh_health_cli_set(struct bt_mesh_model *model)

Set Health client model instance to use for communication.

Parameters

• model – Health Client model instance from the composition data.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_health_fault_get(uint16_t addr, uint16_t app_idx, uint16_t cid, uint8_t *test_id,
uint8_t *faults, size_t *fault_count)

Get the registered fault state for the given Company ID.

See also:

Health faults

Parameters

• addr – Target node element address.

• app_idx – Application index to encrypt with.

• cid – Company ID to get the registered faults of.

• test_id – Test ID response buffer.

• faults – Fault array response buffer.

• fault_count – Fault count response buffer.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_health_fault_clear(uint16_t addr, uint16_t app_idx, uint16_t cid, uint8_t
*test_id, uint8_t *faults, size_t *fault_count)

Clear the registered faults for the given Company ID.

See also:

Health faults

Parameters

• addr – Target node element address.

• app_idx – Application index to encrypt with.

7.4. Bluetooth 327

Zephyr Project Documentation, Release 2.7.0-rc2

• cid – Company ID to clear the registered faults for.

• test_id – Test ID response buffer.

• faults – Fault array response buffer.

• fault_count – Fault count response buffer.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_health_fault_test(uint16_t addr, uint16_t app_idx, uint16_t cid, uint8_t test_id,
uint8_t *faults, size_t *fault_count)

Invoke a self-test procedure for the given Company ID.

Parameters

• addr – Target node element address.

• app_idx – Application index to encrypt with.

• cid – Company ID to invoke the test for.

• test_id – Test ID response buffer.

• faults – Fault array response buffer.

• fault_count – Fault count response buffer.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_health_period_get(uint16_t addr, uint16_t app_idx, uint8_t *divisor)

Get the target node’s Health fast period divisor.

The health period divisor is used to increase the publish rate when a fault is registered. Nor-
mally, the Health server will publish with the period in the configured publish parameters.
When a fault is registered, the publish period is divided by (1 << divisor). For example, if
the target node’s Health server is configured to publish with a period of 16 seconds, and the
Health fast period divisor is 5, the Health server will publish with an interval of 500 ms when
a fault is registered.

Parameters

• addr – Target node element address.

• app_idx – Application index to encrypt with.

• divisor – Health period divisor response buffer.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_health_period_set(uint16_t addr, uint16_t app_idx, uint8_t divisor, uint8_t
*updated_divisor)

Set the target node’s Health fast period divisor.

The health period divisor is used to increase the publish rate when a fault is registered. Nor-
mally, the Health server will publish with the period in the configured publish parameters.
When a fault is registered, the publish period is divided by (1 << divisor). For example, if
the target node’s Health server is configured to publish with a period of 16 seconds, and the
Health fast period divisor is 5, the Health server will publish with an interval of 500 ms when
a fault is registered.

Parameters

• addr – Target node element address.

• app_idx – Application index to encrypt with.

• divisor – New Health period divisor.

• updated_divisor – Health period divisor response buffer.

328 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_health_attention_get(uint16_t addr, uint16_t app_idx, uint8_t *attention)

Get the current attention timer value.

Parameters

• addr – Target node element address.

• app_idx – Application index to encrypt with.

• attention – Attention timer response buffer, measured in seconds.

Returns 0 on success, or (negative) error code on failure.

int bt_mesh_health_attention_set(uint16_t addr, uint16_t app_idx, uint8_t attention, uint8_t
*updated_attention)

Set the attention timer.

Parameters

• addr – Target node element address.

• app_idx – Application index to encrypt with.

• attention – New attention timer time, in seconds.

• updated_attention – Attention timer response buffer, measured in seconds.

Returns 0 on success, or (negative) error code on failure.

int32_t bt_mesh_health_cli_timeout_get(void)

Get the current transmission timeout value.

Returns The configured transmission timeout in milliseconds.

void bt_mesh_health_cli_timeout_set(int32_t timeout)

Set the transmission timeout value.

Parameters

• timeout – The new transmission timeout.

struct bt_mesh_health_cli

#include <health_cli.h> Health Client Model Context

Public Members

struct bt_mesh_model *model

Composition data model entry pointer.

void (*current_status)(struct bt_mesh_health_cli *cli, uint16_t addr, uint8_t test_id,
uint16_t cid, uint8_t *faults, size_t fault_count)

Optional callback for Health Current Status messages.

Handles received Health Current Status messages from a Health server. The fault array
represents all faults that are currently present in the server’s element.

See also:

Health faults

Param cli Health client that received the status message.
Param addr Address of the sender.

7.4. Bluetooth 329

Zephyr Project Documentation, Release 2.7.0-rc2

Param test_id Identifier of a most recently performed test.
Param cid Company Identifier of the node.
Param faults Array of faults.
Param fault_count Number of faults in the fault array.

Message

The Bluetooth mesh message provides set of structures, macros and functions used for preparing message
buffers, managing message and acknowledged message contexts.

API reference

group bt_mesh_msg

Message.

Defines

BT_MESH_MIC_SHORT

Length of a short Mesh MIC.

BT_MESH_MIC_LONG

Length of a long Mesh MIC.

BT_MESH_MODEL_OP_LEN(_op)
Helper to determine the length of an opcode.

Parameters

• _op – Opcode.

BT_MESH_MODEL_BUF_LEN(_op, _payload_len)
Helper for model message buffer length.

Returns the length of a Mesh model message buffer, including the opcode length and a short
MIC.

Parameters

• _op – Opcode of the message.

• _payload_len – Length of the model payload.

BT_MESH_MODEL_BUF_LEN_LONG_MIC(_op, _payload_len)
Helper for model message buffer length.

Returns the length of a Mesh model message buffer, including the opcode length and a long
MIC.

Parameters

• _op – Opcode of the message.

• _payload_len – Length of the model payload.

BT_MESH_MODEL_BUF_DEFINE(_buf, _op, _payload_len)
Define a Mesh model message buffer using NET_BUF_SIMPLE_DEFINE.

Parameters

• _buf – Buffer name.

• _op – Opcode of the message.

330 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• _payload_len – Length of the model message payload.

Functions

void bt_mesh_model_msg_init(struct net_buf_simple *msg, uint32_t opcode)

Initialize a model message.

Clears the message buffer contents, and encodes the given opcode. The message buffer will
be ready for filling in payload data.

Parameters

• msg – Message buffer.

• opcode – Opcode to encode.

static inline void bt_mesh_msg_ack_ctx_init(struct bt_mesh_msg_ack_ctx *ack)

Initialize an acknowledged message context.

Initializes semaphore used for synchronization between bt_mesh_msg_ack_ctx_wait and
bt_mesh_msg_ack_ctx_rx calls. Call this function before using bt_mesh_msg_ack_ctx.

Parameters

• ack – Acknowledged message context to initialize.

static inline void bt_mesh_msg_ack_ctx_reset(struct bt_mesh_msg_ack_ctx *ack)

Reset the synchronization semaphore in an acknowledged message context.

This function aborts call to bt_mesh_msg_ack_ctx_wait.

Parameters

• ack – Acknowledged message context to be reset.

void bt_mesh_msg_ack_ctx_clear(struct bt_mesh_msg_ack_ctx *ack)

Clear parameters of an acknowledged message context.

This function clears the opcode, remote address and user data set by
bt_mesh_msg_ack_ctx_prepare.

Parameters

• ack – Acknowledged message context to be cleared.

int bt_mesh_msg_ack_ctx_prepare(struct bt_mesh_msg_ack_ctx *ack, uint32_t op, uint16_t dst,
void *user_data)

Prepare an acknowledged message context for the incoming message to wait.

This function sets the opcode, remote address of the incoming message and stores the user
data. Use this function before calling bt_mesh_msg_ack_ctx_wait.

Parameters

• ack – Acknowledged message context to prepare.

• op – The message OpCode.

• dst – Destination address of the message.

• user_data – User data for the acknowledged message context.

Returns 0 on success, or (negative) error code on failure.

static inline bool bt_mesh_msg_ack_ctx_busy(struct bt_mesh_msg_ack_ctx *ack)

Check if the acknowledged message context is initialized with an opcode.

Parameters

7.4. Bluetooth 331

Zephyr Project Documentation, Release 2.7.0-rc2

• ack – Acknowledged message context.

Returns true if the acknowledged message context is initialized with an opcode, false
otherwise.

int bt_mesh_msg_ack_ctx_wait(struct bt_mesh_msg_ack_ctx *ack, k_timeout_t timeout)

Wait for a message acknowledge.

This function blocks execution until bt_mesh_msg_ack_ctx_rx is called or by timeout.

Parameters

• ack – Acknowledged message context of the message to wait for.

• timeout – Wait timeout.

Returns 0 on success, or (negative) error code on failure.

static inline void bt_mesh_msg_ack_ctx_rx(struct bt_mesh_msg_ack_ctx *ack)

Mark a message as acknowledged.

This function unblocks call to bt_mesh_msg_ack_ctx_wait.

Parameters

• ack – Context of a message to be acknowledged.

bool bt_mesh_msg_ack_ctx_match(const struct bt_mesh_msg_ack_ctx *ack, uint32_t op, uint16_t
addr, void **user_data)

Check if an opcode and address of a message matches the expected one.

Parameters

• ack – Acknowledged message context to be checked.

• op – OpCode of the incoming message.

• addr – Source address of the incoming message.

• user_data – If not NULL, returns a user data stored in the acknowledged mes-
sage context by bt_mesh_msg_ack_ctx_prepare.

Returns true if the incoming message matches the expected one, false otherwise.

struct bt_mesh_msg_ctx

#include <msg.h> Message sending context.

Public Members

uint16_t net_idx

NetKey Index of the subnet to send the message on.

uint16_t app_idx

AppKey Index to encrypt the message with.

uint16_t addr

Remote address.

uint16_t recv_dst

Destination address of a received message. Not used for sending.

332 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

int8_t recv_rssi

RSSI of received packet. Not used for sending.

uint8_t recv_ttl

Received TTL value. Not used for sending.

bool send_rel

Force sending reliably by using segment acknowledgment

uint8_t send_ttl

TTL, or BT_MESH_TTL_DEFAULT for default TTL.

struct bt_mesh_msg_ack_ctx

#include <msg.h> Acknowledged message context for tracking the status of model messages
pending a response.

Public Members

struct k_sem sem

Sync semaphore.

uint32_t op

Opcode we’re waiting for.

uint16_t dst

Address of the node that should respond.

void *user_data

User specific parameter.

Provisioning

Provisioning is the process of adding devices to a mesh network. It requires two devices operating in the
following roles:

• The provisioner represents the network owner, and is responsible for adding new nodes to the mesh
network.

• The provisionee is the device that gets added to the network through the Provisioning process.
Before the provisioning process starts, the provisionee is an unprovisioned device.

The Provisioning module in the Zephyr Bluetooth mesh stack supports both the Advertising and GATT
Provisioning bearers for the provisionee role, as well as the Advertising Provisioning bearer for the
provisioner role.

The Provisioning process All Bluetooth mesh nodes must be provisioned before they can participate
in a Bluetooth mesh network. The Provisioning API provides all the functionality necessary for a device
to become a provisioned mesh node. Provisioning is a five-step process, involving the following steps:

• Beaconing

• Invitation

7.4. Bluetooth 333

Zephyr Project Documentation, Release 2.7.0-rc2

• Public key exchange

• Authentication

• Provisioning data transfer

Beaconing To start the provisioning process, the unprovisioned device must first start broadcasting
the Unprovisioned Beacon. This makes it visible to nearby provisioners, which can initiate the provi-
sioning. To indicate that the device needs to be provisioned, call bt_mesh_prov_enable() . The device
starts broadcasting the Unprovisioned Beacon with the device UUID and the OOB information field, as
specified in the prov parameter passed to bt_mesh_init() . Additionally, a Uniform Resource Identifier
(URI) may be specified, which can point the provisioner to the location of some Out Of Band information,
such as the device’s public key or an authentication value database. The URI is advertised in a separate
beacon, with a URI hash included in the unprovisioned beacon, to tie the two together.

Uniform Resource Identifier The Uniform Resource Identifier shall follow the format specified in the
Bluetooth Core Specification Supplement. The URI must start with a URI scheme, encoded as a single
utf-8 data point, or the special none scheme, encoded as 0x01. The available schemes are listed on the
Bluetooth website.

Examples of encoded URIs:

Table 2: URI encoding examples
URI Encoded
http://example.com \x16//example.com
https://www.zephyrproject.org/ \x17//www.zephyrproject.org/
just a string \x01just a string

Provisioning invitation The provisioner initiates the Provisioning process by sending a Provisioning
invitation. The invitations prompts the provisionee to call attention to itself using the Health Server
Attention state, if available.

The Unprovisioned device automatically responds to the invite by presenting a list of its capabilities,
including the supported Out of Band Authentication methods.

Public key exchange Before the provisioning process can begin, the provisioner and the unprovisioned
device exchange public keys, either in-band or Out of Band (OOB).

In-band public key exchange is a part of the provisioning process and always supported by the unprovi-
sioned device and provisioner.

If the application wants to support public key exchange via OOB, it needs to provide public and private
keys to the mesh stack. The unprovisioned device will reflect this in its capabilities. The provisioner ob-
tains the public key via any available OOB mechanism (e.g. the device may advertise a packet containing
the public key or it can be encoded in a QR code printed on the device packaging). Note that even if
the unprovisioned device has specified the public key for the Out of Band exchange, the provisioner may
choose to exchange the public key in-band if it can’t retrieve the public key via OOB mechanism. In this
case, a new key pair will be generated by the mesh stack for each Provisioning process.

To enable support of OOB public key on the unprovisioned device side, :kcon-
fig:`CONFIG_BT_MESH_PROV_OOB_PUBLIC_KEY` needs to be enabled. The application must
provide public and private keys before the Provisioning process is started by initializing pointers to
bt_mesh_prov.public_key_be and bt_mesh_prov.private_key_be . The keys needs to be provided in
big-endian bytes order.

To provide the device’s public key obtained via OOB, call bt_mesh_prov_remote_pub_key_set() on the
provisioner side.

334 Chapter 7. API Reference

https://www.bluetooth.com/specifications/assigned-numbers/uri-scheme-name-string-mapping/

Zephyr Project Documentation, Release 2.7.0-rc2

Authentication After the initial exchange, the provisioner selects an Out of Band (OOB) Authentication
method. This allows the user to confirm that the device the provisioner connected to is actually the device
they intended, and not a malicious third party.

The Provisioning API supports the following authentication methods for the provisionee:

• Static OOB: An authentication value is assigned to the device in production, which the provisioner
can query in some application specific way.

• Input OOB: The user inputs the authentication value. The available input actions are listed in
bt_mesh_input_action_t .

• Output OOB: Show the user the authentication value. The available output actions are listed in
bt_mesh_output_action_t .

The application must provide callbacks for the supported authentication methods in bt_mesh_prov ,
as well as enabling the supported actions in bt_mesh_prov.output_actions and bt_mesh_prov.
input_actions .

When an Output OOB action is selected, the authentication value should be presented to the user when
the output callback is called, and remain until the bt_mesh_prov.input_complete or bt_mesh_prov.
complete callback is called. If the action is blink, beep or vibrate, the sequence should be repeated
after a delay of three seconds or more.

When an Input OOB action is selected, the user should be prompted when the application receives the
bt_mesh_prov.input callback. The user response should be fed back to the Provisioning API through
bt_mesh_input_string() or bt_mesh_input_number() . If no user response is recorded within 60
seconds, the Provisioning process is aborted.

Data transfer After the device has been successfully authenticated, the provisioner transfers the Provi-
sioning data:

• Unicast address

• A network key

• IV index

• Network flags

– Key refresh

– IV update

Additionally, a device key is generated for the node. All this data is stored by the mesh stack, and the
provisioning bt_mesh_prov.complete callback gets called.

Provisioning security Depending on the choice of public key exchange mechanism and authentication
method, the provisioning process can be secure or insecure.

On May 24th 2021, ANSSI disclosed a set of vulnerabilities in the Bluetooth mesh provisioning protocol
that showcased how the low entropy provided by the Blink, Vibrate, Push, Twist and Input/Output nu-
meric OOB methods could be exploited in impersonation and MITM attacks. In response, the Bluetooth
SIG has reclassified these OOB methods as insecure in the Mesh Profile specification erratum 16350, as
AuthValue may be brute forced in real time. To ensure secure provisioning, applications should use a
static OOB value and OOB public key transfer.

API reference

group bt_mesh_prov

Provisioning.

7.4. Bluetooth 335

https://kb.cert.org/vuls/id/799380
https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=516072

Zephyr Project Documentation, Release 2.7.0-rc2

Enums

enum bt_mesh_output_action_t

Available Provisioning output authentication actions.

Values:

enumerator BT_MESH_NO_OUTPUT = 0

enumerator BT_MESH_BLINK = BIT(0)

enumerator BT_MESH_BEEP = BIT(1)

enumerator BT_MESH_VIBRATE = BIT(2)

enumerator BT_MESH_DISPLAY_NUMBER = BIT(3)

enumerator BT_MESH_DISPLAY_STRING = BIT(4)

enum bt_mesh_input_action_t

Available Provisioning input authentication actions.

Values:

enumerator BT_MESH_NO_INPUT = 0

enumerator BT_MESH_PUSH = BIT(0)

enumerator BT_MESH_TWIST = BIT(1)

enumerator BT_MESH_ENTER_NUMBER = BIT(2)

enumerator BT_MESH_ENTER_STRING = BIT(3)

enum bt_mesh_prov_bearer_t

Available Provisioning bearers.

Values:

enumerator BT_MESH_PROV_ADV = BIT(0)

enumerator BT_MESH_PROV_GATT = BIT(1)

enum bt_mesh_prov_oob_info_t

Out of Band information location.

Values:

enumerator BT_MESH_PROV_OOB_OTHER = BIT(0)

336 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator BT_MESH_PROV_OOB_URI = BIT(1)

enumerator BT_MESH_PROV_OOB_2D_CODE = BIT(2)

enumerator BT_MESH_PROV_OOB_BAR_CODE = BIT(3)

enumerator BT_MESH_PROV_OOB_NFC = BIT(4)

enumerator BT_MESH_PROV_OOB_NUMBER = BIT(5)

enumerator BT_MESH_PROV_OOB_STRING = BIT(6)

enumerator BT_MESH_PROV_OOB_ON_BOX = BIT(11)

enumerator BT_MESH_PROV_OOB_IN_BOX = BIT(12)

enumerator BT_MESH_PROV_OOB_ON_PAPER = BIT(13)

enumerator BT_MESH_PROV_OOB_IN_MANUAL = BIT(14)

enumerator BT_MESH_PROV_OOB_ON_DEV = BIT(15)

Functions

int bt_mesh_input_string(const char *str)

Provide provisioning input OOB string.

This is intended to be called after the bt_mesh_prov input callback has been called with
BT_MESH_ENTER_STRING as the action.

Parameters

• str – String.

Returns Zero on success or (negative) error code otherwise.

int bt_mesh_input_number(uint32_t num)

Provide provisioning input OOB number.

This is intended to be called after the bt_mesh_prov input callback has been called with
BT_MESH_ENTER_NUMBER as the action.

Parameters

• num – Number.

Returns Zero on success or (negative) error code otherwise.

int bt_mesh_prov_remote_pub_key_set(const uint8_t public_key[64])

Provide Device public key.

Parameters

• public_key – Device public key in big-endian.

Returns Zero on success or (negative) error code otherwise.

7.4. Bluetooth 337

Zephyr Project Documentation, Release 2.7.0-rc2

int bt_mesh_auth_method_set_input(bt_mesh_input_action_t action, uint8_t size)

Use Input OOB authentication.

Provisioner only.

Instruct the unprovisioned device to use the specified Input OOB authentication ac-
tion. When using BT_MESH_PUSH, BT_MESH_TWIST or BT_MESH_ENTER_NUMBER, the
bt_mesh_prov::output_number callback is called with a random number that has to be entered
on the unprovisioned device.

When using BT_MESH_ENTER_STRING, the bt_mesh_prov::output_string callback is called
with a random string that has to be entered on the unprovisioned device.

Parameters

• action – Authentication action used by the unprovisioned device.

• size – Authentication size.

Returns Zero on success or (negative) error code otherwise.

int bt_mesh_auth_method_set_output(bt_mesh_output_action_t action, uint8_t size)

Use Output OOB authentication.

Provisioner only.

Instruct the unprovisioned device to use the specified Output OOB authentication action. The
bt_mesh_prov::input callback will be called.

When using BT_MESH_BLINK, BT_MESH_BEEP, BT_MESH_VIBRATE or
BT_MESH_DISPLAY_NUMBER, and the application has to call bt_mesh_input_number
with the random number indicated by the unprovisioned device.

When using BT_MESH_DISPLAY_STRING, the application has to call bt_mesh_input_string
with the random string displayed by the unprovisioned device.

Parameters

• action – Authentication action used by the unprovisioned device.

• size – Authentication size.

Returns Zero on success or (negative) error code otherwise.

int bt_mesh_auth_method_set_static(const uint8_t *static_val, uint8_t size)

Use static OOB authentication.

Provisioner only.

Instruct the unprovisioned device to use static OOB authentication, and use the given static
authentication value when provisioning.

Parameters

• static_val – Static OOB value.

• size – Static OOB value size.

Returns Zero on success or (negative) error code otherwise.

int bt_mesh_auth_method_set_none(void)

Don’t use OOB authentication.

Provisioner only.

Don’t use any authentication when provisioning new devices. This is the default behavior.

338 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Warning: Not using any authentication exposes the mesh network to impersonation
attacks, where attackers can pretend to be the unprovisioned device to gain access to the
network. Authentication is strongly encouraged.

Returns Zero on success or (negative) error code otherwise.

int bt_mesh_prov_enable(bt_mesh_prov_bearer_t bearers)

Enable specific provisioning bearers.

Enable one or more provisioning bearers.

Parameters

• bearers – Bit-wise or of provisioning bearers.

Returns Zero on success or (negative) error code otherwise.

int bt_mesh_prov_disable(bt_mesh_prov_bearer_t bearers)

Disable specific provisioning bearers.

Disable one or more provisioning bearers.

Parameters

• bearers – Bit-wise or of provisioning bearers.

Returns Zero on success or (negative) error code otherwise.

int bt_mesh_provision(const uint8_t net_key[16], uint16_t net_idx, uint8_t flags, uint32_t
iv_index, uint16_t addr, const uint8_t dev_key[16])

Provision the local Mesh Node.

This API should normally not be used directly by the application. The only exception is for
testing purposes where manual provisioning is desired without an actual external provisioner.

Parameters

• net_key – Network Key

• net_idx – Network Key Index

• flags – Provisioning Flags

• iv_index – IV Index

• addr – Primary element address

• dev_key – Device Key

Returns Zero on success or (negative) error code otherwise.

int bt_mesh_provision_adv(const uint8_t uuid[16], uint16_t net_idx, uint16_t addr, uint8_t
attention_duration)

Provision a Mesh Node using PB-ADV.

Parameters

• uuid – UUID

• net_idx – Network Key Index

• addr – Address to assign to remote device. If addr is 0, the lowest available
address will be chosen.

• attention_duration – The attention duration to be send to remote device

Returns Zero on success or (negative) error code otherwise.

7.4. Bluetooth 339

Zephyr Project Documentation, Release 2.7.0-rc2

bool bt_mesh_is_provisioned(void)
Check if the local node has been provisioned.

This API can be used to check if the local node has been provisioned or not. It can e.g. be
helpful to determine if there was a stored network in flash, i.e. if the network was restored
after calling settings_load().

Returns True if the node is provisioned. False otherwise.

struct bt_mesh_dev_capabilities

#include <main.h> Device Capabilities.

Public Members

uint8_t elem_count

Number of elements supported by the device

uint16_t algorithms

Supported algorithms and other capabilities

uint8_t pub_key_type

Supported public key types

uint8_t static_oob

Supported static OOB Types

bt_mesh_output_action_t output_actions

Supported Output OOB Actions

bt_mesh_input_action_t input_actions

Supported Input OOB Actions

uint8_t output_size

Maximum size of Output OOB supported

uint8_t input_size

Maximum size in octets of Input OOB supported

struct bt_mesh_prov

#include <main.h> Provisioning properties & capabilities.

Public Members

const uint8_t *uuid

The UUID that’s used when advertising as unprovisioned

const char *uri

Optional URI. This will be advertised separately from the unprovisioned beacon, however
the unprovisioned beacon will contain a hash of it so the two can be associated by the
provisioner.

340 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

bt_mesh_prov_oob_info_t oob_info

Out of Band information field.

const uint8_t *public_key_be

Pointer to Public Key in big-endian for OOB public key type support.

Remember to enable :kconfig:`CONFIG_BT_MESH_PROV_OOB_PUBLIC_KEY` when
initializing this parameter.

Must be used together with bt_mesh_prov::private_key_be.

const uint8_t *private_key_be

Pointer to Private Key in big-endian for OOB public key type support.

Remember to enable :kconfig:`CONFIG_BT_MESH_PROV_OOB_PUBLIC_KEY` when
initializing this parameter.

Must be used together with bt_mesh_prov::public_key_be.

const uint8_t *static_val

Static OOB value

uint8_t static_val_len

Static OOB value length

uint8_t output_size

Maximum size of Output OOB supported

uint16_t output_actions

Supported Output OOB Actions

uint8_t input_size

Maximum size of Input OOB supported

uint16_t input_actions

Supported Input OOB Actions

void (*capabilities)(const struct bt_mesh_dev_capabilities *cap)

Provisioning Capabilities.

This callback notifies the application that the provisioning capabilities of the unprovi-
sioned device has been received.

The application can consequently call bt_mesh_auth_method_set_<*> to select suitable
provisioning oob authentication method.

When this callback returns, the provisioner will start authentication with the chosen
method.

Param cap capabilities supported by device.

int (*output_number)(bt_mesh_output_action_t act, uint32_t num)

Output of a number is requested.

This callback notifies the application that it should output the given number using the
given action.

Param act Action for outputting the number.

7.4. Bluetooth 341

Zephyr Project Documentation, Release 2.7.0-rc2

Param num Number to be outputted.
Return Zero on success or negative error code otherwise

int (*output_string)(const char *str)

Output of a string is requested.

This callback notifies the application that it should display the given string to the user.
Param str String to be displayed.
Return Zero on success or negative error code otherwise

int (*input)(bt_mesh_input_action_t act, uint8_t size)

Input is requested.

This callback notifies the application that it should request input from the user using the
given action. The requested input will either be a string or a number, and the applica-
tion needs to consequently call the bt_mesh_input_string() or bt_mesh_input_number()
functions once the data has been acquired from the user.

Param act Action for inputting data.
Param num Maximum size of the inputted data.
Return Zero on success or negative error code otherwise

void (*input_complete)(void)

The other device finished their OOB input.

This callback notifies the application that it should stop displaying its output OOB value,
as the other party finished their OOB input.

void (*unprovisioned_beacon)(uint8_t uuid[16], bt_mesh_prov_oob_info_t oob_info,
uint32_t *uri_hash)

Unprovisioned beacon has been received.

This callback notifies the application that an unprovisioned beacon has been received.
Param uuid UUID
Param oob_info OOB Information
Param uri_hash Pointer to URI Hash value. NULL if no hash was present in the

beacon.

void (*link_open)(bt_mesh_prov_bearer_t bearer)

Provisioning link has been opened.

This callback notifies the application that a provisioning link has been opened on the
given provisioning bearer.

Param bearer Provisioning bearer.

void (*link_close)(bt_mesh_prov_bearer_t bearer)

Provisioning link has been closed.

This callback notifies the application that a provisioning link has been closed on the given
provisioning bearer.

Param bearer Provisioning bearer.

void (*complete)(uint16_t net_idx, uint16_t addr)

Provisioning is complete.

This callback notifies the application that provisioning has been successfully completed,
and that the local node has been assigned the specified NetKeyIndex and primary element
address.

Param net_idx NetKeyIndex given during provisioning.

342 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Param addr Primary element address.

void (*node_added)(uint16_t net_idx, uint8_t uuid[16], uint16_t addr, uint8_t num_elem)

A new node has been added to the provisioning database.

This callback notifies the application that provisioning has been successfully completed,
and that a node has been assigned the specified NetKeyIndex and primary element ad-
dress.

Param net_idx NetKeyIndex given during provisioning.
Param uuid UUID of the added node
Param addr Primary element address.
Param num_elem Number of elements that this node has.

void (*reset)(void)

Node has been reset.

This callback notifies the application that the local node has been reset and needs to be
reprovisioned. The node will not automatically advertise as unprovisioned, rather the
bt_mesh_prov_enable() API needs to be called to enable unprovisioned advertising on one
or more provisioning bearers.

Proxy

The Proxy feature allows legacy devices like phones to access the Bluetooth mesh network through GATT.
The Proxy feature is only compiled in if the :kconfig:`CONFIG_BT_MESH_GATT_PROXY` option is set.
The Proxy feature state is controlled by the Configuration Server, and the initial value can be set with
bt_mesh_cfg_srv.gatt_proxy.

API reference

group bt_mesh_proxy

Proxy.

Defines

BT_MESH_PROXY_CB_DEFINE(_name)

Register a callback structure for Proxy events.

Registers a structure with callback functions that gets called on various Proxy events.

Parameters

• _name – Name of callback structure.

Functions

int bt_mesh_proxy_identity_enable(void)

Enable advertising with Node Identity.

This API requires that GATT Proxy support has been enabled. Once called each subnet will
start advertising using Node Identity for the next 60 seconds.

Returns 0 on success, or (negative) error code on failure.

7.4. Bluetooth 343

Zephyr Project Documentation, Release 2.7.0-rc2

struct bt_mesh_proxy_cb

#include <proxy.h> Callbacks for the Proxy feature.

Should be instantiated with BT_MESH_PROXY_CB_DEFINE.

Public Members

void (*identity_enabled)(uint16_t net_idx)

Started sending Node Identity beacons on the given subnet.
Param net_idx Network index the Node Identity beacons are running on.

void (*identity_disabled)(uint16_t net_idx)

Stopped sending Node Identity beacons on the given subnet.
Param net_idx Network index the Node Identity beacons were running on.

Heartbeat

The Heartbeat feature provides functionality for monitoring Bluetooth mesh nodes and determining the
distance between nodes.

The Heartbeat feature is configured through the Configuration Server model.

Heartbeat messages Heartbeat messages are sent as transport control packets through the network,
and are only encrypted with a network key. Heartbeat messages contain the original Time To Live (TTL)
value used to send the message and a bitfield of the active features on the node. Through this, a receiving
node can determine how many relays the message had to go through to arrive at the receiver, and what
features the node supports.

Available Heartbeat feature flags:

• BT_MESH_FEAT_RELAY

• BT_MESH_FEAT_PROXY

• BT_MESH_FEAT_FRIEND

• BT_MESH_FEAT_LOW_POWER

Heartbeat publication Heartbeat publication is controlled through the Configuration models, and can
be triggered in two ways:

Periodic publication The node publishes a new Heartbeat message at regular intervals. The publication
can be configured to stop after a certain number of messages, or continue indefinitely.

Triggered publication The node publishes a new Heartbeat message every time a feature changes. The
set of features that can trigger the publication is configurable.

The two publication types can be combined.

Heartbeat subscription A node can be configured to subscribe to Heartbeat messages from one node
at the time. To receive a Heartbeat message, both the source and destination must match the configured
subscription parameters.

Heartbeat subscription is always time limited, and throughout the subscription period, the node keeps
track of the number of received Heartbeats as well as the minimum and maximum received hop count.

344 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

All Heartbeats received with the configured subscription parameters are passed to the
bt_mesh_hb_cb::recv event handler.

When the Heartbeat subscription period ends, the bt_mesh_hb_cb::sub_end callback gets called.

API reference

group bt_mesh_heartbeat

Heartbeat.

Defines

BT_MESH_HB_CB_DEFINE(_name)
Register a callback structure for Heartbeat events.

Registers a callback structure that will be called whenever Heartbeat events occur

Parameters

• _name – Name of callback structure.

Functions

void bt_mesh_hb_pub_get(struct bt_mesh_hb_pub *get)
Get the current Heartbeat publication parameters.

Parameters

• get – Heartbeat publication parameters return buffer.

void bt_mesh_hb_sub_get(struct bt_mesh_hb_sub *get)
Get the current Heartbeat subscription parameters.

Parameters

• get – Heartbeat subscription parameters return buffer.

struct bt_mesh_hb_pub

#include <heartbeat.h> Heartbeat Publication parameters

Public Members

uint16_t dst

Destination address.

uint16_t count

Remaining publish count.

uint8_t ttl

Time To Live value.

uint16_t feat

Bitmap of features that trigger a Heartbeat publication if they change. Legal val-
ues are BT_MESH_FEAT_RELAY, BT_MESH_FEAT_PROXY, BT_MESH_FEAT_FRIEND and
BT_MESH_FEAT_LOW_POWER.

7.4. Bluetooth 345

Zephyr Project Documentation, Release 2.7.0-rc2

uint16_t net_idx

Network index used for publishing.

uint32_t period

Publication period in seconds.

struct bt_mesh_hb_sub

#include <heartbeat.h> Heartbeat Subscription parameters.

Public Members

uint32_t period

Subscription period in seconds.

uint32_t remaining

Remaining subscription time in seconds.

uint16_t src

Source address to receive Heartbeats from.

uint16_t dst

Destination address to received Heartbeats on.

uint16_t count

The number of received Heartbeat messages so far.

uint8_t min_hops

Minimum hops in received messages, ie the shortest registered path from the publishing
node to the subscribing node. A Heartbeat received from an immediate neighbor has hop
count = 1.

uint8_t max_hops

Maximum hops in received messages, ie the longest registered path from the publishing
node to the subscribing node. A Heartbeat received from an immediate neighbor has hop
count = 1.

struct bt_mesh_hb_cb

#include <heartbeat.h> Heartbeat callback structure

Public Members

void (*recv)(const struct bt_mesh_hb_sub *sub, uint8_t hops, uint16_t feat)

Receive callback for heartbeats.

Gets called on every received Heartbeat that matches the current Heartbeat subscription
parameters.

Param sub Current Heartbeat subscription parameters.
Param hops The number of hops the Heartbeat was received with.

346 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Param feat The feature set of the publishing node. The value is a bitmap
of BT_MESH_FEAT_RELAY, BT_MESH_FEAT_PROXY, BT_MESH_FEAT_FRIEND
and BT_MESH_FEAT_LOW_POWER.

void (*sub_end)(const struct bt_mesh_hb_sub *sub)

Subscription end callback for heartbeats.

Gets called when the subscription period ends, providing a summary of the received heart-
beat messages.

Param sub Current Heartbeat subscription parameters.

Runtime Configuration

The runtime configuration API allows applications to change their runtime configuration directly, without
going through the Configuration models.

Bluetooth mesh nodes should generally be configured by a central network configurator device with a
Configuration Client model. Each mesh node instantiates a Configuration Server model that the Config-
uration Client can communicate with to change the node configuration. In some cases, the mesh node
can’t rely on the Configuration Client to detect or determine local constraints, such as low battery power
or changes in topology. For these scenarios, this API can be used to change the configuration locally.

API reference

group bt_mesh_cfg

Runtime Configuration.

Defines

BT_MESH_KR_NORMAL

BT_MESH_KR_PHASE_1

BT_MESH_KR_PHASE_2

BT_MESH_KR_PHASE_3

BT_MESH_RELAY_DISABLED

BT_MESH_RELAY_ENABLED

BT_MESH_RELAY_NOT_SUPPORTED

BT_MESH_BEACON_DISABLED

BT_MESH_BEACON_ENABLED

BT_MESH_GATT_PROXY_DISABLED

7.4. Bluetooth 347

Zephyr Project Documentation, Release 2.7.0-rc2

BT_MESH_GATT_PROXY_ENABLED

BT_MESH_GATT_PROXY_NOT_SUPPORTED

BT_MESH_FRIEND_DISABLED

BT_MESH_FRIEND_ENABLED

BT_MESH_FRIEND_NOT_SUPPORTED

BT_MESH_NODE_IDENTITY_STOPPED

BT_MESH_NODE_IDENTITY_RUNNING

BT_MESH_NODE_IDENTITY_NOT_SUPPORTED

Enums

enum bt_mesh_feat_state

Bluetooth mesh feature states

Values:

enumerator BT_MESH_FEATURE_DISABLED

Feature is supported, but disabled.

enumerator BT_MESH_FEATURE_ENABLED

Feature is supported and enabled.

enumerator BT_MESH_FEATURE_NOT_SUPPORTED

Feature is not supported, and cannot be enabled.

Functions

void bt_mesh_beacon_set(bool beacon)

Enable or disable sending of the Secure Network Beacon.

Parameters

• beacon – New Secure Network Beacon state.

bool bt_mesh_beacon_enabled(void)

Get the current Secure Network Beacon state.

Returns Whether the Secure Network Beacon feature is enabled.

int bt_mesh_default_ttl_set(uint8_t default_ttl)

Set the default TTL value.

The default TTL value is used when no explicit TTL value is set. Models will use the default
TTL value when bt_mesh_msg_ctx::send_ttl is BT_MESH_TTL_DEFAULT.

348 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• default_ttl – The new default TTL value. Valid values are 0x00 and 0x02 to
BT_MESH_TTL_MAX.

Return values

• 0 – Successfully set the default TTL value.

• -EINVAL – Invalid TTL value.

uint8_t bt_mesh_default_ttl_get(void)

Get the current default TTL value.

Returns The current default TTL value.

void bt_mesh_net_transmit_set(uint8_t xmit)

Set the Network Transmit parameters.

The Network Transmit parameters determine the parameters local messages are transmitted
with.

See also:

BT_MESH_TRANSMIT

Parameters

• xmit – New Network Transmit parameters. Use BT_MESH_TRANSMIT for en-
coding.

uint8_t bt_mesh_net_transmit_get(void)

Get the current Network Transmit parameters.

The BT_MESH_TRANSMIT_COUNT and BT_MESH_TRANSMIT_INT macros can be used to de-
code the Network Transmit parameters.

Returns The current Network Transmit parameters.

int bt_mesh_relay_set(enum bt_mesh_feat_state relay, uint8_t xmit)

Configure the Relay feature.

Enable or disable the Relay feature, and configure the parameters to transmit relayed mes-
sages with.

Support for the Relay feature must be enabled through the CONFIG_BT_MESH_RELAY configu-
ration option.

See also:

BT_MESH_TRANSMIT

Parameters

• relay – New Relay feature state. Must be one of
BT_MESH_FEATURE_ENABLED and BT_MESH_FEATURE_DISABLED.

• xmit – New Relay retransmit parameters. Use BT_MESH_TRANSMIT for encod-
ing.

Return values

• 0 – Successfully changed the Relay configuration.

• -ENOTSUP – The Relay feature is not supported.

7.4. Bluetooth 349

Zephyr Project Documentation, Release 2.7.0-rc2

• -EINVAL – Invalid parameter.

• -EALREADY – Already using the given parameters.

enum bt_mesh_feat_state bt_mesh_relay_get(void)

Get the current Relay feature state.

Returns The Relay feature state.

uint8_t bt_mesh_relay_retransmit_get(void)

Get the current Relay Retransmit parameters.

The BT_MESH_TRANSMIT_COUNT and BT_MESH_TRANSMIT_INT macros can be used to de-
code the Relay Retransmit parameters.

Returns The current Relay Retransmit parameters, or 0 if relay is not supported.

int bt_mesh_gatt_proxy_set(enum bt_mesh_feat_state gatt_proxy)

Enable or disable the GATT Proxy feature.

Support for the GATT Proxy feature must be enabled through the
CONFIG_BT_MESH_GATT_PROXY configuration option.

Note: The GATT Proxy feature only controls a Proxy node’s ability to relay messages to
the mesh network. A node that supports GATT Proxy will still advertise Connectable Proxy
beacons, even if the feature is disabled. The Proxy feature can only be fully disabled through
compile time configuration.

Parameters

• gatt_proxy – New GATT Proxy state. Must be one of
BT_MESH_FEATURE_ENABLED and BT_MESH_FEATURE_DISABLED.

Return values

• 0 – Successfully changed the GATT Proxy feature state.

• -ENOTSUP – The GATT Proxy feature is not supported.

• -EINVAL – Invalid parameter.

• -EALREADY – Already in the given state.

enum bt_mesh_feat_state bt_mesh_gatt_proxy_get(void)

Get the current GATT Proxy state.

Returns The GATT Proxy feature state.

int bt_mesh_friend_set(enum bt_mesh_feat_state friendship)

Enable or disable the Friend feature.

Any active friendships will be terminated immediately if the Friend feature is disabled.

Support for the Friend feature must be enabled through the CONFIG_BT_MESH_FRIEND config-
uration option.

Parameters

• friendship – New Friend feature state. Must be one of
BT_MESH_FEATURE_ENABLED and BT_MESH_FEATURE_DISABLED.

Return values

• 0 – Successfully changed the Friend feature state.

• -ENOTSUP – The Friend feature is not supported.

350 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• -EINVAL – Invalid parameter.

• -EALREADY – Already in the given state.

enum bt_mesh_feat_state bt_mesh_friend_get(void)

Get the current Friend state.

Returns The Friend feature state.

Bluetooth Mesh Shell

The Bluetooth mesh shell subsystem provides a set of Bluetooth mesh shell commands for the Shell
module. It allows for testing and exploring the Bluetooth mesh API through an interactive interface,
without having to write an application.

The Bluetooth mesh shell interface provides access to most Bluetooth mesh features, including provi-
sioning, configuration, and message sending.

Prerequisites The Bluetooth mesh shell subsystem depends on the Configuration Client and Health
Client models.

Application The Bluetooth mesh shell subsystem is most easily used through the Bluetooth mesh shell
application under tests/bluetooth/mesh_shell. See Shell for information on how to connect and
interact with the Bluetooth mesh shell application.

Basic usage The Bluetooth mesh shell subsystem adds a single mesh command, which holds a set of
sub-commands. Every time the device boots up, make sure to call mesh init before any of the other
Bluetooth mesh shell commands can be called:

uart:~$ mesh init

Provisioning The mesh node must be provisioned to become part of the network. This is only necessary
the first time the device boots up, as the device will remember its provisioning data between reboots.

The simplest way to provision the device is through self-provisioning. To provision the device with the
default network key and address 0x0001, execute:

uart:~$ mesh provision 0 0x0001

Since all mesh nodes use the same values for the default network key, this can be done on multiple
devices, as long as they’re assigned non-overlapping unicast addresses. Alternatively, to provision the
device into an existing network, the unprovisioned beacon can be enabled with mesh pb-adv on or mesh
pb-gatt on. The beacons can be picked up by an external provisioner, which can provision the node
into its network.

Once the mesh node is part of a network, its transmission parameters can be controlled by the general
configuration commands:

• To set the destination address, call mesh dst <addr>.

• To set the network key index, call mesh netidx <NetIdx>.

• To set the application key index, call mesh appidx <AppIdx>.

By default, the transmission parameters are set to send messages to the provisioned address and network
key.

7.4. Bluetooth 351

Zephyr Project Documentation, Release 2.7.0-rc2

Configuration By setting the destination address to the local unicast address (0x0001 in the mesh
provision command above), we can perform self-configuration through any of the Configuration Client
model commands.

A good first step is to read out the node’s own composition data:

uart:~$ mesh get-comp

This prints a list of the composition data of the node, including a list of its model IDs.

Next, since the device has no application keys by default, it’s a good idea to add one:

uart:~$ mesh app-key-add 0 0

Message sending With an application key added (see above), the mesh node’s transition parameters
are all valid, and the Bluetooth mesh shell can send raw mesh messages through the network.

For example, to send a Generic OnOff Set message, call:

uart:~$ mesh net-send 82020100

Note: All multibyte fields model messages are in little endian, except the opcode.

The message will be sent to the current destination address, using the current network and application
key indexes. As the destination address points to the local unicast address by default, the device will
only send packets to itself. To change the destination address to the All Nodes broadcast address, call:

uart:~$ mesh dst 0xffff

With the destination address set to 0xffff, any other mesh nodes in the network with the configured
network and application keys will receive and process the messages we send.

Note: To change the configuration of the device, the destination address must be set back to the local
unicast address before issuing any configuration commands.

Sending raw mesh packets is a good way to test model message handler implementations during devel-
opment, as it can be done without having to implement the sending model. By default, only the reception
of the model messages can be tested this way, as the Bluetooth mesh shell only includes the foundation
models. To receive a packet in the mesh node, you have to add a model with a valid opcode handler list
to the composition data in subsys/bluetooth/mesh/shell.c, and print the incoming message to the
shell in the handler callback.

Parameter formats The Bluetooth mesh shell commands are parsed with a variety of formats:

Table 3: Parameter formats
Type Description Example
Integers The default format unless something else is specified.

Can be either decimal or hexadecimal.
1234, 0xabcd01234

Hexstrings For raw byte arrays, like UUIDs, key values and message
payloads, the parameters should be formatted as an un-
broken string of hexadecimal values without any prefix.

deadbeef01234

Booleans Boolean values are denoted in the API documentation as
<val: on, off>.

on, off, enabled,
disabled, 1, 0

352 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Commands The Bluetooth mesh shell implements a large set of commands. Some of the commands
accept parameters, which are mentioned in brackets after the command name. For example, mesh lpn
<value: off, on>. Mandatory parameters are marked with angle brackets (e.g. <NetKeyIndex>), and
optional parameters are marked with square brackets (e.g. [destination address]).

The Bluetooth mesh shell commands are divided into the following groups:

• General configuration

• Testing

• Provisioning

• Configuration Client model

• Health Client model

• Health Server model

• Configuration database

Note: Some commands depend on specific features being enabled in the compile time configuration
of the application. Not all features are enabled by default. The list of available Bluetooth mesh shell
commands can be shown in the shell by calling mesh without any arguments.

General configuration

mesh init

Initialize the mesh. This command must be run before any other mesh command.

mesh reset <addr>

reset the local mesh node to its initial unprovisioned state or reset a remote node and remove
it from the network. * addr: address of the node to reset.

mesh lpn <value: off, on>

Enable or disable Low Power operation. Once enabled, the device will turn off its radio and
start polling for friend nodes. The device will not be able to receive messages from the mesh
network until the friendship has been established.

• value: Sets whether Low Power operation is enabled.

mesh poll

Perform a poll to the friend node, to receive any pending messages. Only available when LPN
is enabled.

mesh ident

Enable the Proxy Node Identity beacon, allowing Proxy devices to connect explicitly to this
device. The beacon will run for 60 seconds before the node returns to normal Proxy beacons.

7.4. Bluetooth 353

Zephyr Project Documentation, Release 2.7.0-rc2

mesh dst [destination address]

Get or set the message destination address. The destination address determines where mesh
packets are sent with the shell, but has no effect on modules outside the shell’s control.

• destination address: If present, sets the new 16-bit mesh destination address. If
omitted, the current destination address is printed.

mesh netidx [NetIdx]

Get or set the message network index. The network index determines which network key
is used to encrypt mesh packets that are sent with the shell, but has no effect on modules
outside the shell’s control. The network key must already be added to the device, either
through provisioning or by a Configuration Client.

• NetIdx: If present, sets the new network index. If omitted, the current network index is
printed.

mesh appidx [AppIdx]

Get or set the message application index. The application index determines which application
key is used to encrypt mesh packets that are sent with the shell, but has no effect on modules
outside the shell’s control. The application key must already be added to the device by a
Configuration Client, and must be bound to the current network index.

• AppIdx: If present, sets the new application index. If omitted, the current application
index is printed.

mesh net-send <hex string>

Send a raw mesh message with the current destination address, network and application
index. The message opcode must be encoded manually.

• hex string Raw hexadecimal representation of the message to send.

Testing

mesh iv-update

Force an IV update.

mesh iv-update-test <value: off, on>

Set the IV update test mode. In test mode, the IV update timing requirements are bypassed.

• value: Enable or disable the IV update test mode.

mesh rpl-clear

Clear the replay protection list, forcing the node to forget all received messages.

Warning: Clearing the replay protection list breaks the security mechanisms of the mesh node,
making it susceptible to message replay attacks. This should never be performed in a real deployment.

Provisioning

354 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

mesh pb-gatt <val: off, on>

Start or stop advertising a connectable unprovisioned beacon. The connectable unprovi-
sioned beacon allows the mesh node to be discovered by nearby GATT based provisioners,
and provisioned through the GATT bearer.

• val: Enable or disable provisioning with GATT

mesh pb-adv <val: off, on>

Start or stop advertising the unprovisioned beacon. The unprovisioned beacon allows the
mesh node to be discovered by nearby advertising-based provisioners, and provisioned
through the advertising bearer.

• val: Enable or disable provisioning with advertiser

mesh provision-adv <UUID> <NetKeyIndex> <addr> <AttentionDuration>

Provision a nearby device into the mesh. The mesh node starts scanning for unprovisioned
beacons with the given UUID. Once found, the unprovisioned device will be added to the
mesh network with the given unicast address, and given the network key indicated by
NetKeyIndex.

• UUID: UUID of the unprovisioned device.

• NetKeyIndex: Index of the network key to pass to the device.

• addr: First unicast address to assign to the unprovisioned device. The device will occupy
as many addresses as it has elements, and all must be available.

• AttentionDuration: The duration in seconds the unprovisioned device will identify
itself for, if supported. See Attention state for details.

mesh uuid <UUID: 1-16 hex values>

Set the mesh node’s UUID, used in the unprovisioned beacons.

• UUID: New 128-bit UUID value. Any missing bytes will be zero.

mesh input-num <number>

Input a numeric OOB authentication value. Only valid when prompted by the shell during
provisioning. The input number must match the number presented by the other participant
in the provisioning.

• number: Decimal authentication number.

mesh input-str <string>

Input an alphanumeric OOB authentication value. Only valid when prompted by the shell
during provisioning. The input string must match the string presented by the other partici-
pant in the provisioning.

• string: Unquoted alphanumeric authentication string.

mesh static-oob [val: 1-16 hex values]

Set or clear the static OOB authentication value. The static OOB authentication value must
be set before provisioning starts to have any effect. The static OOB value must be same on
both participants in the provisioning.

7.4. Bluetooth 355

Zephyr Project Documentation, Release 2.7.0-rc2

• val: If present, indicates the new hexadecimal value of the static OOB. If omitted, the
static OOB value is cleared.

mesh provision <NetKeyIndex> <addr> [IVIndex]

Provision the mesh node itself. If the Configuration database is enabled, the network key
must be created. Otherwise, the default key value is used.

• NetKeyIndex: Index of the network key to provision.

• addr: First unicast address to assign to the device. The device will occupy as many
addresses as it has elements, and all must be available.

• IVindex: Indicates the current network IV index. Defaults to 0 if omitted.

mesh beacon-listen <val: off, on>

Enable or disable printing of incoming unprovisioned beacons. Allows a provisioner device
to detect nearby unprovisioned devices and provision them.

• val: Whether to enable the unprovisioned beacon printing.

Configuration Client model The Bluetooth mesh shell module instantiates a Configuration Client
model for configuring itself and other nodes in the mesh network.

The Configuration Client uses the general messages parameters set by mesh dst and mesh netidx to
target specific nodes. When the Bluetooth mesh shell node is provisioned, the Configuration Client
model targets itself by default. When another node has been provisioned by the Bluetooth mesh shell,
the Configuration Client model targets the new node. The Configuration Client always sends messages
using the Device key bound to the destination address, so it will only be able to configure itself and mesh
nodes it provisioned.

mesh timeout [timeout in seconds]

Get and set the Config Client model timeout used during message sending.

• timeout in seconds: If present, set the Config Client model timeout in seconds. If
omitted, the current timeout is printed.

mesh get-comp [page]

Read a composition data page. The full composition data page will be printed. If the target
does not have the given page, it will return the last page before it.

• page: The composition data page to request. Defaults to 0 if omitted.

mesh beacon [val: off, on]

Get or set the network beacon transmission.

• val: If present, enables or disables sending of the network beacon. If omitted, the
current network beacon state is printed.

mesh ttl [ttl: 0x00, 0x02-0x7f]

Get or set the default TTL value.

• ttl: If present, sets the new default TTL value. If omitted, the current default TTL value
is printed.

356 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

mesh friend [val: off, on]

Get or set the Friend feature.

• val: If present, enables or disables the Friend feature. If omitted, the current Friend
feature state is printed:

– 0x00: The feature is supported, but disabled.

– 0x01: The feature is enabled.

– 0x02: The feature is not supported.

mesh gatt-proxy [val: off, on]

Get or set the GATT Proxy feature.

• val: If present, enables or disables the GATT Proxy feature. If omitted, the current GATT
Proxy feature state is printed:

– 0x00: The feature is supported, but disabled.

– 0x01: The feature is enabled.

– 0x02: The feature is not supported.

mesh relay [<val: off, on> [<count: 0-7> [interval: 10-320]]]

Get or set the Relay feature and its parameters.

• val: If present, enables or disables the Relay feature. If omitted, the current Relay
feature state is printed:

– 0x00: The feature is supported, but disabled.

– 0x01: The feature is enabled.

– 0x02: The feature is not supported.

• count: Sets the new relay retransmit count if val is on. Ignored if val is off. Defaults
to 2 if omitted.

• interval: Sets the new relay retransmit interval in milliseconds if val is on. Ignored if
val is off. Defaults to 20 if omitted.

mesh net-transmit-param [<count: 0-7> <interval: 10-320>]

Get or set the network transmit parameters.

• count: Sets the number of additional network transmits for every sent message.

• interval: Sets the new network retransmit interval in milliseconds.

mesh net-key-add <NetKeyIndex> [val]

Add a network key to the target node. Adds the key to the Configuration Database if enabled.

• NetKeyIndex: The network key index to add.

• val: If present, sets the key value as a 128-bit hexadecimal value. Any missing bytes
will be zero. Only valid if the key does not already exist in the Configuration Database.
If omitted, the default key value is used.

mesh net-key-get

Get a list of known network key indexes.

7.4. Bluetooth 357

Zephyr Project Documentation, Release 2.7.0-rc2

mesh net-key-del <NetKeyIndex>

Delete a network key from the target node.

• NetKeyIndex: The network key index to delete.

mesh app-key-add <NetKeyIndex> <AppKeyIndex> [val]

Add an application key to the target node. Adds the key to the Configuration Database if
enabled.

• NetKeyIndex: The network key index the application key is bound to.

• AppKeyIndex: The application key index to add.

• val: If present, sets the key value as a 128-bit hexadecimal value. Any missing bytes
will be zero. Only valid if the key does not already exist in the Configuration Database.
If omitted, the default key value is used.

mesh app-key-get <NetKeyIndex>

Get a list of known application key indexes bound to the given network key index.

• NetKeyIndex: Network key indexes to get a list of application key indexes from.

mesh app-key-del <NetKeyIndex> <AppKeyIndex>

Delete an application key from the target node.

• NetKeyIndex: The network key index the application key is bound to.

• AppKeyIndex: The application key index to delete.

mesh mod-app-bind <addr> <AppIndex> <Model ID> [Company ID]

Bind an application key to a model. Models can only encrypt and decrypt messages sent with
application keys they are bound to.

• addr: Address of the element the model is on.

• AppIndex: The application key to bind to the model.

• Model ID: The model ID of the model to bind the key to.

• Company ID: If present, determines the Company ID of the model. If omitted, the model
is a Bluetooth SIG defined model.

mesh mod-app-unbind <addr> <AppIndex> <Model ID> [Company ID]

Unbind an application key from a model.

• addr: Address of the element the model is on.

• AppIndex: The application key to unbind from the model.

• Model ID: The model ID of the model to unbind the key from.

• Company ID: If present, determines the Company ID of the model. If omitted, the model
is a Bluetooth SIG defined model.

358 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

mesh mod-app-get <elem addr> <Model ID> [Company ID]

Get a list of application keys bound to a model.

• elem addr: Address of the element the model is on.

• Model ID: The model ID of the model to get the bound keys of.

• Company ID: If present, determines the Company ID of the model. If omitted, the model
is a Bluetooth SIG defined model.

mesh mod-pub <addr> <mod id> [cid] [<PubAddr> <AppKeyIndex> <cred: off, on> <ttl>
<period> <count> <interval>]

Get or set the publication parameters of a model. If all publication parameters are included,
they become the new publication parameters of the model. If all publication parameters are
omitted, print the current publication parameters of the model.

• addr: Address of the element the model is on.

• Model ID: The model ID of the model to get the bound keys of.

• cid: If present, determines the Company ID of the model. If omitted, the model is a
Bluetooth SIG defined model.

Publication parameters:

• PubAddr: The destination address to publish to.

• AppKeyIndex: The application key index to publish with.

• cred: Whether to publish with Friendship credentials when acting as a Low Power Node.

• ttl: TTL value to publish with (0x00 to 0x07f).

• period: Encoded publication period, or 0 to disable periodic publication.

• count: Number of retransmission for each published message (0 to 7).

• interval The interval between each retransmission, in milliseconds. Must be a multiple
of 50.

mesh mod-sub-add <elem addr> <sub addr> <Model ID> [Company ID]

Subscription the model to a group address. Models only receive messages sent to their unicast
address or a group or virtual address they subscribe to. Models may subscribe to multiple
group and virtual addresses.

• elem addr: Address of the element the model is on.

• sub addr: 16-bit group address the model should subscribe to (0xc000 to 0xFEFF).

• Model ID: The model ID of the model to add the subscription to.

• Company ID: If present, determines the Company ID of the model. If omitted, the model
is a Bluetooth SIG defined model.

mesh mod-sub-del <elem addr> <sub addr> <Model ID> [Company ID]

Unsubscribe a model from a group address.

• elem addr: Address of the element the model is on.

• sub addr: 16-bit group address the model should remove from its subscription list
(0xc000 to 0xFEFF).

• Model ID: The model ID of the model to add the subscription to.

7.4. Bluetooth 359

Zephyr Project Documentation, Release 2.7.0-rc2

• Company ID: If present, determines the Company ID of the model. If omitted, the model
is a Bluetooth SIG defined model.

mesh mod-sub-add-va <elem addr> <Label UUID> <Model ID> [Company ID]

Subscribe the model to a virtual address. Models only receive messages sent to their unicast
address or a group or virtual address they subscribe to. Models may subscribe to multiple
group and virtual addresses.

• elem addr: Address of the element the model is on.

• Label UUID: 128-bit label UUID of the virtual address to subscribe to. Any omitted bytes
will be zero.

• Model ID: The model ID of the model to add the subscription to.

• Company ID: If present, determines the Company ID of the model. If omitted, the model
is a Bluetooth SIG defined model.

mesh mod-sub-del-va <elem addr> <Label UUID> <Model ID> [Company ID]

Unsubscribe a model from a virtual address.

• elem addr: Address of the element the model is on.

• Label UUID: 128-bit label UUID of the virtual address to remove the subscribtion of.
Any omitted bytes will be zero.

• Model ID: The model ID of the model to add the subscription to.

• Company ID: If present, determines the Company ID of the model. If omitted, the model
is a Bluetooth SIG defined model.

mesh mod-sub-get <elem addr> <Model ID> [Company ID]

Get a list of addresses the model subscribes to.

• elem addr: Address of the element the model is on.

• Model ID: The model ID of the model to get the subscription list of.

• Company ID: If present, determines the Company ID of the model. If omitted, the model
is a Bluetooth SIG defined model.

mesh hb-sub [<src> <dst> <period>]

Get or set the Heartbeat subscription parameters. A node only receives Heartbeat messages
matching the Heartbeat subscription parameters. Sets the Heartbeat subscription parameters
if present, or prints the current Heartbeat subscription parameters if called with no parame-
ters.

• src: Unicast source address to receive Heartbeat messages from.

• dst: Destination address to receive Heartbeat messages on.

• period: Logarithmic representation of the Heartbeat subscription period:

– 0: Heartbeat subscription will be disabled.

– 1 to 17: The node will subscribe to Heartbeat messages for 2(period - 1) seconds.

360 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

mesh hb-pub [<dst> <count> <period> <ttl> <features> <NetKeyIndex>]

Get or set the Heartbeat publication parameters. Sets the Heartbeat publication parameters if
present, or prints the current Heartbeat publication parameters if called with no parameters.

• dst: Destination address to publish Heartbeat messages to.

• count: Logarithmic representation of the number of Heartbeat messages to publish
periodically:

– 0: Heartbeat messages are not published periodically.

– 1 to 17: The node will periodically publish 2(count - 1) Heartbeat messages.

– 255: Heartbeat messages will be published periodically indefinitely.

• period: Logarithmic representation of the Heartbeat publication period:

– 0: Heartbeat messages are not published periodically.

– 1 to 17: The node will publish Heartbeat messages every 2(period - 1) seconds.

• ttl: The TTL value to publish Heartbeat messages with (0x00 to 0x7f).

• features: Bitfield of features that should trigger a Heartbeat publication when
changed:

– Bit 0: Relay feature.

– Bit 1: Proxy feature.

– Bit 2: Friend feature.

– Bit 3: Low Power feature.

• NetKeyIndex: Index of the network key to publish Heartbeat messages with.

Health Client model The Bluetooth mesh shell module instantiates a Health Client model for config-
uring itself and other nodes in the mesh network.

The Health Client uses the general messages parameters set by mesh dst and mesh netidx to target
specific nodes. When the Bluetooth mesh shell node is provisioned, the Health Client model targets itself
by default. When another node has been provisioned by the Bluetooth mesh shell, the Health Client
model targets the new node. The Health Client always sends messages using the Device key bound to
the destination address, so it will only be able to configure itself and mesh nodes it provisioned.

mesh fault-get <Company ID>

Get a list of registered faults for a Company ID.

• Company ID: Company ID to get faults for.

mesh fault-clear <Company ID>

Clear the list of faults for a Company ID.

• Company ID: Company ID to clear the faults for.

mesh fault-clear-unack <Company ID>

Clear the list of faults for a Company ID without requesting a response.

• Company ID: Company ID to clear the faults for.

7.4. Bluetooth 361

Zephyr Project Documentation, Release 2.7.0-rc2

mesh fault-test <Company ID> <Test ID>

Invoke a self-test procedure, and show a list of triggered faults.

• Company ID: Company ID to perform self-tests for.

• Test ID: Test to perform.

mesh fault-test-unack <Company ID> <Test ID>

Invoke a self-test procedure without requesting a response.

• Company ID: Company ID to perform self-tests for.

• Test ID: Test to perform.

mesh period-get

Get the current Health Server publish period divisor.

mesh period-set <divisor>

Set the current Health Server publish period divisor. When a fault is detected, the Health
Server will start publishing is fault status with a reduced interval. The reduced interval
is determined by the Health Server publish period divisor: Fault publish period = Publish
period / 2divisor.

• divisor: The new Health Server publish period divisor.

mesh period-set-unack <divisor>

Set the current Health Server publish period divisor. When a fault is detected, the Health
Server will start publishing is fault status with a reduced interval. The reduced interval
is determined by the Health Server publish period divisor: Fault publish period = Publish
period / 2divisor.

• divisor: The new Health Server publish period divisor.

mesh attention-get

Get the current Health Server attention state.

mesh attention-set <timer>

Enable the Health Server attention state for some time.

• timer: Duration of the attention state, in seconds (0 to 255)

mesh attention-set-unack <timer>

Enable the Health Server attention state for some time without requesting a response.

• timer: Duration of the attention state, in seconds (0 to 255)

Health Server model

362 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

mesh add-fault <Fault ID>

Register a new Fault for the Linux Foundation Company ID.

• Fault ID: ID of the fault to register (0x0001 to 0xFFFF)

mesh del-fault [Fault ID]

Remove registered faults for the Linux Foundation Company ID.

• Fault ID: If present, the given fault ID will be deleted. If omitted, all registered faults
will be cleared.

Configuration database The Configuration database is an optional mesh subsystem that can be
enabled through the :kconfig:`CONFIG_BT_MESH_CDB` configuration option. The Configuration
database is only available on provisioner devices, and allows them to store all information about the
mesh network. To avoid conflicts, there should only be one mesh node in the network with the Config-
uration database enabled. This node is the Configurator, and is responsible for adding new nodes to the
network and configuring them.

mesh cdb-create [NetKey]

Create a Configuration database.

• NetKey: Optional network key value of the primary network key (NetKeyIndex=0).
Defaults to the default key value if omitted.

mesh cdb-clear

Clear all data from the Configuration database.

mesh cdb-show

Show all data in the Configuration database.

mesh cdb-node-add <UUID> <addr> <num-elem> <NetKeyIdx> [DevKey]

Manually add a mesh node to the configuration database. Note that devices provisioned with
mesh provision and mesh provision-adv will be added automatically if the Configuration
Database is enabled and created.

• UUID: 128-bit hexadecimal UUID of the node. Any omitted bytes will be zero.

• addr: Unicast address of the node, or 0 to automatically choose the lowest available
address.

• num-elem: Number of elements on the node.

• NetKeyIdx: The network key the node was provisioned with.

• DevKey: Optional 128-bit device key value for the device. If omitted, a random value
will be generated.

mesh cdb-node-del <addr>

Delete a mesh node from the Configuration database. If possible, the node should be reset
with mesh reset before it is deleted from the Configuration database, to avoid unexpected
behavior and uncontrolled access to the network.

• addr Address of the node to delete.

7.4. Bluetooth 363

Zephyr Project Documentation, Release 2.7.0-rc2

mesh cdb-subnet-add <NeyKeyIdx> [<NetKey>]

Add a network key to the Configuration database. The network key can later be passed to
mesh nodes in the network. Note that adding a key to the Configuration database does not
automatically add it to the local node’s list of known network keys.

• NetKeyIdx: Key index of the network key to add.

• NetKey: Optional 128-bit network key value. Any missing bytes will be zero. If omitted,
a random value will be generated.

mesh cdb-subnet-del <NetKeyIdx>

Delete a network key from the Configuration database.

• NetKeyIdx: Key index of the network key to delete.

mesh cdb-app-key-add <NetKeyIdx> <AppKeyIdx> [<AppKey>]

Add an application key to the Configuration database. The application key can later be passed
to mesh nodes in the network. Note that adding a key to the Configuration database does not
automatically add it to the local node’s list of known application keys.

• NetKeyIdx: Network key index the application key is bound to.

• AppKeyIdx: Key index of the application key to add.

• AppKey: Optional 128-bit application key value. Any missing bytes will be zero. If
omitted, a random value will be generated.

mesh cdb-app-key-del <AppKeyIdx>

Delete an application key from the Configuration database.

• AppKeyIdx: Key index of the application key to delete.

7.4.12 Serial Port Emulation (RFCOMM)

API Reference

group bt_rfcomm

RFCOMM.

Typedefs

typedef enum bt_rfcomm_role bt_rfcomm_role_t

Role of RFCOMM session and dlc. Used only by internal APIs.

Enums

enum [anonymous]

Values:

enumerator BT_RFCOMM_CHAN_HFP_HF = 1

364 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator BT_RFCOMM_CHAN_HFP_AG

enumerator BT_RFCOMM_CHAN_HSP_AG

enumerator BT_RFCOMM_CHAN_HSP_HS

enumerator BT_RFCOMM_CHAN_SPP

enum bt_rfcomm_role

Role of RFCOMM session and dlc. Used only by internal APIs.

Values:

enumerator BT_RFCOMM_ROLE_ACCEPTOR

enumerator BT_RFCOMM_ROLE_INITIATOR

Functions

int bt_rfcomm_server_register(struct bt_rfcomm_server *server)

Register RFCOMM server.

Register RFCOMM server for a channel, each new connection is authorized using the accept()
callback which in case of success shall allocate the dlc structure to be used by the new con-
nection.

Parameters

• server – Server structure.

Returns 0 in case of success or negative value in case of error.

int bt_rfcomm_dlc_connect(struct bt_conn *conn, struct bt_rfcomm_dlc *dlc, uint8_t channel)

Connect RFCOMM channel.

Connect RFCOMM dlc by channel, once the connection is completed dlc connected() callback
will be called. If the connection is rejected disconnected() callback is called instead.

Parameters

• conn – Connection object.

• dlc – Dlc object.

• channel – Server channel to connect to.

Returns 0 in case of success or negative value in case of error.

int bt_rfcomm_dlc_send(struct bt_rfcomm_dlc *dlc, struct net_buf *buf)

Send data to RFCOMM.

Send data from buffer to the dlc. Length should be less than or equal to mtu.

Parameters

• dlc – Dlc object.

• buf – Data buffer.

Returns Bytes sent in case of success or negative value in case of error.

7.4. Bluetooth 365

Zephyr Project Documentation, Release 2.7.0-rc2

int bt_rfcomm_dlc_disconnect(struct bt_rfcomm_dlc *dlc)

Disconnect RFCOMM dlc.

Disconnect RFCOMM dlc, if the connection is pending it will be canceled and as a result the
dlc disconnected() callback is called.

Parameters

• dlc – Dlc object.

Returns 0 in case of success or negative value in case of error.

struct net_buf *bt_rfcomm_create_pdu(struct net_buf_pool *pool)

Allocate the buffer from pool after reserving head room for RFCOMM, L2CAP and ACL head-
ers.

Parameters

• pool – Which pool to take the buffer from.

Returns New buffer.

struct bt_rfcomm_dlc_ops

#include <rfcomm.h> RFCOMM DLC operations structure.

Public Members

void (*connected)(struct bt_rfcomm_dlc *dlc)

DLC connected callback

If this callback is provided it will be called whenever the connection completes.
Param dlc The dlc that has been connected

void (*disconnected)(struct bt_rfcomm_dlc *dlc)

DLC disconnected callback

If this callback is provided it will be called whenever the dlc is disconnected, including
when a connection gets rejected or cancelled (both incoming and outgoing)

Param dlc The dlc that has been Disconnected

void (*recv)(struct bt_rfcomm_dlc *dlc, struct net_buf *buf)

DLC recv callback
Param dlc The dlc receiving data.
Param buf Buffer containing incoming data.

struct bt_rfcomm_dlc

#include <rfcomm.h> RFCOMM DLC structure.

struct bt_rfcomm_server

#include <rfcomm.h>

Public Members

uint8_t channel

Server Channel

366 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

int (*accept)(struct bt_conn *conn, struct bt_rfcomm_dlc **dlc)

Server accept callback

This callback is called whenever a new incoming connection requires authorization.
Param conn The connection that is requesting authorization
Param dlc Pointer to received the allocated dlc
Return 0 in case of success or negative value in case of error.

7.4.13 Service Discovery Protocol (SDP)

API Reference

group bt_sdp

Service Discovery Protocol (SDP)

Defines

BT_SDP_SDP_SERVER_SVCLASS

BT_SDP_BROWSE_GRP_DESC_SVCLASS

BT_SDP_PUBLIC_BROWSE_GROUP

BT_SDP_SERIAL_PORT_SVCLASS

BT_SDP_LAN_ACCESS_SVCLASS

BT_SDP_DIALUP_NET_SVCLASS

BT_SDP_IRMC_SYNC_SVCLASS

BT_SDP_OBEX_OBJPUSH_SVCLASS

BT_SDP_OBEX_FILETRANS_SVCLASS

BT_SDP_IRMC_SYNC_CMD_SVCLASS

BT_SDP_HEADSET_SVCLASS

BT_SDP_CORDLESS_TELEPHONY_SVCLASS

BT_SDP_AUDIO_SOURCE_SVCLASS

BT_SDP_AUDIO_SINK_SVCLASS

BT_SDP_AV_REMOTE_TARGET_SVCLASS

7.4. Bluetooth 367

Zephyr Project Documentation, Release 2.7.0-rc2

BT_SDP_ADVANCED_AUDIO_SVCLASS

BT_SDP_AV_REMOTE_SVCLASS

BT_SDP_AV_REMOTE_CONTROLLER_SVCLASS

BT_SDP_INTERCOM_SVCLASS

BT_SDP_FAX_SVCLASS

BT_SDP_HEADSET_AGW_SVCLASS

BT_SDP_WAP_SVCLASS

BT_SDP_WAP_CLIENT_SVCLASS

BT_SDP_PANU_SVCLASS

BT_SDP_NAP_SVCLASS

BT_SDP_GN_SVCLASS

BT_SDP_DIRECT_PRINTING_SVCLASS

BT_SDP_REFERENCE_PRINTING_SVCLASS

BT_SDP_IMAGING_SVCLASS

BT_SDP_IMAGING_RESPONDER_SVCLASS

BT_SDP_IMAGING_ARCHIVE_SVCLASS

BT_SDP_IMAGING_REFOBJS_SVCLASS

BT_SDP_HANDSFREE_SVCLASS

BT_SDP_HANDSFREE_AGW_SVCLASS

BT_SDP_DIRECT_PRT_REFOBJS_SVCLASS

BT_SDP_REFLECTED_UI_SVCLASS

BT_SDP_BASIC_PRINTING_SVCLASS

BT_SDP_PRINTING_STATUS_SVCLASS

368 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

BT_SDP_HID_SVCLASS

BT_SDP_HCR_SVCLASS

BT_SDP_HCR_PRINT_SVCLASS

BT_SDP_HCR_SCAN_SVCLASS

BT_SDP_CIP_SVCLASS

BT_SDP_VIDEO_CONF_GW_SVCLASS

BT_SDP_UDI_MT_SVCLASS

BT_SDP_UDI_TA_SVCLASS

BT_SDP_AV_SVCLASS

BT_SDP_SAP_SVCLASS

BT_SDP_PBAP_PCE_SVCLASS

BT_SDP_PBAP_PSE_SVCLASS

BT_SDP_PBAP_SVCLASS

BT_SDP_MAP_MSE_SVCLASS

BT_SDP_MAP_MCE_SVCLASS

BT_SDP_MAP_SVCLASS

BT_SDP_GNSS_SVCLASS

BT_SDP_GNSS_SERVER_SVCLASS

BT_SDP_MPS_SC_SVCLASS

BT_SDP_MPS_SVCLASS

BT_SDP_PNP_INFO_SVCLASS

BT_SDP_GENERIC_NETWORKING_SVCLASS

BT_SDP_GENERIC_FILETRANS_SVCLASS

7.4. Bluetooth 369

Zephyr Project Documentation, Release 2.7.0-rc2

BT_SDP_GENERIC_AUDIO_SVCLASS

BT_SDP_GENERIC_TELEPHONY_SVCLASS

BT_SDP_UPNP_SVCLASS

BT_SDP_UPNP_IP_SVCLASS

BT_SDP_UPNP_PAN_SVCLASS

BT_SDP_UPNP_LAP_SVCLASS

BT_SDP_UPNP_L2CAP_SVCLASS

BT_SDP_VIDEO_SOURCE_SVCLASS

BT_SDP_VIDEO_SINK_SVCLASS

BT_SDP_VIDEO_DISTRIBUTION_SVCLASS

BT_SDP_HDP_SVCLASS

BT_SDP_HDP_SOURCE_SVCLASS

BT_SDP_HDP_SINK_SVCLASS

BT_SDP_GENERIC_ACCESS_SVCLASS

BT_SDP_GENERIC_ATTRIB_SVCLASS

BT_SDP_APPLE_AGENT_SVCLASS

BT_SDP_SERVER_RECORD_HANDLE

BT_SDP_ATTR_RECORD_HANDLE

BT_SDP_ATTR_SVCLASS_ID_LIST

BT_SDP_ATTR_RECORD_STATE

BT_SDP_ATTR_SERVICE_ID

BT_SDP_ATTR_PROTO_DESC_LIST

BT_SDP_ATTR_BROWSE_GRP_LIST

370 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

BT_SDP_ATTR_LANG_BASE_ATTR_ID_LIST

BT_SDP_ATTR_SVCINFO_TTL

BT_SDP_ATTR_SERVICE_AVAILABILITY

BT_SDP_ATTR_PROFILE_DESC_LIST

BT_SDP_ATTR_DOC_URL

BT_SDP_ATTR_CLNT_EXEC_URL

BT_SDP_ATTR_ICON_URL

BT_SDP_ATTR_ADD_PROTO_DESC_LIST

BT_SDP_ATTR_GROUP_ID

BT_SDP_ATTR_IP_SUBNET

BT_SDP_ATTR_VERSION_NUM_LIST

BT_SDP_ATTR_SUPPORTED_FEATURES_LIST

BT_SDP_ATTR_GOEP_L2CAP_PSM

BT_SDP_ATTR_SVCDB_STATE

BT_SDP_ATTR_MPSD_SCENARIOS

BT_SDP_ATTR_MPMD_SCENARIOS

BT_SDP_ATTR_MPS_DEPENDENCIES

BT_SDP_ATTR_SERVICE_VERSION

BT_SDP_ATTR_EXTERNAL_NETWORK

BT_SDP_ATTR_SUPPORTED_DATA_STORES_LIST

BT_SDP_ATTR_DATA_EXCHANGE_SPEC

BT_SDP_ATTR_NETWORK

BT_SDP_ATTR_FAX_CLASS1_SUPPORT

7.4. Bluetooth 371

Zephyr Project Documentation, Release 2.7.0-rc2

BT_SDP_ATTR_REMOTE_AUDIO_VOLUME_CONTROL

BT_SDP_ATTR_MCAP_SUPPORTED_PROCEDURES

BT_SDP_ATTR_FAX_CLASS20_SUPPORT

BT_SDP_ATTR_SUPPORTED_FORMATS_LIST

BT_SDP_ATTR_FAX_CLASS2_SUPPORT

BT_SDP_ATTR_AUDIO_FEEDBACK_SUPPORT

BT_SDP_ATTR_NETWORK_ADDRESS

BT_SDP_ATTR_WAP_GATEWAY

BT_SDP_ATTR_HOMEPAGE_URL

BT_SDP_ATTR_WAP_STACK_TYPE

BT_SDP_ATTR_SECURITY_DESC

BT_SDP_ATTR_NET_ACCESS_TYPE

BT_SDP_ATTR_MAX_NET_ACCESSRATE

BT_SDP_ATTR_IP4_SUBNET

BT_SDP_ATTR_IP6_SUBNET

BT_SDP_ATTR_SUPPORTED_CAPABILITIES

BT_SDP_ATTR_SUPPORTED_FEATURES

BT_SDP_ATTR_SUPPORTED_FUNCTIONS

BT_SDP_ATTR_TOTAL_IMAGING_DATA_CAPACITY

BT_SDP_ATTR_SUPPORTED_REPOSITORIES

BT_SDP_ATTR_MAS_INSTANCE_ID

BT_SDP_ATTR_SUPPORTED_MESSAGE_TYPES

BT_SDP_ATTR_PBAP_SUPPORTED_FEATURES

372 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

BT_SDP_ATTR_MAP_SUPPORTED_FEATURES

BT_SDP_ATTR_SPECIFICATION_ID

BT_SDP_ATTR_VENDOR_ID

BT_SDP_ATTR_PRODUCT_ID

BT_SDP_ATTR_VERSION

BT_SDP_ATTR_PRIMARY_RECORD

BT_SDP_ATTR_VENDOR_ID_SOURCE

BT_SDP_ATTR_HID_DEVICE_RELEASE_NUMBER

BT_SDP_ATTR_HID_PARSER_VERSION

BT_SDP_ATTR_HID_DEVICE_SUBCLASS

BT_SDP_ATTR_HID_COUNTRY_CODE

BT_SDP_ATTR_HID_VIRTUAL_CABLE

BT_SDP_ATTR_HID_RECONNECT_INITIATE

BT_SDP_ATTR_HID_DESCRIPTOR_LIST

BT_SDP_ATTR_HID_LANG_ID_BASE_LIST

BT_SDP_ATTR_HID_SDP_DISABLE

BT_SDP_ATTR_HID_BATTERY_POWER

BT_SDP_ATTR_HID_REMOTE_WAKEUP

BT_SDP_ATTR_HID_PROFILE_VERSION

BT_SDP_ATTR_HID_SUPERVISION_TIMEOUT

BT_SDP_ATTR_HID_NORMALLY_CONNECTABLE

BT_SDP_ATTR_HID_BOOT_DEVICE

BT_SDP_PRIMARY_LANG_BASE

7.4. Bluetooth 373

Zephyr Project Documentation, Release 2.7.0-rc2

BT_SDP_ATTR_SVCNAME_PRIMARY

BT_SDP_ATTR_SVCDESC_PRIMARY

BT_SDP_ATTR_PROVNAME_PRIMARY

BT_SDP_DATA_NIL

BT_SDP_UINT8

BT_SDP_UINT16

BT_SDP_UINT32

BT_SDP_UINT64

BT_SDP_UINT128

BT_SDP_INT8

BT_SDP_INT16

BT_SDP_INT32

BT_SDP_INT64

BT_SDP_INT128

BT_SDP_UUID_UNSPEC

BT_SDP_UUID16

BT_SDP_UUID32

BT_SDP_UUID128

BT_SDP_TEXT_STR_UNSPEC

BT_SDP_TEXT_STR8

BT_SDP_TEXT_STR16

BT_SDP_TEXT_STR32

BT_SDP_BOOL

374 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

BT_SDP_SEQ_UNSPEC

BT_SDP_SEQ8

BT_SDP_SEQ16

BT_SDP_SEQ32

BT_SDP_ALT_UNSPEC

BT_SDP_ALT8

BT_SDP_ALT16

BT_SDP_ALT32

BT_SDP_URL_STR_UNSPEC

BT_SDP_URL_STR8

BT_SDP_URL_STR16

BT_SDP_URL_STR32

BT_SDP_TYPE_DESC_MASK

BT_SDP_SIZE_DESC_MASK

BT_SDP_SIZE_INDEX_OFFSET

BT_SDP_ARRAY_8(...)
Declare an array of 8-bit elements in an attribute.

BT_SDP_ARRAY_16(...)
Declare an array of 16-bit elements in an attribute.

BT_SDP_ARRAY_32(...)
Declare an array of 32-bit elements in an attribute.

BT_SDP_TYPE_SIZE(_type)
Declare a fixed-size data element header.

Parameters

• _type – Data element header containing type and size descriptors.

BT_SDP_TYPE_SIZE_VAR(_type, _size)
Declare a variable-size data element header.

Parameters

• _type – Data element header containing type and size descriptors.

• _size – The actual size of the data.

7.4. Bluetooth 375

Zephyr Project Documentation, Release 2.7.0-rc2

BT_SDP_DATA_ELEM_LIST(...)

Declare a list of data elements.

BT_SDP_NEW_SERVICE

SDP New Service Record Declaration Macro.

Helper macro to declare a new service record. Default attributes: Record Handle, Record
State, Language Base, Root Browse Group

BT_SDP_LIST(_att_id, _type_size, _data_elem_seq)

Generic SDP List Attribute Declaration Macro.

Helper macro to declare a list attribute.

Parameters

• _att_id – List Attribute ID.

• _data_elem_seq – Data element sequence for the list.

• _type_size – SDP type and size descriptor.

BT_SDP_SERVICE_ID(_uuid)

SDP Service ID Attribute Declaration Macro.

Helper macro to declare a service ID attribute.

Parameters

• _uuid – Service ID 16bit UUID.

BT_SDP_SERVICE_NAME(_name)

SDP Name Attribute Declaration Macro.

Helper macro to declare a service name attribute.

Parameters

• _name – Service name as a string (up to 256 chars).

BT_SDP_SUPPORTED_FEATURES(_features)

SDP Supported Features Attribute Declaration Macro.

Helper macro to declare supported features of a profile/protocol.

Parameters

• _features – Feature mask as 16bit unsigned integer.

BT_SDP_RECORD(_attrs)

SDP Service Declaration Macro.

Helper macro to declare a service.

Parameters

• _attrs – List of attributes for the service record.

Typedefs

typedef uint8_t (*bt_sdp_discover_func_t)(struct bt_conn *conn, struct bt_sdp_client_result
*result)

Callback type reporting to user that there is a resolved result on remote for given UUID and
the result record buffer can be used by user for further inspection.

376 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

A function of this type is given by the user to the bt_sdp_discover_params object. It’ll be called
on each valid record discovery completion for given UUID. When UUID resolution gives back
no records then NULL is passed to the user. Otherwise user can get valid record(s) and then
the internal hint ‘next record’ is set to false saying the UUID resolution is complete or the
hint can be set by caller to true meaning that next record is available for given UUID. The
returned function value allows the user to control retrieving follow-up resolved records if any.
If the user doesn’t want to read more resolved records for given UUID since current record
data fulfills its requirements then should return BT_SDP_DISCOVER_UUID_STOP. Otherwise
returned value means more subcall iterations are allowable.

Param conn Connection object identifying connection to queried remote.

Param result Object pointing to logical unparsed SDP record collected on base of
response driven by given UUID.

Return BT_SDP_DISCOVER_UUID_STOP in case of no more need to read
next record data and continue discovery for given UUID. By returning
BT_SDP_DISCOVER_UUID_CONTINUE user allows this discovery continuation.

Enums

enum [anonymous]

Helper enum to be used as return value of bt_sdp_discover_func_t. The value informs the
caller to perform further pending actions or stop them.

Values:

enumerator BT_SDP_DISCOVER_UUID_STOP = 0

enumerator BT_SDP_DISCOVER_UUID_CONTINUE

enum bt_sdp_proto

Protocols to be asked about specific parameters.

Values:

enumerator BT_SDP_PROTO_RFCOMM = 0x0003

enumerator BT_SDP_PROTO_L2CAP = 0x0100

Functions

int bt_sdp_register_service(struct bt_sdp_record *service)

Register a Service Record.

Register a Service Record. Applications can make use of macros
such as BT_SDP_DECLARE_SERVICE, BT_SDP_LIST, BT_SDP_SERVICE_ID,
BT_SDP_SERVICE_NAME, etc. A service declaration must start with BT_SDP_NEW_SERVICE.

Parameters

• service – Service record declared using BT_SDP_DECLARE_SERVICE.

Returns 0 in case of success or negative value in case of error.

7.4. Bluetooth 377

Zephyr Project Documentation, Release 2.7.0-rc2

int bt_sdp_discover(struct bt_conn *conn, const struct bt_sdp_discover_params *params)

Allows user to start SDP discovery session.

The function performs SDP service discovery on remote server driven by user delivered discov-
ery parameters. Discovery session is made as soon as no SDP transaction is ongoing between
peers and if any then this one is queued to be processed at discovery completion of previous
one. On the service discovery completion the callback function will be called to get feedback
to user about findings.

Parameters

• conn – Object identifying connection to remote.

• params – SDP discovery parameters.

Returns 0 in case of success or negative value in case of error.

int bt_sdp_discover_cancel(struct bt_conn *conn, const struct bt_sdp_discover_params
*params)

Release waiting SDP discovery request.

It can cancel valid waiting SDP client request identified by SDP discovery parameters object.

Parameters

• conn – Object identifying connection to remote.

• params – SDP discovery parameters.

Returns 0 in case of success or negative value in case of error.

int bt_sdp_get_proto_param(const struct net_buf *buf, enum bt_sdp_proto proto, uint16_t
*param)

Give to user parameter value related to given stacked protocol UUID.

API extracts specific parameter associated with given protocol UUID available in Protocol
Descriptor List attribute.

Parameters

• buf – Original buffered raw record data.

• proto – Known protocol to be checked like RFCOMM or L2CAP.

• param – On success populated by found parameter value.

Returns 0 on success when specific parameter associated with given protocol value
is found, or negative if error occurred during processing.

int bt_sdp_get_addl_proto_param(const struct net_buf *buf, enum bt_sdp_proto proto, uint8_t
param_index, uint16_t *param)

Get additional parameter value related to given stacked protocol UUID.

API extracts specific parameter associated with given protocol UUID available in Additional
Protocol Descriptor List attribute.

Parameters

• buf – Original buffered raw record data.

• proto – Known protocol to be checked like RFCOMM or L2CAP.

• param_index – There may be more than one parameter realted to the given
protocol UUID. This function returns the result that is indexed by this parame-
ter. It’s value is from 0, 0 means the first matched result, 1 means the second
matched result.

• param – [out] On success populated by found parameter value.

378 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Returns 0 on success when a specific parameter associated with a given protocol
value is found, or negative if error occurred during processing.

int bt_sdp_get_profile_version(const struct net_buf *buf, uint16_t profile, uint16_t *version)

Get profile version.

Helper API extracting remote profile version number. To get it proper generic profile parame-
ter needs to be selected usually listed in SDP Interoperability Requirements section for given
profile specification.

Parameters

• buf – Original buffered raw record data.

• profile – Profile family identifier the profile belongs.

• version – On success populated by found version number.

Returns 0 on success, negative value if error occurred during processing.

int bt_sdp_get_features(const struct net_buf *buf, uint16_t *features)

Get SupportedFeatures attribute value.

Allows if exposed by remote retrieve SupportedFeature attribute.

Parameters

• buf – Buffer holding original raw record data from remote.

• features – On success object to be populated with SupportedFeature mask.

Returns 0 on success if feature found and valid, negative in case any error

struct bt_sdp_data_elem

#include <sdp.h> SDP Generic Data Element Value.

struct bt_sdp_attribute

#include <sdp.h> SDP Attribute Value.

struct bt_sdp_record

#include <sdp.h> SDP Service Record Value.

struct bt_sdp_client_result

#include <sdp.h> Generic SDP Client Query Result data holder.

struct bt_sdp_discover_params

#include <sdp.h> Main user structure used in SDP discovery of remote.

Public Members

const struct bt_uuid *uuid

UUID (service) to be discovered on remote SDP entity

bt_sdp_discover_func_t func

Discover callback to be called on resolved SDP record

struct net_buf_pool *pool

Memory buffer enabled by user for SDP query results

7.4. Bluetooth 379

Zephyr Project Documentation, Release 2.7.0-rc2

7.4.14 Universal Unique Identifiers (UUIDs)

API Reference

group bt_uuid

UUIDs.

Defines

BT_UUID_SIZE_16

Size in octets of a 16-bit UUID

BT_UUID_SIZE_32

Size in octets of a 32-bit UUID

BT_UUID_SIZE_128

Size in octets of a 128-bit UUID

BT_UUID_INIT_16(value)

Initialize a 16-bit UUID.

Parameters

• value – 16-bit UUID value in host endianness.

BT_UUID_INIT_32(value)

Initialize a 32-bit UUID.

Parameters

• value – 32-bit UUID value in host endianness.

BT_UUID_INIT_128(value...)

Initialize a 128-bit UUID.

Parameters

• value – 128-bit UUID array values in little-endian format. Can be combined
with BT_UUID_128_ENCODE to initialize a UUID from the readable form of
UUIDs.

BT_UUID_DECLARE_16(value)

Helper to declare a 16-bit UUID inline.

Parameters

• value – 16-bit UUID value in host endianness.

Returns Pointer to a generic UUID.

BT_UUID_DECLARE_32(value)

Helper to declare a 32-bit UUID inline.

Parameters

• value – 32-bit UUID value in host endianness.

Returns Pointer to a generic UUID.

380 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

BT_UUID_DECLARE_128(value...)

Helper to declare a 128-bit UUID inline.

Parameters

• value – 128-bit UUID array values in little-endian format. Can be combined
with BT_UUID_128_ENCODE to declare a UUID from the readable form of
UUIDs.

Returns Pointer to a generic UUID.

BT_UUID_16(__u)

Helper macro to access the 16-bit UUID from a generic UUID.

BT_UUID_32(__u)

Helper macro to access the 32-bit UUID from a generic UUID.

BT_UUID_128(__u)

Helper macro to access the 128-bit UUID from a generic UUID.

BT_UUID_128_ENCODE(w32, w1, w2, w3, w48)

Encode 128 bit UUID into array values in little-endian format.

Helper macro to initialize a 128-bit UUID array value from the readable form of
UUIDs, or encode 128-bit UUID values into advertising data Can be combined with
BT_UUID_DECLARE_128 to declare a 128-bit UUID.

Example of how to declare the UUID 6E400001-B5A3-F393-E0A9-E50E24DCCA9E

BT_UUID_DECLARE_128(
BT_UUID_128_ENCODE(0x6E400001, 0xB5A3, 0xF393, 0xE0A9, 0xE50E24DCCA9E))

Example of how to encode the UUID 6E400001-B5A3-F393-E0A9-E50E24DCCA9E into adver-
tising data.

BT_DATA_BYTES(BT_DATA_UUID128_ALL,
BT_UUID_128_ENCODE(0x6E400001, 0xB5A3, 0xF393, 0xE0A9, 0xE50E24DCCA9E))

Just replace the hyphen by the comma and add 0x prefixes.

Parameters

• w32 – First part of the UUID (32 bits)

• w1 – Second part of the UUID (16 bits)

• w2 – Third part of the UUID (16 bits)

• w3 – Fourth part of the UUID (16 bits)

• w48 – Fifth part of the UUID (48 bits)

Returns The comma separated values for UUID 128 initializer that may be used
directly as an argument for BT_UUID_INIT_128 or BT_UUID_DECLARE_128

BT_UUID_16_ENCODE(w16)

Encode 16-bit UUID into array values in little-endian format.

Helper macro to encode 16-bit UUID values into advertising data.

Example of how to encode the UUID 0x180a into advertising data.

7.4. Bluetooth 381

Zephyr Project Documentation, Release 2.7.0-rc2

BT_DATA_BYTES(BT_DATA_UUID16_ALL, BT_UUID_16_ENCODE(0x180a))

Parameters

• w16 – UUID value (16-bits)

Returns The comma separated values for UUID 16 value that may be used directly
as an argument for BT_DATA_BYTES.

BT_UUID_32_ENCODE(w32)

Encode 32-bit UUID into array values in little-endian format.

Helper macro to encode 32-bit UUID values into advertising data.

Example of how to encode the UUID 0x180a01af into advertising data.

BT_DATA_BYTES(BT_DATA_UUID32_ALL, BT_UUID_32_ENCODE(0x180a01af))

Parameters

• w32 – UUID value (32-bits)

Returns The comma separated values for UUID 32 value that may be used directly
as an argument for BT_DATA_BYTES.

BT_UUID_STR_LEN

Recommended length of user string buffer for Bluetooth UUID.

The recommended length guarantee the output of UUID conversion will not lose valuable
information about the UUID being processed. If the length of the UUID is known the string
can be shorter.

BT_UUID_GAP_VAL

Generic Access UUID value.

BT_UUID_GAP

Generic Access.

BT_UUID_GATT_VAL

Generic attribute UUID value.

BT_UUID_GATT

Generic Attribute.

BT_UUID_IAS_VAL

Immediate Alert Service UUID value.

BT_UUID_IAS

Immediate Alert Service.

BT_UUID_LLS_VAL

Link Loss Service UUID value.

382 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

BT_UUID_LLS

Link Loss Service.

BT_UUID_TPS_VAL

Tx Power Service UUID value.

BT_UUID_TPS

Tx Power Service.

BT_UUID_CTS_VAL

Current Time Service UUID value.

BT_UUID_CTS

Current Time Service.

BT_UUID_HTS_VAL

Health Thermometer Service UUID value.

BT_UUID_HTS

Health Thermometer Service.

BT_UUID_DIS_VAL

Device Information Service UUID value.

BT_UUID_DIS

Device Information Service.

BT_UUID_HRS_VAL

Heart Rate Service UUID value.

BT_UUID_HRS

Heart Rate Service.

BT_UUID_BAS_VAL

Battery Service UUID value.

BT_UUID_BAS

Battery Service.

BT_UUID_HIDS_VAL

HID Service UUID value.

BT_UUID_HIDS

HID Service.

BT_UUID_RSCS_VAL

Running Speed and Cadence Service UUID value.

7.4. Bluetooth 383

Zephyr Project Documentation, Release 2.7.0-rc2

BT_UUID_RSCS

Running Speed and Cadence Service.

BT_UUID_CSC_VAL

Cycling Speed and Cadence Service UUID value.

BT_UUID_CSC

Cycling Speed and Cadence Service.

BT_UUID_ESS_VAL

Environmental Sensing Service UUID value.

BT_UUID_ESS

Environmental Sensing Service.

BT_UUID_BMS_VAL

Bond Management Service UUID value.

BT_UUID_BMS

Bond Management Service.

BT_UUID_IPSS_VAL

IP Support Service UUID value.

BT_UUID_IPSS

IP Support Service.

BT_UUID_HPS_VAL

HTTP Proxy Service UUID value.

BT_UUID_HPS

HTTP Proxy Service.

BT_UUID_OTS_VAL

Object Transfer Service UUID value.

BT_UUID_OTS

Object Transfer Service.

BT_UUID_MESH_PROV_VAL

Mesh Provisioning Service UUID value.

BT_UUID_MESH_PROV

Mesh Provisioning Service.

BT_UUID_MESH_PROXY_VAL

Mesh Proxy Service UUID value.

384 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

BT_UUID_MESH_PROXY

Mesh Proxy Service.

BT_UUID_AICS_VAL

Audio Input Control Service value.

BT_UUID_AICS

Audio Input Control Service.

BT_UUID_VCS_VAL

Volume Control Service value.

BT_UUID_VCS

Volume Control Service.

BT_UUID_VOCS_VAL

Volume Offset Control Service value.

BT_UUID_VOCS

Volume Offset Control Service.

BT_UUID_MICS_VAL

Microphone Input Control Service value.

BT_UUID_MICS

Microphone Input Control Service.

BT_UUID_GATT_PRIMARY_VAL

GATT Primary Service UUID value.

BT_UUID_GATT_PRIMARY

GATT Primary Service.

BT_UUID_GATT_SECONDARY_VAL

GATT Secondary Service UUID value.

BT_UUID_GATT_SECONDARY

GATT Secondary Service.

BT_UUID_GATT_INCLUDE_VAL

GATT Include Service UUID value.

BT_UUID_GATT_INCLUDE

GATT Include Service.

BT_UUID_GATT_CHRC_VAL

GATT Characteristic UUID value.

7.4. Bluetooth 385

Zephyr Project Documentation, Release 2.7.0-rc2

BT_UUID_GATT_CHRC

GATT Characteristic.

BT_UUID_GATT_CEP_VAL

GATT Characteristic Extended Properties UUID value.

BT_UUID_GATT_CEP

GATT Characteristic Extended Properties.

BT_UUID_GATT_CUD_VAL

GATT Characteristic User Description UUID value.

BT_UUID_GATT_CUD

GATT Characteristic User Description.

BT_UUID_GATT_CCC_VAL

GATT Client Characteristic Configuration UUID value.

BT_UUID_GATT_CCC

GATT Client Characteristic Configuration.

BT_UUID_GATT_SCC_VAL

GATT Server Characteristic Configuration UUID value.

BT_UUID_GATT_SCC

GATT Server Characteristic Configuration.

BT_UUID_GATT_CPF_VAL

GATT Characteristic Presentation Format UUID value.

BT_UUID_GATT_CPF

GATT Characteristic Presentation Format.

BT_UUID_GATT_CAF_VAL

GATT Characteristic Aggregated Format UUID value.

BT_UUID_GATT_CAF

GATT Characteristic Aggregated Format.

BT_UUID_VALID_RANGE_VAL

Valid Range Descriptor UUID value.

BT_UUID_VALID_RANGE

Valid Range Descriptor.

BT_UUID_HIDS_EXT_REPORT_VAL

HID External Report Descriptor UUID value.

386 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

BT_UUID_HIDS_EXT_REPORT

HID External Report Descriptor.

BT_UUID_HIDS_REPORT_REF_VAL

HID Report Reference Descriptor UUID value.

BT_UUID_HIDS_REPORT_REF

HID Report Reference Descriptor.

BT_UUID_ES_CONFIGURATION_VAL

Environmental Sensing Configuration Descriptor UUID value.

BT_UUID_ES_CONFIGURATION

Environmental Sensing Configuration Descriptor.

BT_UUID_ES_MEASUREMENT_VAL

Environmental Sensing Measurement Descriptor UUID value.

BT_UUID_ES_MEASUREMENT

Environmental Sensing Measurement Descriptor.

BT_UUID_ES_TRIGGER_SETTING_VAL

Environmental Sensing Trigger Setting Descriptor UUID value.

BT_UUID_ES_TRIGGER_SETTING

Environmental Sensing Trigger Setting Descriptor.

BT_UUID_GAP_DEVICE_NAME_VAL

GAP Characteristic Device Name UUID value.

BT_UUID_GAP_DEVICE_NAME

GAP Characteristic Device Name.

BT_UUID_GAP_APPEARANCE_VAL

GAP Characteristic Appearance UUID value.

BT_UUID_GAP_APPEARANCE

GAP Characteristic Appearance.

BT_UUID_GAP_PPCP_VAL

GAP Characteristic Peripheral Preferred Connection Parameters UUID value.

BT_UUID_GAP_PPCP

GAP Characteristic Peripheral Preferred Connection Parameters.

BT_UUID_GATT_SC_VAL

GATT Characteristic Service Changed UUID value.

7.4. Bluetooth 387

Zephyr Project Documentation, Release 2.7.0-rc2

BT_UUID_GATT_SC

GATT Characteristic Service Changed.

BT_UUID_ALERT_LEVEL_VAL

Alert Level UUID value.

BT_UUID_ALERT_LEVEL

Alert Level.

BT_UUID_TPS_TX_POWER_LEVEL_VAL

TPS Characteristic Tx Power Level UUID value.

BT_UUID_TPS_TX_POWER_LEVEL

TPS Characteristic Tx Power Level.

BT_UUID_BAS_BATTERY_LEVEL_VAL

BAS Characteristic Battery Level UUID value.

BT_UUID_BAS_BATTERY_LEVEL

BAS Characteristic Battery Level.

BT_UUID_HTS_MEASUREMENT_VAL

HTS Characteristic Measurement Value UUID value.

BT_UUID_HTS_MEASUREMENT

HTS Characteristic Measurement Value.

BT_UUID_HIDS_BOOT_KB_IN_REPORT_VAL

HID Characteristic Boot Keyboard Input Report UUID value.

BT_UUID_HIDS_BOOT_KB_IN_REPORT

HID Characteristic Boot Keyboard Input Report.

BT_UUID_DIS_SYSTEM_ID_VAL

DIS Characteristic System ID UUID value.

BT_UUID_DIS_SYSTEM_ID

DIS Characteristic System ID.

BT_UUID_DIS_MODEL_NUMBER_VAL

DIS Characteristic Model Number String UUID value.

BT_UUID_DIS_MODEL_NUMBER

DIS Characteristic Model Number String.

BT_UUID_DIS_SERIAL_NUMBER_VAL

DIS Characteristic Serial Number String UUID value.

388 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

BT_UUID_DIS_SERIAL_NUMBER

DIS Characteristic Serial Number String.

BT_UUID_DIS_FIRMWARE_REVISION_VAL

DIS Characteristic Firmware Revision String UUID value.

BT_UUID_DIS_FIRMWARE_REVISION

DIS Characteristic Firmware Revision String.

BT_UUID_DIS_HARDWARE_REVISION_VAL

DIS Characteristic Hardware Revision String UUID value.

BT_UUID_DIS_HARDWARE_REVISION

DIS Characteristic Hardware Revision String.

BT_UUID_DIS_SOFTWARE_REVISION_VAL

DIS Characteristic Software Revision String UUID value.

BT_UUID_DIS_SOFTWARE_REVISION

DIS Characteristic Software Revision String.

BT_UUID_DIS_MANUFACTURER_NAME_VAL

DIS Characteristic Manufacturer Name String UUID Value.

BT_UUID_DIS_MANUFACTURER_NAME

DIS Characteristic Manufacturer Name String.

BT_UUID_DIS_PNP_ID_VAL

DIS Characteristic PnP ID UUID value.

BT_UUID_DIS_PNP_ID

DIS Characteristic PnP ID.

BT_UUID_CTS_CURRENT_TIME_VAL

CTS Characteristic Current Time UUID value.

BT_UUID_CTS_CURRENT_TIME

CTS Characteristic Current Time.

BT_UUID_MAGN_DECLINATION_VAL

Magnetic Declination Characteristic UUID value.

BT_UUID_MAGN_DECLINATION

Magnetic Declination Characteristic.

BT_UUID_HIDS_BOOT_KB_OUT_REPORT_VAL

HID Boot Keyboard Output Report Characteristic UUID value.

7.4. Bluetooth 389

Zephyr Project Documentation, Release 2.7.0-rc2

BT_UUID_HIDS_BOOT_KB_OUT_REPORT

HID Boot Keyboard Output Report Characteristic.

BT_UUID_HIDS_BOOT_MOUSE_IN_REPORT_VAL

HID Boot Mouse Input Report Characteristic UUID value.

BT_UUID_HIDS_BOOT_MOUSE_IN_REPORT

HID Boot Mouse Input Report Characteristic.

BT_UUID_HRS_MEASUREMENT_VAL

HRS Characteristic Measurement Interval UUID value.

BT_UUID_HRS_MEASUREMENT

HRS Characteristic Measurement Interval.

BT_UUID_HRS_BODY_SENSOR

HRS Characteristic Body Sensor Location.

BT_UUID_HRS_BODY_SENSOR_VAL

BT_UUID_HRS_CONTROL_POINT

HRS Characteristic Control Point.

BT_UUID_HRS_CONTROL_POINT_VAL

HRS Characteristic Control Point UUID value.

BT_UUID_HIDS_INFO_VAL

HID Information Characteristic UUID value.

BT_UUID_HIDS_INFO

HID Information Characteristic.

BT_UUID_HIDS_REPORT_MAP_VAL

HID Report Map Characteristic UUID value.

BT_UUID_HIDS_REPORT_MAP

HID Report Map Characteristic.

BT_UUID_HIDS_CTRL_POINT_VAL

HID Control Point Characteristic UUID value.

BT_UUID_HIDS_CTRL_POINT

HID Control Point Characteristic.

BT_UUID_HIDS_REPORT_VAL

HID Report Characteristic UUID value.

BT_UUID_HIDS_REPORT

HID Report Characteristic.

390 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

BT_UUID_HIDS_PROTOCOL_MODE_VAL

HID Protocol Mode Characteristic UUID value.

BT_UUID_HIDS_PROTOCOL_MODE

HID Protocol Mode Characteristic.

BT_UUID_RSC_MEASUREMENT_VAL

RSC Measurement Characteristic UUID value.

BT_UUID_RSC_MEASUREMENT

RSC Measurement Characteristic.

BT_UUID_RSC_FEATURE_VAL

RSC Feature Characteristic UUID value.

BT_UUID_RSC_FEATURE

RSC Feature Characteristic.

BT_UUID_CSC_MEASUREMENT_VAL

CSC Measurement Characteristic UUID value.

BT_UUID_CSC_MEASUREMENT

CSC Measurement Characteristic.

BT_UUID_CSC_FEATURE_VAL

CSC Feature Characteristic UUID value.

BT_UUID_CSC_FEATURE

CSC Feature Characteristic.

BT_UUID_SENSOR_LOCATION_VAL

Sensor Location Characteristic UUID value.

BT_UUID_SENSOR_LOCATION

Sensor Location Characteristic.

BT_UUID_SC_CONTROL_POINT_VAL

SC Control Point Characteristic UUID value.

BT_UUID_SC_CONTROL_POINT

SC Control Point Characteristic.

BT_UUID_ELEVATION_VAL

Elevation Characteristic UUID value.

BT_UUID_ELEVATION

Elevation Characteristic.

7.4. Bluetooth 391

Zephyr Project Documentation, Release 2.7.0-rc2

BT_UUID_PRESSURE_VAL

Pressure Characteristic UUID value.

BT_UUID_PRESSURE

Pressure Characteristic.

BT_UUID_TEMPERATURE_VAL

Temperature Characteristic UUID value.

BT_UUID_TEMPERATURE

Temperature Characteristic.

BT_UUID_HUMIDITY_VAL

Humidity Characteristic UUID value.

BT_UUID_HUMIDITY

Humidity Characteristic.

BT_UUID_TRUE_WIND_SPEED_VAL

True Wind Speed Characteristic UUID value.

BT_UUID_TRUE_WIND_SPEED

True Wind Speed Characteristic.

BT_UUID_TRUE_WIND_DIR_VAL

True Wind Direction Characteristic UUID value.

BT_UUID_TRUE_WIND_DIR

True Wind Direction Characteristic.

BT_UUID_APPARENT_WIND_SPEED_VAL

Apparent Wind Speed Characteristic UUID value.

BT_UUID_APPARENT_WIND_SPEED

Apparent Wind Speed Characteristic.

BT_UUID_APPARENT_WIND_DIR_VAL

Apparent Wind Direction Characteristic UUID value.

BT_UUID_APPARENT_WIND_DIR

Apparent Wind Direction Characteristic.

BT_UUID_GUST_FACTOR_VAL

Gust Factor Characteristic UUID value.

BT_UUID_GUST_FACTOR

Gust Factor Characteristic.

392 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

BT_UUID_POLLEN_CONCENTRATION_VAL

Pollen Concentration Characteristic UUID value.

BT_UUID_POLLEN_CONCENTRATION

Pollen Concentration Characteristic.

BT_UUID_UV_INDEX_VAL

UV Index Characteristic UUID value.

BT_UUID_UV_INDEX

UV Index Characteristic.

BT_UUID_IRRADIANCE_VAL

Irradiance Characteristic UUID value.

BT_UUID_IRRADIANCE

Irradiance Characteristic.

BT_UUID_RAINFALL_VAL

Rainfall Characteristic UUID value.

BT_UUID_RAINFALL

Rainfall Characteristic.

BT_UUID_WIND_CHILL_VAL

Wind Chill Characteristic UUID value.

BT_UUID_WIND_CHILL

Wind Chill Characteristic.

BT_UUID_HEAT_INDEX_VAL

Heat Index Characteristic UUID value.

BT_UUID_HEAT_INDEX

Heat Index Characteristic.

BT_UUID_DEW_POINT_VAL

Dew Point Characteristic UUID value.

BT_UUID_DEW_POINT

Dew Point Characteristic.

BT_UUID_DESC_VALUE_CHANGED_VAL

Descriptor Value Changed Characteristic UUID value.

BT_UUID_DESC_VALUE_CHANGED

Descriptor Value Changed Characteristic.

7.4. Bluetooth 393

Zephyr Project Documentation, Release 2.7.0-rc2

BT_UUID_MAGN_FLUX_DENSITY_2D_VAL

Magnetic Flux Density - 2D Characteristic UUID value.

BT_UUID_MAGN_FLUX_DENSITY_2D

Magnetic Flux Density - 2D Characteristic.

BT_UUID_MAGN_FLUX_DENSITY_3D_VAL

Magnetic Flux Density - 3D Characteristic UUID value.

BT_UUID_MAGN_FLUX_DENSITY_3D

Magnetic Flux Density - 3D Characteristic.

BT_UUID_BAR_PRESSURE_TREND_VAL

Barometric Pressure Trend Characteristic UUID value.

BT_UUID_BAR_PRESSURE_TREND

Barometric Pressure Trend Characteristic.

BT_UUID_BMS_CONTROL_POINT_VAL

Bond Management Control Point UUID value.

BT_UUID_BMS_CONTROL_POINT

Bond Management Control Point.

BT_UUID_BMS_FEATURE_VAL

Bond Management Feature UUID value.

BT_UUID_BMS_FEATURE

Bond Management Feature.

BT_UUID_CENTRAL_ADDR_RES_VAL

Central Address Resolution Characteristic UUID value.

BT_UUID_CENTRAL_ADDR_RES

Central Address Resolution Characteristic.

BT_UUID_URI_VAL

URI UUID value.

BT_UUID_URI

URI.

BT_UUID_HTTP_HEADERS_VAL

HTTP Headers UUID value.

BT_UUID_HTTP_HEADERS

HTTP Headers.

394 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

BT_UUID_HTTP_STATUS_CODE_VAL

HTTP Status Code UUID value.

BT_UUID_HTTP_STATUS_CODE

HTTP Status Code.

BT_UUID_HTTP_ENTITY_BODY_VAL

HTTP Entity Body UUID value.

BT_UUID_HTTP_ENTITY_BODY

HTTP Entity Body.

BT_UUID_HTTP_CONTROL_POINT_VAL

HTTP Control Point UUID value.

BT_UUID_HTTP_CONTROL_POINT

HTTP Control Point.

BT_UUID_HTTPS_SECURITY_VAL

HTTPS Security UUID value.

BT_UUID_HTTPS_SECURITY

HTTPS Security.

BT_UUID_OTS_FEATURE_VAL

OTS Feature Characteristic UUID value.

BT_UUID_OTS_FEATURE

OTS Feature Characteristic.

BT_UUID_OTS_NAME_VAL

OTS Object Name Characteristic UUID value.

BT_UUID_OTS_NAME

OTS Object Name Characteristic.

BT_UUID_OTS_TYPE_VAL

OTS Object Type Characteristic UUID value.

BT_UUID_OTS_TYPE

OTS Object Type Characteristic.

BT_UUID_OTS_SIZE_VAL

OTS Object Size Characteristic UUID value.

BT_UUID_OTS_SIZE

OTS Object Size Characteristic.

7.4. Bluetooth 395

Zephyr Project Documentation, Release 2.7.0-rc2

BT_UUID_OTS_FIRST_CREATED_VAL

OTS Object First-Created Characteristic UUID value.

BT_UUID_OTS_FIRST_CREATED

OTS Object First-Created Characteristic.

BT_UUID_OTS_LAST_MODIFIED_VAL

OTS Object Last-Modified Characteristic UUI value.

BT_UUID_OTS_LAST_MODIFIED

OTS Object Last-Modified Characteristic.

BT_UUID_OTS_ID_VAL

OTS Object ID Characteristic UUID value.

BT_UUID_OTS_ID

OTS Object ID Characteristic.

BT_UUID_OTS_PROPERTIES_VAL

OTS Object Properties Characteristic UUID value.

BT_UUID_OTS_PROPERTIES

OTS Object Properties Characteristic.

BT_UUID_OTS_ACTION_CP_VAL

OTS Object Action Control Point Characteristic UUID value.

BT_UUID_OTS_ACTION_CP

OTS Object Action Control Point Characteristic.

BT_UUID_OTS_LIST_CP_VAL

OTS Object List Control Point Characteristic UUID value.

BT_UUID_OTS_LIST_CP

OTS Object List Control Point Characteristic.

BT_UUID_OTS_LIST_FILTER_VAL

OTS Object List Filter Characteristic UUID value.

BT_UUID_OTS_LIST_FILTER

OTS Object List Filter Characteristic.

BT_UUID_OTS_CHANGED_VAL

OTS Object Changed Characteristic UUID value.

BT_UUID_OTS_CHANGED

OTS Object Changed Characteristic.

396 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

BT_UUID_OTS_TYPE_UNSPECIFIED_VAL

OTS Unspecified Object Type UUID value.

BT_UUID_OTS_TYPE_UNSPECIFIED

OTS Unspecified Object Type.

BT_UUID_OTS_DIRECTORY_LISTING_VAL

OTS Directory Listing UUID value.

BT_UUID_OTS_DIRECTORY_LISTING

OTS Directory Listing.

BT_UUID_MESH_PROV_DATA_IN_VAL

Mesh Provisioning Data In UUID value.

BT_UUID_MESH_PROV_DATA_IN

Mesh Provisioning Data In.

BT_UUID_MESH_PROV_DATA_OUT_VAL

Mesh Provisioning Data Out UUID value.

BT_UUID_MESH_PROV_DATA_OUT

Mesh Provisioning Data Out.

BT_UUID_MESH_PROXY_DATA_IN_VAL

Mesh Proxy Data In UUID value.

BT_UUID_MESH_PROXY_DATA_IN

Mesh Proxy Data In.

BT_UUID_MESH_PROXY_DATA_OUT_VAL

Mesh Proxy Data Out UUID value.

BT_UUID_MESH_PROXY_DATA_OUT

Mesh Proxy Data Out.

BT_UUID_GATT_CLIENT_FEATURES_VAL

Client Supported Features UUID value.

BT_UUID_GATT_CLIENT_FEATURES

Client Supported Features.

BT_UUID_GATT_DB_HASH_VAL

Database Hash UUID value.

BT_UUID_GATT_DB_HASH

Database Hash.

7.4. Bluetooth 397

Zephyr Project Documentation, Release 2.7.0-rc2

BT_UUID_GATT_SERVER_FEATURES_VAL

Server Supported Features UUID value.

BT_UUID_GATT_SERVER_FEATURES

Server Supported Features.

BT_UUID_AICS_STATE_VAL

Audio Input Control Service State value.

BT_UUID_AICS_STATE

Audio Input Control Service State.

BT_UUID_AICS_GAIN_SETTINGS_VAL

Audio Input Control Service Gain Settings Properties value.

BT_UUID_AICS_GAIN_SETTINGS

Audio Input Control Service Gain Settings Properties.

BT_UUID_AICS_INPUT_TYPE_VAL

Audio Input Control Service Input Type value.

BT_UUID_AICS_INPUT_TYPE

Audio Input Control Service Input Type.

BT_UUID_AICS_INPUT_STATUS_VAL

Audio Input Control Service Input Status value.

BT_UUID_AICS_INPUT_STATUS

Audio Input Control Service Input Status.

BT_UUID_AICS_CONTROL_VAL

Audio Input Control Service Control Point value.

BT_UUID_AICS_CONTROL

Audio Input Control Service Control Point.

BT_UUID_AICS_DESCRIPTION_VAL

Audio Input Control Service Input Description value.

BT_UUID_AICS_DESCRIPTION

Audio Input Control Service Input Description.

BT_UUID_VCS_STATE_VAL

Volume Control Setting value.

BT_UUID_VCS_STATE

Volume Control Setting.

398 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

BT_UUID_VCS_CONTROL_VAL

Volume Control Control point value.

BT_UUID_VCS_CONTROL

Volume Control Control point.

BT_UUID_VCS_FLAGS_VAL

Volume Control Flags value.

BT_UUID_VCS_FLAGS

Volume Control Flags.

BT_UUID_VOCS_STATE_VAL

Volume Offset State value.

BT_UUID_VOCS_STATE

Volume Offset State.

BT_UUID_VOCS_LOCATION_VAL

Audio Location value.

BT_UUID_VOCS_LOCATION

Audio Location.

BT_UUID_VOCS_CONTROL_VAL

Volume Offset Control Point value.

BT_UUID_VOCS_CONTROL

Volume Offset Control Point.

BT_UUID_VOCS_DESCRIPTION_VAL

Volume Offset Audio Output Description value.

BT_UUID_VOCS_DESCRIPTION

Volume Offset Audio Output Description.

BT_UUID_MICS_MUTE_VAL

Microphone Input Control Service Mute value.

BT_UUID_MICS_MUTE

Microphone Input Control Service Mute.

BT_UUID_SDP_VAL

BT_UUID_SDP

BT_UUID_UDP_VAL

7.4. Bluetooth 399

Zephyr Project Documentation, Release 2.7.0-rc2

BT_UUID_UDP

BT_UUID_RFCOMM_VAL

BT_UUID_RFCOMM

BT_UUID_TCP_VAL

BT_UUID_TCP

BT_UUID_TCS_BIN_VAL

BT_UUID_TCS_BIN

BT_UUID_TCS_AT_VAL

BT_UUID_TCS_AT

BT_UUID_ATT_VAL

BT_UUID_ATT

BT_UUID_OBEX_VAL

BT_UUID_OBEX

BT_UUID_IP_VAL

BT_UUID_IP

BT_UUID_FTP_VAL

BT_UUID_FTP

BT_UUID_HTTP_VAL

BT_UUID_HTTP

BT_UUID_BNEP_VAL

BT_UUID_BNEP

BT_UUID_UPNP_VAL

BT_UUID_UPNP

400 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

BT_UUID_HIDP_VAL

BT_UUID_HIDP

BT_UUID_HCRP_CTRL_VAL

BT_UUID_HCRP_CTRL

BT_UUID_HCRP_DATA_VAL

BT_UUID_HCRP_DATA

BT_UUID_HCRP_NOTE_VAL

BT_UUID_HCRP_NOTE

BT_UUID_AVCTP_VAL

BT_UUID_AVCTP

BT_UUID_AVDTP_VAL

BT_UUID_AVDTP

BT_UUID_CMTP_VAL

BT_UUID_CMTP

BT_UUID_UDI_VAL

BT_UUID_UDI

BT_UUID_MCAP_CTRL_VAL

BT_UUID_MCAP_CTRL

BT_UUID_MCAP_DATA_VAL

BT_UUID_MCAP_DATA

BT_UUID_L2CAP_VAL

BT_UUID_L2CAP

7.4. Bluetooth 401

Zephyr Project Documentation, Release 2.7.0-rc2

Enums

enum [anonymous]

Bluetooth UUID types.

Values:

enumerator BT_UUID_TYPE_16

UUID type 16-bit.

enumerator BT_UUID_TYPE_32

UUID type 32-bit.

enumerator BT_UUID_TYPE_128

UUID type 128-bit.

Functions

int bt_uuid_cmp(const struct bt_uuid *u1, const struct bt_uuid *u2)

Compare Bluetooth UUIDs.

Compares 2 Bluetooth UUIDs, if the types are different both UUIDs are first converted to 128
bits format before comparing.

Parameters

• u1 – First Bluetooth UUID to compare

• u2 – Second Bluetooth UUID to compare

Returns negative value if u1 < u2, 0 if u1 == u2, else positive

bool bt_uuid_create(struct bt_uuid *uuid, const uint8_t *data, uint8_t data_len)

Create a bt_uuid from a little-endian data buffer.

Create a bt_uuid from a little-endian data buffer. The data_len parameter is used to determine
whether the UUID is in 16, 32 or 128 bit format (length 2, 4 or 16). Note: 32 bit format is
not allowed over the air.

Parameters

• uuid – Pointer to the bt_uuid variable

• data – pointer to UUID stored in little-endian data buffer

• data_len – length of the UUID in the data buffer

Returns true if the data was valid and the UUID was successfully created.

void bt_uuid_to_str(const struct bt_uuid *uuid, char *str, size_t len)

Convert Bluetooth UUID to string.

Converts Bluetooth UUID to string. UUID can be in any format, 16-bit, 32-bit or 128-bit.

Parameters

• uuid – Bluetooth UUID

• str – pointer where to put converted string

• len – length of str

Returns N/A

402 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

struct bt_uuid

#include <uuid.h> This is a ‘tentative’ type and should be used as a pointer only.

struct bt_uuid_16

#include <uuid.h>

Public Members

struct bt_uuid uuid

UUID generic type.

uint16_t val

UUID value, 16-bit in host endianness.

struct bt_uuid_32

#include <uuid.h>

Public Members

struct bt_uuid uuid

UUID generic type.

uint32_t val

UUID value, 32-bit in host endianness.

struct bt_uuid_128

#include <uuid.h>

Public Members

struct bt_uuid uuid

UUID generic type.

uint8_t val[16]

UUID value, 128-bit in little-endian format.

7.5 Crypto

7.5.1 Overview

7.5.2 API Reference

group crypto_cipher

Crypto Cipher APIs.

7.5. Crypto 403

Zephyr Project Documentation, Release 2.7.0-rc2

Defines

CAP_OPAQUE_KEY_HNDL

CAP_RAW_KEY

CAP_KEY_LOADING_API

CAP_INPLACE_OPS

Whether the output is placed in separate buffer or not

CAP_SEPARATE_IO_BUFS

CAP_SYNC_OPS

These denotes if the output (completion of a cipher_xxx_op) is conveyed by the op function
returning, or it is conveyed by an async notification

CAP_ASYNC_OPS

CAP_AUTONONCE

Whether the hardware/driver supports autononce feature

CAP_NO_IV_PREFIX

Don’t prefix IV to cipher blocks

Typedefs

typedef int (*block_op_t)(struct cipher_ctx *ctx, struct cipher_pkt *pkt)

typedef int (*cbc_op_t)(struct cipher_ctx *ctx, struct cipher_pkt *pkt, uint8_t *iv)

typedef int (*ctr_op_t)(struct cipher_ctx *ctx, struct cipher_pkt *pkt, uint8_t *ctr)

typedef int (*ccm_op_t)(struct cipher_ctx *ctx, struct cipher_aead_pkt *pkt, uint8_t *nonce)

typedef int (*gcm_op_t)(struct cipher_ctx *ctx, struct cipher_aead_pkt *pkt, uint8_t *nonce)

typedef void (*crypto_completion_cb)(struct cipher_pkt *completed, int status)

Enums

enum cipher_algo

Cipher Algorithm

Values:

404 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator CRYPTO_CIPHER_ALGO_AES = 1

enum cipher_op

Cipher Operation

Values:

enumerator CRYPTO_CIPHER_OP_DECRYPT = 0

enumerator CRYPTO_CIPHER_OP_ENCRYPT = 1

enum cipher_mode

Possible cipher mode options.

More to be added as required.

Values:

enumerator CRYPTO_CIPHER_MODE_ECB = 1

enumerator CRYPTO_CIPHER_MODE_CBC = 2

enumerator CRYPTO_CIPHER_MODE_CTR = 3

enumerator CRYPTO_CIPHER_MODE_CCM = 4

enumerator CRYPTO_CIPHER_MODE_GCM = 5

Functions

static inline int cipher_query_hwcaps(const struct device *dev)

Query the crypto hardware capabilities.

This API is used by the app to query the capabilities supported by the crypto device. Based on
this the app can specify a subset of the supported options to be honored for a session during
cipher_begin_session().

Parameters

• dev – Pointer to the device structure for the driver instance.

Returns bitmask of supported options.

static inline int cipher_begin_session(const struct device *dev, struct cipher_ctx *ctx, enum
cipher_algo algo, enum cipher_mode mode, enum
cipher_op optype)

Setup a crypto session.

Initializes one time parameters, like the session key, algorithm and cipher mode which may
remain constant for all operations in the session. The state may be cached in hardware and/or
driver data state variables.

Parameters

• dev – Pointer to the device structure for the driver instance.

7.5. Crypto 405

Zephyr Project Documentation, Release 2.7.0-rc2

• ctx – Pointer to the context structure. Various one time parameters like key,
keylength, etc. are supplied via this structure. The structure documentation
specifies which fields are to be populated by the app before making this call.

• algo – The crypto algorithm to be used in this session. e.g AES

• mode – The cipher mode to be used in this session. e.g CBC, CTR

• optype – Whether we should encrypt or decrypt in this session

Returns 0 on success, negative errno code on fail.

static inline int cipher_free_session(const struct device *dev, struct cipher_ctx *ctx)

Cleanup a crypto session.

Clears the hardware and/or driver state of a previous session.

Parameters

• dev – Pointer to the device structure for the driver instance.

• ctx – Pointer to the crypto context structure of the session to be freed.

Returns 0 on success, negative errno code on fail.

static inline int cipher_callback_set(const struct device *dev, crypto_completion_cb cb)

Registers an async crypto op completion callback with the driver.

The application can register an async crypto op completion callback handler to be invoked by
the driver, on completion of a prior request submitted via crypto_do_op(). Based on crypto
device hardware semantics, this is likely to be invoked from an ISR context.

Parameters

• dev – Pointer to the device structure for the driver instance.

• cb – Pointer to application callback to be called by the driver.

Returns 0 on success, -ENOTSUP if the driver does not support async op, negative
errno code on other error.

static inline int cipher_block_op(struct cipher_ctx *ctx, struct cipher_pkt *pkt)

Perform single-block crypto operation (ECB cipher mode). This should not be overloaded to
operate on multiple blocks for security reasons.

Parameters

• ctx – Pointer to the crypto context of this op.

• pkt – Structure holding the input/output buffer pointers.

Returns 0 on success, negative errno code on fail.

static inline int cipher_cbc_op(struct cipher_ctx *ctx, struct cipher_pkt *pkt, uint8_t *iv)

Perform Cipher Block Chaining (CBC) crypto operation.

Parameters

• ctx – Pointer to the crypto context of this op.

• pkt – Structure holding the input/output buffer pointers.

• iv – Initialization Vector (IV) for the operation. Same IV value should not be
reused across multiple operations (within a session context) for security.

Returns 0 on success, negative errno code on fail.

static inline int cipher_ctr_op(struct cipher_ctx *ctx, struct cipher_pkt *pkt, uint8_t *iv)

Perform Counter (CTR) mode crypto operation.

Parameters

406 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• ctx – Pointer to the crypto context of this op.

• pkt – Structure holding the input/output buffer pointers.

• iv – Initialization Vector (IV) for the operation. We use a split counter formed
by appending IV and ctr. Consequently ivlen = keylen - ctrlen. ‘ctrlen’ is spec-
ified during session setup through the ‘ctx.mode_params.ctr_params.ctr_len’
parameter. IV should not be reused across multiple operations (within a ses-
sion context) for security. The non-IV part of the split counter is transparent to
the caller and is fully managed by the crypto provider.

Returns 0 on success, negative errno code on fail.

static inline int cipher_ccm_op(struct cipher_ctx *ctx, struct cipher_aead_pkt *pkt, uint8_t
*nonce)

Perform Counter with CBC-MAC (CCM) mode crypto operation.

Parameters

• ctx – Pointer to the crypto context of this op.

• pkt – Structure holding the input/output, Assosciated Data (AD) and auth tag
buffer pointers.

• nonce – Nonce for the operation. Same nonce value should not be reused
across multiple operations (within a session context) for security.

Returns 0 on success, negative errno code on fail.

static inline int cipher_gcm_op(struct cipher_ctx *ctx, struct cipher_aead_pkt *pkt, uint8_t
*nonce)

Perform Galois/Counter Mode (GCM) crypto operation.

Parameters

• ctx – Pointer to the crypto context of this op.

• pkt – Structure holding the input/output, Associated Data (AD) and auth tag
buffer pointers.

• nonce – Nonce for the operation. Same nonce value should not be reused
across multiple operations (within a session context) for security.

Returns 0 on success, negative errno code on fail.

struct crypto_driver_api

#include <cipher.h>

struct cipher_ops

#include <cipher_structs.h>

struct ccm_params

#include <cipher_structs.h>

struct ctr_params

#include <cipher_structs.h>

struct gcm_params

#include <cipher_structs.h>

7.5. Crypto 407

Zephyr Project Documentation, Release 2.7.0-rc2

struct cipher_ctx

#include <cipher_structs.h> Structure encoding session parameters.

Refer to comments for individual fields to know the contract in terms of who fills what and
when w.r.t begin_session() call.

Public Members

struct cipher_ops ops

Place for driver to return function pointers to be invoked per cipher operation. To be pop-
ulated by crypto driver on return from begin_session() based on the algo/mode chosen
by the app.

union cipher_ctx.[anonymous] key

To be populated by the app before calling begin_session()

const struct device *device

The device driver instance this crypto context relates to. Will be populated by the be-
gin_session() API.

void *drv_sessn_state

If the driver supports multiple simultaneously crypto sessions, this will identify the spe-
cific driver state this crypto session relates to. Since dynamic memory allocation is not
possible, it is suggested that at build time drivers allocate space for the max simulta-
neous sessions they intend to support. To be populated by the driver on return from
begin_session().

void *app_sessn_state

Place for the user app to put info relevant stuff for resuming when completion callback
happens for async ops. Totally managed by the app.

union cipher_ctx.[anonymous] mode_params

Cypher mode parameters, which remain constant for all ops in a session. To be populated
by the app before calling begin_session().

uint16_t keylen

Cryptographic keylength in bytes. To be populated by the app before calling be-
gin_session()

uint16_t flags

How certain fields are to be interpreted for this session. (A bitmask of CAP_* below.) To
be populated by the app before calling begin_session(). An app can obtain the capability
flags supported by a hw/driver by calling cipher_query_hwcaps().

struct cipher_pkt

#include <cipher_structs.h> Structure encoding IO parameters of one cryptographic opera-
tion like encrypt/decrypt.

The fields which has not been explicitly called out has to be filled up by the app before making
the cipher_xxx_op() call.

408 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Public Members

uint8_t *in_buf

Start address of input buffer

int in_len

Bytes to be operated upon

uint8_t *out_buf

Start of the output buffer, to be allocated by the application. Can be NULL for in-place
ops. To be populated with contents by the driver on return from op / async callback.

int out_buf_max

Size of the out_buf area allocated by the application. Drivers should not write past the
size of output buffer.

int out_len

To be populated by driver on return from cipher_xxx_op() and holds the size of the actual
result.

struct cipher_ctx *ctx

Context this packet relates to. This can be useful to get the session details, especially for
async ops. Will be populated by the cipher_xxx_op() API based on the ctx parameter.

struct cipher_aead_pkt

#include <cipher_structs.h> Structure encoding IO parameters in AEAD (Authenticated En-
cryption with Associated Data) scenario like in CCM.

App has to furnish valid contents prior to making cipher_ccm_op() call.

Public Members

uint8_t *ad

Start address for Associated Data. This has to be supplied by app.

uint32_t ad_len

Size of Associated Data. This has to be supplied by the app.

uint8_t *tag

Start address for the auth hash. For an encryption op this will be populated by the driver
when it returns from cipher_ccm_op call. For a decryption op this has to be supplied by
the app.

7.6 Devicetree

This is reference documentation for devicetree as it is used for Zephyr development. For a high-level
guide, see Devicetree Guide. For a platform-independent specification, see the Devicetree specification.

7.6. Devicetree 409

https://www.devicetree.org/

Zephyr Project Documentation, Release 2.7.0-rc2

7.6.1 Devicetree API

This is a reference page for the <devicetree.h> API. The API is macro based. Use of these macros has
no impact on scheduling. They can be used from any calling context and at file scope.

Some of these require a special macro named DT_DRV_COMPAT to be defined before they can be used;
these are discussed individually below. These macros are generally meant for use within device drivers,
though they can be used outside of drivers with appropriate care.

Generic APIs

The APIs in this section can be used anywhere and do not require DT_DRV_COMPAT to be defined.

Node identifiers and helpers A node identifier is a way to refer to a devicetree node at C preprocessor
time. While node identifiers are not C values, you can use them to access devicetree data in C rvalue
form using, for example, the Property access API.

The root node / has node identifier DT_ROOT. You can create node identifiers for other devicetree nodes
using DT_PATH() , DT_NODELABEL() , DT_ALIAS() , and DT_INST() .

There are also DT_PARENT() and DT_CHILD() macros which can be used to create node identifiers for a
given node’s parent node or a particular child node, respectively.

The following macros create or operate on node identifiers.

group devicetree-generic-id

Defines

DT_INVALID_NODE

Name for an invalid node identifier.

This supports cases where factored macros can be invoked from paths where devicetree data
may or may not be available. It is a preprocessor identifier that does not match any valid
devicetree node identifier.

DT_ROOT

Node identifier for the root node in the devicetree.

DT_PATH(...)

Get a node identifier for a devicetree path.

(This macro returns a node identifier from path components. To get a path string from a node
identifier, use DT_NODE_PATH() instead.)

The arguments to this macro are the names of non-root nodes in the tree required to reach
the desired node, starting from the root. Non-alphanumeric characters in each name must be
converted to underscores to form valid C tokens, and letters must be lowercased.

Example devicetree fragment:

/ {
soc {

serial1: serial@40001000 {
status = "okay";
current-speed = <115200>;
...

(continues on next page)

410 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

};
};

};

You can use DT_PATH(soc, serial_40001000) to get a node identifier for the serial@40001000
node. Node labels like “serial1” cannot be used as DT_PATH() arguments; use
DT_NODELABEL() for those instead.

Example usage with DT_PROP() to get the current-speed property:

DT_PROP(DT_PATH(soc, serial_40001000), current_speed) // 115200

(The current-speed property is also in “lowercase-and-underscores” form when used with this
API.)

When determining arguments to DT_PATH():

• the first argument corresponds to a child node of the root (“soc” above)

• a second argument corresponds to a child of the first argument (“serial_40001000” above,
from the node name “serial@40001000” after lowercasing and changing “@” to “_”)

• and so on for deeper nodes in the desired node’s path

Parameters

• ... – lowercase-and-underscores node names along the node’s path, with each
name given as a separate argument

Returns node identifier for the node with that path

DT_NODELABEL(label)
Get a node identifier for a node label.

Convert non-alphanumeric characters in the node label to underscores to form valid C tokens,
and lowercase all letters. Note that node labels are not the same thing as label properties.

Example devicetree fragment:

serial1: serial@40001000 {
label = "UART_0";
status = "okay";
current-speed = <115200>;
...

};

The only node label in this example is “serial1”.

The string “UART_0” is not a node label; it’s the value of a property named label.

You can use DT_NODELABEL(serial1) to get a node identifier for the serial@40001000 node.
Example usage with DT_PROP() to get the current-speed property:

DT_PROP(DT_NODELABEL(serial1), current_speed) // 115200

Another example devicetree fragment:

cpu@0 {
L2_0: l2-cache {

cache-level = <2>;
...

(continues on next page)

7.6. Devicetree 411

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

};
};

Example usage to get the cache-level property:

DT_PROP(DT_NODELABEL(l2_0), cache_level) // 2

Notice how “L2_0” in the devicetree is lowercased to “l2_0” in the DT_NODELABEL() argu-
ment.

Parameters

• label – lowercase-and-underscores node label name

Returns node identifier for the node with that label

DT_ALIAS(alias)

Get a node identifier from /aliases.

This macro’s argument is a property of the /aliases node. It returns a node identifier for
the node which is aliased. Convert non-alphanumeric characters in the alias property to
underscores to form valid C tokens, and lowercase all letters.

Example devicetree fragment:

/ {
aliases {

my-serial = &serial1;
};

soc {
serial1: serial@40001000 {

status = "okay";
current-speed = <115200>;
...

};
};

};

You can use DT_ALIAS(my_serial) to get a node identifier for the serial@40001000 node. No-
tice how my-serial in the devicetree becomes my_serial in the DT_ALIAS() argument. Example
usage with DT_PROP() to get the current-speed property:

DT_PROP(DT_ALIAS(my_serial), current_speed) // 115200

Parameters

• alias – lowercase-and-underscores alias name.

Returns node identifier for the node with that alias

DT_INST(inst, compat)

Get a node identifier for an instance of a compatible.

All nodes with a particular compatible property value are assigned instance numbers, which
are zero-based indexes specific to that compatible. You can get a node identifier for these
nodes by passing DT_INST() an instance number, “inst”, along with the lowercase-and-
underscores version of the compatible, “compat”.

Instance numbers have the following properties:

412 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• for each compatible, instance numbers start at 0 and are contiguous

• exactly one instance number is assigned for each node with a compatible, including
disabled nodes

• enabled nodes (status property is “okay” or missing) are assigned the instance numbers
starting from 0, and disabled nodes have instance numbers which are greater than those
of any enabled node

No other guarantees are made. In particular:

• instance numbers in no way reflect any numbering scheme that might exist in SoC
documentation, node labels or unit addresses, or properties of the /aliases node (use
DT_NODELABEL() or DT_ALIAS() for those)

• there is no general guarantee that the same node will have the same instance number
between builds, even if you are building the same application again in the same build
directory

Example devicetree fragment:

serial1: serial@40001000 {
compatible = "vnd,soc-serial";
status = "disabled";
current-speed = <9600>;
...

};

serial2: serial@40002000 {
compatible = "vnd,soc-serial";
status = "okay";
current-speed = <57600>;
...

};

serial3: serial@40003000 {
compatible = "vnd,soc-serial";
current-speed = <115200>;
...

};

Assuming no other nodes in the devicetree have compatible “vnd,soc-serial”, that compatible
has nodes with instance numbers 0, 1, and 2.

The nodes serial@40002000 and serial@40003000 are both enabled, so their instance num-
bers are 0 and 1, but no guarantees are made regarding which node has which instance
number.

Since serial@40001000 is the only disabled node, it has instance number 2, since disabled
nodes are assigned the largest instance numbers. Therefore:

// Could be 57600 or 115200. There is no way to be sure:
// either serial@40002000 or serial@40003000 could
// have instance number 0, so this could be the current-speed
// property of either of those nodes.
DT_PROP(DT_INST(0, vnd_soc_serial), current_speed)

// Could be 57600 or 115200, for the same reason.
// If the above expression expands to 57600, then
// this expands to 115200, and vice-versa.

(continues on next page)

7.6. Devicetree 413

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

DT_PROP(DT_INST(1, vnd_soc_serial), current_speed)

// 9600, because there is only one disabled node, and
// disabled nodes are "at the the end" of the instance
// number "list".
DT_PROP(DT_INST(2, vnd_soc_serial), current_speed)

Notice how “vnd,soc-serial” in the devicetree becomes vnd_soc_serial (without quotes) in the
DT_INST() arguments. (As usual, current-speed in the devicetree becomes current_speed as
well.)

Nodes whose “compatible” property has multiple values are assigned independent instance
numbers for each compatible.

Parameters

• inst – instance number for compatible “compat”

• compat – lowercase-and-underscores compatible, without quotes

Returns node identifier for the node with that instance number and compatible

DT_PARENT(node_id)

Get a node identifier for a parent node.

Example devicetree fragment:

parent: parent-node {
child: child-node {

...
};

};

The following are equivalent ways to get the same node identifier:

DT_NODELABEL(parent)
DT_PARENT(DT_NODELABEL(child))

Parameters

• node_id – node identifier

Returns a node identifier for the node’s parent

DT_GPARENT(node_id)

Get a node identifier for a grandparent node.

Example devicetree fragment:

gparent: grandparent-node {
parent: parent-node {

child: child-node { ... }
};

};

The following are equivalent ways to get the same node identifier:

DT_GPARENT(DT_NODELABEL(child))
DT_PARENT(DT_PARENT(DT_NODELABEL(child))

Parameters

414 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• node_id – node identifier

Returns a node identifier for the node’s parent’s parent

DT_CHILD(node_id, child)

Get a node identifier for a child node.

Example devicetree fragment:

/ {
soc-label: soc {

serial1: serial@40001000 {
status = "okay";
current-speed = <115200>;
...

};
};

};

Example usage with DT_PROP() to get the status of the serial@40001000 node:

#define SOC_NODE DT_NODELABEL(soc_label)
DT_PROP(DT_CHILD(SOC_NODE, serial_40001000), status) // "okay"

Node labels like “serial1” cannot be used as the “child” argument to this macro. Use
DT_NODELABEL() for that instead.

You can also use DT_FOREACH_CHILD() to iterate over node identifiers for all of a node’s
children.

Parameters

• node_id – node identifier

• child – lowercase-and-underscores child node name

Returns node identifier for the node with the name referred to by ‘child’

DT_COMPAT_GET_ANY_STATUS_OKAY(compat)

Get a node identifier for a status “okay” node with a compatible.

Use this if you want to get an arbitrary enabled node with a given compatible, and you do
not care which one you get. If any enabled nodes with the given compatible exist, a node
identifier for one of them is returned. Otherwise, DT_INVALID_NODE is returned.

Example devicetree fragment:

node-a {
compatible = "vnd,device";
status = "okay";

};

node-b {
compatible = "vnd,device";
status = "okay";

};

node-c {
compatible = "vnd,device";
status = "disabled";

};

Example usage:

7.6. Devicetree 415

Zephyr Project Documentation, Release 2.7.0-rc2

DT_COMPAT_GET_ANY_STATUS_OKAY(vnd_device)

This expands to a node identifier for either node-a or node-b. It will not expand to a node
identifier for node-c, because that node does not have status “okay”.

Parameters

• compat – lowercase-and-underscores compatible, without quotes

Returns node identifier for a node with that compatible, or DT_INVALID_NODE

DT_NODE_PATH(node_id)

Get a devicetree node’s full path as a string literal.

This returns the path to a node from a node identifier. To get a node identifier from path
components instead, use DT_PATH().

Example devicetree fragment:

/ {
soc {

node: my-node@12345678 { ... };
};

};

Example usage:

DT_NODE_PATH(DT_NODELABEL(node)) // “/soc/my-node@12345678”
DT_NODE_PATH(DT_PATH(soc)) // “/soc” DT_NODE_PATH(DT_ROOT) // “/”

Parameters

• node_id – node identifier

Returns the node’s full path in the devicetree

DT_NODE_FULL_NAME(node_id)

Get a devicetree node’s name with unit-address as a string literal.

This returns the node name and unit-address from a node identifier.

Example devicetree fragment:

/ {
soc {

node: my-node@12345678 { ... };
};

};

Example usage:

DT_NODE_FULL_NAME(DT_NODELABEL(node)) // “my-node@12345678”

Parameters

• node_id – node identifier

Returns the node’s name with unit-address as a string in the devicetree

DT_SAME_NODE(node_id1, node_id2)

Do node_id1 and node_id2 refer to the same node?

Both “node_id1” and “node_id2” must be node identifiers for nodes that exist in the devicetree
(if unsure, you can check with DT_NODE_EXISTS()).

The expansion evaluates to 0 or 1, but may not be a literal integer 0 or 1.

Parameters

416 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• node_id1 – first node identifer

• node_id2 – second node identifier

Returns an expression that evaluates to 1 if the node identifiers refer to the same
node, and evaluates to 0 otherwise

Property access The following general-purpose macros can be used to access node properties. There
are special-purpose APIs for accessing the reg property and interrupts property.

Property values can be read using these macros even if the node is disabled, as long as it has a matching
binding.

group devicetree-generic-prop

Defines

DT_PROP(node_id, prop)

Get a devicetree property value.

For properties whose bindings have the following types, this macro expands to:

• string: a string literal

• boolean: 0 if the property is false, or 1 if it is true

• int: the property’s value as an integer literal

• array, uint8-array, string-array: an initializer expression in braces, whose elements are
integer or string literals (like {0, 1, 2}, {“hello”, “world”}, etc.)

• phandle: a node identifier for the node with that phandle

A property’s type is usually defined by its binding. In some special cases, it has an assumed
type defined by the devicetree specification even when no binding is available: “compatible”
has type string-array, “status” and “label” have type string, and “interrupt-controller” has type
boolean.

For other properties or properties with unknown type due to a missing binding, behavior is
undefined.

For usage examples, see DT_PATH(), DT_ALIAS(), DT_NODELABEL(), and DT_INST() above.

Parameters

• node_id – node identifier

• prop – lowercase-and-underscores property name

Returns a representation of the property’s value

DT_PROP_LEN(node_id, prop)

Get a property’s logical length.

Here, “length” is a number of elements, which may differ from the property’s size in bytes.

The return value depends on the property’s type:

• for types array, string-array, and uint8-array, this expands to the number of elements in
the array

• for type phandles, this expands to the number of phandles

7.6. Devicetree 417

Zephyr Project Documentation, Release 2.7.0-rc2

• for type phandle-array, this expands to the number of phandle and specifier blocks in the
property

These properties are handled as special cases:

• reg property: use DT_NUM_REGS(node_id) instead

• interrupts property: use DT_NUM_IRQS(node_id) instead

It is an error to use this macro with the reg or interrupts properties.

For other properties, behavior is undefined.

Parameters

• node_id – node identifier

• prop – a lowercase-and-underscores property with a logical length

Returns the property’s length

DT_PROP_LEN_OR(node_id, prop, default_value)

Like DT_PROP_LEN(), but with a fallback to default_value.

If the property is defined (as determined by DT_NODE_HAS_PROP()), this expands to
DT_PROP_LEN(node_id, prop). The default_value parameter is not expanded in this case.

Otherwise, this expands to default_value.

Parameters

• node_id – node identifier

• prop – a lowercase-and-underscores property with a logical length

• default_value – a fallback value to expand to

Returns the property’s length or the given default value

DT_PROP_HAS_IDX(node_id, prop, idx)

Is index “idx” valid for an array type property?

If this returns 1, then DT_PROP_BY_IDX(node_id, prop, idx) or DT_PHA_BY_IDX(node_id, prop,
idx, . . .) are valid at index “idx”. If it returns 0, it is an error to use those macros with that
index.

These properties are handled as special cases:

• reg property: use DT_REG_HAS_IDX(node_id, idx) instead

• interrupts property: use DT_IRQ_HAS_IDX(node_id, idx) instead

It is an error to use this macro with the reg or interrupts properties.

Parameters

• node_id – node identifier

• prop – a lowercase-and-underscores property with a logical length

• idx – index to check

Returns An expression which evaluates to 1 if “idx” is a valid index into the given
property, and 0 otherwise.

418 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

DT_PROP_BY_IDX(node_id, prop, idx)

Get the value at index “idx” in an array type property.

It might help to read the argument order as being similar to “node->property[index]”.

When the property’s binding has type array, string-array, uint8-array, or phandles, this expands
to the idx-th array element as an integer, string literal, or node identifier respectively.

These properties are handled as special cases:

• reg property: use DT_REG_ADDR_BY_IDX() or DT_REG_SIZE_BY_IDX() instead

• interrupts property: use DT_IRQ_BY_IDX() instead

For non-array properties, behavior is undefined.

Parameters

• node_id – node identifier

• prop – lowercase-and-underscores property name

• idx – the index to get

Returns a representation of the idx-th element of the property

DT_PROP_OR(node_id, prop, default_value)

Like DT_PROP(), but with a fallback to default_value.

If the value exists, this expands to DT_PROP(node_id, prop). The default_value parameter is
not expanded in this case.

Otherwise, this expands to default_value.

Parameters

• node_id – node identifier

• prop – lowercase-and-underscores property name

• default_value – a fallback value to expand to

Returns the property’s value or default_value

DT_LABEL(node_id)

Equivalent to DT_PROP(node_id, label)

This is a convenience for the Zephyr device API, which uses label properties as de-
vice_get_binding() arguments.

Parameters

• node_id – node identifier

Returns node’s label property value

DT_ENUM_IDX(node_id, prop)

Get a property value’s index into its enumeration values.

The return values start at zero.

Example devicetree fragment:

usb1: usb@12340000 {
maximum-speed = "full-speed";

};
usb2: usb@12341000 {

maximum-speed = "super-speed";
};

7.6. Devicetree 419

Zephyr Project Documentation, Release 2.7.0-rc2

Example bindings fragment:

properties:
maximum-speed:

type: string
enum:

- "low-speed"
- "full-speed"
- "high-speed"
- "super-speed"

Example usage:

DT_ENUM_IDX(DT_NODELABEL(usb1), maximum_speed) // 1
DT_ENUM_IDX(DT_NODELABEL(usb2), maximum_speed) // 3

Parameters

• node_id – node identifier

• prop – lowercase-and-underscores property name

Returns zero-based index of the property’s value in its enum: list

DT_ENUM_IDX_OR(node_id, prop, default_idx_value)

Like DT_ENUM_IDX(), but with a fallback to a default enum index.

If the value exists, this expands to its zero based index value thanks to DT_ENUM_IDX(node_id,
prop).

Otherwise, this expands to provided default index enum value.

Parameters

• node_id – node identifier

• prop – lowercase-and-underscores property name

• default_idx_value – a fallback index value to expand to

Returns zero-based index of the property’s value in its enum if present, de-
fault_idx_value ohterwise

DT_STRING_TOKEN(node_id, prop)

Get a string property’s value as a token.

This removes “the quotes” from string-valued properties, and converts non-alphanumeric
characters to underscores. That can be useful, for example, when programmatically using
the value to form a C variable or code.

DT_STRING_TOKEN() can only be used for properties with string type.

It is an error to use DT_STRING_TOKEN() in other circumstances.

Example devicetree fragment:

n1: node-1 {
prop = "foo";

};
n2: node-2 {

prop = "FOO";
}
n3: node-3 {

prop = "123 foo";
};

420 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Example bindings fragment:

properties:
prop:

type: string

Example usage:

DT_STRING_TOKEN(DT_NODELABEL(n1), prop) // foo
DT_STRING_TOKEN(DT_NODELABEL(n2), prop) // FOO
DT_STRING_TOKEN(DT_NODELABEL(n3), prop) // 123_foo

Notice how:

• Unlike C identifiers, the property values may begin with a number. It’s the user’s respon-
sibility not to use such values as the name of a C identifier.

• The uppercased “FOO” in the DTS remains FOO as a token. It is not converted to foo.

• The whitespace in the DTS “123 foo” string is converted to 123_foo as a token.

Parameters

• node_id – node identifier

• prop – lowercase-and-underscores property string name

Returns the value of prop as a token, i.e. without any quotes and with special char-
acters converted to underscores

DT_STRING_UPPER_TOKEN(node_id, prop)

Like DT_STRING_TOKEN(), but uppercased.

This removes “the quotes and capitalize” from string-valued properties, and converts non-
alphanumeric characters to underscores. That can be useful, for example, when programmat-
ically using the value to form a C variable or code.

DT_STRING_UPPER_TOKEN() can only be used for properties with string type.

It is an error to use DT_STRING_UPPER_TOKEN() in other circumstances.

Example devicetree fragment:

n1: node-1 {
prop = "foo";

};
n2: node-2 {

prop = "123 foo";
};

Example bindings fragment:

properties:
prop:

type: string

Example usage:

DT_STRING_UPPER_TOKEN(DT_NODELABEL(n1), prop) // FOO
DT_STRING_UPPER_TOKEN(DT_NODELABEL(n2), prop) // 123_FOO

7.6. Devicetree 421

Zephyr Project Documentation, Release 2.7.0-rc2

Notice how:

• Unlike C identifiers, the property values may begin with a number. It’s the user’s respon-
sibility not to use such values as the name of a C identifier.

• The lowercased “foo” in the DTS becomes FOO as a token, i.e. it is uppercased.

• The whitespace in the DTS “123 foo” string is converted to 123_FOO as a token, i.e. it is
uppercased and whitespace becomes an underscore.

Parameters

• node_id – node identifier

• prop – lowercase-and-underscores property string name

Returns the value of prop as a token, i.e. without any quotes and with special char-
acters converted to underscores

DT_ENUM_TOKEN(node_id, prop)

Get an enumeration property’s value as a token.

This allows you to “remove the quotes” from some string-valued properties. That can be
useful, for example, when pasting the values onto some other token to form an enum in C
using the ## preprocessor operator.

DT_ENUM_TOKEN() can only be used for properties with string type whose binding has
an “enum:”. The values in the binding’s “enum:” list must be unique after converting non-
alphanumeric characters to underscores.

It is an error to use DT_ENUM_TOKEN() in other circumstances.

Example devicetree fragment:

n1: node-1 {
prop = "foo";

};
n2: node-2 {

prop = "FOO";
}
n3: node-3 {

prop = "123 foo";
};

Example bindings fragment:

properties:
prop:

type: string
enum:

- "foo"
- "FOO"
- "123 foo"

Example usage:

DT_ENUM_TOKEN(DT_NODELABEL(n1), prop) // foo
DT_ENUM_TOKEN(DT_NODELABEL(n2), prop) // FOO
DT_ENUM_TOKEN(DT_NODELABEL(n3), prop) // 123_foo

Notice how:

422 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• Unlike C identifiers, the property values may begin with a number. It’s the user’s respon-
sibility not to use such values as the name of a C identifier.

• The uppercased “FOO” in the DTS remains FOO as a token. It is not* converted to foo.

• The whitespace in the DTS “123 foo” string is converted to 123_foo as a token.

Parameters

• node_id – node identifier

• prop – lowercase-and-underscores property name with suitable enumeration
of values in its binding

Returns the value of prop as a token, i.e. without any quotes and with special char-
acters converted to underscores

DT_ENUM_UPPER_TOKEN(node_id, prop)

Like DT_ENUM_TOKEN(), but uppercased.

This allows you to “remove the quotes and capitalize” some string-valued properties.

DT_ENUM_UPPER_TOKEN() can only be used for properties with string type whose binding
has an “enum:”. The values in the binding’s “enum:” list must be unique after converting
non-alphanumeric characters to underscores and capitalizating any letters.

It is an error to use DT_ENUM_UPPER_TOKEN() in other circumstances.

Example devicetree fragment:

n1: node-1 {
prop = "foo";

};
n2: node-2 {

prop = "123 foo";
};

Example bindings fragment:

properties:
prop:

type: string
enum:

- "foo"
- "123 foo"

Example usage:

DT_ENUM_TOKEN((DT_NODELABEL(n1), prop) // FOO
DT_ENUM_TOKEN((DT_NODELABEL(n2), prop) // 123_FOO

Notice how:

• Unlike C identifiers, the property values may begin with a number. It’s the user’s respon-
sibility not to use such values as the name of a C identifier.

• The lowercased “foo” in the DTS becomes FOO as a token, i.e. it is uppercased.

• The whitespace in the DTS “123 foo” string is converted to 123_FOO as a token, i.e. it is
uppercased and whitespace becomes an underscore.

Parameters

• node_id – node identifier

7.6. Devicetree 423

Zephyr Project Documentation, Release 2.7.0-rc2

• prop – lowercase-and-underscores property name with suitable enumeration
of values in its binding

Returns the value of prop as a capitalized token, i.e. upper case, without any quotes,
and with special characters converted to underscores

DT_PROP_BY_PHANDLE_IDX(node_id, phs, idx, prop)

Get a property value from a phandle in a property.

This is a shorthand for:

DT_PROP(DT_PHANDLE_BY_IDX(node_id, phs, idx), prop)

That is, “prop” is a property of the phandle’s node, not a property of “node_id”.

Example devicetree fragment:

n1: node-1 {
foo = <&n2 &n3>;

};

n2: node-2 {
bar = <42>;

};

n3: node-3 {
baz = <43>;

};

Example usage:

#define N1 DT_NODELABEL(n1)

DT_PROP_BY_PHANDLE_IDX(N1, foo, 0, bar) // 42
DT_PROP_BY_PHANDLE_IDX(N1, foo, 1, baz) // 43

Parameters

• node_id – node identifier

• phs – lowercase-and-underscores property with type “phandle”, “phandles”, or
“phandle-array”

• idx – logical index into “phs”, which must be zero if “phs” has type “phandle”

• prop – lowercase-and-underscores property of the phandle’s node

Returns the property’s value

DT_PROP_BY_PHANDLE_IDX_OR(node_id, phs, idx, prop, default_value)

Like DT_PROP_BY_PHANDLE_IDX(), but with a fallback to default_value.

If the value exists, this expands to DT_PROP_BY_PHANDLE_IDX(node_id, phs,idx, prop). The
default_value parameter is not expanded in this case.

Otherwise, this expands to default_value.

Parameters

• node_id – node identifier

• phs – lowercase-and-underscores property with type “phandle”, “phandles”, or
“phandle-array”

• idx – logical index into “phs”, which must be zero if “phs” has type “phandle”

424 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• prop – lowercase-and-underscores property of the phandle’s node

• default_value – a fallback value to expand to

Returns the property’s value

DT_PROP_BY_PHANDLE(node_id, ph, prop)

Get a property value from a phandle’s node.

This is equivalent to DT_PROP_BY_PHANDLE_IDX(node_id, ph, 0, prop).

Parameters

• node_id – node identifier

• ph – lowercase-and-underscores property of “node_id” with type “phandle”

• prop – lowercase-and-underscores property of the phandle’s node

Returns the property’s value

DT_PHA_BY_IDX(node_id, pha, idx, cell)

Get a phandle-array specifier cell value at an index.

It might help to read the argument order as being similar to “node-
>phandle_array[index].cell”. That is, the cell value is in the “pha” property of “node_id”,
inside the specifier at index “idx”.

Example devicetree fragment:

gpio0: gpio@... {
#gpio-cells = <2>;

};

gpio1: gpio@... {
#gpio-cells = <2>;

};

led: led_0 {
gpios = <&gpio0 17 0x1>, <&gpio1 5 0x3>;

};

Bindings fragment for the gpio0 and gpio1 nodes:

gpio-cells:
- pin
- flags

Above, “gpios” has two elements:

• index 0 has specifier <17 0x1>, so its “pin” cell is 17, and its “flags” cell is 0x1

• index 1 has specifier <5 0x3>, so “pin” is 5 and “flags” is 0x3

Example usage:

#define LED DT_NODELABEL(led)

DT_PHA_BY_IDX(LED, gpios, 0, pin) // 17
DT_PHA_BY_IDX(LED, gpios, 1, flags) // 0x3

Parameters

• node_id – node identifier

7.6. Devicetree 425

Zephyr Project Documentation, Release 2.7.0-rc2

• pha – lowercase-and-underscores property with type “phandle-array”

• idx – logical index into “pha”

• cell – lowercase-and-underscores cell name within the specifier at “pha” index
“idx”

Returns the cell’s value

DT_PHA_BY_IDX_OR(node_id, pha, idx, cell, default_value)

Like DT_PHA_BY_IDX(), but with a fallback to default_value.

If the value exists, this expands to DT_PHA_BY_IDX(node_id, pha,idx, cell). The default_value
parameter is not expanded in this case.

Otherwise, this expands to default_value.

Parameters

• node_id – node identifier

• pha – lowercase-and-underscores property with type “phandle-array”

• idx – logical index into “pha”

• cell – lowercase-and-underscores cell name within the specifier at “pha” index
“idx”

• default_value – a fallback value to expand to

Returns the cell’s value or “default_value”

DT_PHA(node_id, pha, cell)

Equivalent to DT_PHA_BY_IDX(node_id, pha, 0, cell)

Parameters

• node_id – node identifier

• pha – lowercase-and-underscores property with type “phandle-array”

• cell – lowercase-and-underscores cell name

Returns the cell’s value

DT_PHA_OR(node_id, pha, cell, default_value)

Like DT_PHA(), but with a fallback to default_value.

If the value exists, this expands to DT_PHA(node_id, pha, cell). The default_value parameter
is not expanded in this case.

Otherwise, this expands to default_value.

Parameters

• node_id – node identifier

• pha – lowercase-and-underscores property with type “phandle-array”

• cell – lowercase-and-underscores cell name

• default_value – a fallback value to expand to

Returns the cell’s value or default_value

DT_PHA_BY_NAME(node_id, pha, name, cell)

Get a value within a phandle-array specifier by name.

This is like DT_PHA_BY_IDX(), except it treats “pha” as a structure where each array element
has a name.

426 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

It might help to read the argument order as being similar to “node-
>phandle_struct.name.cell”. That is, the cell value is in the “pha” property of “node_id”,
treated as a data structure where each array element has a name.

Example devicetree fragment:

n: node {
io-channels = <&adc1 10>, <&adc2 20>;
io-channel-names = "SENSOR", "BANDGAP";

};

Bindings fragment for the “adc1” and “adc2” nodes:

io-channel-cells:
- input

Example usage:

DT_PHA_BY_NAME(DT_NODELABEL(n), io_channels, sensor, input) // 10
DT_PHA_BY_NAME(DT_NODELABEL(n), io_channels, bandgap, input) // 20

Parameters

• node_id – node identifier

• pha – lowercase-and-underscores property with type “phandle-array”

• name – lowercase-and-underscores name of a specifier in “pha”

• cell – lowercase-and-underscores cell name in the named specifier

Returns the cell’s value

DT_PHA_BY_NAME_OR(node_id, pha, name, cell, default_value)

Like DT_PHA_BY_NAME(), but with a fallback to default_value.

If the value exists, this expands to DT_PHA_BY_NAME(node_id, pha,name, cell). The de-
fault_value parameter is not expanded in this case.

Otherwise, this expands to default_value.

Parameters

• node_id – node identifier

• pha – lowercase-and-underscores property with type “phandle-array”

• name – lowercase-and-underscores name of a specifier in “pha”

• cell – lowercase-and-underscores cell name in the named specifier

• default_value – a fallback value to expand to

Returns the cell’s value or default_value

DT_PHANDLE_BY_NAME(node_id, pha, name)

Get a phandle’s node identifier from a phandle array by name.

It might help to read the argument order as being similar to “node-
>phandle_struct.name.phandle”. That is, the phandle array is treated as a structure
with named elements. The return value is the node identifier for a phandle inside the
structure.

Example devicetree fragment:

7.6. Devicetree 427

Zephyr Project Documentation, Release 2.7.0-rc2

adc1: adc@... {
label = "ADC_1";

};

adc2: adc@... {
label = "ADC_2";

};

n: node {
io-channels = <&adc1 10>, <&adc2 20>;
io-channel-names = "SENSOR", "BANDGAP";

};

Above, “io-channels” has two elements:

• the element named “SENSOR” has phandle &adc1

• the element named “BANDGAP” has phandle &adc2

Example usage:

#define NODE DT_NODELABEL(n)

DT_LABEL(DT_PHANDLE_BY_NAME(NODE, io_channels, sensor)) // "ADC_1"
DT_LABEL(DT_PHANDLE_BY_NAME(NODE, io_channels, bandgap)) // "ADC_2"

Notice how devicetree properties and names are lowercased, and non-alphanumeric charac-
ters are converted to underscores.

Parameters

• node_id – node identifier

• pha – lowercase-and-underscores property with type “phandle-array”

• name – lowercase-and-underscores name of an element in “pha”

Returns a node identifier for the node with that phandle

DT_PHANDLE_BY_IDX(node_id, prop, idx)

Get a node identifier for a phandle in a property.

When a node’s value at a logical index contains a phandle, this macro returns a node identifier
for the node with that phandle.

Therefore, if “prop” has type “phandle”, “idx” must be zero. (A “phandle” type is treated as a
“phandles” with a fixed length of 1).

Example devicetree fragment:

n1: node-1 {
foo = <&n2 &n3>;

};

n2: node-2 { ... };
n3: node-3 { ... };

Above, “foo” has type phandles and has two elements:

• index 0 has phandle &n2, which is node-2’s phandle

• index 1 has phandle &n3, which is node-3’s phandle

428 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Example usage:

#define N1 DT_NODELABEL(n1)

DT_PHANDLE_BY_IDX(N1, foo, 0) // node identifier for node-2
DT_PHANDLE_BY_IDX(N1, foo, 1) // node identifier for node-3

Behavior is analogous for phandle-arrays.

Parameters

• node_id – node identifier

• prop – lowercase-and-underscores property name in “node_id” with type
“phandle”, “phandles” or “phandle-array”

• idx – index into “prop”

Returns node identifier for the node with the phandle at that index

DT_PHANDLE(node_id, prop)
Get a node identifier for a phandle property’s value.

This is equivalent to DT_PHANDLE_BY_IDX(node_id, prop, 0). Its primary benefit is readability
when “prop” has type “phandle”.

Parameters

• node_id – node identifier

• prop – lowercase-and-underscores property of “node_id” with type “phandle”

Returns a node identifier for the node pointed to by “ph”

reg property Use these APIs instead of Property access to access the reg property. Because this prop-
erty’s semantics are defined by the devicetree specification, these macros can be used even for nodes
without matching bindings.

group devicetree-reg-prop

Defines

DT_NUM_REGS(node_id)
Get the number of register blocks in the reg property.

Use this instead of DT_PROP_LEN(node_id, reg).

Parameters

• node_id – node identifier

Returns Number of register blocks in the node’s “reg” property.

DT_REG_HAS_IDX(node_id, idx)
Is “idx” a valid register block index?

If this returns 1, then DT_REG_ADDR_BY_IDX(node_id, idx) or DT_REG_SIZE_BY_IDX(node_id,
idx) are valid. If it returns 0, it is an error to use those macros with index “idx”.

Parameters

• node_id – node identifier

• idx – index to check

Returns 1 if “idx” is a valid register block index, 0 otherwise.

7.6. Devicetree 429

Zephyr Project Documentation, Release 2.7.0-rc2

DT_REG_ADDR_BY_IDX(node_id, idx)

Get the base address of the register block at index “idx”.

Parameters

• node_id – node identifier

• idx – index of the register whose address to return

Returns address of the idx-th register block

DT_REG_SIZE_BY_IDX(node_id, idx)

Get the size of the register block at index “idx”.

This is the size of an individual register block, not the total number of register blocks in the
property; use DT_NUM_REGS() for that.

Parameters

• node_id – node identifier

• idx – index of the register whose size to return

Returns size of the idx-th register block

DT_REG_ADDR(node_id)

Get a node’s (only) register block address.

Equivalent to DT_REG_ADDR_BY_IDX(node_id, 0).

Parameters

• node_id – node identifier

Returns node’s register block address

DT_REG_SIZE(node_id)

Get a node’s (only) register block size.

Equivalent to DT_REG_SIZE_BY_IDX(node_id, 0).

Parameters

• node_id – node identifier

Returns node’s only register block’s size

DT_REG_ADDR_BY_NAME(node_id, name)

Get a register block’s base address by name.

Parameters

• node_id – node identifier

• name – lowercase-and-underscores register specifier name

Returns address of the register block specified by name

DT_REG_SIZE_BY_NAME(node_id, name)

Get a register block’s size by name.

Parameters

• node_id – node identifier

• name – lowercase-and-underscores register specifier name

Returns size of the register block specified by name

430 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

interrupts property Use these APIs instead of Property access to access the interrupts property.

Because this property’s semantics are defined by the devicetree specification, some of these macros can
be used even for nodes without matching bindings. This does not apply to macros which take cell names
as arguments.

group devicetree-interrupts-prop

Defines

DT_NUM_IRQS(node_id)

Get the number of interrupt sources for the node.

Use this instead of DT_PROP_LEN(node_id, interrupts).

Parameters

• node_id – node identifier

Returns Number of interrupt specifiers in the node’s “interrupts” property.

DT_IRQ_HAS_IDX(node_id, idx)

Is “idx” a valid interrupt index?

If this returns 1, then DT_IRQ_BY_IDX(node_id, idx) is valid. If it returns 0, it is an error to
use that macro with this index.

Parameters

• node_id – node identifier

• idx – index to check

Returns 1 if the idx is valid for the interrupt property 0 otherwise.

DT_IRQ_HAS_CELL_AT_IDX(node_id, idx, cell)

Does an interrupts property have a named cell specifier at an index? If this returns 1, then
DT_IRQ_BY_IDX(node_id, idx, cell) is valid. If it returns 0, it is an error to use that macro.

Parameters

• node_id – node identifier

• idx – index to check

• cell – named cell value whose existence to check

Returns 1 if the named cell exists in the interrupt specifier at index idx 0 otherwise.

DT_IRQ_HAS_CELL(node_id, cell)

Equivalent to DT_IRQ_HAS_CELL_AT_IDX(node_id, 0, cell)

Parameters

• node_id – node identifier

• cell – named cell value whose existence to check

Returns 1 if the named cell exists in the interrupt specifier at index 0 0 otherwise.

DT_IRQ_HAS_NAME(node_id, name)

Does an interrupts property have a named specifier value at an index? If this returns 1, then
DT_IRQ_BY_NAME(node_id, name, cell) is valid. If it returns 0, it is an error to use that macro.

Parameters

• node_id – node identifier

7.6. Devicetree 431

Zephyr Project Documentation, Release 2.7.0-rc2

• name – lowercase-and-underscores interrupt specifier name

Returns 1 if “name” is a valid named specifier 0 otherwise.

DT_IRQ_BY_IDX(node_id, idx, cell)

Get a value within an interrupt specifier at an index.

It might help to read the argument order as being similar to “node->interrupts[index].cell”.

This can be used to get information about an individual interrupt when a device generates
more than one.

Example devicetree fragment:

my-serial: serial@... {
interrupts = < 33 0 >, < 34 1 >;

};

Assuming the node’s interrupt domain has “#interrupt-cells = <2>;” and the individual cells
in each interrupt specifier are named “irq” and “priority” by the node’s binding, here are some
examples:

#define SERIAL DT_NODELABEL(my_serial)

Example usage Value
------------- -----
DT_IRQ_BY_IDX(SERIAL, 0, irq) 33
DT_IRQ_BY_IDX(SERIAL, 0, priority) 0
DT_IRQ_BY_IDX(SERIAL, 1, irq, 34
DT_IRQ_BY_IDX(SERIAL, 1, priority) 1

Parameters

• node_id – node identifier

• idx – logical index into the interrupt specifier array

• cell – cell name specifier

Returns the named value at the specifier given by the index

DT_IRQ_BY_NAME(node_id, name, cell)

Get a value within an interrupt specifier by name.

It might help to read the argument order as being similar to “node->interrupts.name.cell”.

This can be used to get information about an individual interrupt when a device generates
more than one, if the bindings give each interrupt specifier a name.

Parameters

• node_id – node identifier

• name – lowercase-and-underscores interrupt specifier name

• cell – cell name specifier

Returns the named value at the specifier given by the index

DT_IRQ(node_id, cell)

Get an interrupt specifier’s value Equivalent to DT_IRQ_BY_IDX(node_id, 0, cell).

Parameters

• node_id – node identifier

• cell – cell name specifier

432 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Returns the named value at that index

DT_IRQN(node_id)

Get a node’s (only) irq number.

Equivalent to DT_IRQ(node_id, irq). This is provided as a convenience for the common case
where a node generates exactly one interrupt, and the IRQ number is in a cell named “irq”.

Parameters

• node_id – node identifier

Returns the interrupt number for the node’s only interrupt

For-each macros There is currently only one “generic” for-each macro, DT_FOREACH_CHILD() , which
allows iterating over the children of a devicetree node.

There are special-purpose for-each macros, like DT_INST_FOREACH_STATUS_OKAY() , but these require
DT_DRV_COMPAT to be defined before use.

group devicetree-generic-foreach

Defines

DT_FOREACH_CHILD(node_id, fn)

Invokes “fn” for each child of “node_id”.

The macro “fn” must take one parameter, which will be the node identifier of a child node of
“node_id”.

Example devicetree fragment:

n: node {
child-1 {

label = "foo";
};
child-2 {

label = "bar";
};

};

Example usage:

#define LABEL_AND_COMMA(node_id) DT_LABEL(node_id),

const char *child_labels[] = {
DT_FOREACH_CHILD(DT_NODELABEL(n), LABEL_AND_COMMA)

};

This expands to:

const char *child_labels[] = {
"foo", "bar",

};

Parameters

• node_id – node identifier

• fn – macro to invoke

7.6. Devicetree 433

Zephyr Project Documentation, Release 2.7.0-rc2

DT_FOREACH_CHILD_VARGS(node_id, fn, ...)

Invokes “fn” for each child of “node_id” with multiple arguments.

The macro “fn” takes multiple arguments. The first should be the node identifier for the child
node. The remaining are passed-in by the caller.

See also:

DT_FOREACH_CHILD

Parameters

• node_id – node identifier

• fn – macro to invoke

• ... – variable number of arguments to pass to fn

DT_FOREACH_CHILD_STATUS_OKAY(node_id, fn)

Call “fn” on the child nodes with status “okay”.

The macro “fn” should take one argument, which is the node identifier for the child node.

As usual, both a missing status and an “ok” status are treated as “okay”.

Parameters

• node_id – node identifier

• fn – macro to invoke

DT_FOREACH_CHILD_STATUS_OKAY_VARGS(node_id, fn, ...)

Call “fn” on the child nodes with status “okay” with multiple arguments.

The macro “fn” takes multiple arguments. The first should be the node identifier for the child
node. The remaining are passed-in by the caller.

As usual, both a missing status and an “ok” status are treated as “okay”.

See also:

DT_FOREACH_CHILD_STATUS_OKAY

Parameters

• node_id – node identifier

• fn – macro to invoke

• ... – variable number of arguments to pass to fn

DT_FOREACH_PROP_ELEM(node_id, prop, fn)

Invokes “fn” for each element in the value of property “prop”.

The macro “fn” must take three parameters: fn(node_id, prop, idx). “node_id” and “prop” are
the same as what is passed to DT_FOREACH_PROP_ELEM, and “idx” is the current index into
the array. The “idx” values are integer literals starting from 0.

Example devicetree fragment:

n: node {
my-ints = <1 2 3>;

};

Example usage:

434 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

#define TIMES_TWO(node_id, prop, idx) \
(2 * DT_PROP_BY_IDX(node_id, prop, idx)),

int array[] = {
DT_FOREACH_PROP_ELEM(DT_NODELABEL(n), my_ints, TIMES_TWO)

};

This expands to:

int array[] = {
(2 * 1), (2 * 2), (2 * 3),

};

In general, this macro expands to:

fn(node_id, prop, 0) fn(node_id, prop, 1) [...] fn(node_id, prop, n-1)

where “n” is the number of elements in “prop”, as it would be returned by
DT_PROP_LEN(node_id, prop) .

The “prop” argument must refer to a property with type string, array, uint8-array, string-array,
phandles, or phandle-array. It is an error to use this macro with properties of other types.

Parameters

• node_id – node identifier

• prop – lowercase-and-underscores property name

• fn – macro to invoke

DT_FOREACH_PROP_ELEM_VARGS(node_id, prop, fn, ...)

Invokes “fn” for each element in the value of property “prop” with multiple arguments.

The macro “fn” must take multiple parameters: fn(node_id, prop, idx, . . .). “node_id” and
“prop” are the same as what is passed to DT_FOREACH_PROP_ELEM, and “idx” is the current
index into the array. The “idx” values are integer literals starting from 0. The remaining
arguments are passed-in by the caller.

See also:

DT_FOREACH_PROP_ELEM

Parameters

• node_id – node identifier

• prop – lowercase-and-underscores property name

• fn – macro to invoke

• ... – variable number of arguments to pass to fn

DT_FOREACH_STATUS_OKAY(compat, fn)

Call “fn” on all nodes with compatible DT_DRV_COMPAT and status “okay”.

This macro expands to:

fn(node_id_1) fn(node_id_2) ... fn(node_id_n)

where each “node_id_<i>” is a node identifier for some node with compatible “compat” and
status “okay”. Whitespace is added between expansions as shown above.

Example devicetree fragment:

7.6. Devicetree 435

Zephyr Project Documentation, Release 2.7.0-rc2

/ {
a {

compatible = "foo";
status = "okay";

};
b {

compatible = "foo";
status = "disabled";

};
c {

compatible = "foo";
};

};

Example usage:

DT_FOREACH_STATUS_OKAY(foo, DT_NODE_PATH)

This expands to one of the following:

"/a" "/c"
"/c" "/a"

“One of the following” is because no guarantees are made about the order that node identifiers
are passed to “fn” in the expansion.

(The “/c” string literal is present because a missing status property is always treated as if the
status were set to “okay”.)

Note also that “fn” is responsible for adding commas, semicolons, or other terminators as
needed.

Parameters

• compat – lowercase-and-underscores devicetree compatible

• fn – Macro to call for each enabled node. Must accept a node_id as its only
parameter.

DT_FOREACH_STATUS_OKAY_VARGS(compat, fn, ...)

Invokes “fn” for each status “okay” node of a compatible with multiple arguments.

This is like DT_FOREACH_STATUS_OKAY() except you can also pass additional arguments to
“fn”.

Example devicetree fragment:

/ {
a {

compatible = "foo";
val = <3>;

};
b {

compatible = "foo";
val = <4>;

};
};

Example usage:

#define MY_FN(node_id, operator) DT_PROP(node_id, val) operator
x = DT_FOREACH_STATUS_OKAY_VARGS(foo, MY_FN, +) 0;

436 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

This expands to one of the following:

x = 3 + 4 + 0;
x = 4 + 3 + 0;

i.e. it sets x to 7. As with DT_FOREACH_STATUS_OKAY(), there are no guarantees about the
order nodes appear in the expansion.

Parameters

• compat – lowercase-and-underscores devicetree compatible

• fn – Macro to call for each enabled node. Must accept a node_id as its only
parameter.

• ... – Additional arguments to pass to “fn”

Existence checks This section documents miscellaneous macros that can be used to test if a node
exists, how many nodes of a certain type exist, whether a node has certain properties, etc. Some macros
used for special purposes (such as DT_IRQ_HAS_IDX() and all macros which require DT_DRV_COMPAT) are
documented elsewhere on this page.

group devicetree-generic-exist

Defines

DT_NODE_EXISTS(node_id)
Does a node identifier refer to a node?

Tests whether a node identifier refers to a node which exists, i.e. is defined in the devicetree.

It doesn’t matter whether or not the node has a matching binding, or what the node’s status
value is. This is purely a check of whether the node exists at all.

Parameters

• node_id – a node identifier

Returns 1 if the node identifier refers to a node, 0 otherwise.

DT_NODE_HAS_STATUS(node_id, status)
Does a node identifier refer to a node with a status?

Example uses:

DT_NODE_HAS_STATUS(DT_PATH(soc, i2c_12340000), okay)
DT_NODE_HAS_STATUS(DT_PATH(soc, i2c_12340000), disabled)

Tests whether a node identifier refers to a node which:

• exists in the devicetree, and

• has a status property matching the second argument (except that either a missing status
or an “ok” status in the devicetree is treated as if it were “okay” instead)

Parameters

• node_id – a node identifier

• status – a status as one of the tokens okay or disabled, not a string

Returns 1 if the node has the given status, 0 otherwise.

7.6. Devicetree 437

Zephyr Project Documentation, Release 2.7.0-rc2

DT_HAS_COMPAT_STATUS_OKAY(compat)

Does the devicetree have a status “okay” node with a compatible?

Test for whether the devicetree has any nodes with status “okay” and the given compatible.
That is, this returns 1 if and only if there is at least one “node_id” for which both of these
expressions return 1:

DT_NODE_HAS_STATUS(node_id, okay)
DT_NODE_HAS_COMPAT(node_id, compat)

As usual, both a missing status and an “ok” status are treated as “okay”.

Parameters

• compat – lowercase-and-underscores compatible, without quotes

Returns 1 if both of the above conditions are met, 0 otherwise

DT_NUM_INST_STATUS_OKAY(compat)

Get the number of instances of a given compatible with status “okay”.

Parameters

• compat – lowercase-and-underscores compatible, without quotes

Returns Number of instances with status “okay”

DT_NODE_HAS_COMPAT(node_id, compat)

Does a devicetree node match a compatible?

Example devicetree fragment:

n: node {
compatible = "vnd,specific-device", "generic-device";

}

Example usages which evaluate to 1:

DT_NODE_HAS_COMPAT(DT_NODELABEL(n), vnd_specific_device)
DT_NODE_HAS_COMPAT(DT_NODELABEL(n), generic_device)

This macro only uses the value of the compatible property. Whether or not a particular com-
patible has a matching binding has no effect on its value, nor does the node’s status.

Parameters

• node_id – node identifier

• compat – lowercase-and-underscores compatible, without quotes

Returns 1 if the node’s compatible property contains compat, 0 otherwise.

DT_NODE_HAS_COMPAT_STATUS(node_id, compat, status)

Does a devicetree node have a compatible and status?

This is equivalent to:

(DT_NODE_HAS_COMPAT(node_id, compat) &&
DT_NODE_HAS_STATUS(node_id, status))

Parameters

• node_id – node identifier

• compat – lowercase-and-underscores compatible, without quotes

• status – okay or disabled as a token, not a string

438 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

DT_NODE_HAS_PROP(node_id, prop)

Does a devicetree node have a property?

Tests whether a devicetree node has a property defined.

This tests whether the property is defined at all, not whether a boolean property is true or
false. To get a boolean property’s truth value, use DT_PROP(node_id, prop) instead.

Parameters

• node_id – node identifier

• prop – lowercase-and-underscores property name

Returns 1 if the node has the property, 0 otherwise.

DT_PHA_HAS_CELL_AT_IDX(node_id, pha, idx, cell)

Does a phandle array have a named cell specifier at an index?

If this returns 1, then the phandle-array property “pha” has a cell named “cell” at index “idx”,
and therefore DT_PHA_BY_IDX(node_id,pha, idx, cell) is valid. If it returns 0, it’s an error to
use DT_PHA_BY_IDX() with the same arguments.

Parameters

• node_id – node identifier

• pha – lowercase-and-underscores property with type “phandle-array”

• idx – index to check within “pha”

• cell – lowercase-and-underscores cell name whose existence to check at index
“idx”

Returns 1 if the named cell exists in the specifier at index idx, 0 otherwise.

DT_PHA_HAS_CELL(node_id, pha, cell)

Equivalent to DT_PHA_HAS_CELL_AT_IDX(node_id, pha, 0, cell)

Parameters

• node_id – node identifier

• pha – lowercase-and-underscores property with type “phandle-array”

• cell – lowercase-and-underscores cell name whose existence to check at index
“idx”

Returns 1 if the named cell exists in the specifier at index 0, 0 otherwise.

Inter-node dependencies The devicetree.h API has some support for tracking dependencies between
nodes. Dependency tracking relies on a binary “depends on” relation between devicetree nodes, which
is defined as the transitive closure of the following “directly depends on” relation:

• every non-root node directly depends on its parent node

• a node directly depends on any nodes its properties refer to by phandle

• a node directly depends on its interrupt-parent if it has an interrupts property

A dependency ordering of a devicetree is a list of its nodes, where each node n appears earlier in the list
than any nodes that depend on n. A node’s dependency ordinal is then its zero-based index in that list.
Thus, for two distinct devicetree nodes n1 and n2 with dependency ordinals d1 and d2, we have:

• d1 != d2

• if n1 depends on n2, then d1 > d2

• d1 > d2 does not necessarily imply that n1 depends on n2

7.6. Devicetree 439

https://en.wikipedia.org/wiki/Transitive_closure

Zephyr Project Documentation, Release 2.7.0-rc2

The Zephyr build system chooses a dependency ordering of the final devicetree and assigns a dependency
ordinal to each node. Dependency related information can be accessed using the following macros. The
exact dependency ordering chosen is an implementation detail, but cyclic dependencies are detected and
cause errors, so it’s safe to assume there are none when using these macros.

There are instance number-based conveniences as well; see DT_INST_DEP_ORD() and subsequent docu-
mentation.

group devicetree-dep-ord

Defines

DT_DEP_ORD(node_id)
Get a node’s dependency ordinal.

Parameters

• node_id – Node identifier

Returns the node’s dependency ordinal as an integer literal

DT_REQUIRES_DEP_ORDS(node_id)
Get a list of dependency ordinals of a node’s direct dependencies.

There is a comma after each ordinal in the expansion, including the last one:

DT_REQUIRES_DEP_ORDS(my_node) // required_ord_1, ..., required_ord_n,

The one case DT_REQUIRES_DEP_ORDS() expands to nothing is when given the root node
identifier DT_ROOT as argument. The root has no direct dependencies; every other node at
least depends on its parent.

Parameters

• node_id – Node identifier

Returns a list of dependency ordinals, with each ordinal followed by a comma (,),
or an empty expansion

DT_SUPPORTS_DEP_ORDS(node_id)
Get a list of dependency ordinals of what depends directly on a node.

There is a comma after each ordinal in the expansion, including the last one:

DT_SUPPORTS_DEP_ORDS(my_node) // supported_ord_1, ..., supported_ord_n,

DT_SUPPORTS_DEP_ORDS() may expand to nothing. This happens when node_id refers to a
leaf node that nothing else depends on.

Parameters

• node_id – Node identifier

Returns a list of dependency ordinals, with each ordinal followed by a comma (,),
or an empty expansion

DT_INST_DEP_ORD(inst)
Get a DT_DRV_COMPAT instance’s dependency ordinal.

Equivalent to DT_DEP_ORD(DT_DRV_INST(inst)).

Parameters

• inst – instance number

Returns The instance’s dependency ordinal

440 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

DT_INST_REQUIRES_DEP_ORDS(inst)

Get a list of dependency ordinals of a DT_DRV_COMPAT instance’s direct dependencies.

Equivalent to DT_REQUIRES_DEP_ORDS(DT_DRV_INST(inst)).

Parameters

• inst – instance number

Returns a list of dependency ordinals for the nodes the instance depends on directly

DT_INST_SUPPORTS_DEP_ORDS(inst)

Get a list of dependency ordinals of what depends directly on a DT_DRV_COMPAT instance.

Equivalent to DT_SUPPORTS_DEP_ORDS(DT_DRV_INST(inst)).

Parameters

• inst – instance number

Returns a list of node identifiers for the nodes that depend directly on the instance

Bus helpers Zephyr’s devicetree bindings language supports a bus: key which allows bindings to
declare that nodes with a given compatible describe system buses. In this case, child nodes are considered
to be on a bus of the given type, and the following APIs may be used.

group devicetree-generic-bus

Defines

DT_BUS(node_id)

Node’s bus controller.

Get the node identifier of the node’s bus controller. This can be used with DT_PROP() to get
properties of the bus controller.

It is an error to use this with nodes which do not have bus controllers.

Example devicetree fragment:

i2c@deadbeef {
label = "I2C_CTLR";
status = "okay";
clock-frequency = < 100000 >;

i2c_device: accelerometer@12 {
...

};
};

Example usage:

DT_PROP(DT_BUS(DT_NODELABEL(i2c_device)), clock_frequency) // 100000

Parameters

• node_id – node identifier

Returns a node identifier for the node’s bus controller

7.6. Devicetree 441

Zephyr Project Documentation, Release 2.7.0-rc2

DT_BUS_LABEL(node_id)

Node’s bus controller’s label property.

Parameters

• node_id – node identifier

Returns the label property of the node’s bus controller DT_BUS(node)

DT_ON_BUS(node_id, bus)

Is a node on a bus of a given type?

Example devicetree overlay:

&i2c0 {
temp: temperature-sensor@76 {

compatible = "vnd,some-sensor";
reg = <0x76>;

};
};

Example usage, assuming “i2c0” is an I2C bus controller node, and therefore “temp” is on an
I2C bus:

DT_ON_BUS(DT_NODELABEL(temp), i2c) // 1
DT_ON_BUS(DT_NODELABEL(temp), spi) // 0

Parameters

• node_id – node identifier

• bus – lowercase-and-underscores bus type as a C token (i.e. without quotes)

Returns 1 if the node is on a bus of the given type, 0 otherwise

Instance-based APIs

These are recommended for use within device drivers. To use them, define DT_DRV_COMPAT to the
lowercase-and-underscores compatible the device driver implements support for. Here is an example
devicetree fragment:

serial@40001000 {
compatible = "vnd,serial";
status = "okay";
current-speed = <115200>;

};

Example usage, assuming serial@40001000 is the only enabled node with compatible “vnd,serial”:

define DT_DRV_COMPAT vnd_serial
DT_DRV_INST(0) // node identifier for serial@40001000
DT_INST_PROP(0, current_speed) // 115200

Warning: Be careful making assumptions about instance numbers. See DT_INST() for the API
guarantees.

As shown above, the DT_INST_* APIs are conveniences for addressing nodes by instance num-
ber. They are almost all defined in terms of one of the Generic APIs. The equivalent generic
API can be found by removing INST_ from the macro name. For example, DT_INST_PROP(inst,

442 Chapter 7. API Reference

mailto:serial@40001000

Zephyr Project Documentation, Release 2.7.0-rc2

prop) is equivalent to DT_PROP(DT_DRV_INST(inst), prop). Similarly, DT_INST_REG_ADDR(inst)
is equivalent to DT_REG_ADDR(DT_DRV_INST(inst)), and so on. There are some exceptions:
DT_ANY_INST_ON_BUS_STATUS_OKAY() and DT_INST_FOREACH_STATUS_OKAY() are special-purpose
helpers without straightforward generic equivalents.

Since DT_DRV_INST() requires DT_DRV_COMPAT to be defined, it’s an error to use any of these without
that macro defined.

Note that there are also helpers available for specific hardware; these are documented in Hardware
specific APIs.

group devicetree-inst

Defines

DT_DRV_INST(inst)

Node identifier for an instance of a DT_DRV_COMPAT compatible.

Parameters

• inst – instance number

Returns a node identifier for the node with DT_DRV_COMPAT compatible and in-
stance number “inst”

DT_INST_FOREACH_CHILD(inst, fn)

Call “fn” on all child nodes of DT_DRV_INST(inst).

The macro “fn” should take one argument, which is the node identifier for the child node.

See also:

DT_FOREACH_CHILD

Parameters

• inst – instance number

• fn – macro to invoke on each child node identifier

DT_INST_FOREACH_CHILD_VARGS(inst, fn, ...)

Call “fn” on all child nodes of DT_DRV_INST(inst).

The macro “fn” takes multiple arguments. The first should be the node identifier for the child
node. The remaining are passed-in by the caller.

See also:

DT_FOREACH_CHILD

Parameters

• inst – instance number

• fn – macro to invoke on each child node identifier

• ... – variable number of arguments to pass to fn

7.6. Devicetree 443

Zephyr Project Documentation, Release 2.7.0-rc2

DT_INST_PROP(inst, prop)

Get a DT_DRV_COMPAT instance property.

Parameters

• inst – instance number

• prop – lowercase-and-underscores property name

Returns a representation of the property’s value

DT_INST_PROP_LEN(inst, prop)

Get a DT_DRV_COMPAT property length.

Parameters

• inst – instance number

• prop – lowercase-and-underscores property name

Returns logical length of the property

DT_INST_PROP_HAS_IDX(inst, prop, idx)

Is index “idx” valid for an array type property on a DT_DRV_COMPAT instance?

Parameters

• inst – instance number

• prop – lowercase-and-underscores property name

• idx – index to check

Returns 1 if “idx” is a valid index into the given property, 0 otherwise.

DT_INST_PROP_BY_IDX(inst, prop, idx)

Get a DT_DRV_COMPAT element value in an array property.

Parameters

• inst – instance number

• prop – lowercase-and-underscores property name

• idx – the index to get

Returns a representation of the idx-th element of the property

DT_INST_PROP_OR(inst, prop, default_value)

Like DT_INST_PROP(), but with a fallback to default_value.

Parameters

• inst – instance number

• prop – lowercase-and-underscores property name

• default_value – a fallback value to expand to

Returns DT_INST_PROP(inst, prop) or default_value

DT_INST_LABEL(inst)

Get a DT_DRV_COMPAT instance’s “label” property.

Parameters

• inst – instance number

Returns instance’s label property value

444 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

DT_INST_PROP_BY_PHANDLE(inst, ph, prop)

Get a DT_DRV_COMPAT instance’s property value from a phandle’s node.

Parameters

• inst – instance number

• ph – lowercase-and-underscores property of “inst” with type “phandle”

• prop – lowercase-and-underscores property of the phandle’s node

Returns the value of “prop” as described in the DT_PROP() documentation

DT_INST_PROP_BY_PHANDLE_IDX(inst, phs, idx, prop)

Get a DT_DRV_COMPAT instance’s property value from a phandle in a property.

Parameters

• inst – instance number

• phs – lowercase-and-underscores property with type “phandle”, “phandles”, or
“phandle-array”

• idx – logical index into “phs”, which must be zero if “phs” has type “phandle”

• prop – lowercase-and-underscores property of the phandle’s node

Returns the value of “prop” as described in the DT_PROP() documentation

DT_INST_PHA_BY_IDX(inst, pha, idx, cell)

Get a DT_DRV_COMPAT instance’s phandle-array specifier value at an index.

Parameters

• inst – instance number

• pha – lowercase-and-underscores property with type “phandle-array”

• idx – logical index into the property “pha”

• cell – binding’s cell name within the specifier at index “idx”

Returns the value of the cell inside the specifier at index “idx”

DT_INST_PHA_BY_IDX_OR(inst, pha, idx, cell, default_value)

Like DT_INST_PHA_BY_IDX(), but with a fallback to default_value.

Parameters

• inst – instance number

• pha – lowercase-and-underscores property with type “phandle-array”

• idx – logical index into the property “pha”

• cell – binding’s cell name within the specifier at index “idx”

• default_value – a fallback value to expand to

Returns DT_INST_PHA_BY_IDX(inst, pha, idx, cell) or default_value

DT_INST_PHA(inst, pha, cell)

Get a DT_DRV_COMPAT instance’s phandle-array specifier value Equivalent to
DT_INST_PHA_BY_IDX(inst, pha, 0, cell)

Parameters

• inst – instance number

• pha – lowercase-and-underscores property with type “phandle-array”

• cell – binding’s cell name for the specifier at “pha” index 0

7.6. Devicetree 445

Zephyr Project Documentation, Release 2.7.0-rc2

Returns the cell value

DT_INST_PHA_OR(inst, pha, cell, default_value)

Like DT_INST_PHA(), but with a fallback to default_value.

Parameters

• inst – instance number

• pha – lowercase-and-underscores property with type “phandle-array”

• cell – binding’s cell name for the specifier at “pha” index 0

• default_value – a fallback value to expand to

Returns DT_INST_PHA(inst, pha, cell) or default_value

DT_INST_PHA_BY_NAME(inst, pha, name, cell)

Get a DT_DRV_COMPAT instance’s value within a phandle-array specifier by name.

Parameters

• inst – instance number

• pha – lowercase-and-underscores property with type “phandle-array”

• name – lowercase-and-underscores name of a specifier in “pha”

• cell – binding’s cell name for the named specifier

Returns the cell value

DT_INST_PHA_BY_NAME_OR(inst, pha, name, cell, default_value)

Like DT_INST_PHA_BY_NAME(), but with a fallback to default_value.

Parameters

• inst – instance number

• pha – lowercase-and-underscores property with type “phandle-array”

• name – lowercase-and-underscores name of a specifier in “pha”

• cell – binding’s cell name for the named specifier

• default_value – a fallback value to expand to

Returns DT_INST_PHA_BY_NAME(inst, pha, name, cell) or default_value

DT_INST_PHANDLE_BY_NAME(inst, pha, name)

Get a DT_DRV_COMPAT instance’s phandle node identifier from a phandle array by name.

Parameters

• inst – instance number

• pha – lowercase-and-underscores property with type “phandle-array”

• name – lowercase-and-underscores name of an element in “pha”

Returns node identifier for the phandle at the element named “name”

DT_INST_PHANDLE_BY_IDX(inst, prop, idx)

Get a DT_DRV_COMPAT instance’s node identifier for a phandle in a property.

Parameters

• inst – instance number

• prop – lowercase-and-underscores property name in “inst” with type “phandle”,
“phandles” or “phandle-array”

• idx – index into “prop”

446 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Returns a node identifier for the phandle at index “idx” in “prop”

DT_INST_PHANDLE(inst, prop)

Get a DT_DRV_COMPAT instance’s node identifier for a phandle property’s value.

Parameters

• inst – instance number

• prop – lowercase-and-underscores property of “inst” with type “phandle”

Returns a node identifier for the node pointed to by “ph”

DT_INST_REG_HAS_IDX(inst, idx)

is “idx” a valid register block index on a DT_DRV_COMPAT instance?

Parameters

• inst – instance number

• idx – index to check

Returns 1 if “idx” is a valid register block index, 0 otherwise.

DT_INST_REG_ADDR_BY_IDX(inst, idx)

Get a DT_DRV_COMPAT instance’s idx-th register block’s address.

Parameters

• inst – instance number

• idx – index of the register whose address to return

Returns address of the instance’s idx-th register block

DT_INST_REG_SIZE_BY_IDX(inst, idx)

Get a DT_DRV_COMPAT instance’s idx-th register block’s size.

Parameters

• inst – instance number

• idx – index of the register whose size to return

Returns size of the instance’s idx-th register block

DT_INST_REG_ADDR_BY_NAME(inst, name)

Get a DT_DRV_COMPAT’s register block address by name.

Parameters

• inst – instance number

• name – lowercase-and-underscores register specifier name

Returns address of the register block with the given name

DT_INST_REG_SIZE_BY_NAME(inst, name)

Get a DT_DRV_COMPAT’s register block size by name.

Parameters

• inst – instance number

• name – lowercase-and-underscores register specifier name

Returns size of the register block with the given name

7.6. Devicetree 447

Zephyr Project Documentation, Release 2.7.0-rc2

DT_INST_REG_ADDR(inst)

Get a DT_DRV_COMPAT’s (only) register block address.

Parameters

• inst – instance number

Returns instance’s register block address

DT_INST_REG_SIZE(inst)

Get a DT_DRV_COMPAT’s (only) register block size.

Parameters

• inst – instance number

Returns instance’s register block size

DT_INST_IRQ_BY_IDX(inst, idx, cell)

Get a DT_DRV_COMPAT interrupt specifier value at an index.

Parameters

• inst – instance number

• idx – logical index into the interrupt specifier array

• cell – cell name specifier

Returns the named value at the specifier given by the index

DT_INST_IRQ_BY_NAME(inst, name, cell)

Get a DT_DRV_COMPAT interrupt specifier value by name.

Parameters

• inst – instance number

• name – lowercase-and-underscores interrupt specifier name

• cell – cell name specifier

Returns the named value at the specifier given by the index

DT_INST_IRQ(inst, cell)

Get a DT_DRV_COMPAT interrupt specifier’s value.

Parameters

• inst – instance number

• cell – cell name specifier

Returns the named value at that index

DT_INST_IRQN(inst)

Get a DT_DRV_COMPAT’s (only) irq number.

Parameters

• inst – instance number

Returns the interrupt number for the node’s only interrupt

DT_INST_BUS(inst)

Get a DT_DRV_COMPAT’s bus node identifier.

Parameters

• inst – instance number

Returns node identifier for the instance’s bus node

448 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

DT_INST_BUS_LABEL(inst)

Get a DT_DRV_COMPAT’s bus node’s label property.

Parameters

• inst – instance number

Returns the label property of the instance’s bus controller

DT_INST_ON_BUS(inst, bus)

Test if a DT_DRV_COMPAT’s bus type is a given type.

Parameters

• inst – instance number

• bus – a binding’s bus type as a C token, lowercased and without quotes

Returns 1 if the given instance is on a bus of the given type, 0 otherwise

DT_ANY_INST_ON_BUS_STATUS_OKAY(bus)

Test if any DT_DRV_COMPAT node is on a bus of a given type and has status okay.

This is a special-purpose macro which can be useful when writing drivers for devices which
can appear on multiple buses. One example is a sensor device which may be wired on an I2C
or SPI bus.

Example devicetree overlay:

&i2c0 {
temp: temperature-sensor@76 {

compatible = "vnd,some-sensor";
reg = <0x76>;

};
};

Example usage, assuming “i2c0” is an I2C bus controller node, and therefore “temp” is on an
I2C bus:

#define DT_DRV_COMPAT vnd_some_sensor

DT_ANY_INST_ON_BUS_STATUS_OKAY(i2c) // 1

Parameters

• bus – a binding’s bus type as a C token, lowercased and without quotes

Returns 1 if any enabled node with that compatible is on that bus type, 0 otherwise

DT_INST_FOREACH_STATUS_OKAY(fn)

Call “fn” on all nodes with compatible DT_DRV_COMPAT and status “okay”.

This macro calls “fn(inst)” on each “inst” number that refers to a node with status “okay”.
Whitespace is added between invocations.

Example devicetree fragment:

a {
compatible = "vnd,device";
status = "okay";
label = "DEV_A";

};

b {
(continues on next page)

7.6. Devicetree 449

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

compatible = "vnd,device";
status = "okay";
label = "DEV_B";

};

c {
compatible = "vnd,device";
status = "disabled";
label = "DEV_C";

};

Example usage:

#define DT_DRV_COMPAT vnd_device
#define MY_FN(inst) DT_INST_LABEL(inst),

DT_INST_FOREACH_STATUS_OKAY(MY_FN)

This expands to:

MY_FN(0) MY_FN(1)

and from there, to either this:

"DEV_A", "DEV_B",

or this:

"DEV_B", "DEV_A",

No guarantees are made about the order that a and b appear in the expansion.

Note that “fn” is responsible for adding commas, semicolons, or other separators or termina-
tors.

Device drivers should use this macro whenever possible to instantiate a struct device for each
enabled node in the devicetree of the driver’s compatible DT_DRV_COMPAT.

Parameters

• fn – Macro to call for each enabled node. Must accept an instance number as
its only parameter.

DT_INST_FOREACH_STATUS_OKAY_VARGS(fn, ...)

Call “fn” on all nodes with compatible DT_DRV_COMPAT and status “okay” with multiple
arguments.

See also:

DT_INST_FOREACH_STATUS_OKAY

Parameters

• fn – Macro to call for each enabled node. Must accept an instance number as
its only parameter.

• ... – variable number of arguments to pass to fn

450 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

DT_INST_FOREACH_PROP_ELEM(inst, prop, fn)

Invokes “fn” for each element of property “prop” for a DT_DRV_COMPAT instance.

Equivalent to DT_FOREACH_PROP_ELEM(DT_DRV_INST(inst), prop, fn).

Parameters

• inst – instance number

• prop – lowercase-and-underscores property name

• fn – macro to invoke

DT_INST_FOREACH_PROP_ELEM_VARGS(inst, prop, fn, ...)

Invokes “fn” for each element of property “prop” for a DT_DRV_COMPAT instance with multi-
ple arguments.

Equivalent to DT_FOREACH_PROP_ELEM_VARGS(DT_DRV_INST(inst), prop, fn, VA_ARGS)

See also:

DT_INST_FOREACH_PROP_ELEM

Parameters

• inst – instance number

• prop – lowercase-and-underscores property name

• fn – macro to invoke

• ... – variable number of arguments to pass to fn

DT_INST_NODE_HAS_PROP(inst, prop)

Does a DT_DRV_COMPAT instance have a property?

Parameters

• inst – instance number

• prop – lowercase-and-underscores property name

Returns 1 if the instance has the property, 0 otherwise.

DT_INST_PHA_HAS_CELL_AT_IDX(inst, pha, idx, cell)

Does a phandle array have a named cell specifier at an index for a DT_DRV_COMPAT instance?

Parameters

• inst – instance number

• pha – lowercase-and-underscores property with type “phandle-array”

• idx – index to check

• cell – named cell value whose existence to check

Returns 1 if the named cell exists in the specifier at index idx, 0 otherwise.

DT_INST_PHA_HAS_CELL(inst, pha, cell)

Does a phandle array have a named cell specifier at index 0 for a DT_DRV_COMPAT instance?

Parameters

• inst – instance number

• pha – lowercase-and-underscores property with type “phandle-array”

• cell – named cell value whose existence to check

7.6. Devicetree 451

Zephyr Project Documentation, Release 2.7.0-rc2

Returns 1 if the named cell exists in the specifier at index 0, 0 otherwise.

DT_INST_IRQ_HAS_IDX(inst, idx)

is index valid for interrupt property on a DT_DRV_COMPAT instance?

Parameters

• inst – instance number

• idx – logical index into the interrupt specifier array

Returns 1 if the idx is valid for the interrupt property 0 otherwise.

DT_INST_IRQ_HAS_CELL_AT_IDX(inst, idx, cell)

Does a DT_DRV_COMPAT instance have an interrupt named cell specifier?

Parameters

• inst – instance number

• idx – index to check

• cell – named cell value whose existence to check

Returns 1 if the named cell exists in the interrupt specifier at index idx 0 otherwise.

DT_INST_IRQ_HAS_CELL(inst, cell)

Does a DT_DRV_COMPAT instance have an interrupt value?

Parameters

• inst – instance number

• cell – named cell value whose existence to check

Returns 1 if the named cell exists in the interrupt specifier at index 0 0 otherwise.

DT_INST_IRQ_HAS_NAME(inst, name)

Does a DT_DRV_COMPAT instance have an interrupt value?

Parameters

• inst – instance number

• name – lowercase-and-underscores interrupt specifier name

Returns 1 if “name” is a valid named specifier

Hardware specific APIs

The following APIs can also be used by including <devicetree.h>; no additional include is needed.

Clocks These conveniences may be used for nodes which describe clock sources, and properties related
to them.

group devicetree-clocks

Defines

DT_CLOCKS_CTLR_BY_IDX(node_id, idx)

Get the node identifier for the controller phandle from a “clocks” phandle-array property at
an index.

Example devicetree fragment:

452 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

clk1: clock-controller@... { ... };

clk2: clock-controller@... { ... };

n: node {
clocks = <&clk1 10 20>, <&clk2 30 40>;

};

Example usage:

DT_CLOCKS_CTLR_BY_IDX(DT_NODELABEL(n), 0)) // DT_NODELABEL(clk1)
DT_CLOCKS_CTLR_BY_IDX(DT_NODELABEL(n), 1)) // DT_NODELABEL(clk2)

See also:

DT_PHANDLE_BY_IDX()

Parameters

• node_id – node identifier

• idx – logical index into “clocks”

Returns the node identifier for the clock controller referenced at index “idx”

DT_CLOCKS_CTLR(node_id)

Equivalent to DT_CLOCKS_CTLR_BY_IDX(node_id, 0)

See also:

DT_CLOCKS_CTLR_BY_IDX()

Parameters

• node_id – node identifier

Returns a node identifier for the clocks controller at index 0 in “clocks”

DT_CLOCKS_CTLR_BY_NAME(node_id, name)

Get the node identifier for the controller phandle from a clocks phandle-array property at an
index.

Example devicetree fragment:

clk1: clock-controller@... { ... };

clk2: clock-controller@... { ... };

n: node {
clocks = <&clk1 10 20>, <&clk2 30 40>;
clock-names = "alpha", "beta";

};

Example usage:

DT_CLOCKS_CTLR_BY_NAME(DT_NODELABEL(n), beta) // DT_NODELABEL(clk2)

See also:

DT_PHANDLE_BY_NAME()

7.6. Devicetree 453

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• node_id – node identifier

• name – lowercase-and-underscores name of a clocks element as defined by the
node’s clock-names property

Returns the node identifier for the clock controller referenced by name

DT_CLOCKS_LABEL_BY_IDX(node_id, idx)

Get a label property from the node referenced by a pwms property at an index.

It’s an error if the clock controller node referenced by the phandle in node_id’s clocks property
at index “idx” has no label property.

Example devicetree fragment:

clk1: clock-controller@... {
label = "CLK_1";

};

clk2: clock-controller@... {
label = "CLK_2";

};

n: node {
clocks = <&clk1 10 20>, <&clk2 30 40>;

};

Example usage:

DT_CLOCKS_LABEL_BY_IDX(DT_NODELABEL(n), 1) // "CLK_2"

See also:

DT_PROP_BY_PHANDLE_IDX()

Parameters

• node_id – node identifier for a node with a clocks property

• idx – logical index into clocks property

Returns the label property of the node referenced at index “idx”

DT_CLOCKS_LABEL_BY_NAME(node_id, name)

Get a label property from a clocks property by name.

It’s an error if the clock controller node referenced by the phandle in node_id’s clocks property
at the element named “name” has no label property.

Example devicetree fragment:

clk1: clock-controller@... {
label = "CLK_1";

};

clk2: clock-controller@... {
label = "CLK_2";

};

n: node {
clocks = <&clk1 10 20>, <&clk2 30 40>;

(continues on next page)

454 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

clock-names = "alpha", "beta";
};

Example usage:

DT_CLOCKS_LABEL_BY_NAME(DT_NODELABEL(n), beta) // "CLK_2"

See also:

DT_PHANDLE_BY_NAME()

Parameters

• node_id – node identifier for a node with a clocks property

• name – lowercase-and-underscores name of a clocks element as defined by the
node’s clock-names property

Returns the label property of the node referenced at the named element

DT_CLOCKS_LABEL(node_id)

Equivalent to DT_CLOCKS_LABEL_BY_IDX(node_id, 0)

See also:

DT_CLOCKS_LABEL_BY_IDX()

Parameters

• node_id – node identifier for a node with a clocks property

Returns the label property of the node referenced at index 0

DT_CLOCKS_CELL_BY_IDX(node_id, idx, cell)

Get a clock specifier’s cell value at an index.

Example devicetree fragment:

clk1: clock-controller@... {
compatible = "vnd,clock";
#clock-cells = < 2 >;

};

n: node {
clocks = < &clk1 10 20 >, < &clk1 30 40 >;

};

Bindings fragment for the vnd,clock compatible:

clock-cells:
- bus
- bits

Example usage:

DT_CLOCKS_CELL_BY_IDX(DT_NODELABEL(n), 0, bus) // 10
DT_CLOCKS_CELL_BY_IDX(DT_NODELABEL(n), 1, bits) // 40

See also:

DT_PHA_BY_IDX()

7.6. Devicetree 455

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• node_id – node identifier for a node with a clocks property

• idx – logical index into clocks property

• cell – lowercase-and-underscores cell name

Returns the cell value at index “idx”

DT_CLOCKS_CELL_BY_NAME(node_id, name, cell)

Get a clock specifier’s cell value by name.

Example devicetree fragment:

clk1: clock-controller@... {
compatible = "vnd,clock";
#clock-cells = < 2 >;

};

n: node {
clocks = < &clk1 10 20 >, < &clk1 30 40 >;
clock-names = "alpha", "beta";

};

Bindings fragment for the vnd,clock compatible:

clock-cells:
- bus
- bits

Example usage:

DT_CLOCKS_CELL_BY_NAME(DT_NODELABEL(n), alpha, bus) // 10
DT_CLOCKS_CELL_BY_NAME(DT_NODELABEL(n), beta, bits) // 40

See also:

DT_PHA_BY_NAME()

Parameters

• node_id – node identifier for a node with a clocks property

• name – lowercase-and-underscores name of a clocks element as defined by the
node’s clock-names property

• cell – lowercase-and-underscores cell name

Returns the cell value in the specifier at the named element

DT_CLOCKS_CELL(node_id, cell)

Equivalent to DT_CLOCKS_CELL_BY_IDX(node_id, 0, cell)

See also:

DT_CLOCKS_CELL_BY_IDX()

Parameters

• node_id – node identifier for a node with a clocks property

• cell – lowercase-and-underscores cell name

456 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Returns the cell value at index 0

DT_INST_CLOCKS_CTLR_BY_IDX(inst, idx)

Get the node identifier for the controller phandle from a “clocks” phandle-array property at
an index.

See also:

DT_CLOCKS_CTLR_BY_IDX()

Parameters

• inst – instance number

• idx – logical index into “clocks”

Returns the node identifier for the clock controller referenced at index “idx”

DT_INST_CLOCKS_CTLR(inst)

Equivalent to DT_INST_CLOCKS_CTLR_BY_IDX(inst, 0)

See also:

DT_CLOCKS_CTLR()

Parameters

• inst – instance number

Returns a node identifier for the clocks controller at index 0 in “clocks”

DT_INST_CLOCKS_CTLR_BY_NAME(inst, name)

Get the node identifier for the controller phandle from a clocks phandle-array property by
name.

See also:

DT_CLOCKS_CTLR_BY_NAME()

Parameters

• inst – instance number

• name – lowercase-and-underscores name of a clocks element as defined by the
node’s clock-names property

Returns the node identifier for the clock controller referenced by the named element

DT_INST_CLOCKS_LABEL_BY_IDX(inst, idx)

Get a label property from a DT_DRV_COMPAT instance’s clocks property at an index.

See also:

DT_CLOCKS_LABEL_BY_IDX()

Parameters

• inst – DT_DRV_COMPAT instance number

• idx – logical index into clocks property

7.6. Devicetree 457

Zephyr Project Documentation, Release 2.7.0-rc2

Returns the label property of the node referenced at index “idx”

DT_INST_CLOCKS_LABEL_BY_NAME(inst, name)

Get a label property from a DT_DRV_COMPAT instance’s clocks property by name.

See also:

DT_CLOCKS_LABEL_BY_NAME()

Parameters

• inst – DT_DRV_COMPAT instance number

• name – lowercase-and-underscores name of a clocks element as defined by the
node’s clock-names property

Returns the label property of the node referenced at the named element

DT_INST_CLOCKS_LABEL(inst)

Equivalent to DT_INST_CLOCKS_LABEL_BY_IDX(inst, 0)

See also:

DT_CLOCKS_LABEL_BY_IDX()

Parameters

• inst – DT_DRV_COMPAT instance number

Returns the label property of the node referenced at index 0

DT_INST_CLOCKS_CELL_BY_IDX(inst, idx, cell)

Get a DT_DRV_COMPAT instance’s clock specifier’s cell value at an index.

See also:

DT_CLOCKS_CELL_BY_IDX()

Parameters

• inst – DT_DRV_COMPAT instance number

• idx – logical index into clocks property

• cell – lowercase-and-underscores cell name

Returns the cell value at index “idx”

DT_INST_CLOCKS_CELL_BY_NAME(inst, name, cell)

Get a DT_DRV_COMPAT instance’s clock specifier’s cell value by name.

See also:

DT_CLOCKS_CELL_BY_NAME()

Parameters

• inst – DT_DRV_COMPAT instance number

• name – lowercase-and-underscores name of a clocks element as defined by the
node’s clock-names property

458 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• cell – lowercase-and-underscores cell name

Returns the cell value in the specifier at the named element

DT_INST_CLOCKS_CELL(inst, cell)

Equivalent to DT_INST_CLOCKS_CELL_BY_IDX(inst, 0, cell)

Parameters

• inst – DT_DRV_COMPAT instance number

• cell – lowercase-and-underscores cell name

Returns the value of the cell inside the specifier at index 0

DMA These conveniences may be used for nodes which describe direct memory access controllers or
channels, and properties related to them.

group devicetree-dmas

Defines

DT_DMAS_LABEL_BY_IDX(node_id, idx)

Get a label property from the node referenced by a dmas property at an index.

It’s an error if the DMA controller node referenced by the phandle in node_id’s dmas property
at index “idx” has no label property.

Example devicetree fragment:

dma1: dma@... {
label = "DMA_1";

};

dma2: dma@... {
label = "DMA_2";

};

n: node {
dmas = <&dma1 1 2 0x400 0x3>,

<&dma2 6 3 0x404 0x5>;
};

Example usage:

DT_DMAS_LABEL_BY_IDX(DT_NODELABEL(n), 1) // "DMA_2"

Parameters

• node_id – node identifier for a node with a dmas property

• idx – logical index into dmas property

Returns the label property of the node referenced at index “idx”

DT_INST_DMAS_LABEL_BY_IDX(inst, idx)

Get a label property from a DT_DRV_COMPAT instance’s dmas property at an index.

7.6. Devicetree 459

Zephyr Project Documentation, Release 2.7.0-rc2

See also:

DT_DMAS_LABEL_BY_IDX()

Parameters

• inst – DT_DRV_COMPAT instance number

• idx – logical index into dmas property

Returns the label property of the node referenced at index “idx”

DT_DMAS_LABEL_BY_NAME(node_id, name)

Get a label property from a dmas property by name.

It’s an error if the DMA controller node referenced by the phandle in node_id’s dmas property
at the element named “name” has no label property.

Example devicetree fragment:

dma1: dma@... {
label = "DMA_1";

};

dma2: dma@... {
label = "DMA_2";

};

n: node {
dmas = <&dma1 1 2 0x400 0x3>,

<&dma2 6 3 0x404 0x5>;
dma-names = "tx", "rx";

};

Example usage:

DT_DMAS_LABEL_BY_NAME(DT_NODELABEL(n), rx) // "DMA_2"

Parameters

• node_id – node identifier for a node with a dmas property

• name – lowercase-and-underscores name of a dmas element as defined by the
node’s dma-names property

Returns the label property of the node referenced at the named element

DT_DMAS_CTLR_BY_IDX(node_id, idx)

Get the node identifier for the DMA controller from a dmas property at an index.

Example devicetree fragment:

dma1: dma@... { ... };

dma2: dma@... { ... };

n: node {
dmas = <&dma1 1 2 0x400 0x3>,

<&dma2 6 3 0x404 0x5>;
};

Example usage:

460 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

DT_DMAS_CTLR_BY_IDX(DT_NODELABEL(n), 0) // DT_NODELABEL(dma1)
DT_DMAS_CTLR_BY_IDX(DT_NODELABEL(n), 1) // DT_NODELABEL(dma2)

See also:

DT_PROP_BY_PHANDLE_IDX()

Parameters

• node_id – node identifier for a node with a dmas property

• idx – logical index into dmas property

Returns the node identifier for the DMA controller referenced at index “idx”

DT_DMAS_CTLR_BY_NAME(node_id, name)

Get the node identifier for the DMA controller from a dmas property by name.

Example devicetree fragment:

dma1: dma@... { ... };

dma2: dma@... { ... };

n: node {
dmas = <&dma1 1 2 0x400 0x3>,

<&dma2 6 3 0x404 0x5>;
dma-names = "tx", "rx";

};

Example usage:

DT_DMAS_CTLR_BY_NAME(DT_NODELABEL(n), tx) // DT_NODELABEL(dma1)
DT_DMAS_CTLR_BY_NAME(DT_NODELABEL(n), rx) // DT_NODELABEL(dma2)

See also:

DT_PHANDLE_BY_NAME()

Parameters

• node_id – node identifier for a node with a dmas property

• name – lowercase-and-underscores name of a dmas element as defined by the
node’s dma-names property

Returns the node identifier for the DMA controller in the named element

DT_DMAS_CTLR(node_id)

Equivalent to DT_DMAS_CTLR_BY_IDX(node_id, 0)

See also:

DT_DMAS_CTLR_BY_IDX()

Parameters

• node_id – node identifier for a node with a dmas property

Returns the node identifier for the DMA controller at index 0 in the node’s “dmas”
property

7.6. Devicetree 461

Zephyr Project Documentation, Release 2.7.0-rc2

DT_INST_DMAS_LABEL_BY_NAME(inst, name)

Get a label property from a DT_DRV_COMPAT instance’s dmas property by name.

See also:

DT_DMAS_LABEL_BY_NAME()

Parameters

• inst – DT_DRV_COMPAT instance number

• name – lowercase-and-underscores name of a dmas element as defined by the
node’s dma-names property

Returns the label property of the node referenced at the named element

DT_INST_DMAS_CTLR_BY_IDX(inst, idx)

Get the node identifier for the DMA controller from a DT_DRV_COMPAT instance’s dmas prop-
erty at an index.

See also:

DT_DMAS_CTLR_BY_IDX()

Parameters

• inst – DT_DRV_COMPAT instance number

• idx – logical index into dmas property

Returns the node identifier for the DMA controller referenced at index “idx”

DT_INST_DMAS_CTLR_BY_NAME(inst, name)

Get the node identifier for the DMA controller from a DT_DRV_COMPAT instance’s dmas prop-
erty by name.

See also:

DT_DMAS_CTLR_BY_NAME()

Parameters

• inst – DT_DRV_COMPAT instance number

• name – lowercase-and-underscores name of a dmas element as defined by the
node’s dma-names property

Returns the node identifier for the DMA controller in the named element

DT_INST_DMAS_CTLR(inst)

Equivalent to DT_INST_DMAS_CTLR_BY_IDX(inst, 0)

See also:

DT_DMAS_CTLR_BY_IDX()

Parameters

• inst – DT_DRV_COMPAT instance number

462 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Returns the node identifier for the DMA controller at index 0 in the instance’s “dmas”
property

DT_DMAS_CELL_BY_IDX(node_id, idx, cell)

Get a DMA specifier’s cell value at an index.

Example devicetree fragment:

dma1: dma@... {
compatible = "vnd,dma";
#dma-cells = <2>;

};

dma2: dma@... {
compatible = "vnd,dma";
#dma-cells = <2>;

};

n: node {
dmas = <&dma1 1 0x400>,

<&dma2 6 0x404>;
};

Bindings fragment for the vnd,dma compatible:

dma-cells:
- channel
- config

Example usage:

DT_DMAS_CELL_BY_IDX(DT_NODELABEL(n), 0, channel) // 1
DT_DMAS_CELL_BY_IDX(DT_NODELABEL(n), 1, channel) // 6
DT_DMAS_CELL_BY_IDX(DT_NODELABEL(n), 0, config) // 0x400
DT_DMAS_CELL_BY_IDX(DT_NODELABEL(n), 1, config) // 0x404

See also:

DT_PHA_BY_IDX()

Parameters

• node_id – node identifier for a node with a dmas property

• idx – logical index into dmas property

• cell – lowercase-and-underscores cell name

Returns the cell value at index “idx”

DT_INST_DMAS_CELL_BY_IDX(inst, idx, cell)

Get a DT_DRV_COMPAT instance’s DMA specifier’s cell value at an index.

See also:

DT_DMAS_CELL_BY_IDX()

Parameters

• inst – DT_DRV_COMPAT instance number

• idx – logical index into dmas property

7.6. Devicetree 463

Zephyr Project Documentation, Release 2.7.0-rc2

• cell – lowercase-and-underscores cell name

Returns the cell value at index “idx”

DT_DMAS_CELL_BY_NAME(node_id, name, cell)

Get a DMA specifier’s cell value by name.

Example devicetree fragment:

dma1: dma@... {
compatible = "vnd,dma";
#dma-cells = <2>;

};

dma2: dma@... {
compatible = "vnd,dma";
#dma-cells = <2>;

};

n: node {
dmas = <&dma1 1 0x400>,

<&dma2 6 0x404>;
dma-names = "tx", "rx";

};

Bindings fragment for the vnd,dma compatible:

dma-cells:
- channel
- config

Example usage:

DT_DMAS_CELL_BY_NAME(DT_NODELABEL(n), tx, channel) // 1
DT_DMAS_CELL_BY_NAME(DT_NODELABEL(n), rx, channel) // 6
DT_DMAS_CELL_BY_NAME(DT_NODELABEL(n), tx, config) // 0x400
DT_DMAS_CELL_BY_NAME(DT_NODELABEL(n), rx, config) // 0x404

See also:

DT_PHA_BY_NAME()

Parameters

• node_id – node identifier for a node with a dmas property

• name – lowercase-and-underscores name of a dmas element as defined by the
node’s dma-names property

• cell – lowercase-and-underscores cell name

Returns the cell value in the specifier at the named element

DT_INST_DMAS_CELL_BY_NAME(inst, name, cell)

Get a DT_DRV_COMPAT instance’s DMA specifier’s cell value by name.

See also:

DT_DMAS_CELL_BY_NAME()

Parameters

464 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• inst – DT_DRV_COMPAT instance number

• name – lowercase-and-underscores name of a dmas element as defined by the
node’s dma-names property

• cell – lowercase-and-underscores cell name

Returns the cell value in the specifier at the named element

DT_DMAS_HAS_IDX(node_id, idx)

Is index “idx” valid for a dmas property?

Parameters

• node_id – node identifier for a node with a dmas property

• idx – logical index into dmas property

Returns 1 if the “dmas” property has index “idx”, 0 otherwise

DT_INST_DMAS_HAS_IDX(inst, idx)

Is index “idx” valid for a DT_DRV_COMPAT instance’s dmas property?

Parameters

• inst – DT_DRV_COMPAT instance number

• idx – logical index into dmas property

Returns 1 if the “dmas” property has a specifier at index “idx”, 0 otherwise

DT_DMAS_HAS_NAME(node_id, name)

Does a dmas property have a named element?

Parameters

• node_id – node identifier for a node with a dmas property

• name – lowercase-and-underscores name of a dmas element as defined by the
node’s dma-names property

Returns 1 if the dmas property has the named element, 0 otherwise

DT_INST_DMAS_HAS_NAME(inst, name)

Does a DT_DRV_COMPAT instance’s dmas property have a named element?

Parameters

• inst – DT_DRV_COMPAT instance number

• name – lowercase-and-underscores name of a dmas element as defined by the
node’s dma-names property

Returns 1 if the dmas property has the named element, 0 otherwise

Fixed flash partitions These conveniences may be used for the special-purpose fixed-partitions
compatible used to encode information about flash memory partitions in the device tree. See
dts/bindings/mtd/partition.yaml for this compatible’s binding.

group devicetree-fixed-partition

Defines

7.6. Devicetree 465

https://github.com/zephyrproject-rtos/zephyr/blob/main/dts/bindings/mtd/partition.yaml

Zephyr Project Documentation, Release 2.7.0-rc2

DT_NODE_BY_FIXED_PARTITION_LABEL(label)

Get a node identifier for a fixed partition with a given label property.

Example devicetree fragment:

flash@... {
partitions {

compatible = "fixed-partitions";
boot_partition: partition@0 {

label = "mcuboot";
};
slot0_partition: partition@c000 {

label = "image-0";
};
...

};
};

Example usage:

DT_NODE_BY_FIXED_PARTITION_LABEL(mcuboot) // node identifier for boot_
→˓partition
DT_NODE_BY_FIXED_PARTITION_LABEL(image_0) // node identifier for slot0_
→˓partition

Parameters

• label – lowercase-and-underscores label property value

Returns a node identifier for the partition with that label property

DT_HAS_FIXED_PARTITION_LABEL(label)

Test if a fixed partition with a given label property exists.

Parameters

• label – lowercase-and-underscores label property value

Returns 1 if any “fixed-partitions” child node has the given label, 0 otherwise.

DT_FIXED_PARTITION_ID(node_id)

Get a numeric identifier for a fixed partition.

Parameters

• node_id – node identifier for a fixed-partitions child node

Returns the partition’s ID, a unique zero-based index number

DT_MTD_FROM_FIXED_PARTITION(node_id)

Get the node identifier of the flash device for a partition.

Parameters

• node_id – node identifier for a fixed-partitions child node

Returns the node identifier of the memory technology device that contains the fixed-
partitions node.

GPIO These conveniences may be used for nodes which describe GPIO controllers/pins, and properties
related to them.

group devicetree-gpio

466 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Defines

DT_GPIO_CTLR_BY_IDX(node_id, gpio_pha, idx)

Get the node identifier for the controller phandle from a gpio phandle-array property at an
index.

Example devicetree fragment:

gpio1: gpio@... { };

gpio2: gpio@... { };

n: node {
gpios = <&gpio1 10 GPIO_ACTIVE_LOW>,

<&gpio2 30 GPIO_ACTIVE_HIGH>;
};

Example usage:

DT_GPIO_CTLR_BY_IDX(DT_NODELABEL(n), gpios, 1) // DT_NODELABEL(gpio2)

See also:

DT_PHANDLE_BY_IDX()

Parameters

• node_id – node identifier

• gpio_pha – lowercase-and-underscores GPIO property with type “phandle-
array”

• idx – logical index into “gpio_pha”

Returns the node identifier for the gpio controller referenced at index “idx”

DT_GPIO_CTLR(node_id, gpio_pha)

Equivalent to DT_GPIO_CTLR_BY_IDX(node_id, gpio_pha, 0)

See also:

DT_GPIO_CTLR_BY_IDX()

Parameters

• node_id – node identifier

• gpio_pha – lowercase-and-underscores GPIO property with type “phandle-
array”

Returns a node identifier for the gpio controller at index 0 in “gpio_pha”

DT_GPIO_LABEL_BY_IDX(node_id, gpio_pha, idx)

Get a label property from a gpio phandle-array property at an index.

It’s an error if the GPIO controller node referenced by the phandle in node_id’s “gpio_pha”
property at index “idx” has no label property.

Example devicetree fragment:

7.6. Devicetree 467

Zephyr Project Documentation, Release 2.7.0-rc2

gpio1: gpio@... {
label = "GPIO_1";

};

gpio2: gpio@... {
label = "GPIO_2";

};

n: node {
gpios = <&gpio1 10 GPIO_ACTIVE_LOW>,

<&gpio2 30 GPIO_ACTIVE_HIGH>;
};

Example usage:

DT_GPIO_LABEL_BY_IDX(DT_NODELABEL(n), gpios, 1) // "GPIO_2"

See also:

DT_PHANDLE_BY_IDX()

Parameters

• node_id – node identifier

• gpio_pha – lowercase-and-underscores GPIO property with type “phandle-
array”

• idx – logical index into “gpio_pha”

Returns the label property of the node referenced at index “idx”

DT_GPIO_LABEL(node_id, gpio_pha)

Equivalent to DT_GPIO_LABEL_BY_IDX(node_id, gpio_pha, 0)

See also:

DT_GPIO_LABEL_BY_IDX()

Parameters

• node_id – node identifier

• gpio_pha – lowercase-and-underscores GPIO property with type “phandle-
array”

Returns the label property of the node referenced at index 0

DT_GPIO_PIN_BY_IDX(node_id, gpio_pha, idx)

Get a GPIO specifier’s pin cell at an index.

This macro only works for GPIO specifiers with cells named “pin”. Refer to the node’s binding
to check if necessary.

Example devicetree fragment:

gpio1: gpio@... {
compatible = "vnd,gpio";
#gpio-cells = <2>;

};

(continues on next page)

468 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

gpio2: gpio@... {
compatible = "vnd,gpio";
#gpio-cells = <2>;

};

n: node {
gpios = <&gpio1 10 GPIO_ACTIVE_LOW>,

<&gpio2 30 GPIO_ACTIVE_HIGH>;
};

Bindings fragment for the vnd,gpio compatible:

gpio-cells:
- pin
- flags

Example usage:

DT_GPIO_PIN_BY_IDX(DT_NODELABEL(n), gpios, 0) // 10
DT_GPIO_PIN_BY_IDX(DT_NODELABEL(n), gpios, 1) // 30

See also:

DT_PHA_BY_IDX()

Parameters

• node_id – node identifier

• gpio_pha – lowercase-and-underscores GPIO property with type “phandle-
array”

• idx – logical index into “gpio_pha”

Returns the pin cell value at index “idx”

DT_GPIO_PIN(node_id, gpio_pha)

Equivalent to DT_GPIO_PIN_BY_IDX(node_id, gpio_pha, 0)

See also:

DT_GPIO_PIN_BY_IDX()

Parameters

• node_id – node identifier

• gpio_pha – lowercase-and-underscores GPIO property with type “phandle-
array”

Returns the pin cell value at index 0

DT_GPIO_FLAGS_BY_IDX(node_id, gpio_pha, idx)

Get a GPIO specifier’s flags cell at an index.

This macro expects GPIO specifiers with cells named “flags”. If there is no “flags” cell in the
GPIO specifier, zero is returned. Refer to the node’s binding to check specifier cell names if
necessary.

Example devicetree fragment:

7.6. Devicetree 469

Zephyr Project Documentation, Release 2.7.0-rc2

gpio1: gpio@... {
compatible = "vnd,gpio";
#gpio-cells = <2>;

};

gpio2: gpio@... {
compatible = "vnd,gpio";
#gpio-cells = <2>;

};

n: node {
gpios = <&gpio1 10 GPIO_ACTIVE_LOW>,

<&gpio2 30 GPIO_ACTIVE_HIGH>;
};

Bindings fragment for the vnd,gpio compatible:

gpio-cells:
- pin
- flags

Example usage:

DT_GPIO_FLAGS_BY_IDX(DT_NODELABEL(n), gpios, 0) // GPIO_ACTIVE_LOW
DT_GPIO_FLAGS_BY_IDX(DT_NODELABEL(n), gpios, 1) // GPIO_ACTIVE_HIGH

See also:

DT_PHA_BY_IDX()

Parameters

• node_id – node identifier

• gpio_pha – lowercase-and-underscores GPIO property with type “phandle-
array”

• idx – logical index into “gpio_pha”

Returns the flags cell value at index “idx”, or zero if there is none

DT_GPIO_FLAGS(node_id, gpio_pha)

Equivalent to DT_GPIO_FLAGS_BY_IDX(node_id, gpio_pha, 0)

See also:

DT_GPIO_FLAGS_BY_IDX()

Parameters

• node_id – node identifier

• gpio_pha – lowercase-and-underscores GPIO property with type “phandle-
array”

Returns the flags cell value at index 0, or zero if there is none

DT_INST_GPIO_LABEL_BY_IDX(inst, gpio_pha, idx)

Get a label property from a DT_DRV_COMPAT instance’s GPIO property at an index.

Parameters

470 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• inst – DT_DRV_COMPAT instance number

• gpio_pha – lowercase-and-underscores GPIO property with type “phandle-
array”

• idx – logical index into “gpio_pha”

Returns the label property of the node referenced at index “idx”

DT_INST_GPIO_LABEL(inst, gpio_pha)

Equivalent to DT_INST_GPIO_LABEL_BY_IDX(inst, gpio_pha, 0)

Parameters

• inst – DT_DRV_COMPAT instance number

• gpio_pha – lowercase-and-underscores GPIO property with type “phandle-
array”

Returns the label property of the node referenced at index 0

DT_INST_GPIO_PIN_BY_IDX(inst, gpio_pha, idx)

Get a DT_DRV_COMPAT instance’s GPIO specifier’s pin cell value at an index.

See also:

DT_GPIO_PIN_BY_IDX()

Parameters

• inst – DT_DRV_COMPAT instance number

• gpio_pha – lowercase-and-underscores GPIO property with type “phandle-
array”

• idx – logical index into “gpio_pha”

Returns the pin cell value at index “idx”

DT_INST_GPIO_PIN(inst, gpio_pha)

Equivalent to DT_INST_GPIO_PIN_BY_IDX(inst, gpio_pha, 0)

See also:

DT_INST_GPIO_PIN_BY_IDX()

Parameters

• inst – DT_DRV_COMPAT instance number

• gpio_pha – lowercase-and-underscores GPIO property with type “phandle-
array”

Returns the pin cell value at index 0

DT_INST_GPIO_FLAGS_BY_IDX(inst, gpio_pha, idx)

Get a DT_DRV_COMPAT instance’s GPIO specifier’s flags cell at an index.

See also:

DT_GPIO_FLAGS_BY_IDX()

Parameters

7.6. Devicetree 471

Zephyr Project Documentation, Release 2.7.0-rc2

• inst – DT_DRV_COMPAT instance number

• gpio_pha – lowercase-and-underscores GPIO property with type “phandle-
array”

• idx – logical index into “gpio_pha”

Returns the flags cell value at index “idx”, or zero if there is none

DT_INST_GPIO_FLAGS(inst, gpio_pha)

Equivalent to DT_INST_GPIO_FLAGS_BY_IDX(inst, gpio_pha, 0)

See also:

DT_INST_GPIO_FLAGS_BY_IDX()

Parameters

• inst – DT_DRV_COMPAT instance number

• gpio_pha – lowercase-and-underscores GPIO property with type “phandle-
array”

Returns the flags cell value at index 0, or zero if there is none

IO channels These are commonly used by device drivers which need to use IO channels (e.g. ADC or
DAC channels) for conversion.

group devicetree-io-channels

Defines

DT_IO_CHANNELS_LABEL_BY_IDX(node_id, idx)

Get a label property from the node referenced by an io-channels property at an index.

It’s an error if the node referenced by the phandle in node_id’s io-channels property at index
“idx” has no label property.

Example devicetree fragment:

adc1: adc@... {
label = "ADC_1";

};

adc2: adc@... {
label = "ADC_2";

};

n: node {
io-channels = <&adc1 10>, <&adc2 20>;

};

Example usage:

DT_IO_CHANNELS_LABEL_BY_IDX(DT_NODELABEL(n), 1) // "ADC_2"

See also:

DT_PROP_BY_PHANDLE_IDX()

472 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• node_id – node identifier for a node with an io-channels property

• idx – logical index into io-channels property

Returns the label property of the node referenced at index “idx”

DT_IO_CHANNELS_LABEL_BY_NAME(node_id, name)

Get a label property from an io-channels property by name.

It’s an error if the node referenced by the phandle in node_id’s io-channels property at the
element named “name” has no label property.

Example devicetree fragment:

adc1: adc@... {
label = "ADC_1";

};

adc2: adc@... {
label = "ADC_2";

};

n: node {
io-channels = <&adc1 10>, <&adc2 20>;
io-channel-names = "SENSOR", "BANDGAP";

};

Example usage:

DT_IO_CHANNELS_LABEL_BY_NAME(DT_NODELABEL(n), bandgap) // "ADC_2"

See also:

DT_PHANDLE_BY_NAME()

Parameters

• node_id – node identifier for a node with an io-channels property

• name – lowercase-and-underscores name of an io-channels element as defined
by the node’s io-channel-names property

Returns the label property of the node referenced at the named element

DT_IO_CHANNELS_LABEL(node_id)

Equivalent to DT_IO_CHANNELS_LABEL_BY_IDX(node_id, 0)

See also:

DT_IO_CHANNELS_LABEL_BY_IDX()

Parameters

• node_id – node identifier for a node with an io-channels property

Returns the label property of the node referenced at index 0

DT_IO_CHANNELS_CTLR_BY_IDX(node_id, idx)

Get the node identifier for the node referenced by an io-channels property at an index.

Example devicetree fragment:

7.6. Devicetree 473

Zephyr Project Documentation, Release 2.7.0-rc2

adc1: adc@... { ... };

adc2: adc@... { ... };

n: node {
io-channels = <&adc1 10>, <&adc2 20>;

};

Example usage:

DT_IO_CHANNELS_CTLR_BY_IDX(DT_NODELABEL(n), 0) // DT_NODELABEL(adc1)
DT_IO_CHANNELS_CTLR_BY_IDX(DT_NODELABEL(n), 1) // DT_NODELABEL(adc2)

See also:

DT_PROP_BY_PHANDLE_IDX()

Parameters

• node_id – node identifier for a node with an io-channels property

• idx – logical index into io-channels property

Returns the node identifier for the node referenced at index “idx”

DT_IO_CHANNELS_CTLR_BY_NAME(node_id, name)

Get the node identifier for the node referenced by an io-channels property by name.

Example devicetree fragment:

adc1: adc@... { ... };

adc2: adc@... { ... };

n: node {
io-channels = <&adc1 10>, <&adc2 20>;
io-channel-names = "SENSOR", "BANDGAP";

};

Example usage:

DT_IO_CHANNELS_CTLR_BY_NAME(DT_NODELABEL(n), sensor) // DT_NODELABEL(adc1)
DT_IO_CHANNELS_CTLR_BY_NAME(DT_NODELABEL(n), bandgap) // DT_NODELABEL(adc2)

See also:

DT_PHANDLE_BY_NAME()

Parameters

• node_id – node identifier for a node with an io-channels property

• name – lowercase-and-underscores name of an io-channels element as defined
by the node’s io-channel-names property

Returns the node identifier for the node referenced at the named element

DT_IO_CHANNELS_CTLR(node_id)

Equivalent to DT_IO_CHANNELS_CTLR_BY_IDX(node_id, 0)

474 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

See also:

DT_IO_CHANNELS_CTLR_BY_IDX()

Parameters

• node_id – node identifier for a node with an io-channels property

Returns the node identifier for the node referenced at index 0 in the node’s “io-
channels” property

DT_INST_IO_CHANNELS_LABEL_BY_IDX(inst, idx)

Get a label property from a DT_DRV_COMPAT instance’s io-channels property at an index.

See also:

DT_IO_CHANNELS_LABEL_BY_IDX()

Parameters

• inst – DT_DRV_COMPAT instance number

• idx – logical index into io-channels property

Returns the label property of the node referenced at index “idx”

DT_INST_IO_CHANNELS_LABEL_BY_NAME(inst, name)

Get a label property from a DT_DRV_COMPAT instance’s io-channels property by name.

See also:

DT_IO_CHANNELS_LABEL_BY_NAME()

Parameters

• inst – DT_DRV_COMPAT instance number

• name – lowercase-and-underscores name of an io-channels element as defined
by the instance’s io-channel-names property

Returns the label property of the node referenced at the named element

DT_INST_IO_CHANNELS_LABEL(inst)

Equivalent to DT_INST_IO_CHANNELS_LABEL_BY_IDX(inst, 0)

Parameters

• inst – DT_DRV_COMPAT instance number

Returns the label property of the node referenced at index 0

DT_INST_IO_CHANNELS_CTLR_BY_IDX(inst, idx)

Get the node identifier from a DT_DRV_COMPAT instance’s io-channels property at an index.

See also:

DT_IO_CHANNELS_CTLR_BY_IDX()

Parameters

• inst – DT_DRV_COMPAT instance number

• idx – logical index into io-channels property

7.6. Devicetree 475

Zephyr Project Documentation, Release 2.7.0-rc2

Returns the node identifier for the node referenced at index “idx”

DT_INST_IO_CHANNELS_CTLR_BY_NAME(inst, name)

Get the node identifier from a DT_DRV_COMPAT instance’s io-channels property by name.

See also:

DT_IO_CHANNELS_CTLR_BY_NAME()

Parameters

• inst – DT_DRV_COMPAT instance number

• name – lowercase-and-underscores name of an io-channels element as defined
by the node’s io-channel-names property

Returns the node identifier for the node referenced at the named element

DT_INST_IO_CHANNELS_CTLR(inst)

Equivalent to DT_INST_IO_CHANNELS_CTLR_BY_IDX(inst, 0)

See also:

DT_IO_CHANNELS_CTLR_BY_IDX()

Parameters

• inst – DT_DRV_COMPAT instance number

Returns the node identifier for the node referenced at index 0 in the node’s “io-
channels” property

DT_IO_CHANNELS_INPUT_BY_IDX(node_id, idx)

Get an io-channels specifier input cell at an index.

This macro only works for io-channels specifiers with cells named “input”. Refer to the node’s
binding to check if necessary.

Example devicetree fragment:

adc1: adc@... {
compatible = "vnd,adc";
#io-channel-cells = <1>;

};

adc2: adc@... {
compatible = "vnd,adc";
#io-channel-cells = <1>;

};

n: node {
io-channels = <&adc1 10>, <&adc2 20>;

};

Bindings fragment for the vnd,adc compatible:

io-channel-cells:

• input

Example usage:

476 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

DT_IO_CHANNELS_INPUT_BY_IDX(DT_NODELABEL(n), 0) // 10
DT_IO_CHANNELS_INPUT_BY_IDX(DT_NODELABEL(n), 1) // 20

See also:

DT_PHA_BY_IDX()

Parameters

• node_id – node identifier for a node with an io-channels property

• idx – logical index into io-channels property

Returns the input cell in the specifier at index “idx”

DT_IO_CHANNELS_INPUT_BY_NAME(node_id, name)

Get an io-channels specifier input cell by name.

This macro only works for io-channels specifiers with cells named “input”. Refer to the node’s
binding to check if necessary.

Example devicetree fragment:

adc1: adc@... {
compatible = "vnd,adc";
#io-channel-cells = <1>;

};

adc2: adc@... {
compatible = "vnd,adc";
#io-channel-cells = <1>;

};

n: node {
io-channels = <&adc1 10>, <&adc2 20>;
io-channel-names = "SENSOR", "BANDGAP";

};

Bindings fragment for the vnd,adc compatible:

io-channel-cells:

• input

Example usage:

DT_IO_CHANNELS_INPUT_BY_NAME(DT_NODELABEL(n), sensor) // 10
DT_IO_CHANNELS_INPUT_BY_NAME(DT_NODELABEL(n), bandgap) // 20

See also:

DT_PHA_BY_NAME()

Parameters

• node_id – node identifier for a node with an io-channels property

• name – lowercase-and-underscores name of an io-channels element as defined
by the node’s io-channel-names property

Returns the input cell in the specifier at the named element

7.6. Devicetree 477

Zephyr Project Documentation, Release 2.7.0-rc2

DT_IO_CHANNELS_INPUT(node_id)

Equivalent to DT_IO_CHANNELS_INPUT_BY_IDX(node_id, 0)

See also:

DT_IO_CHANNELS_INPUT_BY_IDX()

Parameters

• node_id – node identifier for a node with an io-channels property

Returns the input cell in the specifier at index 0

DT_INST_IO_CHANNELS_INPUT_BY_IDX(inst, idx)

Get an input cell from the “DT_DRV_INST(inst)” io-channels property at an index.

See also:

DT_IO_CHANNELS_INPUT_BY_IDX()

Parameters

• inst – DT_DRV_COMPAT instance number

• idx – logical index into io-channels property

Returns the input cell in the specifier at index “idx”

DT_INST_IO_CHANNELS_INPUT_BY_NAME(inst, name)

Get an input cell from the “DT_DRV_INST(inst)” io-channels property by name.

See also:

DT_IO_CHANNELS_INPUT_BY_NAME()

Parameters

• inst – DT_DRV_COMPAT instance number

• name – lowercase-and-underscores name of an io-channels element as defined
by the instance’s io-channel-names property

Returns the input cell in the specifier at the named element

DT_INST_IO_CHANNELS_INPUT(inst)

Equivalent to DT_INST_IO_CHANNELS_INPUT_BY_IDX(inst, 0)

Parameters

• inst – DT_DRV_COMPAT instance number

Returns the input cell in the specifier at index 0

Pinctrl (pin control) These are used to access pin control properties by name or index.

Devicetree nodes may have properties which specify pin control (sometimes known as pin mux) settings.
These are expressed using pinctrl-<index> properties within the node, where the <index> values are
contiguous integers starting from 0. These may also be named using the pinctrl-names property.

Here is an example:

478 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

node {
...
pinctrl-0 = <&foo &bar ...>;
pinctrl-1 = <&baz ...>;
pinctrl-names = "default", "sleep";

};

Above, pinctrl-0 has name "default", and pinctrl-1 has name "sleep". The pinctrl-<index>
property values contain phandles. The &foo, &bar, etc. phandles within the properties point to nodes
whose contents vary by platform, and which describe a pin configuration for the node.

group devicetree-pinctrl

Defines

DT_PINCTRL_BY_IDX(node_id, pc_idx, idx)

Get a node identifier for a phandle in a pinctrl property by index.

Example devicetree fragment:

n: node {
pinctrl-0 = <&foo &bar>;
pinctrl-1 = <&baz &blub>;

}

Example usage:

DT_PINCTRL_BY_IDX(DT_NODELABEL(n), 0, 1) // DT_NODELABEL(bar)
DT_PINCTRL_BY_IDX(DT_NODELABEL(n), 1, 0) // DT_NODELABEL(baz)

Parameters

• node_id – node with a pinctrl-‘pc_idx’ property

• pc_idx – index of the pinctrl property itself

• idx – index into the value of the pinctrl property

Returns node identifier for the phandle at index ‘idx’ in ‘pinctrl-‘pc_idx”

DT_PINCTRL_0(node_id, idx)

Get a node identifier from a pinctrl-0 property.

This is equivalent to:

DT_PINCTRL_BY_IDX(node_id, 0, idx)

It is provided for convenience since pinctrl-0 is commonly used.

Parameters

• node_id – node with a pinctrl-0 property

• idx – index into the pinctrl-0 property

Returns node identifier for the phandle at index idx in the pinctrl-0 property of that
node

DT_PINCTRL_BY_NAME(node_id, name, idx)

Get a node identifier for a phandle inside a pinctrl node by name.

Example devicetree fragment:

7.6. Devicetree 479

Zephyr Project Documentation, Release 2.7.0-rc2

n: node {
pinctrl-0 = <&foo &bar>;
pinctrl-1 = <&baz &blub>;
pinctrl-names = "default", "sleep";

};

Example usage:

DT_PINCTRL_BY_NAME(DT_NODELABEL(n), default, 1) // DT_NODELABEL(bar)
DT_PINCTRL_BY_NAME(DT_NODELABEL(n), sleep, 0) // DT_NODELABEL(baz)

Parameters

• node_id – node with a named pinctrl property

• name – lowercase-and-underscores pinctrl property name

• idx – index into the value of the named pinctrl property

Returns node identifier for the phandle at that index in the pinctrl property

DT_PINCTRL_NAME_TO_IDX(node_id, name)

Convert a pinctrl name to its corresponding index.

Example devicetree fragment:

n: node {
pinctrl-0 = <&foo &bar>;
pinctrl-1 = <&baz &blub>;
pinctrl-names = "default", "sleep";

};

Example usage:

DT_PINCTRL_NAME_TO_IDX(DT_NODELABEL(n), default) // 0
DT_PINCTRL_NAME_TO_IDX(DT_NODELABEL(n), sleep) // 1

Parameters

• node_id – node identifier with a named pinctrl property

• name – lowercase-and-underscores name name of the pinctrl whose index to
get

Returns integer literal for the index of the pinctrl property with that name

DT_PINCTRL_IDX_TO_NAME_TOKEN(node_id, pc_idx)

Convert a pinctrl property index to its name as a token.

This allows you to get a pinctrl property’s name, and “remove the

quotes” from it.

DT_PINCTRL_IDX_TO_NAME_TOKEN() can only be used if the node has a pinctrl-‘pc_idx’
property and a pinctrl-names property element for that index. It is an error to use it in other
circumstances.

Example devicetree fragment:

480 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

n: node {
pinctrl-0 = <...>;
pinctrl-1 = <...>;
pinctrl-names = "default", "f.o.o2";

};

Example usage:

DT_PINCTRL_IDX_TO_NAME_TOKEN(DT_NODELABEL(n), 0) // default
DT_PINCTRL_IDX_TO_NAME_TOKEN(DT_NODELABEL(n), 1) // f_o_o2

The same caveats and restrictions that apply to DT_STRING_TOKEN()’s return value also apply
here.

Parameters

• node_id – node identifier

• pc_idx – index of a pinctrl property in that node

Returns name of the pinctrl property, as a token, without any quotes and with non-
alphanumeric characters converted to underscores

DT_PINCTRL_IDX_TO_NAME_UPPER_TOKEN(node_id, pc_idx)

Like DT_PINCTRL_IDX_TO_NAME_TOKEN(), but with an uppercased result.

This does the a similar conversion as DT_PINCTRL_IDX_TO_NAME_TOKEN(node_id, pc_idx).
The only difference is that alphabetical characters in the result are uppercased.

Example devicetree fragment:

n: node {
pinctrl-0 = <...>;
pinctrl-1 = <...>;
pinctrl-names = "default", "f.o.o2";

};

Example usage:

DT_PINCTRL_IDX_TO_NAME_TOKEN(DT_NODELABEL(n), 0) // DEFAULT
DT_PINCTRL_IDX_TO_NAME_TOKEN(DT_NODELABEL(n), 1) // F_O_O2

The same caveats and restrictions that apply to DT_STRING_UPPER_TOKEN()’s return value
also apply here.

DT_NUM_PINCTRLS_BY_IDX(node_id, pc_idx)

Get the number of phandles in a pinctrl property.

Example devicetree fragment:

n1: node-1 {
pinctrl-0 = <&foo &bar>;

};

n2: node-2 {
pinctrl-0 = <&baz>;

};

Example usage:

DT_NUM_PINCTRLS_BY_IDX(DT_NODELABEL(n1), 0) // 2
DT_NUM_PINCTRLS_BY_IDX(DT_NODELABEL(n2), 0) // 1

7.6. Devicetree 481

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• node_id – node identifier with a pinctrl property

• pc_idx – index of the pinctrl property itself

Returns number of phandles in the property with that index

DT_NUM_PINCTRLS_BY_NAME(node_id, name)

Like DT_NUM_PINCTRLS_BY_IDX(), but by name instead.

Example devicetree fragment:

n: node {
pinctrl-0 = <&foo &bar>;
pinctrl-1 = <&baz>
pinctrl-names = "default", "sleep";

};

Example usage:

DT_NUM_PINCTRLS_BY_NAME(DT_NODELABEL(n), default) // 2
DT_NUM_PINCTRLS_BY_NAME(DT_NODELABEL(n), sleep) // 1

Parameters

• node_id – node identifier with a pinctrl property

• name – lowercase-and-underscores name name of the pinctrl property

Returns number of phandles in the property with that name

DT_NUM_PINCTRL_STATES(node_id)

Get the number of pinctrl properties in a node.

This expands to 0 if there are no pinctrl-i properties. Otherwise, it expands to the number of
such properties.

Example devicetree fragment:

n1: node-1 {
pinctrl-0 = <...>;
pinctrl-1 = <...>;

};

n2: node-2 {
};

Example usage:

DT_NUM_PINCTRL_STATES(DT_NODELABEL(n1)) // 2
DT_NUM_PINCTRL_STATES(DT_NODELABEL(n2)) // 0

Parameters

• node_id – node identifier; may or may not have any pinctrl properties

Returns number of pinctrl properties in the node

DT_PINCTRL_HAS_IDX(node_id, pc_idx)

Test if a node has a pinctrl property with an index.

This expands to 1 if the pinctrl-‘idx’ property exists. Otherwise, it expands to 0.

482 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Example devicetree fragment:

n1: node-1 {
pinctrl-0 = <...>;
pinctrl-1 = <...>;

};

n2: node-2 {
};

Example usage:

DT_PINCTRL_HAS_IDX(DT_NODELABEL(n1), 0) // 1
DT_PINCTRL_HAS_IDX(DT_NODELABEL(n1), 1) // 1
DT_PINCTRL_HAS_IDX(DT_NODELABEL(n1), 2) // 0
DT_PINCTRL_HAS_IDX(DT_NODELABEL(n2), 0) // 0

Parameters

• node_id – node identifier; may or may not have any pinctrl properties

• pc_idx – index of a pinctrl property whose existence to check

Returns 1 if the property exists, 0 otherwise

DT_PINCTRL_HAS_NAME(node_id, name)

Test if a node has a pinctrl property with a name.

This expands to 1 if the named pinctrl property exists. Otherwise, it expands to 0.

Example devicetree fragment:

n1: node-1 {
pinctrl-0 = <...>;
pinctrl-names = "default";

};

n2: node-2 {
};

Example usage:

DT_PINCTRL_HAS_NAME(DT_NODELABEL(n1), default) // 1
DT_PINCTRL_HAS_NAME(DT_NODELABEL(n1), sleep) // 0
DT_PINCTRL_HAS_NAME(DT_NODELABEL(n2), default) // 0

Parameters

• node_id – node identifier; may or may not have any pinctrl properties

• name – lowercase-and-underscores pinctrl property name to check

Returns 1 if the property exists, 0 otherwise

DT_INST_PINCTRL_BY_IDX(inst, pc_idx, idx)

Get a node identifier for a phandle in a pinctrl property by index for a DT_DRV_COMPAT
instance.

This is equivalent to DT_PINCTRL_BY_IDX(DT_DRV_INST(inst), pc_idx, idx).

Parameters

• inst – instance number

7.6. Devicetree 483

Zephyr Project Documentation, Release 2.7.0-rc2

• pc_idx – index of the pinctrl property itself

• idx – index into the value of the pinctrl property

Returns node identifier for the phandle at index ‘idx’ in ‘pinctrl-‘pc_idx”

DT_INST_PINCTRL_0(inst, idx)

Get a node identifier from a pinctrl-0 property for a DT_DRV_COMPAT instance.

This is equivalent to:

DT_PINCTRL_BY_IDX(DT_DRV_INST(inst), 0, idx)

It is provided for convenience since pinctrl-0 is commonly used.

Parameters

• inst – instance number

• idx – index into the pinctrl-0 property

Returns node identifier for the phandle at index idx in the pinctrl-0 property of that
instance

DT_INST_PINCTRL_BY_NAME(inst, name, idx)

Get a node identifier for a phandle inside a pinctrl node for a DT_DRV_COMPAT instance.

This is equivalent to DT_PINCTRL_BY_NAME(DT_DRV_INST(inst), name, idx).

Parameters

• inst – instance number

• name – lowercase-and-underscores pinctrl property name

• idx – index into the value of the named pinctrl property

Returns node identifier for the phandle at that index in the pinctrl property

DT_INST_PINCTRL_NAME_TO_IDX(inst, name)

Convert a pinctrl name to its corresponding index for a DT_DRV_COMPAT instance.

This is equivalent to DT_PINCTRL_NAME_TO_IDX(DT_DRV_INST(inst),name).

Parameters

• inst – instance number

• name – lowercase-and-underscores name of the pinctrl whose index to get

Returns integer literal for the index of the pinctrl property with that name

DT_INST_PINCTRL_IDX_TO_NAME_TOKEN(inst, pc_idx)

Convert a pinctrl index to its name as an uppercased token.

This is equivalent to DT_PINCTRL_IDX_TO_NAME_TOKEN(DT_DRV_INST(inst), pc_idx).

Parameters

• inst – instance number

• pc_idx – index of the pinctrl property itself

Returns name of the pin control property as a token

DT_INST_PINCTRL_IDX_TO_NAME_UPPER_TOKEN(inst, pc_idx)

Convert a pinctrl index to its name as an uppercased token.

This is equivalent to DT_PINCTRL_IDX_TO_NAME_UPPER_TOKEN(DT_DRV_INST(inst), idx).

Parameters

• inst – instance number

484 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• pc_idx – index of the pinctrl property itself

Returns name of the pin control property as an uppercase token

DT_INST_NUM_PINCTRLS_BY_IDX(inst, pc_idx)
Get the number of phandles in a pinctrl property for a DT_DRV_COMPAT instance.

This is equivalent to DT_NUM_PINCTRLS_BY_IDX(DT_DRV_INST(inst),pc_idx).

Parameters

• inst – instance number

• pc_idx – index of the pinctrl property itself

Returns number of phandles in the property with that index

DT_INST_NUM_PINCTRLS_BY_NAME(inst, name)
Like DT_INST_NUM_PINCTRLS_BY_IDX(), but by name instead.

This is equivalent to DT_NUM_PINCTRLS_BY_NAME(DT_DRV_INST(inst),name).

Parameters

• inst – instance number

• name – lowercase-and-underscores name of the pinctrl property

Returns number of phandles in the property with that name

DT_INST_NUM_PINCTRL_STATES(inst)
Get the number of pinctrl properties in a DT_DRV_COMPAT instance.

This is equivalent to DT_NUM_PINCTRL_STATES(DT_DRV_INST(inst)).

Parameters

• inst – instance number

Returns number of pinctrl properties in the instance

DT_INST_PINCTRL_HAS_IDX(inst, pc_idx)
Test if a DT_DRV_COMPAT instance has a pinctrl property with an index.

This is equivalent to DT_PINCTRL_HAS_IDX(DT_DRV_INST(inst), pc_idx).

Parameters

• inst – instance number

• pc_idx – index of a pinctrl property whose existence to check

Returns 1 if the property exists, 0 otherwise

DT_INST_PINCTRL_HAS_NAME(inst, name)
Test if a DT_DRV_COMPAT instance has a pinctrl property with a name.

This is equivalent to DT_PINCTRL_HAS_NAME(DT_DRV_INST(inst), name).

Parameters

• inst – instance number

• name – lowercase-and-underscores pinctrl property name to check

Returns 1 if the property exists, 0 otherwise

PWM These conveniences may be used for nodes which describe PWM controllers and properties re-
lated to them.

group devicetree-pwms

7.6. Devicetree 485

Zephyr Project Documentation, Release 2.7.0-rc2

Defines

DT_PWMS_LABEL_BY_IDX(node_id, idx)

Get a label property from a pwms property at an index.

It’s an error if the PWM controller node referenced by the phandle in node_id’s pwms property
at index “idx” has no label property.

Example devicetree fragment:

pwm1: pwm-controller@... {
label = "PWM_1";

};

pwm2: pwm-controller@... {
label = "PWM_2";

};

n: node {
pwms = <&pwm1 1 PWM_POLARITY_NORMAL>,

<&pwm2 3 PWM_POLARITY_INVERTED>;
};

Example usage:

DT_PWMS_LABEL_BY_IDX(DT_NODELABEL(n), 0) // "PWM_1"
DT_PWMS_LABEL_BY_IDX(DT_NODELABEL(n), 1) // "PWM_2"

See also:

DT_PROP_BY_PHANDLE_IDX()

Parameters

• node_id – node identifier for a node with a pwms property

• idx – logical index into pwms property

Returns the label property of the node referenced at index “idx”

DT_PWMS_LABEL_BY_NAME(node_id, name)

Get a label property from a pwms property by name.

It’s an error if the PWM controller node referenced by the phandle in node_id’s pwms property
at the element named “name” has no label property.

Example devicetree fragment:

pwm1: pwm-controller@... {
label = "PWM_1";

};

pwm2: pwm-controller@... {
label = "PWM_2";

};

n: node {
pwms = <&pwm1 1 PWM_POLARITY_NORMAL>,

<&pwm2 3 PWM_POLARITY_INVERTED>;
pwm-names = "alpha", "beta";

};

486 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Example usage:

DT_PWMS_LABEL_BY_NAME(DT_NODELABEL(n), alpha) // "PWM_1"
DT_PWMS_LABEL_BY_NAME(DT_NODELABEL(n), beta) // "PWM_2"

See also:

DT_PHANDLE_BY_NAME()

Parameters

• node_id – node identifier for a node with a pwms property

• name – lowercase-and-underscores name of a pwms element as defined by the
node’s pwm-names property

Returns the label property of the node referenced at the named element

DT_PWMS_LABEL(node_id)

Equivalent to DT_PWMS_LABEL_BY_IDX(node_id, 0)

See also:

DT_PWMS_LABEL_BY_IDX()

Parameters

• node_id – node identifier for a node with a pwms property

Returns the label property of the node referenced at index 0

DT_PWMS_CTLR_BY_IDX(node_id, idx)

Get the node identifier for the PWM controller from a pwms property at an index.

Example devicetree fragment:

pwm1: pwm-controller@... { ... };

pwm2: pwm-controller@... { ... };

n: node {
pwms = <&pwm1 1 PWM_POLARITY_NORMAL>,

<&pwm2 3 PWM_POLARITY_INVERTED>;
};

Example usage:

DT_PWMS_CTLR_BY_IDX(DT_NODELABEL(n), 0) // DT_NODELABEL(pwm1)
DT_PWMS_CTLR_BY_IDX(DT_NODELABEL(n), 1) // DT_NODELABEL(pwm2)

See also:

DT_PROP_BY_PHANDLE_IDX()

Parameters

• node_id – node identifier for a node with a pwms property

• idx – logical index into pwms property

Returns the node identifier for the PWM controller referenced at index “idx”

7.6. Devicetree 487

Zephyr Project Documentation, Release 2.7.0-rc2

DT_PWMS_CTLR_BY_NAME(node_id, name)
Get the node identifier for the PWM controller from a pwms property by name.

Example devicetree fragment:

pwm1: pwm-controller@... { ... };

pwm2: pwm-controller. . . { . . . };

n: node { pwms = <&pwm1 1 PWM_POLARITY_NORMAL>, <&pwm2 3
PWM_POLARITY_INVERTED>; pwm-names = “alpha”, “beta”; };

Example usage:

DT_PWMS_CTLR_BY_NAME(DT_NODELABEL(n), alpha) // DT_NODELABEL(pwm1)
DT_PWMS_CTLR_BY_NAME(DT_NODELABEL(n), beta) // DT_NODELABEL(pwm2)

See also:

DT_PHANDLE_BY_NAME()

Parameters

• node_id – node identifier for a node with a pwms property

• name – lowercase-and-underscores name of a pwms element as defined by the
node’s pwm-names property

Returns the node identifier for the PWM controller in the named element

DT_PWMS_CTLR(node_id)
Equivalent to DT_PWMS_CTLR_BY_IDX(node_id, 0)

See also:

DT_PWMS_CTLR_BY_IDX()

Parameters

• node_id – node identifier for a node with a pwms property

Returns the node identifier for the PWM controller at index 0 in the node’s “pwms”
property

DT_PWMS_CELL_BY_IDX(node_id, idx, cell)
Get PWM specifier’s cell value at an index.

Example devicetree fragment:

pwm1: pwm-controller@... {
compatible = "vnd,pwm";
label = "PWM_1";
#pwm-cells = <2>;

};

pwm2: pwm-controller@... {
compatible = "vnd,pwm";
label = "PWM_2";
#pwm-cells = <2>;

};

n: node {
(continues on next page)

488 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

pwms = <&pwm1 1 200000 PWM_POLARITY_NORMAL>,
<&pwm2 3 100000 PWM_POLARITY_INVERTED>;

};

Bindings fragment for the “vnd,pwm” compatible:

pwm-cells:
- channel
- period
- flags

Example usage:

DT_PWMS_CELL_BY_IDX(DT_NODELABEL(n), 0, channel) // 1
DT_PWMS_CELL_BY_IDX(DT_NODELABEL(n), 1, channel) // 3
DT_PWMS_CELL_BY_IDX(DT_NODELABEL(n), 0, period) // 200000
DT_PWMS_CELL_BY_IDX(DT_NODELABEL(n), 1, period) // 100000
DT_PWMS_CELL_BY_IDX(DT_NODELABEL(n), 0, flags) // PWM_POLARITY_NORMAL
DT_PWMS_CELL_BY_IDX(DT_NODELABEL(n), 1, flags) // PWM_POLARITY_INVERTED

See also:

DT_PHA_BY_IDX()

Parameters

• node_id – node identifier for a node with a pwms property

• idx – logical index into pwms property

• cell – lowercase-and-underscores cell name

Returns the cell value at index “idx”

DT_PWMS_CELL_BY_NAME(node_id, name, cell)

Get a PWM specifier’s cell value by name.

Example devicetree fragment:

pwm1: pwm-controller@... {
compatible = "vnd,pwm";
label = "PWM_1";
#pwm-cells = <2>;

};

pwm2: pwm-controller@... {
compatible = "vnd,pwm";
label = "PWM_2";
#pwm-cells = <2>;

};

n: node {
pwms = <&pwm1 1 200000 PWM_POLARITY_NORMAL>,

<&pwm2 3 100000 PWM_POLARITY_INVERTED>;
pwm-names = "alpha", "beta";

};

Bindings fragment for the “vnd,pwm” compatible:

7.6. Devicetree 489

Zephyr Project Documentation, Release 2.7.0-rc2

pwm-cells:
- channel
- period
- flags

Example usage:

DT_PWMS_CELL_BY_NAME(DT_NODELABEL(n), alpha, channel) // 1
DT_PWMS_CELL_BY_NAME(DT_NODELABEL(n), beta, channel) // 3
DT_PWMS_CELL_BY_NAME(DT_NODELABEL(n), alpha, period) // 200000
DT_PWMS_CELL_BY_NAME(DT_NODELABEL(n), beta, period) // 100000
DT_PWMS_CELL_BY_NAME(DT_NODELABEL(n), alpha, flags) // PWM_POLARITY_NORMAL
DT_PWMS_CELL_BY_NAME(DT_NODELABEL(n), beta, flags) // PWM_POLARITY_
→˓INVERTED

See also:

DT_PHA_BY_NAME()

Parameters

• node_id – node identifier for a node with a pwms property

• name – lowercase-and-underscores name of a pwms element as defined by the
node’s pwm-names property

• cell – lowercase-and-underscores cell name

Returns the cell value in the specifier at the named element

DT_PWMS_CELL(node_id, cell)

Equivalent to DT_PWMS_CELL_BY_IDX(node_id, 0, cell)

See also:

DT_PWMS_CELL_BY_IDX()

Parameters

• node_id – node identifier for a node with a pwms property

• cell – lowercase-and-underscores cell name

Returns the cell value at index 0

DT_PWMS_CHANNEL_BY_IDX(node_id, idx)

Get a PWM specifier’s channel cell value at an index.

This macro only works for PWM specifiers with cells named “channel”. Refer to the node’s
binding to check if necessary.

This is equivalent to DT_PWMS_CELL_BY_IDX(node_id, idx, channel).

See also:

DT_PWMS_CELL_BY_IDX()

Parameters

• node_id – node identifier for a node with a pwms property

• idx – logical index into pwms property

490 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Returns the channel cell value at index “idx”

DT_PWMS_CHANNEL_BY_NAME(node_id, name)

Get a PWM specifier’s channel cell value by name.

This macro only works for PWM specifiers with cells named “channel”. Refer to the node’s
binding to check if necessary.

This is equivalent to DT_PWMS_CELL_BY_NAME(node_id, name, channel).

See also:

DT_PWMS_CELL_BY_NAME()

Parameters

• node_id – node identifier for a node with a pwms property

• name – lowercase-and-underscores name of a pwms element as defined by the
node’s pwm-names property

Returns the channel cell value in the specifier at the named element

DT_PWMS_CHANNEL(node_id)

Equivalent to DT_PWMS_CHANNEL_BY_IDX(node_id, 0)

See also:

DT_PWMS_CHANNEL_BY_IDX()

Parameters

• node_id – node identifier for a node with a pwms property

Returns the channel cell value at index 0

DT_PWMS_PERIOD_BY_IDX(node_id, idx)

Get PWM specifier’s period cell value at an index.

This macro only works for PWM specifiers with cells named “period”. Refer to the node’s
binding to check if necessary.

This is equivalent to DT_PWMS_CELL_BY_IDX(node_id, idx, period).

See also:

DT_PWMS_CELL_BY_IDX()

Parameters

• node_id – node identifier for a node with a pwms property

• idx – logical index into pwms property

Returns the period cell value at index “idx”

DT_PWMS_PERIOD_BY_NAME(node_id, name)

Get a PWM specifier’s period cell value by name.

This macro only works for PWM specifiers with cells named “period”. Refer to the node’s
binding to check if necessary.

This is equivalent to DT_PWMS_CELL_BY_NAME(node_id, name, period).

7.6. Devicetree 491

Zephyr Project Documentation, Release 2.7.0-rc2

See also:

DT_PWMS_CELL_BY_NAME()

Parameters

• node_id – node identifier for a node with a pwms property

• name – lowercase-and-underscores name of a pwms element as defined by the
node’s pwm-names property

Returns the period cell value in the specifier at the named element

DT_PWMS_PERIOD(node_id)

Equivalent to DT_PWMS_PERIOD_BY_IDX(node_id, 0)

See also:

DT_PWMS_PERIOD_BY_IDX()

Parameters

• node_id – node identifier for a node with a pwms property

Returns the period cell value at index 0

DT_PWMS_FLAGS_BY_IDX(node_id, idx)

Get a PWM specifier’s flags cell value at an index.

This macro expects PWM specifiers with cells named “flags”. If there is no “flags” cell in the
PWM specifier, zero is returned. Refer to the node’s binding to check specifier cell names if
necessary.

This is equivalent to DT_PWMS_CELL_BY_IDX(node_id, idx, flags).

See also:

DT_PWMS_CELL_BY_IDX()

Parameters

• node_id – node identifier for a node with a pwms property

• idx – logical index into pwms property

Returns the flags cell value at index “idx”, or zero if there is none

DT_PWMS_FLAGS_BY_NAME(node_id, name)

Get a PWM specifier’s flags cell value by name.

This macro expects PWM specifiers with cells named “flags”. If there is no “flags” cell in the
PWM specifier, zero is returned. Refer to the node’s binding to check specifier cell names if
necessary.

This is equivalent to DT_PWMS_CELL_BY_NAME(node_id, name, flags) if there is a flags cell,
but expands to zero if there is none.

See also:

DT_PWMS_CELL_BY_NAME()

492 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• node_id – node identifier for a node with a pwms property

• name – lowercase-and-underscores name of a pwms element as defined by the
node’s pwm-names property

Returns the flags cell value in the specifier at the named element, or zero if there is
none

DT_PWMS_FLAGS(node_id)

Equivalent to DT_PWMS_FLAGS_BY_IDX(node_id, 0)

See also:

DT_PWMS_FLAGS_BY_IDX()

Parameters

• node_id – node identifier for a node with a pwms property

Returns the flags cell value at index 0, or zero if there is none

DT_INST_PWMS_LABEL_BY_IDX(inst, idx)

Get a label property from a DT_DRV_COMPAT instance’s pwms property by name.

See also:

DT_PWMS_LABEL_BY_IDX()

Parameters

• inst – DT_DRV_COMPAT instance number

• idx – logical index into pwms property

Returns the label property of the node referenced at index “idx”

DT_INST_PWMS_LABEL_BY_NAME(inst, name)

Get a label property from a DT_DRV_COMPAT instance’s pwms property by name.

See also:

DT_PWMS_LABEL_BY_NAME()

Parameters

• inst – DT_DRV_COMPAT instance number

• name – lowercase-and-underscores name of a pwms element as defined by the
node’s pwm-names property

Returns the label property of the node referenced at the named element

DT_INST_PWMS_LABEL(inst)

Equivalent to DT_INST_PWMS_LABEL_BY_IDX(inst, 0)

See also:

DT_PWMS_LABEL_BY_IDX()

7.6. Devicetree 493

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• inst – DT_DRV_COMPAT instance number

Returns the label property of the node referenced at index 0

DT_INST_PWMS_CTLR_BY_IDX(inst, idx)

Get the node identifier for the PWM controller from a DT_DRV_COMPAT instance’s pwms
property at an index.

See also:

DT_PWMS_CTLR_BY_IDX()

Parameters

• inst – DT_DRV_COMPAT instance number

• idx – logical index into pwms property

Returns the node identifier for the PWM controller referenced at index “idx”

DT_INST_PWMS_CTLR_BY_NAME(inst, name)

Get the node identifier for the PWM controller from a DT_DRV_COMPAT instance’s pwms
property by name.

See also:

DT_PWMS_CTLR_BY_NAME()

Parameters

• inst – DT_DRV_COMPAT instance number

• name – lowercase-and-underscores name of a pwms element as defined by the
node’s pwm-names property

Returns the node identifier for the PWM controller in the named element

DT_INST_PWMS_CTLR(inst)

Equivalent to DT_INST_PWMS_CTLR_BY_IDX(inst, 0)

See also:

DT_PWMS_CTLR_BY_IDX()

Parameters

• inst – DT_DRV_COMPAT instance number

Returns the node identifier for the PWM controller at index 0 in the instance’s
“pwms” property

DT_INST_PWMS_CELL_BY_IDX(inst, idx, cell)

Get a DT_DRV_COMPAT instance’s PWM specifier’s cell value at an index.

Parameters

• inst – DT_DRV_COMPAT instance number

• idx – logical index into pwms property

• cell – lowercase-and-underscores cell name

494 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Returns the cell value at index “idx”

DT_INST_PWMS_CELL_BY_NAME(inst, name, cell)

Get a DT_DRV_COMPAT instance’s PWM specifier’s cell value by name.

See also:

DT_PWMS_CELL_BY_NAME()

Parameters

• inst – DT_DRV_COMPAT instance number

• name – lowercase-and-underscores name of a pwms element as defined by the
node’s pwm-names property

• cell – lowercase-and-underscores cell name

Returns the cell value in the specifier at the named element

DT_INST_PWMS_CELL(inst, cell)

Equivalent to DT_INST_PWMS_CELL_BY_IDX(inst, 0, cell)

Parameters

• inst – DT_DRV_COMPAT instance number

• cell – lowercase-and-underscores cell name

Returns the cell value at index 0

DT_INST_PWMS_CHANNEL_BY_IDX(inst, idx)

Equivalent to DT_INST_PWMS_CELL_BY_IDX(inst, idx, channel)

See also:

DT_INST_PWMS_CELL_BY_IDX()

Parameters

• inst – DT_DRV_COMPAT instance number

• idx – logical index into pwms property

Returns the channel cell value at index “idx”

DT_INST_PWMS_CHANNEL_BY_NAME(inst, name)

Equivalent to DT_INST_PWMS_CELL_BY_NAME(inst, name, channel)

See also:

DT_INST_PWMS_CELL_BY_NAME()

Parameters

• inst – DT_DRV_COMPAT instance number

• name – lowercase-and-underscores name of a pwms element as defined by the
node’s pwm-names property

Returns the channel cell value in the specifier at the named element

7.6. Devicetree 495

Zephyr Project Documentation, Release 2.7.0-rc2

DT_INST_PWMS_CHANNEL(inst)

Equivalent to DT_INST_PWMS_CHANNEL_BY_IDX(inst, 0)

See also:

DT_INST_PWMS_CHANNEL_BY_IDX()

Parameters

• inst – DT_DRV_COMPAT instance number

Returns the channel cell value at index 0

DT_INST_PWMS_PERIOD_BY_IDX(inst, idx)

Equivalent to DT_INST_PWMS_CELL_BY_IDX(inst, idx, period)

See also:

DT_INST_PWMS_CELL_BY_IDX()

Parameters

• inst – DT_DRV_COMPAT instance number

• idx – logical index into pwms property

Returns the period cell value at index “idx”

DT_INST_PWMS_PERIOD_BY_NAME(inst, name)

Equivalent to DT_INST_PWMS_CELL_BY_NAME(inst, name, period)

See also:

DT_INST_PWMS_CELL_BY_NAME()

Parameters

• inst – DT_DRV_COMPAT instance number

• name – lowercase-and-underscores name of a pwms element as defined by the
node’s pwm-names property

Returns the period cell value in the specifier at the named element

DT_INST_PWMS_PERIOD(inst)

Equivalent to DT_INST_PWMS_PERIOD_BY_IDX(inst, 0)

See also:

DT_INST_PWMS_PERIOD_BY_IDX()

Parameters

• inst – DT_DRV_COMPAT instance number

Returns the period cell value at index 0

496 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

DT_INST_PWMS_FLAGS_BY_IDX(inst, idx)
Equivalent to DT_INST_PWMS_CELL_BY_IDX(inst, idx, flags)

See also:

DT_INST_PWMS_CELL_BY_IDX()

Parameters

• inst – DT_DRV_COMPAT instance number

• idx – logical index into pwms property

Returns the flags cell value at index “idx”, or zero if there is none

DT_INST_PWMS_FLAGS_BY_NAME(inst, name)
Equivalent to DT_INST_PWMS_CELL_BY_NAME(inst, name, flags)

See also:

DT_INST_PWMS_CELL_BY_NAME()

Parameters

• inst – DT_DRV_COMPAT instance number

• name – lowercase-and-underscores name of a pwms element as defined by the
node’s pwm-names property

Returns the flags cell value in the specifier at the named element, or zero if there is
none

DT_INST_PWMS_FLAGS(inst)
Equivalent to DT_INST_PWMS_FLAGS_BY_IDX(inst, 0)

See also:

DT_INST_PWMS_FLAGS_BY_IDX()

Parameters

• inst – DT_DRV_COMPAT instance number

Returns the flags cell value at index 0, or zero if there is none

SPI These conveniences may be used for nodes which describe either SPI controllers or devices, de-
pending on the case.

group devicetree-spi

Defines

DT_SPI_HAS_CS_GPIOS(spi)
Does a SPI controller node have chip select GPIOs configured?

SPI bus controllers use the “cs-gpios” property for configuring chip select GPIOs. Its value is a
phandle-array which specifies the chip select lines.

Example devicetree fragment:

7.6. Devicetree 497

Zephyr Project Documentation, Release 2.7.0-rc2

spi1: spi@... {
compatible = "vnd,spi";
cs-gpios = <&gpio1 10 GPIO_ACTIVE_LOW>,

<&gpio2 20 GPIO_ACTIVE_LOW>;
};

spi2: spi@... {
compatible = "vnd,spi";

};

Example usage:

DT_SPI_HAS_CS_GPIOS(DT_NODELABEL(spi1)) // 1
DT_SPI_HAS_CS_GPIOS(DT_NODELABEL(spi2)) // 0

Parameters

• spi – a SPI bus controller node identifier

Returns 1 if “spi” has a cs-gpios property, 0 otherwise

DT_SPI_NUM_CS_GPIOS(spi)

Number of chip select GPIOs in a SPI controller’s cs-gpios property.

Example devicetree fragment:

spi1: spi@... {
compatible = "vnd,spi";
cs-gpios = <&gpio1 10 GPIO_ACTIVE_LOW>,

<&gpio2 20 GPIO_ACTIVE_LOW>;
};

spi2: spi@... {
compatible = "vnd,spi";

};

Example usage:

DT_SPI_NUM_CS_GPIOS(DT_NODELABEL(spi1)) // 2
DT_SPI_NUM_CS_GPIOS(DT_NODELABEL(spi2)) // 0

Parameters

• spi – a SPI bus controller node identifier

Returns Logical length of spi’s cs-gpios property, or 0 if “spi” doesn’t have a cs-gpios
property

DT_SPI_DEV_HAS_CS_GPIOS(spi_dev)

Does a SPI device have a chip select line configured? Example devicetree fragment:

spi1: spi@... {
compatible = "vnd,spi";
cs-gpios = <&gpio1 10 GPIO_ACTIVE_LOW>,

<&gpio2 20 GPIO_ACTIVE_LOW>;

a: spi-dev-a@0 {
(continues on next page)

498 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

reg = <0>;
};

b: spi-dev-b@1 {
reg = <1>;

};
};

spi2: spi@... {
compatible = "vnd,spi";
c: spi-dev-c@0 {

reg = <0>;
};

};

Example usage:

DT_SPI_DEV_HAS_CS_GPIOS(DT_NODELABEL(a)) // 1
DT_SPI_DEV_HAS_CS_GPIOS(DT_NODELABEL(b)) // 1
DT_SPI_DEV_HAS_CS_GPIOS(DT_NODELABEL(c)) // 0

Parameters

• spi_dev – a SPI device node identifier

Returns 1 if spi_dev’s bus node DT_BUS(spi_dev) has a chip select pin at index
DT_REG_ADDR(spi_dev), 0 otherwise

DT_SPI_DEV_CS_GPIOS_CTLR(spi_dev)
Get a SPI device’s chip select GPIO controller’s node identifier.

Example devicetree fragment:

gpio1: gpio@... { ... };

gpio2: gpio@... { ... };

spi@... {
compatible = "vnd,spi";
cs-gpios = <&gpio1 10 GPIO_ACTIVE_LOW>,

<&gpio2 20 GPIO_ACTIVE_LOW>;

a: spi-dev-a@0 {
reg = <0>;

};

b: spi-dev-b@1 {
reg = <1>;

};
};

Example usage:

DT_SPI_DEV_CS_GPIOS_CTLR(DT_NODELABEL(a)) // DT_NODELABEL(gpio1)
DT_SPI_DEV_CS_GPIOS_CTLR(DT_NODELABEL(b)) // DT_NODELABEL(gpio2)

Parameters

• spi_dev – a SPI device node identifier

7.6. Devicetree 499

Zephyr Project Documentation, Release 2.7.0-rc2

Returns node identifier for spi_dev’s chip select GPIO controller

DT_SPI_DEV_CS_GPIOS_LABEL(spi_dev)

Get a SPI device’s chip select GPIO controller’s label property.

Example devicetree fragment:

gpio1: gpio@... {
label = "GPIO_1";

};

gpio2: gpio@... {
label = "GPIO_2";

};

spi1: spi@... {
compatible = "vnd,spi";
cs-gpios = <&gpio1 10 GPIO_ACTIVE_LOW>,

<&gpio2 20 GPIO_ACTIVE_LOW>;

a: spi-dev-a@0 {
reg = <0>;

};

b: spi-dev-b@1 {
reg = <1>;

};
};

Example usage:

DT_SPI_DEV_CS_GPIOS_LABEL(DT_NODELABEL(a)) // "GPIO_1"
DT_SPI_DEV_CS_GPIOS_LABEL(DT_NODELABEL(b)) // "GPIO_2"

Parameters

• spi_dev – a SPI device node identifier

Returns label property of spi_dev’s chip select GPIO controller

DT_SPI_DEV_CS_GPIOS_PIN(spi_dev)

Get a SPI device’s chip select GPIO pin number.

It’s an error if the GPIO specifier for spi_dev’s entry in its bus node’s cs-gpios property has no
pin cell.

Example devicetree fragment:

spi1: spi@... {
compatible = "vnd,spi";
cs-gpios = <&gpio1 10 GPIO_ACTIVE_LOW>,

<&gpio2 20 GPIO_ACTIVE_LOW>;

a: spi-dev-a@0 {
reg = <0>;

};

b: spi-dev-b@1 {
reg = <1>;

(continues on next page)

500 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

};
};

Example usage:

DT_SPI_DEV_CS_GPIOS_PIN(DT_NODELABEL(a)) // 10
DT_SPI_DEV_CS_GPIOS_PIN(DT_NODELABEL(b)) // 20

Parameters

• spi_dev – a SPI device node identifier

Returns pin number of spi_dev’s chip select GPIO

DT_SPI_DEV_CS_GPIOS_FLAGS(spi_dev)

Get a SPI device’s chip select GPIO flags.

Example devicetree fragment:

spi1: spi@... {
compatible = "vnd,spi";
cs-gpios = <&gpio1 10 GPIO_ACTIVE_LOW>;

a: spi-dev-a@0 {
reg = <0>;

};
};

Example usage:

DT_SPI_DEV_CS_GPIOS_FLAGS(DT_NODELABEL(a)) // GPIO_ACTIVE_LOW

If the GPIO specifier for spi_dev’s entry in its bus node’s cs-gpios property has no flags cell,
this expands to zero.

Parameters

• spi_dev – a SPI device node identifier

Returns flags value of spi_dev’s chip select GPIO specifier, or zero if there is none

DT_INST_SPI_DEV_HAS_CS_GPIOS(inst)

Equivalent to DT_SPI_DEV_HAS_CS_GPIOS(DT_DRV_INST(inst)).

See also:

DT_SPI_DEV_HAS_CS_GPIOS()

Parameters

• inst – DT_DRV_COMPAT instance number

Returns 1 if the instance’s bus has a CS pin at index DT_INST_REG_ADDR(inst), 0
otherwise

DT_INST_SPI_DEV_CS_GPIOS_CTLR(inst)

Get GPIO controller node identifier for a SPI device instance This is equivalent to
DT_SPI_DEV_CS_GPIOS_CTLR(DT_DRV_INST(inst)).

7.6. Devicetree 501

Zephyr Project Documentation, Release 2.7.0-rc2

See also:

DT_SPI_DEV_CS_GPIOS_CTLR()

Parameters

• inst – DT_DRV_COMPAT instance number

Returns node identifier for instance’s chip select GPIO controller

DT_INST_SPI_DEV_CS_GPIOS_LABEL(inst)

Get GPIO controller name for a SPI device instance This is equivalent to
DT_SPI_DEV_CS_GPIOS_LABEL(DT_DRV_INST(inst)).

See also:

DT_SPI_DEV_CS_GPIOS_LABEL()

Parameters

• inst – DT_DRV_COMPAT instance number

Returns label property of the instance’s chip select GPIO controller

DT_INST_SPI_DEV_CS_GPIOS_PIN(inst)

Equivalent to DT_SPI_DEV_CS_GPIOS_PIN(DT_DRV_INST(inst)).

See also:

DT_SPI_DEV_CS_GPIOS_PIN()

Parameters

• inst – DT_DRV_COMPAT instance number

Returns pin number of the instance’s chip select GPIO

DT_INST_SPI_DEV_CS_GPIOS_FLAGS(inst)

DT_SPI_DEV_CS_GPIOS_FLAGS(DT_DRV_INST(inst)).

See also:

DT_SPI_DEV_CS_GPIOS_FLAGS()

Parameters

• inst – DT_DRV_COMPAT instance number

Returns flags value of the instance’s chip select GPIO specifier, or zero if there is
none

Chosen nodes

The special /chosen node contains properties whose values describe system-wide settings. The
DT_CHOSEN() macro can be used to get a node identifier for a chosen node.

group devicetree-generic-chosen

502 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Defines

DT_CHOSEN(prop)

Get a node identifier for a /chosen node property.

This is only valid to call if DT_HAS_CHOSEN(prop) is 1.

Parameters

• prop – lowercase-and-underscores property name for the /chosen node

Returns a node identifier for the chosen node property

DT_HAS_CHOSEN(prop)

Test if the devicetree has a /chosen node.

Parameters

• prop – lowercase-and-underscores devicetree property

Returns 1 if the chosen property exists and refers to a node, 0 otherwise

There are also conveniences for commonly used zephyr-specific properties of the /chosen node.

group devicetree-zephyr

Defines

DT_CHOSEN_ZEPHYR_ENTROPY_LABEL

If there is a chosen node zephyr,entropy property which has a label property, that property’s
value. Undefined otherwise.

DT_CHOSEN_ZEPHYR_FLASH_CONTROLLER_LABEL

If there is a chosen node zephyr,flash-controller property which has a label property, that
property’s value. Undefined otherwise.

DT_CHOSEN_ZEPHYR_CAN_PRIMARY_LABEL

If there is a chosen node zephyr,can-primary property which has a label property, that prop-
erty’s value. Undefined otherwise.

The following table documents some commonly used Zephyr-specific chosen nodes.

Sometimes, a chosen node’s label property will be used to set the default value of a Kconfig option which
in turn configures a hardware-specific device. This is usually for backwards compatibility in cases when
the Kconfig option predates devicetree support in Zephyr. In other cases, there is no Kconfig option, and
the devicetree node is used directly in the source code to select a device.

7.6. Devicetree 503

Zephyr Project Documentation, Release 2.7.0-rc2

Table 4: Zephyr-specific chosen properties
Property Purpose
zephyr,bt-
c2h-uart

Selects the UART used for host communication in the bluetooth-hci-uart-sample

zephyr,bt-
mon-uart

Sets UART device used for the Bluetooth monitor logging

zephyr,bt-
uart

Sets UART device used by Bluetooth

zephyr,can-
primary

Sets the primary CAN controller

zephyr,ccm Core-Coupled Memory node on some STM32 SoCs
zephyr,code-
partition

Flash partition that the Zephyr image’s text section should be linked into

zephyr,consoleSets UART device used by console driver
zephyr,dtcm Data Tightly Coupled Memory node on some Arm SoCs
zephyr,entropyA device which can be used as a system-wide entropy source
zephyr,flash A node whose reg is sometimes used to set the defaults for :kcon-

fig:`CONFIG_FLASH_BASE_ADDRESS` and :kconfig:`CONFIG_FLASH_SIZE`
zephyr,flash-
controller

The node corresponding to the flash controller device for the zephyr,flash node

zephyr,ipc Used by the OpenAMP subsystem to specify the inter-process communication (IPC)
device

zephyr,ipc_shmA node whose reg is used by the OpenAMP subsystem to determine the base address
and size of the shared memory (SHM) usable for interprocess-communication (IPC)

zephyr,itcm Instruction Tightly Coupled Memory node on some Arm SoCs
zephyr,ot-
uart

Used by the OpenThread to specify UART device for Spinel protocol

zephyr,shell-
uart

Sets UART device used by serial shell backend

zephyr,sram A node whose reg sets the base address and size of SRAM memory available to the
Zephyr image, used during linking

zephyr,uart-
mcumgr

UART used for Device Management

zephyr,uart-
pipe

Sets default :kconfig:`CONFIG_UART_PIPE_ON_DEV_NAME`

zephyr,usb-
device

USB device node. If defined and has a vbus-gpios property, these will be used by the
USB subsystem to enable/disable VBUS

7.6.2 Bindings index

This page documents the available devicetree bindings. See Devicetree bindings for an introduction to the
Zephyr bindings file format.

Vendor index

This section contains an index of hardware vendors. Click on a vendor’s name to go to the list of bindings
for that vendor.

• Generic or vendor-independent

• Altera Corp. (altr)

• AMS AG (ams)

• Analog Devices, Inc. (adi)

• Andes Technology Corporation (andestech)

504 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• Apa Electronic Co., Ltd (apa)

• Aptina Imaging (aptina)

• Arduino (arduino)

• ARM Ltd. (arm)

• Asahi Kasei Corp. (asahi-kasei)

• ASMedia Technology Inc. (asmedia)

• Atmel Corporation (atmel)

• Avago Technologies (avago)

• betterlife (betterlife)

• Bosch Sensortec GmbH (bosch)

• Broadcom Corporation (brcm)

• Cadence Design Systems Inc. (cdns)

• Cypress Semiconductor Corporation (cypress)

• Dalian Good Display Co., Ltd. (gooddisplay)

• Espressif Systems (espressif)

• Fairchild Semiconductor (fcs)

• FocalTech Systems Co.,Ltd (focaltech)

• Freescale Semiconductor (fsl)

• Future Technology Devices International Ltd. (ftdi)

• Gaisler (gaisler)

• GreeLed Electronic Ltd. (greeled)

• Guangzhou Aosong Electronic Co., Ltd. (aosong)

• Holtek Semiconductor, Inc. (holtek)

• Honeywell (honeywell)

• HOPERF Microelectronics Co. Ltd (hoperf)

• ILI Technology Corporation (ILITEK) (ilitek)

• Infineon Technologies (infineon)

• Intel Corporation (intel)

• Intersil (isil)

• InvenSense Inc. (invensense)

• Inventek Systems (inventek)

• ITE Tech. Inc. (ite)

• JEDEC Solid State Technology Association (jedec)

• Linaro Limited (linaro)

• LISTENAI (listenai)

• LiteX SoC builder (litex)

• Maxim Integrated Products (maxim)

• Measurement Specialties (meas)

• Micro:bit Educational Foundation (microbit)

7.6. Devicetree 505

Zephyr Project Documentation, Release 2.7.0-rc2

• Microchip Technology Inc. (microchip)

• Microchip Technology Inc. (formerly Microsemi Corporation) (microsemi)

• Nordic Semiconductor (nordic)

• Nuvoton Technology Corporation (nuvoton)

• NXP Semiconductors (nxp)

• OmniVision Technologies (ovti)

• open-isa.org (openisa)

• OpenCores.org (opencores)

• Panasonic Corporation (panasonic)

• Plantower Co., Ltd (plantower)

• QEMU, a generic and open source machine emulator and virtualizer (qemu)

• Qorvo, Inc (formerly Decawave) (decawave)

• Quectel Wireless Solutions Co., Ltd. (quectel)

• QuickLogic Corp. (quicklogic)

• Renesas Electronics Corporation (renesas)

• RISC-V Foundation (riscv)

• ROCKTECH DISPLAYS LIMITED (rocktech)

• Seeed Technology Co., Ltd (seeed)

• SEGGER Microcontroller GmbH (segger)

• Semtech Corporation (semtech)

• Sensirion AG (sensirion)

• Sharp Corporation (sharp)

• Sierra Wireless (swir)

• SiFive, Inc. (sifive)

• Silicon Laboratories (silabs)

• Sitronix Technology Corporation (sitronix)

• Skyworks Solutions, Inc. (skyworks)

• Smart Battery System (sbs)

• Solomon Systech Limited (solomon)

• Standard Microsystems Corporation (smsc)

• STMicroelectronics (st)

• Synopsys, Inc. (snps)

• Synopsys, Inc. (formerly ARC International PLC) (arc)

• Telink Semiconductor (telink)

• Texas Instruments (ti)

• u-blox (u-blox)

• Vishay Intertechnology, Inc (vishay)

• Wistron NeWeb Corporation (wnc)

• WIZnet Co., Ltd. (wiznet)

506 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• Worldsemi Co., Limited (worldsemi)

• Würth Elektronik GmbH. (we)

• Xilinx (xlnx)

• Zephyr-specific binding (zephyr)

• Unknown vendor

Bindings by vendor

This section contains available bindings, grouped by vendor. Within each group, bindings are listed by
the “compatible” property they apply to, like this:

Vendor name (vendor prefix)

• <compatible-A>

• <compatible-B> (on <bus-name> bus)

• <compatible-C>

• . . .

The text “(on <bus-name> bus)” appears when bindings may behave differently depending on the bus
the node appears on. For example, this applies to some sensor device nodes, which may appear as
children of either I2C or SPI bus nodes.

Generic or vendor-independent

• dtbinding_adafruit_feather_header

• dtbinding_arduino_header_r3

• dtbinding_atmel_xplained_header

• dtbinding_atmel_xplained_pro_header

• dtbinding_ethernet_phy

• dtbinding_fixed_clock

• dtbinding_fixed_rate_clock

• dtbinding_partition

• dtbinding_gpio_i2c

• dtbinding_gpio_keys

• dtbinding_gpio_leds

• dtbinding_lm75

• dtbinding_lm77

• dtbinding_mikro_bus

• dtbinding_mmio_sram

• dtbinding_ns16550

• dtbinding_particle_gen3_header

• dtbinding_pwm_leds

• dtbinding_regulator_fixed

• dtbinding_reserved_memory

• dtbinding_riscv_it8xxx2

7.6. Devicetree 507

Zephyr Project Documentation, Release 2.7.0-rc2

• dtbinding_sample_controller

• dtbinding_shared_irq

• dtbinding_soc_nv_flash

• dtbinding_syscon

• dtbinding_usb_audio

• dtbinding_usb_audio_hp

• dtbinding_usb_audio_hs

• dtbinding_usb_audio_mic

• dtbinding_usb_nop_xceiv

• dtbinding_vexriscv_intc0

• dtbinding_voltage_divider

Altera Corp. (altr)

• dtbinding_altr_jtag_uart

• dtbinding_altr_msgdma

• dtbinding_altr_nios2_i2c

• dtbinding_altr_nios2f

AMS AG (ams)

• dtbinding_ams_ccs811

• dtbinding_ams_ens210

• dtbinding_ams_iaqcore

Analog Devices, Inc. (adi)

• dtbinding_adi_adt7420

• dtbinding_adi_adxl345

• dtbinding_adi_adxl362

• dtbinding_adi_adxl372_spi

• dtbinding_adi_adxl372_i2c

Andes Technology Corporation (andestech)

• dtbinding_andestech_atcgpio100

Apa Electronic Co., Ltd (apa)

• dtbinding_apa_apa_102

Aptina Imaging (aptina)

• dtbinding_aptina_mt9m114

508 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Arduino (arduino)

• dtbinding_arduino_uno_adc

ARM Ltd. (arm)

• dtbinding_arm_armv6m_mpu

• dtbinding_arm_armv7m_mpu

• dtbinding_arm_armv8_timer

• dtbinding_arm_armv8.1m_mpu

• dtbinding_arm_armv8m_mpu

• dtbinding_arm_cmsdk_dtimer

• dtbinding_arm_cmsdk_gpio

• dtbinding_arm_cmsdk_timer

• dtbinding_arm_cmsdk_uart

• dtbinding_arm_cmsdk_watchdog

• dtbinding_arm_cortex_a53

• dtbinding_arm_cortex_a72

• dtbinding_arm_cortex_m0

• dtbinding_arm_cortex_m0+

• dtbinding_arm_cortex_m1

• dtbinding_arm_cortex_m23

• dtbinding_arm_cortex_m3

• dtbinding_arm_cortex_m33

• dtbinding_arm_cortex_m33f

• dtbinding_arm_cortex_m4

• dtbinding_arm_cortex_m4f

• dtbinding_arm_cortex_m7

• dtbinding_arm_cortex_r4

• dtbinding_arm_cortex_r4f

• dtbinding_arm_cortex_r5

• dtbinding_arm_cortex_r5f

• dtbinding_arm_cortex_r7

• dtbinding_arm_cortex_r82

• dtbinding_arm_cryptocell_310

• dtbinding_arm_cryptocell_312

• dtbinding_arm_dma_pl330

• dtbinding_arm_dtcm

• dtbinding_arm_gic

• dtbinding_arm_itcm

• dtbinding_arm_mhu

7.6. Devicetree 509

Zephyr Project Documentation, Release 2.7.0-rc2

• dtbinding_arm_mps2_fpgaio_gpio

• dtbinding_arm_mps3_fpgaio_gpio

• dtbinding_arm_pl011

• dtbinding_arm_psci

• dtbinding_arm_sbsa_uart

• dtbinding_arm_scc

• dtbinding_arm_v6m_nvic

• dtbinding_arm_v7m_nvic

• dtbinding_arm_v8.1m_nvic

• dtbinding_arm_v8m_nvic

• dtbinding_arm_versatile_i2c

Asahi Kasei Corp. (asahi-kasei)

• dtbinding_asahi_kasei_ak8975

ASMedia Technology Inc. (asmedia)

• dtbinding_asmedia_asmedia2364

Atmel Corporation (atmel)

• dtbinding_atmel_at24

• dtbinding_atmel_at25

• dtbinding_atmel_at45

• dtbinding_atmel_rf2xx

• dtbinding_atmel_sam_afec

• dtbinding_atmel_sam_dac

• dtbinding_atmel_sam_flash_controller

• dtbinding_atmel_sam_gmac

• dtbinding_atmel_sam_gpio

• dtbinding_atmel_sam_i2c_twi

• dtbinding_atmel_sam_i2c_twihs

• dtbinding_atmel_sam_i2c_twim

• dtbinding_atmel_sam_mdio

• dtbinding_atmel_sam_pinctrl

• dtbinding_atmel_sam_pwm

• dtbinding_atmel_sam_spi

• dtbinding_atmel_sam_ssc

• dtbinding_atmel_sam_tc

• dtbinding_atmel_sam_tc_qdec

• dtbinding_atmel_sam_trng

510 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• dtbinding_atmel_sam_uart

• dtbinding_atmel_sam_usart

• dtbinding_atmel_sam_usbc

• dtbinding_atmel_sam_usbhs

• dtbinding_atmel_sam_watchdog

• dtbinding_atmel_sam_xdmac

• dtbinding_atmel_sam0_adc

• dtbinding_atmel_sam0_dac

• dtbinding_atmel_sam0_dmac

• dtbinding_atmel_sam0_eic

• dtbinding_atmel_sam0_gmac

• dtbinding_atmel_sam0_gpio

• dtbinding_atmel_sam0_i2c

• dtbinding_atmel_sam0_device_id

• dtbinding_atmel_sam0_nvmctrl

• dtbinding_atmel_sam0_pinctrl

• dtbinding_atmel_sam0_pinmux

• dtbinding_atmel_sam0_rtc

• dtbinding_atmel_sam0_sercom

• dtbinding_atmel_sam0_spi

• dtbinding_atmel_sam0_tc32

• dtbinding_atmel_sam0_tcc_pwm

• dtbinding_atmel_sam0_uart

• dtbinding_atmel_sam0_usb

• dtbinding_atmel_sam0_watchdog

• dtbinding_atmel_sam4l_gpio

• dtbinding_atmel_sam4l_uid

• dtbinding_atmel_samd2x_gclk

• dtbinding_atmel_samd2x_pm

• dtbinding_atmel_samd5x_gclk

• dtbinding_atmel_samd5x_mclk

• dtbinding_atmel_winc1500

Avago Technologies (avago)

• dtbinding_avago_apds9960

betterlife (betterlife)

• dtbinding_betterlife_bl6xxx

7.6. Devicetree 511

Zephyr Project Documentation, Release 2.7.0-rc2

Bosch Sensortec GmbH (bosch)

• dtbinding_bosch_bma280

• dtbinding_bosch_bmc150_magn

• dtbinding_bosch_bme280_i2c

• dtbinding_bosch_bme280_spi

• dtbinding_bosch_bme680_i2c

• dtbinding_bosch_bmg160

• dtbinding_bosch_bmi160

• dtbinding_bosch_bmi270_i2c

• dtbinding_bosch_bmm150

• dtbinding_bosch_bmp388_spi

• dtbinding_bosch_bmp388_i2c

• dtbinding_bosch_mcan

• dtbinding_bosch_m_can_base

Broadcom Corporation (brcm)

• dtbinding_brcm_iproc_pax_dma_v1

• dtbinding_brcm_iproc_pax_dma_v2

• dtbinding_brcm_iproc_pcie_ep

Cadence Design Systems Inc. (cdns)

• dtbinding_cadence_tensilica_xtensa_lx4

• dtbinding_cadence_tensilica_xtensa_lx6

• dtbinding_cdns_xtensa_core_intc

Cypress Semiconductor Corporation (cypress)

• dtbinding_cypress_cy8c95xx_gpio

• dtbinding_cypress_cy8c95xx_gpio_port

• dtbinding_cypress_psoc6_flash_controller

• dtbinding_cypress_psoc6_gpio

• dtbinding_cypress_psoc6_hsiom

• dtbinding_cypress_psoc6_int_mux

• dtbinding_cypress_psoc6_intmux_ch

• dtbinding_cypress_psoc6_pinctrl

• dtbinding_cypress_psoc6_spi

• dtbinding_cypress_psoc6_uart

• dtbinding_cypress_psoc6_uid

512 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Dalian Good Display Co., Ltd. (gooddisplay)

• dtbinding_gooddisplay_gd7965

Espressif Systems (espressif)

• dtbinding_espressif_esp_at

• dtbinding_espressif_esp32_flash_controller

• dtbinding_espressif_esp32_gpio

• dtbinding_espressif_esp32_i2c

• dtbinding_espressif_esp32_intc

• dtbinding_espressif_esp32_pinmux

• dtbinding_espressif_esp32_rtc

• dtbinding_espressif_esp32_spi

• dtbinding_espressif_esp32_trng

• dtbinding_espressif_esp32_uart

• dtbinding_espressif_esp32_watchdog

• dtbinding_espressif_esp32c3_uart

• dtbinding_espressif_esp32s2_uart

Fairchild Semiconductor (fcs)

• dtbinding_fcs_fxl6408

FocalTech Systems Co.,Ltd (focaltech)

• dtbinding_focaltech_ft5336

Freescale Semiconductor (fsl)

• dtbinding_fsl_imx21_i2c

• dtbinding_fsl_imx6sx_lcdif

• dtbinding_fsl_imx7d_pwm

Future Technology Devices International Ltd. (ftdi)

• dtbinding_ftdi_ft800

Gaisler (gaisler)

• dtbinding_gaisler_apbuart

• dtbinding_gaisler_gptimer

• dtbinding_gaisler_irqmp

GreeLed Electronic Ltd. (greeled)

• dtbinding_greeled_lpd8803

• dtbinding_greeled_lpd8806

7.6. Devicetree 513

Zephyr Project Documentation, Release 2.7.0-rc2

Guangzhou Aosong Electronic Co., Ltd. (aosong)

• dtbinding_aosong_dht

Holtek Semiconductor, Inc. (holtek)

• dtbinding_holtek_ht16k33

• dtbinding_holtek_ht16k33_keyscan

Honeywell (honeywell)

• dtbinding_honeywell_hmc5883l

• dtbinding_honeywell_mpr

• dtbinding_honeywell_sm351lt

HOPERF Microelectronics Co. Ltd (hoperf)

• dtbinding_hoperf_hp206c

• dtbinding_hoperf_th02

ILI Technology Corporation (ILITEK) (ilitek)

• dtbinding_ilitek_ili9340

• dtbinding_ilitek_ili9341

• dtbinding_ilitek_ili9488

Infineon Technologies (infineon)

• dtbinding_infineon_dps310

• dtbinding_infineon_xmc4xxx_uart

Intel Corporation (intel)

• dtbinding_intel_adsp_mailbox

• dtbinding_intel_apollo_lake

• dtbinding_intel_atom

• dtbinding_intel_cavs_i2s

• dtbinding_intel_cavs_idc

• dtbinding_intel_cavs_intc

• dtbinding_intel_dmic

• dtbinding_intel_e1000

• dtbinding_intel_elkhart_lake

• dtbinding_intel_gna

• dtbinding_intel_gpio

• dtbinding_intel_hpet

• dtbinding_intel_ibecc

• dtbinding_intel_ioapic

514 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• dtbinding_intel_pcie

• dtbinding_intel_s1000_pinmux

• dtbinding_intel_vt_d

• dtbinding_intel_x86

Intersil (isil)

• dtbinding_isil_isl29035

InvenSense Inc. (invensense)

• dtbinding_invensense_icm42605

• dtbinding_invensense_mpu6050

• dtbinding_invensense_mpu9150

Inventek Systems (inventek)

• dtbinding_inventek_eswifi

• dtbinding_inventek_eswifi_uart

ITE Tech. Inc. (ite)

• dtbinding_ite_it8xxx2_adc

• dtbinding_ite_it8xxx2_bbram

• dtbinding_ite_it8xxx2_flash_controller

• dtbinding_ite_it8xxx2_gpio

• dtbinding_ite_it8xxx2_i2c

• dtbinding_ite_it8xxx2_intc

• dtbinding_ite_it8xxx2_pinctrl_conf

• dtbinding_ite_it8xxx2_pinmux

• dtbinding_ite_it8xxx2_pwm

• dtbinding_ite_it8xxx2_pwmprs

• dtbinding_ite_it8xxx2_sspi

• dtbinding_ite_it8xxx2_timer

• dtbinding_ite_it8xxx2_watchdog

JEDEC Solid State Technology Association (jedec)

• dtbinding_jedec_spi_nor

Linaro Limited (linaro)

• dtbinding_96boards_lscon_1v8

• dtbinding_96boards_lscon_3v3

7.6. Devicetree 515

Zephyr Project Documentation, Release 2.7.0-rc2

LISTENAI (listenai)

• dtbinding_listenai_csk_adc

• dtbinding_listenai_csk_crypto

• dtbinding_listenai_csk_dma

• dtbinding_listenai_csk_dvp

• dtbinding_listenai_csk_entropy

• dtbinding_listenai_csk_flash_controller

• dtbinding_listenai_csk_gpio

• dtbinding_listenai_csk_gpio_user

• dtbinding_listenai_csk_i2c

• dtbinding_listenai_csk_itcm

• dtbinding_listenai_csk_keysense

• dtbinding_listenai_csk_mailbox

• dtbinding_listenai_csk6_pinctrl

• dtbinding_listenai_csk6_pinmux

• dtbinding_listenai_csk_pwm

• dtbinding_listenai_csk_spi

• dtbinding_listenai_csk_uart

• dtbinding_listenai_csk_usbd

• dtbinding_listenai_csk6_psram

• dtbinding_csk_6_watchdog

• dtbinding_listenai_pwr_amp

LiteX SoC builder (litex)

• dtbinding_litex_clk

• dtbinding_litex_clkout

• dtbinding_litex_dna0

• dtbinding_litex_eth0

• dtbinding_litex_gpio

• dtbinding_litex_i2c

• dtbinding_litex_i2s

• dtbinding_litex_prbs

• dtbinding_litex_pwm

• dtbinding_litex_spi

• dtbinding_litex_timer0

• dtbinding_litex_uart0

516 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Maxim Integrated Products (maxim)

• dtbinding_maxim_ds3231

• dtbinding_maxim_max17055

• dtbinding_maxim_max17262

• dtbinding_maxim_max30101

• dtbinding_maxim_max44009

• dtbinding_maxim_max6675

Measurement Specialties (meas)

• dtbinding_meas_ms5607_spi

• dtbinding_meas_ms5607_i2c

• dtbinding_meas_ms5837

Micro:bit Educational Foundation (microbit)

• dtbinding_microbit_edge_connector

Microchip Technology Inc. (microchip)

• dtbinding_microchip_enc28j60

• dtbinding_microchip_enc424j600

• dtbinding_microchip_ksz8794

• dtbinding_microchip_ksz8863

• dtbinding_microchip_mcp23s17

• dtbinding_microchip_mcp2515

• dtbinding_microchip_mcp3204

• dtbinding_microchip_mcp3208

• dtbinding_microchip_mcp4725

• dtbinding_microchip_mcp7940n

• dtbinding_microchip_mcp9808

• dtbinding_microchip_xec_adc

• dtbinding_microchip_xec_adc_v2

• dtbinding_microchip_xec_ecia

• dtbinding_microchip_xec_ecia_girq

• dtbinding_microchip_xec_espi

• dtbinding_microchip_xec_espi_saf

• dtbinding_microchip_xec_gpio

• dtbinding_microchip_xec_gpio_v2

• dtbinding_microchip_xec_i2c

• dtbinding_microchip_xec_i2c_v2

• dtbinding_microchip_xec_kscan

7.6. Devicetree 517

Zephyr Project Documentation, Release 2.7.0-rc2

• dtbinding_microchip_xec_pcr

• dtbinding_microchip_xec_peci

• dtbinding_microchip_xec_pinmux

• dtbinding_microchip_xec_ps2

• dtbinding_microchip_xec_pwm

• dtbinding_microchip_xec_qmspi

• dtbinding_microchip_xec_rtos_timer

• dtbinding_microchip_xec_tach

• dtbinding_microchip_xec_timer

• dtbinding_microchip_xec_uart

• dtbinding_microchip_xec_watchdog

Microchip Technology Inc. (formerly Microsemi Corporation) (microsemi)

• dtbinding_microsemi_coreuart

Nordic Semiconductor (nordic)

• dtbinding_nordic_nrf_adc

• dtbinding_nordic_nrf_cc310

• dtbinding_nordic_nrf_cc312

• dtbinding_nordic_nrf_clock

• dtbinding_nordic_nrf_dppic

• dtbinding_nordic_nrf_ecb

• dtbinding_nordic_nrf_egu

• dtbinding_nordic_nrf_ficr

• dtbinding_nordic_nrf_gpio

• dtbinding_nordic_nrf_gpiote

• dtbinding_nordic_nrf_i2s

• dtbinding_nordic_nrf_ipc

• dtbinding_nordic_nrf_kmu

• dtbinding_nordic_nrf_pdm

• dtbinding_nordic_nrf_power

• dtbinding_nordic_nrf_pwm

• dtbinding_nordic_nrf_qdec

• dtbinding_nordic_nrf_qspi

• dtbinding_nordic_nrf_radio

• dtbinding_nordic_nrf_regulators

• dtbinding_nordic_nrf_rng

• dtbinding_nordic_nrf_rtc

• dtbinding_nordic_nrf_saadc

518 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• dtbinding_nordic_nrf_spi

• dtbinding_nordic_nrf_spim

• dtbinding_nordic_nrf_spis

• dtbinding_nordic_nrf_spu

• dtbinding_nordic_nrf_sw_pwm

• dtbinding_nordic_nrf_temp

• dtbinding_nordic_nrf_timer

• dtbinding_nordic_nrf_twi

• dtbinding_nordic_nrf_twim

• dtbinding_nordic_nrf_twis

• dtbinding_nordic_nrf_uart

• dtbinding_nordic_nrf_uarte

• dtbinding_nordic_nrf_uicr

• dtbinding_nordic_nrf_usbd

• dtbinding_nordic_nrf_vmc

• dtbinding_nordic_nrf_watchdog

• dtbinding_nordic_nrf21540_fem

• dtbinding_nordic_nrf21540_fem_spi

• dtbinding_nordic_nrf51_flash_controller

• dtbinding_nordic_nrf52_flash_controller

• dtbinding_nordic_nrf53_flash_controller

• dtbinding_nordic_nrf91_flash_controller

• dtbinding_nordic_qspi_nor

Nuvoton Technology Corporation (nuvoton)

• dtbinding_nuvoton_npcx_adc

• dtbinding_nuvoton_npcx_bbram

• dtbinding_nuvoton_npcx_booter_variant

• dtbinding_nuvoton_npcx_espi

• dtbinding_nuvoton_npcx_espi_vw_conf

• dtbinding_nuvoton_npcx_gpio

• dtbinding_nuvoton_npcx_host_sub

• dtbinding_nuvoton_npcx_host_uart

• dtbinding_nuvoton_npcx_i2c_ctrl

• dtbinding_nuvoton_npcx_i2c_port

• dtbinding_nuvoton_npcx_itim_timer

• dtbinding_nuvoton_npcx_lvolctrl_conf

• dtbinding_nuvoton_npcx_lvolctrl_def

• dtbinding_nuvoton_npcx_miwu

7.6. Devicetree 519

Zephyr Project Documentation, Release 2.7.0-rc2

• dtbinding_nuvoton_npcx_miwu_int_map

• dtbinding_nuvoton_npcx_miwu_wui_map

• dtbinding_nuvoton_npcx_pcc

• dtbinding_nuvoton_npcx_pinctrl_conf

• dtbinding_nuvoton_npcx_pinctrl_def

• dtbinding_nuvoton_npcx_ps2_channel

• dtbinding_nuvoton_npcx_ps2_ctrl

• dtbinding_nuvoton_npcx_psl_out

• dtbinding_nuvoton_npcx_pslctrl_conf

• dtbinding_nuvoton_npcx_pslctrl_def

• dtbinding_nuvoton_npcx_pwm

• dtbinding_nuvoton_npcx_scfg

• dtbinding_nuvoton_npcx_soc_id

• dtbinding_nuvoton_npcx_tach

• dtbinding_nuvoton_npcx_uart

• dtbinding_nuvoton_npcx_watchdog

• dtbinding_nuvoton_numicro_uart

NXP Semiconductors (nxp)

• dtbinding_nxp_flexpwm

• dtbinding_nxp_fxas21002

• dtbinding_nxp_fxos8700

• dtbinding_nxp_imx_ccm

• dtbinding_nxp_imx_ccm_rev2

• dtbinding_nxp_imx_csi

• dtbinding_nxp_imx_dtcm

• dtbinding_nxp_imx_epit

• dtbinding_nxp_imx_flexspi

• dtbinding_nxp_imx_flexspi_device

• dtbinding_nxp_imx_flexspi_hyperflash

• dtbinding_nxp_imx_flexspi_hyperram

• dtbinding_nxp_imx_flexspi_mx25um51345g

• dtbinding_nxp_imx_flexspi_nor

• dtbinding_nxp_imx_gpio

• dtbinding_nxp_imx_gpt

• dtbinding_nxp_imx_itcm

• dtbinding_nxp_imx_iuart

• dtbinding_nxp_imx_lpi2c

• dtbinding_nxp_imx_lpspi

520 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• dtbinding_nxp_imx_mu

• dtbinding_nxp_imx_pwm

• dtbinding_nxp_imx_semc

• dtbinding_nxp_imx_uart

• dtbinding_nxp_imx_usdhc

• dtbinding_nxp_imx_wdog

• dtbinding_nxp_kinetis_acmp

• dtbinding_nxp_kinetis_adc12

• dtbinding_nxp_kinetis_adc16

• dtbinding_nxp_kinetis_dac

• dtbinding_nxp_kinetis_dac32

• dtbinding_nxp_kinetis_dspi

• dtbinding_nxp_kinetis_ethernet

• dtbinding_nxp_kinetis_flexcan

• dtbinding_nxp_kinetis_ftfa

• dtbinding_nxp_kinetis_ftfe

• dtbinding_nxp_kinetis_ftfl

• dtbinding_nxp_kinetis_ftm

• dtbinding_nxp_kinetis_ftm_pwm

• dtbinding_nxp_kinetis_gpio

• dtbinding_nxp_kinetis_i2c

• dtbinding_nxp_kinetis_ke1xf_sim

• dtbinding_nxp_kinetis_lpsci

• dtbinding_nxp_kinetis_lptmr

• dtbinding_nxp_kinetis_lpuart

• dtbinding_nxp_kinetis_mcg

• dtbinding_nxp_kinetis_pcc

• dtbinding_nxp_kinetis_pinmux

• dtbinding_nxp_kinetis_pit

• dtbinding_nxp_kinetis_ptp

• dtbinding_nxp_kinetis_pwt

• dtbinding_nxp_kinetis_rnga

• dtbinding_nxp_kinetis_rtc

• dtbinding_nxp_kinetis_scg

• dtbinding_nxp_kinetis_sim

• dtbinding_nxp_kinetis_temperature

• dtbinding_nxp_kinetis_tpm

• dtbinding_nxp_kinetis_trng

• dtbinding_nxp_kinetis_uart

7.6. Devicetree 521

Zephyr Project Documentation, Release 2.7.0-rc2

• dtbinding_nxp_kinetis_usbd

• dtbinding_nxp_kinetis_wdog

• dtbinding_nxp_kinetis_wdog32

• dtbinding_nxp_lpc_ctimer

• dtbinding_nxp_lpc_dma

• dtbinding_nxp_lpc_flexcomm

• dtbinding_nxp_lpc_gpio

• dtbinding_nxp_lpc_i2c

• dtbinding_nxp_lpc_i2s

• dtbinding_nxp_lpc_iap

• dtbinding_nxp_lpc_iocon

• dtbinding_nxp_lpc_iocon_pio

• dtbinding_nxp_lpc_lpadc

• dtbinding_nxp_lpc_mailbox

• dtbinding_nxp_lpc_rng

• dtbinding_nxp_lpc_spi

• dtbinding_nxp_lpc_syscon

• dtbinding_nxp_lpc_uid

• dtbinding_nxp_lpc_usart

• dtbinding_nxp_lpc_wwdt

• dtbinding_nxp_lpc11u6x_eeprom

• dtbinding_nxp_lpc11u6x_gpio

• dtbinding_nxp_lpc11u6x_i2c

• dtbinding_nxp_lpc11u6x_pinmux

• dtbinding_nxp_lpc11u6x_syscon

• dtbinding_nxp_lpc11u6x_uart

• dtbinding_nxp_mcr20a

• dtbinding_nxp_mcux_edma

• dtbinding_nxp_mcux_usbd

• dtbinding_nxp_pca95xx

• dtbinding_nxp_pca9633

• dtbinding_nxp_pcal6408a

• dtbinding_nxp_sctimer_pwm

OmniVision Technologies (ovti)

• dtbinding_ovti_ov2640

• dtbinding_ovti_ov7725

• dtbinding_ovti_ov9655

522 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

open-isa.org (openisa)

• dtbinding_openisa_rv32m1_event_unit

• dtbinding_openisa_rv32m1_ftfe

• dtbinding_openisa_rv32m1_genfsk

• dtbinding_openisa_rv32m1_gpio

• dtbinding_openisa_rv32m1_intmux

• dtbinding_openisa_rv32m1_intmux_ch

• dtbinding_openisa_rv32m1_lpi2c

• dtbinding_openisa_rv32m1_lpspi

• dtbinding_openisa_rv32m1_lptmr

• dtbinding_openisa_rv32m1_lpuart

• dtbinding_openisa_rv32m1_pcc

• dtbinding_openisa_rv32m1_pinmux

• dtbinding_openisa_rv32m1_tpm

• dtbinding_openisa_rv32m1_trng

OpenCores.org (opencores)

• dtbinding_opencores_spi_simple

Panasonic Corporation (panasonic)

• dtbinding_panasonic_amg88xx

Plantower Co., Ltd (plantower)

• dtbinding_plantower_pms7003

QEMU, a generic and open source machine emulator and virtualizer (qemu)

• dtbinding_qemu_nios2_zephyr

Qorvo, Inc (formerly Decawave) (decawave)

• dtbinding_decawave_dw1000

Quectel Wireless Solutions Co., Ltd. (quectel)

• dtbinding_quectel_bg9x

QuickLogic Corp. (quicklogic)

• dtbinding_quicklogic_eos_s3_gpio

7.6. Devicetree 523

Zephyr Project Documentation, Release 2.7.0-rc2

Renesas Electronics Corporation (renesas)

• dtbinding_renesas_rcar_can

• dtbinding_renesas_rcar_cmt

• dtbinding_renesas_rcar_cpg_mssr

• dtbinding_renesas_rcar_gpio

• dtbinding_renesas_rcar_i2c

• dtbinding_renesas_rcar_scif

RISC-V Foundation (riscv)

• dtbinding_riscv_clint0

• dtbinding_riscv_cpu_intc

• dtbinding_riscv_sifive_e24

ROCKTECH DISPLAYS LIMITED (rocktech)

• dtbinding_rocktech_rk043fn02h_ct

Seeed Technology Co., Ltd (seeed)

• dtbinding_seeed_grove_light

• dtbinding_seeed_grove_temperature

SEGGER Microcontroller GmbH (segger)

• dtbinding_segger_rtt_uart

Semtech Corporation (semtech)

• dtbinding_semtech_sx1261

• dtbinding_semtech_sx1262

• dtbinding_semtech_sx1272

• dtbinding_semtech_sx1276

• dtbinding_semtech_sx1509b_gpio

• dtbinding_semtech_sx9500

Sensirion AG (sensirion)

• dtbinding_sensirion_sgp40

• dtbinding_sensirion_sht3xd

• dtbinding_sensirion_sht4x

• dtbinding_sensirion_shtcx

Sharp Corporation (sharp)

• dtbinding_sharp_ls0xx

524 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Sierra Wireless (swir)

• dtbinding_swir_hl7800

SiFive, Inc. (sifive)

• dtbinding_sifive_dtim0

• dtbinding_sifive_gpio0

• dtbinding_sifive_i2c0

• dtbinding_sifive_iof

• dtbinding_sifive_plic_1.0.0

• dtbinding_sifive_pwm0

• dtbinding_sifive_spi0

• dtbinding_sifive_uart0

• dtbinding_sifive_wdt

Silicon Laboratories (silabs)

• dtbinding_silabs_gecko_ethernet

• dtbinding_silabs_gecko_flash_controller

• dtbinding_silabs_gecko_gpio

• dtbinding_silabs_gecko_gpio_port

• dtbinding_silabs_gecko_i2c

• dtbinding_silabs_gecko_leuart

• dtbinding_silabs_gecko_pwm

• dtbinding_silabs_gecko_rtcc

• dtbinding_silabs_gecko_spi_usart

• dtbinding_silabs_gecko_timer

• dtbinding_silabs_gecko_trng

• dtbinding_silabs_gecko_uart

• dtbinding_silabs_gecko_usart

• dtbinding_silabs_gecko_wdog

• dtbinding_silabs_si7006

• dtbinding_silabs_si7055

• dtbinding_silabs_si7060

• dtbinding_silabs_si7210

Sitronix Technology Corporation (sitronix)

• dtbinding_sitronix_st7735r

• dtbinding_sitronix_st7789v

7.6. Devicetree 525

Zephyr Project Documentation, Release 2.7.0-rc2

Skyworks Solutions, Inc. (skyworks)

• dtbinding_skyworks_sky13351

Smart Battery System (sbs)

• dtbinding_sbs_sbs_gauge

Solomon Systech Limited (solomon)

• dtbinding_solomon_ssd1306fb_spi

• dtbinding_solomon_ssd1306fb_i2c

• dtbinding_solomon_ssd16xx

Standard Microsystems Corporation (smsc)

• dtbinding_smsc_lan9220

STMicroelectronics (st)

• dtbinding_st_hts221

• dtbinding_st_iis2dh_i2c

• dtbinding_st_iis2dh_spi

• dtbinding_st_iis2dlpc_i2c

• dtbinding_st_iis2dlpc_spi

• dtbinding_st_iis2iclx_i2c

• dtbinding_st_iis2iclx_spi

• dtbinding_st_iis2mdc_spi

• dtbinding_st_iis2mdc_i2c

• dtbinding_st_iis3dhhc_spi

• dtbinding_st_ism330dhcx_spi

• dtbinding_st_ism330dhcx_i2c

• dtbinding_st_lis2dh_spi

• dtbinding_st_lis2dh_i2c

• dtbinding_st_lis2dh12_i2c

• dtbinding_st_lis2ds12_spi

• dtbinding_st_lis2ds12_i2c

• dtbinding_st_lis2dw12_spi

• dtbinding_st_lis2dw12_i2c

• dtbinding_st_lis2mdl_i2c

• dtbinding_st_lis2mdl_spi

• dtbinding_st_lis3dh_i2c

• dtbinding_st_lis3mdl_magn

• dtbinding_st_lps22hb_press

526 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• dtbinding_st_lps22hh_i2c

• dtbinding_st_lps22hh_spi

• dtbinding_st_lps25hb_press

• dtbinding_st_lsm303agr_accel_i2c

• dtbinding_st_lsm303agr_accel_spi

• dtbinding_st_lsm303dlhc_accel

• dtbinding_st_lsm303dlhc_magn

• dtbinding_st_lsm6ds0

• dtbinding_st_lsm6dsl_i2c

• dtbinding_st_lsm6dsl_spi

• dtbinding_st_lsm6dso_i2c

• dtbinding_st_lsm6dso_spi

• dtbinding_st_lsm9ds0_gyro_i2c

• dtbinding_st_lsm9ds0_mfd_i2c

• dtbinding_st_mpxxdtyy_i2s

• dtbinding_st_stm32_adc

• dtbinding_st_stm32_aes

• dtbinding_st_stm32_backup_sram

• dtbinding_st_stm32_can

• dtbinding_st_stm32_ccm

• dtbinding_st_stm32_cryp

• dtbinding_st_stm32_dac

• dtbinding_st_stm32_dma

• dtbinding_st_stm32_dma_v1

• dtbinding_st_stm32_dma_v2

• dtbinding_st_stm32_dma_v2bis

• dtbinding_st_stm32_dmamux

• dtbinding_st_stm32_eeprom

• dtbinding_st_stm32_ethernet

• dtbinding_st_stm32_exti

• dtbinding_st_stm32_fdcan

• dtbinding_st_stm32_flash_controller

• dtbinding_st_stm32_fmc

• dtbinding_st_stm32_fmc_sdram

• dtbinding_st_stm32_gpio

• dtbinding_st_stm32_hse_clock

• dtbinding_st_stm32_hsem_mailbox

• dtbinding_st_stm32_i2c_v1

• dtbinding_st_stm32_i2c_v2

7.6. Devicetree 527

Zephyr Project Documentation, Release 2.7.0-rc2

• dtbinding_st_stm32_i2s

• dtbinding_st_stm32_ipcc_mailbox

• dtbinding_st_stm32_lptim

• dtbinding_st_stm32_lpuart

• dtbinding_st_stm32_msi_clock

• dtbinding_st_stm32_nv_flash

• dtbinding_st_stm32_otgfs

• dtbinding_st_stm32_otghs

• dtbinding_st_stm32_pinctrl

• dtbinding_st_stm32_pwm

• dtbinding_st_stm32_qspi

• dtbinding_st_stm32_qspi_nor

• dtbinding_st_stm32_rcc

• dtbinding_st_stm32_rng

• dtbinding_st_stm32_rtc

• dtbinding_st_stm32_sdmmc

• dtbinding_st_stm32_spi

• dtbinding_st_stm32_spi_fifo

• dtbinding_st_stm32_spi_subghz

• dtbinding_st_stm32_temp

• dtbinding_st_stm32_timers

• dtbinding_st_stm32_uart

• dtbinding_st_stm32_usart

• dtbinding_st_stm32_usb

• dtbinding_st_stm32_usbphyc

• dtbinding_st_stm32_watchdog

• dtbinding_st_stm32_window_watchdog

• dtbinding_st_stm32f0_flash_controller

• dtbinding_st_stm32f0_pll_clock

• dtbinding_st_stm32f0_rcc

• dtbinding_st_stm32f1_flash_controller

• dtbinding_st_stm32f1_pinctrl

• dtbinding_st_stm32f1_pll_clock

• dtbinding_st_stm32f100_pll_clock

• dtbinding_st_stm32f105_pll_clock

• dtbinding_st_stm32f105_pll2_clock

• dtbinding_st_stm32f2_flash_controller

• dtbinding_st_stm32f2_pll_clock

• dtbinding_st_stm32f3_flash_controller

528 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• dtbinding_st_stm32f4_flash_controller

• dtbinding_st_stm32f4_pll_clock

• dtbinding_st_stm32f7_flash_controller

• dtbinding_st_stm32f7_pll_clock

• dtbinding_st_stm32g0_flash_controller

• dtbinding_st_stm32g0_pll_clock

• dtbinding_st_stm32g4_flash_controller

• dtbinding_st_stm32g4_pll_clock

• dtbinding_st_stm32h7_flash_controller

• dtbinding_st_stm32h7_hsi_clock

• dtbinding_st_stm32h7_pll_clock

• dtbinding_st_stm32h7_rcc

• dtbinding_st_stm32l0_flash_controller

• dtbinding_st_stm32l0_msi_clock

• dtbinding_st_stm32l0_pll_clock

• dtbinding_st_stm32l1_flash_controller

• dtbinding_st_stm32l4_flash_controller

• dtbinding_st_stm32l4_pll_clock

• dtbinding_st_stm32l5_flash_controller

• dtbinding_st_stm32u5_flash_controller

• dtbinding_st_stm32u5_msi_clock

• dtbinding_st_stm32u5_pll_clock

• dtbinding_st_stm32u5_rcc

• dtbinding_st_stm32wb_flash_controller

• dtbinding_st_stm32wb_pll_clock

• dtbinding_st_stm32wb_rcc

• dtbinding_st_stm32wl_hse_clock

• dtbinding_st_stm32wl_rcc

• dtbinding_st_stm32wl_subghz_radio

• dtbinding_st_stmpe1600

• dtbinding_st_stts751_i2c

• dtbinding_st_vl53l0x

Synopsys, Inc. (snps)

• dtbinding_snps_arcem

• dtbinding_snps_archs_idu_intc

• dtbinding_snps_arcv2_intc

• dtbinding_snps_creg_gpio

• dtbinding_snps_creg_gpio_mux_hsdk

7.6. Devicetree 529

Zephyr Project Documentation, Release 2.7.0-rc2

• dtbinding_snps_designware_dma

• dtbinding_snps_designware_gpio

• dtbinding_snps_designware_i2c

• dtbinding_snps_designware_intc

• dtbinding_snps_designware_pwm

• dtbinding_snps_designware_spi

• dtbinding_snps_designware_usb

• dtbinding_snps_nsim_uart

Synopsys, Inc. (formerly ARC International PLC) (arc)

• dtbinding_arc_dccm

• dtbinding_arc_iccm

Telink Semiconductor (telink)

• dtbinding_telink_b91

• dtbinding_telink_b91_flash_controller

• dtbinding_telink_b91_gpio

• dtbinding_telink_b91_i2c

• dtbinding_telink_b91_pinmux

• dtbinding_telink_b91_power

• dtbinding_telink_b91_pwm

• dtbinding_telink_b91_spi

• dtbinding_telink_b91_trng

• dtbinding_telink_b91_uart

• dtbinding_telink_b91_zb

Texas Instruments (ti)

• dtbinding_ti_boosterpack_header

• dtbinding_ti_bq274xx

• dtbinding_ti_cc1200

• dtbinding_ti_cc13xx_cc26xx_gpio

• dtbinding_ti_cc13xx_cc26xx_i2c

• dtbinding_ti_cc13xx_cc26xx_pinmux

• dtbinding_ti_cc13xx_cc26xx_rtc

• dtbinding_ti_cc13xx_cc26xx_spi

• dtbinding_ti_cc13xx_cc26xx_trng

• dtbinding_ti_cc13xx_cc26xx_uart

• dtbinding_ti_cc2520

• dtbinding_ti_cc32xx_adc

530 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• dtbinding_ti_cc32xx_gpio

• dtbinding_ti_cc32xx_i2c

• dtbinding_ti_cc32xx_uart

• dtbinding_ti_cc32xx_watchdog

• dtbinding_ti_dac43608

• dtbinding_ti_dac53608

• dtbinding_ti_dac60508

• dtbinding_ti_dac70508

• dtbinding_ti_dac80508

• dtbinding_ti_fdc2x1x

• dtbinding_ti_hdc

• dtbinding_ti_hdc2010

• dtbinding_ti_hdc2021

• dtbinding_ti_hdc2022

• dtbinding_ti_hdc2080

• dtbinding_ti_hdc20xx

• dtbinding_ti_ina219

• dtbinding_ti_ina23x

• dtbinding_ti_lmp90077

• dtbinding_ti_lmp90078

• dtbinding_ti_lmp90079

• dtbinding_ti_lmp90080

• dtbinding_ti_lmp90097

• dtbinding_ti_lmp90098

• dtbinding_ti_lmp90099

• dtbinding_ti_lmp90100

• dtbinding_ti_lmp90xxx_gpio

• dtbinding_ti_lp3943

• dtbinding_ti_lp503x

• dtbinding_ti_lp5562

• dtbinding_ti_msp432p4xx_uart

• dtbinding_ti_opt3001

• dtbinding_ti_stellaris_ethernet

• dtbinding_ti_stellaris_flash_controller

• dtbinding_ti_stellaris_gpio

• dtbinding_ti_stellaris_uart

• dtbinding_ti_tca9538_gpio

• dtbinding_ti_tca9546a

• dtbinding_ti_tlc59108

7.6. Devicetree 531

Zephyr Project Documentation, Release 2.7.0-rc2

• dtbinding_ti_tlv320dac

• dtbinding_ti_tmp007

• dtbinding_ti_tmp112

• dtbinding_ti_tmp116

u-blox (u-blox)

• dtbinding_u_blox_sara_r4

Vishay Intertechnology, Inc (vishay)

• dtbinding_vishay_vcnl4040

Wistron NeWeb Corporation (wnc)

• dtbinding_wnc_m14a2a

WIZnet Co., Ltd. (wiznet)

• dtbinding_wiznet_w5500

Worldsemi Co., Limited (worldsemi)

• dtbinding_worldsemi_ws2812_gpio

• dtbinding_worldsemi_ws2812_spi

Würth Elektronik GmbH. (we)

• dtbinding_we_wsen_itds

Xilinx (xlnx)

• dtbinding_xlnx_gem

• dtbinding_xlnx_ttcps

• dtbinding_xlnx_xlnx_xps_gpio_1.00.a

• dtbinding_xlnx_xlnx_xps_gpio_1.00.a_gpio2

• dtbinding_xlnx_xps_spi_2.00.a

• dtbinding_xlnx_xps_timer_1.00.a

• dtbinding_xlnx_xps_timer_1.00.a_pwm

• dtbinding_xlnx_xps_uartlite_1.00.a

• dtbinding_xlnx_uartps

532 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Zephyr-specific binding (zephyr)

• dtbinding_zephyr_adc_emul

• dtbinding_zephyr_bbram_emul

• dtbinding_zephyr_bt_hci_spi

• dtbinding_zephyr_bt_hci_spi_slave

• dtbinding_zephyr_cdc_acm_uart

• dtbinding_zephyr_emu_eeprom

• dtbinding_zephyr_espi_emul

• dtbinding_zephyr_fstab

• dtbinding_zephyr_fstab_littlefs

• dtbinding_zephyr_gpio_emul

• dtbinding_zephyr_gsm_ppp

• dtbinding_zephyr_i2c_emul

• dtbinding_zephyr_ipm_console

• dtbinding_mmc_spi_slot

• dtbinding_zephyr_modbus_serial

• dtbinding_zephyr_native_posix_rng

• dtbinding_zephyr_native_posix_uart

• dtbinding_zephyr_native_posix_udc

• dtbinding_state

• dtbinding_zephyr_sim_ec_host_cmd_periph

• dtbinding_zephyr_sim_eeprom

• dtbinding_zephyr_sim_flash

• dtbinding_zephyr_spi_emul

Unknown vendor

• dtbinding_swerv_pic

• dtbinding_wifi_esp32c3

• dtbinding_wifi_xr819s

7.7 Device Driver Model

7.7.1 Introduction

The Zephyr kernel supports a variety of device drivers. Whether a driver is available depends on the
board and the driver.

The Zephyr device model provides a consistent device model for configuring the drivers that are part of
a system. The device model is responsible for initializing all the drivers configured into the system.

Each type of driver (e.g. UART, SPI, I2C) is supported by a generic type API.

7.7. Device Driver Model 533

Zephyr Project Documentation, Release 2.7.0-rc2

In this model the driver fills in the pointer to the structure containing the function pointers to its API
functions during driver initialization. These structures are placed into the RAM section in initialization
level order.

[Not supported by viewer]

Instance 2 of Device Driver 1

Instance 1 of Device Driver 1

[Not supported by viewer]

[Not supported by viewer]

API 1

API 2

API 3

[Not supported by viewer]

API Impl 1

API Impl 2

API Impl 3

Subsytem 1

Device Driver APIs Device Driver Instances Device Driver Implementations

[Not supported by viewer]

API Impl 1

API Impl 2

API Impl 3

[Not supported by viewer]

[Not supported by viewer]

API Impl 1

API Impl 2

API Impl 3

[Not supported by viewer]

API 1

API 2

API 3

Instance 1 of Device Driver 2

[Not supported by viewer]

[Not supported by viewer]

Instance 1 of Device Driver 3

A
p
p
l
i
c
a
t
i
o
n

7.7.2 Standard Drivers

Device drivers which are present on all supported board configurations are listed below.

• Interrupt controller: This device driver is used by the kernel’s interrupt management subsystem.

• Timer: This device driver is used by the kernel’s system clock and hardware clock subsystem.

• Serial communication: This device driver is used by the kernel’s system console subsystem.

• Entropy: This device driver provides a source of entropy numbers for the random number genera-
tor subsystem.

Important: Use the random API functions for random values. Entropy functions should not be di-
rectly used as a random number generator source as some hardware implementations are designed
to be an entropy seed source for random number generators and will not provide cryptographically
secure random number streams.

7.7.3 Synchronous Calls

Zephyr provides a set of device drivers for multiple boards. Each driver should support an interrupt-based
implementation, rather than polling, unless the specific hardware does not provide any interrupt.

High-level calls accessed through device-specific APIs, such as i2c.h or spi.h, are usually intended as
synchronous. Thus, these calls should be blocking.

7.7.4 Driver APIs

The following APIs for device drivers are provided by device.h. The APIs are intended for use in device
drivers only and should not be used in applications.

534 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

DEVICE_DEFINE() Create device object and related data structures including setting it up for boot-time
initialization.

DEVICE_NAME_GET() Converts a device identifier to the global identifier for a device object.

DEVICE_GET() Obtain a pointer to a device object by name.

DEVICE_DECLARE() Declare a device object. Use this when you need a forward reference to a device that
has not yet been defined.

7.7.5 Driver Data Structures

The device initialization macros populate some data structures at build time which are split into read-
only and runtime-mutable parts. At a high level we have:

struct device {
const char *name;
const void *config;
const void *api;
void * const data;

};

The config member is for read-only configuration data set at build time. For example, base memory
mapped IO addresses, IRQ line numbers, or other fixed physical characteristics of the device. This is the
config pointer passed to DEVICE_DEFINE() and related macros.

The data struct is kept in RAM, and is used by the driver for per-instance runtime housekeeping. For
example, it may contain reference counts, semaphores, scratch buffers, etc.

The api struct maps generic subsystem APIs to the device-specific implementations in the driver. It is
typically read-only and populated at build time. The next section describes this in more detail.

7.7.6 Subsystems and API Structures

Most drivers will be implementing a device-independent subsystem API. Applications can simply program
to that generic API, and application code is not specific to any particular driver implementation.

A subsystem API definition typically looks like this:

typedef int (*subsystem_do_this_t)(const struct device *dev, int foo, int bar);
typedef void (*subsystem_do_that_t)(const struct device *dev, void *baz);

struct subsystem_api {
subsystem_do_this_t do_this;
subsystem_do_that_t do_that;

};

static inline int subsystem_do_this(const struct device *dev, int foo, int bar)
{

struct subsystem_api *api;

api = (struct subsystem_api *)dev->api;
return api->do_this(dev, foo, bar);

}

static inline void subsystem_do_that(const struct device *dev, void *baz)
{

struct subsystem_api *api;

(continues on next page)

7.7. Device Driver Model 535

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

api = (struct subsystem_api *)dev->api;
api->do_that(dev, baz);

}

A driver implementing a particular subsystem will define the real implementation of these APIs, and
populate an instance of subsystem_api structure:

static int my_driver_do_this(const struct device *dev, int foo, int bar)
{

...
}

static void my_driver_do_that(const struct device *dev, void *baz)
{

...
}

static struct subsystem_api my_driver_api_funcs = {
.do_this = my_driver_do_this,
.do_that = my_driver_do_that

};

The driver would then pass my_driver_api_funcs as the api argument to DEVICE_DEFINE().

Note: Since pointers to the API functions are referenced in the api struct, they will always be included
in the binary even if unused; gc-sections linker option will always see at least one reference to them.
Providing for link-time size optimizations with driver APIs in most cases requires that the optional feature
be controlled by a Kconfig option.

7.7.7 Device-Specific API Extensions

Some devices can be cast as an instance of a driver subsystem such as GPIO, but provide additional func-
tionality that cannot be exposed through the standard API. These devices combine subsystem operations
with device-specific APIs, described in a device-specific header.

A device-specific API definition typically looks like this:

include <drivers/subsystem.h>

/* When extensions need not be invoked from user mode threads */
int specific_do_that(const struct device *dev, int foo);

/* When extensions must be invokable from user mode threads */
__syscall int specific_from_user(const struct device *dev, int bar);

/* Only needed when extensions include syscalls */
include <syscalls/specific.h>

A driver implementing extensions to the subsystem will define the real implementation of both the
subsystem API and the specific APIs:

static int generic_do_this(const struct device *dev, void *arg)
{

...
}

(continues on next page)

536 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

static struct generic_api api {
...
.do_this = generic_do_this,
...

};

/* supervisor-only API is globally visible */
int specific_do_that(const struct device *dev, int foo)
{

...
}

/* syscall API passes through a translation */
int z_impl_specific_from_user(const struct device *dev, int bar)
{

...
}

ifdef CONFIG_USERSPACE

include <syscall_handler.h>

int z_vrfy_specific_from_user(const struct device *dev, int bar)
{

Z_OOPS(Z_SYSCALL_SPECIFIC_DRIVER(dev, K_OBJ_DRIVER_GENERIC, &api));
return z_impl_specific_do_that(dev, bar)

}

include <syscalls/specific_from_user_mrsh.c>

endif /* CONFIG_USERSPACE */

Applications use the device through both the subsystem and specific APIs.

Note: Public API for device-specific extensions should be prefixed with the compatible for the device to
which it applies. For example, if adding special functions to support the Maxim DS3231 the identifier
fragment specific in the examples above would be maxim_ds3231.

7.7.8 Single Driver, Multiple Instances

Some drivers may be instantiated multiple times in a given system. For example there can be multiple
GPIO banks, or multiple UARTS. Each instance of the driver will have a different config struct and data
struct.

Configuring interrupts for multiple drivers instances is a special case. If each instance needs to config-
ure a different interrupt line, this can be accomplished through the use of per-instance configuration
functions, since the parameters to IRQ_CONNECT() need to be resolvable at build time.

For example, let’s say we need to configure two instances of my_driver, each with a different interrupt
line. In drivers/subsystem/subsystem_my_driver.h:

typedef void (*my_driver_config_irq_t)(const struct device *dev);

struct my_driver_config {
(continues on next page)

7.7. Device Driver Model 537

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

DEVICE_MMIO_ROM;
my_driver_config_irq_t config_func;

};

In the implementation of the common init function:

void my_driver_isr(const struct device *dev)
{

/* Handle interrupt */
...

}

int my_driver_init(const struct device *dev)
{

const struct my_driver_config *config = dev->config;

DEVICE_MMIO_MAP(dev, K_MEM_CACHE_NONE);

/* Do other initialization stuff */
...

config->config_func(dev);

return 0;
}

Then when the particular instance is declared:

if CONFIG_MY_DRIVER_0

DEVICE_DECLARE(my_driver_0);

static void my_driver_config_irq_0(void)
{

IRQ_CONNECT(MY_DRIVER_0_IRQ, MY_DRIVER_0_PRI, my_driver_isr,
DEVICE_GET(my_driver_0), MY_DRIVER_0_FLAGS);

}

const static struct my_driver_config my_driver_config_0 = {
DEVICE_MMIO_ROM_INIT(DT_DRV_INST(0)),
.config_func = my_driver_config_irq_0

}

static struct my_data_0;

DEVICE_DEFINE(my_driver_0, MY_DRIVER_0_NAME, my_driver_init,
NULL, &my_data_0, &my_driver_config_0,
POST_KERNEL, MY_DRIVER_0_PRIORITY, &my_api_funcs);

endif /* CONFIG_MY_DRIVER_0 */

Note the use of DEVICE_DECLARE() to avoid a circular dependency on providing the IRQ handler argu-
ment and the definition of the device itself.

538 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

7.7.9 Initialization Levels

Drivers may depend on other drivers being initialized first, or require the use of kernel services.
DEVICE_DEFINE() and related APIs allow the user to specify at what time during the boot sequence
the init function will be executed. Any driver will specify one of four initialization levels:

PRE_KERNEL_1 Used for devices that have no dependencies, such as those that rely solely on hardware
present in the processor/SOC. These devices cannot use any kernel services during configuration,
since the kernel services are not yet available. The interrupt subsystem will be configured however
so it’s OK to set up interrupts. Init functions at this level run on the interrupt stack.

PRE_KERNEL_2 Used for devices that rely on the initialization of devices initialized as part of the
PRE_KERNEL_1 level. These devices cannot use any kernel services during configuration, since
the kernel services are not yet available. Init functions at this level run on the interrupt stack.

POST_KERNEL Used for devices that require kernel services during configuration. Init functions at this
level run in context of the kernel main task.

APPLICATION Used for application components (i.e. non-kernel components) that need automatic con-
figuration. These devices can use all services provided by the kernel during configuration. Init
functions at this level run on the kernel main task.

Within each initialization level you may specify a priority level, relative to other devices in the same
initialization level. The priority level is specified as an integer value in the range 0 to 99; lower val-
ues indicate earlier initialization. The priority level must be a decimal integer literal without leading
zeroes or sign (e.g. 32), or an equivalent symbolic name (e.g. \#define MY_INIT_PRIO 32); symbolic
expressions are not permitted (e.g. CONFIG_KERNEL_INIT_PRIORITY_DEFAULT + 5).

Drivers and other system utilities can determine whether startup is still in pre-kernel states by using the
k_is_pre_kernel() function.

7.7.10 System Drivers

In some cases you may just need to run a function at boot. Special SYS_* macros exist that map to
DEVICE_DEFINE() calls. For SYS_INIT() there are no config or runtime data structures and there isn’t a
way to later get a device pointer by name. The same policies for initialization level and priority apply.

For SYS_DEVICE_DEFINE() you can obtain pointers by name, see power management section.

SYS_INIT() Run an initialization function at boot at specified priority.

SYS_DEVICE_DEFINE() Like DEVICE_DEFINE() without an API table and constructing the device name
from the init function name.

7.7.11 Error handling

In general, it’s best to use __ASSERT() macros instead of propagating return values unless the failure is
expected to occur during the normal course of operation (such as a storage device full). Bad parameters,
programming errors, consistency checks, pathological/unrecoverable failures, etc., should be handled by
assertions.

When it is appropriate to return error conditions for the caller to check, 0 should be returned on success
and a POSIX errno.h code returned on failure. See https://github.com/zephyrproject-rtos/zephyr/wiki/
Naming-Conventions#return-codes for details about this.

7.7.12 Memory Mapping

On some systems, the linear address of peripheral memory-mapped I/O (MMIO) regions cannot be
known at build time:

7.7. Device Driver Model 539

https://github.com/zephyrproject-rtos/zephyr/wiki/Naming-Conventions#return-codes
https://github.com/zephyrproject-rtos/zephyr/wiki/Naming-Conventions#return-codes

Zephyr Project Documentation, Release 2.7.0-rc2

• The I/O ranges must be probed at runtime from the bus, such as with PCI express

• A memory management unit (MMU) is active, and the physical address of the MMIO range must
be mapped into the page tables at some virtual memory location determined by the kernel.

These systems must maintain storage for the MMIO range within RAM and establish the mapping within
the driver’s init function. Other systems do not care about this and can use MMIO physical addresses
directly from DTS and do not need any RAM-based storage for it.

For drivers that may need to deal with this situation, a set of APIs under the DEVICE_MMIO scope are
defined, along with a mapping function device_map().

Device Model Drivers with one MMIO region

The simplest case is for drivers which need to maintain one MMIO region. These drivers will need
to use the DEVICE_MMIO_ROM and DEVICE_MMIO_RAM macros in the definitions for their config_info and
driver_data structures, with initialization of the config_info from DTS using DEVICE_MMIO_ROM_INIT.
A call to DEVICE_MMIO_MAP() is made within the init function:

struct my_driver_config {
DEVICE_MMIO_ROM; /* Must be first */
...

}

struct my_driver_dev_data {
DEVICE_MMIO_RAM; /* Must be first */
...

}

const static struct my_driver_config my_driver_config_0 = {
DEVICE_MMIO_ROM_INIT(DT_DRV_INST(...)),
...

}

int my_driver_init(const struct device *dev)
{

...
DEVICE_MMIO_MAP(dev, K_MEM_CACHE_NONE);
...

}

int my_driver_some_function(const struct device *dev)
{

...
/* Write some data to the MMIO region */
sys_write32(0xDEADBEEF, DEVICE_MMIO_GET(dev));
...

}

The particular expansion of these macros depends on configuration. On a device with no MMU or PCI-e,
DEVICE_MMIO_MAP and DEVICE_MMIO_RAM expand to nothing.

Device Model Drivers with multiple MMIO regions

Some drivers may have multiple MMIO regions. In addition, some drivers may already be implement-
ing a form of inheritance which requires some other data to be placed first in the config_info and
driver_data structures.

540 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

This can be managed with the DEVICE_MMIO_NAMED variant macros. These require that DEV_CFG() and
DEV_DATA() macros be defined to obtain a properly typed pointer to the driver’s config_info or dev_data
structs. For example:

struct my_driver_config {
...

DEVICE_MMIO_NAMED_ROM(corge);
DEVICE_MMIO_NAMED_ROM(grault);

...
}

struct my_driver_dev_data {
...

DEVICE_MMIO_NAMED_RAM(corge);
DEVICE_MMIO_NAMED_RAM(grault);
...

}

define DEV_CFG(_dev) \
((const struct my_driver_config *)((_dev)->config))

define DEV_DATA(_dev) \
((struct my_driver_dev_data *)((_dev)->data))

const static struct my_driver_config my_driver_config_0 = {
...
DEVICE_MMIO_NAMED_ROM_INIT(corge, DT_DRV_INST(...)),
DEVICE_MMIO_NAMED_ROM_INIT(grault, DT_DRV_INST(...)),
...

}

int my_driver_init(const struct device *dev)
{

...
DEVICE_MMIO_NAMED_MAP(dev, corge, K_MEM_CACHE_NONE);
DEVICE_MMIO_NAMED_MAP(dev, grault, K_MEM_CACHE_NONE);
...

}

int my_driver_some_function(const struct device *dev)
{

...
/* Write some data to the MMIO regions */
sys_write32(0xDEADBEEF, DEVICE_MMIO_GET(dev, grault));
sys_write32(0xF0CCAC1A, DEVICE_MMIO_GET(dev, corge));
...

}

Drivers that do not use Zephyr Device Model

Some drivers or driver-like code may not user Zephyr’s device model, and alternative storage must be
arranged for the MMIO data. An example of this are timer drivers, or interrupt controller code.

This can be managed with the DEVICE_MMIO_TOPLEVEL set of macros, for example:

DEVICE_MMIO_TOPLEVEL_STATIC(my_regs, DT_DRV_INST(..));

(continues on next page)

7.7. Device Driver Model 541

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

void some_init_code(...)
{

...
DEVICE_MMIO_TOPLEVEL_MAP(my_regs, K_MEM_CACHE_NONE);
...

}

void some_function(...)
...
sys_write32(DEVICE_MMIO_TOPLEVEL_GET(my_regs), 0xDEADBEEF);
...

}

Drivers that do not use DTS

Some drivers may not obtain the MMIO physical address from DTS, such as is the case with PCI-E. In
this case the device_map() function may be used directly:

void some_init_code(...)
{

...
struct pcie_mbar mbar;
bool bar_found = pcie_get_mbar(bdf, index, &mbar);

device_map(DEVICE_MMIO_RAM_PTR(dev), mbar.phys_addr, mbar.size, K_MEM_CACHE_NONE);
...

}

For these cases, DEVICE_MMIO_ROM directives may be omitted.

7.7.13 API Reference

group device_model

Device Model APIs.

Defines

DEVICE_HANDLE_SEP

Flag value used in lists of device handles to separate distinct groups.

This is the minimum value for the device_handle_t type.

DEVICE_HANDLE_ENDS

Flag value used in lists of device handles to indicate the end of the list.

This is the maximum value for the device_handle_t type.

DEVICE_HANDLE_NULL

Flag value used to identify an unknown device.

542 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

DEVICE_NAME_GET(name)

Expands to the full name of a global device object.

Return the full name of a device object symbol created by DEVICE_DEFINE(), using the
dev_name provided to DEVICE_DEFINE().

It is meant to be used for declaring extern symbols pointing on device objects before using the
DEVICE_GET macro to get the device object.

Parameters

• name – The same as dev_name provided to DEVICE_DEFINE()

Returns The expanded name of the device object created by DEVICE_DEFINE()

SYS_DEVICE_DEFINE(drv_name, init_fn, pm_control_fn, level, prio)

Run an initialization function at boot at specified priority, and define device PM control func-
tion.

Invokes DEVICE_DEFINE() with no power management support (pm_control_fn), no API
(api_ptr), and a device name derived from the init_fn name (dev_name).

DEVICE_DEFINE(dev_name, drv_name, init_fn, pm_control_fn, data_ptr, cfg_ptr, level, prio,
api_ptr)

Create device object and set it up for boot time initialization, with the option to pm_control.
In case of Device Idle Power Management is enabled, make sure the device is in suspended
state after initialization.

This macro defines a device object that is automatically configured by the kernel during system
initialization. Note that devices set up with this macro will not be accessible from user mode
since the API is not specified;

Parameters

• dev_name – Device name. This must be less than Z_DEVICE_MAX_NAME_LEN
characters (including terminating NUL) in order to be looked up from user
mode with device_get_binding().

• drv_name – The name this instance of the driver exposes to the system.

• init_fn – Address to the init function of the driver.

• pm_control_fn – Pointer to pm_control function. Can be NULL if not imple-
mented.

• data_ptr – Pointer to the device’s private data.

• cfg_ptr – The address to the structure containing the configuration informa-
tion for this instance of the driver.

• level – The initialization level. See SYS_INIT() for details.

• prio – Priority within the selected initialization level. See SYS_INIT() for de-
tails.

• api_ptr – Provides an initial pointer to the API function struct used by the
driver. Can be NULL.

DEVICE_DT_NAME(node_id)

Return a string name for a devicetree node.

This macro returns a string literal usable as a device name from a devicetree node. If the node
has a “label” property, its value is returned. Otherwise, the node’s full “node-name@@unit-
address” name is returned.

Parameters

• node_id – The devicetree node identifier.

7.7. Device Driver Model 543

Zephyr Project Documentation, Release 2.7.0-rc2

DEVICE_DT_DEFINE(node_id, init_fn, pm_control_fn, data_ptr, cfg_ptr, level, prio, api_ptr, ...)
Like DEVICE_DEFINE but taking metadata from a devicetree node.

This macro defines a device object that is automatically configured by the kernel during sys-
tem initialization. The device object name is derived from the node identifier (encoding the
devicetree path to the node), and the driver name is from the label property of the devicetree
node.

The device is declared with extern visibility, so device objects defined through this API can
be obtained directly through DEVICE_DT_GET() using node_id. Before using the pointer the
referenced object should be checked using device_is_ready().

Parameters

• node_id – The devicetree node identifier.

• init_fn – Address to the init function of the driver.

• pm_control_fn – Pointer to pm_control function. Can be NULL if not imple-
mented.

• data_ptr – Pointer to the device’s private data.

• cfg_ptr – The address to the structure containing the configuration informa-
tion for this instance of the driver.

• level – The initialization level. See SYS_INIT() for details.

• prio – Priority within the selected initialization level. See SYS_INIT() for de-
tails.

• api_ptr – Provides an initial pointer to the API function struct used by the
driver. Can be NULL.

DEVICE_DT_INST_DEFINE(inst, ...)
Like DEVICE_DT_DEFINE for an instance of a DT_DRV_COMPAT compatible.

Parameters

• inst – instance number. This is replaced by DT_DRV_COMPAT(inst) in the call
to DEVICE_DT_DEFINE.

• ... – other parameters as expected by DEVICE_DT_DEFINE.

DEVICE_DT_NAME_GET(node_id)
The name of the struct device object for node_id.

Return the full name of a device object symbol created by DEVICE_DT_DEFINE(), using the
dev_name derived from node_id

It is meant to be used for declaring extern symbols pointing on device objects before using the
DEVICE_DT_GET macro to get the device object.

Parameters

• node_id – The same as node_id provided to DEVICE_DT_DEFINE()

Returns The expanded name of the device object created by DEVICE_DT_DEFINE()

DEVICE_DT_GET(node_id)
Obtain a pointer to a device object by node_id.

Return the address of a device object created by DEVICE_DT_INIT(), using the dev_name
derived from node_id

Parameters

• node_id – The same as node_id provided to DEVICE_DT_DEFINE()

Returns A pointer to the device object created by DEVICE_DT_DEFINE()

544 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

DEVICE_DT_INST_GET(inst)

Obtain a pointer to a device object for an instance of a DT_DRV_COMPAT compatible.

Parameters

• inst – instance number

DEVICE_DT_GET_ANY(compat)

Obtain a pointer to a device object by devicetree compatible.

If any enabled devicetree node has the given compatible and a device object was created from
it, this returns that device.

If there no such devices, this returns NULL.

If there are multiple, this returns an arbitrary one.

If this returns non-NULL, the device must be checked for readiness before use, e.g. with
device_is_ready().

Parameters

• compat – lowercase-and-underscores devicetree compatible

Returns a pointer to a device, or NULL

DEVICE_DT_GET_ONE(compat)

Obtain a pointer to a device object by devicetree compatible.

If any enabled devicetree node has the given compatible and a device object was created from
it, this returns that device.

If there no such devices, this throws a compilation error.

If there are multiple, this returns an arbitrary one.

If this returns non-NULL, the device must be checked for readiness before use, e.g. with
device_is_ready().

Parameters

• compat – lowercase-and-underscores devicetree compatible

Returns a pointer to a device

DEVICE_GET(name)

Obtain a pointer to a device object by name.

Return the address of a device object created by DEVICE_DEFINE(), using the dev_name pro-
vided to DEVICE_DEFINE().

Parameters

• name – The same as dev_name provided to DEVICE_DEFINE()

Returns A pointer to the device object created by DEVICE_DEFINE()

DEVICE_DECLARE(name)

Declare a static device object.

This macro can be used at the top-level to declare a device, such that DEVICE_GET() may be
used before the full declaration in DEVICE_DEFINE().

This is often useful when configuring interrupts statically in a device’s init or per-instance
config function, as the init function itself is required by DEVICE_DEFINE() and use of DE-
VICE_GET() inside it creates a circular dependency.

Parameters

• name – Device name

7.7. Device Driver Model 545

Zephyr Project Documentation, Release 2.7.0-rc2

SYS_INIT(_init_fn, _level, _prio)

Run an initialization function at boot at specified priority.

This macro lets you run a function at system boot.

Parameters

• _init_fn – Pointer to the boot function to run

• _level – The initialization level at which configuration occurs. Must be one of
the following symbols, which are listed in the order they are performed by the
kernel:

– PRE_KERNEL_1: Used for initialization objects that have no dependencies,
such as those that rely solely on hardware present in the processor/SOC.
These objects cannot use any kernel services during configuration, since they
are not yet available.

– PRE_KERNEL_2: Used for initialization objects that rely on objects initialized
as part of the PRE_KERNEL_1 level. These objects cannot use any kernel
services during configuration, since they are not yet available.

– POST_KERNEL: Used for initialization objects that require kernel services
during configuration.

– POST_KERNEL_SMP: Used for initialization objects that require kernel ser-
vices during configuration after SMP initialization.

– APPLICATION: Used for application components (i.e. non-kernel compo-
nents) that need automatic configuration. These objects can use all services
provided by the kernel during configuration.

• _prio – The initialization priority of the object, relative to other objects of
the same initialization level. Specified as an integer value in the range 0 to
99; lower values indicate earlier initialization. Must be a decimal integer lit-
eral without leading zeroes or sign (e.g. 32), or an equivalent symbolic name
(e.g. #define MY_INIT_PRIO 32); symbolic expressions are not permitted (e.g.
CONFIG_KERNEL_INIT_PRIORITY_DEFAULT + 5).

Typedefs

typedef int16_t device_handle_t

Type used to represent devices and functions.

The extreme values and zero have special significance. Negative values identify functionality
that does not correspond to a Zephyr device, such as the system clock or a SYS_INIT() function.

typedef int (*device_visitor_callback_t)(const struct device *dev, void *context)

Prototype for functions used when iterating over a set of devices.

Such a function may be used in API that identifies a set of devices and provides a visitor API
supporting caller-specific interaction with each device in the set.

The visit is said to succeed if the visitor returns a non-negative value.

Param dev a device in the set being iterated

Param context state used to support the visitor function

Return A non-negative number to allow walking to continue, and a negative error
code to case the iteration to stop.

546 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Functions

static inline device_handle_t device_handle_get(const struct device *dev)

Get the handle for a given device.

Parameters

• dev – the device for which a handle is desired.

Returns the handle for the device, or DEVICE_HANDLE_NULL if the device does not
have an associated handle.

static inline const struct device *device_from_handle(device_handle_t dev_handle)

Get the device corresponding to a handle.

Parameters

• dev_handle – the device handle

Returns the device that has that handle, or a null pointer if dev_handle does not
identify a device.

static inline const device_handle_t *device_required_handles_get(const struct device *dev,
size_t *count)

Get the set of handles for devicetree dependencies of this device.

These are the device dependencies inferred from devicetree.

Parameters

• dev – the device for which dependencies are desired.

• count – pointer to a place to store the number of devices provided at the re-
turned pointer. The value is not set if the call returns a null pointer. The value
may be set to zero.

Returns a pointer to a sequence of *count device handles, or a null pointer if dh
does not provide dependency information.

static inline const device_handle_t *device_supported_handles_get(const struct device *dev,
size_t *count)

Get the set of handles that this device supports.

The set of supported devices is inferred from devicetree, and does not include any software
constructs that may depend on the device.

Parameters

• dev – the device for which supports are desired.

• count – pointer to a place to store the number of devices provided at the re-
turned pointer. The value is not set if the call returns a null pointer. The value
may be set to zero.

Returns a pointer to a sequence of *count device handles, or a null pointer if dh
does not provide dependency information.

int device_required_foreach(const struct device *dev, device_visitor_callback_t visitor_cb, void
*context)

Visit every device that dev directly requires.

Zephyr maintains information about which devices are directly required by another device;
for example an I2C-based sensor driver will require an I2C controller for communication.
Required devices can derive from statically-defined devicetree relationships or dependencies
registered at runtime.

7.7. Device Driver Model 547

Zephyr Project Documentation, Release 2.7.0-rc2

This API supports operating on the set of required devices. Example uses include making sure
required devices are ready before the requiring device is used, and releasing them when the
requiring device is no longer needed.

There is no guarantee on the order in which required devices are visited.

If the visitor function returns a negative value iteration is halted, and the returned value
from the visitor is returned from this function.

Note: This API is not available to unprivileged threads.

Parameters

• dev – a device of interest. The devices that this device depends on will be used
as the set of devices to visit. This parameter must not be null.

• visitor_cb – the function that should be invoked on each device in the de-
pendency set. This parameter must not be null.

• context – state that is passed through to the visitor function. This parameter
may be null if visitor tolerates a null context.

Returns The number of devices that were visited if all visits succeed, or the negative
value returned from the first visit that did not succeed.

int device_supported_foreach(const struct device *dev, device_visitor_callback_t visitor_cb, void
*context)

Visit every device that dev directly supports.

Zephyr maintains information about which devices are directly supported by another device;
for example an I2C controller will support an I2C-based sensor driver. Supported devices can
derive from statically-defined devicetree relationships.

This API supports operating on the set of supported devices. Example uses include iterating
over the devices connected to a regulator when it is powered on.

There is no guarantee on the order in which required devices are visited.

If the visitor function returns a negative value iteration is halted, and the returned value
from the visitor is returned from this function.

Note: This API is not available to unprivileged threads.

Parameters

• dev – a device of interest. The devices that this device supports will be used as
the set of devices to visit. This parameter must not be null.

• visitor_cb – the function that should be invoked on each device in the support
set. This parameter must not be null.

• context – state that is passed through to the visitor function. This parameter
may be null if visitor tolerates a null context.

Returns The number of devices that were visited if all visits succeed, or the negative
value returned from the first visit that did not succeed.

const struct device *device_get_binding(const char *name)

Retrieve the device structure for a driver by name.

548 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Device objects are created via the DEVICE_DEFINE() macro and placed in memory by the
linker. If a driver needs to bind to another driver it can use this function to retrieve the device
structure of the lower level driver by the name the driver exposes to the system.

Parameters

• name – device name to search for. A null pointer, or a pointer to an empty
string, will cause NULL to be returned.

Returns pointer to device structure; NULL if not found or cannot be used.

int device_usable_check(const struct device *dev)

Determine whether a device is ready for use.

This checks whether a device can be used, returning 0 if it can, and distinct error values that
identify the reason if it cannot.

Return values

• 0 – if the device is usable.

• -ENODEV – if the device has not been initialized, the device pointer is NULL or
the initialization failed.

• other – negative error codes to indicate additional conditions that make the
device unusable.

static inline bool device_is_ready(const struct device *dev)

Verify that a device is ready for use.

Indicates whether the provided device pointer is for a device known to be in a state where it
can be used with its standard API.

This can be used with device pointers captured from DEVICE_DT_GET(), which does not in-
clude the readiness checks of device_get_binding(). At minimum this means that the device
has been successfully initialized, but it may take on further conditions (e.g. is not powered
down).

Parameters

• dev – pointer to the device in question.

Return values

• true – if the device is ready for use.

• false – if the device is not ready for use or if a NULL device pointer is passed
as argument.

struct device_state

#include <device.h> Runtime device dynamic structure (in RAM) per driver instance.

Fields in this are expected to be default-initialized to zero. The kernel driver infrastructure
and driver access functions are responsible for ensuring that any non-zero initialization is
done before they are accessed.

Public Members

unsigned int init_res

Non-negative result of initializing the device.

The absolute value returned when the device initialization function was invoked, or
UINT8_MAX if the value exceeds an 8-bit integer. If initialized is also set, a zero value
indicates initialization succeeded.

7.7. Device Driver Model 549

Zephyr Project Documentation, Release 2.7.0-rc2

bool initialized

Indicates the device initialization function has been invoked.

struct device

#include <device.h> Runtime device structure (in ROM) per driver instance.

Public Members

const char *name

Name of the device instance

const void *config

Address of device instance config information

const void *api

Address of the API structure exposed by the device instance

struct device_state *const state

Address of the common device state

void *const data

Address of the device instance private data

const device_handle_t *const handles

optional pointer to handles associated with the device.

This encodes a sequence of sets of device handles that have some relationship
to this node. The individual sets are extracted with dedicated API, such as de-
vice_required_handles_get().

7.8 Display Interface

7.8.1 API Reference

Generic Display Interface

group display_interface

Display Interface.

Typedefs

typedef int (*display_blanking_on_api)(const struct device *dev)

Callback API to turn on display blanking See display_blanking_on() for argument description.

typedef int (*display_blanking_off_api)(const struct device *dev)

Callback API to turn off display blanking See display_blanking_off() for argument description.

550 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

typedef int (*display_write_api)(const struct device *dev, const uint16_t x, const uint16_t y,
const struct display_buffer_descriptor *desc, const void *buf)

Callback API for writing data to the display See display_write() for argument description.

typedef int (*display_read_api)(const struct device *dev, const uint16_t x, const uint16_t y,
const struct display_buffer_descriptor *desc, void *buf)

Callback API for reading data from the display See display_read() for argument description.

typedef void *(*display_get_framebuffer_api)(const struct device *dev)

Callback API to get framebuffer pointer See display_get_framebuffer() for argument descrip-
tion.

typedef int (*display_set_brightness_api)(const struct device *dev, const uint8_t brightness)

Callback API to set display brightness See display_set_brightness() for argument description.

typedef int (*display_set_contrast_api)(const struct device *dev, const uint8_t contrast)

Callback API to set display contrast See display_set_contrast() for argument description.

typedef void (*display_get_capabilities_api)(const struct device *dev, struct
display_capabilities *capabilities)

Callback API to get display capabilities See display_get_capabilities() for argument description.

typedef int (*display_set_pixel_format_api)(const struct device *dev, const enum
display_pixel_format pixel_format)

Callback API to set pixel format used by the display See display_set_pixel_format() for argu-
ment description.

typedef int (*display_set_orientation_api)(const struct device *dev, const enum
display_orientation orientation)

Callback API to set orientation used by the display See display_set_orientation() for argument
description.

Enums

enum display_pixel_format

Display pixel formats.

Display pixel format enumeration.

In case a pixel format consists out of multiple bytes the byte order is big endian.

Values:

enumerator PIXEL_FORMAT_RGB_888 = BIT(0)

enumerator PIXEL_FORMAT_MONO01 = BIT(1)

enumerator PIXEL_FORMAT_MONO10 = BIT(2)

enumerator PIXEL_FORMAT_ARGB_8888 = BIT(3)

7.8. Display Interface 551

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator PIXEL_FORMAT_RGB_565 = BIT(4)

enumerator PIXEL_FORMAT_BGR_565 = BIT(5)

enum display_screen_info

Values:

enumerator SCREEN_INFO_MONO_VTILED = BIT(0)

If selected, one octet represents 8 pixels ordered vertically, otherwise ordered horizontally.

enumerator SCREEN_INFO_MONO_MSB_FIRST = BIT(1)

If selected, the MSB represents the first pixel, otherwise MSB represents the last pixel.

enumerator SCREEN_INFO_EPD = BIT(2)

Electrophoretic Display.

enumerator SCREEN_INFO_DOUBLE_BUFFER = BIT(3)

Screen has two alternating ram buffers

enumerator SCREEN_INFO_X_ALIGNMENT_WIDTH = BIT(4)

Screen has x alignment constrained to width.

enum display_orientation

Enumeration with possible display orientation.

Values:

enumerator DISPLAY_ORIENTATION_NORMAL

enumerator DISPLAY_ORIENTATION_ROTATED_90

enumerator DISPLAY_ORIENTATION_ROTATED_180

enumerator DISPLAY_ORIENTATION_ROTATED_270

Functions

static inline int display_write(const struct device *dev, const uint16_t x, const uint16_t y, const
struct display_buffer_descriptor *desc, const void *buf)

Write data to display.

Parameters

• dev – Pointer to device structure

• x – x Coordinate of the upper left corner where to write the buffer

• y – y Coordinate of the upper left corner where to write the buffer

• desc – Pointer to a structure describing the buffer layout

• buf – Pointer to buffer array

Return values 0 – on success else negative errno code.

552 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline int display_read(const struct device *dev, const uint16_t x, const uint16_t y, const
struct display_buffer_descriptor *desc, void *buf)

Read data from display.

Parameters

• dev – Pointer to device structure

• x – x Coordinate of the upper left corner where to read from

• y – y Coordinate of the upper left corner where to read from

• desc – Pointer to a structure describing the buffer layout

• buf – Pointer to buffer array

Return values 0 – on success else negative errno code.

static inline void *display_get_framebuffer(const struct device *dev)

Get pointer to framebuffer for direct access.

Parameters

• dev – Pointer to device structure

Return values Pointer – to frame buffer or NULL if direct framebuffer access is not
supported

static inline int display_blanking_on(const struct device *dev)

Turn display blanking on.

This function blanks the complete display. The content of the frame buffer will be retained
while blanking is enabled and the frame buffer will be accessible for read and write operations.

In case backlight control is supported by the driver the backlight is turned off. The backlight
configuration is retained and accessible for configuration.

In case the driver supports display blanking the initial state of the driver would be the same
as if this function was called.

Parameters

• dev – Pointer to device structure

Return values 0 – on success else negative errno code.

static inline int display_blanking_off(const struct device *dev)

Turn display blanking off.

Restore the frame buffer content to the display. In case backlight control is supported by the
driver the backlight configuration is restored.

Parameters

• dev – Pointer to device structure

Return values 0 – on success else negative errno code.

static inline int display_set_brightness(const struct device *dev, uint8_t brightness)

Set the brightness of the display.

Set the brightness of the display in steps of 1/256, where 255 is full brightness and 0 is
minimal.

Parameters

• dev – Pointer to device structure

• brightness – Brightness in steps of 1/256

Return values 0 – on success else negative errno code.

7.8. Display Interface 553

Zephyr Project Documentation, Release 2.7.0-rc2

static inline int display_set_contrast(const struct device *dev, uint8_t contrast)

Set the contrast of the display.

Set the contrast of the display in steps of 1/256, where 255 is maximum difference and 0 is
minimal.

Parameters

• dev – Pointer to device structure

• contrast – Contrast in steps of 1/256

Return values 0 – on success else negative errno code.

static inline void display_get_capabilities(const struct device *dev, struct display_capabilities
*capabilities)

Get display capabilities.

Parameters

• dev – Pointer to device structure

• capabilities – Pointer to capabilities structure to populate

static inline int display_set_pixel_format(const struct device *dev, const enum
display_pixel_format pixel_format)

Set pixel format used by the display.

Parameters

• dev – Pointer to device structure

• pixel_format – Pixel format to be used by display

Return values 0 – on success else negative errno code.

static inline int display_set_orientation(const struct device *dev, const enum
display_orientation orientation)

Set display orientation.

Parameters

• dev – Pointer to device structure

• orientation – Orientation to be used by display

Return values 0 – on success else negative errno code.

struct display_capabilities

#include <display.h> Structure holding display capabilities.

Public Members

uint16_t x_resolution

Display resolution in the X direction

uint16_t y_resolution

Display resolution in the Y direction

uint32_t supported_pixel_formats

Bitwise or of pixel formats supported by the display

554 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

uint32_t screen_info

Information about display panel

enum display_pixel_format current_pixel_format

Currently active pixel format for the display

enum display_orientation current_orientation

Current display orientation

struct display_buffer_descriptor

#include <display.h> Structure to describe display data buffer layout.

Public Members

uint32_t buf_size

Data buffer size in bytes

uint16_t width

Data buffer row width in pixels

uint16_t height

Data buffer column height in pixels

uint16_t pitch

Number of pixels between consecutive rows in the data buffer

struct display_driver_api

#include <display.h> Display driver API API which a display driver should expose.

Grove LCD Display

group grove_display

Grove display APIs.

Defines

GROVE_LCD_NAME

GLCD_DS_DISPLAY_ON

GLCD_DS_DISPLAY_OFF

GLCD_DS_CURSOR_ON

GLCD_DS_CURSOR_OFF

7.8. Display Interface 555

Zephyr Project Documentation, Release 2.7.0-rc2

GLCD_DS_BLINK_ON

GLCD_DS_BLINK_OFF

GLCD_IS_SHIFT_INCREMENT

GLCD_IS_SHIFT_DECREMENT

GLCD_IS_ENTRY_LEFT

GLCD_IS_ENTRY_RIGHT

GLCD_FS_8BIT_MODE

GLCD_FS_ROWS_2

GLCD_FS_ROWS_1

GLCD_FS_DOT_SIZE_BIG

GLCD_FS_DOT_SIZE_LITTLE

GROVE_RGB_WHITE

GROVE_RGB_RED

GROVE_RGB_GREEN

GROVE_RGB_BLUE

Functions

void glcd_print(const struct device *port, char *data, uint32_t size)
Send text to the screen.

Parameters

• port – Pointer to device structure for driver instance.

• data – the ASCII text to display

• size – the length of the text in bytes

void glcd_cursor_pos_set(const struct device *port, uint8_t col, uint8_t row)
Set text cursor position for next additions.

Parameters

• port – Pointer to device structure for driver instance.

• col – the column for the cursor to be moved to (0-15)

• row – the row it should be moved to (0 or 1)

556 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

void glcd_clear(const struct device *port)

Clear the current display.

Parameters

• port – Pointer to device structure for driver instance.

void glcd_display_state_set(const struct device *port, uint8_t opt)

Function to change the display state.

This function provides the user the ability to change the state of the display as per needed.
Controlling things like powering on or off the screen, the option to display the cursor or not,
and the ability to blink the cursor.

Parameters

• port – Pointer to device structure for driver instance.

• opt – An 8bit bitmask of GLCD_DS_* options.

uint8_t glcd_display_state_get(const struct device *port)

return the display feature set associated with the device

Parameters

• port – the Grove LCD to get the display features set

Returns the display feature set associated with the device.

void glcd_input_state_set(const struct device *port, uint8_t opt)

Function to change the input state.

This function provides the user the ability to change the state of the text input. Controlling
things like text entry from the left or right side, and how far to increment on new text

Parameters

• port – Pointer to device structure for driver instance.

• opt – A bitmask of GLCD_IS_* options

uint8_t glcd_input_state_get(const struct device *port)

return the input set associated with the device

Parameters

• port – the Grove LCD to get the input features set

Returns the input set associated with the device.

void glcd_function_set(const struct device *port, uint8_t opt)

Function to set the functional state of the display.

This function provides the user the ability to change the state of the display as per needed.
Controlling things like the number of rows, dot size, and text display quality.

Parameters

• port – Pointer to device structure for driver instance.

• opt – A bitmask of GLCD_FS_* options

uint8_t glcd_function_get(const struct device *port)

return the function set associated with the device

Parameters

• port – the Grove LCD to get the functions set

7.8. Display Interface 557

Zephyr Project Documentation, Release 2.7.0-rc2

Returns the function features set associated with the device.

void glcd_color_select(const struct device *port, uint8_t color)

Set LCD background to a predefined color.

Parameters

• port – Pointer to device structure for driver instance.

• color – One of the predefined color options

void glcd_color_set(const struct device *port, uint8_t r, uint8_t g, uint8_t b)

Set LCD background to custom RGB color value.

Parameters

• port – Pointer to device structure for driver instance.

• r – A numeric value for the red color (max is 255)

• g – A numeric value for the green color (max is 255)

• b – A numeric value for the blue color (max is 255)

int glcd_initialize(const struct device *port)

Initialize the Grove LCD panel.

Parameters

• port – Pointer to device structure for driver instance.

Returns Returns 0 if all passes

BBC micro:bit Display

group mb_display

BBC micro:bit display APIs.

Defines

MB_IMAGE(_rows...)

Generate an image object from a given array rows/columns.

This helper takes an array of 5 rows, each consisting of 5 0/1 values which correspond to the
columns of that row. The value 0 means the pixel is disabled whereas a 1 means the pixel is
enabled.

The pixels go from left to right and top to bottom, i.e. top-left corner is the first row’s first
value, top-right is the first rows last value, and bottom-right corner is the last value of the last
(5th) row. As an example, the following would create a smiley face image:

Parameters

• _rows – Each of the 5 rows represented as a 5-value column array.

Returns Image bitmap that can be passed e.g. to mb_display_image().

Enums

558 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enum mb_display_mode

Display mode.

First 16 bits are reserved for modes, last 16 for flags.

Values:

enumerator MB_DISPLAY_MODE_DEFAULT

Default mode (“single” for images, “scroll” for text).

enumerator MB_DISPLAY_MODE_SINGLE

Display images sequentially, one at a time.

enumerator MB_DISPLAY_MODE_SCROLL

Display images by scrolling.

enumerator MB_DISPLAY_FLAG_LOOP = BIT(16)

Loop back to the beginning when reaching the last image.

Functions

struct mb_display *mb_display_get(void)

Get a pointer to the BBC micro:bit display object.

Returns Pointer to display object.

void mb_display_image(struct mb_display *disp, uint32_t mode, int32_t duration, const struct
mb_image *img, uint8_t img_count)

Display one or more images on the BBC micro:bit LED display.

This function takes an array of one or more images and renders them sequentially on the
micro:bit display. The call is asynchronous, i.e. the processing of the display happens in the
background. If there is another image being displayed it will be canceled and the new one
takes over.

Parameters

• disp – Display object.

• mode – One of the MB_DISPLAY_MODE_* options.

• duration – Duration how long to show each image (in milliseconds), or
SYS_FOREVER_MS.

• img – Array of image bitmaps (struct mb_image objects).

• img_count – Number of images in ‘img’ array.

void mb_display_print(struct mb_display *disp, uint32_t mode, int32_t duration, const char
*fmt, ...)

Print a string of characters on the BBC micro:bit LED display.

This function takes a printf-style format string and outputs it in a scrolling fashion to the
display.

The call is asynchronous, i.e. the processing of the display happens in the background. If
there is another image or string being displayed it will be canceled and the new one takes
over.

Parameters

7.8. Display Interface 559

Zephyr Project Documentation, Release 2.7.0-rc2

• disp – Display object.

• mode – One of the MB_DISPLAY_MODE_* options.

• duration – Duration how long to show each character (in milliseconds), or
SYS_FOREVER_MS.

• fmt – printf-style format string

• ... – Optional list of format arguments.

void mb_display_stop(struct mb_display *disp)

Stop the ongoing display of an image.

Parameters

• disp – Display object.

struct mb_image

#include <mb_display.h> Representation of a BBC micro:bit display image.

This struct should normally not be used directly, rather created using the MB_IMAGE() macro.

Monochrome Character Framebuffer

group monochrome_character_framebuffer

Public Monochrome Character Framebuffer API.

Defines

FONT_ENTRY_DEFINE(_name, _width, _height, _caps, _data, _fc, _lc)

Macro for creating a font entry.

Parameters

• _name – Name of the font entry.

• _width – Width of the font in pixels

• _height – Height of the font in pixels.

• _caps – Font capabilities.

• _data – Raw data of the font.

• _fc – Character mapped to first font element.

• _lc – Character mapped to last font element.

Enums

enum cfb_display_param

Values:

enumerator CFB_DISPLAY_HEIGH = 0

enumerator CFB_DISPLAY_WIDTH

560 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator CFB_DISPLAY_PPT

enumerator CFB_DISPLAY_ROWS

enumerator CFB_DISPLAY_COLS

enum cfb_font_caps

Values:

enumerator CFB_FONT_MONO_VPACKED = BIT(0)

enumerator CFB_FONT_MONO_HPACKED = BIT(1)

enumerator CFB_FONT_MSB_FIRST = BIT(2)

Functions

int cfb_print(const struct device *dev, char *str, uint16_t x, uint16_t y)

Print a string into the framebuffer.

Parameters

• dev – Pointer to device structure for driver instance

• str – String to print

• x – Position in X direction of the beginning of the string

• y – Position in Y direction of the beginning of the string

Returns 0 on success, negative value otherwise

int cfb_framebuffer_clear(const struct device *dev, bool clear_display)

Clear framebuffer.

Parameters

• dev – Pointer to device structure for driver instance

• clear_display – Clear the display as well

Returns 0 on success, negative value otherwise

int cfb_framebuffer_invert(const struct device *dev)

Invert Pixels.

Parameters

• dev – Pointer to device structure for driver instance

Returns 0 on success, negative value otherwise

int cfb_framebuffer_finalize(const struct device *dev)

Finalize framebuffer and write it to display RAM, invert or reorder pixels if necessary.

Parameters

• dev – Pointer to device structure for driver instance

Returns 0 on success, negative value otherwise

7.8. Display Interface 561

Zephyr Project Documentation, Release 2.7.0-rc2

int cfb_get_display_parameter(const struct device *dev, enum cfb_display_param)

Get display parameter.

Parameters

• dev – Pointer to device structure for driver instance

• cfb_display_param – One of the display parameters

Returns Display parameter value

int cfb_framebuffer_set_font(const struct device *dev, uint8_t idx)

Set font.

Parameters

• dev – Pointer to device structure for driver instance

• idx – Font index

Returns 0 on success, negative value otherwise

int cfb_get_font_size(const struct device *dev, uint8_t idx, uint8_t *width, uint8_t *height)

Get font size.

Parameters

• dev – Pointer to device structure for driver instance

• idx – Font index

• width – Pointers to the variable where the font width will be stored.

• height – Pointers to the variable where the font height will be stored.

Returns 0 on success, negative value otherwise

int cfb_get_numof_fonts(const struct device *dev)

Get number of fonts.

Parameters

• dev – Pointer to device structure for driver instance

Returns number of fonts

int cfb_framebuffer_init(const struct device *dev)

Initialize Character Framebuffer.

Parameters

• dev – Pointer to device structure for driver instance

Returns 0 on success, negative value otherwise

struct cfb_font

#include <cfb.h>

7.9 Error Detection And Correction (EDAC) API

7.9.1 API Reference

group edac

562 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Enums

enum edac_error_type

EDAC error type.

Values:

enumerator EDAC_ERROR_TYPE_DRAM_COR = BIT(0)

Correctable error type

enumerator EDAC_ERROR_TYPE_DRAM_UC = BIT(1)

Uncorrectable error type

Functions

static inline int edac_inject_set_param1(const struct device *dev, uint64_t value)

Set injection parameter param1.

Set first error injection parameter value.

Parameters

• dev – Pointer to the device structure

• value – First injection parameter

Return values

• -ENOSYS – if the optional interface is not implemented

• 0 – on success, other error code otherwise

static inline int edac_inject_get_param1(const struct device *dev, uint64_t *value)

Get injection parameter param1.

Get first error injection parameter value.

Parameters

• dev – Pointer to the device structure

• value – Pointer to the first injection parameter

Return values

• -ENOSYS – if the optional interface is not implemented

• 0 – on success, error code otherwise

static inline int edac_inject_set_param2(const struct device *dev, uint64_t value)

Set injection parameter param2.

Set second error injection parameter value.

Parameters

• dev – Pointer to the device structure

• value – Second injection parameter

Return values

• -ENOSYS – if the optional interface is not implemented

• 0 – on success, error code otherwise

7.9. Error Detection And Correction (EDAC) API 563

Zephyr Project Documentation, Release 2.7.0-rc2

static inline int edac_inject_get_param2(const struct device *dev, uint64_t *value)

Get injection parameter param2.

Parameters

• dev – Pointer to the device structure

• value – Pointer to the second injection parameter

Return values

• -ENOSYS – if the optional interface is not implemented

• 0 – on success, error code otherwise

static inline int edac_inject_set_error_type(const struct device *dev, uint32_t error_type)

Set error type value.

Set the value of error type to be injected

Parameters

• dev – Pointer to the device structure

• error_type – Error type value

Return values

• -ENOSYS – if the optional interface is not implemented

• 0 – on success, error code otherwise

static inline int edac_inject_get_error_type(const struct device *dev, uint32_t *error_type)

Get error type value.

Get the value of error type to be injected

Parameters

• dev – Pointer to the device structure

• error_type – Pointer to error type value

Return values

• -ENOSYS – if the optional interface is not implemented

• 0 – on success, error code otherwise

static inline int edac_inject_error_trigger(const struct device *dev)

Set injection control.

Trigger error injection.

Parameters

• dev – Pointer to the device structure

Return values

• -ENOSYS – if the optional interface is not implemented

• 0 – on success, error code otherwise

static inline int edac_ecc_error_log_get(const struct device *dev, uint64_t *value)

Get ECC Error Log.

Read value of ECC Error Log.

Parameters

• dev – Pointer to the device structure

• value – Pointer to the ECC Error Log value

564 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Return values

• 0 – on success, error code otherwise

• -ENOSYS – if the mandatory interface is not implemented

static inline int edac_ecc_error_log_clear(const struct device *dev)

Clear ECC Error Log.

Clear value of ECC Error Log.

Parameters

• dev – Pointer to the device structure

Return values

• 0 – on success, error code otherwise

• -ENOSYS – if the mandatory interface is not implemented

static inline int edac_parity_error_log_get(const struct device *dev, uint64_t *value)

Get Parity Error Log.

Read value of Parity Error Log.

Parameters

• dev – Pointer to the device structure

• value – Pointer to the parity Error Log value

Return values

• 0 – on success, error code otherwise

• -ENOSYS – if the mandatory interface is not implemented

static inline int edac_parity_error_log_clear(const struct device *dev)

Clear Parity Error Log.

Clear value of Parity Error Log.

Parameters

• dev – Pointer to the device structure

Return values

• 0 – on success, error code otherwise

• -ENOSYS – if the mandatory interface is not implemented

static inline int edac_errors_cor_get(const struct device *dev)

Get number of correctable errors.

Parameters

• dev – Pointer to the device structure

Return values

• num – Number of correctable errors

• -ENOSYS – if the mandatory interface is not implemented

static inline int edac_errors_uc_get(const struct device *dev)

Get number of uncorrectable errors.

Parameters

• dev – Pointer to the device structure

Return values

7.9. Error Detection And Correction (EDAC) API 565

Zephyr Project Documentation, Release 2.7.0-rc2

• num – Number of uncorrectable errors

• -ENOSYS – if the mandatory interface is not implemented

static inline int edac_notify_callback_set(const struct device *dev, edac_notify_callback_f cb)

Register callback function for memory error exception

This callback runs in interrupt context

Parameters

• dev – EDAC driver device to install callback

• cb – Callback function pointer

Return values

• 0 – on success, error code otherwise

• -ENOSYS – if the mandatory interface is not implemented

struct edac_driver_api

#include <edac.h> EDAC driver API.

This is the mandatory API any EDAC driver needs to expose.

7.10 File Systems

Zephyr RTOS Virtual Filesystem Switch (VFS) allows applications to mount multiple file systems at dif-
ferent mount points (e.g., /fatfs and /lfs). The mount point data structure contains all the necessary
information required to instantiate, mount, and operate on a file system. The File system Switch decou-
ples the applications from directly accessing an individual file system’s specific API or internal functions
by introducing file system registration mechanisms.

In Zephyr, any file system implementation or library can be plugged into or pulled out through a file
system registration API. Each file system implementation must have a globally unique integer identifier;
use FS_TYPE_EXTERNAL_BASE to avoid clashes with in-tree identifiers.

int fs_register(int type, const struct fs_file_system_t *fs);

int fs_unregister(int type, const struct fs_file_system_t *fs);

Zephyr RTOS supports multiple instances of a file system by making use of the mount point as the disk
volume name, which is used by the file system library while formatting or mounting a disk.

A file system is declared as:

static struct fs_mount_t mp = {
.type = FS_FATFS,
.mnt_point = FATFS_MNTP,
.fs_data = &fat_fs,
};

where

• FS_FATFS is the file system type like FATFS or LittleFS.

• FATFS_MNTP is the mount point where the file system will be mounted.

• fat_fs is the file system data which will be used by fs_mount() API.

566 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

7.10.1 Samples

Samples for the VFS are mainly supplied in samples/subsys/fs, although various examples of the VFS
usage are provided as important functionalities in samples for different subsystems. Here is the list of
samples worth looking at:

• samples/subsys/fs/fat_fs is an example of FAT file system usage with SDHC media;

• samples/subsys/shell/fs is an example of Shell fs subsystem, using internal flash partition
formatted to LittleFS;

• samples/subsys/usb/mass/ example of USB Mass Storage device that uses FAT FS driver with RAM
or SPI connected FLASH, or LittleFS in flash, depending on the sample configuration.

7.10.2 API Reference

group file_system_api

File System APIs.

fs_open open and creation mode flags

FS_O_READ

Open for read flag

FS_O_WRITE

Open for write flag

FS_O_RDWR

Open for read-write flag combination

FS_O_MODE_MASK

Bitmask for read and write flags

FS_O_CREATE

Create file if it does not exist

FS_O_APPEND

Open/create file for append

FS_O_FLAGS_MASK

Bitmask for open/create flags

FS_O_MASK

Bitmask for open flags

fs_seek whence parameter values

FS_SEEK_SET

Seek from the beginning of file

7.10. File Systems 567

Zephyr Project Documentation, Release 2.7.0-rc2

FS_SEEK_CUR

Seek from a current position

FS_SEEK_END

Seek from the end of file

Defines

FS_MOUNT_FLAG_NO_FORMAT

Flag prevents formatting device if requested file system not found

FS_MOUNT_FLAG_READ_ONLY

Flag makes mounted file system read-only

FS_MOUNT_FLAG_AUTOMOUNT

Flag used in pre-defined mount structures that are to be mounted on startup.

This flag has no impact in user-defined mount structures.

FSTAB_ENTRY_DT_MOUNT_FLAGS(node_id)

FS_FSTAB_ENTRY(node_id)

The name under which a zephyr,fstab entry mount structure is defined.

FS_FSTAB_DECLARE_ENTRY(node_id)

Generate a declaration for the externally defined fstab entry.

This will evaluate to the name of a struct fs_mount_t object.

Enums

enum fs_dir_entry_type

Values:

enumerator FS_DIR_ENTRY_FILE = 0

Identifier for file entry

enumerator FS_DIR_ENTRY_DIR

Identifier for directory entry

enum [anonymous]

Enumeration to uniquely identify file system types.

Zephyr supports in-tree file systems and external ones. Each requires a unique identifier used
to register the file system implementation and to associate a mount point with the file system
type. This anonymous enum defines global identifiers for the in-tree file systems.

External file systems should be registered using unique identifiers starting at
FS_TYPE_EXTERNAL_BASE. It is the responsibility of applications that use external file
systems to ensure that these identifiers are unique if multiple file system implementations are
used by the application.

Values:

568 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator FS_FATFS = 0

Identifier for in-tree FatFS file system.

enumerator FS_LITTLEFS

Identifier for in-tree LittleFS file system.

enumerator FS_TYPE_EXTERNAL_BASE

Base identifier for external file systems.

Functions

static inline void fs_file_t_init(struct fs_file_t *zfp)

Initialize fs_file_t object.

Initializes the fs_file_t object; the function needs to be invoked on object before first use with
fs_open.

Parameters

• zfp – Pointer to file object

static inline void fs_dir_t_init(struct fs_dir_t *zdp)

Initialize fs_dir_t object.

Initializes the fs_dir_t object; the function needs to be invoked on object before first use with
fs_opendir.

Parameters

• zdp – Pointer to file object

int fs_open(struct fs_file_t *zfp, const char *file_name, fs_mode_t flags)

Open or create file.

Opens or possibly creates a file and associates a stream with it.

flags can be 0 or a binary combination of one or more of the following identifiers:

• FS_O_READ open for read

• FS_O_WRITE open for write

• FS_O_RDWR open for read/write (FS_O_READ | FS_O_WRITE)

• FS_O_CREATE create file if it does not exist

• FS_O_APPEND move to end of file before each write

If flags are set to 0 the function will attempt to open an existing file with no read/write
access; this may be used to e.g. check if the file exists.

Parameters

• zfp – Pointer to a file object

• file_name – The name of a file to open

• flags – The mode flags

Return values

• 0 – on success;

• -EINVAL – when a bad file name is given;

7.10. File Systems 569

Zephyr Project Documentation, Release 2.7.0-rc2

• -EROFS – when opening read-only file for write, or attempting to create a file
on a system that has been mounted with the FS_MOUNT_FLAG_READ_ONLY
flag;

• -ENOENT – when the file path is not possible (bad mount point);

• <0 – an other negative errno code, depending on a file system back-end.

int fs_close(struct fs_file_t *zfp)

Close file.

Flushes the associated stream and closes the file.

Parameters

• zfp – Pointer to the file object

Return values

• 0 – on success;

• <0 – a negative errno code on error.

int fs_unlink(const char *path)

Unlink file.

Deletes the specified file or directory

Parameters

• path – Path to the file or directory to delete

Return values

• 0 – on success;

• -EROFS – if file is read-only, or when file system has been mounted with the
FS_MOUNT_FLAG_READ_ONLY flag;

• -ENOTSUP – when not implemented by underlying file system driver;

• <0 – an other negative errno code on error.

int fs_rename(const char *from, const char *to)

Rename file or directory.

Performs a rename and / or move of the specified source path to the specified destination.
The source path can refer to either a file or a directory. All intermediate directories in the
destination path must already exist. If the source path refers to a file, the destination path
must contain a full filename path, rather than just the new parent directory. If an object
already exists at the specified destination path, this function causes it to be unlinked prior to
the rename (i.e., the destination gets clobbered).

Note: Current implementation does not allow moving files between mount points.

Parameters

• from – The source path

• to – The destination path

Return values

• 0 – on success;

• -ENOTSUP – when not implemented by underlying file system driver;

• <0 – an other negative errno code on error.

570 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

ssize_t fs_read(struct fs_file_t *zfp, void *ptr, size_t size)

Read file.

Reads up to size bytes of data to ptr pointed buffer, returns number of bytes read. A returned
value may be lower than size if there were fewer bytes available than requested.

Parameters

• zfp – Pointer to the file object

• ptr – Pointer to the data buffer

• size – Number of bytes to be read

Return values

• >=0 – a number of bytes read, on success;

• <0 – a negative errno code on error.

ssize_t fs_write(struct fs_file_t *zfp, const void *ptr, size_t size)

Write file.

Attempts to write size number of bytes to the specified file. If a negative value is returned
from the function, the file pointer has not been advanced. If the function returns a non-
negative number that is lower than size, the global errno variable should be checked for an
error code, as the device may have no free space for data.

Parameters

• zfp – Pointer to the file object

• ptr – Pointer to the data buffer

• size – Number of bytes to be written

Return values

• >=0 – a number of bytes written, on success;

• -ENOTSUP – when not implemented by underlying file system driver;

• <0 – an other negative errno code on error.

int fs_seek(struct fs_file_t *zfp, off_t offset, int whence)

Seek file.

Moves the file position to a new location in the file. The offset is added to file position based
on the whence parameter.

Parameters

• zfp – Pointer to the file object

• offset – Relative location to move the file pointer to

• whence – Relative location from where offset is to be calculated.

– FS_SEEK_SET for the beginning of the file;

– FS_SEEK_CUR for the current position;

– FS_SEEK_END for the end of the file.

Return values

• 0 – on success;

• -ENOTSUP – if not supported by underlying file system driver;

• <0 – an other negative errno code on error.

7.10. File Systems 571

Zephyr Project Documentation, Release 2.7.0-rc2

off_t fs_tell(struct fs_file_t *zfp)

Get current file position.

Retrieves and returns the current position in the file stream.

The current revision does not validate the file object.

Parameters

• zfp – Pointer to the file object

Return values

• >= – 0 a current position in file;

• -ENOTSUP – if not supported by underlying file system driver;

• <0 – an other negative errno code on error.

int fs_truncate(struct fs_file_t *zfp, off_t length)

Truncate or extend an open file to a given size.

Truncates the file to the new length if it is shorter than the current size of the file. Expands the
file if the new length is greater than the current size of the file. The expanded region would
be filled with zeroes.

Note: In the case of expansion, if the volume got full during the expansion process, the
function will expand to the maximum possible length and return success. Caller should check
if the expanded size matches the requested length.

Parameters

• zfp – Pointer to the file object

• length – New size of the file in bytes

Return values

• 0 – on success;

• -ENOTSUP – when not implemented by underlying file system driver;

• <0 – an other negative errno code on error.

int fs_sync(struct fs_file_t *zfp)

Flush cached write data buffers of an open file.

The function flushes the cache of an open file; it can be invoked to ensure data gets writ-
ten to the storage media immediately, e.g. to avoid data loss in case if power is removed
unexpectedly.

Note: Closing a file will cause caches to be flushed correctly so the function need not be
called when the file is being closed.

Parameters

• zfp – Pointer to the file object

Return values

• 0 – on success;

• <0 – a negative errno code on error.

572 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

int fs_mkdir(const char *path)

Directory create.

Creates a new directory using specified path.

Parameters

• path – Path to the directory to create

Return values

• 0 – on success;

• -ENOTSUP – when not implemented by underlying file system driver;

• <0 – an other negative errno code on error

int fs_opendir(struct fs_dir_t *zdp, const char *path)

Directory open.

Opens an existing directory specified by the path.

Parameters

• zdp – Pointer to the directory object

• path – Path to the directory to open

Return values

• 0 – on success;

• <0 – a negative errno code on error.

int fs_readdir(struct fs_dir_t *zdp, struct fs_dirent *entry)

Directory read entry.

Reads directory entries of an open directory. In end-of-dir condition, the function will return
0 and set the entry->name[0] to 0.

Note: : Most existing underlying file systems do not generate POSIX special directory entries
“.” or “..”. For consistency the abstraction layer will remove these from lower layer results so
higher layers see consistent results.

Parameters

• zdp – Pointer to the directory object

• entry – Pointer to zfs_dirent structure to read the entry into

Return values

• 0 – on success or end-of-dir;;

• <0 – a negative errno code on error.

int fs_closedir(struct fs_dir_t *zdp)

Directory close.

Closes an open directory.

Parameters

• zdp – Pointer to the directory object

Return values

• 0 – on success;

• <0 – a negative errno code on error.

7.10. File Systems 573

Zephyr Project Documentation, Release 2.7.0-rc2

int fs_mount(struct fs_mount_t *mp)

Mount filesystem.

Perform steps needed for mounting a file system like calling the file system specific mount
function and adding the mount point to mounted file system list.

Note: Current implementation of ELM FAT driver allows only following mount points:
“/RAM:”,”/NAND:”,”/CF:”,”/SD:”,”/SD2:”,”/USB:”,”/USB2:”,”/USB3:” or mount points that
consist of single digit, e.g: “/0:”, “/1:” and so forth.

Parameters

• mp – Pointer to the fs_mount_t structure. Referenced object is not changed if the
mount operation failed. A reference is captured in the fs infrastructure if the
mount operation succeeds, and the application must not mutate the structure
contents until fs_unmount is successfully invoked on the same pointer.

Return values

• 0 – on success;

• -ENOENT – when file system type has not been registered;

• -ENOTSUP – when not supported by underlying file system driver;

• -EROFS – if system requires formatting but FS_MOUNT_FLAG_READ_ONLY has
been set;

• <0 – an other negative errno code on error.

int fs_unmount(struct fs_mount_t *mp)

Unmount filesystem.

Perform steps needed to unmount a file system like calling the file system specific unmount
function and removing the mount point from mounted file system list.

Parameters

• mp – Pointer to the fs_mount_t structure

Return values

• 0 – on success;

• -EINVAL – if no system has been mounted at given mount point;

• -ENOTSUP – when not supported by underlying file system driver;

• <0 – an other negative errno code on error.

int fs_readmount(int *index, const char **name)

Get path of mount point at index.

This function iterates through the list of mount points and returns the directory name of the
mount point at the given index. On success index is incremented and name is set to the mount
directory name. If a mount point with the given index does not exist, name will be set to NULL.

Parameters

• index – Pointer to mount point index

• name – Pointer to pointer to path name

Return values

• 0 – on success;

• -ENOENT – if there is no mount point with given index.

574 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

int fs_stat(const char *path, struct fs_dirent *entry)

File or directory status.

Checks the status of a file or directory specified by the path.

Note: The file on a storage device may not be updated until it is closed.

Parameters

• path – Path to the file or directory

• entry – Pointer to the zfs_dirent structure to fill if the file or directory exists.

Return values

• 0 – on success;

• <0 – negative errno code on error.

int fs_statvfs(const char *path, struct fs_statvfs *stat)

Retrieves statistics of the file system volume.

Returns the total and available space in the file system volume.

Parameters

• path – Path to the mounted directory

• stat – Pointer to the zfs_statvfs structure to receive the fs statistics

Return values

• 0 – on success;

• -ENOTSUP – when not implemented by underlying file system driver;

• <0 – an other negative errno code on error.

int fs_register(int type, const struct fs_file_system_t *fs)

Register a file system.

Register file system with virtual file system.

Parameters

• type – Type of file system (ex: FS_FATFS)

• fs – Pointer to File system

Return values

• 0 – on success;

• <0 – negative errno code on error.

int fs_unregister(int type, const struct fs_file_system_t *fs)

Unregister a file system.

Unregister file system from virtual file system.

Parameters

• type – Type of file system (ex: FS_FATFS)

• fs – Pointer to File system

Return values

• 0 – on success;

• <0 – negative errno code on error.

7.10. File Systems 575

Zephyr Project Documentation, Release 2.7.0-rc2

struct fs_mount_t

#include <fs.h> File system mount info structure.

Param node Entry for the fs_mount_list list

Param type File system type

Param mnt_point Mount point directory name (ex: “/fatfs”)

Param fs_data Pointer to file system specific data

Param storage_dev Pointer to backend storage device

Param mountp_len Length of Mount point string

Param fs Pointer to File system interface of the mount point

Param flags Mount flags

struct fs_dirent

#include <fs.h> Structure to receive file or directory information.

Used in functions that reads the directory entries to get file or directory information.

Param dir_entry_type Whether file or directory

• FS_DIR_ENTRY_FILE

• FS_DIR_ENTRY_DIR

Param name Name of directory or file

Param size Size of file. 0 if directory

struct fs_statvfs

#include <fs.h> Structure to receive volume statistics.

Used to retrieve information about total and available space in the volume.

Param f_bsize Optimal transfer block size

Param f_frsize Allocation unit size

Param f_blocks Size of FS in f_frsize units

Param f_bfree Number of free blocks

struct fs_file_t

#include <fs_interface.h> File object representing an open file.

The object needs to be initialized with function fs_file_t_init().

Param Pointer to FATFS file object structure

Param mp Pointer to mount point structure

struct fs_dir_t

#include <fs_interface.h> Directory object representing an open directory.

The object needs to be initialized with function fs_dir_t_init().

Param dirp Pointer to directory object structure

Param mp Pointer to mount point structure

576 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

struct fs_file_system_t

#include <fs_sys.h> File System interface structure.

Param open Opens or creates a file, depending on flags given

Param read Reads nbytes number of bytes

Param write Writes nbytes number of bytes

Param lseek Moves the file position to a new location in the file

Param tell Retrieves the current position in the file

Param truncate Truncates/expands the file to the new length

Param sync Flushes the cache of an open file

Param close Flushes the associated stream and closes the file

Param opendir Opens an existing directory specified by the path

Param readdir Reads directory entries of an open directory

Param closedir Closes an open directory

Param mount Mounts a file system

Param unmount Unmounts a file system

Param unlink Deletes the specified file or directory

Param rename Renames a file or directory

Param mkdir Creates a new directory using specified path

Param stat Checks the status of a file or directory specified by the path

Param statvfs Returns the total and available space on the file system volume

7.11 Iterable Sections

This page contains the reference documentation for the iterable sections APIs, which can be
used for defining iterable areas of equally-sized data structures, that can be iterated on using
STRUCT_SECTION_FOREACH() .

7.11.1 Usage

Iterable section elements are typically used by defining the data structure and associated initializer in a
common header file, so that they can be instantiated anywhere in the code base.

struct my_data {
int a, b;

};

define DEFINE_DATA(name, _a, _b) \
STRUCT_SECTION_ITERABLE(my_data, name) = { \

.a = _a, \

.b = _b, \
}

...

DEFINE_DATA(d1, 1, 2);
(continues on next page)

7.11. Iterable Sections 577

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

DEFINE_DATA(d2, 3, 4);
DEFINE_DATA(d3, 5, 6);

Then the linker has to be setup to place the place the structure in a contiguous segment using one
of the linker macros such as ITERABLE_SECTION_RAM() or ITERABLE_SECTION_ROM() . Custom linker
snippets are normally declared using one of the zephyr_linker_sources() CMake functions, using the
appropriate section identifier, DATA_SECTIONS for RAM structures and SECTIONS for ROM ones.

CMakeLists.txt
zephyr_linker_sources(DATA_SECTIONS iterables.ld)

iterables.ld
ITERABLE_SECTION_RAM(my_data, 4)

The data can then be accessed using STRUCT_SECTION_FOREACH() .

STRUCT_SECTION_FOREACH(my_data, data) {
printk("%p: a: %d, b: %d\n", data, data->a, data->b);

}

Note: The linker is going to place the entries sorted by name, so the example above would visit d1, d2
and d3 in that order, regardless of how they were defined in the code.

7.11.2 API Reference

group iterable_section_apis

Iterable Sections APIs.

Defines

ITERABLE_SECTION_ROM(struct_type, subalign)

Define a read-only iterable section output.

Define an output section which will set up an iterable area of equally-sized data structures.
For use with STRUCT_SECTION_ITERABLE(). Input sections will be sorted by name, per ld’s
SORT_BY_NAME.

This macro should be used for read-only data.

Note that this keeps the symbols in the image even though they are not being directly refer-
enced. Use this when symbols are indirectly referenced by iterating through the section.

ITERABLE_SECTION_ROM_GC_ALLOWED(struct_type, subalign)

Define a garbage collectable read-only iterable section output.

Define an output section which will set up an iterable area of equally-sized data structures.
For use with STRUCT_SECTION_ITERABLE(). Input sections will be sorted by name, per ld’s
SORT_BY_NAME.

This macro should be used for read-only data.

Note that the symbols within the section can be garbage collected.

578 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

ITERABLE_SECTION_RAM(struct_type, subalign)

Define a read-write iterable section output.

Define an output section which will set up an iterable area of equally-sized data structures.
For use with STRUCT_SECTION_ITERABLE(). Input sections will be sorted by name, per ld’s
SORT_BY_NAME.

This macro should be used for read-write data that is modified at runtime.

Note that this keeps the symbols in the image even though they are not being directly refer-
enced. Use this when symbols are indirectly referenced by iterating through the section.

ITERABLE_SECTION_RAM_GC_ALLOWED(struct_type, subalign)

Define a garbage collectable read-write iterable section output.

Define an output section which will set up an iterable area of equally-sized data structures.
For use with STRUCT_SECTION_ITERABLE(). Input sections will be sorted by name, per ld’s
SORT_BY_NAME.

This macro should be used for read-write data that is modified at runtime.

Note that the symbols within the section can be garbage collected.

STRUCT_SECTION_ITERABLE(struct_type, name)

Defines a new iterable section.

Convenience helper combining __in_section() and Z_DECL_ALIGN(). The section name is the
struct type prepended with an underscore. The subsection is “static” and the subsubsection is
the variable name.

In the linker script, create output sections for these using ITERABLE_SECTION_ROM() or IT-
ERABLE_SECTION_RAM().

STRUCT_SECTION_ITERABLE_ALTERNATE(out_type, struct_type, name)

Defines an alternate data type iterable section.

Special variant of STRUCT_SECTION_ITERABLE(), for placing alternate data types within the
iterable section of a specific data type. The data type sizes and semantics must be equivalent!

STRUCT_SECTION_FOREACH(struct_type, iterator)

Iterate over a specified iterable section.

Iterator for structure instances gathered by STRUCT_SECTION_ITERABLE(). The linker must
provide a _<struct_type>_list_start symbol and a _<struct_type>_list_end symbol to mark
the start and the end of the list of struct objects to iterate over. This is normally done using
ITERABLE_SECTION_ROM() or ITERABLE_SECTION_RAM() in the linker script.

7.12 Formatted Output

Applications as well as Zephyr itself requires infrastructure to format values for user consumption. The
standard C99 library *printf() functionality fulfills this need for streaming output devices or memory
buffers, but in an embedded system devices may not accept streamed data and memory may not be
available to store the formatted output.

Internal Zephyr API traditionally provided this both for printk() and for Zephyr’s internal minimal libc,
but with separate internal interfaces. Logging, tracing, shell, and other applications made use of either
these APIs or standard libc routines based on build options.

The cbprintf() public APIs convert C99 format strings and arguments, providing output produced one
character at a time through a callback mechanism, replacing the original internal functions and providing
support for almost all C99 format specifications. Existing use of s*printf() C libraries in Zephyr can be
converted to snprintfcb() to avoid pulling in libc implementations.

7.12. Formatted Output 579

Zephyr Project Documentation, Release 2.7.0-rc2

Several Kconfig options control the set of features that are enabled, allowing some control over features
and memory usage:

• :kconfig:`CONFIG_CBPRINTF_FULL_INTEGRAL` or :kconfig:`CONFIG_CBPRINTF_REDUCED_INTEGRAL`

• :kconfig:`CONFIG_CBPRINTF_FP_SUPPORT`

• :kconfig:`CONFIG_CBPRINTF_FP_A_SUPPORT`

• :kconfig:`CONFIG_CBPRINTF_FP_ALWAYS_A`

• :kconfig:`CONFIG_CBPRINTF_N_SPECIFIER`

:kconfig:`CONFIG_CBPRINTF_LIBC_SUBSTS` can be used to provide functions that behave like stan-
dard libc functions but use the selected cbprintf formatter rather than pulling in another formatter from
libc.

In addition :kconfig:`CONFIG_CBPRINTF_NANO` can be used to revert back to the very space-
optimized but limited formatter used for printk() before this capability was added.

7.12.1 Cbprintf Packaging

Typically, strings are formatted synchronously when a function from printf family is called. However,
there are cases when it is beneficial that formatting is deferred. In that case, a state (format string
and arguments) must be captured. Such state forms a self-contained package which contains format
string and arguments. Additionally, package contains copies of all strings which are part of a format
string (format string or any %s argument) and are identifed as the one located in the read write memory.
Package primary content resembles va_list stack frame thus standard formatting functions are used to
process a package. Since package contains data which is processed as va_list frame, strict alignment must
be maintained. Due to required padding, size of the package depends on alignment. When package is
copied, it should be copied to a memory block with the same alignment as origin.

Package can be created using two methods:

• runtime - using cbprintf_package() or cbvprintf_package() . This method scans format string
and based on detected format specifiers builds the package.

• static - types of arguments are detected at compile time by the preprocessor and package is created
as simple assignments to a provided memory. This method is significantly faster than runtime
(more than 15 times) but has following limitations: requires _Generic keyword (C11 feature)
to be supported by the compiler and can only create a package that is known to have no string
arguments (%s). CBPRINTF_MUST_RUNTIME_PACKAGE can be used to determine at compile time if
static packaging can be applied. Macro determines need for runtime packaging based on presence
of char pointers in the argument list so there are cases when it will be false positive, e.g. %p with
char pointer.

Several Kconfig options control behavior of the packaging:

• :kconfig:`CONFIG_CBPRINTF_PACKAGE_LONGDOUBLE`

• :kconfig:`CONFIG_CBPRINTF_STATIC_PACKAGE_CHECK_ALIGNMENT`

Cbprintf package format

Format of the package contains paddings which are platform specific. Package consists of header which
contains size of package (excluding appended strings) and number of appended strings. It is followed by
the arguments which contains alignment paddings and resembles va_list stack frame. Finally, package
optionally contains appended strings. Each string contains 1 byte header which contains index of the
location where address argument is stored. During packaging address is set to null and before string
formatting it is updated to point to the current string location within the package. Updating address
argument must happen just before string formatting since address changes whenever package is copied.

580 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Header

sizeof(void *)

1 byte: Argument list size including header and
fmt (in 32 bit words)
1 byte: Number of appended strings
platform specific padding to sizeof(void *)

Arguments Pointer to fmt (or null if fmt is appended to the
package)
(optional padding for platform specific align-
ment)
argument 0
(optional padding for platform specific align-
ment)
argument 1
. . .

Appended
strings

1 byte: Index within the package to the location
of associated argument
Null terminated string
. . .

Warning: If :kconfig:`CONFIG_MINIMAL_LIBC` is selected in combination with :kcon-
fig:`CONFIG_CBPRINTF_NANO` formatting with C standard library functions like printf or
snprintf is limited. Among other things the %n specifier, most format flags, precision control, and
floating point are not supported.

7.12.2 API Reference

group cbprintf_apis

Defines

CBPRINTF_PACKAGE_ALIGNMENT

Required alignment of the buffer used for packaging.

CBPRINTF_MUST_RUNTIME_PACKAGE(skip, ...)

Determine if string must be packaged in run time.

Static packaging can be applied if size of the package can be determined at compile time.
In general, package size can be determined at compile time if there are no string arguments
which might be copied into package body if they are considered transient.

Parameters

• skip – number of read only string arguments in the parameter list. It shall be
non-zero if there are known read only string arguments present in the string
(e.g. function name prefix in the log message).

• ... – String with arguments.

Return values

• 1 – if string must be packaged in run time.

• 0 – string can be statically packaged.

7.12. Formatted Output 581

Zephyr Project Documentation, Release 2.7.0-rc2

CBPRINTF_STATIC_PACKAGE(packaged, inlen, outlen, align_offset, flags, ...)

Statically package string.

Build string package from formatted string. It assumes that formatted string is in the read
only memory.

If _Generic is not supported then runtime packaging is performed.

Parameters

• packaged – pointer to where the packaged data can be stored. Pass a null
pointer to skip packaging but still calculate the total space required. The data
stored here is relocatable, that is it can be moved to another contiguous block
of memory. It must be aligned to the size of the longest argument. It is recom-
mended to use CBPRINTF_PACKAGE_ALIGNMENT for alignment.

• inlen – set to the number of bytes available at packaged. If packaged is NULL
the value is ignored.

• outlen – variable updated to the number of bytes required to completely store
the packed information. If input buffer was too small it is set to -ENOSPC.

• align_offset – input buffer alignment offset in bytes. Where offset 0 means
that buffer is aligned to CBPRINTF_PACKAGE_ALIGNMENT. Xtensa requires
that packaged is aligned to CBPRINTF_PACKAGE_ALIGNMENT so it must be
multiply of CBPRINTF_PACKAGE_ALIGNMENT or 0.

• flags – option flags. See Package flags..

• ... – formatted string with arguments. Format string must be constant.

Typedefs

typedef int (*cbprintf_cb)()

Signature for a cbprintf callback function.

This function expects two parameters:

• c a character to output. The output behavior should be as if this was cast to an unsigned
char.

• ctx a pointer to an object that provides context for the output operation.

The declaration does not specify the parameter types. This allows a function like fputc to be
used without requiring all context pointers to be to a FILE object.

Return the value of c cast to an unsigned char then back to int, or a negative error
code that will be returned from cbprintf().

Functions

int cbprintf_package(void *packaged, size_t len, uint32_t flags, const char *format, ...)

Capture state required to output formatted data later.

Like cbprintf() but instead of processing the arguments and emitting the formatted results
immediately all arguments are captured so this can be done in a different context, e.g. when
the output function can block.

In addition to the values extracted from arguments this will ensure that copies are made of the
necessary portions of any string parameters that are not confirmed to be stored in read-only
memory (hence assumed to be safe to refer to directly later).

582 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• packaged – pointer to where the packaged data can be stored. Pass a null
pointer to store nothing but still calculate the total space required. The data
stored here is relocatable, that is it can be moved to another contiguous block
of memory. However, under condition that alignment is maintained. It must be
aligned to at least the size of a pointer.

• len – this must be set to the number of bytes available at packaged if it is not
null. If packaged is null then it indicates hypothetical buffer alignment offset
in bytes compared to CBPRINTF_PACKAGE_ALIGNMENT alignment. Buffer
alignment offset impacts returned size of the package. Xtensa requires that
buffer is always aligned to CBPRINTF_PACKAGE_ALIGNMENT so it must be
multiply of CBPRINTF_PACKAGE_ALIGNMENT or 0 when packaged is null.

• flags – option flags. See Package flags..

• format – a standard ISO C format string with characters and conversion speci-
fications.

• ... – arguments corresponding to the conversion specifications found within
format.

Return values

• nonegative – the number of bytes successfully stored at packaged. This will
not exceed len.

• -EINVAL – if format is not acceptable

• -EFAULT – if packaged alignment is not acceptable

• -ENOSPC – if packaged was not null and the space required to store exceed len.

int cbvprintf_package(void *packaged, size_t len, uint32_t flags, const char *format, va_list ap)

Capture state required to output formatted data later.

Like cbprintf() but instead of processing the arguments and emitting the formatted results
immediately all arguments are captured so this can be done in a different context, e.g. when
the output function can block.

In addition to the values extracted from arguments this will ensure that copies are made of the
necessary portions of any string parameters that are not confirmed to be stored in read-only
memory (hence assumed to be safe to refer to directly later).

Parameters

• packaged – pointer to where the packaged data can be stored. Pass a null
pointer to store nothing but still calculate the total space required. The data
stored here is relocatable, that is it can be moved to another contiguous block
of memory. The pointer must be aligned to a multiple of the largest element in
the argument list.

• len – this must be set to the number of bytes available at packaged. Ignored if
packaged is NULL.

• flags – option flags. See Package flags..

• format – a standard ISO C format string with characters and conversion speci-
fications.

• ap – captured stack arguments corresponding to the conversion specifications
found within format.

Return values

• nonegative – the number of bytes successfully stored at packaged. This will
not exceed len.

7.12. Formatted Output 583

Zephyr Project Documentation, Release 2.7.0-rc2

• -EINVAL – if format is not acceptable

• -ENOSPC – if packaged was not null and the space required to store exceed len.

int cbprintf_fsc_package(void *in_packaged, size_t in_len, void *packaged, size_t len)

Convert package to fully self-contained (fsc) package.

By default, package does not contain read only strings. However, if needed it may be con-
verted to a fully self-contained package which contains all strings. In order to allow such
conversion, original package must be created with CBPRINTF_PACKAGE_ADD_STRING_IDXS
flag. Such package will contain necessary data to find read only strings in the package and
copy them into package body.

Parameters

• in_packaged – pointer to original package created with
CBPRINTF_PACKAGE_ADD_STRING_IDXS.

• in_len – in_packaged length.

• packaged – pointer to location where fully self-contained version of the input
package will be written. Pass a null pointer to calculate space required.

• len – must be set to the number of bytes available at packaged. Not used if
packaged is null.

Return values

• nonegative – the number of bytes successfully stored at packaged. This will
not exceed len. If packaged is null, calculated length.

• -ENOSPC – if packaged was not null and the space required to store exceed len.

• -EINVAL – if in_packaged is null.

int cbpprintf(cbprintf_cb out, void *ctx, void *packaged)

Generate the output for a previously captured format operation.

Note: Memory indicated by packaged will be modified in a non-destructive way, meaning
that it could still be reused with this function again.

Parameters

• out – the function used to emit each generated character.

• ctx – context provided when invoking out

• packaged – the data required to generate the formatted output, as captured by
cbprintf_package() or cbvprintf_package(). The alignment requirement on this
data is the same as when it was initially created.

Returns the number of characters printed, or a negative error value returned from
invoking out.

int cbprintf(cbprintf_cb out, void *ctx, const char *format, ...)

*printf-like output through a callback.

This is essentially printf() except the output is generated character-by-character using the
provided out function. This allows formatting text of unbounded length without incurring
the cost of a temporary buffer.

All formatting specifiers of C99 are recognized, and most are supported if the functionality is
enabled.

584 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Note: The functionality of this function is significantly reduced when :kcon-
fig:`CONFIG_CBPRINTF_NANO` is selected.

Parameters

• out – the function used to emit each generated character.

• ctx – context provided when invoking out

• format – a standard ISO C format string with characters and conversion speci-
fications.

• ... – arguments corresponding to the conversion specifications found within
format.

Returns the number of characters printed, or a negative error value returned from
invoking out.

int cbvprintf(cbprintf_cb out, void *ctx, const char *format, va_list ap)

varargs-aware *printf-like output through a callback.

This is essentially vsprintf() except the output is generated character-by-character using the
provided out function. This allows formatting text of unbounded length without incurring
the cost of a temporary buffer.

Note: This function is available only when :kconfig:`CONFIG_CBPRINTF_LIBC_SUBSTS`
is selected.

Note: The functionality of this function is significantly reduced when :kcon-
fig:`CONFIG_CBPRINTF_NANO` is selected.

Parameters

• out – the function used to emit each generated character.

• ctx – context provided when invoking out

• format – a standard ISO C format string with characters and conversion speci-
fications.

• ap – a reference to the values to be converted.

Returns the number of characters generated, or a negative error value returned from
invoking out.

int fprintfcb(FILE *stream, const char *format, ...)

fprintf using Zephyrs cbprintf infrastructure.

return The number of characters printed.

Note: This function is available only when :kconfig:`CONFIG_CBPRINTF_LIBC_SUBSTS`
is selected.

7.12. Formatted Output 585

Zephyr Project Documentation, Release 2.7.0-rc2

Note: The functionality of this function is significantly reduced when :kcon-
fig:`CONFIG_CBPRINTF_NANO` is selected.

Parameters

• stream – the stream to which the output should be written.

• format – a standard ISO C format string with characters and conversion speci-
fications.

• ... – arguments corresponding to the conversion specifications found within
format.

int vfprintfcb(FILE *stream, const char *format, va_list ap)

vfprintf using Zephyrs cbprintf infrastructure.

Note: This function is available only when :kconfig:`CONFIG_CBPRINTF_LIBC_SUBSTS`
is selected.

Note: The functionality of this function is significantly reduced when :kcon-
fig:`CONFIG_CBPRINTF_NANO` is selected.

Parameters

• stream – the stream to which the output should be written.

• format – a standard ISO C format string with characters and conversion speci-
fications.

• ap – a reference to the values to be converted.

Returns The number of characters printed.

int printfcb(const char *format, ...)

printf using Zephyrs cbprintf infrastructure.

Note: This function is available only when :kconfig:`CONFIG_CBPRINTF_LIBC_SUBSTS`
is selected.

Note: The functionality of this function is significantly reduced when :kcon-
fig:`CONFIG_CBPRINTF_NANO` is selected.

Parameters

• format – a standard ISO C format string with characters and conversion speci-
fications.

• ... – arguments corresponding to the conversion specifications found within
format.

Returns The number of characters printed.

586 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

int vprintfcb(const char *format, va_list ap)

vprintf using Zephyrs cbprintf infrastructure.

Note: This function is available only when :kconfig:`CONFIG_CBPRINTF_LIBC_SUBSTS`
is selected.

Note: The functionality of this function is significantly reduced when :kcon-
fig:`CONFIG_CBPRINTF_NANO` is selected.

Parameters

• format – a standard ISO C format string with characters and conversion speci-
fications.

• ap – a reference to the values to be converted.

Returns The number of characters printed.

int snprintfcb(char *str, size_t size, const char *format, ...)

snprintf using Zephyrs cbprintf infrastructure.

Note: This function is available only when :kconfig:`CONFIG_CBPRINTF_LIBC_SUBSTS`
is selected.

Note: The functionality of this function is significantly reduced when :kcon-
fig:`CONFIG_CBPRINTF_NANO` is selected.

Parameters

• str – where the formatted content should be written

• size – maximum number of chaacters for the formatted output, including the
terminating null byte.

• format – a standard ISO C format string with characters and conversion speci-
fications.

• ... – arguments corresponding to the conversion specifications found within
format.

Returns The number of characters that would have been written to str, excluding
the terminating null byte. This is greater than the number actually written if size
is too small.

int vsnprintfcb(char *str, size_t size, const char *format, va_list ap)

vsnprintf using Zephyrs cbprintf infrastructure.

Note: This function is available only when :kconfig:`CONFIG_CBPRINTF_LIBC_SUBSTS`
is selected.

Note: The functionality of this function is significantly reduced when :kcon-
fig:`CONFIG_CBPRINTF_NANO` is selected.

7.12. Formatted Output 587

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• str – where the formatted content should be written

• size – maximum number of chaacters for the formatted output, including the
terminating null byte.

• format – a standard ISO C format string with characters and conversion speci-
fications.

• ap – a reference to the values to be converted.

Returns The number of characters that would have been written to str, excluding
the terminating null byte. This is greater than the number actually written if size
is too small.

7.13 Kernel Services

The Zephyr kernel lies at the heart of every Zephyr application. It provides a low footprint, high per-
formance, multi-threaded execution environment with a rich set of available features. The rest of the
Zephyr ecosystem, including device drivers, networking stack, and application-specific code, uses the
kernel’s features to create a complete application.

The configurable nature of the kernel allows you to incorporate only those features needed by your
application, making it ideal for systems with limited amounts of memory (as little as 2 KB!) or with
simple multi-threading requirements (such as a set of interrupt handlers and a single background task).
Examples of such systems include: embedded sensor hubs, environmental sensors, simple LED wearable,
and store inventory tags.

Applications requiring more memory (50 to 900 KB), multiple communication devices (like Wi-Fi and
Bluetooth Low Energy), and complex multi-threading, can also be developed using the Zephyr kernel.
Examples of such systems include: fitness wearables, smart watches, and IoT wireless gateways.

7.13.1 Scheduling, Interrupts, and Synchronization

These pages cover basic kernel services related to thread scheduling and synchronization.

Threads

Note: There is also limited support for using Zephyr Without Threads.

• Lifecycle

– Thread Creation

– Thread Termination

– Thread Aborting

– Thread Suspension

• Thread States

• Thread Stack objects

– Kernel-only Stacks

– Thread stacks

588 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• Thread Priorities

– Meta-IRQ Priorities

• Thread Options

• Thread Custom Data

• Implementation

– Spawning a Thread

– Dropping Permissions

– Terminating a Thread

• Runtime Statistics

• Suggested Uses

• Configuration Options

• API Reference

This section describes kernel services for creating, scheduling, and deleting independently executable
threads of instructions.

A thread is a kernel object that is used for application processing that is too lengthy or too complex to be
performed by an ISR.

Any number of threads can be defined by an application (limited only by available RAM). Each thread is
referenced by a thread id that is assigned when the thread is spawned.

A thread has the following key properties:

• A stack area, which is a region of memory used for the thread’s stack. The size of the stack area
can be tailored to conform to the actual needs of the thread’s processing. Special macros exist to
create and work with stack memory regions.

• A thread control block for private kernel bookkeeping of the thread’s metadata. This is an instance
of type k_thread .

• An entry point function, which is invoked when the thread is started. Up to 3 argument values
can be passed to this function.

• A scheduling priority, which instructs the kernel’s scheduler how to allocate CPU time to the
thread. (See Scheduling.)

• A set of thread options, which allow the thread to receive special treatment by the kernel under
specific circumstances. (See Thread Options.)

• A start delay, which specifies how long the kernel should wait before starting the thread.

• An execution mode, which can either be supervisor or user mode. By default, threads run in su-
pervisor mode and allow access to privileged CPU instructions, the entire memory address space,
and peripherals. User mode threads have a reduced set of privileges. This depends on the :kcon-
fig:`CONFIG_USERSPACE` option. See User Mode.

Lifecycle

Thread Creation A thread must be created before it can be used. The kernel initializes the thread
control block as well as one end of the stack portion. The remainder of the thread’s stack is typically left
uninitialized.

Specifying a start delay of K_NO_WAIT instructs the kernel to start thread execution immediately. Alter-
natively, the kernel can be instructed to delay execution of the thread by specifying a timeout value – for
example, to allow device hardware used by the thread to become available.

7.13. Kernel Services 589

Zephyr Project Documentation, Release 2.7.0-rc2

The kernel allows a delayed start to be canceled before the thread begins executing. A cancellation
request has no effect if the thread has already started. A thread whose delayed start was successfully
canceled must be re-spawned before it can be used.

Thread Termination Once a thread is started it typically executes forever. However, a thread may
synchronously end its execution by returning from its entry point function. This is known as termination.

A thread that terminates is responsible for releasing any shared resources it may own (such as mutexes
and dynamically allocated memory) prior to returning, since the kernel does not reclaim them automat-
ically.

In some cases a thread may want to sleep until another thread terminates. This can be accomplished
with the k_thread_join() API. This will block the calling thread until either the timeout expires, the
target thread self-exits, or the target thread aborts (either due to a k_thread_abort() call or triggering
a fatal error).

Once a thread has terminated, the kernel guarantees that no use will be made of the thread struct. The
memory of such a struct can then be re-used for any purpose, including spawning a new thread. Note that
the thread must be fully terminated, which presents race conditions where a thread’s own logic signals
completion which is seen by another thread before the kernel processing is complete. Under normal
circumstances, application code should use k_thread_join() or k_thread_abort() to synchronize on
thread termination state and not rely on signaling from within application logic.

Thread Aborting A thread may asynchronously end its execution by aborting. The kernel automati-
cally aborts a thread if the thread triggers a fatal error condition, such as dereferencing a null pointer.

A thread can also be aborted by another thread (or by itself) by calling k_thread_abort() . However, it
is typically preferable to signal a thread to terminate itself gracefully, rather than aborting it.

As with thread termination, the kernel does not reclaim shared resources owned by an aborted thread.

Note: The kernel does not currently make any claims regarding an application’s ability to respawn a
thread that aborts.

Thread Suspension A thread can be prevented from executing for an indefinite period of time if it
becomes suspended. The function k_thread_suspend() can be used to suspend any thread, including
the calling thread. Suspending a thread that is already suspended has no additional effect.

Once suspended, a thread cannot be scheduled until another thread calls k_thread_resume() to remove
the suspension.

Note: A thread can prevent itself from executing for a specified period of time using k_sleep() . How-
ever, this is different from suspending a thread since a sleeping thread becomes executable automatically
when the time limit is reached.

Thread States A thread that has no factors that prevent its execution is deemed to be ready, and is
eligible to be selected as the current thread.

A thread that has one or more factors that prevent its execution is deemed to be unready, and cannot be
selected as the current thread.

The following factors make a thread unready:

• The thread has not been started.

• The thread is waiting for a kernel object to complete an operation. (For example, the thread is
taking a semaphore that is unavailable.)

590 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• The thread is waiting for a timeout to occur.

• The thread has been suspended.

• The thread has terminated or aborted.

start

New

dispatch

I/O or event completion

Ready

interrupt

I/O or event wait

abort

Running

Terminated

Waiting

Suspended

suspendresume

Thread Stack objects Every thread requires its own stack buffer for the CPU to push context. Depend-
ing on configuration, there are several constraints that must be met:

• There may need to be additional memory reserved for memory management structures

• If guard-based stack overflow detection is enabled, a small write- protected memory management
region must immediately precede the stack buffer to catch overflows.

• If userspace is enabled, a separate fixed-size privilege elevation stack must be reserved to serve as
a private kernel stack for handling system calls.

• If userspace is enabled, the thread’s stack buffer must be appropriately sized and aligned such that
a memory protection region may be programmed to exactly fit.

The alignment constraints can be quite restrictive, for example some MPUs require their regions to be of
some power of two in size, and aligned to its own size.

Because of this, portable code can’t simply pass an arbitrary character buffer to k_thread_create() .
Special macros exist to instantiate stacks, prefixed with K_KERNEL_STACK and K_THREAD_STACK.

Kernel-only Stacks If it is known that a thread will never run in user mode, or the stack is being used
for special contexts like handling interrupts, it is best to define stacks using the K_KERNEL_STACK macros.

These stacks save memory because an MPU region will never need to be programmed to cover the stack
buffer itself, and the kernel will not need to reserve additional room for the privilege elevation stack, or
memory management data structures which only pertain to user mode threads.

Attempts from user mode to use stacks declared in this way will result in a fatal error for the caller.

If CONFIG_USERSPACE is not enabled, the set of K_THREAD_STACK macros have an identical effect to the
K_KERNEL_STACK macros.

7.13. Kernel Services 591

Zephyr Project Documentation, Release 2.7.0-rc2

Thread stacks If it is known that a stack will need to host user threads, or if this cannot be determined,
define the stack with K_THREAD_STACK macros. This may use more memory but the stack object is suitable
for hosting user threads.

If CONFIG_USERSPACE is not enabled, the set of K_THREAD_STACK macros have an identical effect to the
K_KERNEL_STACK macros.

Thread Priorities A thread’s priority is an integer value, and can be either negative or non-negative.
Numerically lower priorities takes precedence over numerically higher values. For example, the scheduler
gives thread A of priority 4 higher priority over thread B of priority 7; likewise thread C of priority -2 has
higher priority than both thread A and thread B.

The scheduler distinguishes between two classes of threads, based on each thread’s priority.

• A cooperative thread has a negative priority value. Once it becomes the current thread, a coopera-
tive thread remains the current thread until it performs an action that makes it unready.

• A preemptible thread has a non-negative priority value. Once it becomes the current thread, a
preemptible thread may be supplanted at any time if a cooperative thread, or a preemptible thread
of higher or equal priority, becomes ready.

A thread’s initial priority value can be altered up or down after the thread has been started. Thus it is
possible for a preemptible thread to become a cooperative thread, and vice versa, by changing its priority.

The kernel supports a virtually unlimited number of thread priority levels. The
configuration options :kconfig:`CONFIG_NUM_COOP_PRIORITIES` and :kcon-
fig:`CONFIG_NUM_PREEMPT_PRIORITIES` specify the number of priority levels for each class
of thread, resulting in the following usable priority ranges:

• cooperative threads: (-:kconfig:`CONFIG_NUM_COOP_PRIORITIES`) to -1

• preemptive threads: 0 to (:kconfig:`CONFIG_NUM_PREEMPT_PRIORITIES` - 1)

0
- CONFIG_NUM_COOP_PRIORITIES

cooperative threads preemptible threads

CONFIG_NUM_PREEMPT_PRIORITIES - 1
-1

Higher priority Lower priority

1 2- 2

Idle thread (cooperative) Idle thread (preemptible)

For example, configuring 5 cooperative priorities and 10 preemptive priorities results in the ranges -5 to
-1 and 0 to 9, respectively.

Meta-IRQ Priorities When enabled (see :kconfig:`CONFIG_NUM_METAIRQ_PRIORITIES`), there is
a special subclass of cooperative priorities at the highest (numerically lowest) end of the priority space:
meta-IRQ threads. These are scheduled according to their normal priority, but also have the special
ability to preempt all other threads (and other meta-irq threads) at lower priorities, even if those threads
are cooperative and/or have taken a scheduler lock.

This behavior makes the act of unblocking a meta-IRQ thread (by any means, e.g. creating it, calling
k_sem_give(), etc.) into the equivalent of a synchronous system call when done by a lower priority
thread, or an ARM-like “pended IRQ” when done from true interrupt context. The intent is that this
feature will be used to implement interrupt “bottom half” processing and/or “tasklet” features in driver
subsystems. The thread, once woken, will be guaranteed to run before the current CPU returns into
application code.

592 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Unlike similar features in other OSes, meta-IRQ threads are true threads and run on their own stack
(which must be allocated normally), not the per-CPU interrupt stack. Design work to enable the use of
the IRQ stack on supported architectures is pending.

Note that because this breaks the promise made to cooperative threads by the Zephyr API (namely that
the OS won’t schedule other thread until the current thread deliberately blocks), it should be used only
with great care from application code. These are not simply very high priority threads and should not be
used as such.

Thread Options The kernel supports a small set of thread options that allow a thread to receive special
treatment under specific circumstances. The set of options associated with a thread are specified when
the thread is spawned.

A thread that does not require any thread option has an option value of zero. A thread that requires a
thread option specifies it by name, using the | character as a separator if multiple options are needed
(i.e. combine options using the bitwise OR operator).

The following thread options are supported.

K_ESSENTIAL This option tags the thread as an essential thread. This instructs the kernel to treat the
termination or aborting of the thread as a fatal system error.

By default, the thread is not considered to be an essential thread.

K_SSE_REGS This x86-specific option indicate that the thread uses the CPU’s SSE registers. Also see
K_FP_REGS .

By default, the kernel does not attempt to save and restore the contents of this register when
scheduling the thread.

K_FP_REGS This option indicate that the thread uses the CPU’s floating point registers. This instructs the
kernel to take additional steps to save and restore the contents of these registers when scheduling
the thread. (For more information see Floating Point Services.)

By default, the kernel does not attempt to save and restore the contents of this register when
scheduling the thread.

K_USER If :kconfig:`CONFIG_USERSPACE` is enabled, this thread will be created in user mode and will
have reduced privileges. See User Mode. Otherwise this flag does nothing.

K_INHERIT_PERMS If :kconfig:`CONFIG_USERSPACE` is enabled, this thread will inherit all kernel ob-
ject permissions that the parent thread had, except the parent thread object. See User Mode.

Thread Custom Data Every thread has a 32-bit custom data area, accessible only by the thread itself,
and may be used by the application for any purpose it chooses. The default custom data value for a
thread is zero.

Note: Custom data support is not available to ISRs because they operate within a single shared kernel
interrupt handling context.

By default, thread custom data support is disabled. The configuration option :kcon-
fig:`CONFIG_THREAD_CUSTOM_DATA` can be used to enable support.

The k_thread_custom_data_set() and k_thread_custom_data_get() functions are used to write and
read a thread’s custom data, respectively. A thread can only access its own custom data, and not that of
another thread.

The following code uses the custom data feature to record the number of times each thread calls a specific
routine.

7.13. Kernel Services 593

Zephyr Project Documentation, Release 2.7.0-rc2

Note: Obviously, only a single routine can use this technique, since it monopolizes the use of the custom
data feature.

int call_tracking_routine(void)
{

uint32_t call_count;

if (k_is_in_isr()) {
/* ignore any call made by an ISR */

} else {
call_count = (uint32_t)k_thread_custom_data_get();
call_count++;
k_thread_custom_data_set((void *)call_count);

}

/* do rest of routine's processing */
...

}

Use thread custom data to allow a routine to access thread-specific information, by using the custom
data as a pointer to a data structure owned by the thread.

Implementation

Spawning a Thread A thread is spawned by defining its stack area and its thread control block, and
then calling k_thread_create() .

The stack area must be defined using K_THREAD_STACK_DEFINE or K_KERNEL_STACK_DEFINE to ensure it
is properly set up in memory.

The size parameter for the stack must be one of three values:

• The original requested stack size passed to K_THREAD_STACK or K_KERNEL_STACK family of stack
instantiation macros.

• For a stack object defined with the K_THREAD_STACK family of macros, the return value of
K_THREAD_STACK_SIZEOF() for that’ object.

• For a stack object defined with the K_KERNEL_STACK family of macros, the return value of
K_KERNEL_STACK_SIZEOF() for that object.

The thread spawning function returns its thread id, which can be used to reference the thread.

The following code spawns a thread that starts immediately.

define MY_STACK_SIZE 500
define MY_PRIORITY 5

extern void my_entry_point(void *, void *, void *);

K_THREAD_STACK_DEFINE(my_stack_area, MY_STACK_SIZE);
struct k_thread my_thread_data;

k_tid_t my_tid = k_thread_create(&my_thread_data, my_stack_area,
K_THREAD_STACK_SIZEOF(my_stack_area),
my_entry_point,
NULL, NULL, NULL,
MY_PRIORITY, 0, K_NO_WAIT);

594 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Alternatively, a thread can be declared at compile time by calling K_THREAD_DEFINE . Observe that the
macro defines the stack area, control block, and thread id variables automatically.

The following code has the same effect as the code segment above.

define MY_STACK_SIZE 500
define MY_PRIORITY 5

extern void my_entry_point(void *, void *, void *);

K_THREAD_DEFINE(my_tid, MY_STACK_SIZE,
my_entry_point, NULL, NULL, NULL,
MY_PRIORITY, 0, 0);

Note: The delay parameter to k_thread_create() is a k_timeout_t value, so K_NO_WAIT means to
start the thread immediately. The corresponding parameter to K_THREAD_DEFINE is a duration in integral
milliseconds, so the equivalent argument is 0.

User Mode Constraints This section only applies if :kconfig:`CONFIG_USERSPACE` is enabled, and
a user thread tries to create a new thread. The k_thread_create() API is still used, but there are
additional constraints which must be met or the calling thread will be terminated:

• The calling thread must have permissions granted on both the child thread and stack parameters;
both are tracked by the kernel as kernel objects.

• The child thread and stack objects must be in an uninitialized state, i.e. it is not currently running
and the stack memory is unused.

• The stack size parameter passed in must be equal to or less than the bounds of the stack object
when it was declared.

• The K_USER option must be used, as user threads can only create other user threads.

• The K_ESSENTIAL option must not be used, user threads may not be considered essential threads.

• The priority of the child thread must be a valid priority value, and equal to or lower than the parent
thread.

Dropping Permissions If :kconfig:`CONFIG_USERSPACE` is enabled, a thread running in supervisor
mode may perform a one-way transition to user mode using the k_thread_user_mode_enter() API.
This is a one-way operation which will reset and zero the thread’s stack memory. The thread will be
marked as non-essential.

Terminating a Thread A thread terminates itself by returning from its entry point function.

The following code illustrates the ways a thread can terminate.

void my_entry_point(int unused1, int unused2, int unused3)
{

while (1) {
...
if (<some condition>) {

return; /* thread terminates from mid-entry point function */
}
...

}

(continues on next page)

7.13. Kernel Services 595

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

/* thread terminates at end of entry point function */
}

If :kconfig:`CONFIG_USERSPACE` is enabled, aborting a thread will additionally mark the thread and
stack objects as uninitialized so that they may be re-used.

Runtime Statistics Thread runtime statistics can be gathered and retrieved if :kcon-
fig:`CONFIG_THREAD_RUNTIME_STATS` is enabled, for example, total number of execution
cycles of a thread.

By default, the runtime statistics are gathered using the default kernel timer. For some architectures, SoCs
or boards, there are timers with higher resolution available via timing functions. Using of these timers
can be enabled via :kconfig:`CONFIG_THREAD_RUNTIME_STATS_USE_TIMING_FUNCTIONS`.

Here is an example:

k_thread_runtime_stats_t rt_stats_thread;

k_thread_runtime_stats_get(k_current_get(), &rt_stats_thread);

printk("Cycles: %llu\n", rt_stats_thread.execution_cycles);

Suggested Uses Use threads to handle processing that cannot be handled in an ISR.

Use separate threads to handle logically distinct processing operations that can execute in parallel.

Configuration Options Related configuration options:

• :kconfig:`CONFIG_MAIN_THREAD_PRIORITY`

• :kconfig:`CONFIG_MAIN_STACK_SIZE`

• :kconfig:`CONFIG_IDLE_STACK_SIZE`

• :kconfig:`CONFIG_THREAD_CUSTOM_DATA`

• :kconfig:`CONFIG_NUM_COOP_PRIORITIES`

• :kconfig:`CONFIG_NUM_PREEMPT_PRIORITIES`

• :kconfig:`CONFIG_TIMESLICING`

• :kconfig:`CONFIG_TIMESLICE_SIZE`

• :kconfig:`CONFIG_TIMESLICE_PRIORITY`

• :kconfig:`CONFIG_USERSPACE`

API Reference

group thread_apis

Defines

K_ESSENTIAL

system thread that must not abort

596 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

K_FP_REGS

FPU registers are managed by context switch.

This option indicates that the thread uses the CPU’s floating point registers. This instructs
the kernel to take additional steps to save and restore the contents of these registers when
scheduling the thread. No effect if :kconfig:`CONFIG_FPU_SHARING` is not enabled.

K_USER

user mode thread

This thread has dropped from supervisor mode to user mode and consequently has additional
restrictions

K_INHERIT_PERMS

Inherit Permissions.

Indicates that the thread being created should inherit all kernel object permissions from the
thread that created it. No effect if :kconfig:`CONFIG_USERSPACE` is not enabled.

K_CALLBACK_STATE

Callback item state.

This is a single bit of state reserved for “callback manager” utilities (p4wq initially) who need
to track operations invoked from within a user-provided callback they have been invoked.
Effectively it serves as a tiny bit of zero-overhead TLS data.

k_thread_access_grant(thread, ...)

Grant a thread access to a set of kernel objects.

This is a convenience function. For the provided thread, grant access to the remaining argu-
ments, which must be pointers to kernel objects.

The thread object must be initialized (i.e. running). The objects don’t need to be. Note that
NULL shouldn’t be passed as an argument.

Parameters

• thread – Thread to grant access to objects

• ... – list of kernel object pointers

K_THREAD_DEFINE(name, stack_size, entry, p1, p2, p3, prio, options, delay)

Statically define and initialize a thread.

The thread may be scheduled for immediate execution or a delayed start.

Thread options are architecture-specific, and can include K_ESSENTIAL, K_FP_REGS, and
K_SSE_REGS. Multiple options may be specified by separating them using “|” (the logical OR
operator).

The ID of the thread can be accessed using:

extern const k_tid_t <name>;

Parameters

• name – Name of the thread.

• stack_size – Stack size in bytes.

• entry – Thread entry function.

7.13. Kernel Services 597

Zephyr Project Documentation, Release 2.7.0-rc2

• p1 – 1st entry point parameter.

• p2 – 2nd entry point parameter.

• p3 – 3rd entry point parameter.

• prio – Thread priority.

• options – Thread options.

• delay – Scheduling delay (in milliseconds), zero for no delay.

Typedefs

typedef void (*k_thread_user_cb_t)(const struct k_thread *thread, void *user_data)

Functions

void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data)

Iterate over all the threads in the system.

This routine iterates over all the threads in the system and calls the user_cb function for each
thread.

Note: :kconfig:`CONFIG_THREAD_MONITOR` must be set for this function to be effective.

Note: This API uses k_spin_lock to protect the _kernel.threads list which means creation of
new threads and terminations of existing threads are blocked until this API returns.

Parameters

• user_cb – Pointer to the user callback function.

• user_data – Pointer to user data.

Returns N/A

void k_thread_foreach_unlocked(k_thread_user_cb_t user_cb, void *user_data)

Iterate over all the threads in the system without locking.

This routine works exactly the same like k_thread_foreach but unlocks interrupts when user_cb
is executed.

Note: :kconfig:`CONFIG_THREAD_MONITOR` must be set for this function to be effective.

Note: This API uses k_spin_lock only when accessing the _kernel.threads queue elements. It
unlocks it during user callback function processing. If a new task is created when this foreach
function is in progress, the added new task would not be included in the enumeration. If a
task is aborted during this enumeration, there would be a race here and there is a possibility
that this aborted task would be included in the enumeration.

Note: If the task is aborted and the memory occupied by its k_thread structure is reused
when this k_thread_foreach_unlocked is in progress it might even lead to the system behave

598 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

unstable. This function may never return, as it would follow some next task pointers treating
given pointer as a pointer to the k_thread structure while it is something different right now.
Do not reuse the memory that was occupied by k_thread structure of aborted task if it was
aborted after this function was called in any context.

Parameters

• user_cb – Pointer to the user callback function.

• user_data – Pointer to user data.

k_tid_t k_thread_create(struct k_thread *new_thread, k_thread_stack_t *stack, size_t
stack_size, k_thread_entry_t entry, void *p1, void *p2, void *p3, int
prio, uint32_t options, k_timeout_t delay)

Create a thread.

This routine initializes a thread, then schedules it for execution.

The new thread may be scheduled for immediate execution or a delayed start. If the newly
spawned thread does not have a delayed start the kernel scheduler may preempt the current
thread to allow the new thread to execute.

Thread options are architecture-specific, and can include K_ESSENTIAL, K_FP_REGS, and
K_SSE_REGS. Multiple options may be specified by separating them using “|” (the logical OR
operator).

Stack objects passed to this function must be originally defined with either of these macros in
order to be portable:

• K_THREAD_STACK_DEFINE() - For stacks that may support either user or supervisor
threads.

• K_KERNEL_STACK_DEFINE() - For stacks that may support supervisor threads only. These
stacks use less memory if CONFIG_USERSPACE is enabled.

The stack_size parameter has constraints. It must either be:

• The original size value passed to K_THREAD_STACK_DEFINE() or
K_KERNEL_STACK_DEFINE()

• The return value of K_THREAD_STACK_SIZEOF(stack) if the stack was defined with
K_THREAD_STACK_DEFINE()

• The return value of K_KERNEL_STACK_SIZEOF(stack) if the stack was defined with
K_KERNEL_STACK_DEFINE().

Using other values, or sizeof(stack) may produce undefined behavior.

Parameters

• new_thread – Pointer to uninitialized struct k_thread

• stack – Pointer to the stack space.

• stack_size – Stack size in bytes.

• entry – Thread entry function.

• p1 – 1st entry point parameter.

• p2 – 2nd entry point parameter.

• p3 – 3rd entry point parameter.

• prio – Thread priority.

7.13. Kernel Services 599

Zephyr Project Documentation, Release 2.7.0-rc2

• options – Thread options.

• delay – Scheduling delay, or K_NO_WAIT (for no delay).

Returns ID of new thread.

FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry, void *p1, void *p2,
void *p3)

Drop a thread’s privileges permanently to user mode.

This allows a supervisor thread to be re-used as a user thread. This function does not return,
but control will transfer to the provided entry point as if this was a new user thread.

The implementation ensures that the stack buffer contents are erased. Any thread-local stor-
age will be reverted to a pristine state.

Memory domain membership, resource pool assignment, kernel object permissions, priority,
and thread options are preserved.

A common use of this function is to re-use the main thread as a user thread once all supervisor
mode-only tasks have been completed.

Parameters

• entry – Function to start executing from

• p1 – 1st entry point parameter

• p2 – 2nd entry point parameter

• p3 – 3rd entry point parameter

static inline void k_thread_heap_assign(struct k_thread *thread, struct k_heap *heap)

Assign a resource memory pool to a thread.

By default, threads have no resource pool assigned unless their parent thread has a resource
pool, in which case it is inherited. Multiple threads may be assigned to the same memory
pool.

Changing a thread’s resource pool will not migrate allocations from the previous pool.

Parameters

• thread – Target thread to assign a memory pool for resource requests.

• heap – Heap object to use for resources, or NULL if the thread should no longer
have a memory pool.

void k_thread_system_pool_assign(struct k_thread *thread)

Assign the system heap as a thread’s resource pool.

Similar to z_thread_heap_assign(), but the thread will use the kernel heap to draw memory.

Use with caution, as a malicious thread could perform DoS attacks on the kernel heap.

Parameters

• thread – Target thread to assign the system heap for resource requests

int k_thread_join(struct k_thread *thread, k_timeout_t timeout)

Sleep until a thread exits.

The caller will be put to sleep until the target thread exits, either due to being aborted, self-
exiting, or taking a fatal error. This API returns immediately if the thread isn’t running.

This API may only be called from ISRs with a K_NO_WAIT timeout, where it can be useful as
a predicate to detect when a thread has aborted.

Parameters

• thread – Thread to wait to exit

600 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• timeout – upper bound time to wait for the thread to exit.

Return values

• 0 – success, target thread has exited or wasn’t running

• -EBUSY – returned without waiting

• -EAGAIN – waiting period timed out

• -EDEADLK – target thread is joining on the caller, or target thread is the caller

int32_t k_sleep(k_timeout_t timeout)

Put the current thread to sleep.

This routine puts the current thread to sleep for duration, specified as a k_timeout_t object.

Note: if timeout is set to K_FOREVER then the thread is suspended.

Parameters

• timeout – Desired duration of sleep.

Returns Zero if the requested time has elapsed or the number of milliseconds left to
sleep, if thread was woken up by k_wakeup call.

static inline int32_t k_msleep(int32_t ms)

Put the current thread to sleep.

This routine puts the current thread to sleep for duration milliseconds.

Parameters

• ms – Number of milliseconds to sleep.

Returns Zero if the requested time has elapsed or the number of milliseconds left to
sleep, if thread was woken up by k_wakeup call.

int32_t k_usleep(int32_t us)

Put the current thread to sleep with microsecond resolution.

This function is unlikely to work as expected without kernel tuning. In particular, be-
cause the lower bound on the duration of a sleep is the duration of a tick, :kcon-
fig:`CONFIG_SYS_CLOCK_TICKS_PER_SEC` must be adjusted to achieve the resolution de-
sired. The implications of doing this must be understood before attempting to use k_usleep().
Use with caution.

Parameters

• us – Number of microseconds to sleep.

Returns Zero if the requested time has elapsed or the number of microseconds left
to sleep, if thread was woken up by k_wakeup call.

void k_busy_wait(uint32_t usec_to_wait)

Cause the current thread to busy wait.

This routine causes the current thread to execute a “do nothing” loop for usec_to_wait mi-
croseconds.

Note: The clock used for the microsecond-resolution delay here may be skewed relative
to the clock used for system timeouts like k_sleep(). For example k_busy_wait(1000) may
take slightly more or less time than k_sleep(K_MSEC(1)), with the offset dependent on clock
tolerances.

7.13. Kernel Services 601

Zephyr Project Documentation, Release 2.7.0-rc2

Returns N/A

void k_yield(void)

Yield the current thread.

This routine causes the current thread to yield execution to another thread of the same or
higher priority. If there are no other ready threads of the same or higher priority, the routine
returns immediately.

Returns N/A

void k_wakeup(k_tid_t thread)

Wake up a sleeping thread.

This routine prematurely wakes up thread from sleeping.

If thread is not currently sleeping, the routine has no effect.

Parameters

• thread – ID of thread to wake.

Returns N/A

__attribute_const__ static inline k_tid_t k_current_get(void)

Get thread ID of the current thread.

Returns ID of current thread.

void k_thread_abort(k_tid_t thread)

Abort a thread.

This routine permanently stops execution of thread. The thread is taken off all kernel queues
it is part of (i.e. the ready queue, the timeout queue, or a kernel object wait queue). However,
any kernel resources the thread might currently own (such as mutexes or memory blocks) are
not released. It is the responsibility of the caller of this routine to ensure all necessary cleanup
is performed.

After k_thread_abort() returns, the thread is guaranteed not to be running or to become
runnable anywhere on the system. Normally this is done via blocking the caller (in the same
manner as k_thread_join()), but in interrupt context on SMP systems the implementation is
required to spin for threads that are running on other CPUs. Note that as specified, this
means that on SMP platforms it is possible for application code to create a deadlock condition
by simultaneously aborting a cycle of threads using at least one termination from interrupt
context. Zephyr cannot detect all such conditions.

Parameters

• thread – ID of thread to abort.

Returns N/A

void k_thread_start(k_tid_t thread)

Start an inactive thread.

If a thread was created with K_FOREVER in the delay parameter, it will not be added to the
scheduling queue until this function is called on it.

Parameters

• thread – thread to start

k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *t)

Get time when a thread wakes up, in system ticks.

This routine computes the system uptime when a waiting thread next executes, in units of
system ticks. If the thread is not waiting, it returns current system time.

602 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

k_ticks_t k_thread_timeout_remaining_ticks(const struct k_thread *t)

Get time remaining before a thread wakes up, in system ticks.

This routine computes the time remaining before a waiting thread next executes, in units of
system ticks. If the thread is not waiting, it returns zero.

int k_thread_priority_get(k_tid_t thread)

Get a thread’s priority.

This routine gets the priority of thread.

Parameters

• thread – ID of thread whose priority is needed.

Returns Priority of thread.

void k_thread_priority_set(k_tid_t thread, int prio)

Set a thread’s priority.

This routine immediately changes the priority of thread.

Rescheduling can occur immediately depending on the priority thread is set to:

• If its priority is raised above the priority of the caller of this function, and the caller is
preemptible, thread will be scheduled in.

• If the caller operates on itself, it lowers its priority below that of other threads in the
system, and the caller is preemptible, the thread of highest priority will be scheduled in.

Priority can be assigned in the range of -CONFIG_NUM_COOP_PRIORITIES to
CONFIG_NUM_PREEMPT_PRIORITIES-1, where -CONFIG_NUM_COOP_PRIORITIES is the
highest priority.

Warning: Changing the priority of a thread currently involved in mutex priority inheri-
tance may result in undefined behavior.

Parameters

• thread – ID of thread whose priority is to be set.

• prio – New priority.

Returns N/A

void k_thread_deadline_set(k_tid_t thread, int deadline)

Set deadline expiration time for scheduler.

This sets the “deadline” expiration as a time delta from the current time, in the same units
used by k_cycle_get_32(). The scheduler (when deadline scheduling is enabled) will choose
the next expiring thread when selecting between threads at the same static priority. Threads
at different priorities will be scheduled according to their static priority.

Note: Deadlines are stored internally using 32 bit unsigned integers. The number of cy-
cles between the “first” deadline in the scheduler queue and the “last” deadline must be less
than 2^31 (i.e a signed non-negative quantity). Failure to adhere to this rule may result in
scheduled threads running in an incorrect dealine order.

Note: Despite the API naming, the scheduler makes no guarantees the the thread WILL be
scheduled within that deadline, nor does it take extra metadata (like e.g. the “runtime” and

7.13. Kernel Services 603

Zephyr Project Documentation, Release 2.7.0-rc2

“period” parameters in Linux sched_setattr()) that allows the kernel to validate the scheduling
for achievability. Such features could be implemented above this call, which is simply input
to the priority selection logic.

Note: You should enable :kconfig:`CONFIG_SCHED_DEADLINE` in your project configura-
tion.

Parameters

• thread – A thread on which to set the deadline

• deadline – A time delta, in cycle units

int k_thread_cpu_mask_clear(k_tid_t thread)

Sets all CPU enable masks to zero.

After this returns, the thread will no longer be schedulable on any CPUs. The thread must not
be currently runnable.

Note: You should enable :kconfig:`CONFIG_SCHED_DEADLINE` in your project configura-
tion.

Parameters

• thread – Thread to operate upon

Returns Zero on success, otherwise error code

int k_thread_cpu_mask_enable_all(k_tid_t thread)

Sets all CPU enable masks to one.

After this returns, the thread will be schedulable on any CPU. The thread must not be currently
runnable.

Note: You should enable :kconfig:`CONFIG_SCHED_DEADLINE` in your project configura-
tion.

Parameters

• thread – Thread to operate upon

Returns Zero on success, otherwise error code

int k_thread_cpu_mask_enable(k_tid_t thread, int cpu)

Enable thread to run on specified CPU.

The thread must not be currently runnable.

Note: You should enable :kconfig:`CONFIG_SCHED_DEADLINE` in your project configura-
tion.

Parameters

• thread – Thread to operate upon

• cpu – CPU index

604 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Returns Zero on success, otherwise error code

int k_thread_cpu_mask_disable(k_tid_t thread, int cpu)

Prevent thread to run on specified CPU.

The thread must not be currently runnable.

Note: You should enable :kconfig:`CONFIG_SCHED_DEADLINE` in your project configura-
tion.

Parameters

• thread – Thread to operate upon

• cpu – CPU index

Returns Zero on success, otherwise error code

void k_thread_suspend(k_tid_t thread)

Suspend a thread.

This routine prevents the kernel scheduler from making thread the current thread. All other
internal operations on thread are still performed; for example, kernel objects it is waiting on
are still handed to it. Note that any existing timeouts (e.g. k_sleep(), or a timeout argument to
k_sem_take() et. al.) will be canceled. On resume, the thread will begin running immediately
and return from the blocked call.

If thread is already suspended, the routine has no effect.

Parameters

• thread – ID of thread to suspend.

Returns N/A

void k_thread_resume(k_tid_t thread)

Resume a suspended thread.

This routine allows the kernel scheduler to make thread the current thread, when it is next
eligible for that role.

If thread is not currently suspended, the routine has no effect.

Parameters

• thread – ID of thread to resume.

Returns N/A

void k_sched_time_slice_set(int32_t slice, int prio)

Set time-slicing period and scope.

This routine specifies how the scheduler will perform time slicing of preemptible threads.

To enable time slicing, slice must be non-zero. The scheduler ensures that no thread runs for
more than the specified time limit before other threads of that priority are given a chance to
execute. Any thread whose priority is higher than prio is exempted, and may execute as long
as desired without being preempted due to time slicing.

Time slicing only limits the maximum amount of time a thread may continuously execute.
Once the scheduler selects a thread for execution, there is no minimum guaranteed time the
thread will execute before threads of greater or equal priority are scheduled.

When the current thread is the only one of that priority eligible for execution, this routine has
no effect; the thread is immediately rescheduled after the slice period expires.

7.13. Kernel Services 605

Zephyr Project Documentation, Release 2.7.0-rc2

To disable timeslicing, set both slice and prio to zero.

Parameters

• slice – Maximum time slice length (in milliseconds).

• prio – Highest thread priority level eligible for time slicing.

Returns N/A

void k_sched_lock(void)

Lock the scheduler.

This routine prevents the current thread from being preempted by another thread by instruct-
ing the scheduler to treat it as a cooperative thread. If the thread subsequently performs an
operation that makes it unready, it will be context switched out in the normal manner. When
the thread again becomes the current thread, its non-preemptible status is maintained.

This routine can be called recursively.

Note: k_sched_lock() and k_sched_unlock() should normally be used when the operation
being performed can be safely interrupted by ISRs. However, if the amount of processing in-
volved is very small, better performance may be obtained by using irq_lock() and irq_unlock().

Returns N/A

void k_sched_unlock(void)

Unlock the scheduler.

This routine reverses the effect of a previous call to k_sched_lock(). A thread must call the
routine once for each time it called k_sched_lock() before the thread becomes preemptible.

Returns N/A

void k_thread_custom_data_set(void *value)

Set current thread’s custom data.

This routine sets the custom data for the current thread to @ value.

Custom data is not used by the kernel itself, and is freely available for a thread to use as it
sees fit. It can be used as a framework upon which to build thread-local storage.

Parameters

• value – New custom data value.

Returns N/A

void *k_thread_custom_data_get(void)

Get current thread’s custom data.

This routine returns the custom data for the current thread.

Returns Current custom data value.

int k_thread_name_set(k_tid_t thread, const char *str)

Set current thread name.

Set the name of the thread to be used when :kconfig:`CONFIG_THREAD_MONITOR` is
enabled for tracing and debugging.

Parameters

• thread – Thread to set name, or NULL to set the current thread

• str – Name string

606 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Return values

• 0 – on success

• -EFAULT – Memory access error with supplied string

• -ENOSYS – Thread name configuration option not enabled

• -EINVAL – Thread name too long

const char *k_thread_name_get(k_tid_t thread)

Get thread name.

Get the name of a thread

Parameters

• thread – Thread ID

Return values Thread – name, or NULL if configuration not enabled

int k_thread_name_copy(k_tid_t thread, char *buf, size_t size)

Copy the thread name into a supplied buffer.

Parameters

• thread – Thread to obtain name information

• buf – Destination buffer

• size – Destination buffer size

Return values

• -ENOSPC – Destination buffer too small

• -EFAULT – Memory access error

• -ENOSYS – Thread name feature not enabled

• 0 – Success

const char *k_thread_state_str(k_tid_t thread_id)

Get thread state string.

Get the human friendly thread state string

Parameters

• thread_id – Thread ID

Return values Thread – state string, empty if no state flag is set

struct k_thread

#include <thread.h> Thread Structure

Public Members

struct _callee_saved callee_saved

defined by the architecture, but all archs need these

void *init_data

static thread init data

7.13. Kernel Services 607

Zephyr Project Documentation, Release 2.7.0-rc2

_wait_q_t join_queue

threads waiting in k_thread_join()

struct __thread_entry entry

thread entry and parameters description

struct k_thread *next_thread

next item in list of all threads

void *custom_data

crude thread-local storage

struct _thread_stack_info stack_info

Stack Info

struct _mem_domain_info mem_domain_info

memory domain info of the thread

k_thread_stack_t *stack_obj

Base address of thread stack

void *syscall_frame

current syscall frame pointer

int swap_retval

z_swap() return value

void *switch_handle

Context handle returned via arch_switch()

struct k_heap *resource_pool

resource pool

struct _thread_arch arch

arch-specifics: must always be at the end

group thread_stack_api

Thread Stack APIs.

Defines

K_KERNEL_STACK_ARRAY_EXTERN(sym, nmemb, size)

Obtain an extern reference to a stack array.

This macro properly brings the symbol of a stack array declared elsewhere into scope.

Parameters

• sym – Thread stack symbol name

• nmemb – Number of stacks to declare

608 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• size – Size of the stack memory region

K_KERNEL_PINNED_STACK_ARRAY_EXTERN(sym, nmemb, size)

Obtain an extern reference to a pinned stack array.

This macro properly brings the symbol of a pinned stack array declared elsewhere into scope.

Parameters

• sym – Thread stack symbol name

• nmemb – Number of stacks to declare

• size – Size of the stack memory region

K_KERNEL_STACK_DEFINE(sym, size)

Define a toplevel kernel stack memory region.

This declares a region of memory for use as a thread stack, for threads that exclusively run in
supervisor mode. This is also suitable for declaring special stacks for interrupt or exception
handling.

Stacks declared with this macro may not host user mode threads.

It is legal to precede this definition with the ‘static’ keyword.

It is NOT legal to take the sizeof(sym) and pass that to the stackSize parame-
ter of k_thread_create(), it may not be the same as the ‘size’ parameter. Use
K_KERNEL_STACK_SIZEOF() instead.

The total amount of memory allocated may be increased to accommodate fixed-size stack
overflow guards.

Parameters

• sym – Thread stack symbol name

• size – Size of the stack memory region

K_KERNEL_PINNED_STACK_DEFINE(sym, size)

Define a toplevel kernel stack memory region in pinned section.

See K_KERNEL_STACK_DEFINE() for more information and constraints.

This puts the stack into the pinned noinit linker section if CON-
FIG_LINKER_USE_PINNED_SECTION is enabled, or else it would put the stack into the
same section as K_KERNEL_STACK_DEFINE().

Parameters

• sym – Thread stack symbol name

• size – Size of the stack memory region

K_KERNEL_STACK_ARRAY_DEFINE(sym, nmemb, size)

Define a toplevel array of kernel stack memory regions.

Stacks declared with this macro may not host user mode threads.

Parameters

• sym – Kernel stack array symbol name

• nmemb – Number of stacks to declare

• size – Size of the stack memory region

7.13. Kernel Services 609

Zephyr Project Documentation, Release 2.7.0-rc2

K_KERNEL_PINNED_STACK_ARRAY_DEFINE(sym, nmemb, size)

Define a toplevel array of kernel stack memory regions in pinned section.

See K_KERNEL_STACK_ARRAY_DEFINE() for more information and constraints.

This puts the stack into the pinned noinit linker section if CON-
FIG_LINKER_USE_PINNED_SECTION is enabled, or else it would put the stack into the
same section as K_KERNEL_STACK_ARRAY_DEFINE().

Parameters

• sym – Kernel stack array symbol name

• nmemb – Number of stacks to declare

• size – Size of the stack memory region

K_KERNEL_STACK_MEMBER(sym, size)

Declare an embedded stack memory region.

Used for kernel stacks embedded within other data structures.

Stacks declared with this macro may not host user mode threads.

Parameters

• sym – Thread stack symbol name

• size – Size of the stack memory region

K_KERNEL_STACK_SIZEOF(sym)

K_THREAD_STACK_SIZEOF(sym)

Return the size in bytes of a stack memory region.

Convenience macro for passing the desired stack size to k_thread_create() since the underlying
implementation may actually create something larger (for instance a guard area).

The value returned here is not guaranteed to match the ‘size’ parameter passed to
K_THREAD_STACK_DEFINE and may be larger, but is always safe to pass to k_thread_create()
for the associated stack object.

Parameters

• sym – Stack memory symbol

Returns Size of the stack buffer

K_THREAD_STACK_DEFINE(sym, size)

Declare a toplevel thread stack memory region.

This declares a region of memory suitable for use as a thread’s stack.

This is the generic, historical definition. Align to Z_THREAD_STACK_OBJ_ALIGN and put in
‘noinit’ section so that it isn’t zeroed at boot

The declared symbol will always be a k_thread_stack_t which can be passed to
k_thread_create(), but should otherwise not be manipulated. If the buffer inside needs to be
examined, examine thread->stack_info for the associated thread object to obtain the bound-
aries.

It is legal to precede this definition with the ‘static’ keyword.

It is NOT legal to take the sizeof(sym) and pass that to the stackSize parame-
ter of k_thread_create(), it may not be the same as the ‘size’ parameter. Use
K_THREAD_STACK_SIZEOF() instead.

Some arches may round the size of the usable stack region up to satisfy alignment constraints.
K_THREAD_STACK_SIZEOF() will return the aligned size.

610 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• sym – Thread stack symbol name

• size – Size of the stack memory region

K_THREAD_PINNED_STACK_DEFINE(sym, size)

Define a toplevel thread stack memory region in pinned section.

This declares a region of memory suitable for use as a thread’s stack.

This is the generic, historical definition. Align to Z_THREAD_STACK_OBJ_ALIGN and put in
‘noinit’ section so that it isn’t zeroed at boot

The declared symbol will always be a k_thread_stack_t which can be passed to
k_thread_create(), but should otherwise not be manipulated. If the buffer inside needs to be
examined, examine thread->stack_info for the associated thread object to obtain the bound-
aries.

It is legal to precede this definition with the ‘static’ keyword.

It is NOT legal to take the sizeof(sym) and pass that to the stackSize parame-
ter of k_thread_create(), it may not be the same as the ‘size’ parameter. Use
K_THREAD_STACK_SIZEOF() instead.

Some arches may round the size of the usable stack region up to satisfy alignment constraints.
K_THREAD_STACK_SIZEOF() will return the aligned size.

This puts the stack into the pinned noinit linker section if CON-
FIG_LINKER_USE_PINNED_SECTION is enabled, or else it would put the stack into the
same section as K_THREAD_STACK_DEFINE().

Parameters

• sym – Thread stack symbol name

• size – Size of the stack memory region

K_THREAD_STACK_LEN(size)

Calculate size of stacks to be allocated in a stack array.

This macro calculates the size to be allocated for the stacks inside a stack array. It accepts
the indicated “size” as a parameter and if required, pads some extra bytes (e.g. for MPU
scenarios). Refer K_THREAD_STACK_ARRAY_DEFINE definition to see how this is used. The
returned size ensures each array member will be aligned to the required stack base alignment.

Parameters

• size – Size of the stack memory region

Returns Appropriate size for an array member

K_THREAD_STACK_ARRAY_DEFINE(sym, nmemb, size)

Declare a toplevel array of thread stack memory regions.

Create an array of equally sized stacks. See K_THREAD_STACK_DEFINE definition for addi-
tional details and constraints.

This is the generic, historical definition. Align to Z_THREAD_STACK_OBJ_ALIGN and put in
‘noinit’ section so that it isn’t zeroed at boot

Parameters

• sym – Thread stack symbol name

• nmemb – Number of stacks to declare

• size – Size of the stack memory region

7.13. Kernel Services 611

Zephyr Project Documentation, Release 2.7.0-rc2

K_THREAD_PINNED_STACK_ARRAY_DEFINE(sym, nmemb, size)

Declare a toplevel array of thread stack memory regions in pinned section.

Create an array of equally sized stacks. See K_THREAD_STACK_DEFINE definition for addi-
tional details and constraints.

This is the generic, historical definition. Align to Z_THREAD_STACK_OBJ_ALIGN and put in
‘noinit’ section so that it isn’t zeroed at boot

This puts the stack into the pinned noinit linker section if CON-
FIG_LINKER_USE_PINNED_SECTION is enabled, or else it would put the stack into the
same section as K_THREAD_STACK_DEFINE().

Parameters

• sym – Thread stack symbol name

• nmemb – Number of stacks to declare

• size – Size of the stack memory region

K_THREAD_STACK_MEMBER(sym, size)

Declare an embedded stack memory region.

Used for stacks embedded within other data structures. Use is highly discouraged but in some
cases necessary. For memory protection scenarios, it is very important that any RAM preceding
this member not be writable by threads else a stack overflow will lead to silent corruption. In
other words, the containing data structure should live in RAM owned by the kernel.

A user thread can only be started with a stack defined in this way if the thread starting it is in
supervisor mode.

This is now deprecated, as stacks defined in this way are not usable from user mode. Use
K_KERNEL_STACK_MEMBER.

Parameters

• sym – Thread stack symbol name

• size – Size of the stack memory region

Scheduling

The kernel’s priority-based scheduler allows an application’s threads to share the CPU.

Concepts The scheduler determines which thread is allowed to execute at any point in time; this thread
is known as the current thread.

There are various points in time when the scheduler is given an opportunity to change the identity of the
current thread. These points are called reschedule points. Some potential reschedule points are:

• transition of a thread from running state to a suspended or waiting state, for example by
k_sem_take() or k_sleep() .

• transition of a thread to the ready state, for example by k_sem_give() or k_thread_start()

• return to thread context after processing an interrupt

• when a running thread invokes k_yield()

A thread sleeps when it voluntarily initiates an operation that transitions itself to a suspended or waiting
state.

Whenever the scheduler changes the identity of the current thread, or when execution of the current
thread is replaced by an ISR, the kernel first saves the current thread’s CPU register values. These
register values get restored when the thread later resumes execution.

612 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Scheduling Algorithm The kernel’s scheduler selects the highest priority ready thread to be the current
thread. When multiple ready threads of the same priority exist, the scheduler chooses the one that has
been waiting longest.

Note: Execution of ISRs takes precedence over thread execution, so the execution of the current thread
may be replaced by an ISR at any time unless interrupts have been masked. This applies to both cooper-
ative threads and preemptive threads.

The kernel can be built with one of several choices for the ready queue implementation, offering differ-
ent choices between code size, constant factor runtime overhead and performance scaling when many
threads are added.

• Simple linked-list ready queue (:kconfig:`CONFIG_SCHED_DUMB`)

The scheduler ready queue will be implemented as a simple unordered list, with very fast con-
stant time performance for single threads and very low code size. This implementation should
be selected on systems with constrained code size that will never see more than a small number
(3, maybe) of runnable threads in the queue at any given time. On most platforms (that are not
otherwise using the red/black tree) this results in a savings of ~2k of code size.

• Red/black tree ready queue (:kconfig:`CONFIG_SCHED_SCALABLE`)

The scheduler ready queue will be implemented as a red/black tree. This has rather slower
constant-time insertion and removal overhead, and on most platforms (that are not otherwise
using the red/black tree somewhere) requires an extra ~2kb of code. The resulting behavior will
scale cleanly and quickly into the many thousands of threads.

Use this for applications needing many concurrent runnable threads (> 20 or so). Most applications
won’t need this ready queue implementation.

• Traditional multi-queue ready queue (:kconfig:`CONFIG_SCHED_MULTIQ`)

When selected, the scheduler ready queue will be implemented as the classic/textbook array of
lists, one per priority (max 32 priorities).

This corresponds to the scheduler algorithm used in Zephyr versions prior to 1.12.

It incurs only a tiny code size overhead vs. the “dumb” scheduler and runs in O(1) time in almost all
circumstances with very low constant factor. But it requires a fairly large RAM budget to store those
list heads, and the limited features make it incompatible with features like deadline scheduling that
need to sort threads more finely, and SMP affinity which need to traverse the list of threads.

Typical applications with small numbers of runnable threads probably want the DUMB scheduler.

The wait_q abstraction used in IPC primitives to pend threads for later wakeup shares the same backend
data structure choices as the scheduler, and can use the same options.

• Scalable wait_q implementation (:kconfig:`CONFIG_WAITQ_SCALABLE`)

When selected, the wait_q will be implemented with a balanced tree. Choose this if you
expect to have many threads waiting on individual primitives. There is a ~2kb code
size increase over :kconfig:`CONFIG_WAITQ_DUMB` (which may be shared with :kcon-
fig:`CONFIG_SCHED_SCALABLE`) if the red/black tree is not used elsewhere in the application,
and pend/unpend operations on “small” queues will be somewhat slower (though this is not gen-
erally a performance path).

• Simple linked-list wait_q (:kconfig:`CONFIG_WAITQ_DUMB`)

When selected, the wait_q will be implemented with a doubly-linked list. Choose this if you expect
to have only a few threads blocked on any single IPC primitive.

Cooperative Time Slicing Once a cooperative thread becomes the current thread, it remains the cur-
rent thread until it performs an action that makes it unready. Consequently, if a cooperative thread

7.13. Kernel Services 613

Zephyr Project Documentation, Release 2.7.0-rc2

performs lengthy computations, it may cause an unacceptable delay in the scheduling of other threads,
including those of higher priority and equal priority.

T
h

re
a

d
 P

ri
o

ri
ty

Time

Low

High

Thread 1

ISR

Thread 2

Thread 1

ISR makes the high priority
Thread ready

Ready

Low priority thread relinquishes
the CPU

To overcome such problems, a cooperative thread can voluntarily relinquish the CPU from time to time
to permit other threads to execute. A thread can relinquish the CPU in two ways:

• Calling k_yield() puts the thread at the back of the scheduler’s prioritized list of ready threads,
and then invokes the scheduler. All ready threads whose priority is higher or equal to that of the
yielding thread are then allowed to execute before the yielding thread is rescheduled. If no such
ready threads exist, the scheduler immediately reschedules the yielding thread without context
switching.

• Calling k_sleep() makes the thread unready for a specified time period. Ready threads of all
priorities are then allowed to execute; however, there is no guarantee that threads whose priority
is lower than that of the sleeping thread will actually be scheduled before the sleeping thread
becomes ready once again.

Preemptive Time Slicing Once a preemptive thread becomes the current thread, it remains the cur-
rent thread until a higher priority thread becomes ready, or until the thread performs an action that
makes it unready. Consequently, if a preemptive thread performs lengthy computations, it may cause an
unacceptable delay in the scheduling of other threads, including those of equal priority.

614 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

T
h

re
a

d
 P

ri
o

ri
ty

Time

Low

High

Thread 1

Thread 2

Preemption

Thread 1

CompletionThread 3

Thread 2

To overcome such problems, a preemptive thread can perform cooperative time slicing (as described
above), or the scheduler’s time slicing capability can be used to allow other threads of the same priority
to execute.

T
h

re
a
d

 P
ri

o
ri

ty

Time

Low

High

Thread 1 Thread 2

Time Slice

Thread 3 T1 T1

Thread 4

Preemption

Thread 2 Thread 3

Completion

The scheduler divides time into a series of time slices, where slices are measured in system clock ticks.
The time slice size is configurable, but this size can be changed while the application is running.

At the end of every time slice, the scheduler checks to see if the current thread is preemptible and, if so,
implicitly invokes k_yield() on behalf of the thread. This gives other ready threads of the same priority
the opportunity to execute before the current thread is scheduled again. If no threads of equal priority
are ready, the current thread remains the current thread.

Threads with a priority higher than specified limit are exempt from preemptive time slicing, and are
never preempted by a thread of equal priority. This allows an application to use preemptive time slicing
only when dealing with lower priority threads that are less time-sensitive.

Note: The kernel’s time slicing algorithm does not ensure that a set of equal-priority threads receive an

7.13. Kernel Services 615

Zephyr Project Documentation, Release 2.7.0-rc2

equitable amount of CPU time, since it does not measure the amount of time a thread actually gets to
execute. However, the algorithm does ensure that a thread never executes for longer than a single time
slice without being required to yield.

Scheduler Locking A preemptible thread that does not wish to be preempted while performing a
critical operation can instruct the scheduler to temporarily treat it as a cooperative thread by calling
k_sched_lock() . This prevents other threads from interfering while the critical operation is being
performed.

Once the critical operation is complete the preemptible thread must call k_sched_unlock() to restore
its normal, preemptible status.

If a thread calls k_sched_lock() and subsequently performs an action that makes it unready, the sched-
uler will switch the locking thread out and allow other threads to execute. When the locking thread
again becomes the current thread, its non-preemptible status is maintained.

Note: Locking out the scheduler is a more efficient way for a preemptible thread to prevent preemption
than changing its priority level to a negative value.

Thread Sleeping A thread can call k_sleep() to delay its processing for a specified time period.
During the time the thread is sleeping the CPU is relinquished to allow other ready threads to execute.
Once the specified delay has elapsed the thread becomes ready and is eligible to be scheduled once again.

A sleeping thread can be woken up prematurely by another thread using k_wakeup() . This technique
can sometimes be used to permit the secondary thread to signal the sleeping thread that something has
occurred without requiring the threads to define a kernel synchronization object, such as a semaphore.
Waking up a thread that is not sleeping is allowed, but has no effect.

Busy Waiting A thread can call k_busy_wait() to perform a busy wait that delays its processing for
a specified time period without relinquishing the CPU to another ready thread.

A busy wait is typically used instead of thread sleeping when the required delay is too short to warrant
having the scheduler context switch from the current thread to another thread and then back again.

Suggested Uses Use cooperative threads for device drivers and other performance-critical work.

Use cooperative threads to implement mutually exclusion without the need for a kernel object, such as a
mutex.

Use preemptive threads to give priority to time-sensitive processing over less time-sensitive processing.

System Threads

• Implementation

– Writing a main() function

• Suggested Uses

A system thread is a thread that the kernel spawns automatically during system initialization.

The kernel spawns the following system threads:

616 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Main thread This thread performs kernel initialization, then calls the application’s main() function (if
one is defined).

By default, the main thread uses the highest configured preemptible thread priority (i.e. 0). If the
kernel is not configured to support preemptible threads, the main thread uses the lowest configured
cooperative thread priority (i.e. -1).

The main thread is an essential thread while it is performing kernel initialization or executing the
application’s main() function; this means a fatal system error is raised if the thread aborts. If
main() is not defined, or if it executes and then does a normal return, the main thread terminates
normally and no error is raised.

Idle thread This thread executes when there is no other work for the system to do. If possible, the idle
thread activates the board’s power management support to save power; otherwise, the idle thread
simply performs a “do nothing” loop. The idle thread remains in existence as long as the system is
running and never terminates.

The idle thread always uses the lowest configured thread priority. If this makes it a cooperative
thread, the idle thread repeatedly yields the CPU to allow the application’s other threads to run
when they need to.

The idle thread is an essential thread, which means a fatal system error is raised if the thread
aborts.

Additional system threads may also be spawned, depending on the kernel and board configuration op-
tions specified by the application. For example, enabling the system workqueue spawns a system thread
that services the work items submitted to it. (See Workqueue Threads.)

Implementation

Writing a main() function An application-supplied main() function begins executing once kernel ini-
tialization is complete. The kernel does not pass any arguments to the function.

The following code outlines a trivial main() function. The function used by a real application can be as
complex as needed.

void main(void)
{

/* initialize a semaphore */
...

/* register an ISR that gives the semaphore */
...

/* monitor the semaphore forever */
while (1) {

/* wait for the semaphore to be given by the ISR */
...
/* do whatever processing is now needed */
...

}
}

Suggested Uses Use the main thread to perform thread-based processing in an application that only
requires a single thread, rather than defining an additional application-specific thread.

7.13. Kernel Services 617

Zephyr Project Documentation, Release 2.7.0-rc2

Workqueue Threads

• Work Item Lifecycle

• Delayable Work

• Triggered Work

• System Workqueue

• How to Use Workqueues

• Workqueue Best Practices

• Suggested Uses

• Configuration Options

• API Reference

A workqueue is a kernel object that uses a dedicated thread to process work items in a first in, first out
manner. Each work item is processed by calling the function specified by the work item. A workqueue
is typically used by an ISR or a high-priority thread to offload non-urgent processing to a lower-priority
thread so it does not impact time-sensitive processing.

Any number of workqueues can be defined (limited only by available RAM). Each workqueue is refer-
enced by its memory address.

A workqueue has the following key properties:

• A queue of work items that have been added, but not yet processed.

• A thread that processes the work items in the queue. The priority of the thread is configurable,
allowing it to be either cooperative or preemptive as required.

Regardless of workqueue thread priority the workqueue thread will yield between each submitted work
item, to prevent a cooperative workqueue from starving other threads.

A workqueue must be initialized before it can be used. This sets its queue to empty and spawns the
workqueue’s thread. The thread runs forever, but sleeps when no work items are available.

Note: The behavior described here is changed from the Zephyr workqueue implementation used prior
to release 2.6. Among the changes are:

• Precise tracking of the status of cancelled work items, so that the caller need not be concerned that
an item may be processing when the cancellation returns. Checking of return values on cancellation
is still required.

• Direct submission of delayable work items to the queue with K_NO_WAIT rather than always going
through the timeout API, which could introduce delays.

• The ability to wait until a work item has completed or a queue has been drained.

• Finer control of behavior when scheduling a delayable work item, specifically allowing a previous
deadline to remain unchanged when a work item is scheduled again.

• Safe handling of work item resubmission when the item is being processed on another workqueue.

Using the return values of k_work_busy_get() or k_work_is_pending() , or measurements of remain-
ing time until delayable work is scheduled, should be avoided to prevent race conditions of the type
observed with the previous implementation. See also Workqueue Best Practices.

Work Item Lifecycle Any number of work items can be defined. Each work item is referenced by its
memory address.

618 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

A work item is assigned a handler function, which is the function executed by the workqueue’s thread
when the work item is processed. This function accepts a single argument, which is the address of the
work item itself. The work item also maintains information about its status.

A work item must be initialized before it can be used. This records the work item’s handler function and
marks it as not pending.

A work item may be queued (K_WORK_QUEUED) by submitting it to a workqueue by an ISR or a thread.
Submitting a work item appends the work item to the workqueue’s queue. Once the workqueue’s thread
has processed all of the preceding work items in its queue the thread will remove the next work item
from the queue and invoke the work item’s handler function. Depending on the scheduling priority of
the workqueue’s thread, and the work required by other items in the queue, a queued work item may be
processed quickly or it may remain in the queue for an extended period of time.

A delayable work item may be scheduled (K_WORK_DELAYED) to a workqueue; see Delayable Work.

A work item will be running (K_WORK_RUNNING) when it is running on a work queue, and may also be
canceling (K_WORK_CANCELING) if it started running before a thread has requested that it be cancelled.

A work item can be in multiple states; for example it can be:

• running on a queue;

• marked canceling (because a thread used k_work_cancel_sync() to wait until the work item
completed);

• queued to run again on the same queue;

• scheduled to be submitted to a (possibly different) queue

all simultaneously. A work item that is in any of these states is pending (k_work_is_pending()) or busy
(k_work_busy_get()).

A handler function can use any kernel API available to threads. However, operations that are poten-
tially blocking (e.g. taking a semaphore) must be used with care, since the workqueue cannot process
subsequent work items in its queue until the handler function finishes executing.

The single argument that is passed to a handler function can be ignored if it is not required. If the
handler function requires additional information about the work it is to perform, the work item can
be embedded in a larger data structure. The handler function can then use the argument value to
compute the address of the enclosing data structure with CONTAINER_OF , and thereby obtain access to
the additional information it needs.

A work item is typically initialized once and then submitted to a specific workqueue whenever work
needs to be performed. If an ISR or a thread attempts to submit a work item that is already queued the
work item is not affected; the work item remains in its current place in the workqueue’s queue, and the
work is only performed once.

A handler function is permitted to re-submit its work item argument to the workqueue, since the work
item is no longer queued at that time. This allows the handler to execute work in stages, without unduly
delaying the processing of other work items in the workqueue’s queue.

Important: A pending work item must not be altered until the item has been processed by the
workqueue thread. This means a work item must not be re-initialized while it is busy. Furthermore,
any additional information the work item’s handler function needs to perform its work must not be
altered until the handler function has finished executing.

Delayable Work An ISR or a thread may need to schedule a work item that is to be processed only
after a specified period of time, rather than immediately. This can be done by scheduling a delayable
work item to be submitted to a workqueue at a future time.

A delayable work item contains a standard work item but adds fields that record when and where the
item should be submitted.

7.13. Kernel Services 619

Zephyr Project Documentation, Release 2.7.0-rc2

A delayable work item is initialized and scheduled to a workqueue in a similar manner to a standard work
item, although different kernel APIs are used. When the schedule request is made the kernel initiates a
timeout mechanism that is triggered after the specified delay has elapsed. Once the timeout occurs the
kernel submits the work item to the specified workqueue, where it remains queued until it is processed
in the standard manner.

Note that work handler used for delayable still receives a pointer to the underlying non-delayable work
structure, which is not publicly accessible from k_work_delayable . To get access to an object that
contains the delayable work object use this idiom:

static void work_handler(struct k_work *work)
{

struct k_work_delayable *dwork = k_work_delayable_from_work(work);
struct work_context *ctx = CONTAINER_OF(dwork, struct work_context,

timed_work);
...

Triggered Work The k_work_poll_submit() interface schedules a triggered work item in response to
a poll event (see Polling API), that will call a user-defined function when a monitored resource becomes
available or poll signal is raised, or a timeout occurs. In contrast to k_poll() , the triggered work does
not require a dedicated thread waiting or actively polling for a poll event.

A triggered work item is a standard work item that has the following added properties:

• A pointer to an array of poll events that will trigger work item submissions to the workqueue

• A size of the array containing poll events.

A triggered work item is initialized and submitted to a workqueue in a similar manner to a standard
work item, although dedicated kernel APIs are used. When a submit request is made, the kernel begins
observing kernel objects specified by the poll events. Once at least one of the observed kernel object’s
changes state, the work item is submitted to the specified workqueue, where it remains queued until it
is processed in the standard manner.

Important: The triggered work item as well as the referenced array of poll events have to be valid and
cannot be modified for a complete triggered work item lifecycle, from submission to work item execution
or cancellation.

An ISR or a thread may cancel a triggered work item it has submitted as long as it is still waiting for a
poll event. In such case, the kernel stops waiting for attached poll events and the specified work is not
executed. Otherwise the cancellation cannot be performed.

System Workqueue The kernel defines a workqueue known as the system workqueue, which is available
to any application or kernel code that requires workqueue support. The system workqueue is optional,
and only exists if the application makes use of it.

Important: Additional workqueues should only be defined when it is not possible to submit new work
items to the system workqueue, since each new workqueue incurs a significant cost in memory footprint.
A new workqueue can be justified if it is not possible for its work items to co-exist with existing system
workqueue work items without an unacceptable impact; for example, if the new work items perform
blocking operations that would delay other system workqueue processing to an unacceptable degree.

How to Use Workqueues

620 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Defining and Controlling a Workqueue A workqueue is defined using a variable of type k_work_q .
The workqueue is initialized by defining the stack area used by its thread, initializing the k_work_q ,
either zeroing its memory or calling k_work_queue_init() , and then calling k_work_queue_start() .
The stack area must be defined using K_THREAD_STACK_DEFINE to ensure it is properly set up in memory.

The following code defines and initializes a workqueue:

define MY_STACK_SIZE 512
define MY_PRIORITY 5

K_THREAD_STACK_DEFINE(my_stack_area, MY_STACK_SIZE);

struct k_work_q my_work_q;

k_work_queue_init(&my_work_q);

k_work_queue_start(&my_work_q, my_stack_area,
K_THREAD_STACK_SIZEOF(my_stack_area), MY_PRIORITY,
NULL);

In addition the queue identity and certain behavior related to thread rescheduling can be controlled by
the optional final parameter; see k_work_queue_start() for details.

The following API can be used to interact with a workqueue:

• k_work_queue_drain() can be used to block the caller until the work queue has no items left.
Work items resubmitted from the workqueue thread are accepted while a queue is draining, but
work items from any other thread or ISR are rejected. The restriction on submitting more work
can be extended past the completion of the drain operation in order to allow the blocking thread
to perform additional work while the queue is “plugged”. Note that draining a queue has no effect
on scheduling or processing delayable items, but if the queue is plugged and the deadline expires
the item will silently fail to be submitted.

• k_work_queue_unplug() removes any previous block on submission to the queue due to a previous
drain operation.

Submitting a Work Item A work item is defined using a variable of type k_work . It must be initial-
ized by calling k_work_init() , unless it is defined using K_WORK_DEFINE in which case initialization is
performed at compile-time.

An initialized work item can be submitted to the system workqueue by calling k_work_submit() , or to
a specified workqueue by calling k_work_submit_to_queue() .

The following code demonstrates how an ISR can offload the printing of error messages to the system
workqueue. Note that if the ISR attempts to resubmit the work item while it is still queued, the work
item is left unchanged and the associated error message will not be printed.

struct device_info {
struct k_work work;
char name[16]

} my_device;

void my_isr(void *arg)
{

...
if (error detected) {

k_work_submit(&my_device.work);
}
...

}
(continues on next page)

7.13. Kernel Services 621

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

void print_error(struct k_work *item)
{

struct device_info *the_device =
CONTAINER_OF(item, struct device_info, work);

printk("Got error on device %s\n", the_device->name);
}

/* initialize name info for a device */
strcpy(my_device.name, "FOO_dev");

/* initialize work item for printing device's error messages */
k_work_init(&my_device.work, print_error);

/* install my_isr() as interrupt handler for the device (not shown) */
...

The following API can be used to check the status of or synchronize with the work item:

• k_work_busy_get() returns a snapshot of flags indicating work item state. A zero value indicates
the work is not scheduled, submitted, being executed, or otherwise still being referenced by the
workqueue infrastructure.

• k_work_is_pending() is a helper that indicates true if and only if the work is scheduled, queued,
or running.

• k_work_flush() may be invoked from threads to block until the work item has completed. It
returns immediately if the work is not pending.

• k_work_cancel() attempts to prevent the work item from being executed. This may or may not
be successful. This is safe to invoke from ISRs.

• k_work_cancel_sync() may be invoked from threads to block until the work completes; it will
return immediately if the cancellation was successful or not necessary (the work wasn’t submit-
ted or running). This can be used after k_work_cancel() is invoked (from an ISR)` to confirm
completion of an ISR-initiated cancellation.

Scheduling a Delayable Work Item A delayable work item is defined using a variable of type
k_work_delayable . It must be initialized by calling k_work_init_delayable() .

For delayed work there are two common use cases, depending on whether a deadline should be extended
if a new event occurs. An example is collecting data that comes in asynchronously, e.g. characters from
a UART associated with a keyboard. There are two APIs that submit work after a delay:

• k_work_schedule() (or k_work_schedule_for_queue()) schedules work to be executed at a spe-
cific time or after a delay. Further attempts to schedule the same item with this API before the delay
completes will not change the time at which the item will be submitted to its queue. Use this if
the policy is to keep collecting data until a specified delay since the first unprocessed data was
received;

• k_work_reschedule() (or k_work_reschedule_for_queue()) unconditionally sets the deadline
for the work, replacing any previous incomplete delay and changing the destination queue if neces-
sary. Use this if the policy is to keep collecting data until a specified delay since the last unprocessed
data was received.

If the work item is not scheduled both APIs behave the same. If K_NO_WAIT is specified as the delay the
behavior is as if the item was immediately submitted directly to the target queue, without waiting for a
minimal timeout (unless k_work_schedule() is used and a previous delay has not completed).

Both also have variants that allow control of the queue used for submission.

622 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

The helper function k_work_delayable_from_work() can be used to get a pointer to the containing
k_work_delayable from a pointer to k_work that is passed to a work handler function.

The following additional API can be used to check the status of or synchronize with the work item:

• k_work_delayable_busy_get() is the analog to k_work_busy_get() for delayable work.

• k_work_delayable_is_pending() is the analog to k_work_is_pending() for delayable work.

• k_work_flush_delayable() is the analog to k_work_flush() for delayable work.

• k_work_cancel_delayable() is the analog to k_work_cancel() for delayable work; similarly
with k_work_cancel_delayable_sync() .

Synchronizing with Work Items While the state of both regular and delayable work items can be
determined from any context using k_work_busy_get() and k_work_delayable_busy_get() some
use cases require synchronizing with work items after they’ve been submitted. k_work_flush() ,
k_work_cancel_sync() , and k_work_cancel_delayable_sync() can be invoked from thread context
to wait until the requested state has been reached.

These APIs must be provided with a k_work_sync object that has no application-inspectable components
but is needed to provide the synchronization objects. These objects should not be allocated on a stack if
the code is expected to work on architectures with :kconfig:`CONFIG_KERNEL_COHERENCE`.

Workqueue Best Practices

Avoid Race Conditions Sometimes the data a work item must process is naturally thread-safe, for
example when it’s put into a k_queue by some thread and processed in the work thread. More often
external synchronization is required to avoid data races: cases where the work thread might inspect or
manipulate shared state that’s being accessed by another thread or interrupt. Such state might be a flag
indicating that work needs to be done, or a shared object that is filled by an ISR or thread and read by
the work handler.

For simple flags Atomic Services may be sufficient. In other cases spin locks (k_spinlock_t) or thread-
aware locks (k_sem, k_mutex , . . .) may be used to ensure data races don’t occur.

If the selected lock mechanism can sleep then allowing the work thread to sleep will starve other work
queue items, which may need to make progress in order to get the lock released. Work handlers should
try to take the lock with its no-wait path. For example:

static void work_handler(struct work *work)
{

struct work_context *parent = CONTAINER_OF(work, struct work_context,
work_item);

if (k_mutex_lock(&parent->lock, K_NO_WAIT) != 0) {
/* NB: Submit will fail if the work item is being cancelled. */
(void)k_work_submit(work);
return;

}

/* do stuff under lock */
k_mutex_unlock(&parent->lock);
/* do stuff without lock */

}

Be aware that if the lock is held by a thread with a lower priority than the work queue the resubmission
may starve the thread that would release the lock, causing the application to fail. Where the idiom above
is required a delayable work item is preferred, and the work should be (re-)scheduled with a non-zero
delay to allow the thread holding the lock to make progress.

7.13. Kernel Services 623

Zephyr Project Documentation, Release 2.7.0-rc2

Note that submitting from the work handler can fail if the work item had been cancelled. Generally this
is acceptable, since the cancellation will complete once the handler finishes. If it is not, the code above
must take other steps to notify the application that the work could not be performed.

Work items in isolation are self-locking, so you don’t need to hold an external lock just to submit or
schedule them. Even if you use external state protected by such a lock to prevent further resubmission,
it’s safe to do the resubmit as long as you’re sure that eventually the item will take its lock and check that
state to determine whether it should do anything. Where a delayable work item is being rescheduled in
its handler due to inability to take the lock some other self-locking state, such as an atomic flag set by the
application/driver when the cancel is initiated, would be required to detect the cancellation and avoid
the cancelled work item being submitted again after the deadline.

Check Return Values All work API functions return status of the underlying operation, and in many
cases it is important to verify that the intended result was obtained.

• Submitting a work item (k_work_submit_to_queue()) can fail if the work is being cancelled or
the queue is not accepting new items. If this happens the work will not be executed, which could
cause a subsystem that is animated by work handler activity to become non-responsive.

• Asynchronous cancellation (k_work_cancel() or k_work_cancel_delayable()) can complete
while the work item is still being run by a handler. Proceeding to manipulate state shared with
the work handler will result in data races that can cause failures.

Many race conditions have been present in Zephyr code because the results of an operation were not
checked.

There may be good reason to believe that a return value indicating that the operation did not complete as
expected is not a problem. In those cases the code should clearly document this, by (1) casting the return
value to void to indicate that the result is intentionally ignored, and (2) documenting what happens in
the unexpected case. For example:

/* If this fails, the work handler will check pub->active and
* exit without transmitting.
*/

(void)k_work_cancel_delayable(&pub->timer);

However in such a case the following code must still avoid data races, as it cannot guarantee that the
work thread is not accessing work-related state.

Don’t Optimize Prematurely The workqueue API is designed to be safe when invoked from multiple
threads and interrupts. Attempts to externally inspect a work item’s state and make decisions based on
the result are likely to create new problems.

So when new work comes in, just submit it. Don’t attempt to “optimize” by checking whether
the work item is already submitted by inspecting snapshot state with k_work_is_pending() or
k_work_busy_get() , or checking for a non-zero delay from k_work_delayable_remaining_get() .
Those checks are fragile: a “busy” indication can be obsolete by the time the test is returned, and a
“not-busy” indication can also be wrong if work is submitted from multiple contexts, or (for delayable
work) if the deadline has completed but the work is still in queued or running state.

A general best practice is to always maintain in shared state some condition that can be checked by the
handler to confirm whether there is work to be done. This way you can use the work handler as the
standard cleanup path: rather than having to deal with cancellation and cleanup at points where items
are submitted, you may be able to have everything done in the work handler itself.

A rare case where you could safely use k_work_is_pending() is as a check to avoid invoking
k_work_flush() or k_work_cancel_sync() , if you are certain that nothing else might submit the work
while you’re checking (generally because you’re holding a lock that prevents access to state used for
submission).

624 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Suggested Uses Use the system workqueue to defer complex interrupt-related processing from an ISR
to a shared thread. This allows the interrupt-related processing to be done promptly without compro-
mising the system’s ability to respond to subsequent interrupts, and does not require the application to
define and manage an additional thread to do the processing.

Configuration Options Related configuration options:

• :kconfig:`CONFIG_SYSTEM_WORKQUEUE_STACK_SIZE`

• :kconfig:`CONFIG_SYSTEM_WORKQUEUE_PRIORITY`

• :kconfig:`CONFIG_SYSTEM_WORKQUEUE_NO_YIELD`

API Reference

group workqueue_apis

Defines

K_WORK_DELAYABLE_DEFINE(work, work_handler)

Initialize a statically-defined delayable work item.

This macro can be used to initialize a statically-defined delayable work item, prior to its first
use. For example,

static K_WORK_DELAYABLE_DEFINE(<dwork>, <work_handler>);

Note that if the runtime dependencies support initialization with k_work_init_delayable() us-
ing that will eliminate the initialized object in ROM that is produced by this macro and copied
in at system startup.

Parameters

• work – Symbol name for delayable work item object

• work_handler – Function to invoke each time work item is processed.

K_WORK_USER_DEFINE(work, work_handler)

Initialize a statically-defined user work item.

This macro can be used to initialize a statically-defined user work item, prior to its first use.
For example,

static K_WORK_USER_DEFINE(<work>, <work_handler>);

Parameters

• work – Symbol name for work item object

• work_handler – Function to invoke each time work item is processed.

K_WORK_DEFINE(work, work_handler)

Initialize a statically-defined work item.

This macro can be used to initialize a statically-defined workqueue work item, prior to its first
use. For example,

7.13. Kernel Services 625

Zephyr Project Documentation, Release 2.7.0-rc2

static K_WORK_DEFINE(<work>, <work_handler>);

Parameters

• work – Symbol name for work item object

• work_handler – Function to invoke each time work item is processed.

K_DELAYED_WORK_DEFINE(work, work_handler)

Initialize a statically-defined delayed work item.

This macro can be used to initialize a statically-defined workqueue delayed work item, prior
to its first use. For example,

static K_DELAYED_WORK_DEFINE(<work>, <work_handler>);

Parameters

• work – Symbol name for delayed work item object

• work_handler – Function to invoke each time work item is processed.

Typedefs

typedef void (*k_work_handler_t)(struct k_work *work)

The signature for a work item handler function.

The function will be invoked by the thread animating a work queue.

Param work the work item that provided the handler.

typedef void (*k_work_user_handler_t)(struct k_work_user *work)

Work item handler function type for user work queues.

A work item’s handler function is executed by a user workqueue’s thread when the work item
is processed by the workqueue.

Param work Address of the work item.

Return N/A

Enums

enum [anonymous]

Values:

enumerator K_WORK_RUNNING = BIT(K_WORK_RUNNING_BIT)

Flag indicating a work item that is running under a work queue thread.

Accessed via k_work_busy_get(). May co-occur with other flags.

enumerator K_WORK_CANCELING = BIT(K_WORK_CANCELING_BIT)

Flag indicating a work item that is being canceled.

626 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Accessed via k_work_busy_get(). May co-occur with other flags.

enumerator K_WORK_QUEUED = BIT(K_WORK_QUEUED_BIT)

Flag indicating a work item that has been submitted to a queue but has not started run-
ning.

Accessed via k_work_busy_get(). May co-occur with other flags.

enumerator K_WORK_DELAYED = BIT(K_WORK_DELAYED_BIT)

Flag indicating a delayed work item that is scheduled for submission to a queue.

Accessed via k_work_busy_get(). May co-occur with other flags.

Functions

void k_work_init(struct k_work *work, k_work_handler_t handler)

Initialize a (non-delayable) work structure.

This must be invoked before submitting a work structure for the first time. It need not be
invoked again on the same work structure. It can be re-invoked to change the associated
handler, but this must be done when the work item is idle.

Function properties (list may not be complete) isr-ok

Parameters

• work – the work structure to be initialized.

• handler – the handler to be invoked by the work item.

int k_work_busy_get(const struct k_work *work)

Busy state flags from the work item.

A zero return value indicates the work item appears to be idle.

Function properties (list may not be complete) isr-ok

Note: This is a live snapshot of state, which may change before the result is checked. Use
locks where appropriate.

Parameters

• work – pointer to the work item.

Returns a mask of flags K_WORK_DELAYED, K_WORK_QUEUED,
K_WORK_RUNNING, and K_WORK_CANCELING.

static inline bool k_work_is_pending(const struct k_work *work)

Test whether a work item is currently pending.

Wrapper to determine whether a work item is in a non-idle dstate.

Function properties (list may not be complete) isr-ok

7.13. Kernel Services 627

Zephyr Project Documentation, Release 2.7.0-rc2

Note: This is a live snapshot of state, which may change before the result is checked. Use
locks where appropriate.

Parameters

• work – pointer to the work item.

Returns true if and only if k_work_busy_get() returns a non-zero value.

int k_work_submit_to_queue(struct k_work_q *queue, struct k_work *work)
Submit a work item to a queue.

Function properties (list may not be complete) isr-ok

Parameters

• queue – pointer to the work queue on which the item should run. If NULL the
queue from the most recent submission will be used.

• work – pointer to the work item.

Return values

• 0 – if work was already submitted to a queue

• 1 – if work was not submitted and has been queued to queue

• 2 – if work was running and has been queued to the queue that was running it

• -EBUSY –

– if work submission was rejected because the work item is cancelling; or

– queue is draining; or

– queue is plugged.

• -EINVAL – if queue is null and the work item has never been run.

• -ENODEV – if queue has not been started.

int k_work_submit(struct k_work *work)
Submit a work item to the system queue.

Function properties (list may not be complete) isr-ok

Parameters

• work – pointer to the work item.

Returns as with k_work_submit_to_queue().

bool k_work_flush(struct k_work *work, struct k_work_sync *sync)
Wait for last-submitted instance to complete.

Resubmissions may occur while waiting, including chained submissions (from within the han-
dler).

Note: Be careful of caller and work queue thread relative priority. If this function sleeps
it will not return until the work queue thread completes the tasks that allow this thread to
resume.

628 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Note: Behavior is undefined if this function is invoked on work from a work queue running
work.

Parameters

• work – pointer to the work item.

• sync – pointer to an opaque item containing state related to the pending can-
cellation. The object must persist until the call returns, and be accessible from
both the caller thread and the work queue thread. The object must not be
used for any other flush or cancel operation until this one completes. On ar-
chitectures with CONFIG_KERNEL_COHERENCE the object must be allocated
in coherent memory.

Return values

• true – if call had to wait for completion

• false – if work was already idle

int k_work_cancel(struct k_work *work)

Cancel a work item.

This attempts to prevent a pending (non-delayable) work item from being processed by re-
moving it from the work queue. If the item is being processed, the work item will continue to
be processed, but resubmissions are rejected until cancellation completes.

If this returns zero cancellation is complete, otherwise something (probably a work queue
thread) is still referencing the item.

See also k_work_cancel_sync().

Function properties (list may not be complete) isr-ok

Parameters

• work – pointer to the work item.

Returns the k_work_busy_get() status indicating the state of the item after all can-
cellation steps performed by this call are completed.

bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync)

Cancel a work item and wait for it to complete.

Same as k_work_cancel() but does not return until cancellation is complete. This can be
invoked by a thread after k_work_cancel() to synchronize with a previous cancellation.

On return the work structure will be idle unless something submits it after the cancellation
was complete.

Note: Be careful of caller and work queue thread relative priority. If this function sleeps
it will not return until the work queue thread completes the tasks that allow this thread to
resume.

Note: Behavior is undefined if this function is invoked on work from a work queue running
work.

Parameters

7.13. Kernel Services 629

Zephyr Project Documentation, Release 2.7.0-rc2

• work – pointer to the work item.

• sync – pointer to an opaque item containing state related to the pending can-
cellation. The object must persist until the call returns, and be accessible from
both the caller thread and the work queue thread. The object must not be
used for any other flush or cancel operation until this one completes. On ar-
chitectures with CONFIG_KERNEL_COHERENCE the object must be allocated
in coherent memory.

Return values

• true – if work was pending (call had to wait for cancellation of a running
handler to complete, or scheduled or submitted operations were cancelled);

• false – otherwise

void k_work_queue_init(struct k_work_q *queue)

Initialize a work queue structure.

This must be invoked before starting a work queue structure for the first time. It need not be
invoked again on the same work queue structure.

Function properties (list may not be complete) isr-ok

Parameters

• queue – the queue structure to be initialized.

void k_work_queue_start(struct k_work_q *queue, k_thread_stack_t *stack, size_t stack_size, int
prio, const struct k_work_queue_config *cfg)

Initialize a work queue.

This configures the work queue thread and starts it running. The function should not be
re-invoked on a queue.

Parameters

• queue – pointer to the queue structure. It must be initialized in zeroed/bss
memory or with k_work_queue_init before use.

• stack – pointer to the work thread stack area.

• stack_size – size of the the work thread stack area, in bytes.

• prio – initial thread priority

• cfg – optional additional configuration parameters. Pass NULL if not required,
to use the defaults documented in k_work_queue_config.

static inline k_tid_t k_work_queue_thread_get(struct k_work_q *queue)

Access the thread that animates a work queue.

This is necessary to grant a work queue thread access to things the work items it will process
are expected to use.

Parameters

• queue – pointer to the queue structure.

Returns the thread associated with the work queue.

int k_work_queue_drain(struct k_work_q *queue, bool plug)

Wait until the work queue has drained, optionally plugging it.

This blocks submission to the work queue except when coming from queue thread, and blocks
the caller until no more work items are available in the queue.

630 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

If plug is true then submission will continue to be blocked after the drain operation completes
until k_work_queue_unplug() is invoked.

Note that work items that are delayed are not yet associated with their work queue. They
must be cancelled externally if a goal is to ensure the work queue remains empty. The plug
feature can be used to prevent delayed items from being submitted after the drain completes.

Parameters

• queue – pointer to the queue structure.

• plug – if true the work queue will continue to block new submissions after all
items have drained.

Return values

• 1 – if call had to wait for the drain to complete

• 0 – if call did not have to wait

• negative – if wait was interrupted or failed

int k_work_queue_unplug(struct k_work_q *queue)

Release a work queue to accept new submissions.

This releases the block on new submissions placed when k_work_queue_drain() is invoked
with the plug option enabled. If this is invoked before the drain completes new items may be
submitted as soon as the drain completes.

Function properties (list may not be complete) isr-ok

Parameters

• queue – pointer to the queue structure.

Return values

• 0 – if successfully unplugged

• -EALREADY – if the work queue was not plugged.

void k_work_init_delayable(struct k_work_delayable *dwork, k_work_handler_t handler)

Initialize a delayable work structure.

This must be invoked before scheduling a delayable work structure for the first time. It need
not be invoked again on the same work structure. It can be re-invoked to change the associ-
ated handler, but this must be done when the work item is idle.

Function properties (list may not be complete) isr-ok

Parameters

• dwork – the delayable work structure to be initialized.

• handler – the handler to be invoked by the work item.

static inline struct k_work_delayable *k_work_delayable_from_work(struct k_work *work)

Get the parent delayable work structure from a work pointer.

This function is necessary when a k_work_handler_t function is passed to
k_work_schedule_for_queue() and the handler needs to access data from the container
of the containing k_work_delayable .

Parameters

7.13. Kernel Services 631

Zephyr Project Documentation, Release 2.7.0-rc2

• work – Address passed to the work handler

Returns Address of the containing k_work_delayable structure.

int k_work_delayable_busy_get(const struct k_work_delayable *dwork)

Busy state flags from the delayable work item.

Function properties (list may not be complete) isr-ok

Note: This is a live snapshot of state, which may change before the result can be inspected.
Use locks where appropriate.

Parameters

• dwork – pointer to the delayable work item.

Returns a mask of flags K_WORK_DELAYED, K_WORK_QUEUED,
K_WORK_RUNNING, and K_WORK_CANCELING. A zero return value indi-
cates the work item appears to be idle.

static inline bool k_work_delayable_is_pending(const struct k_work_delayable *dwork)

Test whether a delayed work item is currently pending.

Wrapper to determine whether a delayed work item is in a non-idle state.

Function properties (list may not be complete) isr-ok

Note: This is a live snapshot of state, which may change before the result can be inspected.
Use locks where appropriate.

Parameters

• dwork – pointer to the delayable work item.

Returns true if and only if k_work_delayable_busy_get() returns a non-zero value.

static inline k_ticks_t k_work_delayable_expires_get(const struct k_work_delayable *dwork)

Get the absolute tick count at which a scheduled delayable work will be submitted.

Function properties (list may not be complete) isr-ok

Note: This is a live snapshot of state, which may change before the result can be inspected.
Use locks where appropriate.

Parameters

• dwork – pointer to the delayable work item.

Returns the tick count when the timer that will schedule the work item will expire,
or the current tick count if the work is not scheduled.

632 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline k_ticks_t k_work_delayable_remaining_get(const struct k_work_delayable *dwork)

Get the number of ticks until a scheduled delayable work will be submitted.

Function properties (list may not be complete) isr-ok

Note: This is a live snapshot of state, which may change before the result can be inspected.
Use locks where appropriate.

Parameters

• dwork – pointer to the delayable work item.

Returns the number of ticks until the timer that will schedule the work item will
expire, or zero if the item is not scheduled.

int k_work_schedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork,
k_timeout_t delay)

Submit an idle work item to a queue after a delay.

Unlike k_work_reschedule_for_queue() this is a no-op if the work item is already scheduled or
submitted, even if delay is K_NO_WAIT.

Function properties (list may not be complete) isr-ok

Parameters

• queue – the queue on which the work item should be submitted after the delay.

• dwork – pointer to the delayable work item.

• delay – the time to wait before submitting the work item. If K_NO_WAIT and
the work is not pending this is equivalent to k_work_submit_to_queue().

Return values

• 0 – if work was already scheduled or submitted.

• 1 – if work has been scheduled.

• -EBUSY – if delay is K_NO_WAIT and k_work_submit_to_queue() fails with this
code.

• -EINVAL – if delay is K_NO_WAIT and k_work_submit_to_queue() fails with this
code.

• -ENODEV – if delay is K_NO_WAIT and k_work_submit_to_queue() fails with this
code.

int k_work_schedule(struct k_work_delayable *dwork, k_timeout_t delay)

Submit an idle work item to the system work queue after a delay.

This is a thin wrapper around k_work_schedule_for_queue(), with all the API characteristcs of
that function.

Parameters

• dwork – pointer to the delayable work item.

• delay – the time to wait before submitting the work item. If K_NO_WAIT this is
equivalent to k_work_submit_to_queue().

Returns as with k_work_schedule_for_queue().

7.13. Kernel Services 633

Zephyr Project Documentation, Release 2.7.0-rc2

int k_work_reschedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork,
k_timeout_t delay)

Reschedule a work item to a queue after a delay.

Unlike k_work_schedule_for_queue() this function can change the deadline of a scheduled
work item, and will schedule a work item that isn’t idle (e.g. is submitted or running). This
function does not affect (“unsubmit”) a work item that has been submitted to a queue.

Function properties (list may not be complete) isr-ok

Note: If delay is K_NO_WAIT (“no delay”) the return values are as with
k_work_submit_to_queue().

Parameters

• queue – the queue on which the work item should be submitted after the delay.

• dwork – pointer to the delayable work item.

• delay – the time to wait before submitting the work item. If K_NO_WAIT this
is equivalent to k_work_submit_to_queue() after canceling any previous sched-
uled submission.

Return values

• 0 – if delay is K_NO_WAIT and work was already on a queue

• 1 – if

– delay is K_NO_WAIT and work was not submitted but has now been queued
to queue; or

– delay not K_NO_WAIT and work has been scheduled

• 2 – if delay is K_NO_WAIT and work was running and has been queued to the
queue that was running it

• -EBUSY – if delay is K_NO_WAIT and k_work_submit_to_queue() fails with this
code.

• -EINVAL – if delay is K_NO_WAIT and k_work_submit_to_queue() fails with this
code.

• -ENODEV – if delay is K_NO_WAIT and k_work_submit_to_queue() fails with this
code.

int k_work_reschedule(struct k_work_delayable *dwork, k_timeout_t delay)

Reschedule a work item to the system work queue after a delay.

This is a thin wrapper around k_work_reschedule_for_queue(), with all the API characteristcs
of that function.

Parameters

• dwork – pointer to the delayable work item.

• delay – the time to wait before submitting the work item.

Returns as with k_work_reschedule_for_queue().

bool k_work_flush_delayable(struct k_work_delayable *dwork, struct k_work_sync *sync)

Flush delayable work.

If the work is scheduled, it is immediately submitted. Then the caller blocks until the work
completes, as with k_work_flush().

634 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Note: Be careful of caller and work queue thread relative priority. If this function sleeps
it will not return until the work queue thread completes the tasks that allow this thread to
resume.

Note: Behavior is undefined if this function is invoked on dwork from a work queue running
dwork.

Parameters

• dwork – pointer to the delayable work item.

• sync – pointer to an opaque item containing state related to the pending can-
cellation. The object must persist until the call returns, and be accessible from
both the caller thread and the work queue thread. The object must not be
used for any other flush or cancel operation until this one completes. On ar-
chitectures with CONFIG_KERNEL_COHERENCE the object must be allocated
in coherent memory.

Return values

• true – if call had to wait for completion

• false – if work was already idle

int k_work_cancel_delayable(struct k_work_delayable *dwork)

Cancel delayable work.

Similar to k_work_cancel() but for delayable work. If the work is scheduled or submitted it is
canceled. This function does not wait for the cancellation to complete.

Function properties (list may not be complete) isr-ok

Note: The work may still be running when this returns. Use k_work_flush_delayable() or
k_work_cancel_delayable_sync() to ensure it is not running.

Note: Canceling delayable work does not prevent rescheduling it. It does prevent submitting
it until the cancellation completes.

Parameters

• dwork – pointer to the delayable work item.

Returns the k_work_delayable_busy_get() status indicating the state of the item after
all cancellation steps performed by this call are completed.

bool k_work_cancel_delayable_sync(struct k_work_delayable *dwork, struct k_work_sync
*sync)

Cancel delayable work and wait.

Like k_work_cancel_delayable() but waits until the work becomes idle.

Note: Canceling delayable work does not prevent rescheduling it. It does prevent submitting
it until the cancellation completes.

7.13. Kernel Services 635

Zephyr Project Documentation, Release 2.7.0-rc2

Note: Be careful of caller and work queue thread relative priority. If this function sleeps
it will not return until the work queue thread completes the tasks that allow this thread to
resume.

Note: Behavior is undefined if this function is invoked on dwork from a work queue running
dwork.

Parameters

• dwork – pointer to the delayable work item.

• sync – pointer to an opaque item containing state related to the pending can-
cellation. The object must persist until the call returns, and be accessible from
both the caller thread and the work queue thread. The object must not be
used for any other flush or cancel operation until this one completes. On ar-
chitectures with CONFIG_KERNEL_COHERENCE the object must be allocated
in coherent memory.

Return values

• true – if work was not idle (call had to wait for cancellation of a running
handler to complete, or scheduled or submitted operations were cancelled);

• false – otherwise

static inline bool k_work_pending(const struct k_work *work)

static inline void k_work_q_start(struct k_work_q *work_q, k_thread_stack_t *stack, size_t
stack_size, int prio)

static inline void k_delayed_work_init(struct k_delayed_work *work, k_work_handler_t
handler)

static inline int k_delayed_work_submit_to_queue(struct k_work_q *work_q, struct
k_delayed_work *work, k_timeout_t delay)

static inline int k_delayed_work_submit(struct k_delayed_work *work, k_timeout_t delay)

static inline int k_delayed_work_cancel(struct k_delayed_work *work)

static inline bool k_delayed_work_pending(struct k_delayed_work *work)

static inline int32_t k_delayed_work_remaining_get(struct k_delayed_work *work)

static inline k_ticks_t k_delayed_work_expires_ticks(struct k_delayed_work *work)

static inline k_ticks_t k_delayed_work_remaining_ticks(struct k_delayed_work *work)

static inline void k_work_user_init(struct k_work_user *work, k_work_user_handler_t handler)

Initialize a userspace work item.

This routine initializes a user workqueue work item, prior to its first use.

Parameters

• work – Address of work item.

• handler – Function to invoke each time work item is processed.

Returns N/A

636 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline bool k_work_user_is_pending(struct k_work_user *work)

Check if a userspace work item is pending.

This routine indicates if user work item work is pending in a workqueue’s queue.

Function properties (list may not be complete) isr-ok

Note: Checking if the work is pending gives no guarantee that the work will still be pending
when this information is used. It is up to the caller to make sure that this information is used
in a safe manner.

Parameters

• work – Address of work item.

Returns true if work item is pending, or false if it is not pending.

static inline int k_work_user_submit_to_queue(struct k_work_user_q *work_q, struct
k_work_user *work)

Submit a work item to a user mode workqueue.

Submits a work item to a workqueue that runs in user mode. A temporary memory allocation
is made from the caller’s resource pool which is freed once the worker thread consumes the
k_work item. The workqueue thread must have memory access to the k_work item being
submitted. The caller must have permission granted on the work_q parameter’s queue object.

Function properties (list may not be complete) isr-ok

Parameters

• work_q – Address of workqueue.

• work – Address of work item.

Return values

• -EBUSY – if the work item was already in some workqueue

• -ENOMEM – if no memory for thread resource pool allocation

• 0 – Success

void k_work_user_queue_start(struct k_work_user_q *work_q, k_thread_stack_t *stack, size_t
stack_size, int prio, const char *name)

Start a workqueue in user mode.

This works identically to k_work_queue_start() except it is callable from user mode, and the
worker thread created will run in user mode. The caller must have permissions granted on
both the work_q parameter’s thread and queue objects, and the same restrictions on priority
apply as k_thread_create().

Parameters

• work_q – Address of workqueue.

• stack – Pointer to work queue thread’s stack space, as defined by
K_THREAD_STACK_DEFINE()

• stack_size – Size of the work queue thread’s stack (in bytes), which should ei-
ther be the same constant passed to K_THREAD_STACK_DEFINE() or the value
of K_THREAD_STACK_SIZEOF().

7.13. Kernel Services 637

Zephyr Project Documentation, Release 2.7.0-rc2

• prio – Priority of the work queue’s thread.

• name – optional thread name. If not null a copy is made into the thread’s name
buffer.

Returns N/A

void k_work_poll_init(struct k_work_poll *work, k_work_handler_t handler)

Initialize a triggered work item.

This routine initializes a workqueue triggered work item, prior to its first use.

Parameters

• work – Address of triggered work item.

• handler – Function to invoke each time work item is processed.

Returns N/A

int k_work_poll_submit_to_queue(struct k_work_q *work_q, struct k_work_poll *work, struct
k_poll_event *events, int num_events, k_timeout_t timeout)

Submit a triggered work item.

This routine schedules work item work to be processed by workqueue work_q when one of
the given events is signaled. The routine initiates internal poller for the work item and then
returns to the caller. Only when one of the watched events happen the work item is actually
submitted to the workqueue and becomes pending.

Submitting a previously submitted triggered work item that is still waiting for the event can-
cels the existing submission and reschedules it the using the new event list. Note that this
behavior is inherently subject to race conditions with the pre-existing triggered work item
and work queue, so care must be taken to synchronize such resubmissions externally.

Function properties (list may not be complete) isr-ok

Warning: Provided array of events as well as a triggered work item must be placed in
persistent memory (valid until work handler execution or work cancellation) and cannot
be modified after submission.

Parameters

• work_q – Address of workqueue.

• work – Address of delayed work item.

• events – An array of events which trigger the work.

• num_events – The number of events in the array.

• timeout – Timeout after which the work will be scheduled for execution even
if not triggered.

Return values

• 0 – Work item started watching for events.

• -EINVAL – Work item is being processed or has completed its work.

• -EADDRINUSE – Work item is pending on a different workqueue.

int k_work_poll_submit(struct k_work_poll *work, struct k_poll_event *events, int num_events,
k_timeout_t timeout)

638 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Submit a triggered work item to the system workqueue.

This routine schedules work item work to be processed by system workqueue when one of
the given events is signaled. The routine initiates internal poller for the work item and then
returns to the caller. Only when one of the watched events happen the work item is actually
submitted to the workqueue and becomes pending.

Submitting a previously submitted triggered work item that is still waiting for the event can-
cels the existing submission and reschedules it the using the new event list. Note that this
behavior is inherently subject to race conditions with the pre-existing triggered work item
and work queue, so care must be taken to synchronize such resubmissions externally.

Function properties (list may not be complete) isr-ok

Warning: Provided array of events as well as a triggered work item must not be modified
until the item has been processed by the workqueue.

Parameters

• work – Address of delayed work item.

• events – An array of events which trigger the work.

• num_events – The number of events in the array.

• timeout – Timeout after which the work will be scheduled for execution even
if not triggered.

Return values

• 0 – Work item started watching for events.

• -EINVAL – Work item is being processed or has completed its work.

• -EADDRINUSE – Work item is pending on a different workqueue.

int k_work_poll_cancel(struct k_work_poll *work)

Cancel a triggered work item.

This routine cancels the submission of triggered work item work. A triggered work item can
only be canceled if no event triggered work submission.

Function properties (list may not be complete) isr-ok

Parameters

• work – Address of delayed work item.

Return values

• 0 – Work item canceled.

• -EINVAL – Work item is being processed or has completed its work.

struct k_work

#include <kernel.h> A structure used to submit work.

struct k_work_delayable

#include <kernel.h> A structure used to submit work after a delay.

7.13. Kernel Services 639

Zephyr Project Documentation, Release 2.7.0-rc2

struct k_work_sync

#include <kernel.h> A structure holding internal state for a pending synchronous operation
on a work item or queue.

Instances of this type are provided by the caller for invocation of k_work_flush(),
k_work_cancel_sync() and sibling flush and cancel APIs. A referenced object must persist until
the call returns, and be accessible from both the caller thread and the work queue thread.

Note: If CONFIG_KERNEL_COHERENCE is enabled the object must be allocated in coherent
memory; see arch_mem_coherent(). The stack on these architectures is generally not coherent.
be stack-allocated. Violations are detected by runtime assertion.

struct k_work_queue_config

#include <kernel.h> A structure holding optional configuration items for a work queue.

This structure, and values it references, are not retained by k_work_queue_start().

Public Members

const char *name

The name to be given to the work queue thread.

If left null the thread will not have a name.

bool no_yield

Control whether the work queue thread should yield between items.

Yielding between items helps guarantee the work queue thread does not starve other
threads, including cooperative ones released by a work item. This is the default behavior.

Set this to true to prevent the work queue thread from yielding between items. This may
be appropriate when a sequence of items should complete without yielding control.

struct k_work_q

#include <kernel.h> A structure used to hold work until it can be processed.

struct k_delayed_work

#include <kernel.h>

Zephyr Without Threads

Thread support is not necessary in some applications:

• Bootloaders

• Simple event-driven applications

• Examples intended to demonstrate core functionality

Thread support can be disabled in Zephyr by setting :kconfig:`CONFIG_MULTITHREADING` to n. Since
this configuration has a significant impact on Zephyr’s functionality and testing of it has been limited,
there are conditions on what can be expected to work in this configuration.

640 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

What Can be Expected to Work These core capabilities shall function correctly when :kcon-
fig:`CONFIG_MULTITHREADING` is disabled:

• The build system

• The ability to boot the application to main()

• Interrupt management

• The system clock including k_uptime_get()

• Timers, i.e. k_timer()

• Non-sleeping delays e.g. k_busy_wait() .

• Sleeping k_cpu_idle() .

• Pre main() drivers and subsystems initialization e.g. SYS_INIT .

• Memory Management

• Specifically identified drivers in certain subsystems, listed below.

The expectations above affect selection of other features; for example :kcon-
fig:`CONFIG_SYS_CLOCK_EXISTS` cannot be set to n.

What Cannot be Expected to Work Functionality that will not work with :kcon-
fig:`CONFIG_MULTITHREADING` includes majority of the kernel API:

• Threads

• Scheduling

• Workqueue Threads

• Polling API

• Semaphores

• Mutexes

• Condition Variables

• Data Passing

Subsystem Behavior Without Thread Support The sections below list driver and functional subsys-
tems that are expected to work to some degree when :kconfig:`CONFIG_MULTITHREADING` is dis-
abled. Subsystems that are not listed here should not be expected to work.

Some existing drivers within the listed subsystems do not work when threading is disabled, but are within
scope based on their subsystem, or may be sufficiently isolated that supporting them on a particular
platform is low-impact. Enhancements to add support to existing capabilities that were not originally
implemented to work with threads disabled will be considered.

Flash The Flash is expected to work for all SoC flash peripheral drivers. Bus-accessed devices like serial
memories may not be supported.

List/table of supported drivers to go here

GPIO The GPIO is expected to work for all SoC GPIO peripheral drivers. Bus-accessed devices like GPIO
extenders may not be supported.

List/table of supported drivers to go here

7.13. Kernel Services 641

Zephyr Project Documentation, Release 2.7.0-rc2

UART A subset of the UART is expected to work for all SoC UART peripheral drivers.

• Applications that select :kconfig:`CONFIG_UART_INTERRUPT_DRIVEN` may work, depending
on driver implementation.

• Applications that select :kconfig:`CONFIG_UART_ASYNC_API` may work, depending on driver
implementation.

• Applications that do not select either :kconfig:`CONFIG_UART_ASYNC_API` or :kcon-
fig:`CONFIG_UART_INTERRUPT_DRIVEN` are expected to work.

List/table of supported drivers to go here, including which API options are supported

Interrupts

An interrupt service routine (ISR) is a function that executes asynchronously in response to a hardware or
software interrupt. An ISR normally preempts the execution of the current thread, allowing the response
to occur with very low overhead. Thread execution resumes only once all ISR work has been completed.

• Concepts

– Multi-level Interrupt handling

– Preventing Interruptions

– Offloading ISR Work

• Implementation

– Defining a regular ISR

– Defining a ‘direct’ ISR

– Implementation Details

• Suggested Uses

• Configuration Options

• API Reference

Concepts Any number of ISRs can be defined (limited only by available RAM), subject to the constraints
imposed by underlying hardware.

An ISR has the following key properties:

• An interrupt request (IRQ) signal that triggers the ISR.

• A priority level associated with the IRQ.

• An interrupt handler function that is invoked to handle the interrupt.

• An argument value that is passed to that function.

An IDT (Interrupt Descriptor Table) or a vector table is used to associate a given interrupt source with a
given ISR. Only a single ISR can be associated with a specific IRQ at any given time.

Multiple ISRs can utilize the same function to process interrupts, allowing a single function to service
a device that generates multiple types of interrupts or to service multiple devices (usually of the same
type). The argument value passed to an ISR’s function allows the function to determine which interrupt
has been signaled.

The kernel provides a default ISR for all unused IDT entries. This ISR generates a fatal system error if
an unexpected interrupt is signaled.

642 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

The kernel supports interrupt nesting. This allows an ISR to be preempted in mid-execution if a higher
priority interrupt is signaled. The lower priority ISR resumes execution once the higher priority ISR has
completed its processing.

An ISR’s interrupt handler function executes in the kernel’s interrupt context. This context has its own
dedicated stack area (or, on some architectures, stack areas). The size of the interrupt context stack must
be capable of handling the execution of multiple concurrent ISRs if interrupt nesting support is enabled.

Important: Many kernel APIs can be used only by threads, and not by ISRs. In cases where a routine
may be invoked by both threads and ISRs the kernel provides the k_is_in_isr() API to allow the
routine to alter its behavior depending on whether it is executing as part of a thread or as part of an ISR.

Multi-level Interrupt handling A hardware platform can support more interrupt lines than natively-
provided through the use of one or more nested interrupt controllers. Sources of hardware interrupts
are combined into one line that is then routed to the parent controller.

If nested interrupt controllers are supported, :kconfig:`CONFIG_MULTI_LEVEL_INTERRUPTS`
should be set to 1, and :kconfig:`CONFIG_2ND_LEVEL_INTERRUPTS` and :kcon-
fig:`CONFIG_3RD_LEVEL_INTERRUPTS` configured as well, based on the hardware architecture.

A unique 32-bit interrupt number is assigned with information embedded in it to select and invoke the
correct Interrupt Service Routine (ISR). Each interrupt level is given a byte within this 32-bit number,
providing support for up to four interrupt levels using this arch, as illustrated and explained below:

9 2 0
_ _ _ _ _ _ _ _ _ _ _ _ _ (LEVEL 1)

5 | A |
_ _ _ _ _ _ _ _ _ _ _ _ _ _ (LEVEL 2)

| C B
_ _ _ _ _ _ _ (LEVEL 3)

D

There are three interrupt levels shown here.

• ‘-‘ means interrupt line and is numbered from 0 (right most).

• LEVEL 1 has 12 interrupt lines, with two lines (2 and 9) connected to nested controllers and one
device ‘A’ on line 4.

• One of the LEVEL 2 controllers has interrupt line 5 connected to a LEVEL 3 nested controller and
one device ‘C’ on line 3.

• The other LEVEL 2 controller has no nested controllers but has one device ‘B’ on line 2.

• The LEVEL 3 controller has one device ‘D’ on line 2.

Here’s how unique interrupt numbers are generated for each hardware interrupt. Let’s consider four
interrupts shown above as A, B, C, and D:

A -> 0x00000004
B -> 0x00000302
C -> 0x00000409
D -> 0x00030609

Note: The bit positions for LEVEL 2 and onward are offset by 1, as 0 means that interrupt number is not
present for that level. For our example, the LEVEL 3 controller has device D on line 2, connected to the
LEVEL 2 controller’s line 5, that is connected to the LEVEL 1 controller’s line 9 (2 -> 5 -> 9). Because of
the encoding offset for LEVEL 2 and onward, device D is given the number 0x00030609.

7.13. Kernel Services 643

Zephyr Project Documentation, Release 2.7.0-rc2

Preventing Interruptions In certain situations it may be necessary for the current thread to prevent
ISRs from executing while it is performing time-sensitive or critical section operations.

A thread may temporarily prevent all IRQ handling in the system using an IRQ lock. This lock can be
applied even when it is already in effect, so routines can use it without having to know if it is already
in effect. The thread must unlock its IRQ lock the same number of times it was locked before interrupts
can be once again processed by the kernel while the thread is running.

Important: The IRQ lock is thread-specific. If thread A locks out interrupts then performs an operation
that puts itself to sleep (e.g. sleeping for N milliseconds), the thread’s IRQ lock no longer applies once
thread A is swapped out and the next ready thread B starts to run.

This means that interrupts can be processed while thread B is running unless thread B has also locked
out interrupts using its own IRQ lock. (Whether interrupts can be processed while the kernel is switching
between two threads that are using the IRQ lock is architecture-specific.)

When thread A eventually becomes the current thread once again, the kernel re-establishes thread A’s
IRQ lock. This ensures thread A won’t be interrupted until it has explicitly unlocked its IRQ lock.

If thread A does not sleep but does make a higher-priority thread B ready, the IRQ lock will inhibit any
preemption that would otherwise occur. Thread B will not run until the next reschedule point reached
after releasing the IRQ lock.

Alternatively, a thread may temporarily disable a specified IRQ so its associated ISR does not execute
when the IRQ is signaled. The IRQ must be subsequently enabled to permit the ISR to execute.

Important: Disabling an IRQ prevents all threads in the system from being preempted by the associated
ISR, not just the thread that disabled the IRQ.

Zero Latency Interrupts Preventing interruptions by applying an IRQ lock may increase the observed
interrupt latency. A high interrupt latency, however, may not be acceptable for certain low-latency use-
cases.

The kernel addresses such use-cases by allowing interrupts with critical latency constraints to execute at
a priority level that cannot be blocked by interrupt locking. These interrupts are defined as zero-latency
interrupts. The support for zero-latency interrupts requires :kconfig:`CONFIG_ZERO_LATENCY_IRQS`
to be enabled. In addition to that, the flag IRQ_ZERO_LATENCY must be passed to IRQ_CONNECT or
IRQ_DIRECT_CONNECT macros to configure the particular interrupt with zero latency.

Zero-latency interrupts are expected to be used to manage hardware events directly, and not to inter-
operate with the kernel code at all. They should treat all kernel APIs as undefined behavior (i.e. an
application that uses the APIs inside a zero-latency interrupt context is responsible for directly verifying
correct behavior). Zero-latency interrupts may not modify any data inspected by kernel APIs invoked
from normal Zephyr contexts and shall not generate exceptions that need to be handled synchronously
(e.g. kernel panic).

Important: Zero-latency interrupts are supported on an architecture-specific basis. The feature is
currently implemented in the ARM Cortex-M architecture variant.

Offloading ISR Work An ISR should execute quickly to ensure predictable system operation. If time
consuming processing is required the ISR should offload some or all processing to a thread, thereby
restoring the kernel’s ability to respond to other interrupts.

The kernel supports several mechanisms for offloading interrupt-related processing to a thread.

• An ISR can signal a helper thread to do interrupt-related processing using a kernel object, such as
a FIFO, LIFO, or semaphore.

644 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• An ISR can instruct the system workqueue thread to execute a work item. (See Workqueue Threads.)

When an ISR offloads work to a thread, there is typically a single context switch to that thread when
the ISR completes, allowing interrupt-related processing to continue almost immediately. However, de-
pending on the priority of the thread handling the offload, it is possible that the currently executing
cooperative thread or other higher-priority threads may execute before the thread handling the offload
is scheduled.

Implementation

Defining a regular ISR An ISR is defined at runtime by calling IRQ_CONNECT . It must then be enabled
by calling irq_enable() .

Important: IRQ_CONNECT() is not a C function and does some inline assembly magic behind the
scenes. All its arguments must be known at build time. Drivers that have multiple instances may need to
define per-instance config functions to configure each instance of the interrupt.

The following code defines and enables an ISR.

define MY_DEV_IRQ 24 /* device uses IRQ 24 */
define MY_DEV_PRIO 2 /* device uses interrupt priority 2 */
/* argument passed to my_isr(), in this case a pointer to the device */
define MY_ISR_ARG DEVICE_GET(my_device)
define MY_IRQ_FLAGS 0 /* IRQ flags */

void my_isr(void *arg)
{

... /* ISR code */
}

void my_isr_installer(void)
{

...
IRQ_CONNECT(MY_DEV_IRQ, MY_DEV_PRIO, my_isr, MY_ISR_ARG, MY_IRQ_FLAGS);
irq_enable(MY_DEV_IRQ);
...

}

Since the IRQ_CONNECT macro requires that all its parameters be known at build time, in some cases this
may not be acceptable. It is also possible to install interrupts at runtime with irq_connect_dynamic() .
It is used in exactly the same way as IRQ_CONNECT :

void my_isr_installer(void)
{

...
irq_connect_dynamic(MY_DEV_IRQ, MY_DEV_PRIO, my_isr, MY_ISR_ARG,

MY_IRQ_FLAGS);
irq_enable(MY_DEV_IRQ);
...

}

Dynamic interrupts require the :kconfig:`CONFIG_DYNAMIC_INTERRUPTS` option to be enabled. Re-
moving or re-configuring a dynamic interrupt is currently unsupported.

Defining a ‘direct’ ISR Regular Zephyr interrupts introduce some overhead which may be unacceptable
for some low-latency use-cases. Specifically:

7.13. Kernel Services 645

Zephyr Project Documentation, Release 2.7.0-rc2

• The argument to the ISR is retrieved and passed to the ISR

• If power management is enabled and the system was idle, all the hardware will be resumed from
low-power state before the ISR is executed, which can be very time-consuming

• Although some architectures will do this in hardware, other architectures need to switch to the
interrupt stack in code

• After the interrupt is serviced, the OS then performs some logic to potentially make a scheduling
decision.

Zephyr supports so-called ‘direct’ interrupts, which are installed via IRQ_DIRECT_CONNECT . These direct
interrupts have some special implementation requirements and a reduced feature set; see the definition
of IRQ_DIRECT_CONNECT for details.

The following code demonstrates a direct ISR:

define MY_DEV_IRQ 24 /* device uses IRQ 24 */
define MY_DEV_PRIO 2 /* device uses interrupt priority 2 */
/* argument passed to my_isr(), in this case a pointer to the device */
define MY_IRQ_FLAGS 0 /* IRQ flags */

ISR_DIRECT_DECLARE(my_isr)
{

do_stuff();
ISR_DIRECT_PM(); /* PM done after servicing interrupt for best latency */
return 1; /* We should check if scheduling decision should be made */

}

void my_isr_installer(void)
{

...
IRQ_DIRECT_CONNECT(MY_DEV_IRQ, MY_DEV_PRIO, my_isr, MY_IRQ_FLAGS);
irq_enable(MY_DEV_IRQ);
...

}

Installation of dynamic direct interrupts is supported on an architecture-specific basis. (The feature
is currently implemented in ARM Cortex-M architecture variant. Dynamic direct interrupts feature is
exposed to the user via an ARM-only API.)

Implementation Details Interrupt tables are set up at build time using some special build tools. The
details laid out here apply to all architectures except x86, which are covered in the x86 Details section
below.

Any invocation of IRQ_CONNECT will declare an instance of struct _isr_list which is placed in a special
.intList section:

struct _isr_list {
/** IRQ line number */
int32_t irq;
/** Flags for this IRQ, see ISR_FLAG_* definitions */
int32_t flags;
/** ISR to call */
void *func;
/** Parameter for non-direct IRQs */
void *param;

};

Zephyr is built in two phases; the first phase of the build produces ${ZEPHYR_PREBUILT_EXECUTABLE}.elf
which contains all the entries in the .intList section preceded by a header:

646 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

struct {
void *spurious_irq_handler;
void *sw_irq_handler;
uint32_t num_isrs;
uint32_t num_vectors;
struct _isr_list isrs[]; <- of size num_isrs

};

This data consisting of the header and instances of struct _isr_list inside
${ZEPHYR_PREBUILT_EXECUTABLE}.elf is then used by the gen_isr_tables.py script to generate a C
file defining a vector table and software ISR table that are then compiled and linked into the final
application.

The priority level of any interrupt is not encoded in these tables, instead IRQ_CONNECT also has a runtime
component which programs the desired priority level of the interrupt to the interrupt controller. Some
architectures do not support the notion of interrupt priority, in which case the priority argument is
ignored.

Vector Table A vector table is generated when :kconfig:`CONFIG_GEN_IRQ_VECTOR_TABLE` is en-
abled. This data structure is used natively by the CPU and is simply an array of function pointers, where
each element n corresponds to the IRQ handler for IRQ line n, and the function pointers are:

1. For ‘direct’ interrupts declared with IRQ_DIRECT_CONNECT , the handler function will be placed
here.

2. For regular interrupts declared with IRQ_CONNECT , the address of the common software IRQ han-
dler is placed here. This code does common kernel interrupt bookkeeping and looks up the ISR
and parameter from the software ISR table.

3. For interrupt lines that are not configured at all, the address of the spurious IRQ handler will be
placed here. The spurious IRQ handler causes a system fatal error if encountered.

Some architectures (such as the Nios II internal interrupt controller) have a common en-
try point for all interrupts and do not support a vector table, in which case the :kcon-
fig:`CONFIG_GEN_IRQ_VECTOR_TABLE` option should be disabled.

Some architectures may reserve some initial vectors for system exceptions and declare this in a table
elsewhere, in which case CONFIG_GEN_IRQ_START_VECTOR needs to be set to properly offset the
indices in the table.

SW ISR Table This is an array of struct _isr_table_entry:

struct _isr_table_entry {
void *arg;
void (*isr)(void *);

};

This is used by the common software IRQ handler to look up the ISR and its argument and execute it.
The active IRQ line is looked up in an interrupt controller register and used to index this table.

x86 Details The x86 architecture has a special type of vector table called the Interrupt Descriptor
Table (IDT) which must be laid out in a certain way per the x86 processor documentation. It is still
fundamentally a vector table, and the arch/x86/gen_idt.py tool uses the .intList section to create it.
However, on APIC-based systems the indexes in the vector table do not correspond to the IRQ line. The
first 32 vectors are reserved for CPU exceptions, and all remaining vectors (up to index 255) correspond
to the priority level, in groups of 16. In this scheme, interrupts of priority level 0 will be placed in vectors
32-47, level 1 48-63, and so forth. When the arch/x86/gen_idt.py tool is constructing the IDT, when it
configures an interrupt it will look for a free vector in the appropriate range for the requested priority
level and set the handler there.

7.13. Kernel Services 647

Zephyr Project Documentation, Release 2.7.0-rc2

On x86 when an interrupt or exception vector is executed by the CPU, there is no foolproof way to de-
termine which vector was fired, so a software ISR table indexed by IRQ line is not used. Instead, the
IRQ_CONNECT call creates a small assembly language function which calls the common interrupt code
in _interrupt_enter() with the ISR and parameter as arguments. It is the address of this assembly
interrupt stub which gets placed in the IDT. For interrupts declared with IRQ_DIRECT_CONNECT the pa-
rameterless ISR is placed directly in the IDT.

On systems where the position in the vector table corresponds to the interrupt’s priority level, the inter-
rupt controller needs to know at runtime what vector is associated with an IRQ line. arch/x86/gen_idt.py
additionally creates an _irq_to_interrupt_vector array which maps an IRQ line to its configured vector
in the IDT. This is used at runtime by IRQ_CONNECT to program the IRQ-to-vector association in the
interrupt controller.

For dynamic interrupts, the build must generate some 4-byte dynamic interrupt stubs, one
stub per dynamic interrupt in use. The number of stubs is controlled by the :kcon-
fig:`CONFIG_X86_DYNAMIC_IRQ_STUBS` option. Each stub pushes an unique identifier which is then
used to fetch the appropriate handler function and parameter out of a table populated when the dynamic
interrupt was connected.

Suggested Uses Use a regular or direct ISR to perform interrupt processing that requires a very rapid
response, and can be done quickly without blocking.

Note: Interrupt processing that is time consuming, or involves blocking, should be handed off to a
thread. See Offloading ISR Work for a description of various techniques that can be used in an application.

Configuration Options Related configuration options:

• :kconfig:`CONFIG_ISR_STACK_SIZE`

Additional architecture-specific and device-specific configuration options also exist.

API Reference

group isr_apis

Defines

IRQ_CONNECT(irq_p, priority_p, isr_p, isr_param_p, flags_p)
Initialize an interrupt handler.

This routine initializes an interrupt handler for an IRQ. The IRQ must be subsequently enabled
before the interrupt handler begins servicing interrupts.

Warning: Although this routine is invoked at run-time, all of its arguments must be
computable by the compiler at build time.

Parameters

• irq_p – IRQ line number.

• priority_p – Interrupt priority.

• isr_p – Address of interrupt service routine.

• isr_param_p – Parameter passed to interrupt service routine.

• flags_p – Architecture-specific IRQ configuration flags..

648 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

IRQ_DIRECT_CONNECT(irq_p, priority_p, isr_p, flags_p)

Initialize a ‘direct’ interrupt handler.

This routine initializes an interrupt handler for an IRQ. The IRQ must be subsequently enabled
via irq_enable() before the interrupt handler begins servicing interrupts.

These ISRs are designed for performance-critical interrupt handling and do not go through
common interrupt handling code. They must be implemented in such a way that it is safe
to put them directly in the vector table. For ISRs written in C, The ISR_DIRECT_DECLARE()
macro will do this automatically. For ISRs written in assembly it is entirely up to the developer
to ensure that the right steps are taken.

This type of interrupt currently has a few limitations compared to normal Zephyr interrupts:

• No parameters are passed to the ISR.

• No stack switch is done, the ISR will run on the interrupted context’s stack, unless the
architecture automatically does the stack switch in HW.

• Interrupt locking state is unchanged from how the HW sets it when the ISR runs. On
arches that enter ISRs with interrupts locked, they will remain locked.

• Scheduling decisions are now optional, controlled by the return value of ISRs imple-
mented with the ISR_DIRECT_DECLARE() macro

• The call into the OS to exit power management idle state is now optional. Normal in-
terrupts always do this before the ISR is run, but when it runs is now controlled by the
placement of a ISR_DIRECT_PM() macro, or omitted entirely.

Warning: Although this routine is invoked at run-time, all of its arguments must be
computable by the compiler at build time.

Parameters

• irq_p – IRQ line number.

• priority_p – Interrupt priority.

• isr_p – Address of interrupt service routine.

• flags_p – Architecture-specific IRQ configuration flags.

ISR_DIRECT_HEADER()

Common tasks before executing the body of an ISR.

This macro must be at the beginning of all direct interrupts and performs minimal
architecture-specific tasks before the ISR itself can run. It takes no arguments and has no
return value.

ISR_DIRECT_FOOTER(check_reschedule)

Common tasks before exiting the body of an ISR.

This macro must be at the end of all direct interrupts and performs minimal architecture-
specific tasks like EOI. It has no return value.

In a normal interrupt, a check is done at end of interrupt to invoke z_swap() logic if the
current thread is preemptible and there is another thread ready to run in the kernel’s ready
queue cache. This is now optional and controlled by the check_reschedule argument. If
unsure, set to nonzero. On systems that do stack switching and nested interrupt tracking in
software, z_swap() should only be called if this was a non-nested interrupt.

Parameters

• check_reschedule – If nonzero, additionally invoke scheduling logic

7.13. Kernel Services 649

Zephyr Project Documentation, Release 2.7.0-rc2

ISR_DIRECT_PM()

Perform power management idle exit logic.

This macro may optionally be invoked somewhere in between IRQ_DIRECT_HEADER() and
IRQ_DIRECT_FOOTER() invocations. It performs tasks necessary to exit power management
idle state. It takes no parameters and returns no arguments. It may be omitted, but be careful!

ISR_DIRECT_DECLARE(name)

Helper macro to declare a direct interrupt service routine.

This will declare the function in a proper way and automatically include the
ISR_DIRECT_FOOTER() and ISR_DIRECT_HEADER() macros. The function should re-
turn nonzero status if a scheduling decision should potentially be made. See
ISR_DIRECT_FOOTER() for more details on the scheduling decision.

For architectures that support ‘regular’ and ‘fast’ interrupt types, where these interrupt types
require different assembly language handling of registers by the ISR, this will always generate
code for the ‘fast’ interrupt type.

Example usage:

ISR_DIRECT_DECLARE(my_isr)
{

bool done = do_stuff();
ISR_DIRECT_PM(); // done after do_stuff() due to latency concerns
if (!done) {

return 0; // don't bother checking if we have to z_swap()
}

k_sem_give(some_sem);
return 1;

}

Parameters

• name – symbol name of the ISR

irq_lock()

Lock interrupts.

This routine disables all interrupts on the CPU. It returns an unsigned integer “lock-out key”,
which is an architecture-dependent indicator of whether interrupts were locked prior to the
call. The lock-out key must be passed to irq_unlock() to re-enable interrupts.

This routine can be called recursively, as long as the caller keeps track of each lock-out key
that is generated. Interrupts are re-enabled by passing each of the keys to irq_unlock() in
the reverse order they were acquired. (That is, each call to irq_lock() must be balanced by a
corresponding call to irq_unlock().)

This routine can only be invoked from supervisor mode. Some architectures (for example,
ARM) will fail silently if invoked from user mode instead of generating an exception.

Note: This routine must also serve as a memory barrier to ensure the uniprocessor imple-
mentation of k_spinlock_t is correct.

Note: This routine can be called by ISRs or by threads. If it is called by a thread, the
interrupt lock is thread-specific; this means that interrupts remain disabled only while the
thread is running. If the thread performs an operation that allows another thread to run

650 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

(for example, giving a semaphore or sleeping for N milliseconds), the interrupt lock no longer
applies and interrupts may be re-enabled while other processing occurs. When the thread once
again becomes the current thread, the kernel re-establishes its interrupt lock; this ensures the
thread won’t be interrupted until it has explicitly released the interrupt lock it established.

Warning: The lock-out key should never be used to manually re-enable interrupts or to
inspect or manipulate the contents of the CPU’s interrupt bits.

Returns An architecture-dependent lock-out key representing the “interrupt disable
state” prior to the call.

irq_unlock(key)

Unlock interrupts.

This routine reverses the effect of a previous call to irq_lock() using the associated lock-out
key. The caller must call the routine once for each time it called irq_lock(), supplying the keys
in the reverse order they were acquired, before interrupts are enabled.

This routine can only be invoked from supervisor mode. Some architectures (for example,
ARM) will fail silently if invoked from user mode instead of generating an exception.

Note: This routine must also serve as a memory barrier to ensure the uniprocessor imple-
mentation of k_spinlock_t is correct.

Note: Can be called by ISRs.

Parameters

• key – Lock-out key generated by irq_lock().

Returns N/A

irq_enable(irq)

Enable an IRQ.

This routine enables interrupts from source irq.

Parameters

• irq – IRQ line.

Returns N/A

irq_disable(irq)

Disable an IRQ.

This routine disables interrupts from source irq.

Parameters

• irq – IRQ line.

Returns N/A

irq_is_enabled(irq)

Get IRQ enable state.

This routine indicates if interrupts from source irq are enabled.

7.13. Kernel Services 651

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• irq – IRQ line.

Returns interrupt enable state, true or false

Functions

static inline int irq_connect_dynamic(unsigned int irq, unsigned int priority, void
(*routine)(const void *parameter), const void *parameter,
uint32_t flags)

Configure a dynamic interrupt.

Use this instead of IRQ_CONNECT() if arguments cannot be known at build time.

Parameters

• irq – IRQ line number

• priority – Interrupt priority

• routine – Interrupt service routine

• parameter – ISR parameter

• flags – Arch-specific IRQ configuration flags

Returns The vector assigned to this interrupt

static inline unsigned int irq_get_level(unsigned int irq)

bool k_is_in_isr(void)

Determine if code is running at interrupt level.

This routine allows the caller to customize its actions, depending on whether it is a thread or
an ISR.

Function properties (list may not be complete) isr-ok

Returns false if invoked by a thread.

Returns true if invoked by an ISR.

int k_is_preempt_thread(void)

Determine if code is running in a preemptible thread.

This routine allows the caller to customize its actions, depending on whether it can be pre-
empted by another thread. The routine returns a ‘true’ value if all of the following conditions
are met:

• The code is running in a thread, not at ISR.

• The thread’s priority is in the preemptible range.

• The thread has not locked the scheduler.

Function properties (list may not be complete) isr-ok

Returns 0 if invoked by an ISR or by a cooperative thread.

Returns Non-zero if invoked by a preemptible thread.

652 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline bool k_is_pre_kernel(void)

Test whether startup is in the before-main-task phase.

This routine allows the caller to customize its actions, depending on whether it being invoked
before the kernel is fully active.

Function properties (list may not be complete) isr-ok

Returns true if invoked before post-kernel initialization

Returns false if invoked during/after post-kernel initialization

Polling API

The polling API is used to wait concurrently for any one of multiple conditions to be fulfilled.

• Concepts

• Implementation

– Using k_poll()

– Using k_poll_signal_raise()

• Suggested Uses

• Configuration Options

• API Reference

Concepts The polling API’s main function is k_poll() , which is very similar in concept to the POSIX
poll() function, except that it operates on kernel objects rather than on file descriptors.

The polling API allows a single thread to wait concurrently for one or more conditions to be fulfilled
without actively looking at each one individually.

There is a limited set of such conditions:

• a semaphore becomes available

• a kernel FIFO contains data ready to be retrieved

• a poll signal is raised

A thread that wants to wait on multiple conditions must define an array of poll events, one for each
condition.

All events in the array must be initialized before the array can be polled on.

Each event must specify which type of condition must be satisfied so that its state is changed to signal
the requested condition has been met.

Each event must specify what kernel object it wants the condition to be satisfied.

Each event must specify which mode of operation is used when the condition is satisfied.

Each event can optionally specify a tag to group multiple events together, to the user’s discretion.

Apart from the kernel objects, there is also a poll signal pseudo-object type that be directly signaled.

The k_poll() function returns as soon as one of the conditions it is waiting for is fulfilled. It is possible
for more than one to be fulfilled when k_poll() returns, if they were fulfilled before k_poll() was
called, or due to the preemptive multi-threading nature of the kernel. The caller must look at the state
of all the poll events in the array to figured out which ones were fulfilled and what actions to take.

7.13. Kernel Services 653

Zephyr Project Documentation, Release 2.7.0-rc2

Currently, there is only one mode of operation available: the object is not acquired. As an example, this
means that when k_poll() returns and the poll event states that the semaphore is available, the caller
of k_poll() must then invoke k_sem_take() to take ownership of the semaphore. If the semaphore is
contested, there is no guarantee that it will be still available when k_sem_give() is called.

Implementation

Using k_poll() The main API is k_poll() , which operates on an array of poll events of type
k_poll_event . Each entry in the array represents one event a call to k_poll() will wait for its condition
to be fulfilled.

They can be initialized using either the runtime initializers K_POLL_EVENT_INITIALIZER() or
k_poll_event_init() , or the static initializer K_POLL_EVENT_STATIC_INITIALIZER() . An object
that matches the type specified must be passed to the initializers. The mode must be set to
K_POLL_MODE_NOTIFY_ONLY . The state must be set to K_POLL_STATE_NOT_READY (the initializers take
care of this). The user tag is optional and completely opaque to the API: it is there to help a user
to group similar events together. Being optional, it is passed to the static initializer, but not the run-
time ones for performance reasons. If using runtime initializers, the user must set it separately in the
k_poll_event data structure. If an event in the array is to be ignored, most likely temporarily, its type
can be set to K_POLL_TYPE_IGNORE.

struct k_poll_event events[2] = {
K_POLL_EVENT_STATIC_INITIALIZER(K_POLL_TYPE_SEM_AVAILABLE,

K_POLL_MODE_NOTIFY_ONLY,
&my_sem, 0),

K_POLL_EVENT_STATIC_INITIALIZER(K_POLL_TYPE_FIFO_DATA_AVAILABLE,
K_POLL_MODE_NOTIFY_ONLY,
&my_fifo, 0),

};

or at runtime

struct k_poll_event events[2];
void some_init(void)
{

k_poll_event_init(&events[0],
K_POLL_TYPE_SEM_AVAILABLE,
K_POLL_MODE_NOTIFY_ONLY,
&my_sem);

k_poll_event_init(&events[1],
K_POLL_TYPE_FIFO_DATA_AVAILABLE,
K_POLL_MODE_NOTIFY_ONLY,
&my_fifo);

// tags are left uninitialized if unused
}

After the events are initialized, the array can be passed to k_poll() . A timeout can be specified to wait
only for a specified amount of time, or the special values K_NO_WAIT and K_FOREVER to either not wait
or wait until an event condition is satisfied and not sooner.

A list of pollers is offered on each semaphore or FIFO and as many events can wait in it as the app wants.
Notice that the waiters will be served in first-come-first-serve order, not in priority order.

In case of success, k_poll() returns 0. If it times out, it returns -EAGAIN .

654 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

// assume there is no contention on this semaphore and FIFO
// -EADDRINUSE will not occur; the semaphore and/or data will be available

void do_stuff(void)
{

rc = k_poll(events, 2, 1000);
if (rc == 0) {

if (events[0].state == K_POLL_STATE_SEM_AVAILABLE) {
k_sem_take(events[0].sem, 0);

} else if (events[1].state == K_POLL_STATE_FIFO_DATA_AVAILABLE) {
data = k_fifo_get(events[1].fifo, 0);
// handle data

}
} else {

// handle timeout
}

}

When k_poll() is called in a loop, the events state must be reset to K_POLL_STATE_NOT_READY by the
user.

void do_stuff(void)
{

for(;;) {
rc = k_poll(events, 2, K_FOREVER);
if (events[0].state == K_POLL_STATE_SEM_AVAILABLE) {

k_sem_take(events[0].sem, 0);
} else if (events[1].state == K_POLL_STATE_FIFO_DATA_AVAILABLE) {

data = k_fifo_get(events[1].fifo, 0);
// handle data

}
events[0].state = K_POLL_STATE_NOT_READY;
events[1].state = K_POLL_STATE_NOT_READY;

}
}

Using k_poll_signal_raise() One of the types of events is K_POLL_TYPE_SIGNAL : this is a “direct” signal
to a poll event. This can be seen as a lightweight binary semaphore only one thread can wait for.

A poll signal is a separate object of type k_poll_signal that must be attached to a k_poll_event, sim-
ilar to a semaphore or FIFO. It must first be initialized either via K_POLL_SIGNAL_INITIALIZER() or
k_poll_signal_init() .

struct k_poll_signal signal;
void do_stuff(void)
{

k_poll_signal_init(&signal);
}

It is signaled via the k_poll_signal_raise() function. This function takes a user result parameter that
is opaque to the API and can be used to pass extra information to the thread waiting on the event.

struct k_poll_signal signal;

// thread A
void do_stuff(void)
{

(continues on next page)

7.13. Kernel Services 655

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

k_poll_signal_init(&signal);

struct k_poll_event events[1] = {
K_POLL_EVENT_INITIALIZER(K_POLL_TYPE_SIGNAL,

K_POLL_MODE_NOTIFY_ONLY,
&signal),

};

k_poll(events, 1, K_FOREVER);

if (events.signal->result == 0x1337) {
// A-OK!

} else {
// weird error

}
}

// thread B
void signal_do_stuff(void)
{

k_poll_signal_raise(&signal, 0x1337);
}

If the signal is to be polled in a loop, both its event state and its signaled field must be reset on each
iteration if it has been signaled.

struct k_poll_signal signal;
void do_stuff(void)
{

k_poll_signal_init(&signal);

struct k_poll_event events[1] = {
K_POLL_EVENT_INITIALIZER(K_POLL_TYPE_SIGNAL,

K_POLL_MODE_NOTIFY_ONLY,
&signal),

};

for (;;) {
k_poll(events, 1, K_FOREVER);

if (events[0].signal->result == 0x1337) {
// A-OK!

} else {
// weird error

}

events[0].signal->signaled = 0;
events[0].state = K_POLL_STATE_NOT_READY;

}
}

Suggested Uses Use k_poll() to consolidate multiple threads that would be pending on one object
each, saving possibly large amounts of stack space.

Use a poll signal as a lightweight binary semaphore if only one thread pends on it.

656 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Note: Because objects are only signaled if no other thread is waiting for them to become available
and only one thread can poll on a specific object, polling is best used when objects are not subject
of contention between multiple threads, basically when a single thread operates as a main “server” or
“dispatcher” for multiple objects and is the only one trying to acquire these objects.

Configuration Options Related configuration options:

• :kconfig:`CONFIG_POLL`

API Reference

group poll_apis

Defines

K_POLL_TYPE_IGNORE

K_POLL_TYPE_SIGNAL

K_POLL_TYPE_SEM_AVAILABLE

K_POLL_TYPE_DATA_AVAILABLE

K_POLL_TYPE_FIFO_DATA_AVAILABLE

K_POLL_TYPE_MSGQ_DATA_AVAILABLE

K_POLL_STATE_NOT_READY

K_POLL_STATE_SIGNALED

K_POLL_STATE_SEM_AVAILABLE

K_POLL_STATE_DATA_AVAILABLE

K_POLL_STATE_FIFO_DATA_AVAILABLE

K_POLL_STATE_MSGQ_DATA_AVAILABLE

K_POLL_STATE_CANCELLED

K_POLL_SIGNAL_INITIALIZER(obj)

K_POLL_EVENT_INITIALIZER(_event_type, _event_mode, _event_obj)

K_POLL_EVENT_STATIC_INITIALIZER(_event_type, _event_mode, _event_obj, event_tag)

7.13. Kernel Services 657

Zephyr Project Documentation, Release 2.7.0-rc2

Enums

enum k_poll_modes

Values:

enumerator K_POLL_MODE_NOTIFY_ONLY = 0

enumerator K_POLL_NUM_MODES

Functions

void k_poll_event_init(struct k_poll_event *event, uint32_t type, int mode, void *obj)

Initialize one struct k_poll_event instance.

After this routine is called on a poll event, the event it ready to be placed in an event array to
be passed to k_poll().

Parameters

• event – The event to initialize.

• type – A bitfield of the types of event, from the K_POLL_TYPE_xxx values.
Only values that apply to the same object being polled can be used together.
Choosing K_POLL_TYPE_IGNORE disables the event.

• mode – Future. Use K_POLL_MODE_NOTIFY_ONLY.

• obj – Kernel object or poll signal.

Returns N/A

int k_poll(struct k_poll_event *events, int num_events, k_timeout_t timeout)

Wait for one or many of multiple poll events to occur.

This routine allows a thread to wait concurrently for one or many of multiple poll events to
have occurred. Such events can be a kernel object being available, like a semaphore, or a poll
signal event.

When an event notifies that a kernel object is available, the kernel object is not “given” to
the thread calling k_poll(): it merely signals the fact that the object was available when the
k_poll() call was in effect. Also, all threads trying to acquire an object the regular way, i.e.
by pending on the object, have precedence over the thread polling on the object. This means
that the polling thread will never get the poll event on an object until the object becomes
available and its pend queue is empty. For this reason, the k_poll() call is more effective when
the objects being polled only have one thread, the polling thread, trying to acquire them.

When k_poll() returns 0, the caller should loop on all the events that were passed to k_poll()
and check the state field for the values that were expected and take the associated actions.

Before being reused for another call to k_poll(), the user has to reset the state field to
K_POLL_STATE_NOT_READY.

When called from user mode, a temporary memory allocation is required from the caller’s
resource pool.

Parameters

• events – An array of events to be polled for.

• num_events – The number of events in the array.

• timeout – Waiting period for an event to be ready, or one of the special values
K_NO_WAIT and K_FOREVER.

658 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Return values

• 0 – One or more events are ready.

• -EAGAIN – Waiting period timed out.

• -EINTR – Polling has been interrupted, e.g. with k_queue_cancel_wait().
All output events are still set and valid, cancelled event(s) will be set to
K_POLL_STATE_CANCELLED. In other words, -EINTR status means that at least
one of output events is K_POLL_STATE_CANCELLED.

• -ENOMEM – Thread resource pool insufficient memory (user mode only)

• -EINVAL – Bad parameters (user mode only)

void k_poll_signal_init(struct k_poll_signal *sig)

Initialize a poll signal object.

Ready a poll signal object to be signaled via k_poll_signal_raise().

Parameters

• sig – A poll signal.

Returns N/A

void k_poll_signal_reset(struct k_poll_signal *sig)

void k_poll_signal_check(struct k_poll_signal *sig, unsigned int *signaled, int *result)

Fetch the signaled state and result value of a poll signal.

Parameters

• sig – A poll signal object

• signaled – An integer buffer which will be written nonzero if the object was
signaled

• result – An integer destination buffer which will be written with the result
value if the object was signaled, or an undefined value if it was not.

int k_poll_signal_raise(struct k_poll_signal *sig, int result)

Signal a poll signal object.

This routine makes ready a poll signal, which is basically a poll event of type
K_POLL_TYPE_SIGNAL. If a thread was polling on that event, it will be made ready to run. A
result value can be specified.

The poll signal contains a ‘signaled’ field that, when set by k_poll_signal_raise(), stays set until
the user sets it back to 0 with k_poll_signal_reset(). It thus has to be reset by the user before
being passed again to k_poll() or k_poll() will consider it being signaled, and will return
immediately.

Note: The result is stored and the ‘signaled’ field is set even if this function returns an error
indicating that an expiring poll was not notified. The next k_poll() will detect the missed
raise.

Parameters

• sig – A poll signal.

• result – The value to store in the result field of the signal.

Return values

• 0 – The signal was delivered successfully.

• -EAGAIN – The polling thread’s timeout is in the process of expiring.

7.13. Kernel Services 659

Zephyr Project Documentation, Release 2.7.0-rc2

struct k_poll_signal

#include <kernel.h>

Public Members

sys_dlist_t poll_events

PRIVATE - DO NOT TOUCH

unsigned int signaled

1 if the event has been signaled, 0 otherwise. Stays set to 1 until user resets it to 0.

int result

custom result value passed to k_poll_signal_raise() if needed

struct k_poll_event

#include <kernel.h> Poll Event.

Public Members

struct z_poller *poller

PRIVATE - DO NOT TOUCH

uint32_t tag

optional user-specified tag, opaque, untouched by the API

uint32_t type

bitfield of event types (bitwise-ORed K_POLL_TYPE_xxx values)

uint32_t state

bitfield of event states (bitwise-ORed K_POLL_STATE_xxx values)

uint32_t mode

mode of operation, from enum k_poll_modes

uint32_t unused

unused bits in 32-bit word

union k_poll_event.[anonymous] [anonymous]

per-type data

Semaphores

A semaphore is a kernel object that implements a traditional counting semaphore.

• Concepts

• Implementation

660 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

– Defining a Semaphore

– Giving a Semaphore

– Taking a Semaphore

• Suggested Uses

• Configuration Options

• API Reference

• User Mode Semaphore API Reference

Concepts Any number of semaphores can be defined (limited only by available RAM). Each semaphore
is referenced by its memory address.

A semaphore has the following key properties:

• A count that indicates the number of times the semaphore can be taken. A count of zero indicates
that the semaphore is unavailable.

• A limit that indicates the maximum value the semaphore’s count can reach.

A semaphore must be initialized before it can be used. Its count must be set to a non-negative value that
is less than or equal to its limit.

A semaphore may be given by a thread or an ISR. Giving the semaphore increments its count, unless the
count is already equal to the limit.

A semaphore may be taken by a thread. Taking the semaphore decrements its count, unless the
semaphore is unavailable (i.e. at zero). When a semaphore is unavailable a thread may choose to
wait for it to be given. Any number of threads may wait on an unavailable semaphore simultaneously.
When the semaphore is given, it is taken by the highest priority thread that has waited longest.

Note: The kernel does allow an ISR to take a semaphore, however the ISR must not attempt to wait if
the semaphore is unavailable.

Implementation

Defining a Semaphore A semaphore is defined using a variable of type k_sem. It must then be initial-
ized by calling k_sem_init() .

The following code defines a semaphore, then configures it as a binary semaphore by setting its count to
0 and its limit to 1.

struct k_sem my_sem;

k_sem_init(&my_sem, 0, 1);

Alternatively, a semaphore can be defined and initialized at compile time by calling K_SEM_DEFINE .

The following code has the same effect as the code segment above.

K_SEM_DEFINE(my_sem, 0, 1);

Giving a Semaphore A semaphore is given by calling k_sem_give() .

The following code builds on the example above, and gives the semaphore to indicate that a unit of data
is available for processing by a consumer thread.

7.13. Kernel Services 661

Zephyr Project Documentation, Release 2.7.0-rc2

void input_data_interrupt_handler(void *arg)
{

/* notify thread that data is available */
k_sem_give(&my_sem);

...
}

Taking a Semaphore A semaphore is taken by calling k_sem_take() .

The following code builds on the example above, and waits up to 50 milliseconds for the semaphore to
be given. A warning is issued if the semaphore is not obtained in time.

void consumer_thread(void)
{

...

if (k_sem_take(&my_sem, K_MSEC(50)) != 0) {
printk("Input data not available!");

} else {
/* fetch available data */
...

}
...

}

Suggested Uses Use a semaphore to control access to a set of resources by multiple threads.

Use a semaphore to synchronize processing between a producing and consuming threads or ISRs.

Configuration Options Related configuration options:

• None.

API Reference

group semaphore_apis

Defines

K_SEM_MAX_LIMIT

Maximum limit value allowed for a semaphore.

This is intended for use when a semaphore does not have an explicit maximum limit, and
instead is just used for counting purposes.

K_SEM_DEFINE(name, initial_count, count_limit)

Statically define and initialize a semaphore.

The semaphore can be accessed outside the module where it is defined using:

extern struct k_sem <name>;

662 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• name – Name of the semaphore.

• initial_count – Initial semaphore count.

• count_limit – Maximum permitted semaphore count.

Functions

int k_sem_init(struct k_sem *sem, unsigned int initial_count, unsigned int limit)

Initialize a semaphore.

This routine initializes a semaphore object, prior to its first use.

See also:

K_SEM_MAX_LIMIT

Parameters

• sem – Address of the semaphore.

• initial_count – Initial semaphore count.

• limit – Maximum permitted semaphore count.

Return values

• 0 – Semaphore created successfully

• -EINVAL – Invalid values

int k_sem_take(struct k_sem *sem, k_timeout_t timeout)

Take a semaphore.

This routine takes sem.

Function properties (list may not be complete) isr-ok

Note: timeout must be set to K_NO_WAIT if called from ISR.

Parameters

• sem – Address of the semaphore.

• timeout – Waiting period to take the semaphore, or one of the special values
K_NO_WAIT and K_FOREVER.

Return values

• 0 – Semaphore taken.

• -EBUSY – Returned without waiting.

• -EAGAIN – Waiting period timed out, or the semaphore was reset during the
waiting period.

7.13. Kernel Services 663

Zephyr Project Documentation, Release 2.7.0-rc2

void k_sem_give(struct k_sem *sem)

Give a semaphore.

This routine gives sem, unless the semaphore is already at its maximum permitted count.

Function properties (list may not be complete) isr-ok

Parameters

• sem – Address of the semaphore.

Returns N/A

void k_sem_reset(struct k_sem *sem)

Resets a semaphore’s count to zero.

This routine sets the count of sem to zero. Any outstanding semaphore takes will be aborted
with -EAGAIN.

Parameters

• sem – Address of the semaphore.

Returns N/A

unsigned int k_sem_count_get(struct k_sem *sem)

Get a semaphore’s count.

This routine returns the current count of sem.

Parameters

• sem – Address of the semaphore.

Returns Current semaphore count.

User Mode Semaphore API Reference The sys_sem exists in user memory working as counter
semaphore for user mode thread when user mode enabled. When user mode isn’t enabled, sys_sem
behaves like k_sem.

group user_semaphore_apis

Defines

SYS_SEM_DEFINE(_name, _initial_count, _count_limit)

Statically define and initialize a sys_sem.

The semaphore can be accessed outside the module where it is defined using:

extern struct sys_sem <name>;

Route this to memory domains using K_APP_DMEM().

Parameters

• _name – Name of the semaphore.

• _initial_count – Initial semaphore count.

• _count_limit – Maximum permitted semaphore count.

664 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Functions

int sys_sem_init(struct sys_sem *sem, unsigned int initial_count, unsigned int limit)

Initialize a semaphore.

This routine initializes a semaphore instance, prior to its first use.

Parameters

• sem – Address of the semaphore.

• initial_count – Initial semaphore count.

• limit – Maximum permitted semaphore count.

Return values

• 0 – Initial success.

• -EINVAL – Bad parameters, the value of limit should be located in (0,
INT_MAX] and initial_count shouldn’t be greater than limit.

int sys_sem_give(struct sys_sem *sem)

Give a semaphore.

This routine gives sem, unless the semaphore is already at its maximum permitted count.

Parameters

• sem – Address of the semaphore.

Return values

• 0 – Semaphore given.

• -EINVAL – Parameter address not recognized.

• -EACCES – Caller does not have enough access.

• -EAGAIN – Count reached Maximum permitted count and try again.

int sys_sem_take(struct sys_sem *sem, k_timeout_t timeout)

Take a sys_sem.

This routine takes sem.

Parameters

• sem – Address of the sys_sem.

• timeout – Waiting period to take the sys_sem, or one of the special values
K_NO_WAIT and K_FOREVER.

Return values

• 0 – sys_sem taken.

• -EINVAL – Parameter address not recognized.

• -ETIMEDOUT – Waiting period timed out.

• -EACCES – Caller does not have enough access.

unsigned int sys_sem_count_get(struct sys_sem *sem)

Get sys_sem’s value.

This routine returns the current value of sem.

Parameters

• sem – Address of the sys_sem.

Returns Current value of sys_sem.

7.13. Kernel Services 665

Zephyr Project Documentation, Release 2.7.0-rc2

Mutexes

A mutex is a kernel object that implements a traditional reentrant mutex. A mutex allows multiple threads
to safely share an associated hardware or software resource by ensuring mutually exclusive access to the
resource.

• Concepts

– Reentrant Locking

– Priority Inheritance

• Implementation

– Defining a Mutex

– Locking a Mutex

– Unlocking a Mutex

• Suggested Uses

• Configuration Options

• API Reference

• Futex API Reference

• User Mode Mutex API Reference

Concepts Any number of mutexes can be defined (limited only by available RAM). Each mutex is
referenced by its memory address.

A mutex has the following key properties:

• A lock count that indicates the number of times the mutex has be locked by the thread that has
locked it. A count of zero indicates that the mutex is unlocked.

• An owning thread that identifies the thread that has locked the mutex, when it is locked.

A mutex must be initialized before it can be used. This sets its lock count to zero.

A thread that needs to use a shared resource must first gain exclusive rights to access it by locking the
associated mutex. If the mutex is already locked by another thread, the requesting thread may choose to
wait for the mutex to be unlocked.

After locking a mutex, the thread may safely use the associated resource for as long as needed; however,
it is considered good practice to hold the lock for as short a time as possible to avoid negatively impacting
other threads that want to use the resource. When the thread no longer needs the resource it must unlock
the mutex to allow other threads to use the resource.

Any number of threads may wait on a locked mutex simultaneously. When the mutex becomes unlocked
it is then locked by the highest-priority thread that has waited the longest.

Note: Mutex objects are not designed for use by ISRs.

Reentrant Locking A thread is permitted to lock a mutex it has already locked. This allows the thread
to access the associated resource at a point in its execution when the mutex may or may not already be
locked.

A mutex that is repeatedly locked by a thread must be unlocked an equal number of times before the
mutex becomes fully unlocked so it can be claimed by another thread.

666 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Priority Inheritance The thread that has locked a mutex is eligible for priority inheritance. This means
the kernel will temporarily elevate the thread’s priority if a higher priority thread begins waiting on the
mutex. This allows the owning thread to complete its work and release the mutex more rapidly by
executing at the same priority as the waiting thread. Once the mutex has been unlocked, the unlocking
thread resets its priority to the level it had before locking that mutex.

Note: The :kconfig:`CONFIG_PRIORITY_CEILING` configuration option limits how high the kernel
can raise a thread’s priority due to priority inheritance. The default value of 0 permits unlimited eleva-
tion.

When two or more threads wait on a mutex held by a lower priority thread, the kernel adjusts the owning
thread’s priority each time a thread begins waiting (or gives up waiting). When the mutex is eventually
unlocked, the unlocking thread’s priority correctly reverts to its original non-elevated priority.

The kernel does not fully support priority inheritance when a thread holds two or more mutexes simulta-
neously. This situation can result in the thread’s priority not reverting to its original non-elevated priority
when all mutexes have been released. It is recommended that a thread lock only a single mutex at a time
when multiple mutexes are shared between threads of different priorities.

Implementation

Defining a Mutex A mutex is defined using a variable of type k_mutex . It must then be initialized by
calling k_mutex_init() .

The following code defines and initializes a mutex.

struct k_mutex my_mutex;

k_mutex_init(&my_mutex);

Alternatively, a mutex can be defined and initialized at compile time by calling K_MUTEX_DEFINE .

The following code has the same effect as the code segment above.

K_MUTEX_DEFINE(my_mutex);

Locking a Mutex A mutex is locked by calling k_mutex_lock() .

The following code builds on the example above, and waits indefinitely for the mutex to become available
if it is already locked by another thread.

k_mutex_lock(&my_mutex, K_FOREVER);

The following code waits up to 100 milliseconds for the mutex to become available, and gives a warning
if the mutex does not become available.

if (k_mutex_lock(&my_mutex, K_MSEC(100)) == 0) {
/* mutex successfully locked */

} else {
printf("Cannot lock XYZ display\n");

}

Unlocking a Mutex A mutex is unlocked by calling k_mutex_unlock() .

The following code builds on the example above, and unlocks the mutex that was previously locked by
the thread.

7.13. Kernel Services 667

Zephyr Project Documentation, Release 2.7.0-rc2

k_mutex_unlock(&my_mutex);

Suggested Uses Use a mutex to provide exclusive access to a resource, such as a physical device.

Configuration Options Related configuration options:

• :kconfig:`CONFIG_PRIORITY_CEILING`

API Reference

group mutex_apis

Defines

K_MUTEX_DEFINE(name)

Statically define and initialize a mutex.

The mutex can be accessed outside the module where it is defined using:

extern struct k_mutex <name>;

Parameters

• name – Name of the mutex.

Functions

int k_mutex_init(struct k_mutex *mutex)

Initialize a mutex.

This routine initializes a mutex object, prior to its first use.

Upon completion, the mutex is available and does not have an owner.

Parameters

• mutex – Address of the mutex.

Return values 0 – Mutex object created

int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout)

Lock a mutex.

This routine locks mutex. If the mutex is locked by another thread, the calling thread waits
until the mutex becomes available or until a timeout occurs.

A thread is permitted to lock a mutex it has already locked. The operation completes imme-
diately and the lock count is increased by 1.

Mutexes may not be locked in ISRs.

Parameters

• mutex – Address of the mutex.

• timeout – Waiting period to lock the mutex, or one of the special values
K_NO_WAIT and K_FOREVER.

668 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Return values

• 0 – Mutex locked.

• -EBUSY – Returned without waiting.

• -EAGAIN – Waiting period timed out.

int k_mutex_unlock(struct k_mutex *mutex)

Unlock a mutex.

This routine unlocks mutex. The mutex must already be locked by the calling thread.

The mutex cannot be claimed by another thread until it has been unlocked by the calling
thread as many times as it was previously locked by that thread.

Mutexes may not be unlocked in ISRs, as mutexes must only be manipulated in thread context
due to ownership and priority inheritance semantics.

Parameters

• mutex – Address of the mutex.

Return values

• 0 – Mutex unlocked.

• -EPERM – The current thread does not own the mutex

• -EINVAL – The mutex is not locked

struct k_mutex

#include <kernel.h> Mutex Structure

Public Members

_wait_q_t wait_q

Mutex wait queue

struct k_thread *owner

Mutex owner

uint32_t lock_count

Current lock count

int owner_orig_prio

Original thread priority

Futex API Reference k_futex is a lightweight mutual exclusion primitive designed to minimize kernel
involvement. Uncontended operation relies only on atomic access to shared memory. k_futex are tracked
as kernel objects and can live in user memory so that any access bypasses the kernel object permission
management mechanism.

group futex_apis

7.13. Kernel Services 669

Zephyr Project Documentation, Release 2.7.0-rc2

Functions

int k_futex_wait(struct k_futex *futex, int expected, k_timeout_t timeout)

Pend the current thread on a futex.

Tests that the supplied futex contains the expected value, and if so, goes to sleep until some
other thread calls k_futex_wake() on it.

Parameters

• futex – Address of the futex.

• expected – Expected value of the futex, if it is different the caller will not wait
on it.

• timeout – Non-negative waiting period on the futex, or one of the special
values K_NO_WAIT or K_FOREVER.

Return values

• -EACCES – Caller does not have read access to futex address.

• -EAGAIN – If the futex value did not match the expected parameter.

• -EINVAL – Futex parameter address not recognized by the kernel.

• -ETIMEDOUT – Thread woke up due to timeout and not a futex wakeup.

• 0 – if the caller went to sleep and was woken up. The caller should check the
futex’s value on wakeup to determine if it needs to block again.

int k_futex_wake(struct k_futex *futex, bool wake_all)

Wake one/all threads pending on a futex.

Wake up the highest priority thread pending on the supplied futex, or wakeup all the threads
pending on the supplied futex, and the behavior depends on wake_all.

Parameters

• futex – Futex to wake up pending threads.

• wake_all – If true, wake up all pending threads; If false, wakeup the highest
priority thread.

Return values

• -EACCES – Caller does not have access to the futex address.

• -EINVAL – Futex parameter address not recognized by the kernel.

• Number – of threads that were woken up.

User Mode Mutex API Reference sys_mutex behaves almost exactly like k_mutex, with the added ad-
vantage that a sys_mutex instance can reside in user memory. When user mode isn’t enabled, sys_mutex
behaves like k_mutex.

group user_mutex_apis

Defines

SYS_MUTEX_DEFINE(name)

Statically define and initialize a sys_mutex.

The mutex can be accessed outside the module where it is defined using:

670 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

extern struct sys_mutex <name>;

Route this to memory domains using K_APP_DMEM().

Parameters

• name – Name of the mutex.

Functions

static inline void sys_mutex_init(struct sys_mutex *mutex)

Initialize a mutex.

This routine initializes a mutex object, prior to its first use.

Upon completion, the mutex is available and does not have an owner.

This routine is only necessary to call when userspace is disabled and the mutex was not created
with SYS_MUTEX_DEFINE().

Parameters

• mutex – Address of the mutex.

Returns N/A

static inline int sys_mutex_lock(struct sys_mutex *mutex, k_timeout_t timeout)

Lock a mutex.

This routine locks mutex. If the mutex is locked by another thread, the calling thread waits
until the mutex becomes available or until a timeout occurs.

A thread is permitted to lock a mutex it has already locked. The operation completes imme-
diately and the lock count is increased by 1.

Parameters

• mutex – Address of the mutex, which may reside in user memory

• timeout – Waiting period to lock the mutex, or one of the special values
K_NO_WAIT and K_FOREVER.

Return values

• 0 – Mutex locked.

• -EBUSY – Returned without waiting.

• -EAGAIN – Waiting period timed out.

• -EACCES – Caller has no access to provided mutex address

• -EINVAL – Provided mutex not recognized by the kernel

static inline int sys_mutex_unlock(struct sys_mutex *mutex)

Unlock a mutex.

This routine unlocks mutex. The mutex must already be locked by the calling thread.

The mutex cannot be claimed by another thread until it has been unlocked by the calling
thread as many times as it was previously locked by that thread.

Parameters

• mutex – Address of the mutex, which may reside in user memory

Return values

• 0 – Mutex unlocked

7.13. Kernel Services 671

Zephyr Project Documentation, Release 2.7.0-rc2

• -EACCES – Caller has no access to provided mutex address

• -EINVAL – Provided mutex not recognized by the kernel or mutex wasn’t locked

• -EPERM – Caller does not own the mutex

Condition Variables

A condition variable is a synchronization primitive that enables threads to wait until a particular condition
occurs.

• Concepts

• Implementation

– Defining a Condition Variable

– Waiting on a Condition Variable

– Signaling a Condition Variable

• Suggested Uses

• Configuration Options

• API Reference

Concepts Any number of condition variables can be defined (limited only by available RAM). Each
condition variable is referenced by its memory address.

To wait for a condition to become true, a thread can make use of a condition variable.

A condition variable is basically a queue of threads that threads can put themselves on when some
state of execution (i.e., some condition) is not as desired (by waiting on the condition). The function
k_condvar_wait() performs atomically the following steps;

1. Releases the last acquired mutex.

2. Puts the current thread in the condition variable queue.

Some other thread, when it changes said state, can then wake one (or more) of those waiting
threads and thus allow them to continue by signaling on the condition using k_condvar_signal()
or k_condvar_broadcast() then it:

1. Re-acquires the mutex previously released.

2. Returns from k_condvar_wait() .

A condition variable must be initialized before it can be used.

Implementation

Defining a Condition Variable A condition variable is defined using a variable of type k_condvar. It
must then be initialized by calling k_condvar_init() .

The following code defines a condition variable:

struct k_condvar my_condvar;

k_condvar_init(&my_condvar);

672 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Alternatively, a condition variable can be defined and initialized at compile time by calling
K_CONDVAR_DEFINE .

The following code has the same effect as the code segment above.

K_CONDVAR_DEFINE(my_condvar);

Waiting on a Condition Variable A thread can wait on a condition by calling k_condvar_wait() .

The following code waits on the condition variable.

K_MUTEX_DEFINE(mutex);
K_CONDVAR_DEFINE(condvar)

void main(void)
{

k_mutex_lock(&mutex, K_FOREVER);

/* block this thread until another thread signals cond. While
* blocked, the mutex is released, then re-acquired before this
* thread is woken up and the call returns.
*/

k_condvar_wait(&condvar, &mutex, K_FOREVER);
...
k_mutex_unlock(&mutex);

}

Signaling a Condition Variable A condition variable is signaled on by calling k_condvar_signal()
for one thread or by calling k_condvar_broadcast() for multiple threads.

The following code builds on the example above.

void worker_thread(void)
{

k_mutex_lock(&mutex, K_FOREVER);

/*
* Do some work and fullfill the condition
*/

...

...
k_condvar_signal(&condvar);
k_mutex_unlock(&mutex);

}

Suggested Uses Use condition variables with a mutex to signal changing states (conditions) from one
thread to another thread. Condition variables are not the condition itself and they are not events. The
condition is contained in the surrounding programming logic.

Mutexes alone are not designed for use as a notification/synchronization mechanism. They are meant to
provide mutually exclusive access to a shared resource only.

Configuration Options Related configuration options:

• None.

7.13. Kernel Services 673

Zephyr Project Documentation, Release 2.7.0-rc2

API Reference

group condvar_apis

Defines

K_CONDVAR_DEFINE(name)

Statically define and initialize a condition variable.

The condition variable can be accessed outside the module where it is defined using:

extern struct k_condvar <name>;

Parameters

• name – Name of the condition variable.

Functions

int k_condvar_init(struct k_condvar *condvar)

Initialize a condition variable.

Parameters

• condvar – pointer to a k_condvar structure

Return values 0 – Condition variable created successfully

int k_condvar_signal(struct k_condvar *condvar)

Signals one thread that is pending on the condition variable.

Parameters

• condvar – pointer to a k_condvar structure

Return values 0 – On success

int k_condvar_broadcast(struct k_condvar *condvar)

Unblock all threads that are pending on the condition variable.

Parameters

• condvar – pointer to a k_condvar structure

Returns An integer with number of woken threads on success

int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex, k_timeout_t timeout)

Waits on the condition variable releasing the mutex lock.

Automically releases the currently owned mutex, blocks the current thread waiting on the
condition variable specified by condvar, and finally acquires the mutex again.

The waiting thread unblocks only after another thread calls k_condvar_signal, or
k_condvar_broadcast with the same condition variable.

Parameters

• condvar – pointer to a k_condvar structure

• mutex – Address of the mutex.

• timeout – Waiting period for the condition variable or one of the special values
K_NO_WAIT and K_FOREVER.

674 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Return values

• 0 – On success

• -EAGAIN – Waiting period timed out.

Symmetric Multiprocessing

On multiprocessor architectures, Zephyr supports the use of multiple physical CPUs running Zephyr
application code. This support is “symmetric” in the sense that no specific CPU is treated specially by
default. Any processor is capable of running any Zephyr thread, with access to all standard Zephyr APIs
supported.

No special application code needs to be written to take advantage of this feature. If there are two Zephyr
application threads runnable on a supported dual processor device, they will both run simultaneously.

SMP configuration is controlled under the :kconfig:`CONFIG_SMP` kconfig variable. This must be set
to “y” to enable SMP features, otherwise a uniprocessor kernel will be built. In general the platform
default will have enabled this anywhere it’s supported. When enabled, the number of physical CPUs
available is visible at build time as :kconfig:`CONFIG_MP_NUM_CPUS`. Likewise, the default for this
will be the number of available CPUs on the platform and it is not expected that typical apps will change
it. But it is legal and supported to set this to a smaller (but obviously not larger) number for special
purposes (e.g. for testing, or to reserve a physical CPU for running non-Zephyr code).

Synchronization At the application level, core Zephyr IPC and synchronization primitives all behave
identically under an SMP kernel. For example semaphores used to implement blocking mutual exclusion
continue to be a proper application choice.

At the lowest level, however, Zephyr code has often used the irq_lock() /irq_unlock() primitives to
implement fine grained critical sections using interrupt masking. These APIs continue to work via an
emulation layer (see below), but the masking technique does not: the fact that your CPU will not be
interrupted while you are in your critical section says nothing about whether a different CPU will be
running simultaneously and be inspecting or modifying the same data!

Spinlocks SMP systems provide a more constrained k_spin_lock() primitive that not only masks
interrupts locally, as done by irq_lock() , but also atomically validates that a shared lock variable has
been modified before returning to the caller, “spinning” on the check if needed to wait for the other CPU
to exit the lock. The default Zephyr implementation of k_spin_lock() and k_spin_unlock() is built
on top of the pre-existing atomic_ layer (itself usually implemented using compiler intrinsics), though
facilities exist for architectures to define their own for performance reasons.

One important difference between IRQ locks and spinlocks is that the earlier API was naturally recursive:
the lock was global, so it was legal to acquire a nested lock inside of a critical section. Spinlocks are
separable: you can have many locks for separate subsystems or data structures, preventing CPUs from
contending on a single global resource. But that means that spinlocks must not be used recursively. Code
that holds a specific lock must not try to re-acquire it or it will deadlock (it is perfectly legal to nest
distinct spinlocks, however). A validation layer is available to detect and report bugs like this.

When used on a uniprocessor system, the data component of the spinlock (the atomic lock variable)
is unnecessary and elided. Except for the recursive semantics above, spinlocks in single-CPU contexts
produce identical code to legacy IRQ locks. In fact the entirety of the Zephyr core kernel has now been
ported to use spinlocks exclusively.

Legacy irq_lock() emulation For the benefit of applications written to the uniprocessor locking API,
irq_lock() and irq_unlock() continue to work compatibly on SMP systems with identical semantics
to their legacy versions. They are implemented as a single global spinlock, with a nesting count and the
ability to be atomically reacquired on context switch into locked threads. The kernel will ensure that
only one thread across all CPUs can hold the lock at any time, that it is released on context switch, and

7.13. Kernel Services 675

Zephyr Project Documentation, Release 2.7.0-rc2

that it is re-acquired when necessary to restore the lock state when a thread is switched in. Other CPUs
will spin waiting for the release to happen.

The overhead involved in this process has measurable performance impact, however. Unlike uniprocessor
apps, SMP apps using irq_lock() are not simply invoking a very short (often ~1 instruction) interrupt
masking operation. That, and the fact that the IRQ lock is global, means that code expecting to be run
in an SMP context should be using the spinlock API wherever possible.

CPU Mask It is often desirable for real time applications to deliberately partition work across physical
CPUs instead of relying solely on the kernel scheduler to decide on which threads to execute. Zephyr
provides an API, controlled by the :kconfig:`CONFIG_SCHED_CPU_MASK` kconfig variable, which can
associate a specific set of CPUs with each thread, indicating on which CPUs it can run.

By default, new threads can run on any CPU. Calling k_thread_cpu_mask_disable() with a par-
ticular CPU ID will prevent that thread from running on that CPU in the future. Likewise
k_thread_cpu_mask_enable() will re-enable execution. There are also k_thread_cpu_mask_clear()
and k_thread_cpu_mask_enable_all() APIs available for convenience. For obvious reasons, these
APIs are illegal if called on a runnable thread. The thread must be blocked or suspended, otherwise an
-EINVAL will be returned.

Note that when this feature is enabled, the scheduler algorithm involved in doing the per-CPU mask
test requires that the list be traversed in full. The kernel does not keep a per-CPU run queue. That
means that the performance benefits from the :kconfig:`CONFIG_SCHED_SCALABLE` and :kcon-
fig:`CONFIG_SCHED_MULTIQ` scheduler backends cannot be realized. CPU mask processing is avail-
able only when :kconfig:`CONFIG_SCHED_DUMB` is the selected backend. This requirement is en-
forced in the configuration layer.

SMP Boot Process A Zephyr SMP kernel begins boot identically to a uniprocessor kernel. Auxiliary
CPUs begin in a disabled state in the architecture layer. All standard kernel initialization, including
device initialization, happens on a single CPU before other CPUs are brought online.

Just before entering the application main() function, the kernel calls z_smp_init() to launch the SMP
initialization process. This enumerates over the configured CPUs, calling into the architecture layer
using arch_start_cpu() for each one. This function is passed a memory region to use as a stack on the
foreign CPU (in practice it uses the area that will become that CPU’s interrupt stack), the address of a
local smp_init_top() callback function to run on that CPU, and a pointer to a “start flag” address which
will be used as an atomic signal.

The local SMP initialization (smp_init_top()) on each CPU is then invoked by the architecture
layer. Note that interrupts are still masked at this point. This routine is responsible for calling
smp_timer_init() to set up any needed stat in the timer driver. On many architectures the timer is
a per-CPU device and needs to be configured specially on auxiliary CPUs. Then it waits (spinning) for
the atomic “start flag” to be released in the main thread, to guarantee that all SMP initialization is
complete before any Zephyr application code runs, and finally calls z_swap() to transfer control to the
appropriate runnable thread via the standard scheduler API.

Interprocessor Interrupts When running in multiprocessor environments, it is occasionally the case
that state modified on the local CPU needs to be synchronously handled on a different processor.

One example is the Zephyr k_thread_abort() API, which cannot return until the thread that had been
aborted is no longer runnable. If it is currently running on another CPU, that becomes difficult to
implement.

Another is low power idle. It is a firm requirement on many devices that system idle be implemented us-
ing a low-power mode with as many interrupts (including periodic timer interrupts) disabled or deferred
as is possible. If a CPU is in such a state, and on another CPU a thread becomes runnable, the idle CPU
has no way to “wake up” to handle the newly-runnable load.

So where possible, Zephyr SMP architectures should implement an interprocessor interrupt. The current
framework is very simple: the architecture provides a arch_sched_ipi() call, which when invoked will

676 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

init
stack

ThreadA

Core/device
initialization

arch_start_cpu()
init

stack

ThreadB

CPU 0 CPU 1

z_swap() z_swap()

Fig. 2: Example SMP initialization process, showing a configuration with two CPUs and two app threads
which begin operating simultaneously.

7.13. Kernel Services 677

Zephyr Project Documentation, Release 2.7.0-rc2

flag an interrupt on all CPUs (except the current one, though that is allowed behavior) which will then
invoke the z_sched_ipi() function implemented in the scheduler. The expectation is that these APIs will
evolve over time to encompass more functionality (e.g. cross-CPU calls), and that the scheduler-specific
calls here will be implemented in terms of a more general framework.

Note that not all SMP architectures will have a usable IPI mechanism (either missing, or just undocu-
mented/unimplemented). In those cases Zephyr provides fallback behavior that is correct, but perhaps
suboptimal.

Using this, k_thread_abort() becomes only slightly more complicated in SMP: for the case where a
thread is actually running on another CPU (we can detect this atomically inside the scheduler), we
broadcast an IPI and spin, waiting for the thread to either become “DEAD” or for it to re-enter the queue
(in which case we terminate it the same way we would have in uniprocessor mode). Note that the
“aborted” check happens on any interrupt exit, so there is no special handling needed in the IPI per se.
This allows us to implement a reasonable fallback when IPI is not available: we can simply spin, waiting
until the foreign CPU receives any interrupt, though this may be a much longer time!

Likewise idle wakeups are trivially implementable with an empty IPI handler. If a thread is added to an
empty run queue (i.e. there may have been idle CPUs), we broadcast an IPI. A foreign CPU will then be
able to see the new thread when exiting from the interrupt and will switch to it if available.

Without an IPI, however, a low power idle that requires an interrupt will not work to synchronously
run new threads. The workaround in that case is more invasive: Zephyr will not enter the system idle
handler and will instead spin in its idle loop, testing the scheduler state at high frequency (not spinning
on it though, as that would involve severe lock contention) for new threads. The expectation is that
power constrained SMP applications are always going to provide an IPI, and this code will only be used
for testing purposes or on systems without power consumption requirements.

SMP Kernel Internals In general, Zephyr kernel code is SMP-agnostic and, like application code, will
work correctly regardless of the number of CPUs available. But in a few areas there are notable changes
in structure or behavior.

Per-CPU data Many elements of the core kernel data need to be implemented for each CPU in SMP
mode. For example, the _current thread pointer obviously needs to reflect what is running locally, there
are many threads running concurrently. Likewise a kernel-provided interrupt stack needs to be created
and assigned for each physical CPU, as does the interrupt nesting count used to detect ISR state.

These fields are now moved into a separate struct _cpu instance within the _kernel struct, which has
a cpus[] array indexed by ID. Compatibility fields are provided for legacy uniprocessor code trying to
access the fields of cpus[0] using the older syntax and assembly offsets.

Note that an important requirement on the architecture layer is that the pointer to this CPU struct be
available rapidly when in kernel context. The expectation is that arch_curr_cpu() will be implemented
using a CPU-provided register or addressing mode that can store this value across arbitrary context
switches or interrupts and make it available to any kernel-mode code.

Similarly, where on a uniprocessor system Zephyr could simply create a global “idle thread” at the lowest
priority, in SMP we may need one for each CPU. This makes the internal predicate test for “_is_idle()” in
the scheduler, which is a hot path performance environment, more complicated than simply testing the
thread pointer for equality with a known static variable. In SMP mode, idle threads are distinguished by
a separate field in the thread struct.

Switch-based context switching The traditional Zephyr context switch primitive has been z_swap().
Unfortunately, this function takes no argument specifying a thread to switch to. The expectation has
always been that the scheduler has already made its preemption decision when its state was last modified
and cached the resulting “next thread” pointer in a location where architecture context switch primitives
can find it via a simple struct offset. That technique will not work in SMP, because the other CPU may
have modified scheduler state since the current CPU last exited the scheduler (for example: it might
already be running that cached thread!).

678 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Instead, the SMP “switch to” decision needs to be made synchronously with the swap call, and as we
don’t want per-architecture assembly code to be handling scheduler internal state, Zephyr requires a
somewhat lower-level context switch primitives for SMP systems: arch_switch() is always called with
interrupts masked, and takes exactly two arguments. The first is an opaque (architecture defined) handle
to the context to which it should switch, and the second is a pointer to such a handle into which it should
store the handle resulting from the thread that is being switched out.

The kernel then implements a portable z_swap() implementation on top of this primitive which includes
the relevant scheduler logic in a location where the architecture doesn’t need to understand it. Similarly,
on interrupt exit, switch-based architectures are expected to call z_get_next_switch_handle() to re-
trieve the next thread to run from the scheduler, passing in an “interrupted” handle reflecting the same
opaque type used by switch, which the kernel will then save in the interrupted thread struct.

Note that while SMP requires :kconfig:`CONFIG_USE_SWITCH`, the reverse is not true. A uniprocessor
architecture built with :kconfig:`CONFIG_SMP` set to No might still decide to implement its context
switching using arch_switch() .

7.13.2 Data Passing

These pages cover kernel objects which can be used to pass data between threads and ISRs.

The following table summarizes their high-level features.

Object Bidirec-
tional?

Data
structure

Data
item size

Data
Align-
ment

ISRs can
receive?

ISRs can
send?

Overrun handling

FIFO No Queue Arbi-
trary
[1]

4 B [2] Yes [3] Yes N/A

LIFO No Queue Arbi-
trary
[1]

4 B [2] Yes [3] Yes N/A

Stack No Array Word Word Yes [3] Yes Undefined be-
havior

Message
queue

No Ring
buffer

Power
of two

Power of
two

Yes [3] Yes Pend thread or
return -errno

Mailbox Yes Queue Arbi-
trary
[1]

Arbitrary No No N/A

Pipe No Ring
buffer
[4]

Arbi-
trary

Arbitrary No No Pend thread or
return -errno

[1] Callers allocate space for queue overhead in the data elements themselves.

[2] Objects added with k_fifo_alloc_put() and k_lifo_alloc_put() do not have alignment constraints, but
use temporary memory from the calling thread’s resource pool.

[3] ISRs can receive only when passing K_NO_WAIT as the timeout argument.

[4] Optional.

Queues

A Queue in Zephyr is a kernel object that implements a traditional queue, allowing threads and ISRs
to add and remove data items of any size. The queue is similar to a FIFO and serves as the underlying
implementation for both k_fifo and k_lifo. For more information on usage see k_fifo.

7.13. Kernel Services 679

Zephyr Project Documentation, Release 2.7.0-rc2

Configuration Options Related configuration options:

• None

API Reference

group queue_apis

Defines

K_QUEUE_DEFINE(name)
Statically define and initialize a queue.

The queue can be accessed outside the module where it is defined using:

extern struct k_queue <name>;

Parameters

• name – Name of the queue.

Functions

void k_queue_init(struct k_queue *queue)
Initialize a queue.

This routine initializes a queue object, prior to its first use.

Parameters

• queue – Address of the queue.

Returns N/A

void k_queue_cancel_wait(struct k_queue *queue)
Cancel waiting on a queue.

This routine causes first thread pending on queue, if any, to return from k_queue_get() call
with NULL value (as if timeout expired). If the queue is being waited on by k_poll(), it
will return with -EINTR and K_POLL_STATE_CANCELLED state (and per above, subsequent
k_queue_get() will return NULL).

Function properties (list may not be complete) isr-ok

Parameters

• queue – Address of the queue.

Returns N/A

void k_queue_append(struct k_queue *queue, void *data)
Append an element to the end of a queue.

This routine appends a data item to queue. A queue data item must be aligned on a word
boundary, and the first word of the item is reserved for the kernel’s use.

Function properties (list may not be complete) isr-ok

680 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• queue – Address of the queue.

• data – Address of the data item.

Returns N/A

int32_t k_queue_alloc_append(struct k_queue *queue, void *data)

Append an element to a queue.

This routine appends a data item to queue. There is an implicit memory allocation to create
an additional temporary bookkeeping data structure from the calling thread’s resource pool,
which is automatically freed when the item is removed. The data itself is not copied.

Function properties (list may not be complete) isr-ok

Parameters

• queue – Address of the queue.

• data – Address of the data item.

Return values

• 0 – on success

• -ENOMEM – if there isn’t sufficient RAM in the caller’s resource pool

void k_queue_prepend(struct k_queue *queue, void *data)

Prepend an element to a queue.

This routine prepends a data item to queue. A queue data item must be aligned on a word
boundary, and the first word of the item is reserved for the kernel’s use.

Function properties (list may not be complete) isr-ok

Parameters

• queue – Address of the queue.

• data – Address of the data item.

Returns N/A

int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data)

Prepend an element to a queue.

This routine prepends a data item to queue. There is an implicit memory allocation to create
an additional temporary bookkeeping data structure from the calling thread’s resource pool,
which is automatically freed when the item is removed. The data itself is not copied.

Function properties (list may not be complete) isr-ok

Parameters

• queue – Address of the queue.

• data – Address of the data item.

Return values

• 0 – on success

7.13. Kernel Services 681

Zephyr Project Documentation, Release 2.7.0-rc2

• -ENOMEM – if there isn’t sufficient RAM in the caller’s resource pool

void k_queue_insert(struct k_queue *queue, void *prev, void *data)

Inserts an element to a queue.

This routine inserts a data item to queue after previous item. A queue data item must be
aligned on a word boundary, and the first word of the item is reserved for the kernel’s use.

Function properties (list may not be complete) isr-ok

Parameters

• queue – Address of the queue.

• prev – Address of the previous data item.

• data – Address of the data item.

Returns N/A

int k_queue_append_list(struct k_queue *queue, void *head, void *tail)

Atomically append a list of elements to a queue.

This routine adds a list of data items to queue in one operation. The data items must be in a
singly-linked list, with the first word in each data item pointing to the next data item; the list
must be NULL-terminated.

Function properties (list may not be complete) isr-ok

Parameters

• queue – Address of the queue.

• head – Pointer to first node in singly-linked list.

• tail – Pointer to last node in singly-linked list.

Return values

• 0 – on success

• -EINVAL – on invalid supplied data

int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list)

Atomically add a list of elements to a queue.

This routine adds a list of data items to queue in one operation. The data items must be in a
singly-linked list implemented using a sys_slist_t object. Upon completion, the original list is
empty.

Function properties (list may not be complete) isr-ok

Parameters

• queue – Address of the queue.

• list – Pointer to sys_slist_t object.

Return values

• 0 – on success

• -EINVAL – on invalid data

682 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

void *k_queue_get(struct k_queue *queue, k_timeout_t timeout)

Get an element from a queue.

This routine removes first data item from queue. The first word of the data item is reserved
for the kernel’s use.

Function properties (list may not be complete) isr-ok

Note: timeout must be set to K_NO_WAIT if called from ISR.

Parameters

• queue – Address of the queue.

• timeout – Non-negative waiting period to obtain a data item or one of the
special values K_NO_WAIT and K_FOREVER.

Returns Address of the data item if successful; NULL if returned without waiting, or
waiting period timed out.

bool k_queue_remove(struct k_queue *queue, void *data)

Remove an element from a queue.

This routine removes data item from queue. The first word of the data item is reserved for
the kernel’s use. Removing elements from k_queue rely on sys_slist_find_and_remove which
is not a constant time operation.

Function properties (list may not be complete) isr-ok

Note: timeout must be set to K_NO_WAIT if called from ISR.

Parameters

• queue – Address of the queue.

• data – Address of the data item.

Returns true if data item was removed

bool k_queue_unique_append(struct k_queue *queue, void *data)

Append an element to a queue only if it’s not present already.

This routine appends data item to queue. The first word of the data item is reserved for the
kernel’s use. Appending elements to k_queue relies on sys_slist_is_node_in_list which is not a
constant time operation.

Function properties (list may not be complete) isr-ok

Parameters

• queue – Address of the queue.

• data – Address of the data item.

Returns true if data item was added, false if not

7.13. Kernel Services 683

Zephyr Project Documentation, Release 2.7.0-rc2

int k_queue_is_empty(struct k_queue *queue)

Query a queue to see if it has data available.

Note that the data might be already gone by the time this function returns if other threads are
also trying to read from the queue.

Function properties (list may not be complete) isr-ok

Parameters

• queue – Address of the queue.

Returns Non-zero if the queue is empty.

Returns 0 if data is available.

void *k_queue_peek_head(struct k_queue *queue)

Peek element at the head of queue.

Return element from the head of queue without removing it.

Parameters

• queue – Address of the queue.

Returns Head element, or NULL if queue is empty.

void *k_queue_peek_tail(struct k_queue *queue)

Peek element at the tail of queue.

Return element from the tail of queue without removing it.

Parameters

• queue – Address of the queue.

Returns Tail element, or NULL if queue is empty.

FIFOs

A FIFO is a kernel object that implements a traditional first in, first out (FIFO) queue, allowing threads
and ISRs to add and remove data items of any size.

• Concepts

• Implementation

– Defining a FIFO

– Writing to a FIFO

– Reading from a FIFO

• Suggested Uses

• Configuration Options

• API Reference

Concepts Any number of FIFOs can be defined (limited only by available RAM). Each FIFO is refer-
enced by its memory address.

A FIFO has the following key properties:

684 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• A queue of data items that have been added but not yet removed. The queue is implemented as a
simple linked list.

A FIFO must be initialized before it can be used. This sets its queue to empty.

FIFO data items must be aligned on a word boundary, as the kernel reserves the first word of an item
for use as a pointer to the next data item in the queue. Consequently, a data item that holds N bytes
of application data requires N+4 (or N+8) bytes of memory. There are no alignment or reserved space
requirements for data items if they are added with k_fifo_alloc_put() , instead additional memory is
temporarily allocated from the calling thread’s resource pool.

A data item may be added to a FIFO by a thread or an ISR. The item is given directly to a waiting thread,
if one exists; otherwise the item is added to the FIFO’s queue. There is no limit to the number of items
that may be queued.

A data item may be removed from a FIFO by a thread. If the FIFO’s queue is empty a thread may choose
to wait for a data item to be given. Any number of threads may wait on an empty FIFO simultaneously.
When a data item is added, it is given to the highest priority thread that has waited longest.

Note: The kernel does allow an ISR to remove an item from a FIFO, however the ISR must not attempt
to wait if the FIFO is empty.

If desired, multiple data items can be added to a FIFO in a single operation if they are chained together
into a singly-linked list. This capability can be useful if multiple writers are adding sets of related data
items to the FIFO, as it ensures the data items in each set are not interleaved with other data items.
Adding multiple data items to a FIFO is also more efficient than adding them one at a time, and can
be used to guarantee that anyone who removes the first data item in a set will be able to remove the
remaining data items without waiting.

Implementation

Defining a FIFO A FIFO is defined using a variable of type k_fifo. It must then be initialized by calling
k_fifo_init() .

The following code defines and initializes an empty FIFO.

struct k_fifo my_fifo;

k_fifo_init(&my_fifo);

Alternatively, an empty FIFO can be defined and initialized at compile time by calling K_FIFO_DEFINE .

The following code has the same effect as the code segment above.

K_FIFO_DEFINE(my_fifo);

Writing to a FIFO A data item is added to a FIFO by calling k_fifo_put() .

The following code builds on the example above, and uses the FIFO to send data to one or more consumer
threads.

struct data_item_t {
void *fifo_reserved; /* 1st word reserved for use by FIFO */
...

};

struct data_item_t tx_data;

(continues on next page)

7.13. Kernel Services 685

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

void producer_thread(int unused1, int unused2, int unused3)
{

while (1) {
/* create data item to send */
tx_data = ...

/* send data to consumers */
k_fifo_put(&my_fifo, &tx_data);

...
}

}

Additionally, a singly-linked list of data items can be added to a FIFO by calling k_fifo_put_list() or
k_fifo_put_slist() .

Finally, a data item can be added to a FIFO with k_fifo_alloc_put() . With this API, there is no need
to reserve space for the kernel’s use in the data item, instead additional memory will be allocated from
the calling thread’s resource pool until the item is read.

Reading from a FIFO A data item is removed from a FIFO by calling k_fifo_get() .

The following code builds on the example above, and uses the FIFO to obtain data items from a producer
thread, which are then processed in some manner.

void consumer_thread(int unused1, int unused2, int unused3)
{

struct data_item_t *rx_data;

while (1) {
rx_data = k_fifo_get(&my_fifo, K_FOREVER);

/* process FIFO data item */
...

}
}

Suggested Uses Use a FIFO to asynchronously transfer data items of arbitrary size in a “first in, first
out” manner.

Configuration Options Related configuration options:

• None

API Reference

group fifo_apis

Defines

k_fifo_init(fifo)

Initialize a FIFO queue.

This routine initializes a FIFO queue, prior to its first use.

686 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• fifo – Address of the FIFO queue.

Returns N/A

k_fifo_cancel_wait(fifo)

Cancel waiting on a FIFO queue.

This routine causes first thread pending on fifo, if any, to return from k_fifo_get() call with
NULL value (as if timeout expired).

Function properties (list may not be complete) isr-ok

Parameters

• fifo – Address of the FIFO queue.

Returns N/A

k_fifo_put(fifo, data)

Add an element to a FIFO queue.

This routine adds a data item to fifo. A FIFO data item must be aligned on a word boundary,
and the first word of the item is reserved for the kernel’s use.

Function properties (list may not be complete) isr-ok

Parameters

• fifo – Address of the FIFO.

• data – Address of the data item.

Returns N/A

k_fifo_alloc_put(fifo, data)

Add an element to a FIFO queue.

This routine adds a data item to fifo. There is an implicit memory allocation to create an ad-
ditional temporary bookkeeping data structure from the calling thread’s resource pool, which
is automatically freed when the item is removed. The data itself is not copied.

Function properties (list may not be complete) isr-ok

Parameters

• fifo – Address of the FIFO.

• data – Address of the data item.

Return values

• 0 – on success

• -ENOMEM – if there isn’t sufficient RAM in the caller’s resource pool

7.13. Kernel Services 687

Zephyr Project Documentation, Release 2.7.0-rc2

k_fifo_put_list(fifo, head, tail)

Atomically add a list of elements to a FIFO.

This routine adds a list of data items to fifo in one operation. The data items must be in a
singly-linked list, with the first word of each data item pointing to the next data item; the list
must be NULL-terminated.

Function properties (list may not be complete) isr-ok

Parameters

• fifo – Address of the FIFO queue.

• head – Pointer to first node in singly-linked list.

• tail – Pointer to last node in singly-linked list.

Returns N/A

k_fifo_put_slist(fifo, list)

Atomically add a list of elements to a FIFO queue.

This routine adds a list of data items to fifo in one operation. The data items must be in
a singly-linked list implemented using a sys_slist_t object. Upon completion, the sys_slist_t
object is invalid and must be re-initialized via sys_slist_init().

Function properties (list may not be complete) isr-ok

Parameters

• fifo – Address of the FIFO queue.

• list – Pointer to sys_slist_t object.

Returns N/A

k_fifo_get(fifo, timeout)

Get an element from a FIFO queue.

This routine removes a data item from fifo in a “first in, first out” manner. The first word of
the data item is reserved for the kernel’s use.

Function properties (list may not be complete) isr-ok

Note: timeout must be set to K_NO_WAIT if called from ISR.

Parameters

• fifo – Address of the FIFO queue.

• timeout – Waiting period to obtain a data item, or one of the special values
K_NO_WAIT and K_FOREVER.

Returns Address of the data item if successful; NULL if returned without waiting, or
waiting period timed out.

688 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

k_fifo_is_empty(fifo)

Query a FIFO queue to see if it has data available.

Note that the data might be already gone by the time this function returns if other threads is
also trying to read from the FIFO.

Function properties (list may not be complete) isr-ok

Parameters

• fifo – Address of the FIFO queue.

Returns Non-zero if the FIFO queue is empty.

Returns 0 if data is available.

k_fifo_peek_head(fifo)

Peek element at the head of a FIFO queue.

Return element from the head of FIFO queue without removing it. A usecase for this is if
elements of the FIFO object are themselves containers. Then on each iteration of processing,
a head container will be peeked, and some data processed out of it, and only if the container
is empty, it will be completely remove from the FIFO queue.

Parameters

• fifo – Address of the FIFO queue.

Returns Head element, or NULL if the FIFO queue is empty.

k_fifo_peek_tail(fifo)

Peek element at the tail of FIFO queue.

Return element from the tail of FIFO queue (without removing it). A usecase for this is if
elements of the FIFO queue are themselves containers. Then it may be useful to add more
data to the last container in a FIFO queue.

Parameters

• fifo – Address of the FIFO queue.

Returns Tail element, or NULL if a FIFO queue is empty.

K_FIFO_DEFINE(name)

Statically define and initialize a FIFO queue.

The FIFO queue can be accessed outside the module where it is defined using:

extern struct k_fifo <name>;

Parameters

• name – Name of the FIFO queue.

LIFOs

A LIFO is a kernel object that implements a traditional last in, first out (LIFO) queue, allowing threads
and ISRs to add and remove data items of any size.

7.13. Kernel Services 689

Zephyr Project Documentation, Release 2.7.0-rc2

• Concepts

• Implementation

– Defining a LIFO

– Writing to a LIFO

– Reading from a LIFO

• Suggested Uses

• Configuration Options

• API Reference

Concepts Any number of LIFOs can be defined (limited only by available RAM). Each LIFO is refer-
enced by its memory address.

A LIFO has the following key properties:

• A queue of data items that have been added but not yet removed. The queue is implemented as a
simple linked list.

A LIFO must be initialized before it can be used. This sets its queue to empty.

LIFO data items must be aligned on a word boundary, as the kernel reserves the first word of an item
for use as a pointer to the next data item in the queue. Consequently, a data item that holds N bytes
of application data requires N+4 (or N+8) bytes of memory. There are no alignment or reserved space
requirements for data items if they are added with k_lifo_alloc_put() , instead additional memory is
temporarily allocated from the calling thread’s resource pool.

A data item may be added to a LIFO by a thread or an ISR. The item is given directly to a waiting thread,
if one exists; otherwise the item is added to the LIFO’s queue. There is no limit to the number of items
that may be queued.

A data item may be removed from a LIFO by a thread. If the LIFO’s queue is empty a thread may choose
to wait for a data item to be given. Any number of threads may wait on an empty LIFO simultaneously.
When a data item is added, it is given to the highest priority thread that has waited longest.

Note: The kernel does allow an ISR to remove an item from a LIFO, however the ISR must not attempt
to wait if the LIFO is empty.

Implementation

Defining a LIFO A LIFO is defined using a variable of type k_lifo. It must then be initialized by calling
k_lifo_init() .

The following defines and initializes an empty LIFO.

struct k_lifo my_lifo;

k_lifo_init(&my_lifo);

Alternatively, an empty LIFO can be defined and initialized at compile time by calling K_LIFO_DEFINE .

The following code has the same effect as the code segment above.

K_LIFO_DEFINE(my_lifo);

690 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Writing to a LIFO A data item is added to a LIFO by calling k_lifo_put() .

The following code builds on the example above, and uses the LIFO to send data to one or more consumer
threads.

struct data_item_t {
void *LIFO_reserved; /* 1st word reserved for use by LIFO */
...

};

struct data_item_t tx data;

void producer_thread(int unused1, int unused2, int unused3)
{

while (1) {
/* create data item to send */
tx_data = ...

/* send data to consumers */
k_lifo_put(&my_lifo, &tx_data);

...
}

}

A data item can be added to a LIFO with k_lifo_alloc_put() . With this API, there is no need to reserve
space for the kernel’s use in the data item, instead additional memory will be allocated from the calling
thread’s resource pool until the item is read.

Reading from a LIFO A data item is removed from a LIFO by calling k_lifo_get() .

The following code builds on the example above, and uses the LIFO to obtain data items from a producer
thread, which are then processed in some manner.

void consumer_thread(int unused1, int unused2, int unused3)
{

struct data_item_t *rx_data;

while (1) {
rx_data = k_lifo_get(&my_lifo, K_FOREVER);

/* process LIFO data item */
...

}
}

Suggested Uses Use a LIFO to asynchronously transfer data items of arbitrary size in a “last in, first
out” manner.

Configuration Options Related configuration options:

• None.

API Reference

group lifo_apis

7.13. Kernel Services 691

Zephyr Project Documentation, Release 2.7.0-rc2

Defines

k_lifo_init(lifo)
Initialize a LIFO queue.

This routine initializes a LIFO queue object, prior to its first use.

Parameters

• lifo – Address of the LIFO queue.

Returns N/A

k_lifo_put(lifo, data)
Add an element to a LIFO queue.

This routine adds a data item to lifo. A LIFO queue data item must be aligned on a word
boundary, and the first word of the item is reserved for the kernel’s use.

Function properties (list may not be complete) isr-ok

Parameters

• lifo – Address of the LIFO queue.

• data – Address of the data item.

Returns N/A

k_lifo_alloc_put(lifo, data)
Add an element to a LIFO queue.

This routine adds a data item to lifo. There is an implicit memory allocation to create an ad-
ditional temporary bookkeeping data structure from the calling thread’s resource pool, which
is automatically freed when the item is removed. The data itself is not copied.

Function properties (list may not be complete) isr-ok

Parameters

• lifo – Address of the LIFO.

• data – Address of the data item.

Return values

• 0 – on success

• -ENOMEM – if there isn’t sufficient RAM in the caller’s resource pool

k_lifo_get(lifo, timeout)
Get an element from a LIFO queue.

This routine removes a data item from LIFO in a “last in, first out” manner. The first word of
the data item is reserved for the kernel’s use.

Function properties (list may not be complete) isr-ok

Note: timeout must be set to K_NO_WAIT if called from ISR.

Parameters

692 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• lifo – Address of the LIFO queue.

• timeout – Waiting period to obtain a data item, or one of the special values
K_NO_WAIT and K_FOREVER.

Returns Address of the data item if successful; NULL if returned without waiting, or
waiting period timed out.

K_LIFO_DEFINE(name)
Statically define and initialize a LIFO queue.

The LIFO queue can be accessed outside the module where it is defined using:

extern struct k_lifo <name>;

Parameters

• name – Name of the fifo.

Stacks

A stack is a kernel object that implements a traditional last in, first out (LIFO) queue, allowing threads
and ISRs to add and remove a limited number of integer data values.

• Concepts

• Implementation

– Defining a Stack

– Pushing to a Stack

– Popping from a Stack

• Suggested Uses

• Configuration Options

• API Reference

Concepts Any number of stacks can be defined (limited only by available RAM). Each stack is refer-
enced by its memory address.

A stack has the following key properties:

• A queue of integer data values that have been added but not yet removed. The queue is imple-
mented using an array of stack_data_t values and must be aligned on a native word boundary. The
stack_data_t type corresponds to the native word size i.e. 32 bits or 64 bits depending on the CPU
architecture and compilation mode.

• A maximum quantity of data values that can be queued in the array.

A stack must be initialized before it can be used. This sets its queue to empty.

A data value can be added to a stack by a thread or an ISR. The value is given directly to a waiting thread,
if one exists; otherwise the value is added to the LIFO’s queue. The kernel does not detect attempts to
add a data value to a stack that has already reached its maximum quantity of queued values.

Note: Adding a data value to a stack that is already full will result in array overflow, and lead to
unpredictable behavior.

7.13. Kernel Services 693

Zephyr Project Documentation, Release 2.7.0-rc2

A data value may be removed from a stack by a thread. If the stack’s queue is empty a thread may
choose to wait for it to be given. Any number of threads may wait on an empty stack simultaneously.
When a data item is added, it is given to the highest priority thread that has waited longest.

Note: The kernel does allow an ISR to remove an item from a stack, however the ISR must not attempt
to wait if the stack is empty.

Implementation

Defining a Stack A stack is defined using a variable of type k_stack. It must then be initialized by
calling k_stack_init() or k_stack_alloc_init() . In the latter case, a buffer is not provided and it is
instead allocated from the calling thread’s resource pool.

The following code defines and initializes an empty stack capable of holding up to ten word-sized data
values.

define MAX_ITEMS 10

stack_data_t my_stack_array[MAX_ITEMS];
struct k_stack my_stack;

k_stack_init(&my_stack, my_stack_array, MAX_ITEMS);

Alternatively, a stack can be defined and initialized at compile time by calling K_STACK_DEFINE .

The following code has the same effect as the code segment above. Observe that the macro defines both
the stack and its array of data values.

K_STACK_DEFINE(my_stack, MAX_ITEMS);

Pushing to a Stack A data item is added to a stack by calling k_stack_push() .

The following code builds on the example above, and shows how a thread can create a pool of data
structures by saving their memory addresses in a stack.

/* define array of data structures */
struct my_buffer_type {

int field1;
...
};

struct my_buffer_type my_buffers[MAX_ITEMS];

/* save address of each data structure in a stack */
for (int i = 0; i < MAX_ITEMS; i++) {

k_stack_push(&my_stack, (stack_data_t)&my_buffers[i]);
}

Popping from a Stack A data item is taken from a stack by calling k_stack_pop() .

The following code builds on the example above, and shows how a thread can dynamically allocate an
unused data structure. When the data structure is no longer required, the thread must push its address
back on the stack to allow the data structure to be reused.

694 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

struct my_buffer_type *new_buffer;

k_stack_pop(&buffer_stack, (stack_data_t *)&new_buffer, K_FOREVER);
new_buffer->field1 = ...

Suggested Uses Use a stack to store and retrieve integer data values in a “last in, first out” manner,
when the maximum number of stored items is known.

Configuration Options Related configuration options:

• None.

API Reference

group stack_apis

Defines

K_STACK_DEFINE(name, stack_num_entries)

Statically define and initialize a stack.

The stack can be accessed outside the module where it is defined using:

extern struct k_stack <name>;

Parameters

• name – Name of the stack.

• stack_num_entries – Maximum number of values that can be stacked.

Functions

void k_stack_init(struct k_stack *stack, stack_data_t *buffer, uint32_t num_entries)

Initialize a stack.

This routine initializes a stack object, prior to its first use.

Parameters

• stack – Address of the stack.

• buffer – Address of array used to hold stacked values.

• num_entries – Maximum number of values that can be stacked.

Returns N/A

int32_t k_stack_alloc_init(struct k_stack *stack, uint32_t num_entries)

Initialize a stack.

This routine initializes a stack object, prior to its first use. Internal buffers will be allocated
from the calling thread’s resource pool. This memory will be released if k_stack_cleanup() is
called, or userspace is enabled and the stack object loses all references to it.

Parameters

7.13. Kernel Services 695

Zephyr Project Documentation, Release 2.7.0-rc2

• stack – Address of the stack.

• num_entries – Maximum number of values that can be stacked.

Returns -ENOMEM if memory couldn’t be allocated

int k_stack_cleanup(struct k_stack *stack)

Release a stack’s allocated buffer.

If a stack object was given a dynamically allocated buffer via k_stack_alloc_init(), this will free
it. This function does nothing if the buffer wasn’t dynamically allocated.

Parameters

• stack – Address of the stack.

Return values

• 0 – on success

• -EAGAIN – when object is still in use

int k_stack_push(struct k_stack *stack, stack_data_t data)

Push an element onto a stack.

This routine adds a stack_data_t value data to stack.

Function properties (list may not be complete) isr-ok

Parameters

• stack – Address of the stack.

• data – Value to push onto the stack.

Return values

• 0 – on success

• -ENOMEM – if stack is full

int k_stack_pop(struct k_stack *stack, stack_data_t *data, k_timeout_t timeout)

Pop an element from a stack.

This routine removes a stack_data_t value from stack in a “last in,

first out” manner and stores the value in data.

Function properties (list may not be complete) isr-ok

Note: timeout must be set to K_NO_WAIT if called from ISR.

Parameters

• stack – Address of the stack.

• data – Address of area to hold the value popped from the stack.

• timeout – Waiting period to obtain a value, or one of the special values
K_NO_WAIT and K_FOREVER.

Return values

• 0 – Element popped from stack.

• -EBUSY – Returned without waiting.

696 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• -EAGAIN – Waiting period timed out.

Message Queues

A message queue is a kernel object that implements a simple message queue, allowing threads and ISRs
to asynchronously send and receive fixed-size data items.

• Concepts

• Implementation

– Defining a Message Queue

– Writing to a Message Queue

– Reading from a Message Queue

– Peeking into a Message Queue

• Suggested Uses

• Configuration Options

• API Reference

Concepts Any number of message queues can be defined (limited only by available RAM). Each mes-
sage queue is referenced by its memory address.

A message queue has the following key properties:

• A ring buffer of data items that have been sent but not yet received.

• A data item size, measured in bytes.

• A maximum quantity of data items that can be queued in the ring buffer.

The message queue’s ring buffer must be aligned to an N-byte boundary, where N is a power of 2 (i.e. 1,
2, 4, 8, . . .). To ensure that the messages stored in the ring buffer are similarly aligned to this boundary,
the data item size must also be a multiple of N.

A message queue must be initialized before it can be used. This sets its ring buffer to empty.

A data item can be sent to a message queue by a thread or an ISR. The data item pointed at by the
sending thread is copied to a waiting thread, if one exists; otherwise the item is copied to the message
queue’s ring buffer, if space is available. In either case, the size of the data area being sent must equal
the message queue’s data item size.

If a thread attempts to send a data item when the ring buffer is full, the sending thread may choose to
wait for space to become available. Any number of sending threads may wait simultaneously when the
ring buffer is full; when space becomes available it is given to the highest priority sending thread that
has waited the longest.

A data item can be received from a message queue by a thread. The data item is copied to the area
specified by the receiving thread; the size of the receiving area must equal the message queue’s data item
size.

If a thread attempts to receive a data item when the ring buffer is empty, the receiving thread may choose
to wait for a data item to be sent. Any number of receiving threads may wait simultaneously when the
ring buffer is empty; when a data item becomes available it is given to the highest priority receiving
thread that has waited the longest.

A thread can also peek at the message on the head of a message queue without removing it from the
queue. The data item is copied to the area specified by the receiving thread; the size of the receiving
area must equal the message queue’s data item size.

7.13. Kernel Services 697

Zephyr Project Documentation, Release 2.7.0-rc2

Note: The kernel does allow an ISR to receive an item from a message queue, however the ISR must
not attempt to wait if the message queue is empty.

Implementation

Defining a Message Queue A message queue is defined using a variable of type k_msgq . It must then
be initialized by calling k_msgq_init() .

The following code defines and initializes an empty message queue that is capable of holding 10 items,
each of which is 12 bytes long.

struct data_item_type {
uint32_t field1;
uint32_t field2;
uint32_t field3;

};

char __aligned(4) my_msgq_buffer[10 * sizeof(struct data_item_type)];
struct k_msgq my_msgq;

k_msgq_init(&my_msgq, my_msgq_buffer, sizeof(struct data_item_type), 10);

Alternatively, a message queue can be defined and initialized at compile time by calling K_MSGQ_DEFINE .

The following code has the same effect as the code segment above. Observe that the macro defines both
the message queue and its buffer.

K_MSGQ_DEFINE(my_msgq, sizeof(struct data_item_type), 10, 4);

The following code demonstrates an alignment implementation for the structure defined in the previ-
ous example code. aligned means each data_item_type will begin on the specified byte boundary.
aligned(4) means that the structure is aligned to an address that is divisible by 4.

typedef struct {
uint32_t field1;
uint32_t field2;
uint32_t field3;

}__attribute__((aligned(4))) data_item_type;

Writing to a Message Queue A data item is added to a message queue by calling k_msgq_put() .

The following code builds on the example above, and uses the message queue to pass data items from a
producing thread to one or more consuming threads. If the message queue fills up because the consumers
can’t keep up, the producing thread throws away all existing data so the newer data can be saved.

void producer_thread(void)
{

struct data_item_type data;

while (1) {
/* create data item to send (e.g. measurement, timestamp, ...) */
data = ...

/* send data to consumers */
while (k_msgq_put(&my_msgq, &data, K_NO_WAIT) != 0) {

(continues on next page)

698 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

/* message queue is full: purge old data & try again */
k_msgq_purge(&my_msgq);

}

/* data item was successfully added to message queue */
}

}

Reading from a Message Queue A data item is taken from a message queue by calling k_msgq_get() .

The following code builds on the example above, and uses the message queue to process data items
generated by one or more producing threads. Note that the return value of k_msgq_get() should be
tested as -ENOMSG can be returned due to k_msgq_purge() .

void consumer_thread(void)
{

struct data_item_type data;

while (1) {
/* get a data item */
k_msgq_get(&my_msgq, &data, K_FOREVER);

/* process data item */
...

}
}

Peeking into a Message Queue A data item is read from a message queue by calling k_msgq_peek() .

The following code peeks into the message queue to read the data item at the head of the queue that is
generated by one or more producing threads.

void consumer_thread(void)
{

struct data_item_type data;

while (1) {
/* read a data item by peeking into the queue */
k_msgq_peek(&my_msgq, &data);

/* process data item */
...

}
}

Suggested Uses Use a message queue to transfer small data items between threads in an asynchronous
manner.

Note: A message queue can be used to transfer large data items, if desired. However, this can increase
interrupt latency as interrupts are locked while a data item is written or read. It is usually preferable to
transfer large data items by exchanging a pointer to the data item, rather than the data item itself. The
kernel’s memory map and memory pool object types can be helpful for data transfers of this sort.

A synchronous transfer can be achieved by using the kernel’s mailbox object type.

7.13. Kernel Services 699

Zephyr Project Documentation, Release 2.7.0-rc2

Configuration Options Related configuration options:

• None.

API Reference

group msgq_apis

Defines

K_MSGQ_FLAG_ALLOC

K_MSGQ_DEFINE(q_name, q_msg_size, q_max_msgs, q_align)

Statically define and initialize a message queue.

The message queue’s ring buffer contains space for q_max_msgs messages, each of which is
q_msg_size bytes long. The buffer is aligned to a q_align -byte boundary, which must be a
power of 2. To ensure that each message is similarly aligned to this boundary, q_msg_size
must also be a multiple of q_align.

The message queue can be accessed outside the module where it is defined using:

extern struct k_msgq <name>;

Parameters

• q_name – Name of the message queue.

• q_msg_size – Message size (in bytes).

• q_max_msgs – Maximum number of messages that can be queued.

• q_align – Alignment of the message queue’s ring buffer.

Functions

void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size, uint32_t max_msgs)

Initialize a message queue.

This routine initializes a message queue object, prior to its first use.

The message queue’s ring buffer must contain space for max_msgs messages, each of which is
msg_size bytes long. The buffer must be aligned to an N-byte boundary, where N is a power
of 2 (i.e. 1, 2, 4, . . .). To ensure that each message is similarly aligned to this boundary,
q_msg_size must also be a multiple of N.

Parameters

• msgq – Address of the message queue.

• buffer – Pointer to ring buffer that holds queued messages.

• msg_size – Message size (in bytes).

• max_msgs – Maximum number of messages that can be queued.

Returns N/A

700 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size, uint32_t max_msgs)

Initialize a message queue.

This routine initializes a message queue object, prior to its first use, allocating its internal ring
buffer from the calling thread’s resource pool.

Memory allocated for the ring buffer can be released by calling k_msgq_cleanup(), or if
userspace is enabled and the msgq object loses all of its references.

Parameters

• msgq – Address of the message queue.

• msg_size – Message size (in bytes).

• max_msgs – Maximum number of messages that can be queued.

Returns 0 on success, -ENOMEM if there was insufficient memory in the thread’s
resource pool, or -EINVAL if the size parameters cause an integer overflow.

int k_msgq_cleanup(struct k_msgq *msgq)

Release allocated buffer for a queue.

Releases memory allocated for the ring buffer.

Parameters

• msgq – message queue to cleanup

Return values

• 0 – on success

• -EBUSY – Queue not empty

int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout)

Send a message to a message queue.

This routine sends a message to message queue q.

Function properties (list may not be complete) isr-ok

Note: The message content is copied from data into msgq and the data pointer is not retained,
so the message content will not be modified by this function.

Parameters

• msgq – Address of the message queue.

• data – Pointer to the message.

• timeout – Non-negative waiting period to add the message, or one of the spe-
cial values K_NO_WAIT and K_FOREVER.

Return values

• 0 – Message sent.

• -ENOMSG – Returned without waiting or queue purged.

• -EAGAIN – Waiting period timed out.

7.13. Kernel Services 701

Zephyr Project Documentation, Release 2.7.0-rc2

int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout)

Receive a message from a message queue.

This routine receives a message from message queue q in a “first in,

first out” manner.

Function properties (list may not be complete) isr-ok

Note: timeout must be set to K_NO_WAIT if called from ISR.

Parameters

• msgq – Address of the message queue.

• data – Address of area to hold the received message.

• timeout – Waiting period to receive the message, or one of the special values
K_NO_WAIT and K_FOREVER.

Return values

• 0 – Message received.

• -ENOMSG – Returned without waiting.

• -EAGAIN – Waiting period timed out.

int k_msgq_peek(struct k_msgq *msgq, void *data)

Peek/read a message from a message queue.

This routine reads a message from message queue q in a “first in,

first out” manner and leaves the message in the queue.

Function properties (list may not be complete) isr-ok

Parameters

• msgq – Address of the message queue.

• data – Address of area to hold the message read from the queue.

Return values

• 0 – Message read.

• -ENOMSG – Returned when the queue has no message.

void k_msgq_purge(struct k_msgq *msgq)

Purge a message queue.

This routine discards all unreceived messages in a message queue’s ring buffer. Any threads
that are blocked waiting to send a message to the message queue are unblocked and see an
-ENOMSG error code.

Parameters

• msgq – Address of the message queue.

Returns N/A

702 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

uint32_t k_msgq_num_free_get(struct k_msgq *msgq)

Get the amount of free space in a message queue.

This routine returns the number of unused entries in a message queue’s ring buffer.

Parameters

• msgq – Address of the message queue.

Returns Number of unused ring buffer entries.

void k_msgq_get_attrs(struct k_msgq *msgq, struct k_msgq_attrs *attrs)

Get basic attributes of a message queue.

This routine fetches basic attributes of message queue into attr argument.

Parameters

• msgq – Address of the message queue.

• attrs – pointer to message queue attribute structure.

Returns N/A

uint32_t k_msgq_num_used_get(struct k_msgq *msgq)

Get the number of messages in a message queue.

This routine returns the number of messages in a message queue’s ring buffer.

Parameters

• msgq – Address of the message queue.

Returns Number of messages.

struct k_msgq

#include <kernel.h> Message Queue Structure.

Public Members

_wait_q_t wait_q

Message queue wait queue

struct k_spinlock lock

Lock

size_t msg_size

Message size

uint32_t max_msgs

Maximal number of messages

char *buffer_start

Start of message buffer

char *buffer_end

End of message buffer

7.13. Kernel Services 703

Zephyr Project Documentation, Release 2.7.0-rc2

char *read_ptr

Read pointer

char *write_ptr

Write pointer

uint32_t used_msgs

Number of used messages

uint8_t flags

Message queue

struct k_msgq_attrs

#include <kernel.h> Message Queue Attributes.

Public Members

size_t msg_size

Message Size

uint32_t max_msgs

Maximal number of messages

uint32_t used_msgs

Used messages

Mailboxes

A mailbox is a kernel object that provides enhanced message queue capabilities that go beyond the
capabilities of a message queue object. A mailbox allows threads to send and receive messages of any
size synchronously or asynchronously.

• Concepts

– Message Format

– Message Lifecycle

– Thread Compatibility

– Message Flow Control

• Implementation

– Defining a Mailbox

– Message Descriptors

– Sending a Message

– Receiving a Message

• Suggested Uses

• Configuration Options

704 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• API Reference

Concepts Any number of mailboxes can be defined (limited only by available RAM). Each mailbox is
referenced by its memory address.

A mailbox has the following key properties:

• A send queue of messages that have been sent but not yet received.

• A receive queue of threads that are waiting to receive a message.

A mailbox must be initialized before it can be used. This sets both of its queues to empty.

A mailbox allows threads, but not ISRs, to exchange messages. A thread that sends a message is known
as the sending thread, while a thread that receives the message is known as the receiving thread. Each
message may be received by only one thread (i.e. point-to-multipoint and broadcast messaging is not
supported).

Messages exchanged using a mailbox are handled non-anonymously, allowing both threads participating
in an exchange to know (and even specify) the identity of the other thread.

Message Format A message descriptor is a data structure that specifies where a message’s data is
located, and how the message is to be handled by the mailbox. Both the sending thread and the receiving
thread supply a message descriptor when accessing a mailbox. The mailbox uses the message descriptors
to perform a message exchange between compatible sending and receiving threads. The mailbox also
updates certain message descriptor fields during the exchange, allowing both threads to know what has
occurred.

A mailbox message contains zero or more bytes of message data. The size and format of the message
data is application-defined, and can vary from one message to the next. There are two forms of message
data:

• A message buffer is an area of memory provided by the thread that sends or receives the message.
An array or structure variable can often be used for this purpose.

• A message block is an area of memory allocated from a memory pool.

A message may not have both a message buffer and a message block. A message that has neither form
of message data is called an empty message.

Note: A message whose message buffer or memory block exists, but contains zero bytes of actual data,
is not an empty message.

Message Lifecycle The life cycle of a message is straightforward. A message is created when it is given
to a mailbox by the sending thread. The message is then owned by the mailbox until it is given to a
receiving thread. The receiving thread may retrieve the message data when it receives the message from
the mailbox, or it may perform data retrieval during a second, subsequent mailbox operation. Only when
data retrieval has occurred is the message deleted by the mailbox.

Thread Compatibility A sending thread can specify the address of the thread to which the message is
sent, or send it to any thread by specifying K_ANY. Likewise, a receiving thread can specify the address
of the thread from which it wishes to receive a message, or it can receive a message from any thread by
specifying K_ANY. A message is exchanged only when the requirements of both the sending thread and
receiving thread are satisfied; such threads are said to be compatible.

For example, if thread A sends a message to thread B (and only thread B) it will be received by thread B
if thread B tries to receive a message from thread A or if thread B tries to receive from any thread. The

7.13. Kernel Services 705

Zephyr Project Documentation, Release 2.7.0-rc2

exchange will not occur if thread B tries to receive a message from thread C. The message can never be
received by thread C, even if it tries to receive a message from thread A (or from any thread).

Message Flow Control Mailbox messages can be exchanged synchronously or asynchronously. In
a synchronous exchange, the sending thread blocks until the message has been fully processed by the
receiving thread. In an asynchronous exchange, the sending thread does not wait until the message has
been received by another thread before continuing; this allows the sending thread to do other work (such
as gather data that will be used in the next message) before the message is given to a receiving thread
and fully processed. The technique used for a given message exchange is determined by the sending
thread.

The synchronous exchange technique provides an implicit form of flow control, preventing a sending
thread from generating messages faster than they can be consumed by receiving threads. The asyn-
chronous exchange technique provides an explicit form of flow control, which allows a sending thread
to determine if a previously sent message still exists before sending a subsequent message.

Implementation

Defining a Mailbox A mailbox is defined using a variable of type k_mbox . It must then be initialized
by calling k_mbox_init() .

The following code defines and initializes an empty mailbox.

struct k_mbox my_mailbox;

k_mbox_init(&my_mailbox);

Alternatively, a mailbox can be defined and initialized at compile time by calling K_MBOX_DEFINE .

The following code has the same effect as the code segment above.

K_MBOX_DEFINE(my_mailbox);

Message Descriptors A message descriptor is a structure of type k_mbox_msg . Only the fields listed
below should be used; any other fields are for internal mailbox use only.

info A 32-bit value that is exchanged by the message sender and receiver, and whose meaning is defined
by the application. This exchange is bi-directional, allowing the sender to pass a value to the
receiver during any message exchange, and allowing the receiver to pass a value to the sender
during a synchronous message exchange.

size The message data size, in bytes. Set it to zero when sending an empty message, or when sending
a message buffer or message block with no actual data. When receiving a message, set it to the
maximum amount of data desired, or to zero if the message data is not wanted. The mailbox
updates this field with the actual number of data bytes exchanged once the message is received.

tx_data A pointer to the sending thread’s message buffer. Set it to NULL when sending a memory block,
or when sending an empty message. Leave this field uninitialized when receiving a message.

tx_block The descriptor for the sending thread’s memory block. Set tx_block.data to NULL when sending
an empty message. Leave this field uninitialized when sending a message buffer, or when receiving
a message.

tx_target_thread The address of the desired receiving thread. Set it to K_ANY to allow any thread to
receive the message. Leave this field uninitialized when receiving a message. The mailbox updates
this field with the actual receiver’s address once the message is received.

rx_source_thread The address of the desired sending thread. Set it to K_ANY to receive a message sent
by any thread. Leave this field uninitialized when sending a message. The mailbox updates this
field with the actual sender’s address when the message is put into the mailbox.

706 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Sending a Message A thread sends a message by first creating its message data, if any. A message
buffer is typically used when the data volume is small, and the cost of copying the data is less than the
cost of allocating and freeing a message block.

Next, the sending thread creates a message descriptor that characterizes the message to be sent, as
described in the previous section.

Finally, the sending thread calls a mailbox send API to initiate the message exchange. The message is
immediately given to a compatible receiving thread, if one is currently waiting. Otherwise, the message
is added to the mailbox’s send queue.

Any number of messages may exist simultaneously on a send queue. The messages in the send queue
are sorted according to the priority of the sending thread. Messages of equal priority are sorted so that
the oldest message can be received first.

For a synchronous send operation, the operation normally completes when a receiving thread has both
received the message and retrieved the message data. If the message is not received before the waiting
period specified by the sending thread is reached, the message is removed from the mailbox’s send
queue and the send operation fails. When a send operation completes successfully the sending thread
can examine the message descriptor to determine which thread received the message, how much data
was exchanged, and the application-defined info value supplied by the receiving thread.

Note: A synchronous send operation may block the sending thread indefinitely, even when the thread
specifies a maximum waiting period. The waiting period only limits how long the mailbox waits before
the message is received by another thread. Once a message is received there is no limit to the time the
receiving thread may take to retrieve the message data and unblock the sending thread.

For an asynchronous send operation, the operation always completes immediately. This allows the send-
ing thread to continue processing regardless of whether the message is given to a receiving thread im-
mediately or added to the send queue. The sending thread may optionally specify a semaphore that the
mailbox gives when the message is deleted by the mailbox, for example, when the message has been
received and its data retrieved by a receiving thread. The use of a semaphore allows the sending thread
to easily implement a flow control mechanism that ensures that the mailbox holds no more than an
application-specified number of messages from a sending thread (or set of sending threads) at any point
in time.

Note: A thread that sends a message asynchronously has no way to determine which thread received the
message, how much data was exchanged, or the application-defined info value supplied by the receiving
thread.

Sending an Empty Message This code uses a mailbox to synchronously pass 4 byte random values to
any consuming thread that wants one. The message “info” field is large enough to carry the information
being exchanged, so the data portion of the message isn’t used.

void producer_thread(void)
{

struct k_mbox_msg send_msg;

while (1) {

/* generate random value to send */
uint32_t random_value = sys_rand32_get();

/* prepare to send empty message */
send_msg.info = random_value;
send_msg.size = 0;

(continues on next page)

7.13. Kernel Services 707

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

send_msg.tx_data = NULL;
send_msg.tx_block.data = NULL;
send_msg.tx_target_thread = K_ANY;

/* send message and wait until a consumer receives it */
k_mbox_put(&my_mailbox, &send_msg, K_FOREVER);

}
}

Sending Data Using a Message Buffer This code uses a mailbox to synchronously pass variable-sized
requests from a producing thread to any consuming thread that wants it. The message “info” field is
used to exchange information about the maximum size message buffer that each thread can handle.

void producer_thread(void)
{

char buffer[100];
int buffer_bytes_used;

struct k_mbox_msg send_msg;

while (1) {

/* generate data to send */
...
buffer_bytes_used = ... ;
memcpy(buffer, source, buffer_bytes_used);

/* prepare to send message */
send_msg.info = buffer_bytes_used;
send_msg.size = buffer_bytes_used;
send_msg.tx_data = buffer;
send_msg.tx_block.data = NULL;
send_msg.tx_target_thread = K_ANY;

/* send message and wait until a consumer receives it */
k_mbox_put(&my_mailbox, &send_msg, K_FOREVER);

/* info, size, and tx_target_thread fields have been updated */

/* verify that message data was fully received */
if (send_msg.size < buffer_bytes_used) {

printf("some message data dropped during transfer!");
printf("receiver only had room for %d bytes", send_msg.info);

}
}

}

Sending Data Using a Message Block This code uses a mailbox to send asynchronous messages.
A semaphore is used to hold off the sending of a new message until the previous message has been
consumed, so that a backlog of messages doesn’t build up when the consuming thread is unable to keep
up.

The message data is stored in a memory block obtained from a memory pool, thereby eliminating un-
needed data copying when exchanging large messages. The memory pool contains only two blocks: one
block gets filled with data while the previously sent block is being processed

708 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

/* define a semaphore, indicating that no message has been sent */
K_SEM_DEFINE(my_sem, 1, 1);

/* define a memory pool containing 2 blocks of 4096 bytes */
K_MEM_POOL_DEFINE(my_pool, 4096, 4096, 2, 4);

void producer_thread(void)
{

struct k_mbox_msg send_msg;

volatile char *hw_buffer;

while (1) {
/* allocate a memory block to hold the message data */
k_mem_pool_alloc(&my_pool, &send_msg.tx_block, 4096, K_FOREVER);

/* keep overwriting the hardware-generated data in the block */
/* until the previous message has been received by the consumer */
do {

memcpy(send_msg.tx_block.data, hw_buffer, 4096);
} while (k_sem_take(&my_sem, K_NO_WAIT) != 0);

/* finish preparing to send message */
send_msg.size = 4096;
send_msg.tx_target_thread = K_ANY;

/* send message containing most current data and loop around */
k_mbox_async_put(&my_mailbox, &send_msg, &my_sem);

}
}

Receiving a Message A thread receives a message by first creating a message descriptor that character-
izes the message it wants to receive. It then calls one of the mailbox receive APIs. The mailbox searches
its send queue and takes the message from the first compatible thread it finds. If no compatible thread
exists, the receiving thread may choose to wait for one. If no compatible thread appears before the
waiting period specified by the receiving thread is reached, the receive operation fails. Once a receive
operation completes successfully the receiving thread can examine the message descriptor to determine
which thread sent the message, how much data was exchanged, and the application-defined info value
supplied by the sending thread.

Any number of receiving threads may wait simultaneously on a mailboxes’ receive queue. The threads
are sorted according to their priority; threads of equal priority are sorted so that the one that started
waiting first can receive a message first.

Note: Receiving threads do not always receive messages in a first in, first out (FIFO) order, due to the
thread compatibility constraints specified by the message descriptors. For example, if thread A waits to
receive a message only from thread X and then thread B waits to receive a message from thread Y, an
incoming message from thread Y to any thread will be given to thread B and thread A will continue to
wait.

The receiving thread controls both the quantity of data it retrieves from an incoming message and where
the data ends up. The thread may choose to take all of the data in the message, to take only the initial
part of the data, or to take no data at all. Similarly, the thread may choose to have the data copied
into a message buffer of its choice or to have it placed in a message block. A message buffer is typically
used when the volume of data involved is small, and the cost of copying the data is less than the cost of
allocating and freeing a memory pool block.

7.13. Kernel Services 709

Zephyr Project Documentation, Release 2.7.0-rc2

The following sections outline various approaches a receiving thread may use when retrieving message
data.

Retrieving Data at Receive Time The most straightforward way for a thread to retrieve message data
is to specify a message buffer when the message is received. The thread indicates both the location of
the message buffer (which must not be NULL) and its size.

The mailbox copies the message’s data to the message buffer as part of the receive operation. If the
message buffer is not big enough to contain all of the message’s data, any uncopied data is lost. If the
message is not big enough to fill all of the buffer with data, the unused portion of the message buffer
is left unchanged. In all cases the mailbox updates the receiving thread’s message descriptor to indicate
how many data bytes were copied (if any).

The immediate data retrieval technique is best suited for small messages where the maximum size of a
message is known in advance.

Note: This technique can be used when the message data is actually located in a memory block supplied
by the sending thread. The mailbox copies the data into the message buffer specified by the receiving
thread, then frees the message block back to its memory pool. This allows a receiving thread to retrieve
message data without having to know whether the data was sent using a message buffer or a message
block.

The following code uses a mailbox to process variable-sized requests from any producing thread, using
the immediate data retrieval technique. The message “info” field is used to exchange information about
the maximum size message buffer that each thread can handle.

void consumer_thread(void)
{

struct k_mbox_msg recv_msg;
char buffer[100];

int i;
int total;

while (1) {
/* prepare to receive message */
recv_msg.info = 100;
recv_msg.size = 100;
recv_msg.rx_source_thread = K_ANY;

/* get a data item, waiting as long as needed */
k_mbox_get(&my_mailbox, &recv_msg, buffer, K_FOREVER);

/* info, size, and rx_source_thread fields have been updated */

/* verify that message data was fully received */
if (recv_msg.info != recv_msg.size) {

printf("some message data dropped during transfer!");
printf("sender tried to send %d bytes", recv_msg.info);

}

/* compute sum of all message bytes (from 0 to 100 of them) */
total = 0;
for (i = 0; i < recv_msg.size; i++) {

total += buffer[i];
}

(continues on next page)

710 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

}
}

Retrieving Data Later Using a Message Buffer A receiving thread may choose to defer message data
retrieval at the time the message is received, so that it can retrieve the data into a message buffer at a
later time. The thread does this by specifying a message buffer location of NULL and a size indicating the
maximum amount of data it is willing to retrieve later.

The mailbox does not copy any message data as part of the receive operation. However, the mailbox
still updates the receiving thread’s message descriptor to indicate how many data bytes are available for
retrieval.

The receiving thread must then respond as follows:

• If the message descriptor size is zero, then either the sender’s message contained no data or the
receiving thread did not want to receive any data. The receiving thread does not need to take any
further action, since the mailbox has already completed data retrieval and deleted the message.

• If the message descriptor size is non-zero and the receiving thread still wants to retrieve the data,
the thread must call k_mbox_data_get() and supply a message buffer large enough to hold the
data. The mailbox copies the data into the message buffer and deletes the message.

• If the message descriptor size is non-zero and the receiving thread does not want to retrieve the
data, the thread must call k_mbox_data_get() . and specify a message buffer of NULL. The mailbox
deletes the message without copying the data.

The subsequent data retrieval technique is suitable for applications where immediate retrieval of message
data is undesirable. For example, it can be used when memory limitations make it impractical for the
receiving thread to always supply a message buffer capable of holding the largest possible incoming
message.

Note: This technique can be used when the message data is actually located in a memory block supplied
by the sending thread. The mailbox copies the data into the message buffer specified by the receiving
thread, then frees the message block back to its memory pool. This allows a receiving thread to retrieve
message data without having to know whether the data was sent using a message buffer or a message
block.

The following code uses a mailbox’s deferred data retrieval mechanism to get message data from a
producing thread only if the message meets certain criteria, thereby eliminating unneeded data copying.
The message “info” field supplied by the sender is used to classify the message.

void consumer_thread(void)
{

struct k_mbox_msg recv_msg;
char buffer[10000];

while (1) {
/* prepare to receive message */
recv_msg.size = 10000;
recv_msg.rx_source_thread = K_ANY;

/* get message, but not its data */
k_mbox_get(&my_mailbox, &recv_msg, NULL, K_FOREVER);

/* get message data for only certain types of messages */
if (is_message_type_ok(recv_msg.info)) {

/* retrieve message data and delete the message */
(continues on next page)

7.13. Kernel Services 711

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

k_mbox_data_get(&recv_msg, buffer);

/* process data in "buffer" */
...

} else {
/* ignore message data and delete the message */
k_mbox_data_get(&recv_msg, NULL);

}
}

}

Retrieving Data Later Using a Message Block A receiving thread may choose to retrieve message data
into a memory block, rather than a message buffer. This is done in much the same way as retrieving data
subsequently into a message buffer — the receiving thread first receives the message without its data,
then retrieves the data by calling k_mbox_data_block_get(). The mailbox fills in the block descriptor
supplied by the receiving thread, allowing the thread to access the data. The mailbox also deletes the
received message, since data retrieval has been completed. The receiving thread is then responsible for
freeing the message block back to the memory pool when the data is no longer needed.

This technique is best suited for applications where the message data has been sent using a memory
block.

Note: This technique can be used when the message data is located in a message buffer supplied by the
sending thread. The mailbox automatically allocates a memory block and copies the message data into
it. However, this is much less efficient than simply retrieving the data into a message buffer supplied by
the receiving thread. In addition, the receiving thread must be designed to handle cases where the data
retrieval operation fails because the mailbox cannot allocate a suitable message block from the memory
pool. If such cases are possible, the receiving thread must either try retrieving the data at a later time or
instruct the mailbox to delete the message without retrieving the data.

The following code uses a mailbox to receive messages sent using a memory block, thereby eliminating
unneeded data copying when processing a large message. (The messages may be sent synchronously or
asynchronously.)

/* define a memory pool containing 1 block of 10000 bytes */
K_MEM_POOL_DEFINE(my_pool, 10000, 10000, 1, 4);

void consumer_thread(void)
{

struct k_mbox_msg recv_msg;
struct k_mem_block recv_block;

int total;
char *data_ptr;
int i;

while (1) {
/* prepare to receive message */
recv_msg.size = 10000;
recv_msg.rx_source_thread = K_ANY;

/* get message, but not its data */
k_mbox_get(&my_mailbox, &recv_msg, NULL, K_FOREVER);

/* get message data as a memory block and discard message */
(continues on next page)

712 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

k_mbox_data_block_get(&recv_msg, &my_pool, &recv_block, K_FOREVER);

/* compute sum of all message bytes in memory block */
total = 0;
data_ptr = (char *)(recv_block.data);
for (i = 0; i < recv_msg.size; i++) {

total += data_ptr++;
}

/* release memory block containing data */
k_mem_pool_free(&recv_block);

}
}

Note: An incoming message that was sent using a message buffer is also processed correctly by this
algorithm, since the mailbox automatically allocates a memory block from the memory pool and fills it
with the message data. However, the performance benefit of using the memory block approach is lost.

Suggested Uses Use a mailbox to transfer data items between threads whenever the capabilities of a
message queue are insufficient.

Configuration Options Related configuration options:

• :kconfig:`CONFIG_NUM_MBOX_ASYNC_MSGS`

API Reference

group mailbox_apis

Defines

K_MBOX_DEFINE(name)
Statically define and initialize a mailbox.

The mailbox is to be accessed outside the module where it is defined using:

extern struct k_mbox <name>;

Parameters

• name – Name of the mailbox.

Functions

void k_mbox_init(struct k_mbox *mbox)
Initialize a mailbox.

This routine initializes a mailbox object, prior to its first use.

Parameters

• mbox – Address of the mailbox.

7.13. Kernel Services 713

Zephyr Project Documentation, Release 2.7.0-rc2

Returns N/A

int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, k_timeout_t timeout)

Send a mailbox message in a synchronous manner.

This routine sends a message to mbox and waits for a receiver to both receive and process it.
The message data may be in a buffer, in a memory pool block, or non-existent (i.e. an empty
message).

Parameters

• mbox – Address of the mailbox.

• tx_msg – Address of the transmit message descriptor.

• timeout – Waiting period for the message to be received, or one of the special
values K_NO_WAIT and K_FOREVER. Once the message has been received, this
routine waits as long as necessary for the message to be completely processed.

Return values

• 0 – Message sent.

• -ENOMSG – Returned without waiting.

• -EAGAIN – Waiting period timed out.

void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, struct k_sem *sem)

Send a mailbox message in an asynchronous manner.

This routine sends a message to mbox without waiting for a receiver to process it. The message
data may be in a buffer, in a memory pool block, or non-existent (i.e. an empty message).
Optionally, the semaphore sem will be given when the message has been both received and
completely processed by the receiver.

Parameters

• mbox – Address of the mailbox.

• tx_msg – Address of the transmit message descriptor.

• sem – Address of a semaphore, or NULL if none is needed.

Returns N/A

int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg, void *buffer, k_timeout_t
timeout)

Receive a mailbox message.

This routine receives a message from mbox, then optionally retrieves its data and disposes of
the message.

Parameters

• mbox – Address of the mailbox.

• rx_msg – Address of the receive message descriptor.

• buffer – Address of the buffer to receive data, or NULL to defer data retrieval
and message disposal until later.

• timeout – Waiting period for a message to be received, or one of the special
values K_NO_WAIT and K_FOREVER.

Return values

• 0 – Message received.

• -ENOMSG – Returned without waiting.

• -EAGAIN – Waiting period timed out.

714 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer)

Retrieve mailbox message data into a buffer.

This routine completes the processing of a received message by retrieving its data into a buffer,
then disposing of the message.

Alternatively, this routine can be used to dispose of a received message without retrieving its
data.

Parameters

• rx_msg – Address of the receive message descriptor.

• buffer – Address of the buffer to receive data, or NULL to discard the data.

Returns N/A

struct k_mbox_msg

#include <kernel.h> Mailbox Message Structure.

Public Members

size_t size

size of message (in bytes)

uint32_t info

application-defined information value

void *tx_data

sender’s message data buffer

struct k_mem_block tx_block

message data block descriptor

k_tid_t rx_source_thread

source thread id

k_tid_t tx_target_thread

target thread id

struct k_mbox

#include <kernel.h> Mailbox Structure.

Public Members

_wait_q_t tx_msg_queue

Transmit messages queue

_wait_q_t rx_msg_queue

Receive message queue

7.13. Kernel Services 715

Zephyr Project Documentation, Release 2.7.0-rc2

Pipes

A pipe is a kernel object that allows a thread to send a byte stream to another thread. Pipes can be used
to transfer chunks of data in whole or in part, and either synchronously or asynchronously.

• Concepts

• Implementation

– Writing to a Pipe

– Reading from a Pipe

• Suggested uses

• Configuration Options

• API Reference

Concepts The pipe can be configured with a ring buffer which holds data that has been sent but not
yet received; alternatively, the pipe may have no ring buffer.

Any number of pipes can be defined (limited only by available RAM). Each pipe is referenced by its
memory address.

A pipe has the following key property:

• A size that indicates the size of the pipe’s ring buffer. Note that a size of zero defines a pipe with
no ring buffer.

A pipe must be initialized before it can be used. The pipe is initially empty.

Data can be synchronously sent either in whole or in part to a pipe by a thread. If the specified minimum
number of bytes can not be immediately satisfied, then the operation will either fail immediately or
attempt to send as many bytes as possible and then pend in the hope that the send can be completed
later. Accepted data is either copied to the pipe’s ring buffer or directly to the waiting reader(s).

Data can be asynchronously sent in whole using a memory block to a pipe by a thread. Once the pipe
has accepted all the bytes in the memory block, it will free the memory block and may give a semaphore
if one was specified.

Data can be synchronously received from a pipe by a thread. If the specified minimum number of bytes
can not be immediately satisfied, then the operation will either fail immediately or attempt to receive as
many bytes as possible and then pend in the hope that the receive can be completed later. Accepted data
is either copied from the pipe’s ring buffer or directly from the waiting sender(s).

Note: The kernel does NOT allow for an ISR to send or receive data to/from a pipe even if it does not
attempt to wait for space/data.

Implementation A pipe is defined using a variable of type k_pipe and an optional character buffer of
type unsigned char. It must then be initialized by calling k_pipe_init() .

The following code defines and initializes an empty pipe that has a ring buffer capable of holding 100
bytes and is aligned to a 4-byte boundary.

unsigned char __aligned(4) my_ring_buffer[100];
struct k_pipe my_pipe;

k_pipe_init(&my_pipe, my_ring_buffer, sizeof(my_ring_buffer));

716 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Alternatively, a pipe can be defined and initialized at compile time by calling K_PIPE_DEFINE .

The following code has the same effect as the code segment above. Observe that that macro defines both
the pipe and its ring buffer.

K_PIPE_DEFINE(my_pipe, 100, 4);

Writing to a Pipe Data is added to a pipe by calling k_pipe_put() .

The following code builds on the example above, and uses the pipe to pass data from a producing thread
to one or more consuming threads. If the pipe’s ring buffer fills up because the consumers can’t keep up,
the producing thread waits for a specified amount of time.

struct message_header {
...

};

void producer_thread(void)
{

unsigned char *data;
size_t total_size;
size_t bytes_written;
int rc;
...

while (1) {
/* Craft message to send in the pipe */
data = ...;
total_size = ...;

/* send data to the consumers */
rc = k_pipe_put(&my_pipe, data, total_size, &bytes_written,

sizeof(struct message_header), K_NO_WAIT);

if (rc < 0) {
/* Incomplete message header sent */
...

} else if (bytes_written < total_size) {
/* Some of the data was sent */
...

} else {
/* All data sent */
...

}
}

}

Reading from a Pipe Data is read from the pipe by calling k_pipe_get() .

The following code builds on the example above, and uses the pipe to process data items generated by
one or more producing threads.

void consumer_thread(void)
{

unsigned char buffer[120];
size_t bytes_read;
struct message_header *header = (struct message_header *)buffer;

(continues on next page)

7.13. Kernel Services 717

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

while (1) {
rc = k_pipe_get(&my_pipe, buffer, sizeof(buffer), &bytes_read,

sizeof(header), K_MSEC(100));

if ((rc < 0) || (bytes_read < sizeof (header))) {
/* Incomplete message header received */
...

} else if (header->num_data_bytes + sizeof(header) > bytes_read) {
/* Only some data was received */
...

} else {
/* All data was received */
...

}
}

}

Suggested uses Use a pipe to send streams of data between threads.

Note: A pipe can be used to transfer long streams of data if desired. However it is often preferable to
send pointers to large data items to avoid copying the data. The kernel’s memory map and memory pool
object types can be helpful for data transfers of this sort.

Configuration Options Related configuration options:

• :kconfig:`CONFIG_NUM_PIPE_ASYNC_MSGS`

API Reference

group pipe_apis

Defines

K_PIPE_DEFINE(name, pipe_buffer_size, pipe_align)

Statically define and initialize a pipe.

The pipe can be accessed outside the module where it is defined using:

extern struct k_pipe <name>;

Parameters

• name – Name of the pipe.

• pipe_buffer_size – Size of the pipe’s ring buffer (in bytes), or zero if no ring
buffer is used.

• pipe_align – Alignment of the pipe’s ring buffer (power of 2).

718 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Functions

void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size)

Initialize a pipe.

This routine initializes a pipe object, prior to its first use.

Parameters

• pipe – Address of the pipe.

• buffer – Address of the pipe’s ring buffer, or NULL if no ring buffer is used.

• size – Size of the pipe’s ring buffer (in bytes), or zero if no ring buffer is used.

Returns N/A

int k_pipe_cleanup(struct k_pipe *pipe)

Release a pipe’s allocated buffer.

If a pipe object was given a dynamically allocated buffer via k_pipe_alloc_init(), this will free
it. This function does nothing if the buffer wasn’t dynamically allocated.

Parameters

• pipe – Address of the pipe.

Return values

• 0 – on success

• -EAGAIN – nothing to cleanup

int k_pipe_alloc_init(struct k_pipe *pipe, size_t size)

Initialize a pipe and allocate a buffer for it.

Storage for the buffer region will be allocated from the calling thread’s resource pool. This
memory will be released if k_pipe_cleanup() is called, or userspace is enabled and the pipe
object loses all references to it.

This function should only be called on uninitialized pipe objects.

Parameters

• pipe – Address of the pipe.

• size – Size of the pipe’s ring buffer (in bytes), or zero if no ring buffer is used.

Return values

• 0 – on success

• -ENOMEM – if memory couldn’t be allocated

int k_pipe_put(struct k_pipe *pipe, void *data, size_t bytes_to_write, size_t *bytes_written,
size_t min_xfer, k_timeout_t timeout)

Write data to a pipe.

This routine writes up to bytes_to_write bytes of data to pipe.

Parameters

• pipe – Address of the pipe.

• data – Address of data to write.

• bytes_to_write – Size of data (in bytes).

• bytes_written – Address of area to hold the number of bytes written.

• min_xfer – Minimum number of bytes to write.

7.13. Kernel Services 719

Zephyr Project Documentation, Release 2.7.0-rc2

• timeout – Waiting period to wait for the data to be written, or one of the
special values K_NO_WAIT and K_FOREVER.

Return values

• 0 – At least min_xfer bytes of data were written.

• -EIO – Returned without waiting; zero data bytes were written.

• -EAGAIN – Waiting period timed out; between zero and min_xfer minus one
data bytes were written.

int k_pipe_get(struct k_pipe *pipe, void *data, size_t bytes_to_read, size_t *bytes_read, size_t
min_xfer, k_timeout_t timeout)

Read data from a pipe.

This routine reads up to bytes_to_read bytes of data from pipe.

Parameters

• pipe – Address of the pipe.

• data – Address to place the data read from pipe.

• bytes_to_read – Maximum number of data bytes to read.

• bytes_read – Address of area to hold the number of bytes read.

• min_xfer – Minimum number of data bytes to read.

• timeout – Waiting period to wait for the data to be read, or one of the special
values K_NO_WAIT and K_FOREVER.

Return values

• 0 – At least min_xfer bytes of data were read.

• -EINVAL – invalid parameters supplied

• -EIO – Returned without waiting; zero data bytes were read.

• -EAGAIN – Waiting period timed out; between zero and min_xfer minus one
data bytes were read.

size_t k_pipe_read_avail(struct k_pipe *pipe)

Query the number of bytes that may be read from pipe.

Parameters

• pipe – Address of the pipe.

Return values a – number n such that 0 <= n <= k_pipe::size; the result is zero for
unbuffered pipes.

size_t k_pipe_write_avail(struct k_pipe *pipe)

Query the number of bytes that may be written to pipe.

Parameters

• pipe – Address of the pipe.

Return values a – number n such that 0 <= n <= k_pipe::size; the result is zero for
unbuffered pipes.

struct k_pipe

#include <kernel.h> Pipe Structure

720 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Public Members

unsigned char *buffer

Pipe buffer: may be NULL

size_t size

Buffer size

size_t bytes_used

size_t read_index

Where in buffer to read from

size_t write_index

Where in buffer to write

struct k_spinlock lock

Synchronization lock

_wait_q_t readers

Reader wait queue

_wait_q_t writers

Writer wait queue

uint8_t flags

Wait queue Flags

7.13.3 Memory Management

These pages cover memory allocation and management services.

Memory Heaps

Zephyr provides a collection of utilities that allow threads to dynamically allocate memory.

Synchronized Heap Allocator

7.13. Kernel Services 721

Zephyr Project Documentation, Release 2.7.0-rc2

Creating a Heap The simplest way to define a heap is statically, with the K_HEAP_DEFINE macro. This
creates a static k_heap variable with a given name that manages a memory region of the specified size.

Heaps can also be created to manage arbitrary regions of application-controlled memory using
k_heap_init() .

Allocating Memory Memory can be allocated from a heap using k_heap_alloc() , passing it the
address of the heap object and the number of bytes desired. This functions similarly to standard C
malloc(), returning a NULL pointer on an allocation failure.

The heap supports blocking operation, allowing threads to go to sleep until memory is available. The final
argument is a k_timeout_t timeout value indicating how long the thread may sleep before returning,
or else one of the constant timeout values K_NO_WAIT or K_FOREVER .

Releasing Memory Memory allocated with k_heap_alloc() must be released using k_heap_free() .
Similar to standard C free(), the pointer provided must be either a NULL value or a pointer previously
returned by k_heap_alloc() for the same heap. Freeing a NULL value is defined to have no effect.

Low Level Heap Allocator The underlying implementation of the k_heap abstraction is provided a
data structure named sys_heap. This implements exactly the same allocation semantics, but provides
no kernel synchronization tools. It is available for applications that want to manage their own blocks of
memory in contexts (for example, userspace) where synchronization is unavailable or more complicated.
Unlike k_heap, all calls to any sys_heap functions on a single heap must be serialized by the caller.
Simultaneous use from separate threads is disallowed.

Implementation Internally, the sys_heap memory block is partitioned into “chunks” of 8 bytes. All
allocations are made out of a contiguous region of chunks. The first chunk of every allocation or unused
block is prefixed by a chunk header that stores the length of the chunk, the length of the next lower
(“left”) chunk in physical memory, a bit indicating whether the chunk is in use, and chunk-indexed link
pointers to the previous and next chunk in a “free list” to which unused chunks are added.

The heap code takes reasonable care to avoid fragmentation. Free block lists are stored in “buckets” by
their size, each bucket storing blocks within one power of two (i.e. a bucket for blocks of 3-4 chunks,
another for 5-8, 9-16, etc. . .) this allows new allocations to be made from the smallest/most-fragmented
blocks available. Also, as allocations are freed and added to the heap, they are automatically combined
with adjacent free blocks to prevent fragmentation.

All metadata is stored at the beginning of the contiguous block of heap memory, including the variable-
length list of bucket list heads (which depend on heap size). The only external memory required is the
sys_heap structure itself.

The sys_heap functions are unsynchronized. Care must be taken by any users to prevent concurrent
access. Only one context may be inside one of the API functions at a time.

The heap code takes care to present high performance and reliable latency. All sys_heap API
functions are guaranteed to complete within constant time. On typical architectures, they will all
complete within 1-200 cycles. One complexity is that the search of the minimum bucket size for
an allocation (the set of free blocks that “might fit”) has a compile-time upper bound of itera-
tions to prevent unbounded list searches, at the expense of some fragmentation resistance. This
:c:kconfig:`CONFIG_SYS_HEAP_ALLOC_LOOPS` value may be chosen by the user at build time, and
defaults to a value of 3.

System Heap The system heap is a predefined memory allocator that allows threads to dynamically
allocate memory from a common memory region in a malloc()-like manner.

Only a single system heap is defined. Unlike other heaps or memory pools, the system heap cannot be
directly referenced using its memory address.

722 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

The size of the system heap is configurable to arbitrary sizes, subject to space availability.

A thread can dynamically allocate a chunk of heap memory by calling k_malloc() . The address of the
allocated chunk is guaranteed to be aligned on a multiple of pointer sizes. If a suitable chunk of heap
memory cannot be found NULL is returned.

When the thread is finished with a chunk of heap memory it can release the chunk back to the system
heap by calling k_free() .

Defining the Heap Memory Pool The size of the heap memory pool is specified using the :kcon-
fig:`CONFIG_HEAP_MEM_POOL_SIZE` configuration option.

By default, the heap memory pool size is zero bytes. This value instructs the kernel not to define the heap
memory pool object. The maximum size is limited by the amount of available memory in the system.
The project build will fail in the link stage if the size specified can not be supported.

Allocating Memory A chunk of heap memory is allocated by calling k_malloc() .

The following code allocates a 200 byte chunk of heap memory, then fills it with zeros. A warning is
issued if a suitable chunk is not obtained.

char *mem_ptr;

mem_ptr = k_malloc(200);
if (mem_ptr != NULL)) {

memset(mem_ptr, 0, 200);
...

} else {
printf("Memory not allocated");

}

Releasing Memory A chunk of heap memory is released by calling k_free() .

The following code allocates a 75 byte chunk of memory, then releases it once it is no longer needed.

char *mem_ptr;

mem_ptr = k_malloc(75);
... /* use memory block */
k_free(mem_ptr);

Suggested Uses Use the heap memory pool to dynamically allocate memory in a malloc()-like manner.

Configuration Options Related configuration options:

• :kconfig:`CONFIG_HEAP_MEM_POOL_SIZE`

API Reference

group heap_apis

Defines

7.13. Kernel Services 723

Zephyr Project Documentation, Release 2.7.0-rc2

K_HEAP_DEFINE(name, bytes)

Define a static k_heap.

This macro defines and initializes a static memory region and k_heap of the requested size.
After kernel start, &name can be used as if k_heap_init() had been called.

Note that this macro enforces a minimum size on the memory region to accommodate meta-
data requirements. Very small heaps will be padded to fit.

Parameters

• name – Symbol name for the struct k_heap object

• bytes – Size of memory region, in bytes

K_HEAP_DEFINE_NOCACHE(name, bytes)

Define a static k_heap in uncached memory.

This macro defines and initializes a static memory region and k_heap of the requested size in
uncache memory. After kernel start, &name can be used as if k_heap_init() had been called.

Note that this macro enforces a minimum size on the memory region to accommodate meta-
data requirements. Very small heaps will be padded to fit.

Parameters

• name – Symbol name for the struct k_heap object

• bytes – Size of memory region, in bytes

Functions

void k_heap_init(struct k_heap *h, void *mem, size_t bytes)

Initialize a k_heap.

This constructs a synchronized k_heap object over a memory region specified by the user.
Note that while any alignment and size can be passed as valid parameters, internal alignment
restrictions inside the inner sys_heap mean that not all bytes may be usable as allocated
memory.

Parameters

• h – Heap struct to initialize

• mem – Pointer to memory.

• bytes – Size of memory region, in bytes

void *k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes, k_timeout_t timeout)

Allocate aligned memory from a k_heap.

Behaves in all ways like k_heap_alloc(), except that the returned memory (if available) will
have a starting address in memory which is a multiple of the specified power-of-two alignment
value in bytes. The resulting memory can be returned to the heap using k_heap_free().

Function properties (list may not be complete) isr-ok

Note: timeout must be set to K_NO_WAIT if called from ISR.

Note: When CONFIG_MULTITHREADING=n any timeout is treated as K_NO_WAIT.

724 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• h – Heap from which to allocate

• align – Alignment in bytes, must be a power of two

• bytes – Number of bytes requested

• timeout – How long to wait, or K_NO_WAIT

Returns Pointer to memory the caller can now use

void *k_heap_alloc(struct k_heap *h, size_t bytes, k_timeout_t timeout)

Allocate memory from a k_heap.

Allocates and returns a memory buffer from the memory region owned by the heap. If no
memory is available immediately, the call will block for the specified timeout (constructed via
the standard timeout API, or K_NO_WAIT or K_FOREVER) waiting for memory to be freed. If
the allocation cannot be performed by the expiration of the timeout, NULL will be returned.

Function properties (list may not be complete) isr-ok

Note: timeout must be set to K_NO_WAIT if called from ISR.

Note: When CONFIG_MULTITHREADING=n any timeout is treated as K_NO_WAIT.

Parameters

• h – Heap from which to allocate

• bytes – Desired size of block to allocate

• timeout – How long to wait, or K_NO_WAIT

Returns A pointer to valid heap memory, or NULL

void k_heap_free(struct k_heap *h, void *mem)

Free memory allocated by k_heap_alloc()

Returns the specified memory block, which must have been returned from k_heap_alloc(), to
the heap for use by other callers. Passing a NULL block is legal, and has no effect.

Parameters

• h – Heap to which to return the memory

• mem – A valid memory block, or NULL

void *k_aligned_alloc(size_t align, size_t size)

Allocate memory from the heap with a specified alignment.

This routine provides semantics similar to aligned_alloc(); memory is allocated from the heap
with a specified alignment. However, one minor difference is that k_aligned_alloc() accepts
any non-zero size, wherase aligned_alloc() only accepts a size that is an integral multiple of
align.

Above, aligned_alloc() refers to: C11 standard (ISO/IEC 9899:2011): 7.22.3.1 The
aligned_alloc function (p: 347-348)

Parameters

• align – Alignment of memory requested (in bytes).

7.13. Kernel Services 725

Zephyr Project Documentation, Release 2.7.0-rc2

• size – Amount of memory requested (in bytes).

Returns Address of the allocated memory if successful; otherwise NULL.

void *k_malloc(size_t size)

Allocate memory from the heap.

This routine provides traditional malloc() semantics. Memory is allocated from the heap
memory pool.

Parameters

• size – Amount of memory requested (in bytes).

Returns Address of the allocated memory if successful; otherwise NULL.

void k_free(void *ptr)

Free memory allocated from heap.

This routine provides traditional free() semantics. The memory being returned must have
been allocated from the heap memory pool or k_mem_pool_malloc().

If ptr is NULL, no operation is performed.

Parameters

• ptr – Pointer to previously allocated memory.

Returns N/A

void *k_calloc(size_t nmemb, size_t size)

Allocate memory from heap, array style.

This routine provides traditional calloc() semantics. Memory is allocated from the heap mem-
ory pool and zeroed.

Parameters

• nmemb – Number of elements in the requested array

• size – Size of each array element (in bytes).

Returns Address of the allocated memory if successful; otherwise NULL.

struct k_heap

#include <kernel.h>

Memory Slabs

A memory slab is a kernel object that allows memory blocks to be dynamically allocated from a designated
memory region. All memory blocks in a memory slab have a single fixed size, allowing them to be
allocated and released efficiently and avoiding memory fragmentation concerns.

• Concepts

– Internal Operation

• Implementation

– Defining a Memory Slab

– Allocating a Memory Block

– Releasing a Memory Block

• Suggested Uses

726 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• Configuration Options

• API Reference

Concepts Any number of memory slabs can be defined (limited only by available RAM). Each memory
slab is referenced by its memory address.

A memory slab has the following key properties:

• The block size of each block, measured in bytes. It must be at least 4N bytes long, where N is
greater than 0.

• The number of blocks available for allocation. It must be greater than zero.

• A buffer that provides the memory for the memory slab’s blocks. It must be at least “block size”
times “number of blocks” bytes long.

The memory slab’s buffer must be aligned to an N-byte boundary, where N is a power of 2 larger than 2
(i.e. 4, 8, 16, . . .). To ensure that all memory blocks in the buffer are similarly aligned to this boundary,
the block size must also be a multiple of N.

A memory slab must be initialized before it can be used. This marks all of its blocks as unused.

A thread that needs to use a memory block simply allocates it from a memory slab. When the thread
finishes with a memory block, it must release the block back to the memory slab so the block can be
reused.

If all the blocks are currently in use, a thread can optionally wait for one to become available. Any
number of threads may wait on an empty memory slab simultaneously; when a memory block becomes
available, it is given to the highest-priority thread that has waited the longest.

Unlike a heap, more than one memory slab can be defined, if needed. This allows for a memory slab with
smaller blocks and others with larger-sized blocks. Alternatively, a memory pool object may be used.

Internal Operation A memory slab’s buffer is an array of fixed-size blocks, with no wasted space
between the blocks.

The memory slab keeps track of unallocated blocks using a linked list; the first 4 bytes of each unused
block provide the necessary linkage.

Implementation

Defining a Memory Slab A memory slab is defined using a variable of type k_mem_slab. It must then
be initialized by calling k_mem_slab_init() .

The following code defines and initializes a memory slab that has 6 blocks that are 400 bytes long, each
of which is aligned to a 4-byte boundary..

struct k_mem_slab my_slab;
char __aligned(4) my_slab_buffer[6 * 400];

k_mem_slab_init(&my_slab, my_slab_buffer, 400, 6);

Alternatively, a memory slab can be defined and initialized at compile time by calling
K_MEM_SLAB_DEFINE .

The following code has the same effect as the code segment above. Observe that the macro defines both
the memory slab and its buffer.

K_MEM_SLAB_DEFINE(my_slab, 400, 6, 4);

7.13. Kernel Services 727

Zephyr Project Documentation, Release 2.7.0-rc2

Allocating a Memory Block A memory block is allocated by calling k_mem_slab_alloc() .

The following code builds on the example above, and waits up to 100 milliseconds for a memory block
to become available, then fills it with zeroes. A warning is printed if a suitable block is not obtained.

char *block_ptr;

if (k_mem_slab_alloc(&my_slab, &block_ptr, 100) == 0)) {
memset(block_ptr, 0, 400);
...

} else {
printf("Memory allocation time-out");

}

Releasing a Memory Block A memory block is released by calling k_mem_slab_free() .

The following code builds on the example above, and allocates a memory block, then releases it once it
is no longer needed.

char *block_ptr;

k_mem_slab_alloc(&my_slab, &block_ptr, K_FOREVER);
... /* use memory block pointed at by block_ptr */
k_mem_slab_free(&my_slab, &block_ptr);

Suggested Uses Use a memory slab to allocate and free memory in fixed-size blocks.

Use memory slab blocks when sending large amounts of data from one thread to another, to avoid
unnecessary copying of the data.

Configuration Options Related configuration options:

• :kconfig:`CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION`

API Reference

group mem_slab_apis

Defines

K_MEM_SLAB_DEFINE(name, slab_block_size, slab_num_blocks, slab_align)
Statically define and initialize a memory slab.

The memory slab’s buffer contains slab_num_blocks memory blocks that are slab_block_size
bytes long. The buffer is aligned to a slab_align -byte boundary. To ensure that each memory
block is similarly aligned to this boundary, slab_block_size must also be a multiple of slab_align.

The memory slab can be accessed outside the module where it is defined using:

extern struct k_mem_slab <name>;

Parameters

• name – Name of the memory slab.

• slab_block_size – Size of each memory block (in bytes).

728 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• slab_num_blocks – Number memory blocks.

• slab_align – Alignment of the memory slab’s buffer (power of 2).

Functions

int k_mem_slab_init(struct k_mem_slab *slab, void *buffer, size_t block_size, uint32_t
num_blocks)

Initialize a memory slab.

Initializes a memory slab, prior to its first use.

The memory slab’s buffer contains slab_num_blocks memory blocks that are slab_block_size
bytes long. The buffer must be aligned to an N-byte boundary matching a word boundary,
where N is a power of 2 (i.e. 4 on 32-bit systems, 8, 16, . . .). To ensure that each memory
block is similarly aligned to this boundary, slab_block_size must also be a multiple of N.

Parameters

• slab – Address of the memory slab.

• buffer – Pointer to buffer used for the memory blocks.

• block_size – Size of each memory block (in bytes).

• num_blocks – Number of memory blocks.

Return values

• 0 – on success

• -EINVAL – invalid data supplied

int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem, k_timeout_t timeout)

Allocate memory from a memory slab.

This routine allocates a memory block from a memory slab.

Function properties (list may not be complete) isr-ok

Note: timeout must be set to K_NO_WAIT if called from ISR.

Note: When CONFIG_MULTITHREADING=n any timeout is treated as K_NO_WAIT.

Parameters

• slab – Address of the memory slab.

• mem – Pointer to block address area.

• timeout – Non-negative waiting period to wait for operation to complete. Use
K_NO_WAIT to return without waiting, or K_FOREVER to wait as long as nec-
essary.

Return values

• 0 – Memory allocated. The block address area pointed at by mem is set to the
starting address of the memory block.

• -ENOMEM – Returned without waiting.

• -EAGAIN – Waiting period timed out.

7.13. Kernel Services 729

Zephyr Project Documentation, Release 2.7.0-rc2

• -EINVAL – Invalid data supplied

void k_mem_slab_free(struct k_mem_slab *slab, void **mem)

Free memory allocated from a memory slab.

This routine releases a previously allocated memory block back to its associated memory slab.

Parameters

• slab – Address of the memory slab.

• mem – Pointer to block address area (as set by k_mem_slab_alloc()).

Returns N/A

static inline uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)

Get the number of used blocks in a memory slab.

This routine gets the number of memory blocks that are currently allocated in slab.

Parameters

• slab – Address of the memory slab.

Returns Number of allocated memory blocks.

static inline uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)

Get the number of maximum used blocks so far in a memory slab.

This routine gets the maximum number of memory blocks that were allocated in slab.

Parameters

• slab – Address of the memory slab.

Returns Maximum number of allocated memory blocks.

static inline uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)

Get the number of unused blocks in a memory slab.

This routine gets the number of memory blocks that are currently unallocated in slab.

Parameters

• slab – Address of the memory slab.

Returns Number of unallocated memory blocks.

7.13.4 Timing

These pages cover timing related services.

Kernel Timing

Zephyr provides a robust and scalable timing framework to enable reporting and tracking of timed events
from hardware timing sources of arbitrary precision.

Time Units Kernel time is tracked in several units which are used for different purposes.

Real time values, typically specified in milliseconds or microseconds, are the default presentation of time
to application code. They have the advantages of being universally portable and pervasively understood,
though they may not match the precision of the underlying hardware perfectly.

The kernel presents a “cycle” count via the k_cycle_get_32() API. The intent is that this counter repre-
sents the fastest cycle counter that the operating system is able to present to the user (for example, a CPU

730 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

cycle counter) and that the read operation is very fast. The expectation is that very sensitive application
code might use this in a polling manner to achieve maximal precision. The frequency of this counter is re-
quired to be steady over time, and is available from sys_clock_hw_cycles_per_sec() (which on almost
all platforms is a runtime constant that evaluates to CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC).

For asynchronous timekeeping, the kernel defines a “ticks” concept. A “tick” is the internal count in which
the kernel does all its internal uptime and timeout bookkeeping. Interrupts are expected to be delivered
on tick boundaries to the extent practical, and no fractional ticks are tracked. The choice of tick rate
is configurable via :c:kconfig:`CONFIG_SYS_CLOCK_TICKS_PER_SEC`. Defaults on most hardware
platforms (ones that support setting arbitrary interrupt timeouts) are expected to be in the range of 10
kHz, with software emulation platforms and legacy drivers using a more traditional 100 Hz value.

Conversion Zephyr provides an extensively enumerated conversion library with rounding control for
all time units. Any unit of “ms” (milliseconds), “us” (microseconds), “tick”, or “cyc” can be converted to
any other. Control of rounding is provided, and each conversion is available in “floor” (round down to
nearest output unit), “ceil” (round up) and “near” (round to nearest). Finally the output precision can
be specified as either 32 or 64 bits.

For example: k_ms_to_ticks_ceil32() will convert a millisecond input value to the next higher number
of ticks, returning a result truncated to 32 bits of precision; and k_cyc_to_us_floor64() will convert
a measured cycle count to an elapsed number of microseconds in a full 64 bits of precision. See the
reference documentation for the full enumeration of conversion routines.

On most platforms, where the various counter rates are integral multiples of each other and where the
output fits within a single word, these conversions expand to a 2-4 operation sequence, requiring full
precision only where actually required and requested.

Uptime The kernel tracks a system uptime count on behalf of the application. This is available at all
times via k_uptime_get() , which provides an uptime value in milliseconds since system boot. This is
expected to be the utility used by most portable application code.

The internal tracking, however, is as a 64 bit integer count of ticks. Apps with precise timing require-
ments (that are willing to do their own conversions to portable real time units) may access this with
k_uptime_ticks() .

Timeouts The Zephyr kernel provides many APIs with a “timeout” parameter. Conceptually, this indi-
cates the time at which an event will occur. For example:

• Kernel blocking operations like k_sem_take() or k_queue_get() may provide a timeout after
which the routine will return with an error code if no data is available.

• Kernel k_timer objects must specify delays for their duration and period.

• The kernel k_work_delayable API provides a timeout parameter indicating when a work queue
item will be added to the system queue.

All these values are specified using a k_timeout_t value. This is an opaque struct type that must be
initialized using one of a family of kernel timeout macros. The most common, K_MSEC , defines a time
in milliseconds after the current time (strictly: the time at which the kernel receives the timeout value).

Other options for timeout initialization follow the unit conventions described above: K_NSEC() , K_USEC ,
K_TICKS and K_CYC() specify timeout values that will expire after specified numbers of nanoseconds,
microseconds, ticks and cycles, respectively.

Precision of k_timeout_t values is configurable, with the default being 32 bits. Large uptime counts
in non-tick units will experience complicated rollover semantics, so it is expected that timing-sensitive
applications with long uptimes will be configured to use a 64 bit timeout type.

Finally, it is possible to specify timeouts as absolute times since system boot. A timeout initialized with
K_TIMEOUT_ABS_MS indicates a timeout that will expire after the system uptime reaches the specified
value. There are likewise nanosecond, microsecond, cycles and ticks variants of this API.

7.13. Kernel Services 731

Zephyr Project Documentation, Release 2.7.0-rc2

Timing Internals

Timeout Queue All Zephyr k_timeout_t events specified using the API above are managed in a single,
global queue of events. Each event is stored in a double-linked list, with an attendant delta count in ticks
from the previous event. The action to take on an event is specified as a callback function pointer
provided by the subsystem requesting the event, along with a _timeout tracking struct that is expected
to be embedded within subsystem-defined data structures (for example: a wait_q struct, or a k_tid_t
thread struct).

Note that all variant units passed via a k_timeout_t are converted to ticks once on insertion into the
list. There no multiple-conversion steps internal to the kernel, so precision is guaranteed at the tick level
no matter how many events exist or how long a timeout might be.

Note that the list structure means that the CPU work involved in managing large numbers of timeouts is
quadratic in the number of active timeouts. The API design of the timeout queue was intended to permit
a more scalable backend data structure, but no such implementation exists currently.

Timer Drivers Kernel timing at the tick level is driven by a timer driver with a comparatively simple
API.

• The driver is expected to be able to “announce” new ticks to the kernel via the
sys_clock_announce() call, which passes an integer number of ticks that have elapsed since the
last announce call (or system boot). These calls can occur at any time, but the driver is expected to
attempt to ensure (to the extent practical given interrupt latency interactions) that they occur near
tick boundaries (i.e. not “halfway through” a tick), and most importantly that they be correct over
time and subject to minimal skew vs. other counters and real world time.

• The driver is expected to provide a sys_clock_set_timeout() call to the kernel which indicates
how many ticks may elapse before the kernel must receive an announce call to trigger registered
timeouts. It is legal to announce new ticks before that moment (though they must be correct) but
delay after that will cause events to be missed. Note that the timeout value passed here is in a
delta from current time, but that does not absolve the driver of the requirement to provide ticks
at a steady rate over time. Naive implementations of this function are subject to bugs where the
fractional tick gets “reset” incorrectly and causes clock skew.

• The driver is expected to provide a sys_clock_elapsed() call which provides a current indica-
tion of how many ticks have elapsed (as compared to a real world clock) since the last call to
sys_clock_announce() , which the kernel needs to test newly arriving timeouts for expiration.

Note that a natural implementation of this API results in a “tickless” kernel, which receives and processes
timer interrupts only for registered events, relying on programmable hardware counters to provide ir-
regular interrupts. But a traditional, “ticked” or “dumb” counter driver can be trivially implemented
also:

• The driver can receive interrupts at a regular rate corresponding to the OS tick rate, calling
sys_clock_announce() with an argument of one each time.

• The driver can ignore calls to sys_clock_set_timeout() , as every tick will be announced regard-
less of timeout status.

• The driver can return zero for every call to sys_clock_elapsed() as no more than one tick can be
detected as having elapsed (because otherwise an interrupt would have been received).

SMP Details In general, the timer API described above does not change when run in a multiproces-
sor context. The kernel will internally synchronize all access appropriately, and ensure that all critical
sections are small and minimal. But some notes are important to detail:

• Zephyr is agnostic about which CPU services timer interrupts. It is not illegal (though probably
undesirable in some circumstances) to have every timer interrupt handled on a single processor.
Existing SMP architectures implement symmetric timer drivers.

732 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• The sys_clock_announce() call is expected to be globally synchronized at the driver level. The
kernel does not do any per-CPU tracking, and expects that if two timer interrupts fire near simulta-
neously, that only one will provide the current tick count to the timing subsystem. The other may
legally provide a tick count of zero if no ticks have elapsed. It should not “skip” the announce call
because of timeslicing requirements (see below).

• Some SMP hardware uses a single, global timer device, others use a per-CPU counter. The complex-
ity here (for example: ensuring counter synchronization between CPUs) is expected to be managed
by the driver, not the kernel.

• The next timeout value passed back to the driver via sys_clock_set_timeout() is done iden-
tically for every CPU. So by default, every CPU will see simultaneous timer interrupts for ev-
ery event, even though by definition only one of them should see a non-zero ticks argument to
sys_clock_announce() . This is probably a correct default for timing sensitive applications (be-
cause it minimizes the chance that an errant ISR or interrupt lock will delay a timeout), but may
be a performance problem in some cases. The current design expects that any such optimization is
the responsibility of the timer driver.

Time Slicing An auxiliary job of the timing subsystem is to provide tick counters to the scheduler that
allow implementation of time slicing of threads. A thread time-slice cannot be a timeout value, as it does
not reflect a global expiration but instead a per-CPU value that needs to be tracked independently on
each CPU in an SMP context.

Because there may be no other hardware available to drive timeslicing, Zephyr multiplexes the existing
timer driver. This means that the value passed to sys_clock_set_timeout() may be clamped to a
smaller value than the current next timeout when a time sliced thread is currently scheduled.

Subsystems that keep millisecond APIs In general, code like this will port just like applications code
will. Millisecond values from the user may be treated any way the subsystem likes, and then converted
into kernel timeouts using K_MSEC() at the point where they are presented to the kernel.

Obviously this comes at the cost of not being able to use new features, like the higher precision timeout
constructors or absolute timeouts. But for many subsystems with simple needs, this may be acceptable.

One complexity is K_FOREVER . Subsystems that might have been able to accept this value to their mil-
lisecond API in the past no longer can, because it is no longer an intergral type. Such code will need to
use a different, integer-valued token to represent “forever”. K_NO_WAIT has the same typesafety concern
too, of course, but as it is (and has always been) simply a numerical zero, it has a natural porting path.

Subsystems using k_timeout_t Ideally, code that takes a “timeout” parameter specifying a time to
wait should be using the kernel native abstraction where possible. But k_timeout_t is opaque, and
needs to be converted before it can be inspected by an application.

Some conversions are simple. Code that needs to test for K_FOREVER can simply use the K_TIMEOUT_EQ()
macro to test the opaque struct for equality and take special action.

The more complicated case is when the subsystem needs to take a timeout and loop, waiting for it to
finish while doing some processing that may require multiple blocking operations on underlying kernel
code. For example, consider this design:

void my_wait_for_event(struct my_subsys *obj, int32_t timeout_in_ms)
{

while (true) {
uint32_t start = k_uptime_get_32();

if (is_event_complete(obj)) {
return;

}

(continues on next page)

7.13. Kernel Services 733

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

/* Wait for notification of state change */
k_sem_take(obj->sem, timeout_in_ms);

/* Subtract elapsed time */
timeout_in_ms -= (k_uptime_get_32() - start);

}
}

This code requires that the timeout value be inspected, which is no longer possible. For situations
like this, the new API provides an internal sys_clock_timeout_end_calc() routine that converts an
arbitrary timeout to the uptime value in ticks at which it will expire. So such a loop might look like:

void my_wait_for_event(struct my_subsys *obj, k_timeout_t timeout_in_ms)
{

/* Compute the end time from the timeout */
uint64_t end = sys_clock_timeout_end_calc(timeout_in_ms);

while (end > k_uptime_ticks()) {
if (is_event_complete(obj)) {

return;
}

/* Wait for notification of state change */
k_sem_take(obj->sem, timeout_in_ms);

}
}

Note that sys_clock_timeout_end_calc() returns values in units of ticks, to prevent conversion alias-
ing, is always presented at 64 bit uptime precision to prevent rollover bugs, handles special K_FOREVER
naturally (as UINT64_MAX), and works identically for absolute timeouts as well as conventional ones.

But some care is still required for subsystems that use it. Note that delta timeouts need to
be interpreted relative to a “current time”, and obviously that time is the time of the call to
sys_clock_timeout_end_calc(). But the user expects that the time is the time they passed the timeout
to you. Care must be taken to call this function just once, as synchronously as possible to the timeout
creation in user code. It should not be used on a “stored” timeout value, and should never be called
iteratively in a loop.

API Reference

group clock_apis

Clock APIs.

Defines

K_NO_WAIT

Generate null timeout delay.

This macro generates a timeout delay that instructs a kernel API not to wait if the requested
operation cannot be performed immediately.

Returns Timeout delay value.

K_NSEC(t)

Generate timeout delay from nanoseconds.

734 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

This macro generates a timeout delay that instructs a kernel API to wait up to t nanoseconds
to perform the requested operation. Note that timer precision is limited to the tick rate, not
the requested value.

Parameters

• t – Duration in nanoseconds.

Returns Timeout delay value.

K_USEC(t)

Generate timeout delay from microseconds.

This macro generates a timeout delay that instructs a kernel API to wait up to t microseconds
to perform the requested operation. Note that timer precision is limited to the tick rate, not
the requested value.

Parameters

• t – Duration in microseconds.

Returns Timeout delay value.

K_CYC(t)

Generate timeout delay from cycles.

This macro generates a timeout delay that instructs a kernel API to wait up to t cycles to
perform the requested operation.

Parameters

• t – Duration in cycles.

Returns Timeout delay value.

K_TICKS(t)

Generate timeout delay from system ticks.

This macro generates a timeout delay that instructs a kernel API to wait up to t ticks to perform
the requested operation.

Parameters

• t – Duration in system ticks.

Returns Timeout delay value.

K_MSEC(ms)

Generate timeout delay from milliseconds.

This macro generates a timeout delay that instructs a kernel API to wait up to ms milliseconds
to perform the requested operation.

Parameters

• ms – Duration in milliseconds.

Returns Timeout delay value.

K_SECONDS(s)

Generate timeout delay from seconds.

This macro generates a timeout delay that instructs a kernel API to wait up to s seconds to
perform the requested operation.

Parameters

• s – Duration in seconds.

Returns Timeout delay value.

7.13. Kernel Services 735

Zephyr Project Documentation, Release 2.7.0-rc2

K_MINUTES(m)
Generate timeout delay from minutes.

This macro generates a timeout delay that instructs a kernel API to wait up to m minutes to
perform the requested operation.

Parameters

• m – Duration in minutes.

Returns Timeout delay value.

K_HOURS(h)
Generate timeout delay from hours.

This macro generates a timeout delay that instructs a kernel API to wait up to h hours to
perform the requested operation.

Parameters

• h – Duration in hours.

Returns Timeout delay value.

K_FOREVER

Generate infinite timeout delay.

This macro generates a timeout delay that instructs a kernel API to wait as long as necessary
to perform the requested operation.

Returns Timeout delay value.

K_TICKS_FOREVER

K_TIMEOUT_EQ(a, b)
Compare timeouts for equality.

The k_timeout_t object is an opaque struct that should not be inspected by application code.
This macro exists so that users can test timeout objects for equality with known constants
(e.g. K_NO_WAIT and K_FOREVER) when implementing their own APIs in terms of Zephyr
timeout constants.

Returns True if the timeout objects are identical

Typedefs

typedef uint32_t k_ticks_t

Tick precision used in timeout APIs.

This type defines the word size of the timeout values used in k_timeout_t objects, and thus
defines an upper bound on maximum timeout length (or equivalently minimum tick duration).
Note that this does not affect the size of the system uptime counter, which is always a 64 bit
count of ticks.

Functions

int sys_clock_driver_init(const struct device *dev)
Initialize system clock driver.

The system clock is a Zephyr device created globally. This is its initialization callback. It is a
weak symbol that will be implemented as a noop if undefined in the clock driver.

736 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

int clock_device_ctrl(const struct device *dev, enum pm_device_state state)

Initialize system clock driver.

The system clock is a Zephyr device created globally. This is its device control callback, used
in a few devices for power management. It is a weak symbol that will be implemented as a
noop if undefined in the clock driver.

void sys_clock_set_timeout(int32_t ticks, bool idle)

Set system clock timeout.

Informs the system clock driver that the next needed call to sys_clock_announce() will not be
until the specified number of ticks from the the current time have elapsed. Note that spurious
calls to sys_clock_announce() are allowed (i.e. it’s legal to announce every tick and implement
this function as a noop), the requirement is that one tick announcement should occur within
one tick BEFORE the specified expiration (that is, passing ticks==1 means “announce

the next tick”, this convention was chosen to match legacy usage). Similarly a ticks value of
zero (or even negative) is legal and treated identically: it simply indicates the kernel would
like the next tick announcement as soon as possible.

Note that ticks can also be passed the special value K_TICKS_FOREVER, indicating that no
future timer interrupts are expected or required and that the system is permitted to enter an
indefinite sleep even if this could cause rollover of the internal counter (i.e. the system uptime
counter is allowed to be wrong

Note also that it is conventional for the kernel to pass INT_MAX for ticks if it wants to preserve
the uptime tick count but doesn’t have a specific event to await. The intent here is that the
driver will schedule any needed timeout as far into the future as possible. For the specific case
of INT_MAX, the next call to sys_clock_announce() may occur at any point in the future, not
just at INT_MAX ticks. But the correspondence between the announced ticks and real-world
time must be correct.

A final note about SMP: note that the call to sys_clock_set_timeout() is made on any CPU, and
reflects the next timeout desired globally. The resulting calls(s) to sys_clock_announce() must
be properly serialized by the driver such that a given tick is announced exactly once across
the system. The kernel does not (cannot, really) attempt to serialize things by “assigning”
timeouts to specific CPUs.

Parameters

• ticks – Timeout in tick units

• idle – Hint to the driver that the system is about to enter the idle state imme-
diately after setting the timeout

void sys_clock_idle_exit(void)

Timer idle exit notification.

This notifies the timer driver that the system is exiting the idle and allows it to do whatever
bookkeeping is needed to restore timer operation and compute elapsed ticks.

Note: Legacy timer drivers also use this opportunity to call back into sys_clock_announce()
to notify the kernel of expired ticks. This is allowed for compatibility, but not recommended.
The kernel will figure that out on its own.

void sys_clock_announce(int32_t ticks)

Announce time progress to the kernel.

Informs the kernel that the specified number of ticks have elapsed since the last call to
sys_clock_announce() (or system startup for the first call). The timer driver is expected to
delivery these announcements as close as practical (subject to hardware and latency limita-
tions) to tick boundaries.

7.13. Kernel Services 737

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• ticks – Elapsed time, in ticks

uint32_t sys_clock_elapsed(void)

Ticks elapsed since last sys_clock_announce() call.

Queries the clock driver for the current time elapsed since the last call to sys_clock_announce()
was made. The kernel will call this with appropriate locking, the driver needs only provide an
instantaneous answer.

int64_t k_uptime_ticks(void)

Get system uptime, in system ticks.

This routine returns the elapsed time since the system booted, in ticks (c.f. :kcon-
fig:`CONFIG_SYS_CLOCK_TICKS_PER_SEC`), which is the fundamental unit of resolution
of kernel timekeeping.

Returns Current uptime in ticks.

static inline int64_t k_uptime_get(void)

Get system uptime.

This routine returns the elapsed time since the system booted, in milliseconds.

Note: While this function returns time in milliseconds, it does not mean
it has millisecond resolution. The actual resolution depends on :kcon-
fig:`CONFIG_SYS_CLOCK_TICKS_PER_SEC` config option.

Returns Current uptime in milliseconds.

static inline uint32_t k_uptime_get_32(void)

Get system uptime (32-bit version).

This routine returns the lower 32 bits of the system uptime in milliseconds.

Because correct conversion requires full precision of the system clock there is no benefit to
using this over k_uptime_get() unless you know the application will never run long enough
for the system clock to approach 2^32 ticks. Calls to this function may involve interrupt
blocking and 64-bit math.

Note: While this function returns time in milliseconds, it does not mean
it has millisecond resolution. The actual resolution depends on :kcon-
fig:`CONFIG_SYS_CLOCK_TICKS_PER_SEC` config option

Returns The low 32 bits of the current uptime, in milliseconds.

static inline int64_t k_uptime_delta(int64_t *reftime)

Get elapsed time.

This routine computes the elapsed time between the current system uptime and an earlier
reference time, in milliseconds.

Parameters

• reftime – Pointer to a reference time, which is updated to the current uptime
upon return.

Returns Elapsed time.

738 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline uint32_t k_cycle_get_32(void)

Read the hardware clock.

This routine returns the current time, as measured by the system’s hardware clock.

Returns Current hardware clock up-counter (in cycles).

struct k_timeout_t

#include <sys_clock.h> Kernel timeout type.

Timeout arguments presented to kernel APIs are stored in this opaque type, which
is capable of representing times in various formats and units. It should be con-
structed from application data using one of the macros defined for this purpose (e.g.
K_MSEC() , K_TIMEOUT_ABS_TICKS(), etc. . .), or be one of the two constants K_NO_WAIT
or K_FOREVER. Applications should not inspect the internal data once constructed. Timeout
values may be compared for equality with the K_TIMEOUT_EQ() macro.

Timers

A timer is a kernel object that measures the passage of time using the kernel’s system clock. When
a timer’s specified time limit is reached it can perform an application-defined action, or it can simply
record the expiration and wait for the application to read its status.

• Concepts

• Implementation

– Defining a Timer

– Using a Timer Expiry Function

– Reading Timer Status

– Using Timer Status Synchronization

• Suggested Uses

• Configuration Options

• API Reference

Concepts Any number of timers can be defined (limited only by available RAM). Each timer is refer-
enced by its memory address.

A timer has the following key properties:

• A duration specifying the time interval before the timer expires for the first time. This is a
k_timeout_t value that may be initialized via different units.

• A period specifying the time interval between all timer expirations after the first one, also a
k_timeout_t. It must be non-negative. A period of K_NO_WAIT (i.e. zero) or K_FOREVER means
that the timer is a one shot timer that stops after a single expiration. (For example then, if a timer
is started with a duration of 200 and a period of 75, it will first expire after 200ms and then every
75ms after that.)

• An expiry function that is executed each time the timer expires. The function is executed by the
system clock interrupt handler. If no expiry function is required a NULL function can be specified.

• A stop function that is executed if the timer is stopped prematurely while running. The function is
executed by the thread that stops the timer. If no stop function is required a NULL function can be
specified.

7.13. Kernel Services 739

Zephyr Project Documentation, Release 2.7.0-rc2

• A status value that indicates how many times the timer has expired since the status value was last
read.

A timer must be initialized before it can be used. This specifies its expiry function and stop function
values, sets the timer’s status to zero, and puts the timer into the stopped state.

A timer is started by specifying a duration and a period. The timer’s status is reset to zero, then the
timer enters the running state and begins counting down towards expiry.

Note that the timer’s duration and period parameters specify minimum delays that will elapse. Because
of internal system timer precision (and potentially runtime interactions like interrupt delay) it is possible
that more time may have passed as measured by reads from the relevant system time APIs. But at least
this much time is guaranteed to have elapsed.

When a running timer expires its status is incremented and the timer executes its expiry function, if one
exists; If a thread is waiting on the timer, it is unblocked. If the timer’s period is zero the timer enters
the stopped state; otherwise the timer restarts with a new duration equal to its period.

A running timer can be stopped in mid-countdown, if desired. The timer’s status is left unchanged, then
the timer enters the stopped state and executes its stop function, if one exists. If a thread is waiting on
the timer, it is unblocked. Attempting to stop a non-running timer is permitted, but has no effect on the
timer since it is already stopped.

A running timer can be restarted in mid-countdown, if desired. The timer’s status is reset to zero, then
the timer begins counting down using the new duration and period values specified by the caller. If a
thread is waiting on the timer, it continues waiting.

A timer’s status can be read directly at any time to determine how many times the timer has expired since
its status was last read. Reading a timer’s status resets its value to zero. The amount of time remaining
before the timer expires can also be read; a value of zero indicates that the timer is stopped.

A thread may read a timer’s status indirectly by synchronizing with the timer. This blocks the thread
until the timer’s status is non-zero (indicating that it has expired at least once) or the timer is stopped; if
the timer status is already non-zero or the timer is already stopped the thread continues without waiting.
The synchronization operation returns the timer’s status and resets it to zero.

Note: Only a single user should examine the status of any given timer, since reading the status (directly
or indirectly) changes its value. Similarly, only a single thread at a time should synchronize with a given
timer. ISRs are not permitted to synchronize with timers, since ISRs are not allowed to block.

Implementation

Defining a Timer A timer is defined using a variable of type k_timer. It must then be initialized by
calling k_timer_init() .

The following code defines and initializes a timer.

struct k_timer my_timer;
extern void my_expiry_function(struct k_timer *timer_id);

k_timer_init(&my_timer, my_expiry_function, NULL);

Alternatively, a timer can be defined and initialized at compile time by calling K_TIMER_DEFINE .

The following code has the same effect as the code segment above.

K_TIMER_DEFINE(my_timer, my_expiry_function, NULL);

740 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Using a Timer Expiry Function The following code uses a timer to perform a non-trivial action on a
periodic basis. Since the required work cannot be done at interrupt level, the timer’s expiry function
submits a work item to the system workqueue, whose thread performs the work.

void my_work_handler(struct k_work *work)
{

/* do the processing that needs to be done periodically */
...

}

K_WORK_DEFINE(my_work, my_work_handler);

void my_timer_handler(struct k_timer *dummy)
{

k_work_submit(&my_work);
}

K_TIMER_DEFINE(my_timer, my_timer_handler, NULL);

...

/* start periodic timer that expires once every second */
k_timer_start(&my_timer, K_SECONDS(1), K_SECONDS(1));

Reading Timer Status The following code reads a timer’s status directly to determine if the timer has
expired on not.

K_TIMER_DEFINE(my_status_timer, NULL, NULL);

...

/* start one shot timer that expires after 200 ms */
k_timer_start(&my_status_timer, K_MSEC(200), K_NO_WAIT);

/* do work */
...

/* check timer status */
if (k_timer_status_get(&my_status_timer) > 0) {

/* timer has expired */
} else if (k_timer_remaining_get(&my_status_timer) == 0) {

/* timer was stopped (by someone else) before expiring */
} else {

/* timer is still running */
}

Using Timer Status Synchronization The following code performs timer status synchronization to
allow a thread to do useful work while ensuring that a pair of protocol operations are separated by the
specified time interval.

K_TIMER_DEFINE(my_sync_timer, NULL, NULL);

...

/* do first protocol operation */
...

(continues on next page)

7.13. Kernel Services 741

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

/* start one shot timer that expires after 500 ms */
k_timer_start(&my_sync_timer, K_MSEC(500), K_NO_WAIT);

/* do other work */
...

/* ensure timer has expired (waiting for expiry, if necessary) */
k_timer_status_sync(&my_sync_timer);

/* do second protocol operation */
...

Note: If the thread had no other work to do it could simply sleep between the two protocol operations,
without using a timer.

Suggested Uses Use a timer to initiate an asynchronous operation after a specified amount of time.

Use a timer to determine whether or not a specified amount of time has elapsed. In particular, timers
should be used when higher precision and/or unit control is required than that afforded by the simpler
k_sleep() and k_usleep() calls.

Use a timer to perform other work while carrying out operations involving time limits.

Note: If a thread needs to measure the time required to perform an operation it can read the system
clock or the hardware clock directly, rather than using a timer.

Configuration Options Related configuration options:

• None

API Reference

group timer_apis

Defines

K_TIMER_DEFINE(name, expiry_fn, stop_fn)

Statically define and initialize a timer.

The timer can be accessed outside the module where it is defined using:

extern struct k_timer <name>;

Parameters

• name – Name of the timer variable.

• expiry_fn – Function to invoke each time the timer expires.

• stop_fn – Function to invoke if the timer is stopped while running.

742 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Typedefs

typedef void (*k_timer_expiry_t)(struct k_timer *timer)

Timer expiry function type.

A timer’s expiry function is executed by the system clock interrupt handler each time the timer
expires. The expiry function is optional, and is only invoked if the timer has been initialized
with one.

Param timer Address of timer.

Return N/A

typedef void (*k_timer_stop_t)(struct k_timer *timer)

Timer stop function type.

A timer’s stop function is executed if the timer is stopped prematurely. The function runs in
the context of call that stops the timer. As k_timer_stop() can be invoked from an ISR, the
stop function must be callable from interrupt context (isr-ok).

The stop function is optional, and is only invoked if the timer has been initialized with one.

Param timer Address of timer.

Return N/A

Functions

void k_timer_init(struct k_timer *timer, k_timer_expiry_t expiry_fn, k_timer_stop_t stop_fn)

Initialize a timer.

This routine initializes a timer, prior to its first use.

Parameters

• timer – Address of timer.

• expiry_fn – Function to invoke each time the timer expires.

• stop_fn – Function to invoke if the timer is stopped while running.

Returns N/A

void k_timer_start(struct k_timer *timer, k_timeout_t duration, k_timeout_t period)

Start a timer.

This routine starts a timer, and resets its status to zero. The timer begins counting down using
the specified duration and period values.

Attempting to start a timer that is already running is permitted. The timer’s status is reset to
zero and the timer begins counting down using the new duration and period values.

Parameters

• timer – Address of timer.

• duration – Initial timer duration.

• period – Timer period.

Returns N/A

7.13. Kernel Services 743

Zephyr Project Documentation, Release 2.7.0-rc2

void k_timer_stop(struct k_timer *timer)

Stop a timer.

This routine stops a running timer prematurely. The timer’s stop function, if one exists, is
invoked by the caller.

Attempting to stop a timer that is not running is permitted, but has no effect on the timer.

Function properties (list may not be complete) isr-ok

Note: The stop handler has to be callable from ISRs if k_timer_stop is to be called from ISRs.

Parameters

• timer – Address of timer.

Returns N/A

uint32_t k_timer_status_get(struct k_timer *timer)

Read timer status.

This routine reads the timer’s status, which indicates the number of times it has expired since
its status was last read.

Calling this routine resets the timer’s status to zero.

Parameters

• timer – Address of timer.

Returns Timer status.

uint32_t k_timer_status_sync(struct k_timer *timer)

Synchronize thread to timer expiration.

This routine blocks the calling thread until the timer’s status is non-zero (indicating that it has
expired at least once since it was last examined) or the timer is stopped. If the timer status is
already non-zero, or the timer is already stopped, the caller continues without waiting.

Calling this routine resets the timer’s status to zero.

This routine must not be used by interrupt handlers, since they are not allowed to block.

Parameters

• timer – Address of timer.

Returns Timer status.

k_ticks_t k_timer_expires_ticks(const struct k_timer *timer)

Get next expiration time of a timer, in system ticks.

This routine returns the future system uptime reached at the next time of expiration of the
timer, in units of system ticks. If the timer is not running, current system time is returned.

Parameters

• timer – The timer object

Returns Uptime of expiration, in ticks

k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer)

Get time remaining before a timer next expires, in system ticks.

This routine computes the time remaining before a running timer next expires, in units of
system ticks. If the timer is not running, it returns zero.

744 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline uint32_t k_timer_remaining_get(struct k_timer *timer)
Get time remaining before a timer next expires.

This routine computes the (approximate) time remaining before a running timer next expires.
If the timer is not running, it returns zero.

Parameters

• timer – Address of timer.

Returns Remaining time (in milliseconds).

void k_timer_user_data_set(struct k_timer *timer, void *user_data)
Associate user-specific data with a timer.

This routine records the user_data with the timer, to be retrieved later.

It can be used e.g. in a timer handler shared across multiple subsystems to retrieve data
specific to the subsystem this timer is associated with.

Parameters

• timer – Address of timer.

• user_data – User data to associate with the timer.

Returns N/A

void *k_timer_user_data_get(const struct k_timer *timer)
Retrieve the user-specific data from a timer.

Parameters

• timer – Address of timer.

Returns The user data.

7.13.5 Other

These pages cover other kernel services.

CPU Idling

Although normally reserved for the idle thread, in certain special applications, a thread might want to
make the CPU idle.

• Concepts

• Implementation

– Making the CPU idle

– Making the CPU idle in an atomic fashion

• Suggested Uses

• API Reference

Concepts Making the CPU idle causes the kernel to pause all operations until an event, normally an
interrupt, wakes up the CPU. In a regular system, the idle thread is responsible for this. However, in
some constrained systems, it is possible that another thread takes this duty.

Implementation

7.13. Kernel Services 745

Zephyr Project Documentation, Release 2.7.0-rc2

Making the CPU idle Making the CPU idle is simple: call the k_cpu_idle() API. The CPU will stop
executing instructions until an event occurs. Most likely, the function will be called within a loop. Note
that in certain architectures, upon return, k_cpu_idle() unconditionally unmasks interrupts.

static k_sem my_sem;

void my_isr(void *unused)
{

k_sem_give(&my_sem);
}

void main(void)
{

k_sem_init(&my_sem, 0, 1);

/* wait for semaphore from ISR, then do related work */

for (;;) {

/* wait for ISR to trigger work to perform */
if (k_sem_take(&my_sem, K_NO_WAIT) == 0) {

/* ... do processing */

}

/* put CPU to sleep to save power */
k_cpu_idle();

}
}

Making the CPU idle in an atomic fashion It is possible that there is a need to do some work atomi-
cally before making the CPU idle. In such a case, k_cpu_atomic_idle() should be used instead.

In fact, there is a race condition in the previous example: the interrupt could occur between the time the
semaphore is taken, finding out it is not available and making the CPU idle again. In some systems, this
can cause the CPU to idle until another interrupt occurs, which might be never, thus hanging the system
completely. To prevent this, k_cpu_atomic_idle() should have been used, like in this example.

static k_sem my_sem;

void my_isr(void *unused)
{

k_sem_give(&my_sem);
}

void main(void)
{

k_sem_init(&my_sem, 0, 1);

for (;;) {

unsigned int key = irq_lock();

/*
* Wait for semaphore from ISR; if acquired, do related work, then
* go to next loop iteration (the semaphore might have been given

(continues on next page)

746 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

* again); else, make the CPU idle.
*/

if (k_sem_take(&my_sem, K_NO_WAIT) == 0) {

irq_unlock(key);

/* ... do processing */

} else {
/* put CPU to sleep to save power */
k_cpu_atomic_idle(key);

}
}

}

Suggested Uses Use k_cpu_atomic_idle() when a thread has to do some real work in addition to idling
the CPU to wait for an event. See example above.

Use k_cpu_idle() only when a thread is only responsible for idling the CPU, i.e. not doing any real work,
like in this example below.

void main(void)
{

/* ... do some system/application initialization */

/* thread is only used for CPU idling from this point on */
for (;;) {

k_cpu_idle();
}

}

Note: Do not use these APIs unless absolutely necessary. In a normal system, the idle thread takes
care of power management, including CPU idling.

API Reference

group cpu_idle_apis

Functions

static inline void k_cpu_idle(void)

Make the CPU idle.

This function makes the CPU idle until an event wakes it up.

In a regular system, the idle thread should be the only thread responsible for making the
CPU idle and triggering any type of power management. However, in some more constrained
systems, such as a single-threaded system, the only thread would be responsible for this if
needed.

7.13. Kernel Services 747

Zephyr Project Documentation, Release 2.7.0-rc2

Note: In some architectures, before returning, the function unmasks interrupts uncondition-
ally.

Returns N/A

static inline void k_cpu_atomic_idle(unsigned int key)

Make the CPU idle in an atomic fashion.

Similar to k_cpu_idle(), but must be called with interrupts locked.

Enabling interrupts and entering a low-power mode will be atomic, i.e. there will be no period
of time where interrupts are enabled before the processor enters a low-power mode.

After waking up from the low-power mode, the interrupt lockout state will be restored as if
by irq_unlock(key).

Parameters

• key – Interrupt locking key obtained from irq_lock().

Returns N/A

Atomic Services

An atomic variable is a 32-bit variable that can be read and modified by threads and ISRs in an uninter-
ruptible manner.

• Concepts

• Implementation

– Defining an Atomic Variable

– Manipulating an Atomic Variable

– Manipulating an Array of Atomic Variables

• Suggested Uses

• Configuration Options

• API Reference

Concepts Any number of atomic variables can be defined (limited only by available RAM).

Using the kernel’s atomic APIs to manipulate an atomic variable guarantees that the desired operation
occurs correctly, even if higher priority contexts also manipulate the same variable.

The kernel also supports the atomic manipulation of a single bit in an array of atomic variables.

Implementation

Defining an Atomic Variable An atomic variable is defined using a variable of type atomic_t.

By default an atomic variable is initialized to zero. However, it can be given a different value using
ATOMIC_INIT :

atomic_t flags = ATOMIC_INIT(0xFF);

748 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Manipulating an Atomic Variable An atomic variable is manipulated using the APIs listed at the end
of this section.

The following code shows how an atomic variable can be used to keep track of the number of times a
function has been invoked. Since the count is incremented atomically, there is no risk that it will become
corrupted in mid-increment if a thread calling the function is interrupted if by a higher priority context
that also calls the routine.

atomic_t call_count;

int call_counting_routine(void)
{

/* increment invocation counter */
atomic_inc(&call_count);

/* do rest of routine's processing */
...

}

Manipulating an Array of Atomic Variables An array of 32-bit atomic variables can be defined
in the conventional manner. However, you can also define an N-bit array of atomic variables using
ATOMIC_DEFINE .

A single bit in array of atomic variables can be manipulated using the APIs listed at the end of this section
that end with _bit().

The following code shows how a set of 200 flag bits can be implemented using an array of atomic
variables.

define NUM_FLAG_BITS 200

ATOMIC_DEFINE(flag_bits, NUM_FLAG_BITS);

/* set specified flag bit & return its previous value */
int set_flag_bit(int bit_position)
{

return (int)atomic_set_bit(flag_bits, bit_position);
}

Suggested Uses Use an atomic variable to implement critical section processing that only requires the
manipulation of a single 32-bit value.

Use multiple atomic variables to implement critical section processing on a set of flag bits in a bit array
longer than 32 bits.

Note: Using atomic variables is typically far more efficient than using other techniques to implement
critical sections such as using a mutex or locking interrupts.

Configuration Options Related configuration options:

• :kconfig:`CONFIG_ATOMIC_OPERATIONS_BUILTIN`

• :kconfig:`CONFIG_ATOMIC_OPERATIONS_ARCH`

• :kconfig:`CONFIG_ATOMIC_OPERATIONS_C`

7.13. Kernel Services 749

Zephyr Project Documentation, Release 2.7.0-rc2

API Reference
Important: All atomic services APIs can be used by both threads and ISRs.

group atomic_apis

Defines

ATOMIC_INIT(i)

Initialize an atomic variable.

This macro can be used to initialize an atomic variable. For example,

atomic_t my_var = ATOMIC_INIT(75);

Parameters

• i – Value to assign to atomic variable.

ATOMIC_PTR_INIT(p)

Initialize an atomic pointer variable.

This macro can be used to initialize an atomic pointer variable. For example,

atomic_ptr_t my_ptr = ATOMIC_PTR_INIT(&data);

Parameters

• p – Pointer value to assign to atomic pointer variable.

ATOMIC_BITMAP_SIZE(num_bits)

This macro computes the number of atomic variables necessary to represent a bitmap with
num_bits.

Parameters

• num_bits – Number of bits.

ATOMIC_DEFINE(name, num_bits)

Define an array of atomic variables.

This macro defines an array of atomic variables containing at least num_bits bits.

Note: If used from file scope, the bits of the array are initialized to zero; if used from within
a function, the bits are left uninitialized.

Parameters

• name – Name of array of atomic variables.

• num_bits – Number of bits needed.

Functions

750 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline bool atomic_test_bit(const atomic_t *target, int bit)

Atomically test a bit.

This routine tests whether bit number bit of target is set or not. The target may be a single
atomic variable or an array of them.

Parameters

• target – Address of atomic variable or array.

• bit – Bit number (starting from 0).

Returns true if the bit was set, false if it wasn’t.

static inline bool atomic_test_and_clear_bit(atomic_t *target, int bit)

Atomically test and clear a bit.

Atomically clear bit number bit of target and return its old value. The target may be a single
atomic variable or an array of them.

Parameters

• target – Address of atomic variable or array.

• bit – Bit number (starting from 0).

Returns true if the bit was set, false if it wasn’t.

static inline bool atomic_test_and_set_bit(atomic_t *target, int bit)

Atomically set a bit.

Atomically set bit number bit of target and return its old value. The target may be a single
atomic variable or an array of them.

Parameters

• target – Address of atomic variable or array.

• bit – Bit number (starting from 0).

Returns true if the bit was set, false if it wasn’t.

static inline void atomic_clear_bit(atomic_t *target, int bit)

Atomically clear a bit.

Atomically clear bit number bit of target. The target may be a single atomic variable or an
array of them.

Parameters

• target – Address of atomic variable or array.

• bit – Bit number (starting from 0).

Returns N/A

static inline void atomic_set_bit(atomic_t *target, int bit)

Atomically set a bit.

Atomically set bit number bit of target. The target may be a single atomic variable or an array
of them.

Parameters

• target – Address of atomic variable or array.

• bit – Bit number (starting from 0).

Returns N/A

7.13. Kernel Services 751

Zephyr Project Documentation, Release 2.7.0-rc2

static inline void atomic_set_bit_to(atomic_t *target, int bit, bool val)

Atomically set a bit to a given value.

Atomically set bit number bit of target to value val. The target may be a single atomic variable
or an array of them.

Parameters

• target – Address of atomic variable or array.

• bit – Bit number (starting from 0).

• val – true for 1, false for 0.

Returns N/A

static inline bool atomic_cas(atomic_t *target, atomic_val_t old_value, atomic_val_t new_value)

Atomic compare-and-set.

This routine performs an atomic compare-and-set on target. If the current value of target
equals old_value, target is set to new_value. If the current value of target does not equal
old_value, target is left unchanged.

Parameters

• target – Address of atomic variable.

• old_value – Original value to compare against.

• new_value – New value to store.

Returns true if new_value is written, false otherwise.

static inline bool atomic_ptr_cas(atomic_ptr_t *target, atomic_ptr_val_t old_value,
atomic_ptr_val_t new_value)

Atomic compare-and-set with pointer values.

This routine performs an atomic compare-and-set on target. If the current value of target
equals old_value, target is set to new_value. If the current value of target does not equal
old_value, target is left unchanged.

Parameters

• target – Address of atomic variable.

• old_value – Original value to compare against.

• new_value – New value to store.

Returns true if new_value is written, false otherwise.

static inline atomic_val_t atomic_add(atomic_t *target, atomic_val_t value)

Atomic addition.

This routine performs an atomic addition on target.

Parameters

• target – Address of atomic variable.

• value – Value to add.

Returns Previous value of target.

static inline atomic_val_t atomic_sub(atomic_t *target, atomic_val_t value)

Atomic subtraction.

This routine performs an atomic subtraction on target.

Parameters

• target – Address of atomic variable.

752 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• value – Value to subtract.

Returns Previous value of target.

static inline atomic_val_t atomic_inc(atomic_t *target)
Atomic increment.

This routine performs an atomic increment by 1 on target.

Parameters

• target – Address of atomic variable.

Returns Previous value of target.

static inline atomic_val_t atomic_dec(atomic_t *target)
Atomic decrement.

This routine performs an atomic decrement by 1 on target.

Parameters

• target – Address of atomic variable.

Returns Previous value of target.

static inline atomic_val_t atomic_get(const atomic_t *target)
Atomic get.

This routine performs an atomic read on target.

Parameters

• target – Address of atomic variable.

Returns Value of target.

static inline atomic_ptr_val_t atomic_ptr_get(const atomic_ptr_t *target)
Atomic get a pointer value.

This routine performs an atomic read on target.

Parameters

• target – Address of pointer variable.

Returns Value of target.

static inline atomic_val_t atomic_set(atomic_t *target, atomic_val_t value)
Atomic get-and-set.

This routine atomically sets target to value and returns the previous value of target.

Parameters

• target – Address of atomic variable.

• value – Value to write to target.

Returns Previous value of target.

static inline atomic_ptr_val_t atomic_ptr_set(atomic_ptr_t *target, atomic_ptr_val_t value)
Atomic get-and-set for pointer values.

This routine atomically sets target to value and returns the previous value of target.

Parameters

• target – Address of atomic variable.

• value – Value to write to target.

Returns Previous value of target.

7.13. Kernel Services 753

Zephyr Project Documentation, Release 2.7.0-rc2

static inline atomic_val_t atomic_clear(atomic_t *target)

Atomic clear.

This routine atomically sets target to zero and returns its previous value. (Hence, it is equiva-
lent to atomic_set(target, 0).)

Parameters

• target – Address of atomic variable.

Returns Previous value of target.

static inline atomic_ptr_val_t atomic_ptr_clear(atomic_ptr_t *target)

Atomic clear of a pointer value.

This routine atomically sets target to zero and returns its previous value. (Hence, it is equiva-
lent to atomic_set(target, 0).)

Parameters

• target – Address of atomic variable.

Returns Previous value of target.

static inline atomic_val_t atomic_or(atomic_t *target, atomic_val_t value)

Atomic bitwise inclusive OR.

This routine atomically sets target to the bitwise inclusive OR of target and value.

Parameters

• target – Address of atomic variable.

• value – Value to OR.

Returns Previous value of target.

static inline atomic_val_t atomic_xor(atomic_t *target, atomic_val_t value)

Atomic bitwise exclusive OR (XOR).

This routine atomically sets target to the bitwise exclusive OR (XOR) of target and value.

Parameters

• target – Address of atomic variable.

• value – Value to XOR

Returns Previous value of target.

static inline atomic_val_t atomic_and(atomic_t *target, atomic_val_t value)

Atomic bitwise AND.

This routine atomically sets target to the bitwise AND of target and value.

Parameters

• target – Address of atomic variable.

• value – Value to AND.

Returns Previous value of target.

static inline atomic_val_t atomic_nand(atomic_t *target, atomic_val_t value)

Atomic bitwise NAND.

This routine atomically sets target to the bitwise NAND of target and value. (This operation is
equivalent to target = ~(target & value).)

Parameters

• target – Address of atomic variable.

754 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• value – Value to NAND.

Returns Previous value of target.

Floating Point Services

The kernel allows threads to use floating point registers on board configurations that support these
registers.

Note: Floating point services are currently available only for boards based on ARM Cortex-M SoCs
supporting the Floating Point Extension, the Intel x86 architecture, the SPARC architecture and ARCv2
SoCs supporting the Floating Point Extension. The services provided are architecture specific.

The kernel does not support the use of floating point registers by ISRs.

• Concepts

– No FP registers mode

– Unshared FP registers mode

– Shared FP registers mode

• Implementation

– Performing Floating Point Arithmetic

• Suggested Uses

• Configuration Options

• API Reference

Concepts The kernel can be configured to provide only the floating point services required by an ap-
plication. Three modes of operation are supported, which are described below. In addition, the kernel’s
support for the SSE registers can be included or omitted, as desired.

No FP registers mode This mode is used when the application has no threads that use floating point
registers. It is the kernel’s default floating point services mode.

If a thread uses any floating point register, the kernel generates a fatal error condition and aborts the
thread.

Unshared FP registers mode This mode is used when the application has only a single thread that
uses floating point registers.

On x86 platforms, the kernel initializes the floating point registers so they can be used by any thread
(initialization in skipped on ARM Cortex-M platforms and ARCv2 platforms). The floating point registers
are left unchanged whenever a context switch occurs.

Note: The behavior is undefined, if two or more threads attempt to use the floating point registers, as
the kernel does not attempt to detect (or prevent) multiple threads from using these registers.

7.13. Kernel Services 755

Zephyr Project Documentation, Release 2.7.0-rc2

Shared FP registers mode This mode is used when the application has two or more threads that use
floating point registers. Depending upon the underlying CPU architecture, the kernel supports one or
more of the following thread sub-classes:

• non-user: A thread that cannot use any floating point registers

• FPU user: A thread that can use the standard floating point registers

• SSE user: A thread that can use both the standard floating point registers and SSE registers

The kernel initializes and enables access to the floating point registers, so they can be used by any thread,
then saves and restores these registers during context switches to ensure the computations performed by
each FPU user or SSE user are not impacted by the computations performed by the other users.

ARM Cortex-M architecture (with the Floating Point Extension)

Note: The Shared FP registers mode is the default Floating Point Services mode in ARM Cortex-M.

On the ARM Cortex-M architecture with the Floating Point Extension, the kernel treats all threads as FPU
users when shared FP registers mode is enabled. This means that any thread is allowed to access the
floating point registers. The ARM kernel automatically detects that a given thread is using the floating
point registers the first time the thread accesses them.

Pretag a thread that intends to use the FP registers by using one of the techniques listed below.

• A statically-created ARM thread can be pretagged by passing the K_FP_REGS option to
K_THREAD_DEFINE .

• A dynamically-created ARM thread can be pretagged by passing the K_FP_REGS option to
k_thread_create() .

Pretagging a thread with the K_FP_REGS option instructs the MPU-based stack protection mechanism to
properly configure the size of the thread’s guard region to always guarantee stack overflow detection,
and enable lazy stacking for the given thread upon thread creation.

During thread context switching the ARM kernel saves the callee-saved floating point registers, if the
switched-out thread has been using them. Additionally, the caller-saved floating point registers are saved
on the thread’s stack. If the switched-in thread has been using the floating point registers, the kernel
restores the callee-saved FP registers of the switched-in thread and the caller-saved FP context is restored
from the thread’s stack. Thus, the kernel does not save or restore the FP context of threads that are not
using the FP registers.

Each thread that intends to use the floating point registers must provide an extra 72 bytes of stack space
where the callee-saved FP context can be saved.

Lazy Stacking is currently enabled in Zephyr applications on ARM Cortex-M architecture, minimizing
interrupt latency, when the floating point context is active.

When the MPU-based stack protection mechanism is not enabled, lazy stacking is always active in the
Zephyr application. When the MPU-based stack protection is enabled, the following rules apply with
respect to lazy stacking:

• Lazy stacking is activated by default on threads that are pretagged with K_FP_REGS

• Lazy stacking is activated dynamically on threads that are not pretagged with K_FP_REGS , as soon
as the kernel detects that they are using the floating point registers.

If an ARM thread does not require use of the floating point registers any more, it can call
k_float_disable(). This instructs the kernel not to save or restore its FP context during thread context
switching.

756 Chapter 7. API Reference

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0298a/DAFGGBJD.html

Zephyr Project Documentation, Release 2.7.0-rc2

ARM64 architecture
Note: The Shared FP registers mode is the default Floating Point Services mode on ARM64. The
compiler is free to optimize code using FP/SIMD registers, and library functions such as memcpy are
known to make use of them.

On the ARM64 (Aarch64) architecture the kernel treats each thread as a FPU user on a case-by-case
basis. A “lazy save” algorithm is used during context switching which updates the floating point registers
only when it is absolutely necessary. For example, the registers are not saved when switching from an
FPU user to a non-user thread, and then back to the original FPU user.

FPU register usage by ISRs is supported although not recommended. When an ISR uses floating point
or SIMD registers, then the access is trapped, the current FPU user context is saved in the thread object
and the ISR is resumed with interrupts disabled so to prevent another IRQ from interrupting the ISR
and potentially requesting FPU usage. Because ISR don’t have a persistent register context, there are no
provision for saving an ISR’s FPU context either, hence the IRQ disabling.

Each thread object becomes 512 bytes larger when Shared FP registers mode is enabled.

ARCv2 architecture On the ARCv2 architecture, the kernel treats each thread as a non-user or FPU
user and the thread must be tagged by one of the following techniques.

• A statically-created ARC thread can be tagged by passing the K_FP_REGS option to
K_THREAD_DEFINE .

• A dynamically-created ARC thread can be tagged by passing the K_FP_REGS to
k_thread_create() .

If an ARC thread does not require use of the floating point registers any more, it can call
k_float_disable(). This instructs the kernel not to save or restore its FP context during thread context
switching.

During thread context switching the ARC kernel saves the callee-saved floating point registers, if the
switched-out thread has been using them. Additionally, the caller-saved floating point registers are saved
on the thread’s stack. If the switched-in thread has been using the floating point registers, the kernel
restores the callee-saved FP registers of the switched-in thread and the caller-saved FP context is restored
from the thread’s stack. Thus, the kernel does not save or restore the FP context of threads that are not
using the FP registers. An extra 16 bytes (single floating point hardware) or 32 bytes (double floating
point hardware) of stack space is required to load and store floating point registers.

RISC-V architecture On the RISC-V architecture, the kernel treats each thread as a non-user or FPU
user and the thread must be tagged by one of the following techniques:

• A statically-created RISC-V thread can be tagged by passing the K_FP_REGS option to
K_THREAD_DEFINE .

• A dynamically-created RISC-V thread can be tagged by passing the K_FP_REGS to
k_thread_create() .

• A running RISC-V thread can be tagged by calling k_float_enable(). This function can only be
called from the thread itself.

If a RISC-V thread no longer requires the use of the floating point registers, it can call
k_float_disable(). This instructs the kernel not to save or restore its FP context during thread context
switching. This function can only be called from the thread itself.

During thread context switching the RISC-V kernel saves the callee-saved floating point registers, if the
switched-out thread is tagged with K_FP_REGS . Additionally, the caller-saved floating point registers are
saved on the thread’s stack. If the switched-in thread has been tagged with K_FP_REGS , then the kernel
restores the callee-saved FP registers of the switched-in thread and the caller-saved FP context is restored
from the thread’s stack. Thus, the kernel does not save or restore the FP context of threads that are not
using the FP registers. An extra 84 bytes (single floating point hardware) or 164 bytes (double floating
point hardware) of stack space is required to load and store floating point registers.

7.13. Kernel Services 757

Zephyr Project Documentation, Release 2.7.0-rc2

SPARC architecture On the SPARC architecture, the kernel treats each thread as a non-user or FPU
user and the thread must be tagged by one of the following techniques:

• A statically-created thread can be tagged by passing the K_FP_REGS option to K_THREAD_DEFINE .

• A dynamically-created thread can be tagged by passing the K_FP_REGS to k_thread_create() .

During thread context switch at exit from interrupt handler, the SPARC kernel saves all floating point
registers, if the FPU was enabled in the switched-out thread. Floating point registers are saved on the
thread’s stack. Floating point registers are restored when a thread context is restored iff they were saved
at the context save. Saving and restoring of the floating point registers is synchronous and thus not lazy.
The FPU is always disabled when an ISR is called (independent of :kconfig:`CONFIG_FPU_SHARING`).

Floating point disabling with k_float_disable() is not implemented.

When :kconfig:`CONFIG_FPU_SHARING` is used, then 136 bytes of stack space is required for each
FPU user thread to load and store floating point registers. No extra stack is required if :kcon-
fig:`CONFIG_FPU_SHARING` is not used.

x86 architecture On the x86 architecture the kernel treats each thread as a non-user, FPU user or SSE
user on a case-by-case basis. A “lazy save” algorithm is used during context switching which updates
the floating point registers only when it is absolutely necessary. For example, the registers are not saved
when switching from an FPU user to a non-user thread, and then back to the original FPU user. The
following table indicates the amount of additional stack space a thread must provide so the registers can
be saved properly.

Thread type FP register use Extra stack space required
cooperative any 0 bytes
preemptive none 0 bytes
preemptive FPU 108 bytes
preemptive SSE 464 bytes

The x86 kernel automatically detects that a given thread is using the floating point registers the first
time the thread accesses them. The thread is tagged as an SSE user if the kernel has been configured to
support the SSE registers, or as an FPU user if the SSE registers are not supported. If this would result
in a thread that is an FPU user being tagged as an SSE user, or if the application wants to avoid the
exception handling overhead involved in auto-tagging threads, it is possible to pretag a thread using one
of the techniques listed below.

• A statically-created x86 thread can be pretagged by passing the K_FP_REGS or K_SSE_REGS option
to K_THREAD_DEFINE .

• A dynamically-created x86 thread can be pretagged by passing the K_FP_REGS or K_SSE_REGS
option to k_thread_create() .

• An already-created x86 thread can pretag itself once it has started by passing the K_FP_REGS or
K_SSE_REGS option to k_float_enable().

If an x86 thread uses the floating point registers infrequently it can call k_float_disable() to remove
its tagging as an FPU user or SSE user. This eliminates the need for the kernel to take steps to preserve
the contents of the floating point registers during context switches when there is no need to do so. When
the thread again needs to use the floating point registers it can re-tag itself as an FPU user or SSE user
by calling k_float_enable().

Implementation

Performing Floating Point Arithmetic No special coding is required for a thread to use floating point
arithmetic if the kernel is properly configured.

758 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

The following code shows how a routine can use floating point arithmetic to avoid overflow issues when
computing the average of a series of integer values.

int average(int *values, int num_values)
{

double sum;
int i;

sum = 0.0;

for (i = 0; i < num_values; i++) {
sum += *values;
values++;

}

return (int)((sum / num_values) + 0.5);
}

Suggested Uses Use the kernel floating point services when an application needs to perform floating
point operations.

Configuration Options To configure unshared FP registers mode, enable the :kconfig:`CONFIG_FPU`
configuration option and leave the :kconfig:`CONFIG_FPU_SHARING` configuration option disabled.

To configure shared FP registers mode, enable both the :kconfig:`CONFIG_FPU` configuration option
and the :kconfig:`CONFIG_FPU_SHARING` configuration option. Also, ensure that any thread that
uses the floating point registers has sufficient added stack space for saving floating point register values
during context switches, as described above.

For x86, use the :kconfig:`CONFIG_X86_SSE` configuration option to enable support for SSEx instruc-
tions.

API Reference

group float_apis

C++ Support for Applications

The kernel supports applications written in both C and C++. However, to use C++ in an application you
must configure the kernel to include C++ support and the build system must select the correct compiler.

The build system selects the C++ compiler based on the suffix of the files. Files identified with either a
cxx or a cpp suffix are compiled using the C++ compiler. For example, myCplusplusApp.cpp is compiled
using C++.

The kernel currently provides only a subset of C++ functionality. The following features are not sup-
ported:

• Dynamic object management with the new and delete operators

• RTTI (runtime type information)

• Static global object destruction

While not an exhaustive list, support for the following functionality is included:

• Inheritance

• Virtual functions

7.13. Kernel Services 759

Zephyr Project Documentation, Release 2.7.0-rc2

• Virtual tables

• Static global object constructors

• Exceptions

Static global object constructors are initialized after the drivers are initialized but before the application
main() function. Therefore, use of C++ is restricted to application code.

Note: Do not use C++ for kernel, driver, or system initialization code.

Version

Kernel version handling and APIs related to kernel version being used.

API Reference
uint32_t sys_kernel_version_get(void)

Return the kernel version of the present build.

The kernel version is a four-byte value, whose format is described in the file “kernel_version.h”.

Returns kernel version
SYS_KERNEL_VER_MAJOR(ver)

SYS_KERNEL_VER_MINOR(ver)

SYS_KERNEL_VER_PATCHLEVEL(ver)

Fatal Errors

Software Errors Triggered in Source Code Zephyr provides several methods for inducing fatal error
conditions through either build-time checks, conditionally compiled assertions, or deliberately invoked
panic or oops conditions.

Runtime Assertions Zephyr provides some macros to perform runtime assertions which may be con-
ditionally compiled. Their definitions may be found in include/sys/__assert.h.

Assertions are enabled by setting the __ASSERT_ON preprocessor symbol to a non-zero value. There are
two ways to do this:

• Use the :kconfig:`CONFIG_ASSERT` and :kconfig:`CONFIG_ASSERT_LEVEL` kconfig options.

• Add -D__ASSERT_ON=<level> to the project’s CFLAGS, either on the build command line or in a
CMakeLists.txt.

The __ASSERT_ON method takes precedence over the kconfig option if both are used.

Specifying an assertion level of 1 causes the compiler to issue warnings that the kernel contains debug-
type __ASSERT() statements; this reminder is issued since assertion code is not normally present in a
final product. Specifying assertion level 2 suppresses these warnings.

Assertions are enabled by default when running Zephyr test cases, as configured by the :kcon-
fig:`CONFIG_TEST` option.

The policy for what to do when encountering a failed assertion is controlled by the implementation of
assert_post_action(). Zephyr provides a default implementation with weak linkage which invokes a
kernel oops if the thread that failed the assertion was running in user mode, and a kernel panic otherwise.

760 Chapter 7. API Reference

https://github.com/zephyrproject-rtos/zephyr/blob/main/include/sys/__assert.h

Zephyr Project Documentation, Release 2.7.0-rc2

__ASSERT() The __ASSERT() macro can be used inside kernel and application code to perform optional
runtime checks which will induce a fatal error if the check does not pass. The macro takes a string
message which will be printed to provide context to the assertion. In addition, the kernel will print a
text representation of the expression code that was evaluated, and the file and line number where the
assertion can be found.

For example:

__ASSERT(foo == 0xF0CACC1A, "Invalid value of foo, got 0x%x", foo);

If at runtime foo had some unexpected value, the error produced may look like the following:

ASSERTION FAIL [foo == 0xF0CACC1A] @ ZEPHYR_BASE/tests/kernel/fatal/src/main.c:367
Invalid value of foo, got 0xdeadbeef

[00:00:00.000,000] <err> os: r0/a1: 0x00000004 r1/a2: 0x0000016f r2/a3: ␣
→˓0x00000000
[00:00:00.000,000] <err> os: r3/a4: 0x00000000 r12/ip: 0x00000000 r14/lr: ␣
→˓0x00000a6d
[00:00:00.000,000] <err> os: xpsr: 0x61000000
[00:00:00.000,000] <err> os: Faulting instruction address (r15/pc): 0x00009fe4
[00:00:00.000,000] <err> os: >>> ZEPHYR FATAL ERROR 4: Kernel panic
[00:00:00.000,000] <err> os: Current thread: 0x20000414 (main)
[00:00:00.000,000] <err> os: Halting system

__ASSERT_EVAL() The __ASSERT_EVAL() macro can also be used inside kernel and application code,
with special semantics for the evaluation of its arguments.

It makes use of the __ASSERT() macro, but has some extra flexibility. It allows the developer to specify
different actions depending whether the __ASSERT() macro is enabled or not. This can be particularly
useful to prevent the compiler from generating comments (errors, warnings or remarks) about variables
that are only used with __ASSERT() being assigned a value, but otherwise unused when the __ASSERT()
macro is disabled.

Consider the following example:

int x;
x = foo();
__ASSERT(x != 0, "foo() returned zero!");

If __ASSERT() is disabled, then ‘x’ is assigned a value, but never used. This type of situation can be
resolved using the __ASSERT_EVAL() macro.

__ASSERT_EVAL ((void) foo(),
int x = foo(),
x != 0,
"foo() returned zero!");

The first parameter tells __ASSERT_EVAL() what to do if __ASSERT() is disabled. The second parameter
tells __ASSERT_EVAL() what to do if __ASSERT() is enabled. The third and fourth parameters are the
parameters it passes to __ASSERT().

__ASSERT_NO_MSG() The __ASSERT_NO_MSG() macro can be used to perform an assertion that re-
ports the failed test and its location, but lacks additional debugging information provided to assist the
user in diagnosing the problem; its use is discouraged.

Build Assertions Zephyr provides two macros for performing build-time assertion checks. These are
evaluated completely at compile-time, and are always checked.

7.13. Kernel Services 761

Zephyr Project Documentation, Release 2.7.0-rc2

BUILD_ASSERT() This has the same semantics as C’s _Static_assert or C++’s static_assert. If
the evaluation fails, a build error will be generated by the compiler. If the compiler supports it, the
provided message will be printed to provide further context.

Unlike __ASSERT(), the message must be a static string, without printf()-like format codes or extra
arguments.

For example, suppose this check fails:

BUILD_ASSERT(FOO == 2000, "Invalid value of FOO");

With GCC, the output resembles:

tests/kernel/fatal/src/main.c: In function 'test_main':
include/toolchain/gcc.h:28:37: error: static assertion failed: "Invalid value of FOO"
#define BUILD_ASSERT(EXPR, MSG) _Static_assert(EXPR, "" MSG)

^~~~~~~~~~~~~~
tests/kernel/fatal/src/main.c:370:2: note: in expansion of macro 'BUILD_ASSERT'

BUILD_ASSERT(FOO == 2000,
^~~~~~~~~~~~~~~~

Kernel Oops A kernel oops is a software triggered fatal error invoked by k_oops(). This should be
used to indicate an unrecoverable condition in application logic.

The fatal error reason code generated will be K_ERR_KERNEL_OOPS.

Kernel Panic A kernel error is a software triggered fatal error invoked by k_panic(). This
should be used to indicate that the Zephyr kernel is in an unrecoverable state. Implementations of
k_sys_fatal_error_handler() should not return if the kernel encounters a panic condition, as the
entire system needs to be reset.

Threads running in user mode are not permitted to invoke k_panic(), and doing so will generate a
kernel oops instead. Otherwise, the fatal error reason code generated will be K_ERR_KERNEL_PANIC.

Exceptions

Spurious Interrupts If the CPU receives a hardware interrupt on an interrupt line that has not had a
handler installed with IRQ_CONNECT() or irq_connect_dynamic() , then the kernel will generate a fatal
error with the reason code K_ERR_SPURIOUS_IRQ().

Stack Overflows In the event that a thread pushes more data onto its execution stack than its stack
buffer provides, the kernel may be able to detect this situation and generate a fatal error with a reason
code of K_ERR_STACK_CHK_FAIL.

If a thread is running in user mode, then stack overflows are always caught, as the thread will simply
not have permission to write to adjacent memory addresses outside of the stack buffer. Because this is
enforced by the memory protection hardware, there is no risk of data corruption to memory that the
thread would not otherwise be able to write to.

If a thread is running in supervisor mode, or if :kconfig:`CONFIG_USERSPACE` is not en-
abled, depending on configuration stack overflows may or may not be caught. :kcon-
fig:`CONFIG_HW_STACK_PROTECTION` is supported on some architectures and will catch stack over-
flows in supervisor mode, including when handling a system call on behalf of a user thread. Typically
this is implemented via dedicated CPU features, or read-only MMU/MPU guard regions placed immedi-
ately adjacent to the stack buffer. Stack overflows caught in this way can detect the overflow, but cannot
guarantee against data corruption and should be treated as a very serious condition impacting the health
of the entire system.

762 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

If a platform lacks memory management hardware support, :kconfig:`CONFIG_STACK_SENTINEL` is
a software-only stack overflow detection feature which periodically checks if a sentinel value at the end
of the stack buffer has been corrupted. It does not require hardware support, but provides no protection
against data corruption. Since the checks are typically done at interrupt exit, the overflow may be
detected a nontrivial amount of time after the stack actually overflowed.

Finally, Zephyr supports GCC compiler stack canaries via :kconfig:`CONFIG_STACK_CANARIES`. If
enabled, the compiler will insert a canary value randomly generated at boot into function stack frames,
checking that the canary has not been overwritten at function exit. If the check fails, the compiler invokes
__stack_chk_fail(), whose Zephyr implementation invokes a fatal stack overflow error. An error in this
case does not indicate that the entire stack buffer has overflowed, but instead that the current function
stack frame has been corrupted. See the compiler documentation for more details.

Other Exceptions Any other type of unhandled CPU exception will generate an error code of
K_ERR_CPU_EXCEPTION.

Fatal Error Handling The policy for what to do when encountering a fatal error is determined by
the implementation of the k_sys_fatal_error_handler() function. This function has a default imple-
mentation with weak linkage that calls LOG_PANIC() to dump all pending logging messages and then
unconditionally halts the system with k_fatal_halt() .

Applications are free to implement their own error handling policy by overriding the implementation of
k_sys_fatal_error_handler() . If the implementation returns, the faulting thread will be aborted and
the system will otherwise continue to function. See the documentation for this function for additional
details and constraints.

API Reference

group fatal_apis

Enums

enum k_fatal_error_reason

Values:

enumerator K_ERR_CPU_EXCEPTION

Generic CPU exception, not covered by other codes

enumerator K_ERR_SPURIOUS_IRQ

Unhandled hardware interrupt

enumerator K_ERR_STACK_CHK_FAIL

Faulting context overflowed its stack buffer

enumerator K_ERR_KERNEL_OOPS

Moderate severity software error

enumerator K_ERR_KERNEL_PANIC

High severity software error

7.13. Kernel Services 763

Zephyr Project Documentation, Release 2.7.0-rc2

Functions

FUNC_NORETURN void k_fatal_halt(unsigned int reason)

Halt the system on a fatal error.

Invokes architecture-specific code to power off or halt the system in a low power state. Lacking
that, lock interrupts and sit in an idle loop.

Parameters

• reason – Fatal exception reason code

void k_sys_fatal_error_handler(unsigned int reason, const z_arch_esf_t *esf)

Fatal error policy handler.

This function is not invoked by application code, but is declared as a weak symbol so that
applications may introduce their own policy.

The default implementation of this function halts the system unconditionally. Depending on
architecture support, this may be a simple infinite loop, power off the hardware, or exit an
emulator.

If this function returns, then the currently executing thread will be aborted.

A few notes for custom implementations:

• If the error is determined to be unrecoverable, LOG_PANIC() should be invoked to flush
any pending logging buffers.

• K_ERR_KERNEL_PANIC indicates a severe unrecoverable error in the kernel itself, and
should not be considered recoverable. There is an assertion in z_fatal_error() to enforce
this.

• Even outside of a kernel panic, unless the fault occurred in user mode, the kernel it-
self may be in an inconsistent state, with API calls to kernel objects possibly exhibiting
undefined behavior or triggering another exception.

Parameters

• reason – The reason for the fatal error

• esf – Exception context, with details and partial or full register state when the
error occurred. May in some cases be NULL.

Thread Local Storage (TLS)

Thread Local Storage (TLS) allows variables to be allocated on a per-thread basis. These variables are
stored in the thread stack which means every thread has its own copy of these variables.

Zephyr currently requires toolchain support for TLS.

Configuration To enable thread local storage in Zephyr, :kcon-
fig:`CONFIG_THREAD_LOCAL_STORAGE` needs to be enabled. Note that this option may
not be available if the architecture or the SoC does not have the hidden option :kcon-
fig:`CONFIG_ARCH_HAS_THREAD_LOCAL_STORAGE` enabled, which means the architecture
or the SoC does not have the necessary code to support thread local storage and/or the toolchain does
not support TLS.

:kconfig:`CONFIG_ERRNO_IN_TLS` can be enabled together with :kconfig:`CONFIG_ERRNO` to let
the variable errno be a thread local variable. This allows user threads to access the value of errno
without making a system call.

764 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Declaring and Using Thread Local Variables The keyword __thread can be used to declare thread
local variables.

For example, to declare a thread local variable in header files:

extern __thread int i;

And to declare the actual variable in source files:

__thread int i;

Keyword static can also be used to limit the variable within a source file:

static __thread int j;

Using the thread local variable is the same as using other variable, for example:

void testing(void) {
i = 10;

}

7.14 C standard library

• API Reference

– Error numbers

The C standard library is an integral part of any C program, and Zephyr provides two implementations
for the application to choose from.

The first one, named “minimal libc” is part of the Zephyr code base and provides the minimal subset of
the standard C library required to meet the needs of Zephyr and its subsystems and features, primarily
in the areas of string manipulation and display. It is very low footprint and is suitable for projects that do
not rely on less frequently used portions of the ISO C standard library. Its implementation can be found
in lib/libc/minimal in the main zephyr tree.

The second one is newlib, a complete C library implementation written for embedded systems. Newlib is
separate open source project and is not included in source code form with Zephyr. Instead, the Install the
Zephyr Software Development Kit (SDK) comes with a precompiled library for each supported architecture
(libc.a and libm.a). Other 3rd-party toolchains, such as GNU ARM Embedded, also bundle newlib as a
precompiled library. Newlib can be enabled by selecting the :kconfig:`CONFIG_NEWLIB_LIBC` in the
application configuration file. Part of the support for newlib is a set of hooks available under lib/libc/
newlib/libc-hooks.c which integrates the C standard library with basic kernel services.

7.14.1 API Reference

Error numbers

Error numbers are used throughout Zephyr APIs to signal error conditions as return values from func-
tions. They are typically returned as the negative value of the integer literals defined in this section, and
are defined in the errno.h header file. A subset of the error numbers are defined in the POSIX errno.h
specification, and others have been added to it from other sources.

A conscious effort is made in Zephyr to keep the values of system error numbers consistent between the
different implementations of the C standard library. The version of errno.h that is in the main zephyr
tree, errno.h, is checked against newlib’s own list to ensure that the error numbers are kept aligned.

Below is a list of the error number definitions. For the actual numeric values please refer to errno.h.

7.14. C standard library 765

https://en.wikipedia.org/wiki/C_standard_library
https://sourceware.org/newlib/
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/errno.h.html
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/errno.h.html
https://github.com/zephyrproject-rtos/zephyr/blob/main/lib/libc/minimal/include/errno.h
https://github.com/zephyrproject-rtos/zephyr/blob/main/lib/libc/minimal/include/errno.h

Zephyr Project Documentation, Release 2.7.0-rc2

group system_errno

System error numbers Error codes returned by functions. Includes a list of those defined by IEEE
Std 1003.1-2017.

Defines

errno

EPERM

Not owner

ENOENT

No such file or directory

ESRCH

No such context

EINTR

Interrupted system call

EIO

I/O error

ENXIO

No such device or address

E2BIG

Arg list too long

ENOEXEC

Exec format error

EBADF

Bad file number

ECHILD

No children

EAGAIN

No more contexts

ENOMEM

Not enough core

EACCES

Permission denied

766 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

EFAULT

Bad address

ENOTBLK

Block device required

EBUSY

Mount device busy

EEXIST

File exists

EXDEV

Cross-device link

ENODEV

No such device

ENOTDIR

Not a directory

EISDIR

Is a directory

EINVAL

Invalid argument

ENFILE

File table overflow

EMFILE

Too many open files

ENOTTY

Not a typewriter

ETXTBSY

Text file busy

EFBIG

File too large

ENOSPC

No space left on device

ESPIPE

Illegal seek

7.14. C standard library 767

Zephyr Project Documentation, Release 2.7.0-rc2

EROFS

Read-only file system

EMLINK

Too many links

EPIPE

Broken pipe

EDOM

Argument too large

ERANGE

Result too large

ENOMSG

Unexpected message type

EDEADLK

Resource deadlock avoided

ENOLCK

No locks available

ENOSTR

STREAMS device required

ENODATA

Missing expected message data

ETIME

STREAMS timeout occurred

ENOSR

Insufficient memory

EPROTO

Generic STREAMS error

EBADMSG

Invalid STREAMS message

ENOSYS

Function not implemented

ENOTEMPTY

Directory not empty

768 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

ENAMETOOLONG

File name too long

ELOOP

Too many levels of symbolic links

EOPNOTSUPP

Operation not supported on socket

EPFNOSUPPORT

Protocol family not supported

ECONNRESET

Connection reset by peer

ENOBUFS

No buffer space available

EAFNOSUPPORT

Addr family not supported

EPROTOTYPE

Protocol wrong type for socket

ENOTSOCK

Socket operation on non-socket

ENOPROTOOPT

Protocol not available

ESHUTDOWN

Can’t send after socket shutdown

ECONNREFUSED

Connection refused

EADDRINUSE

Address already in use

ECONNABORTED

Software caused connection abort

ENETUNREACH

Network is unreachable

ENETDOWN

Network is down

7.14. C standard library 769

Zephyr Project Documentation, Release 2.7.0-rc2

ETIMEDOUT

Connection timed out

EHOSTDOWN

Host is down

EHOSTUNREACH

No route to host

EINPROGRESS

Operation now in progress

EALREADY

Operation already in progress

EDESTADDRREQ

Destination address required

EMSGSIZE

Message size

EPROTONOSUPPORT

Protocol not supported

ESOCKTNOSUPPORT

Socket type not supported

EADDRNOTAVAIL

Can’t assign requested address

ENETRESET

Network dropped connection on reset

EISCONN

Socket is already connected

ENOTCONN

Socket is not connected

ETOOMANYREFS

Too many references: can’t splice

ENOTSUP

Unsupported value

EILSEQ

Illegal byte sequence

770 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

EOVERFLOW

Value overflow

ECANCELED

Operation canceled

EWOULDBLOCK

Operation would block

7.15 Logging

• Global Kconfig Options

• Usage

– Logging in a module

– Logging in a module instance

– Controlling the logging

• Logging panic

• Architecture

– Default Frontend

– Custom Frontend

– Logging strings

– Logging backends

– Dictionary-based Logging

• Limitations and recommendations

– Logging v1

– Logging v2

• Benchmark

• API Reference

– Logger API

– Logger control

– Log message

– Logger backend interface

– Logger output formatting

The logging API provides a common interface to process messages issued by developers. Messages are
passed through a frontend and are then processed by active backends. Custom frontend and backends
can be used if needed. Default configuration uses built-in frontend and UART backend.

Summary of the logging features:

• Deferred logging reduces the time needed to log a message by shifting time consuming operations
to a known context instead of processing and sending the log message when called.

• Multiple backends supported (up to 9 backends).

7.15. Logging 771

Zephyr Project Documentation, Release 2.7.0-rc2

• Custom frontend supported.

• Compile time filtering on module level.

• Run time filtering independent for each backend.

• Additional run time filtering on module instance level.

• Timestamping with user provided function.

• Dedicated API for dumping data.

• Dedicated API for handling transient strings.

• Panic support - in panic mode logging switches to blocking, synchronous processing.

• Printk support - printk message can be redirected to the logging.

• Design ready for multi-domain/multi-processor system.

Logging v2 introduces following changes:

• Option to use 64 bit timestamp

• Support for logging floating point variables

• Support for logging variables extending size of a machine word (64 bit values on 32 bit architec-
tures)

• Remove the need for special treatment of %s format specifier

• Extend API for dumping data to accept formatted string

• Improve memory utilization. More log messages fit in the logging buffer in deferred mode.

• Log message is no longer fragmented. It is self-contained block of memory which simplifies out of
domain handling (e.g. offline processing)

• Improved performance when logging from user space

• Improved performance when logging to full buffer and message are dropped.

• Slightly degrade performance in normal circumstances due to the fact that allocation from ring
buffer is more complex than from memslab.

• No change in logging API

• Logging backend API exteded with function for processing v2 messages.

Logging API is highly configurable at compile time as well as at run time. Using Kconfig options (see
Global Kconfig Options) logs can be gradually removed from compilation to reduce image size and exe-
cution time when logs are not needed. During compilation logs can be filtered out on module basis and
severity level.

Logs can also be compiled in but filtered on run time using dedicate API. Run time filtering is independent
for each backend and each source of log messages. Source of log messages can be a module or specific
instance of the module.

There are four severity levels available in the system: error, warning, info and debug. For each severity
level the logging API (include/logging/log.h) has set of dedicated macros. Logger API also has macros
for logging data.

For each level following set of macros are available:

• LOG_X for standard printf-like messages, e.g. LOG_ERR .

• LOG_HEXDUMP_X for dumping data, e.g. LOG_HEXDUMP_WRN .

• LOG_INST_X for standard printf-like message associated with the particular instance, e.g.
LOG_INST_INF .

• LOG_INST_HEXDUMP_X for dumping data associated with the particular instance, e.g.
LOG_HEXDUMP_INST_DBG

772 Chapter 7. API Reference

https://github.com/zephyrproject-rtos/zephyr/blob/main/include/logging/log.h

Zephyr Project Documentation, Release 2.7.0-rc2

There are two configuration categories: configurations per module and global configuration. When
logging is enabled globally, it works for modules. However, modules can disable logging locally. Every
module can specify its own logging level. The module must define the LOG_LEVEL macro before using the
API. Unless a global override is set, the module logging level will be honored. The global override can
only increase the logging level. It cannot be used to lower module logging levels that were previously set
higher. It is also possible to globally limit logs by providing maximal severity level present in the system,
where maximal means lowest severity (e.g. if maximal level in the system is set to info, it means that
errors, warnings and info levels are present but debug messages are excluded).

Each module which is using the logging must specify its unique name and register itself to the logging.
If module consists of more than one file, registration is performed in one file but each file must define a
module name.

Logger’s default frontend is designed to be thread safe and minimizes time needed to log the message.
Time consuming operations like string formatting or access to the transport are not performed by default
when logging API is called. When logging API is called a message is created and added to the list.
Dedicated, configurable buffer for pool of log messages is used. There are 2 types of messages: standard
and hexdump. Each message contain source ID (module or instance ID and domain ID which might be
used for multiprocessor systems), timestamp and severity level. Standard message contains pointer to
the string and arguments. Hexdump message contains copied data and string.

7.15.1 Global Kconfig Options

These options can be found in the following path subsys/logging/Kconfig.

:kconfig:`CONFIG_LOG`: Global switch, turns on/off the logging.

Mode of operations:

:kconfig:`CONFIG_LOG_MODE_DEFERRED`: Deferred mode.

:kconfig:`CONFIG_LOG2_MODE_DEFERRED`: Deferred mode v2.

:kconfig:`CONFIG_LOG_MODE_IMMEDIATE`: Immediate (synchronous) mode.

:kconfig:`CONFIG_LOG2_MODE_IMMEDIATE`: Immediate (synchronous) mode v2.

:kconfig:`CONFIG_LOG_MODE_MINIMAL`: Minimal footprint mode.

Filtering options:

:kconfig:`CONFIG_LOG_RUNTIME_FILTERING`: Enables runtime reconfiguration of the filtering.

:kconfig:`CONFIG_LOG_DEFAULT_LEVEL`: Default level, sets the logging level used by modules that
are not setting their own logging level.

:kconfig:`CONFIG_LOG_OVERRIDE_LEVEL`: It overrides module logging level when it is not set or set
lower than the override value.

:kconfig:`CONFIG_LOG_MAX_LEVEL`: Maximal (lowest severity) level which is compiled in.

Processing options:

:kconfig:`CONFIG_LOG_MODE_OVERFLOW`: When new message cannot be allocated, oldest one are
discarded.

:kconfig:`CONFIG_LOG_BLOCK_IN_THREAD`: If enabled and new log message cannot be allocated
thread context will block for up to :kconfig:`CONFIG_LOG_BLOCK_IN_THREAD_TIMEOUT_MS` or
until log message is allocated.

:kconfig:`CONFIG_LOG_PRINTK`: Redirect printk calls to the logging.

:kconfig:`CONFIG_LOG_PRINTK_MAX_STRING_LENGTH`: Maximal string length that can be pro-
cessed by printk. Longer strings are trimmed.

7.15. Logging 773

https://github.com/zephyrproject-rtos/zephyr/blob/main/subsys/logging/Kconfig

Zephyr Project Documentation, Release 2.7.0-rc2

:kconfig:`CONFIG_LOG_PROCESS_TRIGGER_THRESHOLD`: When number of buffered log mes-
sages reaches the threshold dedicated thread (see log_thread_set()) is waken up. If :kcon-
fig:`CONFIG_LOG_PROCESS_THREAD` is enabled then this threshold is used by the internal thread.

:kconfig:`CONFIG_LOG_PROCESS_THREAD`: When enabled, logging thread is created which handles
log processing.

:kconfig:`CONFIG_LOG_PROCESS_THREAD_STARTUP_DELAY_MS`: Delay in milliseconds after
which logging thread is started.

:kconfig:`CONFIG_LOG_BUFFER_SIZE`: Number of bytes dedicated for the message pool. Single mes-
sage capable of storing standard log with up to 3 arguments or hexdump message with 12 bytes of data
take 32 bytes. In v2 it indicates buffer size dedicated for circular packet buffer.

:kconfig:`CONFIG_LOG_DETECT_MISSED_STRDUP`: Enable detection of missed transient strings
handling.

:kconfig:`CONFIG_LOG_STRDUP_MAX_STRING`: Longest string that can be duplicated using
log_strdup().

:kconfig:`CONFIG_LOG_STRDUP_BUF_COUNT`: Number of buffers in the pool used by log_strdup().

:kconfig:`CONFIG_LOG_DOMAIN_ID`: Domain ID. Valid in multi-domain systems.

:kconfig:`CONFIG_LOG_FRONTEND`: Redirect logs to a custom frontend.

:kconfig:`CONFIG_LOG_TIMESTAMP_64BIT`: 64 bit timestamp.

Formatting options:

:kconfig:`CONFIG_LOG_FUNC_NAME_PREFIX_ERR`: Prepend standard ERROR log messages with
function name. Hexdump messages are not prepended.

:kconfig:`CONFIG_LOG_FUNC_NAME_PREFIX_WRN`: Prepend standard WARNING log messages
with function name. Hexdump messages are not prepended.

:kconfig:`CONFIG_LOG_FUNC_NAME_PREFIX_INF`: Prepend standard INFO log messages with func-
tion name. Hexdump messages are not prepended.

:kconfig:`CONFIG_LOG_FUNC_NAME_PREFIX_DBG`: Prepend standard DEBUG log messages with
function name. Hexdump messages are not prepended.

:kconfig:`CONFIG_LOG_BACKEND_SHOW_COLOR`: Enables coloring of errors (red) and warnings
(yellow).

:kconfig:`CONFIG_LOG_BACKEND_FORMAT_TIMESTAMP`: If enabled timestamp is formatted to
hh:mm:ss:mmm,uuu. Otherwise is printed in raw format.

Backend options:

:kconfig:`CONFIG_LOG_BACKEND_UART`: Enabled build-in UART backend.

7.15.2 Usage

Logging in a module

In order to use logging in the module, a unique name of a module must be specified and module must
be registered using LOG_MODULE_REGISTER . Optionally, a compile time log level for the module can be
specified as the second parameter. Default log level (:kconfig:`CONFIG_LOG_DEFAULT_LEVEL`) is
used if custom log level is not provided.

include <logging/log.h>
LOG_MODULE_REGISTER(foo, CONFIG_FOO_LOG_LEVEL);

774 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

If the module consists of multiple files, then LOG_MODULE_REGISTER() should appear in exactly one
of them. Each other file should use LOG_MODULE_DECLARE to declare its membership in the module.
Optionally, a compile time log level for the module can be specified as the second parameter. Default log
level (:kconfig:`CONFIG_LOG_DEFAULT_LEVEL`) is used if custom log level is not provided.

include <logging/log.h>
/* In all files comprising the module but one */
LOG_MODULE_DECLARE(foo, CONFIG_FOO_LOG_LEVEL);

In order to use logging API in a function implemented in a header file LOG_MODULE_DECLARE
macro must be used in the function body before logging API is called. Optionally, a compile
time log level for the module can be specified as the second parameter. Default log level (:kcon-
fig:`CONFIG_LOG_DEFAULT_LEVEL`) is used if custom log level is not provided.

include <logging/log.h>

static inline void foo(void)
{

LOG_MODULE_DECLARE(foo, CONFIG_FOO_LOG_LEVEL);

LOG_INF("foo");
}

Dedicated Kconfig template (subsys/logging/Kconfig.template.log_config) can be used to create local log
level configuration.

Example below presents usage of the template. As a result CONFIG_FOO_LOG_LEVEL will be generated:

module = FOO
module-str = foo
source "subsys/logging/Kconfig.template.log_config"

Logging in a module instance

In case of modules which are multi-instance and instances are widely used across the system enabling
logs will lead to flooding. Logger provide the tools which can be used to provide filtering on instance
level rather than module level. In that case logging can be enabled for particular instance.

In order to use instance level filtering following steps must be performed:

• a pointer to specific logging structure is declared in instance structure.
LOG_INSTANCE_PTR_DECLARE is used for that.

include <logging/log_instance.h>

struct foo_object {
LOG_INSTANCE_PTR_DECLARE(log);
uint32_t id;

}

• module must provide macro for instantiation. In that macro, logging instance is registered and log
instance pointer is initialized in the object structure.

define FOO_OBJECT_DEFINE(_name) \
LOG_INSTANCE_REGISTER(foo, _name, CONFIG_FOO_LOG_LEVEL) \
struct foo_object _name = { \

LOG_INSTANCE_PTR_INIT(log, foo, _name) \
}

7.15. Logging 775

https://github.com/zephyrproject-rtos/zephyr/blob/main/subsys/logging/Kconfig.template.log_config

Zephyr Project Documentation, Release 2.7.0-rc2

Note that when logging is disabled logging instance and pointer to that instance are not created.

In order to use the instance logging API in a source file, a compile-time log level must be set using
LOG_LEVEL_SET .

LOG_LEVEL_SET(CONFIG_FOO_LOG_LEVEL);

void foo_init(foo_object *f)
{

LOG_INST_INF(f->log, "Initialized.");
}

In order to use the instance logging API in a header file, a compile-time log level must be set using
LOG_LEVEL_SET .

static inline void foo_init(foo_object *f)
{

LOG_LEVEL_SET(CONFIG_FOO_LOG_LEVEL);

LOG_INST_INF(f->log, "Initialized.");
}

Controlling the logging

Logging can be controlled using API defined in include/logging/log_ctrl.h. Logger must be initialized
before it can be used. Optionally, user can provide function which returns timestamp value. If not pro-
vided, k_cycle_get_32 is used for timestamping. log_process() function is used to trigger processing
of one log message (if pending). Function returns true if there is more messages pending.

Following snippet shows how logging can be processed in simple forever loop.

include <log_ctrl.h>

void main(void)
{

log_init();

while (1) {
if (log_process() == false) {

/* sleep */
}

}
}

If logs are processed from a thread then it is possible to enable a feature which will
wake up processing thread when certain amount of log messages are buffered (see :kcon-
fig:`CONFIG_LOG_PROCESS_TRIGGER_THRESHOLD`). It is also possible to enable internal logging
thread (see :kconfig:`CONFIG_LOG_PROCESS_THREAD`). In that case, logging thread is initialized
and log messages are processed implicitly.

7.15.3 Logging panic

In case of error condition system usually can no longer rely on scheduler or interrupts. In that situation
deferred log message processing is not an option. Logger controlling API provides a function for entering
into panic mode (log_panic()) which should be called in such situation.

When log_panic() is called, _panic_ notification is sent to all active backends. Once all backends are
notified, all buffered messages are flushed. Since that moment all logs are processed in a blocking way.

776 Chapter 7. API Reference

https://github.com/zephyrproject-rtos/zephyr/blob/main/include/logging/log_ctrl.h

Zephyr Project Documentation, Release 2.7.0-rc2

7.15.4 Architecture

Logging consists of 3 main parts:

• Frontend

• Core

• Backends

Log message is generated by a source of logging which can be a module or instance of a module.

Default Frontend

Default frontend is engaged when logging API is called in a source of logging (e.g. LOG_INF) and is
responsible for filtering a message (compile and run time), allocating buffer for the message, creating
the message and committing that message. Since logging API can be called in an interrupt, frontend is
optimized to log the message as fast as possible.

Log message v1 Each log message consists of one or more fixed size chunks allocated from the pool
of fixed size buffers (Memory Slabs). Message head chunk contains log entry details like: source ID,
timestamp, severity level and the data (string pointer and arguments or raw data). Message contains
also a reference counter which indicates how many users still uses this message. It is used to return
message to the pool once last user indicates that it can be freed. If more than 3 arguments or 12 bytes of
raw data is used in the log then log message is formed from multiple chunks which are linked together.
When message body is filled it is put into the list. When log processing is triggered, a message is removed
from the list of pending messages. If runtime filtering is disabled, the message is passed to all active
backends, otherwise the message is passed to only those backends that have requested messages from
that particular source (based on the source ID in the message), and severity level. Once all backends are
iterated, the message is considered processed, but the message may still be in use by a backend. Because
message is allocated from a pool, it is not mandatory to sequentially free messages. Processing by the
backends is asynchronous and memory is freed when last user indicates that message can be freed. It
also means that improper backend implementation may lead to pool drought.

Log message v2 Log message v2 contains message descriptor (source, domain and level), timestamp,
formatted string details (see Cbprintf Packaging) and optional data. Log messages v2 are stored in a
continuous block of memory (contrary to v1). Memory is allocated from a circular packet buffer (Multi
Producer Single Consumer Packet Buffer). It has few consequences:

• Each message is self-contained, continuous block of memory thus it is suited for copying the mes-
sage (e.g. for offline processing).

• Memory is better utilized because fixed size chunks are not used.

• Messages must be sequentially freed. Backend processing is synchronous. Backend can make a
copy for deferred processing.

Log message has following format:

7.15. Logging 777

Zephyr Project Documentation, Release 2.7.0-rc2

Message Header 2 bits: MPSC packet buffer header
1 bit: Trace/Log message flag
3 bits: Domain ID
3 bits: Level
10 bits: Cbprintf Package Length
12 bits: Data length
1 bit: Reserved
pointer: Pointer to the source descriptor1

32 or 64 bits: TimestampPage 778, 1

Optional padding2

Cbprintf

package
(optional)

Header

Arguments

Appended strings

Hexdump data (optional)
Alignment padding (optional)

Log message allocation It may happen that frontend cannot allocate a message. It happens if system
is generating more log messages than it can process in certain time frame. There are two strategies to
handle that case:

• No overflow - new log is dropped if space for a message cannot be allocated.

• Overflow - oldest pending messages are freed, until new message can be allocated. Enabled by
:kconfig:`CONFIG_LOG_MODE_OVERFLOW`. Note that it degrades performance thus it is rec-
ommended to adjust buffer size and amount of enabled logs to limit dropping.

Run-time filtering If run-time filtering is enabled, then for each source of logging a filter structure in
RAM is declared. Such filter is using 32 bits divided into ten 3 bit slots. Except slot 0, each slot stores
current filter for one backend in the system. Slot 0 (bits 0-2) is used to aggregate maximal filter setting
for given source of logging. Aggregate slot determines if log message is created for given entry since
it indicates if there is at least one backend expecting that log entry. Backend slots are examined when
message is processed by the core to determine if message is accepted by the given backend. Contrary to
compile time filtering, binary footprint is increased because logs are compiled in.

In the example below backend 1 is set to receive errors (slot 1) and backend 2 up to info level (slot 2).
Slots 3-9 are not used. Aggregated filter (slot 0) is set to info level and up to this level message from that
particular source will be buffered.

slot 0 slot 1 slot 2 slot 3 . . . slot 9
INF ERR INF OFF . . . OFF

Custom Frontend

Custom frontend is enabled using :kconfig:`CONFIG_LOG_FRONTEND`. Logs are redirected to func-
tions declared in include/logging/log_frontend.h. This may be required in very time-sensitive cases, but
most of the logging features cannot be used then, which includes default frontend, core and all backends
features.

1 Depending on the platform and the timestamp size fields may be swapped.
2 It may be required for cbprintf package alignment

778 Chapter 7. API Reference

https://github.com/zephyrproject-rtos/zephyr/blob/main/include/logging/log_frontend.h

Zephyr Project Documentation, Release 2.7.0-rc2

Logging strings

Logging v1 Since log message contains only the value of the argument, when %s is used only the
address of a string is stored. Because a string variable argument could be transient, allocated on the
stack, or modifiable, logger provides a mechanism and a dedicated buffer pool to hold copies of strings.
The buffer size and count is configurable (see :kconfig:`CONFIG_LOG_STRDUP_MAX_STRING` and
:kconfig:`CONFIG_LOG_STRDUP_BUF_COUNT`).

If a string argument is transient, the user must call log_strdup() to duplicate the passed string into a
buffer from the pool. See the examples below. If a strdup buffer cannot be allocated, a warning mes-
sage is logged and an error code returned indicating :kconfig:`CONFIG_LOG_STRDUP_BUF_COUNT`
should be increased. Buffers are freed together with the log message.

char local_str[] = "abc";

LOG_INF("logging transient string: %s", log_strdup(local_str));
local_str[0] = '\0'; /* String can be modified, logger will use duplicate."

When :kconfig:`CONFIG_LOG_DETECT_MISSED_STRDUP` is enabled logger will scan each log mes-
sage and report if string format specifier is found and string address is not in read only memory section or
does not belong to memory pool dedicated to string duplicates. It indictes that log_strdup() is missing
in a call to log a message, such as LOG_INF.

Logging v2 String arguments are handled by Cbprintf Packaging thus no special action is required.

Logging backends

Logging backends are registered using LOG_BACKEND_DEFINE . The macro creates an instance in the ded-
icated memory section. Backends can be dynamically enabled (log_backend_enable()) and disabled.
When Run-time filtering is enabled, log_filter_set() can be used to dynamically change filtering of
a module logs for given backend. Module is identified by source ID and domain ID. Source ID can be
retrieved if source name is known by iterating through all registered sources.

Logging supports up to 9 concurrent backends. Log message is passed to the each backend in processing
phase. Additionally, backend is notfied when logging enter panic mode with log_backend_panic() .
On that call backend should switch to synchronous, interrupt-less operation or shut down itself if that
is not supported. Occasionally, logging may inform backend about number of dropped messages with
log_backend_dropped() . Message processing API is version specific.

Logging v1 Logging backend interface contains following functions for processing:

• log_backend_put() - backend gets log message in deferred mode.

• log_backend_put_sync_string() - backend gets log message with formatted string message in
the immediate mode.

• log_backend_put_sync_hexdump() - backend gets log message with hexdump message in the
immediate mode.

The log message contains a reference counter tracking how many backends are processing the message.
On receiving a message backend must claim it by calling log_msg_get() on that message which incre-
ments a reference counter. Once message is processed, backend puts back the message (log_msg_put())
decrementing a reference counter. On last log_msg_put() , when reference counter reaches 0, message
is returned to the pool. It is up to the backend how message is processed.

Note: The message pool can be starved if a backend does not call log_msg_put() when it is done
processing a message. The logging core has no means to force messages back to the pool if they’re still

7.15. Logging 779

Zephyr Project Documentation, Release 2.7.0-rc2

marked as in use (with a non-zero reference counter).

include <log_backend.h>

void put(const struct log_backend *const backend,
struct log_msg *msg)

{
log_msg_get(msg);

/* message processing */

log_msg_put(msg);
}

Logging v2 log_backend_msg2_process() is used for processing message. It is common for standard
and hexdump messages because log message v2 hold string with arguments and data. It is also common
for deferred and immediate logging.

Message formatting Logging provides set of function that can be used by the backend to format a
message. Helper functions are available in include/logging/log_output.h.

Example message formatted using log_output_msg_process() or log_output_msg2_process() .

[00:00:00.000,274] <info> sample_instance.inst1: logging message

Dictionary-based Logging

Dictionary-based logging, instead of human readable texts, outputs the log messages in binary format.
This binary format encodes arguments to formatted strings in their native storage formats which can be
more compact than their text equivalents. For statically defined strings (including the format strings and
any string arguments), references to the ELF file are encoded instead of the whole strings. A dictionary
created at build time contains the mappings between these references and the actual strings. This allows
the offline parser to obtain the strings from the dictionary to parse the log messages. This binary format
allows a more compact representation of log messages in certain scenarios. However, this requires the
use of an offline parser and is not as intuitive to use as text-based log messages.

Note that long double is not supported by Python’s struct module. Therefore, log messages with long
double will not display the correct values.

Configuration Here are kconfig options related to dictionary-based logging:

• :kconfig:`CONFIG_LOG_DICTIONARY_SUPPORT` enables dictionary-based logging support.
This should be selected by the backends which require it.

• The UART backend can be used for dictionary-based logging. These are additional config for the
UART backend:

– :kconfig:`CONFIG_LOG_BACKEND_UART_OUTPUT_DICTIONARY_HEX` tells the UART
backend to output hexadecimal characters for dictionary based logging. This is useful when
the log data needs to be captured manually via terminals and consoles.

– :kconfig:`CONFIG_LOG_BACKEND_UART_OUTPUT_DICTIONARY_BIN` tells the UART
backend to output binary data.

780 Chapter 7. API Reference

https://github.com/zephyrproject-rtos/zephyr/blob/main/include/logging/log_output.h

Zephyr Project Documentation, Release 2.7.0-rc2

Usage When dictionary-based logging is enabled via enabling related logging backends, a JSON
database file, named log_dictionary.json, will be created in the build directory. This database file
contains information for the parser to correctly parse the log data. Note that this database file only
works with the same build, and cannot be used for any other builds.

To use the log parser:

./scripts/logging/dictionary/log_parser.py <build dir>/log_dictionary.json <log data␣
→˓file>

The parser takes two required arguments, where the first one is the full path to the JSON
database file, and the second part is the file containing log data. Add an optional ar-
gument --hex to the end if the log data file contains hexadecimal characters (e.g. when
CONFIG_LOG_BACKEND_UART_OUTPUT_DICTIONARY_HEX=y). This tells the parser to convert the hexadeci-
mal characters to binary before parsing.

Please refer to logging_dictionary_sample on how to use the log parser.

7.15.5 Limitations and recommendations

Logging v1

The are following limitations:

• Strings as arguments (%s) require special treatment (see Logging strings).

• Logging double and float variables is not possible because arguments are word size.

• Variables larger than word size cannot be logged.

• Number of arguments in the string is limited to 15.

Logging v2

Solves major limitations of v1. However, in order to get most of the logging capabilities following
recommendations shall be followed:

• Enable :kconfig:`CONFIG_LOG_SPEED` to slightly speed up deferred logging at the cost of slight
increase in memory footprint.

• Compiler with C11 _Generic keyword support is recommended. Logging performance is signifi-
cantly degraded without it. See Cbprintf Packaging.

• When _Generic is supported, during compilation it is determined which packaging method shall
be used: static or runtime. It is done by searching for any string pointers in the argument list. If
string pointer is used with format specifier other than string, e.g. %p, it is recommended to cast it
to void *.

LOG_WRN("%s", str);
LOG_WRN("%p", (void *)str);

7.15.6 Benchmark

Benchmark numbers from tests/subsys/logging/log_benchmark performed on qemu_x86. It is a rough
comparison to give general overview. Overall, logging v2 improves in most a the areas with the biggest
improvement in logging from userspace. It is at the cost of larger memory footprint for a log message.

7.15. Logging 781

https://github.com/zephyrproject-rtos/zephyr/blob/main/tests/subsys/logging/log_benchmark

Zephyr Project Documentation, Release 2.7.0-rc2

Feature v1 v2 Summary
Kernel logging 7us 7us3/11us No significant change
User logging 86us 13us Strongly improved
kernel logging with overwrite 23us 10usPage 782, 3/15usImproved
Logging transient string 16us 42us Degraded
Logging transient string from user 111us 50us Improved
Memory utilization4 416 518 Slightly improved
Memory footprint (test)5 3.2k 2k Improved
Memory footprint (application)6 6.2k 3.5k Improved
Message footprint7 15 bytes 47Page 782, 3/32

bytes
Degraded

Benchmark details

7.15.7 API Reference

Logger API

group log_api

Logger API.

Defines

LOG_ERR(...)

Writes an ERROR level message to the log.

It’s meant to report severe errors, such as those from which it’s not possible to recover.

Parameters

• ... – A string optionally containing printk valid conversion specifier, followed
by as many values as specifiers.

LOG_WRN(...)

Writes a WARNING level message to the log.

It’s meant to register messages related to unusual situations that are not necessarily errors.

Parameters

• ... – A string optionally containing printk valid conversion specifier, followed
by as many values as specifiers.

LOG_INF(...)

Writes an INFO level message to the log.

It’s meant to write generic user oriented messages.

Parameters

• ... – A string optionally containing printk valid conversion specifier, followed
by as many values as specifiers.

3 :kconfig:`CONFIG_LOG_SPEED` enabled.
4 Number of log messages with various number of arguments that fits in 2048 bytes dedicated for logging.
5 Logging subsystem memory footprint in tests/subsys/logging/log_benchmark where filtering and formatting features are not

used.
6 Logging subsystem memory footprint in samples/subsys/logging/logger.
7 Avarage size of a log message (excluding string) with 2 arguments on Cortex M3

782 Chapter 7. API Reference

https://github.com/zephyrproject-rtos/zephyr/blob/main/tests/subsys/logging/log_benchmark
https://github.com/zephyrproject-rtos/zephyr/blob/main/samples/subsys/logging/logger

Zephyr Project Documentation, Release 2.7.0-rc2

LOG_DBG(...)

Writes a DEBUG level message to the log.

It’s meant to write developer oriented information.

Parameters

• ... – A string optionally containing printk valid conversion specifier, followed
by as many values as specifiers.

LOG_PRINTK(...)

Unconditionally print raw log message.

The result is same as if printk was used but it goes through logging infrastructure thus utilizes
logging mode, e.g. deferred mode.

Parameters

• ... – A string optionally containing printk valid conversion specifier, followed
by as many values as specifiers.

LOG_INST_ERR(_log_inst, ...)

Writes an ERROR level message associated with the instance to the log.

Message is associated with specific instance of the module which has indepen-
dent filtering settings (if runtime filtering is enabled) and message prefix (<mod-
ule_name>.<instance_name>). It’s meant to report severe errors, such as those from which
it’s not possible to recover.

Parameters

• _log_inst – Pointer to the log structure associated with the instance.

• ... – A string optionally containing printk valid conversion specifier, followed
by as many values as specifiers.

LOG_INST_WRN(_log_inst, ...)

Writes a WARNING level message associated with the instance to the log.

Message is associated with specific instance of the module which has indepen-
dent filtering settings (if runtime filtering is enabled) and message prefix (<mod-
ule_name>.<instance_name>). It’s meant to register messages related to unusual situations
that are not necessarily errors.

Parameters

• _log_inst – Pointer to the log structure associated with the instance.

• ... – A string optionally containing printk valid conversion specifier, followed
by as many values as specifiers.

LOG_INST_INF(_log_inst, ...)

Writes an INFO level message associated with the instance to the log.

Message is associated with specific instance of the module which has indepen-
dent filtering settings (if runtime filtering is enabled) and message prefix (<mod-
ule_name>.<instance_name>). It’s meant to write generic user oriented messages.

Parameters

• _log_inst – Pointer to the log structure associated with the instance.

• ... – A string optionally containing printk valid conversion specifier, followed
by as many values as specifiers.

7.15. Logging 783

Zephyr Project Documentation, Release 2.7.0-rc2

LOG_INST_DBG(_log_inst, ...)

Writes a DEBUG level message associated with the instance to the log.

Message is associated with specific instance of the module which has indepen-
dent filtering settings (if runtime filtering is enabled) and message prefix (<mod-
ule_name>.<instance_name>). It’s meant to write developer oriented information.

Parameters

• _log_inst – Pointer to the log structure associated with the instance.

• ... – A string optionally containing printk valid conversion specifier, followed
by as many values as specifiers.

LOG_HEXDUMP_ERR(_data, _length, _str)

Writes an ERROR level hexdump message to the log.

It’s meant to report severe errors, such as those from which it’s not possible to recover.

Parameters

• _data – Pointer to the data to be logged.

• _length – Length of data (in bytes).

• _str – Persistent, raw string.

LOG_HEXDUMP_WRN(_data, _length, _str)

Writes a WARNING level message to the log.

It’s meant to register messages related to unusual situations that are not necessarily errors.

Parameters

• _data – Pointer to the data to be logged.

• _length – Length of data (in bytes).

• _str – Persistent, raw string.

LOG_HEXDUMP_INF(_data, _length, _str)

Writes an INFO level message to the log.

It’s meant to write generic user oriented messages.

Parameters

• _data – Pointer to the data to be logged.

• _length – Length of data (in bytes).

• _str – Persistent, raw string.

LOG_HEXDUMP_DBG(_data, _length, _str)

Writes a DEBUG level message to the log.

It’s meant to write developer oriented information.

Parameters

• _data – Pointer to the data to be logged.

• _length – Length of data (in bytes).

• _str – Persistent, raw string.

784 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

LOG_INST_HEXDUMP_ERR(_log_inst, _data, _length, _str)

Writes an ERROR hexdump message associated with the instance to the log.

Message is associated with specific instance of the module which has indepen-
dent filtering settings (if runtime filtering is enabled) and message prefix (<mod-
ule_name>.<instance_name>). It’s meant to report severe errors, such as those from which
it’s not possible to recover.

Parameters

• _log_inst – Pointer to the log structure associated with the instance.

• _data – Pointer to the data to be logged.

• _length – Length of data (in bytes).

• _str – Persistent, raw string.

LOG_INST_HEXDUMP_WRN(_log_inst, _data, _length, _str)

Writes a WARNING level hexdump message associated with the instance to the log.

It’s meant to register messages related to unusual situations that are not necessarily errors.

Parameters

• _log_inst – Pointer to the log structure associated with the instance.

• _data – Pointer to the data to be logged.

• _length – Length of data (in bytes).

• _str – Persistent, raw string.

LOG_INST_HEXDUMP_INF(_log_inst, _data, _length, _str)

Writes an INFO level hexdump message associated with the instance to the log.

It’s meant to write generic user oriented messages.

Parameters

• _log_inst – Pointer to the log structure associated with the instance.

• _data – Pointer to the data to be logged.

• _length – Length of data (in bytes).

• _str – Persistent, raw string.

LOG_INST_HEXDUMP_DBG(_log_inst, _data, _length, _str)

Writes a DEBUG level hexdump message associated with the instance to the log.

It’s meant to write developer oriented information.

Parameters

• _log_inst – Pointer to the log structure associated with the instance.

• _data – Pointer to the data to be logged.

• _length – Length of data (in bytes).

• _str – Persistent, raw string.

LOG_MODULE_REGISTER(...)

Create module-specific state and register the module with Logger.

This macro normally must be used after including <logging/log.h> to complete the initial-
ization of the module.

Module registration can be skipped in two cases:

7.15. Logging 785

Zephyr Project Documentation, Release 2.7.0-rc2

• The module consists of more than one file, and another file invokes this macro.
(LOG_MODULE_DECLARE() should be used instead in all of the module’s other files.)

• Instance logging is used and there is no need to create module entry. In that case
LOG_LEVEL_SET() should be used to set log level used within the file.

Macro accepts one or two parameters:

• module name

• optional log level. If not provided then default log level is used in the file.

Example usage:

• LOG_MODULE_REGISTER(foo, CONFIG_FOO_LOG_LEVEL)

• LOG_MODULE_REGISTER(foo)

See also:

LOG_MODULE_DECLARE

Note: The module’s state is defined, and the module is registered, only if LOG_LEVEL for
the current source file is non-zero or it is not defined and CONFIG_LOG_DEFAULT_LEVEL is
non-zero. In other cases, this macro has no effect.

LOG_MODULE_DECLARE(...)

Macro for declaring a log module (not registering it).

Modules which are split up over multiple files must have exactly one file use
LOG_MODULE_REGISTER() to create module-specific state and register the module with the
logger core.

The other files in the module should use this macro instead to declare that same state. (Oth-
erwise, LOG_INF() etc. will not be able to refer to module-specific state variables.)

Macro accepts one or two parameters:

• module name

• optional log level. If not provided then default log level is used in the file.

Example usage:

• LOG_MODULE_DECLARE(foo, CONFIG_FOO_LOG_LEVEL)

• LOG_MODULE_DECLARE(foo)

See also:

LOG_MODULE_REGISTER

Note: The module’s state is declared only if LOG_LEVEL for the current source file is non-
zero or it is not defined and CONFIG_LOG_DEFAULT_LEVEL is non-zero. In other cases, this
macro has no effect.

LOG_LEVEL_SET(level)

Macro for setting log level in the file or function where instance logging API is used.

Parameters

• level – Level used in file or in function.

786 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Functions

static inline void log_printk(const char *fmt, va_list ap)

static inline char *log_strdup(const char *str)

Logger control

group log_ctrl

Logger control API.

Defines

LOG_CORE_INIT()

LOG_INIT()

LOG_PANIC()

LOG_PROCESS()

Typedefs

typedef log_timestamp_t (*log_timestamp_get_t)(void)

Functions

void log_core_init(void)
Function system initialization of the logger.

Function is called during start up to allow logging before user can explicitly initialize the
logger.

void log_init(void)
Function for user initialization of the logger.

void log_thread_set(k_tid_t process_tid)
Function for providing thread which is processing logs.

See CONFIG_LOG_PROCESS_TRIGGER_THRESHOLD.

Note: Function has asserts and has no effect when CONFIG_LOG_PROCESS_THREAD is set.

Parameters

• process_tid – Process thread id. Used to wake up the thread.

int log_set_timestamp_func(log_timestamp_get_t timestamp_getter, uint32_t freq)
Function for providing timestamp function.

Parameters

• timestamp_getter – Timestamp function.

• freq – Timestamping frequency.

7.15. Logging 787

Zephyr Project Documentation, Release 2.7.0-rc2

Returns 0 on success or error.

void log_panic(void)

Switch the logger subsystem to the panic mode.

Returns immediately if the logger is already in the panic mode.

On panic the logger subsystem informs all backends about panic mode. Backends must switch
to blocking mode or halt. All pending logs are flushed after switching to panic mode. In panic
mode, all log messages must be processed in the context of the call.

bool log_process(bool bypass)

Process one pending log message.

Parameters

• bypass – If true message is released without being processed.

Return values

• true – There is more messages pending to be processed.

• false – No messages pending.

uint32_t log_buffered_cnt(void)

Return number of buffered log messages.

Returns Number of currently buffered log messages.

uint32_t log_src_cnt_get(uint32_t domain_id)

Get number of independent logger sources (modules and instances)

Parameters

• domain_id – Domain ID.

Returns Number of sources.

const char *log_source_name_get(uint32_t domain_id, uint32_t source_id)

Get name of the source (module or instance).

Parameters

• domain_id – Domain ID.

• source_id – Source ID.

Returns Source name or NULL if invalid arguments.

const char *log_domain_name_get(uint32_t domain_id)

Get name of the domain.

Parameters

• domain_id – Domain ID.

Returns Domain name.

uint32_t log_filter_get(struct log_backend const *const backend, uint32_t domain_id, int16_t
source_id, bool runtime)

Get source filter for the provided backend.

Parameters

• backend – Backend instance.

• domain_id – ID of the domain.

• source_id – Source (module or instance) ID.

• runtime – True for runtime filter or false for compiled in.

788 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Returns Severity level.

uint32_t log_filter_set(struct log_backend const *const backend, uint32_t domain_id, int16_t
source_id, uint32_t level)

Set filter on given source for the provided backend.

Parameters

• backend – Backend instance. NULL for all backends.

• domain_id – ID of the domain.

• source_id – Source (module or instance) ID.

• level – Severity level.

Returns Actual level set which may be limited by compiled level. If filter was set for
all backends then maximal level that was set is returned.

void log_backend_enable(struct log_backend const *const backend, void *ctx, uint32_t level)

Enable backend with initial maximum filtering level.

Parameters

• backend – Backend instance.

• ctx – User context.

• level – Severity level.

void log_backend_disable(struct log_backend const *const backend)

Disable backend.

Parameters

• backend – Backend instance.

Log message

group log_msg

Log message API.

Defines

LOG_MAX_NARGS

Maximum number of arguments in the standard log entry.

It is limited by 4 bit nargs field in the log message.

LOG_MSG_NARGS_SINGLE_CHUNK

Number of arguments in the log entry which fits in one chunk.

LOG_MSG_NARGS_HEAD_CHUNK

Number of arguments in the head of extended standard log message..

LOG_MSG_HEXDUMP_BYTES_SINGLE_CHUNK

Maximal amount of bytes in the hexdump entry which fits in one chunk.

7.15. Logging 789

Zephyr Project Documentation, Release 2.7.0-rc2

LOG_MSG_HEXDUMP_BYTES_HEAD_CHUNK

Number of bytes in the first chunk of hexdump message if message consists of more than one
chunk.

HEXDUMP_BYTES_CONT_MSG

Number of bytes that can be stored in chunks following head chunk in hexdump log message.

ARGS_CONT_MSG

LOG_MSG_TYPE_STD

Flag indicating standard log message.

LOG_MSG_TYPE_HEXDUMP

Flag indicating hexdump log message.

COMMON_PARAM_HDR()
Common part of log message header.

LOG_MSG_HEXDUMP_LENGTH_BITS

Number of bits used for storing length of hexdump log message.

LOG_MSG_HEXDUMP_MAX_LENGTH

Maximum length of log hexdump message.

Typedefs

typedef unsigned long log_arg_t

Log argument type.

Should preferably be equivalent to a native word size.

Functions

void log_msg_pool_init(void)
Function for initialization of the log message pool.

void log_msg_get(struct log_msg *msg)
Function for indicating that message is in use.

Message can be used (read) by multiple users. Internal reference counter is atomically in-
creased. See log_msg_put.

Parameters

• msg – Message.

void log_msg_put(struct log_msg *msg)
Function for indicating that message is no longer in use.

Internal reference counter is atomically decreased. If reference counter equals 0 message is
freed.

Parameters

• msg – Message.

790 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline uint32_t log_msg_domain_id_get(struct log_msg *msg)

Get domain ID of the message.

Parameters

• msg – Message

Returns Domain ID.

static inline uint32_t log_msg_source_id_get(struct log_msg *msg)

Get source ID (module or instance) of the message.

Parameters

• msg – Message

Returns Source ID.

static inline uint32_t log_msg_level_get(struct log_msg *msg)

Get severity level of the message.

Parameters

• msg – Message

Returns Severity message.

static inline uint32_t log_msg_timestamp_get(struct log_msg *msg)

Get timestamp of the message.

Parameters

• msg – Message

Returns Timestamp value.

static inline bool log_msg_is_std(struct log_msg *msg)

Check if message is of standard type.

Parameters

• msg – Message

Return values

• true – Standard message.

• false – Hexdump message.

uint32_t log_msg_nargs_get(struct log_msg *msg)

Returns number of arguments in standard log message.

Parameters

• msg – Standard log message.

Returns Number of arguments.

log_arg_t log_msg_arg_get(struct log_msg *msg, uint32_t arg_idx)

Gets argument from standard log message.

Parameters

• msg – Standard log message.

• arg_idx – Argument index.

Returns Argument value or 0 if arg_idx exceeds number of arguments in the mes-
sage.

7.15. Logging 791

Zephyr Project Documentation, Release 2.7.0-rc2

const char *log_msg_str_get(struct log_msg *msg)

Gets pointer to the unformatted string from standard log message.

Parameters

• msg – Standard log message.

Returns Pointer to the string.

struct log_msg *log_msg_hexdump_create(const char *str, const uint8_t *data, uint32_t length)

Allocates chunks for hexdump message and copies the data.

Function resets header and sets following fields:

• message type

• length

Note: Allocation and partial filling is combined for performance reasons.

Parameters

• str – String.

• data – Data.

• length – Data length.

Returns Pointer to allocated head of the message or NULL

void log_msg_hexdump_data_put(struct log_msg *msg, uint8_t *data, size_t *length, size_t
offset)

Put data into hexdump log message.

Parameters

• msg – [in] Message.

• data – [in] Data to be copied.

• length – [inout] Input: requested amount. Output: actual amount.

• offset – [in] Offset.

void log_msg_hexdump_data_get(struct log_msg *msg, uint8_t *data, size_t *length, size_t
offset)

Get data from hexdump log message.

Parameters

• msg – [in] Message.

• data – [in] Buffer for data.

• length – [inout] Input: requested amount. Output: actual amount.

• offset – [in] Offset.

union log_msg_chunk *log_msg_no_space_handle(void)

union log_msg_chunk *log_msg_chunk_alloc(void)

Allocate single chunk from the pool.

Returns Pointer to the allocated chunk or NULL if failed to allocate.

792 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline struct log_msg *log_msg_create_0(const char *str)
Create standard log message with no arguments.

Function resets header and sets following fields:

• message type

• string pointer

Returns Pointer to allocated head of the message or NULL.

static inline struct log_msg *log_msg_create_1(const char *str, log_arg_t arg1)
Create standard log message with one argument.

Function resets header and sets following fields:

• message type

• string pointer

• number of arguments

• argument

Parameters

• str – String.

• arg1 – Argument.

Returns Pointer to allocated head of the message or NULL.

static inline struct log_msg *log_msg_create_2(const char *str, log_arg_t arg1, log_arg_t arg2)
Create standard log message with two arguments.

Function resets header and sets following fields:

• message type

• string pointer

• number of arguments

• arguments

Parameters

• str – String.

• arg1 – Argument 1.

• arg2 – Argument 2.

Returns Pointer to allocated head of the message or NULL.

static inline struct log_msg *log_msg_create_3(const char *str, log_arg_t arg1, log_arg_t arg2,
log_arg_t arg3)

Create standard log message with three arguments.

Function resets header and sets following fields:

• message type

• string pointer

• number of arguments

• arguments

Parameters

7.15. Logging 793

Zephyr Project Documentation, Release 2.7.0-rc2

• str – String.

• arg1 – Argument 1.

• arg2 – Argument 2.

• arg3 – Argument 3.

Returns Pointer to allocated head of the message or NULL.

struct log_msg *log_msg_create_n(const char *str, log_arg_t *args, uint32_t nargs)

Create standard log message with variable number of arguments.

Function resets header and sets following fields:

• message type

• string pointer

• number of arguments

• arguments

Parameters

• str – String.

• args – Array with arguments.

• nargs – Number of arguments.

Returns Pointer to allocated head of the message or NULL.

uint32_t log_msg_mem_get_free(void)

Get number of free blocks from the log mem pool.

uint32_t log_msg_mem_get_used(void)

Get number of used blocks from the log mem pool.

uint32_t log_msg_mem_get_max_used(void)

Get max used blocks from the log mem pool.

struct log_msg_ids

#include <log_msg.h> Part of log message header identifying source and level.

Public Members

uint16_t level

Severity.

uint16_t domain_id

Originating domain.

uint16_t source_id

Source ID.

struct log_msg_generic_hdr

#include <log_msg.h> Part of log message header common to standard and hexdump log
message.

794 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

struct log_msg_std_hdr

#include <log_msg.h> Part of log message header specific to standard log message.

struct log_msg_hexdump_hdr

#include <log_msg.h> Part of log message header specific to hexdump log message.

struct log_msg_hdr

#include <log_msg.h> Log message header structure

Public Members

atomic_t ref_cnt

Reference counter for tracking message users.

struct log_msg_ids ids

Identification part of the message.

uint32_t timestamp

Timestamp.

union log_msg_hdr_params

#include <log_msg.h>

Public Members

struct log_msg_generic_hdr generic

struct log_msg_std_hdr std

struct log_msg_hexdump_hdr hexdump

uint16_t raw

union log_msg_head_data

#include <log_msg.h> Data part of log message.

Public Members

log_arg_t args[3U]

uint8_t bytes[(3U * sizeof(log_arg_t))]

struct log_msg_ext_head_data

#include <log_msg.h> Data part of extended log message.

7.15. Logging 795

Zephyr Project Documentation, Release 2.7.0-rc2

union log_msg_ext_head_data_data

#include <log_msg.h>

Public Members

log_arg_t args[(3U - (sizeof(void*) / sizeof(log_arg_t)))]

uint8_t bytes[((3U * sizeof(log_arg_t)) - sizeof(void*))]

struct log_msg

#include <log_msg.h> Log message structure.

Public Members

struct log_msg *next

Used by logger core list.

struct log_msg_hdr hdr

Message header.

union log_msg.log_msg_data payload

Message data.

union log_msg_data

#include <log_msg.h>

Public Members

union log_msg_head_data single

struct log_msg_ext_head_data ext

struct log_msg_cont

#include <log_msg.h> Chunks following message head when message is extended.

Public Members

struct log_msg_cont *next

Pointer to the next chunk.

union log_msg_cont_data

#include <log_msg.h>

796 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Public Members

log_arg_t args[((sizeof(struct log_msg) - sizeof(void*)) / sizeof(log_arg_t))]

uint8_t bytes[(sizeof(struct log_msg) - sizeof(void*))]

union log_msg_chunk

#include <log_msg.h> Log message.

Public Members

struct log_msg head

struct log_msg_cont cont

Logger backend interface

group log_backend

Logger backend interface.

Defines

LOG_BACKEND_DEFINE(_name, _api, _autostart, ...)

Macro for creating a logger backend instance.

Parameters

• _name – Name of the backend instance.

• _api – Logger backend API.

• _autostart – If true backend is initialized and activated together with the
logger subsystem.

• ... – Optional context.

Functions

static inline void log_backend_put(const struct log_backend *const backend, struct log_msg
*msg)

Put message with log entry to the backend.

Parameters

• backend – [in] Pointer to the backend instance.

• msg – [in] Pointer to message with log entry.

static inline void log_backend_msg2_process(const struct log_backend *const backend, union
log_msg2_generic *msg)

7.15. Logging 797

Zephyr Project Documentation, Release 2.7.0-rc2

static inline void log_backend_put_sync_string(const struct log_backend *const backend, struct
log_msg_ids src_level, uint32_t timestamp,
const char *fmt, va_list ap)

Synchronously process log message.

Parameters

• backend – [in] Pointer to the backend instance.

• src_level – [in] Message details.

• timestamp – [in] Timestamp.

• fmt – [in] Log string.

• ap – [in] Log string arguments.

static inline void log_backend_put_sync_hexdump(const struct log_backend *const backend,
struct log_msg_ids src_level, uint32_t
timestamp, const char *metadata, const
uint8_t *data, uint32_t len)

Synchronously process log hexdump_message.

Parameters

• backend – [in] Pointer to the backend instance.

• src_level – [in] Message details.

• timestamp – [in] Timestamp.

• metadata – [in] Raw string associated with the data.

• data – [in] Data.

• len – [in] Data length.

static inline void log_backend_dropped(const struct log_backend *const backend, uint32_t cnt)

Notify backend about dropped log messages.

Function is optional.

Parameters

• backend – [in] Pointer to the backend instance.

• cnt – [in] Number of dropped logs since last notification.

static inline void log_backend_panic(const struct log_backend *const backend)

Reconfigure backend to panic mode.

Parameters

• backend – [in] Pointer to the backend instance.

static inline void log_backend_id_set(const struct log_backend *const backend, uint8_t id)

Set backend id.

Note: It is used internally by the logger.

Parameters

• backend – Pointer to the backend instance.

• id – ID.

798 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline uint8_t log_backend_id_get(const struct log_backend *const backend)

Get backend id.

Note: It is used internally by the logger.

Parameters

• backend – [in] Pointer to the backend instance.

Returns Id.

static inline const struct log_backend *log_backend_get(uint32_t idx)

Get backend.

Parameters

• idx – [in] Pointer to the backend instance.

Returns Pointer to the backend instance.

static inline int log_backend_count_get(void)

Get number of backends.

Returns Number of backends.

static inline void log_backend_activate(const struct log_backend *const backend, void *ctx)

Activate backend.

Parameters

• backend – [in] Pointer to the backend instance.

• ctx – [in] User context.

static inline void log_backend_deactivate(const struct log_backend *const backend)

Deactivate backend.

Parameters

• backend – [in] Pointer to the backend instance.

static inline bool log_backend_is_active(const struct log_backend *const backend)

Check state of the backend.

Parameters

• backend – [in] Pointer to the backend instance.

Returns True if backend is active, false otherwise.

struct log_backend_api

#include <log_backend.h> Logger backend API.

struct log_backend_control_block

#include <log_backend.h> Logger backend control block.

struct log_backend

#include <log_backend.h> Logger backend structure.

7.15. Logging 799

Zephyr Project Documentation, Release 2.7.0-rc2

Logger output formatting

group log_output

Log output API.

Defines

LOG_OUTPUT_FLAG_COLORS

Flag forcing ANSI escape code colors, red (errors), yellow (warnings).

LOG_OUTPUT_FLAG_TIMESTAMP

Flag forcing timestamp.

LOG_OUTPUT_FLAG_FORMAT_TIMESTAMP

Flag forcing timestamp formatting.

LOG_OUTPUT_FLAG_LEVEL

Flag forcing severity level prefix.

LOG_OUTPUT_FLAG_CRLF_NONE

Flag preventing the logger from adding CR and LF characters.

LOG_OUTPUT_FLAG_CRLF_LFONLY

Flag forcing a single LF character for line breaks.

LOG_OUTPUT_FLAG_FORMAT_SYSLOG

Flag forcing syslog format specified in RFC 5424.

LOG_OUTPUT_FLAG_FORMAT_SYST

Flag forcing syslog format specified in mipi sys-t.

LOG_OUTPUT_DEFINE(_name, _func, _buf, _size)
Create log_output instance.

Parameters

• _name – Instance name.

• _func – Function for processing output data.

• _buf – Pointer to the output buffer.

• _size – Size of the output buffer.

Typedefs

typedef int (*log_output_func_t)(uint8_t *buf, size_t size, void *ctx)

Prototype of the function processing output data.

Note: If the log output function cannot process all of the data, it is its responsibility to mark
them as dropped or discarded by returning the corresponding number of bytes dropped or
discarded to the caller.

800 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Param buf The buffer data.

Param size The buffer size.

Param ctx User context.

Return Number of bytes processed, dropped or discarded.

Functions

void log_output_msg_process(const struct log_output *output, struct log_msg *msg, uint32_t
flags)

Process log messages to readable strings.

Function is using provided context with the buffer and output function to process formatted
string and output the data.

Parameters

• output – Pointer to the log output instance.

• msg – Log message.

• flags – Optional flags.

void log_output_msg2_process(const struct log_output *log_output, struct log_msg2 *msg,
uint32_t flags)

Process log messages v2 to readable strings.

Function is using provided context with the buffer and output function to process formatted
string and output the data.

Parameters

• log_output – Pointer to the log output instance.

• msg – Log message.

• flags – Optional flags.

void log_output_string(const struct log_output *output, struct log_msg_ids src_level, uint32_t
timestamp, const char *fmt, va_list ap, uint32_t flags)

Process log string.

Function is formatting provided string adding optional prefixes and postfixes.

Parameters

• output – Pointer to log_output instance.

• src_level – Log source and level structure.

• timestamp – Timestamp.

• fmt – String.

• ap – String arguments.

• flags – Optional flags.

void log_output_hexdump(const struct log_output *output, struct log_msg_ids src_level, uint32_t
timestamp, const char *metadata, const uint8_t *data, uint32_t
length, uint32_t flags)

Process log hexdump.

Function is formatting provided hexdump adding optional prefixes and postfixes.

Parameters

7.15. Logging 801

Zephyr Project Documentation, Release 2.7.0-rc2

• output – Pointer to log_output instance.

• src_level – Log source and level structure.

• timestamp – Timestamp.

• metadata – String.

• data – Data.

• length – Data length.

• flags – Optional flags.

void log_output_dropped_process(const struct log_output *output, uint32_t cnt)

Process dropped messages indication.

Function prints error message indicating lost log messages.

Parameters

• output – Pointer to the log output instance.

• cnt – Number of dropped messages.

void log_output_flush(const struct log_output *output)

Flush output buffer.

Parameters

• output – Pointer to the log output instance.

static inline void log_output_ctx_set(const struct log_output *output, void *ctx)

Function for setting user context passed to the output function.

Parameters

• output – Pointer to the log output instance.

• ctx – User context.

static inline void log_output_hostname_set(const struct log_output *output, const char
*hostname)

Function for setting hostname of this device.

Parameters

• output – Pointer to the log output instance.

• hostname – Hostname of this device

void log_output_timestamp_freq_set(uint32_t freq)

Set timestamp frequency.

Parameters

• freq – Frequency in Hz.

uint64_t log_output_timestamp_to_us(uint32_t timestamp)

Convert timestamp of the message to us.

Parameters

• timestamp – Message timestamp

Returns Timestamp value in us.

struct log_output_control_block

#include <log_output.h>

802 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

struct log_output

#include <log_output.h> Log_output instance structure.

7.16 Memory Management

The following contains various topics regarding memory management.

7.16.1 Demand Paging

Demand paging provides a mechanism where data is only brought into physical memory as required by
current execution context. The physical memory is conceptually divided in page-sized page frames as
regions to hold data.

• When the processor tries to access data and the data page exists in one of the page frames, the
execution continues without any interruptions.

• When the processor tries to access the data page that does not exist in any page frames, a page
fault occurs. The paging code then brings in the corresponding data page from backing store into
physical memory if there is a free page frame. If there is no more free page frames, the eviction
algorithm is invoked to select a data page to be paged out, thus freeing up a page frame for new
data to be paged in. If this data page has been modified after it is first paged in, the data will be
written back into the backing store. If no modifications is done or after written back into backing
store, the data page is now considered paged out and the corresponding page frame is now free.
The paging code then invokes the backing store to page in the data page corresponding to the
location of the requested data. The backing store copies that data page into the free page frame.
Now the data page is in physical memory and execution can continue.

There are functions where paging in and out can be invoked manually using k_mem_page_in() and
k_mem_page_out() . k_mem_page_in() can be used to page in data pages in anticipation that they are
required in the near future. This is used to minimize number of page faults as these data pages are
already in physical memory, and thus minimizing latency. k_mem_page_out() can be used to page out
data pages where they are not going to be accessed for a considerable amount of time. This frees up
page frames so that the next page in can be executed faster as the paging code does not need to invoke
the eviction algorithm.

Terminology

Data Page A data page is a page-sized region of data. It may exist in a page frame, or be paged out to
some backing store. Its location can always be looked up in the CPU’s page tables (or equivalent)
by virtual address. The data type will always be void * or in some cases uint8_t * when doing
pointer arithmetic.

Page Frame A page frame is a page-sized physical memory region in RAM. It is a container where a data
page may be placed. It is always referred to by physical address. Zephyr has a convention of using
uintptr_t for physical addresses. For every page frame, a struct z_page_frame is instantiated
to store metadata. Flags for each page frame:

• Z_PAGE_FRAME_PINNED indicates a page frame is pinned in memory and should never be paged
out.

• Z_PAGE_FRAME_RESERVED indicates a physical page reserved by hardware and should not be
used at all.

• Z_PAGE_FRAME_MAPPED is set when a physical page is mapped to virtual memory address.

• Z_PAGE_FRAME_BUSY indicates a page frame is currently involved in a page-in/out operation.

• Z_PAGE_FRAME_BACKED indicates a page frame has a clean copy in the backing store.

7.16. Memory Management 803

Zephyr Project Documentation, Release 2.7.0-rc2

Z_SCRATCH_PAGE The virtual address of a special page provided to the backing store to: * Copy a data
page from Z_SCRATCH_PAGE to the specified location; or, * Copy a data page from the provided
location to Z_SCRATCH_PAGE. This is used as an intermediate page for page in/out operations. This
scratch needs to be mapped read/write for backing store code to access. However the data page
itself may only be mapped as read-only in virtual address space. If this page is provided as-is to
backing store, the data page must be re-mapped as read/write which has security implications as
the data page is no longer read-only to other parts of the application.

Paging Statistics

Paging statistics can be obtained via various function calls when :kcon-
fig:`CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM_NUM_BINS` is enabled:

• Overall statistics via k_mem_paging_stats_get()

• Per-thread statistics via k_mem_paging_thread_stats_get() if :kcon-
fig:`CONFIG_DEMAND_PAGING_THREAD_STATS` is enabled

• Execution time histogram can be obtained when :kconfig:`CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM`
is enabled, and :kconfig:`CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM_NUM_BINS`
is defined. Note that the timing is highly dependent on the architecture, SoC or
board. It is highly recommended that k_mem_paging_eviction_histogram_bounds[] and
k_mem_paging_backing_store_histogram_bounds[] be defined for a particular application.

– Execution time histogram of eviction algorithm via k_mem_paging_histogram_eviction_get()

– Execution time histogram of backing store doing page-in via
k_mem_paging_histogram_backing_store_page_in_get()

– Execution time histogram of backing store doing page-out via
k_mem_paging_histogram_backing_store_page_out_get()

Eviction Algorithm

The eviction algorithm is used to determine which data page and its corresponding page frame can be
paged out to free up a page frame for the next page in operation. There are two functions which are
called from the kernel paging code:

• k_mem_paging_eviction_init() is called to initialize the eviction algorithm. This is called at
POST_KERNEL.

• k_mem_paging_eviction_select() is called to select a data page to evict. A function argument
dirty is written to signal the caller whether the selected data page has been modified since it is
first paged in. If the dirty bit is returned as set, the paging code signals to the backing store to
write the data page back into storage (thus updating its content). The function returns a pointer
to the page frame corresponding to the selected data page.

Currently, a NRU (Not-Recently-Used) eviction algorithm has been implemented as a sample. This is a
very simple algorithm which ranks each data page on whether they have been accessed and modified.
The selection is based on this ranking.

To implement a new eviction algorithm, the two functions mentioned above must be implemented.

Backing Store

Backing store is responsible for paging in/out data page between their corresponding page frames and
storage. These are the functions which must be implemented:

• k_mem_paging_backing_store_init() is called to initialized the backing store at POST_KERNEL.

804 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• k_mem_paging_backing_store_location_get() is called to reserve a backing store lo-
cation so a data page can be paged out. This location token is passed to
k_mem_paging_backing_store_page_out() to perform actual page out operation.

• k_mem_paging_backing_store_location_free() is called to free a backing store location (the
location token) which can then be used for subsequent page out operation.

• k_mem_paging_backing_store_page_in() copies a data page from the backing store location as-
sociated with the provided location token to the page pointed by Z_SCRATCH_PAGE.

• k_mem_paging_backing_store_page_out() copies a data page from Z_SCRATCH_PAGE to the back-
ing store location associated with the provided location token.

• k_mem_paging_backing_store_page_finalize() is invoked after
k_mem_paging_backing_store_page_in() so that the page frame struct may be updated
for internal accounting. This can be a no-op.

To implement a new backing store, the functions mentioned above must be implemented.
k_mem_paging_backing_store_page_finalize() can be an empty function if so desired.

API Reference

group mem-demand-paging

Functions

int k_mem_page_out(void *addr, size_t size)

Evict a page-aligned virtual memory region to the backing store

Useful if it is known that a memory region will not be used for some time. All the data pages
within the specified region will be evicted to the backing store if they weren’t already, with
their associated page frames marked as available for mappings or page-ins.

None of the associated page frames mapped to the provided region should be pinned.

Note that there are no guarantees how long these pages will be evicted, they could take page
faults immediately.

If CONFIG_DEMAND_PAGING_ALLOW_IRQ is enabled, this function may not be called by
ISRs as the backing store may be in-use.

Parameters

• addr – Base page-aligned virtual address

• size – Page-aligned data region size

Return values

• 0 – Success

• -ENOMEM – Insufficient space in backing store to satisfy request. The region may
be partially paged out.

void k_mem_page_in(void *addr, size_t size)

Load a virtual data region into memory

After the function completes, all the page frames associated with this function will be paged
in. However, they are not guaranteed to stay there. This is useful if the region is known to be
used soon.

If CONFIG_DEMAND_PAGING_ALLOW_IRQ is enabled, this function may not be called by
ISRs as the backing store may be in-use.

7.16. Memory Management 805

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• addr – Base page-aligned virtual address

• size – Page-aligned data region size

void k_mem_pin(void *addr, size_t size)
Pin an aligned virtual data region, paging in as necessary

After the function completes, all the page frames associated with this region will be resi-
dent in memory and pinned such that they stay that way. This is a stronger version of
z_mem_page_in().

If CONFIG_DEMAND_PAGING_ALLOW_IRQ is enabled, this function may not be called by
ISRs as the backing store may be in-use.

Parameters

• addr – Base page-aligned virtual address

• size – Page-aligned data region size

void k_mem_unpin(void *addr, size_t size)
Un-pin an aligned virtual data region

After the function completes, all the page frames associated with this region will be no longer
marked as pinned. This does not evict the region, follow this with z_mem_page_out() if you
need that.

Parameters

• addr – Base page-aligned virtual address

• size – Page-aligned data region size

void k_mem_paging_stats_get(struct k_mem_paging_stats_t *stats)
Get the paging statistics since system startup

This populates the paging statistics struct being passed in as argument.

Parameters

• stats – [inout] Paging statistics struct to be filled.

void k_mem_paging_thread_stats_get(struct k_thread *thread, struct k_mem_paging_stats_t
*stats)

Get the paging statistics since system startup for a thread

This populates the paging statistics struct being passed in as argument for a particular thread.

Parameters

• thread – [in] Thread

• stats – [inout] Paging statistics struct to be filled.

void k_mem_paging_histogram_eviction_get(struct k_mem_paging_histogram_t *hist)
Get the eviction timing histogram

This populates the timing histogram struct being passed in as argument.

Parameters

• hist – [inout] Timing histogram struct to be filled.

void k_mem_paging_histogram_backing_store_page_in_get(struct
k_mem_paging_histogram_t
*hist)

Get the backing store page-in timing histogram

This populates the timing histogram struct being passed in as argument.

806 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• hist – [inout] Timing histogram struct to be filled.

void k_mem_paging_histogram_backing_store_page_out_get(struct
k_mem_paging_histogram_t
*hist)

Get the backing store page-out timing histogram

This populates the timing histogram struct being passed in as argument.

Parameters

• hist – [inout] Timing histogram struct to be filled.

Eviction Algorithm APIs

group mem-demand-paging-eviction

Eviction algorithm APIs

Functions

struct z_page_frame *k_mem_paging_eviction_select(bool *dirty)

Select a page frame for eviction

The kernel will invoke this to choose a page frame to evict if there are no free page frames.

This function will never be called before the initial k_mem_paging_eviction_init().

This function is invoked with interrupts locked.

Parameters

• dirty – [out] Whether the page to evict is dirty

Returns The page frame to evict

void k_mem_paging_eviction_init(void)

Initialization function

Called at POST_KERNEL to perform any necessary initialization tasks for the eviction algo-
rithm. k_mem_paging_eviction_select() is guaranteed to never be called until this has returned,
and this will only be called once.

Backing Store APIs

group mem-demand-paging-backing-store

Backing store APIs

Functions

int k_mem_paging_backing_store_location_get(struct z_page_frame *pf, uintptr_t *location,
bool page_fault)

Reserve or fetch a storage location for a data page loaded into a page frame

The returned location token must be unique to the mapped virtual address. This location will
be used in the backing store to page out data page contents for later retrieval. The location
value must be page-aligned.

This function may be called multiple times on the same data page. If its page frame has its
Z_PAGE_FRAME_BACKED bit set, it is expected to return the previous backing store location

7.16. Memory Management 807

Zephyr Project Documentation, Release 2.7.0-rc2

for the data page containing a cached clean copy. This clean copy may be updated on page-
out, or used to discard clean pages without needing to write out their contents.

If the backing store is full, some other backing store location which caches a loaded
data page may be selected, in which case its associated page frame will have the
Z_PAGE_FRAME_BACKED bit cleared (as it is no longer cached).

pf->addr will indicate the virtual address the page is currently mapped to. Large, sparse
backing stores which can contain the entire address space may simply generate location tokens
purely as a function of pf->addr with no other management necessary.

This function distinguishes whether it was called on behalf of a page fault. A free backing
store location must always be reserved in order for page faults to succeed. If the page_fault
parameter is not set, this function should return -ENOMEM even if one location is available.

This function is invoked with interrupts locked.

Parameters

• pf – Virtual address to obtain a storage location

• location – [out] storage location token

• page_fault – Whether this request was for a page fault

Returns 0 Success

Returns -ENOMEM Backing store is full

void k_mem_paging_backing_store_location_free(uintptr_t location)

Free a backing store location

Any stored data may be discarded, and the location token associated with this address may
be re-used for some other data page.

This function is invoked with interrupts locked.

Parameters

• location – Location token to free

void k_mem_paging_backing_store_page_out(uintptr_t location)

Copy a data page from Z_SCRATCH_PAGE to the specified location

Immediately before this is called, Z_SCRATCH_PAGE will be mapped read-write to the in-
tended source page frame for the calling context.

Calls to this and k_mem_paging_backing_store_page_in() will always be serialized, but inter-
rupts may be enabled.

Parameters

• location – Location token for the data page, for later retrieval

void k_mem_paging_backing_store_page_in(uintptr_t location)

Copy a data page from the provided location to Z_SCRATCH_PAGE.

Immediately before this is called, Z_SCRATCH_PAGE will be mapped read-write to the in-
tended destination page frame for the calling context.

Calls to this and k_mem_paging_backing_store_page_out() will always be serialized, but inter-
rupts may be enabled.

Parameters

• location – Location token for the data page

808 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

void k_mem_paging_backing_store_page_finalize(struct z_page_frame *pf, uintptr_t location)

Update internal accounting after a page-in

This is invoked after k_mem_paging_backing_store_page_in() and interrupts have been* re-
locked, making it safe to access the z_page_frame data. The location value will be the same
passed to k_mem_paging_backing_store_page_in().

The primary use-case for this is to update custom fields for the backing store in the page
frame, to reflect where the data should be evicted to if it is paged out again. This may be a
no-op in some implementations.

If the backing store caches paged-in data pages, this is the appropriate time to set the
Z_PAGE_FRAME_BACKED bit. The kernel only skips paging out clean data pages if they
are noted as clean in the page tables and the Z_PAGE_FRAME_BACKED bit is set in their
associated page frame.

Parameters

• pf – Page frame that was loaded in

• location – Location of where the loaded data page was retrieved

void k_mem_paging_backing_store_init(void)

Backing store initialization function.

The implementation may expect to receive page in/out calls as soon as this returns, but not
before that. Called at POST_KERNEL.

This function is expected to do two things:

• Initialize any internal data structures and accounting for the backing store.

• If the backing store already contains all or some loaded kernel data pages at boot time,
Z_PAGE_FRAME_BACKED should be appropriately set for their associated page frames,
and any internal accounting set up appropriately.

7.17 Miscellaneous APIs

7.17.1 Checksum APIs

CRC

group crc

Functions

uint16_t crc16(const uint8_t *src, size_t len, uint16_t polynomial, uint16_t initial_value, bool
pad)

Generic function for computing CRC 16.

Compute CRC 16 by passing in the address of the input, the input length and polynomial used
in addition to the initial value.

Parameters

• src – Input bytes for the computation

• len – Length of the input in bytes

• polynomial – The polynomial to use omitting the leading x^16 coefficient

• initial_value – Initial value for the CRC computation

7.17. Miscellaneous APIs 809

Zephyr Project Documentation, Release 2.7.0-rc2

• pad – Adds padding with zeros at the end of input bytes

Returns The computed CRC16 value

uint8_t crc8(const uint8_t *src, size_t len, uint8_t polynomial, uint8_t initial_value, bool
reversed)

Generic function for computing CRC 8.

Compute CRC 8 by passing in the address of the input, the input length and polynomial used
in addition to the initial value.

Parameters

• src – Input bytes for the computation

• len – Length of the input in bytes

• polynomial – The polynomial to use omitting the leading x^8 coefficient

• initial_value – Initial value for the CRC computation

• reversed – Should we use reflected/reversed values or not

Returns The computed CRC8 value

uint16_t crc16_ccitt(uint16_t seed, const uint8_t *src, size_t len)

Compute the CRC-16/CCITT checksum of a buffer.

See ITU-T Recommendation V.41 (November 1988). Uses 0x1021 as the polynomial, reflects
the input, and reflects the output.

To calculate the CRC across non-contiguous blocks use the return value from block N-1 as the
seed for block N.

For CRC-16/CCITT, use 0 as the initial seed. Other checksums in the same family can be
calculated by changing the seed and/or XORing the final value. Examples include:

• X-25 (used in PPP): seed=0xffff, xor=0xffff, residual=0xf0b8

Note: API changed in Zephyr 1.11.

Parameters

• seed – Value to seed the CRC with

• src – Input bytes for the computation

• len – Length of the input in bytes

Returns The computed CRC16 value

uint16_t crc16_itu_t(uint16_t seed, const uint8_t *src, size_t len)

Compute the CRC-16/XMODEM checksum of a buffer.

The MSB first version of ITU-T Recommendation V.41 (November 1988). Uses 0x1021 as the
polynomial with no reflection.

To calculate the CRC across non-contiguous blocks use the return value from block N-1 as the
seed for block N.

For CRC-16/XMODEM, use 0 as the initial seed. Other checksums in the same family can be
calculated by changing the seed and/or XORing the final value. Examples include:

• CCIITT-FALSE: seed=0xffff

810 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• GSM: seed=0, xorout=0xffff, residue=0x1d0f

Parameters

• seed – Value to seed the CRC with

• src – Input bytes for the computation

• len – Length of the input in bytes

Returns The computed CRC16 value

static inline uint16_t crc16_ansi(const uint8_t *src, size_t len)

Compute ANSI variant of CRC 16.

ANSI variant of CRC 16 is using 0x8005 as its polynomial with the initial value set to 0xffff.

Parameters

• src – Input bytes for the computation

• len – Length of the input in bytes

Returns The computed CRC16 value

uint32_t crc32_ieee(const uint8_t *data, size_t len)

Generate IEEE conform CRC32 checksum.

Parameters

• *data – Pointer to data on which the CRC should be calculated.

• len – Data length.

Returns CRC32 value.

uint32_t crc32_ieee_update(uint32_t crc, const uint8_t *data, size_t len)

Update an IEEE conforming CRC32 checksum.

Parameters

• crc – CRC32 checksum that needs to be updated.

• *data – Pointer to data on which the CRC should be calculated.

• len – Data length.

Returns CRC32 value.

uint32_t crc32_c(uint32_t crc, const uint8_t *data, size_t len, bool first_pkt, bool last_pkt)

Calculate CRC32C (Castagnoli) checksum.

Parameters

• crc – CRC32C checksum that needs to be updated.

• *data – Pointer to data on which the CRC should be calculated.

• len – Data length.

• first_pkt – Whether this is the first packet in the stream.

• last_pkt – Whether this is the last packet in the stream.

Returns CRC32 value.

uint8_t crc8_ccitt(uint8_t initial_value, const void *buf, size_t len)

Compute CCITT variant of CRC 8.

Normal CCITT variant of CRC 8 is using 0x07.

Parameters

7.17. Miscellaneous APIs 811

Zephyr Project Documentation, Release 2.7.0-rc2

• initial_value – Initial value for the CRC computation

• buf – Input bytes for the computation

• len – Length of the input in bytes

Returns The computed CRC8 value

uint8_t crc7_be(uint8_t seed, const uint8_t *src, size_t len)
Compute the CRC-7 checksum of a buffer.

See JESD84-A441. Used by the MMC protocol. Uses 0x09 as the polynomial with no reflec-
tion. The CRC is left justified, so bit 7 of the result is bit 6 of the CRC.

Parameters

• seed – Value to seed the CRC with

• src – Input bytes for the computation

• len – Length of the input in bytes

Returns The computed CRC7 value

7.17.2 Structured Data APIs

JSON

group json

Defines

JSON_OBJ_DESCR_PRIM(struct_, field_name_, type_)
Helper macro to declare a descriptor for supported primitive values.

Here’s an example of use:

struct foo {
int some_int;

};

struct json_obj_descr foo[] = {
JSON_OBJ_DESCR_PRIM(struct foo, some_int, JSON_TOK_NUMBER),

};

Parameters

• struct_ – Struct packing the values

• field_name_ – Field name in the struct

• type_ – Token type for JSON value corresponding to a primitive type. Must
be one of: JSON_TOK_STRING for strings, JSON_TOK_NUMBER for numbers,
JSON_TOK_TRUE (or JSON_TOK_FALSE) for booleans.

JSON_OBJ_DESCR_OBJECT(struct_, field_name_, sub_descr_)
Helper macro to declare a descriptor for an object value.

Here’s an example of use:

812 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

struct nested {
int foo;
struct {

int baz;
} bar;

};

struct json_obj_descr nested_bar[] = {
{ ... declare bar.baz descriptor ... },

};
struct json_obj_descr nested[] = {

{ ... declare foo descriptor ... },
JSON_OBJ_DESCR_OBJECT(struct nested, bar, nested_bar),

};

Parameters

• struct_ – Struct packing the values

• field_name_ – Field name in the struct

• sub_descr_ – Array of json_obj_descr describing the subobject

JSON_OBJ_DESCR_ARRAY(struct_, field_name_, max_len_, len_field_, elem_type_)

Helper macro to declare a descriptor for an array of primitives.

Here’s an example of use:

struct example {
int foo[10];
size_t foo_len;

};

struct json_obj_descr array[] = {
JSON_OBJ_DESCR_ARRAY(struct example, foo, 10, foo_len,

JSON_TOK_NUMBER)
};

Parameters

• struct_ – Struct packing the values

• field_name_ – Field name in the struct

• max_len_ – Maximum number of elements in array

• len_field_ – Field name in the struct for the number of elements in the array

• elem_type_ – Element type, must be a primitive type

JSON_OBJ_DESCR_OBJ_ARRAY(struct_, field_name_, max_len_, len_field_, elem_descr_,
elem_descr_len_)

Helper macro to declare a descriptor for an array of objects.

Here’s an example of use:

7.17. Miscellaneous APIs 813

Zephyr Project Documentation, Release 2.7.0-rc2

struct person_height {
const char *name;
int height;

};

struct people_heights {
struct person_height heights[10];
size_t heights_len;

};

struct json_obj_descr person_height_descr[] = {
JSON_OBJ_DESCR_PRIM(struct person_height, name, JSON_TOK_STRING),
JSON_OBJ_DESCR_PRIM(struct person_height, height, JSON_TOK_NUMBER),

};

struct json_obj_descr array[] = {
JSON_OBJ_DESCR_OBJ_ARRAY(struct people_heights, heights, 10,

heights_len, person_height_descr,
ARRAY_SIZE(person_height_descr)),

};

Parameters

• struct_ – Struct packing the values

• field_name_ – Field name in the struct containing the array

• max_len_ – Maximum number of elements in the array

• len_field_ – Field name in the struct for the number of elements in the array

• elem_descr_ – Element descriptor, pointer to a descriptor array

• elem_descr_len_ – Number of elements in elem_descr_

JSON_OBJ_DESCR_ARRAY_ARRAY(struct_, field_name_, max_len_, len_field_, elem_descr_,
elem_descr_len_)

Helper macro to declare a descriptor for an array of array.

Here’s an example of use:

struct person_height {
const char *name;
int height;

};

struct person_heights_array {
struct person_height heights;

}

struct people_heights {
struct person_height_array heights[10];
size_t heights_len;

};

struct json_obj_descr person_height_descr[] = {
JSON_OBJ_DESCR_PRIM(struct person_height, name, JSON_TOK_STRING),
JSON_OBJ_DESCR_PRIM(struct person_height, height, JSON_TOK_NUMBER),

(continues on next page)

814 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

};

struct json_obj_descr person_height_array_descr[] = {
JSON_OBJ_DESCR_OBJECT(struct person_heights_array,

heights, person_heigth_descr),
};

struct json_obj_descr array_array[] = {
JSON_OBJ_DESCR_ARRAY_ARRAY(struct people_heights, heights, 10,

heights_len, person_height_array_descr,
ARRAY_SIZE(person_height_array_descr)),

};

Parameters

• struct_ – Struct packing the values

• field_name_ – Field name in the struct containing the array

• max_len_ – Maximum number of elements in the array

• len_field_ – Field name in the struct for the number of elements in the array

• elem_descr_ – Element descriptor, pointer to a descriptor array

• elem_descr_len_ – Number of elements in elem_descr_

JSON_OBJ_DESCR_PRIM_NAMED(struct_, json_field_name_, struct_field_name_, type_)

Variant of JSON_OBJ_DESCR_PRIM that can be used when the structure and JSON field
names differ.

This is useful when the JSON field is not a valid C identifier.

See also:

JSON_OBJ_DESCR_PRIM

Parameters

• struct_ – Struct packing the values.

• json_field_name_ – String, field name in JSON strings

• struct_field_name_ – Field name in the struct

• type_ – Token type for JSON value corresponding to a primitive type.

JSON_OBJ_DESCR_OBJECT_NAMED(struct_, json_field_name_, struct_field_name_, sub_descr_)

Variant of JSON_OBJ_DESCR_OBJECT that can be used when the structure and JSON field
names differ.

This is useful when the JSON field is not a valid C identifier.

See also:

JSON_OBJ_DESCR_OBJECT

Parameters

• struct_ – Struct packing the values

• json_field_name_ – String, field name in JSON strings

7.17. Miscellaneous APIs 815

Zephyr Project Documentation, Release 2.7.0-rc2

• struct_field_name_ – Field name in the struct

• sub_descr_ – Array of json_obj_descr describing the subobject

JSON_OBJ_DESCR_ARRAY_NAMED(struct_, json_field_name_, struct_field_name_, max_len_,
len_field_, elem_type_)

Variant of JSON_OBJ_DESCR_ARRAY that can be used when the structure and JSON field
names differ.

This is useful when the JSON field is not a valid C identifier.

See also:

JSON_OBJ_DESCR_ARRAY

Parameters

• struct_ – Struct packing the values

• json_field_name_ – String, field name in JSON strings

• struct_field_name_ – Field name in the struct

• max_len_ – Maximum number of elements in array

• len_field_ – Field name in the struct for the number of elements in the array

• elem_type_ – Element type, must be a primitive type

JSON_OBJ_DESCR_OBJ_ARRAY_NAMED(struct_, json_field_name_, struct_field_name_, max_len_,
len_field_, elem_descr_, elem_descr_len_)

Variant of JSON_OBJ_DESCR_OBJ_ARRAY that can be used when the structure and JSON
field names differ.

This is useful when the JSON field is not a valid C identifier.

Here’s an example of use:

struct person_height {
const char *name;
int height;

};

struct people_heights {
struct person_height heights[10];
size_t heights_len;

};

struct json_obj_descr person_height_descr[] = {
JSON_OBJ_DESCR_PRIM(struct person_height, name, JSON_TOK_STRING),
JSON_OBJ_DESCR_PRIM(struct person_height, height, JSON_TOK_NUMBER),

};

struct json_obj_descr array[] = {
JSON_OBJ_DESCR_OBJ_ARRAY_NAMED(struct people_heights,

"people-heights", heights,
10, heights_len,
person_height_descr,
ARRAY_SIZE(person_height_descr)),

};

816 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• struct_ – Struct packing the values

• json_field_name_ – String, field name of the array in JSON strings

• struct_field_name_ – Field name in the struct containing the array

• max_len_ – Maximum number of elements in the array

• len_field_ – Field name in the struct for the number of elements in the array

• elem_descr_ – Element descriptor, pointer to a descriptor array

• elem_descr_len_ – Number of elements in elem_descr_

Typedefs

typedef int (*json_append_bytes_t)(const char *bytes, size_t len, void *data)

Function pointer type to append bytes to a buffer while encoding JSON data.

Param bytes Contents to write to the output

Param len Number of bytes to append to output

Param data User-provided pointer

Return This callback function should return a negative number on error (which will
be propagated to the return value of json_obj_encode()), or 0 on success.

Enums

enum json_tokens

Values:

enumerator JSON_TOK_NONE = '_'

enumerator JSON_TOK_OBJECT_START = '{'

enumerator JSON_TOK_OBJECT_END = '}'

enumerator JSON_TOK_LIST_START = '['

enumerator JSON_TOK_LIST_END = ']'

enumerator JSON_TOK_STRING = '"'

enumerator JSON_TOK_COLON = ':'

enumerator JSON_TOK_COMMA = ','

enumerator JSON_TOK_NUMBER = '0'

enumerator JSON_TOK_TRUE = 't'

7.17. Miscellaneous APIs 817

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator JSON_TOK_FALSE = 'f'

enumerator JSON_TOK_NULL = 'n'

enumerator JSON_TOK_ERROR = '!'

enumerator JSON_TOK_EOF = '\0'

Functions

int json_obj_parse(char *json, size_t len, const struct json_obj_descr *descr, size_t descr_len,
void *val)

Parses the JSON-encoded object pointer to by json, with size len, according to the descriptor
pointed to by descr. Values are stored in a struct pointed to by val. Set up the descriptor like
this:

struct s { int foo; char *bar; } struct json_obj_descr descr[] = { JSON_OBJ_DESCR_PRIM(struct
s, foo, JSON_TOK_NUMBER), JSON_OBJ_DESCR_PRIM(struct s, bar, JSON_TOK_STRING), };

Since this parser is designed for machine-to-machine communications, some liberties were
taken to simplify the design: (1) strings are not unescaped (but only valid escape sequences
are accepted); (2) no UTF-8 validation is performed; and (3) only integer numbers are sup-
ported (no strtod() in the minimal libc).

Parameters

• json – Pointer to JSON-encoded value to be parsed

• len – Length of JSON-encoded value

• descr – Pointer to the descriptor array

• descr_len – Number of elements in the descriptor array. Must be less than
31 due to implementation detail reasons (if more fields are necessary, use two
descriptors)

• val – Pointer to the struct to hold the decoded values

Returns < 0 if error, bitmap of decoded fields on success (bit 0 is set if first field in
the descriptor has been properly decoded, etc).

ssize_t json_escape(char *str, size_t *len, size_t buf_size)

Escapes the string so it can be used to encode JSON objects.

Parameters

• str – The string to escape; the escape string is stored the buffer pointed to by
this parameter

• len – Points to a size_t containing the size before and after the escaping process

• buf_size – The size of buffer str points to

Returns 0 if string has been escaped properly, or -ENOMEM if there was not enough
space to escape the buffer

size_t json_calc_escaped_len(const char *str, size_t len)

Calculates the JSON-escaped string length.

Parameters

• str – The string to analyze

818 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• len – String size

Returns The length str would have if it were escaped

ssize_t json_calc_encoded_len(const struct json_obj_descr *descr, size_t descr_len, const void
*val)

Calculates the string length to fully encode an object.

Parameters

• descr – Pointer to the descriptor array

• descr_len – Number of elements in the descriptor array

• val – Struct holding the values

Returns Number of bytes necessary to encode the values if >0, an error code is
returned.

int json_obj_encode_buf(const struct json_obj_descr *descr, size_t descr_len, const void *val,
char *buffer, size_t buf_size)

Encodes an object in a contiguous memory location.

Parameters

• descr – Pointer to the descriptor array

• descr_len – Number of elements in the descriptor array

• val – Struct holding the values

• buffer – Buffer to store the JSON data

• buf_size – Size of buffer, in bytes, with space for the terminating NUL charac-
ter

Returns 0 if object has been successfully encoded. A negative value indicates an
error (as defined on errno.h).

int json_arr_encode_buf(const struct json_obj_descr *descr, const void *val, char *buffer, size_t
buf_size)

Encodes an array in a contiguous memory location.

Parameters

• descr – Pointer to the descriptor array

• val – Struct holding the values

• buffer – Buffer to store the JSON data

• buf_size – Size of buffer, in bytes, with space for the terminating NUL charac-
ter

Returns 0 if object has been successfully encoded. A negative value indicates an
error (as defined on errno.h).

int json_obj_encode(const struct json_obj_descr *descr, size_t descr_len, const void *val,
json_append_bytes_t append_bytes, void *data)

Encodes an object using an arbitrary writer function.

Parameters

• descr – Pointer to the descriptor array

• descr_len – Number of elements in the descriptor array

• val – Struct holding the values

• append_bytes – Function to append bytes to the output

7.17. Miscellaneous APIs 819

Zephyr Project Documentation, Release 2.7.0-rc2

• data – Data pointer to be passed to the append_bytes callback function.

Returns 0 if object has been successfully encoded. A negative value indicates an
error.

int json_arr_encode(const struct json_obj_descr *descr, const void *val, json_append_bytes_t
append_bytes, void *data)

Encodes an array using an arbitrary writer function.

Parameters

• descr – Pointer to the descriptor array

• val – Struct holding the values

• append_bytes – Function to append bytes to the output

• data – Data pointer to be passed to the append_bytes callback function.

Returns 0 if object has been successfully encoded. A negative value indicates an
error.

struct json_obj_descr

#include <json.h>

JWT

JSON Web Tokens (JWT) are an open, industry standard [RFC 7519](https://tools.ietf.org/html/
rfc7519) method for representing claims securely between two parties. Although JWT is fairly flexi-
ble, this API is limited to creating the simplistic tokens needed to authenticate with the Google Core IoT
infrastructure.

group jwt

JSON Web Token (JWT)

Functions

int jwt_init_builder(struct jwt_builder *builder, char *buffer, size_t buffer_size)
Initialize the JWT builder.

Initialize the given JWT builder for the creation of a fresh token. The buffer size should at
least be as long as JWT_BUILDER_MAX_SIZE returns.

Parameters

• builder – The builder to initialize.

• buffer – The buffer to write the token to.

• buffer_size – The size of this buffer. The token will be NULL terminated,
which needs to be allowed for in this size.

Return values

• 0 – Success

• -ENOSPC – Buffer is insufficient to initialize

int jwt_add_payload(struct jwt_builder *builder, int32_t exp, int32_t iat, const char *aud)
add JWT primary payload.

int jwt_sign(struct jwt_builder *builder, const char *der_key, size_t der_key_len)
Sign the JWT token.

820 Chapter 7. API Reference

https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519

Zephyr Project Documentation, Release 2.7.0-rc2

static inline size_t jwt_payload_len(struct jwt_builder *builder)

struct jwt_builder

#include <jwt.h> JWT data tracking.

JSON Web Tokens contain several sections, each encoded in base-64. This structure tracks
the token as it is being built, including limits on the amount of available space. It should be
initialized with jwt_init().

Public Members

char *base

The base of the buffer we are writing to.

char *buf

The place in this buffer where we are currently writing.

size_t len

The length remaining to write.

bool overflowed

Flag that is set if we try to write past the end of the buffer. If set, the token is not valid.

7.18 Data Structures

Zephyr provides a library of common general purpose data structures used within the kernel, but useful
by application code in general. These include list and balanced tree structures for storing ordered data,
and a ring buffer for managing “byte stream” data in a clean way.

Note that in general, the collections are implemented as “intrusive” data structures. The “node” data is
the only struct used by the library code, and it does not store a pointer or other metadata to indicate
what user data is “owned” by that node. Instead, the expectation is that the node will be itself embedded
within a user-defined struct. Macros are provided to retrieve a user struct address from the embedded
node pointer in a clean way. The purpose behind this design is to allow the collections to be used in
contexts where dynamic allocation is disallowed (i.e. there is no need to allocate node objects because
the memory is provided by the user).

Note also that these libraries are uniformly unsynchronized; access to them is not threadsafe by default.
These are data structures, not synchronization primitives. The expectation is that any locking needed
will be provided by the user.

7.18.1 Single-linked List

Zephyr provides a sys_slist_t type for storing simple singly-linked list data (i.e. data where each list
element stores a pointer to the next element, but not the previous one). This supports constant-time
access to the first (head) and last (tail) elements of the list, insertion before the head and after the tail
of the list and constant time removal of the head. Removal of subsequent nodes requires access to the
“previous” pointer and thus can only be performed in linear time by searching the list.

The sys_slist_t struct may be instantiated by the user in any accessible memory. It should be initialized
with either sys_slist_init() or by static assignment from SYS_SLIST_STATIC_INIT before use. Its
interior fields are opaque and should not be accessed by user code.

7.18. Data Structures 821

Zephyr Project Documentation, Release 2.7.0-rc2

The end nodes of a list may be retrieved with sys_slist_peek_head() and sys_slist_peek_tail() ,
which will return NULL if the list is empty, otherwise a pointer to a sys_snode_t struct.

The sys_snode_t struct represents the data to be inserted. In general, it is expected to be allo-
cated/controlled by the user, usually embedded within a struct which is to be added to the list. The
container struct pointer may be retrieved from a list node using SYS_SLIST_CONTAINER , passing it the
struct name of the containing struct and the field name of the node. Internally, the sys_snode_t struct
contains only a next pointer, which may be accessed with sys_slist_peek_next() .

Lists may be modified by adding a single node at the head or tail with sys_slist_prepend() and
sys_slist_append() . They may also have a node added to an interior point with sys_slist_insert() ,
which inserts a new node after an existing one. Similarly sys_slist_remove() will remove a node given
a pointer to its predecessor. These operations are all constant time.

Convenience routines exist for more complicated modifications to a list. sys_slist_merge_slist() will
append an entire list to an existing one. sys_slist_append_list() will append a bounded subset of
an existing list in constant time. And sys_slist_find_and_remove() will search a list (in linear time)
for a given node and remove it if present.

Finally the slist implementation provides a set of “for each” macros that allows for iterat-
ing over a list in a natural way without needing to manually traverse the next pointers.
SYS_SLIST_FOR_EACH_NODE will enumerate every node in a list given a local variable to store the
node pointer. SYS_SLIST_FOR_EACH_NODE_SAFE behaves similarly, but has a more complicated im-
plementation that requires an extra scratch variable for storage and allows the user to delete
the iterated node during the iteration. Each of those macros also exists in a “container” variant
(SYS_SLIST_FOR_EACH_CONTAINER and SYS_SLIST_FOR_EACH_CONTAINER_SAFE) which assigns a local
variable of a type that matches the user’s container struct and not the node struct, performing the re-
quired offsets internally. And SYS_SLIST_ITERATE_FROM_NODE exists to allow for enumerating a node
and all its successors only, without inspecting the earlier part of the list.

Single-linked List Internals

The slist code is designed to be minimal and conventional. Internally, a sys_slist_t struct is nothing
more than a pair of “head” and “tail” pointer fields. And a sys_snode_t stores only a single “next”
pointer.

Fig. 3: An slist containing three elements.

Fig. 4: An empty slist

The specific implementation of the list code, however, is done with an internal “Z_GENLIST” template
API which allows for extracting those fields from arbitrary structures and emits an arbitrarily named set

822 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

of functions. This allows for implementing more complicated single-linked list variants using the same
basic primitives. The genlist implementor is responsible for a custom implementation of the primitive
operations only: an “init” step for each struct, and a “get” and “set” primitives for each of head, tail and
next pointers on their relevant structs. These inline functions are passed as parameters to the genlist
macro expansion.

Only one such variant, sflist, exists in Zephyr at the moment.

Flagged List

The sys_sflist_t is implemented using the described genlist template API. With the exception of sym-
bol naming (“sflist” instead of “slist”) and the additional API described next, it operates in all ways
identically to the slist API.

It adds the ability to associate exactly two bits of user defined “flags” with each list node. These can be
accessed and modified with sys_sfnode_flags_get() and sys_sfnode_flags_get() . Internally, the
flags are stored unioned with the bottom bits of the next pointer and incur no SRAM storage overhead
when compared with the simpler slist code.

Single-linked List API Reference

group single-linked-list_apis

Defines

SYS_SLIST_FOR_EACH_NODE(__sl, __sn)

Provide the primitive to iterate on a list Note: the loop is unsafe and thus __sn should not be
removed.

User MUST add the loop statement curly braces enclosing its own code:

SYS_SLIST_FOR_EACH_NODE(l, n) {
<user code>

}

This and other SYS_SLIST_*() macros are not thread safe.

Parameters

• __sl – A pointer on a sys_slist_t to iterate on

• __sn – A sys_snode_t pointer to peek each node of the list

SYS_SLIST_ITERATE_FROM_NODE(__sl, __sn)

Provide the primitive to iterate on a list, from a node in the list Note: the loop is unsafe and
thus __sn should not be removed.

User MUST add the loop statement curly braces enclosing its own code:

SYS_SLIST_ITERATE_FROM_NODE(l, n) {
<user code>

}

Like SYS_SLIST_FOR_EACH_NODE(), but __dn already contains a node in the list where to
start searching for the next entry from. If NULL, it starts from the head.

This and other SYS_SLIST_*() macros are not thread safe.

Parameters

7.18. Data Structures 823

Zephyr Project Documentation, Release 2.7.0-rc2

• __sl – A pointer on a sys_slist_t to iterate on

• __sn – A sys_snode_t pointer to peek each node of the list it contains the start-
ing node, or NULL to start from the head

SYS_SLIST_FOR_EACH_NODE_SAFE(__sl, __sn, __sns)

Provide the primitive to safely iterate on a list Note: __sn can be removed, it will not break
the loop.

User MUST add the loop statement curly braces enclosing its own code:

SYS_SLIST_FOR_EACH_NODE_SAFE(l, n, s) {
<user code>

}

This and other SYS_SLIST_*() macros are not thread safe.

Parameters

• __sl – A pointer on a sys_slist_t to iterate on

• __sn – A sys_snode_t pointer to peek each node of the list

• __sns – A sys_snode_t pointer for the loop to run safely

SYS_SLIST_CONTAINER(__ln, __cn, __n)

SYS_SLIST_PEEK_HEAD_CONTAINER(__sl, __cn, __n)

SYS_SLIST_PEEK_TAIL_CONTAINER(__sl, __cn, __n)

SYS_SLIST_PEEK_NEXT_CONTAINER(__cn, __n)

SYS_SLIST_FOR_EACH_CONTAINER(__sl, __cn, __n)

Provide the primitive to iterate on a list under a container Note: the loop is unsafe and thus
__cn should not be detached.

User MUST add the loop statement curly braces enclosing its own code:

SYS_SLIST_FOR_EACH_CONTAINER(l, c, n) {
<user code>

}

Parameters

• __sl – A pointer on a sys_slist_t to iterate on

• __cn – A pointer to peek each entry of the list

• __n – The field name of sys_node_t within the container struct

SYS_SLIST_FOR_EACH_CONTAINER_SAFE(__sl, __cn, __cns, __n)

Provide the primitive to safely iterate on a list under a container Note: __cn can be detached,
it will not break the loop.

User MUST add the loop statement curly braces enclosing its own code:

SYS_SLIST_FOR_EACH_NODE_SAFE(l, c, cn, n) {
<user code>

}

Parameters

• __sl – A pointer on a sys_slist_t to iterate on

• __cn – A pointer to peek each entry of the list

824 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• __cns – A pointer for the loop to run safely

• __n – The field name of sys_node_t within the container struct

SYS_SLIST_STATIC_INIT(ptr_to_list)

Functions

static inline void sys_slist_init(sys_slist_t *list)

Initialize a list.

Parameters

• list – A pointer on the list to initialize

static inline sys_snode_t *sys_slist_peek_head(sys_slist_t *list)

Peek the first node from the list.

Parameters

• list – A point on the list to peek the first node from

Returns A pointer on the first node of the list (or NULL if none)

static inline sys_snode_t *sys_slist_peek_tail(sys_slist_t *list)

Peek the last node from the list.

Parameters

• list – A point on the list to peek the last node from

Returns A pointer on the last node of the list (or NULL if none)

static inline bool sys_slist_is_empty(sys_slist_t *list)

Test if the given list is empty.

Parameters

• list – A pointer on the list to test

Returns a boolean, true if it’s empty, false otherwise

static inline sys_snode_t *sys_slist_peek_next_no_check(sys_snode_t *node)

Peek the next node from current node, node is not NULL.

Faster then sys_slist_peek_next() if node is known not to be NULL.

Parameters

• node – A pointer on the node where to peek the next node

Returns a pointer on the next node (or NULL if none)

static inline sys_snode_t *sys_slist_peek_next(sys_snode_t *node)

Peek the next node from current node.

Parameters

• node – A pointer on the node where to peek the next node

Returns a pointer on the next node (or NULL if none)

static inline void sys_slist_prepend(sys_slist_t *list, sys_snode_t *node)

Prepend a node to the given list.

This and other sys_slist_*() functions are not thread safe.

Parameters

7.18. Data Structures 825

Zephyr Project Documentation, Release 2.7.0-rc2

• list – A pointer on the list to affect

• node – A pointer on the node to prepend

static inline void sys_slist_append(sys_slist_t *list, sys_snode_t *node)

Append a node to the given list.

This and other sys_slist_*() functions are not thread safe.

Parameters

• list – A pointer on the list to affect

• node – A pointer on the node to append

static inline void sys_slist_append_list(sys_slist_t *list, void *head, void *tail)

Append a list to the given list.

Append a singly-linked, NULL-terminated list consisting of nodes containing the pointer to the
next node as the first element of a node, to list. This and other sys_slist_*() functions are not
thread safe.

FIXME: Why are the element parameters void *?

Parameters

• list – A pointer on the list to affect

• head – A pointer to the first element of the list to append

• tail – A pointer to the last element of the list to append

static inline void sys_slist_merge_slist(sys_slist_t *list, sys_slist_t *list_to_append)

merge two slists, appending the second one to the first

When the operation is completed, the appending list is empty. This and other sys_slist_*()
functions are not thread safe.

Parameters

• list – A pointer on the list to affect

• list_to_append – A pointer to the list to append.

static inline void sys_slist_insert(sys_slist_t *list, sys_snode_t *prev, sys_snode_t *node)

Insert a node to the given list.

This and other sys_slist_*() functions are not thread safe.

Parameters

• list – A pointer on the list to affect

• prev – A pointer on the previous node

• node – A pointer on the node to insert

static inline sys_snode_t *sys_slist_get_not_empty(sys_slist_t *list)

Fetch and remove the first node of the given list.

List must be known to be non-empty. This and other sys_slist_*() functions are not thread
safe.

Parameters

• list – A pointer on the list to affect

Returns A pointer to the first node of the list

826 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline sys_snode_t *sys_slist_get(sys_slist_t *list)

Fetch and remove the first node of the given list.

This and other sys_slist_*() functions are not thread safe.

Parameters

• list – A pointer on the list to affect

Returns A pointer to the first node of the list (or NULL if empty)

static inline void sys_slist_remove(sys_slist_t *list, sys_snode_t *prev_node, sys_snode_t
*node)

Remove a node.

This and other sys_slist_*() functions are not thread safe.

Parameters

• list – A pointer on the list to affect

• prev_node – A pointer on the previous node (can be NULL, which means the
node is the list’s head)

• node – A pointer on the node to remove

static inline bool sys_slist_find_and_remove(sys_slist_t *list, sys_snode_t *node)

Find and remove a node from a list.

This and other sys_slist_*() functions are not thread safe.

Parameters

• list – A pointer on the list to affect

• node – A pointer on the node to remove from the list

Returns true if node was removed

Flagged List API Reference

group flagged-single-linked-list_apis

Defines

SYS_SFLIST_FOR_EACH_NODE(__sl, __sn)

Provide the primitive to iterate on a list Note: the loop is unsafe and thus __sn should not be
removed.

User MUST add the loop statement curly braces enclosing its own code:

SYS_SFLIST_FOR_EACH_NODE(l, n) {
<user code>

}

This and other SYS_SFLIST_*() macros are not thread safe.

Parameters

• __sl – A pointer on a sys_sflist_t to iterate on

• __sn – A sys_sfnode_t pointer to peek each node of the list

7.18. Data Structures 827

Zephyr Project Documentation, Release 2.7.0-rc2

SYS_SFLIST_ITERATE_FROM_NODE(__sl, __sn)

Provide the primitive to iterate on a list, from a node in the list Note: the loop is unsafe and
thus __sn should not be removed.

User MUST add the loop statement curly braces enclosing its own code:

SYS_SFLIST_ITERATE_FROM_NODE(l, n) {
<user code>

}

Like SYS_SFLIST_FOR_EACH_NODE(), but __dn already contains a node in the list where to
start searching for the next entry from. If NULL, it starts from the head.

This and other SYS_SFLIST_*() macros are not thread safe.

Parameters

• __sl – A pointer on a sys_sflist_t to iterate on

• __sn – A sys_sfnode_t pointer to peek each node of the list it contains the
starting node, or NULL to start from the head

SYS_SFLIST_FOR_EACH_NODE_SAFE(__sl, __sn, __sns)

Provide the primitive to safely iterate on a list Note: __sn can be removed, it will not break
the loop.

User MUST add the loop statement curly braces enclosing its own code:

SYS_SFLIST_FOR_EACH_NODE_SAFE(l, n, s) {
<user code>

}

This and other SYS_SFLIST_*() macros are not thread safe.

Parameters

• __sl – A pointer on a sys_sflist_t to iterate on

• __sn – A sys_sfnode_t pointer to peek each node of the list

• __sns – A sys_sfnode_t pointer for the loop to run safely

SYS_SFLIST_CONTAINER(__ln, __cn, __n)

SYS_SFLIST_PEEK_HEAD_CONTAINER(__sl, __cn, __n)

SYS_SFLIST_PEEK_TAIL_CONTAINER(__sl, __cn, __n)

SYS_SFLIST_PEEK_NEXT_CONTAINER(__cn, __n)

SYS_SFLIST_FOR_EACH_CONTAINER(__sl, __cn, __n)

Provide the primitive to iterate on a list under a container Note: the loop is unsafe and thus
__cn should not be detached.

User MUST add the loop statement curly braces enclosing its own code:

SYS_SFLIST_FOR_EACH_CONTAINER(l, c, n) {
<user code>

}

Parameters

• __sl – A pointer on a sys_sflist_t to iterate on

• __cn – A pointer to peek each entry of the list

• __n – The field name of sys_sfnode_t within the container struct

828 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

SYS_SFLIST_FOR_EACH_CONTAINER_SAFE(__sl, __cn, __cns, __n)

Provide the primitive to safely iterate on a list under a container Note: __cn can be detached,
it will not break the loop.

User MUST add the loop statement curly braces enclosing its own code:

SYS_SFLIST_FOR_EACH_NODE_SAFE(l, c, cn, n) {
<user code>

}

Parameters

• __sl – A pointer on a sys_sflist_t to iterate on

• __cn – A pointer to peek each entry of the list

• __cns – A pointer for the loop to run safely

• __n – The field name of sys_sfnode_t within the container struct

SYS_SFLIST_STATIC_INIT(ptr_to_list)

SYS_SFLIST_FLAGS_MASK

Functions

static inline void sys_sflist_init(sys_sflist_t *list)

Initialize a list.

Parameters

• list – A pointer on the list to initialize

static inline uint8_t sys_sfnode_flags_get(sys_sfnode_t *node)

Fetch flags value for a particular sfnode.

Parameters

• node – A pointer to the node to fetch flags from

Returns The value of flags, which will be between 0 and 3

static inline sys_sfnode_t *sys_sflist_peek_head(sys_sflist_t *list)

Peek the first node from the list.

Parameters

• list – A point on the list to peek the first node from

Returns A pointer on the first node of the list (or NULL if none)

static inline sys_sfnode_t *sys_sflist_peek_tail(sys_sflist_t *list)

Peek the last node from the list.

Parameters

• list – A point on the list to peek the last node from

Returns A pointer on the last node of the list (or NULL if none)

7.18. Data Structures 829

Zephyr Project Documentation, Release 2.7.0-rc2

static inline void sys_sfnode_init(sys_sfnode_t *node, uint8_t flags)

Initialize an sflist node.

Set an initial flags value for this slist node, which can be a value between 0 and 3. These
flags will persist even if the node is moved around within a list, removed, or transplanted to
a different slist.

This is ever so slightly faster than sys_sfnode_flags_set() and should only be used on a node
that hasn’t been added to any list.

Parameters

• node – A pointer to the node to set the flags on

• flags – A value between 0 and 3 to set the flags value

static inline void sys_sfnode_flags_set(sys_sfnode_t *node, uint8_t flags)

Set flags value for an sflist node.

Set a flags value for this slist node, which can be a value between 0 and 3. These flags will
persist even if the node is moved around within a list, removed, or transplanted to a different
slist.

Parameters

• node – A pointer to the node to set the flags on

• flags – A value between 0 and 3 to set the flags value

static inline bool sys_sflist_is_empty(sys_sflist_t *list)

Test if the given list is empty.

Parameters

• list – A pointer on the list to test

Returns a boolean, true if it’s empty, false otherwise

static inline sys_sfnode_t *sys_sflist_peek_next_no_check(sys_sfnode_t *node)

Peek the next node from current node, node is not NULL.

Faster then sys_sflist_peek_next() if node is known not to be NULL.

Parameters

• node – A pointer on the node where to peek the next node

Returns a pointer on the next node (or NULL if none)

static inline sys_sfnode_t *sys_sflist_peek_next(sys_sfnode_t *node)

Peek the next node from current node.

Parameters

• node – A pointer on the node where to peek the next node

Returns a pointer on the next node (or NULL if none)

static inline void sys_sflist_prepend(sys_sflist_t *list, sys_sfnode_t *node)

Prepend a node to the given list.

This and other sys_sflist_*() functions are not thread safe.

Parameters

• list – A pointer on the list to affect

• node – A pointer on the node to prepend

830 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline void sys_sflist_append(sys_sflist_t *list, sys_sfnode_t *node)

Append a node to the given list.

This and other sys_sflist_*() functions are not thread safe.

Parameters

• list – A pointer on the list to affect

• node – A pointer on the node to append

static inline void sys_sflist_append_list(sys_sflist_t *list, void *head, void *tail)

Append a list to the given list.

Append a singly-linked, NULL-terminated list consisting of nodes containing the pointer to the
next node as the first element of a node, to list. This and other sys_sflist_*() functions are not
thread safe.

FIXME: Why are the element parameters void *?

Parameters

• list – A pointer on the list to affect

• head – A pointer to the first element of the list to append

• tail – A pointer to the last element of the list to append

static inline void sys_sflist_merge_sflist(sys_sflist_t *list, sys_sflist_t *list_to_append)

merge two sflists, appending the second one to the first

When the operation is completed, the appending list is empty. This and other sys_sflist_*()
functions are not thread safe.

Parameters

• list – A pointer on the list to affect

• list_to_append – A pointer to the list to append.

static inline void sys_sflist_insert(sys_sflist_t *list, sys_sfnode_t *prev, sys_sfnode_t *node)

Insert a node to the given list.

This and other sys_sflist_*() functions are not thread safe.

Parameters

• list – A pointer on the list to affect

• prev – A pointer on the previous node

• node – A pointer on the node to insert

static inline sys_sfnode_t *sys_sflist_get_not_empty(sys_sflist_t *list)

Fetch and remove the first node of the given list.

List must be known to be non-empty. This and other sys_sflist_*() functions are not thread
safe.

Parameters

• list – A pointer on the list to affect

Returns A pointer to the first node of the list

static inline sys_sfnode_t *sys_sflist_get(sys_sflist_t *list)

Fetch and remove the first node of the given list.

This and other sys_sflist_*() functions are not thread safe.

Parameters

7.18. Data Structures 831

Zephyr Project Documentation, Release 2.7.0-rc2

• list – A pointer on the list to affect

Returns A pointer to the first node of the list (or NULL if empty)

static inline void sys_sflist_remove(sys_sflist_t *list, sys_sfnode_t *prev_node, sys_sfnode_t
*node)

Remove a node.

This and other sys_sflist_*() functions are not thread safe.

Parameters

• list – A pointer on the list to affect

• prev_node – A pointer on the previous node (can be NULL, which means the
node is the list’s head)

• node – A pointer on the node to remove

static inline bool sys_sflist_find_and_remove(sys_sflist_t *list, sys_sfnode_t *node)
Find and remove a node from a list.

This and other sys_sflist_*() functions are not thread safe.

Parameters

• list – A pointer on the list to affect

• node – A pointer on the node to remove from the list

Returns true if node was removed

7.18.2 Double-linked List

Similar to the single-linked list in many respects, Zephyr includes a double-linked implementation. This
provides the same algorithmic behavior for all the existing slist operations, but also allows for constant-
time removal and insertion (at all points: before or after the head, tail or any internal node). To do this,
the list stores two pointers per node, and thus has somewhat higher runtime code and memory space
needs.

A sys_dlist_t struct may be instantiated by the user in any accessible memory. It must be initialized
with sys_dlist_init() or SYS_DLIST_STATIC_INIT before use. The sys_dnode_t struct is expected
to be provided by the user for any nodes addded to the list (typically embedded within the struct to be
tracked, as described above). It must be initialized in zeroed/bss memory or with sys_dnode_init()
before use.

Primitive operations may retrieve the head/tail of a list and the next/prev pointers of
a node with sys_dlist_peek_head() , sys_dlist_peek_tail() , sys_dlist_peek_next() and
sys_dlist_peek_prev() . These can all return NULL where appropriate (i.e. for empty lists, or nodes
at the endpoints of the list).

A dlist can be modified in constant time by removing a node with sys_dlist_remove() , by adding a
node to the head or tail of a list with sys_dlist_prepend() and sys_dlist_append() , or by inserting
a node before an existing node with sys_dlist_insert() .

As for slist, each node in a dlist can be processed in a natural code block style using
SYS_DLIST_FOR_EACH_NODE . This macro also exists in a “FROM_NODE” form which allows for iterat-
ing from a known starting point, a “SAFE” variant that allows for removing the node being inspected
within the code block, a “CONTAINER” style that provides the pointer to a containing struct instead of
the raw node, and a “CONTAINER_SAFE” variant that provides both properties.

Convenience utilities provided by dlist include sys_dlist_insert_at() , which inserts a node that lin-
early searches through a list to find the right insertion point, which is provided by the user as a C callback
function pointer, and sys_dnode_is_linked() , which will affirmatively return whether or not a node
is currently linked into a dlist or not (via an implementation that has zero overhead vs. the normal list
processing).

832 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Double-linked List Internals

Internally, the dlist implementation is minimal: the sys_dlist_t struct contains “head” and “tail”
pointer fields, the sys_dnode_t contains “prev” and “next” pointers, and no other data is stored. But in
practice the two structs are internally identical, and the list struct is inserted as a node into the list itself.
This allows for a very clean symmetry of operations:

• An empty list has backpointers to itself in the list struct, which can be trivially detected.

• The head and tail of the list can be detected by comparing the prev/next pointers of a node vs. the
list struct address.

• An insertion or deletion never needs to check for the special case of inserting at the head or tail.
There are never any NULL pointers within the list to be avoided. Exactly the same operations are
run, without tests or branches, for all list modification primitives.

Effectively, a dlist of N nodes can be thought of as a “ring” of “N+1” nodes, where one node represents
the list tracking struct.

Fig. 5: A dlist containing three elements. Note that the list struct appears as a fourth “element” in the
list.

Fig. 6: An dlist containing just one element.

Doubly-linked List API Reference

group doubly-linked-list_apis

Defines

7.18. Data Structures 833

Zephyr Project Documentation, Release 2.7.0-rc2

Fig. 7: An empty dlist.

SYS_DLIST_FOR_EACH_NODE(__dl, __dn)

Provide the primitive to iterate on a list Note: the loop is unsafe and thus __dn should not be
removed.

User MUST add the loop statement curly braces enclosing its own code:

SYS_DLIST_FOR_EACH_NODE(l, n) {
<user code>

}

This and other SYS_DLIST_*() macros are not thread safe.

Parameters

• __dl – A pointer on a sys_dlist_t to iterate on

• __dn – A sys_dnode_t pointer to peek each node of the list

SYS_DLIST_ITERATE_FROM_NODE(__dl, __dn)

Provide the primitive to iterate on a list, from a node in the list Note: the loop is unsafe and
thus __dn should not be removed.

User MUST add the loop statement curly braces enclosing its own code:

SYS_DLIST_ITERATE_FROM_NODE(l, n) {
<user code>

}

Like SYS_DLIST_FOR_EACH_NODE(), but __dn already contains a node in the list where to
start searching for the next entry from. If NULL, it starts from the head.

This and other SYS_DLIST_*() macros are not thread safe.

Parameters

• __dl – A pointer on a sys_dlist_t to iterate on

• __dn – A sys_dnode_t pointer to peek each node of the list; it contains the
starting node, or NULL to start from the head

834 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

SYS_DLIST_FOR_EACH_NODE_SAFE(__dl, __dn, __dns)

Provide the primitive to safely iterate on a list Note: __dn can be removed, it will not break
the loop.

User MUST add the loop statement curly braces enclosing its own code:

SYS_DLIST_FOR_EACH_NODE_SAFE(l, n, s) {
<user code>

}

This and other SYS_DLIST_*() macros are not thread safe.

Parameters

• __dl – A pointer on a sys_dlist_t to iterate on

• __dn – A sys_dnode_t pointer to peek each node of the list

• __dns – A sys_dnode_t pointer for the loop to run safely

SYS_DLIST_CONTAINER(__dn, __cn, __n)

SYS_DLIST_PEEK_HEAD_CONTAINER(__dl, __cn, __n)

SYS_DLIST_PEEK_NEXT_CONTAINER(__dl, __cn, __n)

SYS_DLIST_FOR_EACH_CONTAINER(__dl, __cn, __n)

Provide the primitive to iterate on a list under a container Note: the loop is unsafe and thus
__cn should not be detached.

User MUST add the loop statement curly braces enclosing its own code:

SYS_DLIST_FOR_EACH_CONTAINER(l, c, n) {
<user code>

}

Parameters

• __dl – A pointer on a sys_dlist_t to iterate on

• __cn – A pointer to peek each entry of the list

• __n – The field name of sys_dnode_t within the container struct

SYS_DLIST_FOR_EACH_CONTAINER_SAFE(__dl, __cn, __cns, __n)

Provide the primitive to safely iterate on a list under a container Note: __cn can be detached,
it will not break the loop.

User MUST add the loop statement curly braces enclosing its own code:

SYS_DLIST_FOR_EACH_CONTAINER_SAFE(l, c, cn, n) {
<user code>

}

Parameters

• __dl – A pointer on a sys_dlist_t to iterate on

• __cn – A pointer to peek each entry of the list

• __cns – A pointer for the loop to run safely

• __n – The field name of sys_dnode_t within the container struct

SYS_DLIST_STATIC_INIT(ptr_to_list)

7.18. Data Structures 835

Zephyr Project Documentation, Release 2.7.0-rc2

Typedefs

typedef struct _dnode sys_dlist_t

typedef struct _dnode sys_dnode_t

Functions

static inline void sys_dlist_init(sys_dlist_t *list)

initialize list to its empty state

Parameters

• list – the doubly-linked list

Returns N/A

static inline void sys_dnode_init(sys_dnode_t *node)

initialize node to its state when not in a list

Parameters

• node – the node

Returns N/A

static inline bool sys_dnode_is_linked(const sys_dnode_t *node)

check if a node is a member of any list

Parameters

• node – the node

Returns true if node is linked into a list, false if it is not

static inline bool sys_dlist_is_head(sys_dlist_t *list, sys_dnode_t *node)

check if a node is the list’s head

Parameters

• list – the doubly-linked list to operate on

• node – the node to check

Returns true if node is the head, false otherwise

static inline bool sys_dlist_is_tail(sys_dlist_t *list, sys_dnode_t *node)

check if a node is the list’s tail

Parameters

• list – the doubly-linked list to operate on

• node – the node to check

Returns true if node is the tail, false otherwise

static inline bool sys_dlist_is_empty(sys_dlist_t *list)

check if the list is empty

Parameters

• list – the doubly-linked list to operate on

Returns true if empty, false otherwise

836 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline bool sys_dlist_has_multiple_nodes(sys_dlist_t *list)

check if more than one node present

This and other sys_dlist_*() functions are not thread safe.

Parameters

• list – the doubly-linked list to operate on

Returns true if multiple nodes, false otherwise

static inline sys_dnode_t *sys_dlist_peek_head(sys_dlist_t *list)

get a reference to the head item in the list

Parameters

• list – the doubly-linked list to operate on

Returns a pointer to the head element, NULL if list is empty

static inline sys_dnode_t *sys_dlist_peek_head_not_empty(sys_dlist_t *list)

get a reference to the head item in the list

The list must be known to be non-empty.

Parameters

• list – the doubly-linked list to operate on

Returns a pointer to the head element

static inline sys_dnode_t *sys_dlist_peek_next_no_check(sys_dlist_t *list, sys_dnode_t *node)

get a reference to the next item in the list, node is not NULL

Faster than sys_dlist_peek_next() if node is known not to be NULL.

Parameters

• list – the doubly-linked list to operate on

• node – the node from which to get the next element in the list

Returns a pointer to the next element from a node, NULL if node is the tail

static inline sys_dnode_t *sys_dlist_peek_next(sys_dlist_t *list, sys_dnode_t *node)

get a reference to the next item in the list

Parameters

• list – the doubly-linked list to operate on

• node – the node from which to get the next element in the list

Returns a pointer to the next element from a node, NULL if node is the tail or NULL
(when node comes from reading the head of an empty list).

static inline sys_dnode_t *sys_dlist_peek_prev_no_check(sys_dlist_t *list, sys_dnode_t *node)

get a reference to the previous item in the list, node is not NULL

Faster than sys_dlist_peek_prev() if node is known not to be NULL.

Parameters

• list – the doubly-linked list to operate on

• node – the node from which to get the previous element in the list

Returns a pointer to the previous element from a node, NULL if node is the tail

7.18. Data Structures 837

Zephyr Project Documentation, Release 2.7.0-rc2

static inline sys_dnode_t *sys_dlist_peek_prev(sys_dlist_t *list, sys_dnode_t *node)

get a reference to the previous item in the list

Parameters

• list – the doubly-linked list to operate on

• node – the node from which to get the previous element in the list

Returns a pointer to the previous element from a node, NULL if node is the tail or
NULL (when node comes from reading the head of an empty list).

static inline sys_dnode_t *sys_dlist_peek_tail(sys_dlist_t *list)

get a reference to the tail item in the list

Parameters

• list – the doubly-linked list to operate on

Returns a pointer to the tail element, NULL if list is empty

static inline void sys_dlist_append(sys_dlist_t *list, sys_dnode_t *node)

add node to tail of list

This and other sys_dlist_*() functions are not thread safe.

Parameters

• list – the doubly-linked list to operate on

• node – the element to append

Returns N/A

static inline void sys_dlist_prepend(sys_dlist_t *list, sys_dnode_t *node)

add node to head of list

This and other sys_dlist_*() functions are not thread safe.

Parameters

• list – the doubly-linked list to operate on

• node – the element to append

Returns N/A

static inline void sys_dlist_insert(sys_dnode_t *successor, sys_dnode_t *node)

Insert a node into a list.

Insert a node before a specified node in a dlist.

Parameters

• successor – the position before which “node” will be inserted

• node – the element to insert

static inline void sys_dlist_insert_at(sys_dlist_t *list, sys_dnode_t *node, int
(*cond)(sys_dnode_t *node, void *data), void *data)

insert node at position

Insert a node in a location depending on a external condition. The cond() function checks if
the node is to be inserted before the current node against which it is checked. This and other
sys_dlist_*() functions are not thread safe.

Parameters

• list – the doubly-linked list to operate on

• node – the element to insert

838 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• cond – a function that determines if the current node is the correct insert point

• data – parameter to cond()

Returns N/A

static inline void sys_dlist_remove(sys_dnode_t *node)

remove a specific node from a list

The list is implicit from the node. The node must be part of a list. This and other sys_dlist_*()
functions are not thread safe.

Parameters

• node – the node to remove

Returns N/A

static inline sys_dnode_t *sys_dlist_get(sys_dlist_t *list)

get the first node in a list

This and other sys_dlist_*() functions are not thread safe.

Parameters

• list – the doubly-linked list to operate on

Returns the first node in the list, NULL if list is empty

7.18.3 Multi Producer Single Consumer Packet Buffer

A Multi Producer Single Consumer Packet Buffer (MPSC_PBUF) is a circular buffer, whose contents are
stored in first-in-first-out order. Variable size packets are stored in the buffer. Packet buffer works under
assumption that there is a single context that consumes the data. However, it is possible that another
context may interfere to flush the data and never come back (panic case). Packet is produced in two
steps: first requested amount of data is allocated, producer fills the data and commits it. Consuming a
packet is also performed in two steps: consumer claims the packet, gets pointer to it and length and later
on packet is freed. This approach reduces memory copying.

A MPSC Packet Buffer has the following key properties:

• Allocate, commit scheme used for packet producing.

• Claim, free scheme used for packet consuming.

• Allocator ensures that continue memory of requested length is allocated.

• Following policies can be applied when requested space cannot be allocated:

– Overwrite - oldest entries are dropped until requested amount of memory can be allocated.
For each dropped packet user callback is called.

– No overwrite - When requested amount of space cannot be allocated, allocation fails.

• Dedicated, optimized API for storing short packets.

• Allocation with timeout.

Internals

Each packet in the buffer contains MPSC_PBUF specific header which is used for internal management.
Header consists of 2 bit flags. In order to optimize memory usage, header can be added on top of the user
header using MPSC_PBUF_HDR and remaining bits in the first word can be application specific. Header
consists of following flags:

• valid - bit set to one when packet contains valid user packet

7.18. Data Structures 839

Zephyr Project Documentation, Release 2.7.0-rc2

• busy - bit set when packet is being consumed (claimed but not free)

Header state:

valid busy description
0 0 space is free
1 0 valid packet
1 1 claimed valid packet
0 1 internal skip packet

Packet buffer space contains free space, valid user packets and internal skip packets. Internal skip packets
indicates padding, e.g. at the of the buffer.

Allocation Using pairs for read and write indexes, available space is determined. If space can be
allocated, temporary write index is moved and pointer to a space witing buffer is returned. Packet
header is reset. If allocation required wrapping of the write index, a skip packet is added to the end of
buffer. If space cannot be allocated and overwrite is disabled then NULL pointer is returned or context
blocks if allocation was with timeout.

Allocation with overwrite If overwrite is enabled, oldest packets are dropped until requested amount
of space can be allocated. When packets are dropped busy flag is checked in the header to ensure that
currently consumed packet is not overwritten. In that case, skip packet is added before busy packet
and packets following the busy packet are dropped. When busy packet is being freed, such situation is
detected and packet is converted to skip packet to avoid double processing.

Usage

Packet header definition Packet header details can be found in include/sys/mpsc_packet.h. API func-
tions can be found in include/sys/mpsc_pbuf.h. Headers are split to avoid include spam when declaring
the packet.

User header structure must start with internal header:

include <sys/mpsc_packet.h>

struct foo_header {
MPSC_PBUF_HDR;
uint32_t length: 32 - MPSC_PBUF_HDR_BITS;

};

Packet buffer configuration Configuration structure contains buffer details, configuration flags and
callbacks. Following callbacks are used by the packet buffer:

• Drop notification - callback called whenever a packet is dropped due to overwrite.

• Get packet length - callback to determine packet length

Packet producing Standard, two step method:

foo_packet *packet = mpsc_pbuf_alloc(buffer, len, K_NO_WAIT);

fill_data(packet);

mpsc_pbuf_commit(buffer, packet);

840 Chapter 7. API Reference

https://github.com/zephyrproject-rtos/zephyr/blob/main/include/sys/mpsc_packet.h
https://github.com/zephyrproject-rtos/zephyr/blob/main/include/sys/mpsc_pbuf.h

Zephyr Project Documentation, Release 2.7.0-rc2

Performance optimized storing of small packets:

• 32 bit word packet

• 32 bit word with pointer packet

Note that since packets are written by value, they should already contain valid bit set in the header.

mpsc_pbuf_put_word(buffer, data);
mpsc_pbuf_put_word_ext(buffer, data, ptr);

Packet consuming Two step method:

foo_packet *packet = mpsc_pbuf_claim(buffer);

process(packet);

mpsc_pbuf_free(buffer, packet);

7.18.4 Balanced Red/Black Tree

For circumstances where sorted containers may become large at runtime, a list becomes problematic due
to algorithmic costs of searching it. For these situations, Zephyr provides a balanced tree implementation
which has runtimes on search and removal operations bounded at O(log2(N)) for a tree of size N. This
is implemented using a conventional red/black tree as described by multiple academic sources.

The rbtree tracking struct for a rbtree may be initialized anywhere in user accessible memory. It should
contain only zero bits before first use. No specific initialization API is needed or required.

Unlike a list, where position is explicit, the ordering of nodes within an rbtree must be provided as a pred-
icate function by the user. A function of type rb_lessthan_t() should be assigned to the lessthan_fn
field of the :c:struct`rbtree` struct before any tree operations are attempted. This function should, as its
name suggests, return a boolean True value if the first node argument is “less than” the second in the
ordering desired by the tree. Note that “equal” is not allowed, nodes within a tree must have a single
fixed order for the algorithm to work correctly.

As with the slist and dlist containers, nodes within an rbtree are represented as a rbnode structure which
exists in user-managed memory, typically embedded within the the data structure being tracked in the
tree. Unlike the list code, the data within an rbnode is entirely opaque. It is not possible for the user to
extract the binary tree topology and “manually” traverse the tree as it is for a list.

Nodes can be inserted into a tree with rb_insert() and removed with rb_remove() . Access to the
“first” and “last” nodes within a tree (in the sense of the order defined by the comparison function)
is provided by rb_get_min() and rb_get_max() . There is also a predicate, rb_contains() , which
returns a boolean True if the provided node pointer exists as an element within the tree. As described
above, all of these routines are guaranteed to have at most log time complexity in the size of the tree.

There are two mechanisms provided for enumerating all elements in an rbtree. The first, rb_walk() , is a
simple callback implementation where the caller specifies a C function pointer and an untyped argument
to be passed to it, and the tree code calls that function for each node in order. This has the advantage of
a very simple implementation, at the cost of a somewhat more cumbersome API for the user (not unlike
ISO C’s bsearch() routine). It is a recursive implementation, however, and is thus not always available
in environments that forbid the use of unbounded stack techniques like recursion.

There is also a RB_FOR_EACH iterator provided, which, like the similar APIs for the lists, works to iterate
over a list in a more natural way, using a nested code block instead of a callback. It is also nonrecursive,
though it requires log-sized space on the stack by default (however, this can be configured to use a
fixed/maximally size buffer instead where needed to avoid the dynamic allocation). As with the lists, this
is also available in a RB_FOR_EACH_CONTAINER variant which enumerates using a pointer to a container
field and not the raw node pointer.

7.18. Data Structures 841

Zephyr Project Documentation, Release 2.7.0-rc2

Tree Internals

As described, the Zephyr rbtree implementation is a conventional red/black tree as described pervasively
in academic sources. Low level details about the algorithm are out of scope for this document, as they
match existing conventions. This discussion will be limited to details notable or specific to the Zephyr
implementation.

The core invariant guaranteed by the tree is that the path from the root of the tree to any leaf is no more
than twice as long as the path to any other leaf. This is achieved by associating one bit of “color” with
each node, either red or black, and enforcing a rule that no red child can be a child of another red child
(i.e. that the number of black nodes on any path to the root must be the same, and that no more than
that number of “extra” red nodes may be present). This rule is enforced by a set of rotation rules used to
“fix” trees following modification.

Fig. 8: A maximally unbalanced rbtree with a black height of two. No more nodes can be added under-
neath the rightmost node without rebalancing.

These rotations are conceptually implemented on top of a primitive that “swaps” the position of one node
with another in the list. Typical implementations effect this by simply swapping the nodes internal “data”
pointers, but because the Zephyr rbnode is intrusive, that cannot work. Zephyr must include somewhat
more elaborate code to handle the edge cases (for example, one swapped node can be the root, or the
two may already be parent/child).

The rbnode struct for a Zephyr rbtree contains only two pointers, representing the “left”, and “right”
children of a node within the binary tree. Traversal of a tree for rebalancing following modification,
however, routinely requires the ability to iterate “upwards” from a node as well. It is very common for
red/black trees in the industry to store a third “parent” pointer for this purpose. Zephyr avoids this
requirement by building a “stack” of node pointers locally as it traverses downward thorugh the tree and
updating it appropriately as modifications are made. So a Zephyr rbtree can be implemented with no
more runtime storage overhead than a dlist.

842 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

These properties, of a balanced tree data structure that works with only two pointers of data per node
and that works without any need for a memory allocation API, are quite rare in the industry and are
somewhat unique to Zephyr.

Red/Black Tree API Reference

group rbtree_apis

Defines

RB_FOR_EACH(tree, node)

Walk a tree in-order without recursing.

While rb_walk() is very simple, recursing on the C stack can be clumsy for some purposes and
on some architectures wastes significant memory in stack frames. This macro implements a
non-recursive “foreach” loop that can iterate directly on the tree, at a moderate cost in code
size.

Note that the resulting loop is not safe against modifications to the tree. Changes to the
tree structure during the loop will produce incorrect results, as nodes may be skipped or
duplicated. Unlike linked lists, no _SAFE variant exists.

Note also that the macro expands its arguments multiple times, so they should not be expres-
sions with side effects.

Parameters

• tree – A pointer to a struct rbtree to walk

• node – The symbol name of a local struct rbnode* variable to use as the iterator

RB_FOR_EACH_CONTAINER(tree, node, field)

Loop over rbtree with implicit container field logic.

As for RB_FOR_EACH(), but “node” can have an arbitrary type containing a struct rbnode.

Parameters

• tree – A pointer to a struct rbtree to walk

• node – The symbol name of a local iterator

• field – The field name of a struct rbnode inside node

Typedefs

typedef bool (*rb_lessthan_t)(struct rbnode *a, struct rbnode *b)

Red/black tree comparison predicate.

Compares the two nodes and returns true if node A is strictly less than B according to the
tree’s sorting criteria, false otherwise.

Note that during insert, the new node being inserted will always be “A”, where “B” is the
existing node within the tree against which it is being compared. This trait can be used
(with care!) to implement “most/least recently added” semantics between nodes which would
otherwise compare as equal.

typedef void (*rb_visit_t)(struct rbnode *node, void *cookie)

7.18. Data Structures 843

Zephyr Project Documentation, Release 2.7.0-rc2

Functions

void rb_insert(struct rbtree *tree, struct rbnode *node)

Insert node into tree.

void rb_remove(struct rbtree *tree, struct rbnode *node)

Remove node from tree.

static inline struct rbnode *rb_get_min(struct rbtree *tree)

Returns the lowest-sorted member of the tree.

static inline struct rbnode *rb_get_max(struct rbtree *tree)

Returns the highest-sorted member of the tree.

bool rb_contains(struct rbtree *tree, struct rbnode *node)

Returns true if the given node is part of the tree.

Note that this does not internally dereference the node pointer (though the tree’s lessthan
callback might!), it just tests it for equality with items in the tree. So it’s feasible to use this to
implement a “set” construct by simply testing the pointer value itself.

static inline void rb_walk(struct rbtree *tree, rb_visit_t visit_fn, void *cookie)

Walk/enumerate a rbtree.

Very simple recursive enumeration. Low code size, but requiring a separate function can be
clumsy for the user and there is no way to break out of the loop early. See RB_FOR_EACH for
an iterative implementation.

struct rbtree

#include <rb.h>

7.18.5 Ring Buffers

A ring buffer is a circular buffer, whose contents are stored in first-in-first-out order.

For circumstances where an application needs to implement asynchronous “streaming” copying of data,
Zephyr provides a struct ring_buf abstraction to manage copies of such data in and out of a shared
buffer of memory.

Two content data modes are supported:

• Data item mode: Multiple 32-bit word data items with metadata can be enqueued and dequeued
from the ring buffer in chunks of up to 1020 bytes. Each data item also has two associated metadata
values: a type identifier and a 16-bit integer value, both of which are application-specific.

• Byte mode: raw bytes can be enqueued and dequeued.

While the underlying data structure is the same, it is not legal to mix these two modes on a single ring
buffer instance. A ring buffer initialized with a byte count must be used only with the “bytes” API, one
initialized with a word count must use the “items” calls.

• Concepts

– Data item mode

– Byte mode

– Concurrency

– Internal Operation

• Implementation

844 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

– Defining a Ring Buffer

– Enqueuing Data

– Retrieving Data

• Configuration Options

• API Reference

Concepts

Any number of ring buffers can be defined (limited only by available RAM). Each ring buffer is referenced
by its memory address.

A ring buffer has the following key properties:

• A data buffer of 32-bit words or bytes. The data buffer contains the data items or raw bytes that
have been added to the ring buffer but not yet removed.

• A data buffer size, measured in 32-bit words or bytes. This governs the maximum amount of data
(including metadata values) the ring buffer can hold.

A ring buffer must be initialized before it can be used. This sets its data buffer to empty.

A struct ring_buf may be placed anywhere in user-accessible memory, and must be initialized with
ring_buf_init() before use. This must be provided a region of user-controlled memory for use as the
buffer itself. Note carefully that the units of the size of the buffer passed change (either bytes or words)
depending on how the ring buffer will be used later. Macros for combining these steps in a single static
declaration exist for convenience. RING_BUF_DECLARE will declare and statically initialize a ring buffer
with a specified byte count, where RING_BUF_ITEM_DECLARE_SIZE will declare and statically initialize
a buffer with a given count of 32 bit words. RING_BUF_ITEM_DECLARE_POW2 can be used to initialize
an items-mode buffer with a memory region guaranteed to be a power of two, which enables various
optimizations internal to the implementation. No power-of-two initialization is available for bytes-mode
ring buffers.

“Bytes” data may be copied into the ring buffer using ring_buf_put() , passing a data pointer and
byte count. These bytes will be copied into the buffer in order, as many as will fit in the allocated
buffer. The total number of bytes copied (which may be fewer than provided) will be returned. Likewise
ring_buf_get() will copy bytes out of the ring buffer in the order that they were written, into a user-
provided buffer, returning the number of bytes that were transferred.

To avoid multiply-copied-data situations, a “claim” API exists for byte mode. ring_buf_put_claim()
takes a byte size value from the user and returns a pointer to memory internal to the ring buffer that
can be used to receive those bytes, along with a size of the contiguous internal region (which may be
smaller than requested). The user can then copy data into that region at a later time without assembling
all the bytes in a single region first. When complete, ring_buf_put_finish() can be used to signal the
buffer that the transfer is complete, passing the number of bytes actually transferred. At this point a new
transfer can be initiated. Similarly, ring_buf_get_claim() returns a pointer to internal ring buffer data
from which the user can read without making a verbatim copy, and ring_buf_get_finish() signals the
buffer with how many bytes have been consumed and allows for a new transfer to begin.

“Items” mode works similarly to bytes mode, except that all transfers are in units of 32 bit words
and all memory is assumed to be aligned on 32 bit boundaries. The write and read operations
are ring_buf_item_put() and ring_buf_item_get() , and work otherwise identically to the bytes
mode APIs. There no “claim” API provided for items mode. One important difference is that unlike
ring_buf_put() , ring_buf_item_put() will not do a partial transfer; it will return an error in the case
where the provided data does not fit in its entirety.

The user can manage the capacity of a ring buffer without modifying it using the ring_buf_space_get()
call (which returns a value of either bytes or items depending on how the ring buffer has been used), or
by testing the ring_buf_is_empty() predicate.

7.18. Data Structures 845

Zephyr Project Documentation, Release 2.7.0-rc2

Finally, a ring_buf_reset() call exists to immediately empty a ring buffer, discarding the tracking of
any bytes or items already written to the buffer. It does not modify the memory contents of the buffer
itself, however.

Data item mode A data item mode ring buffer instance is declared using
RING_BUF_ITEM_DECLARE_POW2() or RING_BUF_ITEM_DECLARE_SIZE() and accessed using
ring_buf_item_put() and ring_buf_item_get() .

A ring buffer data item is an array of 32-bit words from 0 to 1020 bytes in length. When a data item is
enqueued (ring_buf_item_put()) its contents are copied to the data buffer, along with its associated
metadata values (which occupy one additional 32-bit word). If the ring buffer has insufficient space to
hold the new data item the enqueue operation fails.

A data items is dequeued (ring_buf_item_get()) from a ring buffer by removing the oldest enqueued
item. The contents of the dequeued data item, as well as its two metadata values, are copied to areas
supplied by the retriever. If the ring buffer is empty, or if the data array supplied by the retriever is not
large enough to hold the data item’s data, the dequeue operation fails.

Byte mode A byte mode ring buffer instance is declared using RING_BUF_ITEM_DECLARE_SIZE()
and accessed using: ring_buf_put_claim() , ring_buf_put_finish() , ring_buf_get_claim() ,
ring_buf_get_finish() , ring_buf_put() and ring_buf_get() .

Data can be copied into the ring buffer (see ring_buf_put()) or ring buffer memory can be used directly
by the user. In the latter case, the operation is split into three stages:

1. allocating the buffer (ring_buf_put_claim()) when user requests the destination location where
data can be written.

2. writing the data by the user (e.g. buffer written by DMA).

3. indicating the amount of data written to the provided buffer (ring_buf_put_finish()). The
amount can be less than or equal to the allocated amount.

Data can be retrieved from a ring buffer through copying (see ring_buf_get()) or accessed directly by
address. In the latter case, the operation is split into three stages:

1. retrieving source location with valid data written to a ring buffer (see ring_buf_get_claim()).

2. processing data

3. freeing processed data (see ring_buf_get_finish()). The amount freed can be less than or equal
or to the retrieved amount.

Concurrency The ring buffer APIs do not provide any concurrency control. Depending on usage (par-
ticularly with respect to number of concurrent readers/writers) applications may need to protect the ring
buffer with mutexes and/or use semaphores to notify consumers that there is data to read.

For the trivial case of one producer and one consumer, concurrency shouldn’t be needed.

Internal Operation If the size of the data buffer is a power of two, the ring buffer uses efficient
masking operations instead of expensive modulo operations when enqueuing and dequeuing data items.
This option is applicable only for data item mode.

Data streamed through a ring buffer is always written to the next byte within the buffer, wrapping around
to the first element after reaching the end, thus the “ring” structure. Internally, the struct ring_buf
contains its own buffer pointer and its size, and also a “head” and “tail” index representing where the
next read and write

This boundary is invisible to the user using the normal put/get APIs, but becomes a barrier to the “claim”
API, because obviously no contiguous region can be returned that crosses the end of the buffer. This can

846 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

be surprising to application code, and produce performance artifacts when transfers need to alias closely
to the size of the buffer, as the number of calls to claim/finish need to double for such transfers.

When running in items mode (only), the ring buffer contains two implementations for the modular
arithmetic required to compute “next element” offsets. One is used for arbitrary sized buffers, but the
other is optimized for power of two sizes and can replace the compare and subtract steps with a simple
bitmask in several places, at the cost of testing the “mask” value for each call.

Implementation

Defining a Ring Buffer A ring buffer is defined using a variable of type ring_buf. It must then be
initialized by calling ring_buf_init() .

The following code defines and initializes an empty data item mode ring buffer (which is part of a
larger data structure). The ring buffer’s data buffer is capable of holding 64 words of data and metadata
information.

define MY_RING_BUF_SIZE 64

struct my_struct {
struct ring_buf rb;
uint32_t buffer[MY_RING_BUF_SIZE];
...

};
struct my_struct ms;

void init_my_struct {
ring_buf_init(&ms.rb, sizeof(ms.buffer), ms.buffer);
...

}

Alternatively, a ring buffer can be defined and initialized at compile time using one of two macros at file
scope. Each macro defines both the ring buffer itself and its data buffer.

The following code defines a ring buffer with a power-of-two sized data buffer, which can be accessed
using efficient masking operations.

/* Buffer with 2^8 (or 256) words */
RING_BUF_ITEM_DECLARE_POW2(my_ring_buf, 8);

The following code defines an application-specific sized byte mode ring buffer enqueued and dequeued
as raw bytes:

define MY_RING_BUF_WORDS 93
RING_BUF_ITEM_DECLARE_SIZE(my_ring_buf, MY_RING_BUF_WORDS);

The following code defines a ring buffer with an arbitrary-sized data buffer, which can be accessed using
less efficient modulo operations. Ring buffer is intended to be used for raw bytes.

define MY_RING_BUF_BYTES 93
RING_BUF_DECLARE_SIZE(my_ring_buf, MY_RING_BUF_BYTES);

Enqueuing Data A data item is added to a ring buffer by calling ring_buf_item_put() .

uint32_t data[MY_DATA_WORDS];
int ret;

ret = ring_buf_item_put(&ring_buf, TYPE_FOO, 0, data, SIZE32_OF(data));
(continues on next page)

7.18. Data Structures 847

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

if (ret == -EMSGSIZE) {
/* not enough room for the data item */
...

}

If the data item requires only the type or application-specific integer value (i.e. it has no data array), a
size of 0 and data pointer of NULL can be specified.

int ret;

ret = ring_buf_item_put(&ring_buf, TYPE_BAR, 17, NULL, 0);
if (ret == -EMSGSIZE) {

/* not enough room for the data item */
...

}

Bytes are copied to a byte mode ring buffer by calling ring_buf_put() .

uint8_t my_data[MY_RING_BUF_BYTES];
uint32_t ret;

ret = ring_buf_put(&ring_buf, my_data, SIZE_OF(my_data));
if (ret != SIZE_OF(my_data)) {

/* not enough room, partial copy. */
...

}

Data can be added to a byte mode ring buffer by directly accessing the ring buffer’s memory. For
example:

uint32_t size;
uint32_t rx_size;
uint8_t *data;
int err;

/* Allocate buffer within a ring buffer memory. */
size = ring_buf_put_claim(&ring_buf, &data, MY_RING_BUF_BYTES);

/* Work directly on a ring buffer memory. */
rx_size = uart_rx(data, size);

/* Indicate amount of valid data. rx_size can be equal or less than size. */
err = ring_buf_put_finish(&ring_buf, rx_size);
if (err != 0) {

/* No space to put requested amount of data to ring buffer. */
...

}

Retrieving Data A data item is removed from a ring buffer by calling ring_buf_item_get() .

uint32_t my_data[MY_DATA_WORDS];
uint16_t my_type;
uint8_t my_value;
uint8_t my_size;
int ret;

(continues on next page)

848 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

my_size = SIZE32_OF(my_data);
ret = ring_buf_item_get(&ring_buf, &my_type, &my_value, my_data, &my_size);
if (ret == -EMSGSIZE) {

printk("Buffer is too small, need %d uint32_t\n", my_size);
} else if (ret == -EAGAIN) {

printk("Ring buffer is empty\n");
} else {

printk("Got item of type %u value &u of size %u dwords\n",
my_type, my_value, my_size);

...
}

Data bytes are copied out from a byte mode ring buffer by calling ring_buf_get() . For example:

uint8_t my_data[MY_DATA_BYTES];
size_t ret;

ret = ring_buf_get(&ring_buf, my_data, sizeof(my_data));
if (ret != sizeof(my_size)) {

/* Less bytes copied. */
} else {

/* Requested amount of bytes retrieved. */
...

}

Data can be retrieved from a byte mode ring buffer by direct operations on the ring buffer’s memory.
For example:

uint32_t size;
uint32_t proc_size;
uint8_t *data;
int err;

/* Get buffer within a ring buffer memory. */
size = ring_buf_get_claim(&ring_buf, &data, MY_RING_BUF_BYTES);

/* Work directly on a ring buffer memory. */
proc_size = process(data, size);

/* Indicate amount of data that can be freed. proc_size can be equal or less
* than size.
*/

err = ring_buf_get_finish(&ring_buf, proc_size);
if (err != 0) {

/* proc_size exceeds amount of valid data in a ring buffer. */
...

}

Configuration Options

Related configuration options:

• :kconfig:`CONFIG_RING_BUFFER`: Enable ring buffer.

7.18. Data Structures 849

Zephyr Project Documentation, Release 2.7.0-rc2

API Reference

The following ring buffer APIs are provided by include/sys/ring_buffer.h:

group ring_buffer_apis

Defines

RING_BUF_ITEM_DECLARE_POW2(name, pow)

Define and initialize a high performance ring buffer.

This macro establishes a ring buffer whose size must be a power of 2; that is, the ring buffer
contains 2^pow 32-bit words, where pow is the specified ring buffer size exponent. A high
performance ring buffer doesn’t require the use of modulo arithmetic operations to maintain
itself.

The ring buffer can be accessed outside the module where it is defined using:

extern struct ring_buf <name>;

Parameters

• name – Name of the ring buffer.

• pow – Ring buffer size exponent.

RING_BUF_ITEM_DECLARE_SIZE(name, size32)

Define and initialize a standard ring buffer.

This macro establishes a ring buffer of an arbitrary size. A standard ring buffer uses modulo
arithmetic operations to maintain itself.

The ring buffer can be accessed outside the module where it is defined using:

extern struct ring_buf <name>;

Parameters

• name – Name of the ring buffer.

• size32 – Size of ring buffer (in 32-bit words).

RING_BUF_DECLARE(name, size8)

Define and initialize a ring buffer for byte data.

This macro establishes a ring buffer of an arbitrary size.

The ring buffer can be accessed outside the module where it is defined using:

extern struct ring_buf <name>;

Parameters

• name – Name of the ring buffer.

• size8 – Size of ring buffer (in bytes).

850 Chapter 7. API Reference

https://github.com/zephyrproject-rtos/zephyr/blob/main/include/sys/ring_buffer.h

Zephyr Project Documentation, Release 2.7.0-rc2

Functions

static inline void ring_buf_init(struct ring_buf *buf, uint32_t size, void *data)

Initialize a ring buffer.

This routine initializes a ring buffer, prior to its first use. It is only used for ring
buffers not defined using RING_BUF_DECLARE, RING_BUF_ITEM_DECLARE_POW2 or
RING_BUF_ITEM_DECLARE_SIZE.

Setting size to a power of 2 establishes a high performance ring buffer that doesn’t require the
use of modulo arithmetic operations to maintain itself.

Parameters

• buf – Address of ring buffer.

• size – Ring buffer size (in 32-bit words or bytes).

• data – Ring buffer data area (uint32_t data[size] or uint8_t data[size] for bytes
mode).

int ring_buf_is_empty(struct ring_buf *buf)

Determine if a ring buffer is empty.

Parameters

• buf – Address of ring buffer.

Returns 1 if the ring buffer is empty, or 0 if not.

static inline void ring_buf_reset(struct ring_buf *buf)

Reset ring buffer state.

Parameters

• buf – Address of ring buffer.

uint32_t ring_buf_space_get(struct ring_buf *buf)

Determine free space in a ring buffer.

Parameters

• buf – Address of ring buffer.

Returns Ring buffer free space (in 32-bit words or bytes).

static inline uint32_t ring_buf_capacity_get(struct ring_buf *buf)

Return ring buffer capacity.

Parameters

• buf – Address of ring buffer.

Returns Ring buffer capacity (in 32-bit words or bytes).

uint32_t ring_buf_size_get(struct ring_buf *buf)

Determine used space in a ring buffer.

Parameters

• buf – Address of ring buffer.

Returns Ring buffer space used (in 32-bit words or bytes).

int ring_buf_item_put(struct ring_buf *buf, uint16_t type, uint8_t value, uint32_t *data, uint8_t
size32)

Write a data item to a ring buffer.

7.18. Data Structures 851

Zephyr Project Documentation, Release 2.7.0-rc2

This routine writes a data item to ring buffer buf. The data item is an array of 32-bit words
(from zero to 1020 bytes in length), coupled with a 16-bit type identifier and an 8-bit integer
value.

Warning: Use cases involving multiple writers to the ring buffer must prevent concurrent
write operations, either by preventing all writers from being preempted or by using a
mutex to govern writes to the ring buffer.

Parameters

• buf – Address of ring buffer.

• type – Data item’s type identifier (application specific).

• value – Data item’s integer value (application specific).

• data – Address of data item.

• size32 – Data item size (number of 32-bit words).

Return values

• 0 – Data item was written.

• -EMSGSIZE – Ring buffer has insufficient free space.

int ring_buf_item_get(struct ring_buf *buf, uint16_t *type, uint8_t *value, uint32_t *data,
uint8_t *size32)

Read a data item from a ring buffer.

This routine reads a data item from ring buffer buf. The data item is an array of 32-bit words
(up to 1020 bytes in length), coupled with a 16-bit type identifier and an 8-bit integer value.

Warning: Use cases involving multiple reads of the ring buffer must prevent concurrent
read operations, either by preventing all readers from being preempted or by using a mutex
to govern reads to the ring buffer.

Parameters

• buf – Address of ring buffer.

• type – Area to store the data item’s type identifier.

• value – Area to store the data item’s integer value.

• data – Area to store the data item. Can be NULL to discard data.

• size32 – Size of the data item storage area (number of 32-bit chunks).

Return values

• 0 – Data item was fetched; size32 now contains the number of 32-bit words
read into data area data.

• -EAGAIN – Ring buffer is empty.

• -EMSGSIZE – Data area data is too small; size32 now contains the number of
32-bit words needed.

uint32_t ring_buf_put_claim(struct ring_buf *buf, uint8_t **data, uint32_t size)

Allocate buffer for writing data to a ring buffer.

852 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

With this routine, memory copying can be reduced since internal ring buffer can be used
directly by the user. Once data is written to allocated area number of bytes written can be
confirmed (see ring_buf_put_finish).

Warning: Use cases involving multiple writers to the ring buffer must prevent concurrent
write operations, either by preventing all writers from being preempted or by using a
mutex to govern writes to the ring buffer.

Warning: Ring buffer instance should not mix byte access and item access (calls prefixed
with ring_buf_item_).

Parameters

• buf – [in] Address of ring buffer.

• data – [out] Pointer to the address. It is set to a location within ring buffer.

• size – [in] Requested allocation size (in bytes).

Returns Size of allocated buffer which can be smaller than requested if there is not
enough free space or buffer wraps.

int ring_buf_put_finish(struct ring_buf *buf, uint32_t size)

Indicate number of bytes written to allocated buffers.

Warning: Use cases involving multiple writers to the ring buffer must prevent concurrent
write operations, either by preventing all writers from being preempted or by using a
mutex to govern writes to the ring buffer.

Warning: Ring buffer instance should not mix byte access and item access (calls prefixed
with ring_buf_item_).

Parameters

• buf – Address of ring buffer.

• size – Number of valid bytes in the allocated buffers.

Return values

• 0 – Successful operation.

• -EINVAL – Provided size exceeds free space in the ring buffer.

uint32_t ring_buf_put(struct ring_buf *buf, const uint8_t *data, uint32_t size)

Write (copy) data to a ring buffer.

This routine writes data to a ring buffer buf.

Warning: Use cases involving multiple writers to the ring buffer must prevent concurrent
write operations, either by preventing all writers from being preempted or by using a
mutex to govern writes to the ring buffer.

7.18. Data Structures 853

Zephyr Project Documentation, Release 2.7.0-rc2

Warning: Ring buffer instance should not mix byte access and item access (calls prefixed
with ring_buf_item_).

Parameters

• buf – Address of ring buffer.

• data – Address of data.

• size – Data size (in bytes).

Return values Number – of bytes written.

uint32_t ring_buf_get_claim(struct ring_buf *buf, uint8_t **data, uint32_t size)

Get address of a valid data in a ring buffer.

With this routine, memory copying can be reduced since internal ring buffer can be used
directly by the user. Once data is processed it can be freed using ring_buf_get_finish.

Warning: Use cases involving multiple reads of the ring buffer must prevent concurrent
read operations, either by preventing all readers from being preempted or by using a mutex
to govern reads to the ring buffer.

Warning: Ring buffer instance should not mix byte access and item access (calls prefixed
with ring_buf_item_).

Parameters

• buf – [in] Address of ring buffer.

• data – [out] Pointer to the address. It is set to a location within ring buffer.

• size – [in] Requested size (in bytes).

Returns Number of valid bytes in the provided buffer which can be smaller than
requested if there is not enough free space or buffer wraps.

int ring_buf_get_finish(struct ring_buf *buf, uint32_t size)

Indicate number of bytes read from claimed buffer.

Warning: Use cases involving multiple reads of the ring buffer must prevent concurrent
read operations, either by preventing all readers from being preempted or by using a mutex
to govern reads to the ring buffer.

Warning: Ring buffer instance should not mix byte access and item mode (calls prefixed
with ring_buf_item_).

Parameters

• buf – Address of ring buffer.

• size – Number of bytes that can be freed.

Return values

• 0 – Successful operation.

854 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• -EINVAL – Provided size exceeds valid bytes in the ring buffer.

uint32_t ring_buf_get(struct ring_buf *buf, uint8_t *data, uint32_t size)

Read data from a ring buffer.

This routine reads data from a ring buffer buf.

Warning: Use cases involving multiple reads of the ring buffer must prevent concurrent
read operations, either by preventing all readers from being preempted or by using a mutex
to govern reads to the ring buffer.

Warning: Ring buffer instance should not mix byte access and item mode (calls prefixed
with ring_buf_item_).

Parameters

• buf – Address of ring buffer.

• data – Address of the output buffer. Can be NULL to discard data.

• size – Data size (in bytes).

Return values Number – of bytes written to the output buffer.

uint32_t ring_buf_peek(struct ring_buf *buf, uint8_t *data, uint32_t size)

Peek at data from a ring buffer.

This routine reads data from a ring buffer buf without removal.

Warning: Use cases involving multiple reads of the ring buffer must prevent concurrent
read operations, either by preventing all readers from being preempted or by using a mutex
to govern reads to the ring buffer.

Warning: Ring buffer instance should not mix byte access and item mode (calls prefixed
with ring_buf_item_).

Warning: Multiple calls to peek will result in the same data being ‘peeked’ multi-
ple times. To remove data, use either ring_buf_get or ring_buf_get_claim followed by
ring_buf_get_finish with a non-zero size.

Parameters

• buf – Address of ring buffer.

• data – Address of the output buffer. Cannot be NULL.

• size – Data size (in bytes).

Return values Number – of bytes written to the output buffer.

7.18. Data Structures 855

Zephyr Project Documentation, Release 2.7.0-rc2

7.19 MODBUS

Modbus is an industrial messaging protocol. The protocol is specified for different types of networks
or buses. Zephyr OS implementation supports communication over serial line and may be used with
different physical interfaces, like RS485 or RS232. TCP support is not implemented directly, but there
are helper functions to realize TCP support according to the application’s needs.

Modbus communication is based on client/server model. Only one client may be present on the bus.
Client can communicate with several server devices. Server devices themselves are passive and must not
send requests or unsolicited responses. Services requested by the client are specified by function codes
(FCxx), and can be found in the specification or documentation of the API below.

Zephyr RTOS implementation supports both client and server roles.

More information about Modbus and Modbus RTU can be found on the website MODBUS Protocol
Specifications.

7.19.1 Samples

modbus-rtu-server-sample and modbus-rtu-client-sample give the possibility to try out RTU server
and RTU client implementation with an evaluation board.

modbus-tcp-server-sample is a simple Modbus TCP server.

modbus-gateway-sample is an example how to build a TCP to serial line gateway with Zephyr OS.

7.19.2 API Reference

group modbus

MODBUS transport protocol API.

Defines

MODBUS_MBAP_LENGTH

Length of MBAP Header

MODBUS_MBAP_AND_FC_LENGTH

Length of MBAP Header plus function code

Typedefs

typedef int (*modbus_raw_cb_t)(const int iface, const struct modbus_adu *adu)

ADU raw callback function signature.

Param iface Modbus RTU interface index

Param adu Pointer to the RAW ADU struct to send

Retval 0 If transfer was successful

856 Chapter 7. API Reference

https://www.modbus.org/specs.php
https://www.modbus.org/specs.php

Zephyr Project Documentation, Release 2.7.0-rc2

Enums

enum modbus_mode

Modbus interface mode.

Values:

enumerator MODBUS_MODE_RTU

Modbus over serial line RTU mode

enumerator MODBUS_MODE_ASCII

Modbus over serial line ASCII mode

enumerator MODBUS_MODE_RAW

Modbus raw ADU mode

Functions

int modbus_read_coils(const int iface, const uint8_t unit_id, const uint16_t start_addr, uint8_t
*const coil_tbl, const uint16_t num_coils)

Coil read (FC01)

Sends a Modbus message to read the status of coils from a server.

Parameters

• iface – Modbus interface index

• unit_id – Modbus unit ID of the server

• start_addr – Coil starting address

• coil_tbl – Pointer to an array of bytes containing the value of the coils read.
The format is:

MSB LSB
B7 B6 B5 B4 B3 B2 B1 B0

coil_tbl[0] #8 #7 #1
coil_tbl[1] #16 #15 #9

:
:

Note that the array that will be receiving the coil values must be greater than
or equal to: (num_coils - 1) / 8 + 1

• num_coils – Quantity of coils to read

Return values 0 – If the function was successful

int modbus_read_dinputs(const int iface, const uint8_t unit_id, const uint16_t start_addr, uint8_t
*const di_tbl, const uint16_t num_di)

Read discrete inputs (FC02)

Sends a Modbus message to read the status of discrete inputs from a server.

Parameters

• iface – Modbus interface index

• unit_id – Modbus unit ID of the server

7.19. MODBUS 857

Zephyr Project Documentation, Release 2.7.0-rc2

• start_addr – Discrete input starting address

• di_tbl – Pointer to an array that will receive the state of the discrete inputs.
The format of the array is as follows:

MSB LSB
B7 B6 B5 B4 B3 B2 B1 B0

di_tbl[0] #8 #7 #1
di_tbl[1] #16 #15 #9

:
:

Note that the array that will be receiving the discrete input values must be
greater than or equal to: (num_di - 1) / 8 + 1

• num_di – Quantity of discrete inputs to read

Return values 0 – If the function was successful

int modbus_read_holding_regs(const int iface, const uint8_t unit_id, const uint16_t start_addr,
uint16_t *const reg_buf, const uint16_t num_regs)

Read holding registers (FC03)

Sends a Modbus message to read the value of holding registers from a server.

Parameters

• iface – Modbus interface index

• unit_id – Modbus unit ID of the server

• start_addr – Register starting address

• reg_buf – Is a pointer to an array that will receive the current values of the
holding registers from the server. The array pointed to by ‘reg_buf’ needs to be
able to hold at least ‘num_regs’ entries.

• num_regs – Quantity of registers to read

Return values 0 – If the function was successful

int modbus_read_input_regs(const int iface, const uint8_t unit_id, const uint16_t start_addr,
uint16_t *const reg_buf, const uint16_t num_regs)

Read input registers (FC04)

Sends a Modbus message to read the value of input registers from a server.

Parameters

• iface – Modbus interface index

• unit_id – Modbus unit ID of the server

• start_addr – Register starting address

• reg_buf – Is a pointer to an array that will receive the current value of the
holding registers from the server. The array pointed to by ‘reg_buf’ needs to be
able to hold at least ‘num_regs’ entries.

• num_regs – Quantity of registers to read

Return values 0 – If the function was successful

int modbus_write_coil(const int iface, const uint8_t unit_id, const uint16_t coil_addr, const bool
coil_state)

Write single coil (FC05)

Sends a Modbus message to write the value of single coil to a server.

858 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• iface – Modbus interface index

• unit_id – Modbus unit ID of the server

• coil_addr – Coils starting address

• coil_state – Is the desired state of the coil

Return values 0 – If the function was successful

int modbus_write_holding_reg(const int iface, const uint8_t unit_id, const uint16_t start_addr,
const uint16_t reg_val)

Write single holding register (FC06)

Sends a Modbus message to write the value of single holding register to a server unit.

Parameters

• iface – Modbus interface index

• unit_id – Modbus unit ID of the server

• start_addr – Coils starting address

• reg_val – Desired value of the holding register

Return values 0 – If the function was successful

int modbus_request_diagnostic(const int iface, const uint8_t unit_id, const uint16_t sfunc,
const uint16_t data, uint16_t *const data_out)

Read diagnostic (FC08)

Sends a Modbus message to perform a diagnostic function of a server unit.

Parameters

• iface – Modbus interface index

• unit_id – Modbus unit ID of the server

• sfunc – Diagnostic sub-function code

• data – Sub-function data

• data_out – Pointer to the data value

Return values 0 – If the function was successful

int modbus_write_coils(const int iface, const uint8_t unit_id, const uint16_t start_addr, uint8_t
*const coil_tbl, const uint16_t num_coils)

Write coils (FC15)

Sends a Modbus message to write to coils on a server unit.

Parameters

• iface – Modbus interface index

• unit_id – Modbus unit ID of the server

• start_addr – Coils starting address

• coil_tbl – Pointer to an array of bytes containing the value of the coils to
write. The format is:

MSB LSB
B7 B6 B5 B4 B3 B2 B1 B0

coil_tbl[0] #8 #7 #1
(continues on next page)

7.19. MODBUS 859

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

coil_tbl[1] #16 #15 #9
:
:

Note that the array that will be receiving the coil values must be greater than
or equal to: (num_coils - 1) / 8 + 1

• num_coils – Quantity of coils to write

Return values 0 – If the function was successful

int modbus_write_holding_regs(const int iface, const uint8_t unit_id, const uint16_t start_addr,
uint16_t *const reg_buf, const uint16_t num_regs)

Write holding registers (FC16)

Sends a Modbus message to write to integer holding registers to a server unit.

Parameters

• iface – Modbus interface index

• unit_id – Modbus unit ID of the server

• start_addr – Register starting address

• reg_buf – Is a pointer to an array containing the value of the holding registers
to write. Note that the array containing the register values must be greater
than or equal to ‘num_regs’

• num_regs – Quantity of registers to write

Return values 0 – If the function was successful

int modbus_read_holding_regs_fp(const int iface, const uint8_t unit_id, const uint16_t
start_addr, float *const reg_buf, const uint16_t num_regs)

Read floating-point holding registers (FC03)

Sends a Modbus message to read the value of floating-point holding registers from a server
unit.

Parameters

• iface – Modbus interface index

• unit_id – Modbus unit ID of the server

• start_addr – Register starting address

• reg_buf – Is a pointer to an array that will receive the current values of the
holding registers from the server. The array pointed to by ‘reg_buf’ needs to be
able to hold at least ‘num_regs’ entries.

• num_regs – Quantity of registers to read

Return values 0 – If the function was successful

int modbus_write_holding_regs_fp(const int iface, const uint8_t unit_id, const uint16_t
start_addr, float *const reg_buf, const uint16_t num_regs)

Write floating-point holding registers (FC16)

Sends a Modbus message to write to floating-point holding registers to a server unit.

Parameters

• iface – Modbus interface index

• unit_id – Modbus unit ID of the server

• start_addr – Register starting address

860 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• reg_buf – Is a pointer to an array containing the value of the holding registers
to write. Note that the array containing the register values must be greater
than or equal to ‘num_regs’

• num_regs – Quantity of registers to write

Return values 0 – If the function was successful

int modbus_iface_get_by_name(const char *iface_name)

Get Modbus interface index according to interface name.

If there is more than one interface, it can be used to clearly identify interfaces in the applica-
tion.

Parameters

• iface_name – Modbus interface name

Return values Modbus – interface index or negative error value.

int modbus_init_server(const int iface, struct modbus_iface_param param)

Configure Modbus Interface as raw ADU server.

Parameters

• iface – Modbus RTU interface index

• param – Configuration parameter of the server interface

Return values 0 – If the function was successful

int modbus_init_client(const int iface, struct modbus_iface_param param)

Configure Modbus Interface as raw ADU client.

Parameters

• iface – Modbus RTU interface index

• param – Configuration parameter of the client interface

Return values 0 – If the function was successful

int modbus_disable(const uint8_t iface)

Disable Modbus Interface.

This function is called to disable Modbus interface.

Parameters

• iface – Modbus interface index

Return values 0 – If the function was successful

int modbus_raw_submit_rx(const int iface, const struct modbus_adu *adu)

Submit raw ADU.

Parameters

• iface – Modbus RTU interface index

• adu – Pointer to the RAW ADU struct that is received

Return values 0 – If transfer was successful

void modbus_raw_put_header(const struct modbus_adu *adu, uint8_t *header)

Put MBAP header into a buffer.

Parameters

• adu – Pointer to the RAW ADU struct

• header – Pointer to the buffer in which MBAP header will be placed.

7.19. MODBUS 861

Zephyr Project Documentation, Release 2.7.0-rc2

Return values 0 – If transfer was successful

void modbus_raw_get_header(struct modbus_adu *adu, const uint8_t *header)

Get MBAP header from a buffer.

Parameters

• adu – Pointer to the RAW ADU struct

• header – Pointer to the buffer containing MBAP header

Return values 0 – If transfer was successful

void modbus_raw_set_server_failure(struct modbus_adu *adu)

Set Server Device Failure exception.

This function modifies ADU passed by the pointer.

Parameters

• adu – Pointer to the RAW ADU struct

int modbus_raw_backend_txn(const int iface, struct modbus_adu *adu)

Use interface as backend to send and receive ADU.

This function overwrites ADU passed by the pointer and generates exception responses if
backend interface is misconfigured or target device is unreachable.

Parameters

• iface – Modbus client interface index

• adu – Pointer to the RAW ADU struct

Return values 0 – If transfer was successful

struct modbus_adu

#include <modbus.h> Frame struct used internally and for raw ADU support.

Public Members

uint16_t trans_id

Transaction Identifier

uint16_t proto_id

Protocol Identifier

uint16_t length

Length of the data only (not the length of unit ID + PDU)

uint8_t unit_id

Unit Identifier

uint8_t fc

Function Code

uint8_t data[CONFIG_MODBUS_BUFFER_SIZE - 4]

Transaction Data

862 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

uint16_t crc

RTU CRC

struct modbus_user_callbacks

#include <modbus.h> Modbus Server User Callback structure

Public Members

int (*coil_rd)(uint16_t addr, bool *state)

Coil read callback

int (*coil_wr)(uint16_t addr, bool state)

Coil write callback

int (*discrete_input_rd)(uint16_t addr, bool *state)

Discrete Input read callback

int (*input_reg_rd)(uint16_t addr, uint16_t *reg)

Input Register read callback

int (*input_reg_rd_fp)(uint16_t addr, float *reg)

Floating Point Input Register read callback

int (*holding_reg_rd)(uint16_t addr, uint16_t *reg)

Holding Register read callback

int (*holding_reg_wr)(uint16_t addr, uint16_t reg)

Holding Register write callback

int (*holding_reg_rd_fp)(uint16_t addr, float *reg)

Floating Point Holding Register read callback

int (*holding_reg_wr_fp)(uint16_t addr, float reg)

Floating Point Holding Register write callback

struct modbus_serial_param

#include <modbus.h> Modbus serial line parameter.

Public Members

uint32_t baud

Baudrate of the serial line

enum uart_config_parity parity

parity UART’s parity setting: UART_CFG_PARITY_NONE, UART_CFG_PARITY_EVEN,
UART_CFG_PARITY_ODD

7.19. MODBUS 863

Zephyr Project Documentation, Release 2.7.0-rc2

struct modbus_server_param

#include <modbus.h> Modbus server parameter.

Public Members

struct modbus_user_callbacks *user_cb

Pointer to the User Callback structure

uint8_t unit_id

Modbus unit ID of the server

struct modbus_iface_param

#include <modbus.h> User parameter structure to configure Modbus interfase as client or
server.

Public Members

enum modbus_mode mode

Mode of the interface

uint32_t rx_timeout

Amount of time client will wait for a response from the server.

struct modbus_serial_param serial

Serial support parameter of the interface

modbus_raw_cb_t raw_tx_cb

Pointer to raw ADU callback function

7.20 Networking

7.20.1 Network APIs

BSD Sockets

• Overview

• Secure Sockets

– TLS credentials subsystem

– Secure Socket Creation

– Secure Sockets options

• API Reference

– BSD Sockets

– TLS Credentials

864 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Overview Zephyr offers an implementation of a subset of the BSD Sockets API (a part of the POSIX
standard). This API allows to reuse existing programming experience and port existing simple network-
ing applications to Zephyr.

Here are the key requirements and concepts which governed BSD Sockets compatible API implementa-
tion for Zephyr:

• Has minimal overhead, similar to the requirement for other Zephyr subsystems.

• Is namespaced by default, to avoid name conflicts with well-known names like close(),
which may be part of libc or other POSIX compatibility libraries. If enabled by :kcon-
fig:`CONFIG_NET_SOCKETS_POSIX_NAMES`, it will also expose native POSIX names.

BSD Sockets compatible API is enabled using :kconfig:`CONFIG_NET_SOCKETS` config option and
implements the following operations: socket(), close(), recv(), recvfrom(), send(), sendto(),
connect(), bind(), listen(), accept(), fcntl() (to set non-blocking mode), getsockopt(),
setsockopt(), poll(), select(), getaddrinfo(), getnameinfo().

Based on the namespacing requirements above, these operations are by default exposed as func-
tions with zsock_ prefix, e.g. zsock_socket() and zsock_close() . If the config option :kcon-
fig:`CONFIG_NET_SOCKETS_POSIX_NAMES` is defined, all the functions will be also exposed as
aliases without the prefix. This includes the functions like close() and fcntl() (which may conflict
with functions in libc or other libraries, for example, with the filesystem libraries).

Another entailment of the design requirements above is that the Zephyr API aggressively employs the
short-read/short-write property of the POSIX API whenever possible (to minimize complexity and over-
heads). POSIX allows for calls like recv() and send() to actually process (receive or send) less data
than requested by the user (on SOCK_STREAM type sockets). For example, a call recv(sock, 1000, 0)
may return 100, meaning that only 100 bytes were read (short read), and the application needs to retry
call(s) to receive the remaining 900 bytes.

The BSD Sockets API uses file descriptors to represent sockets. File descriptors are small integers, consec-
utively assigned from zero, shared among sockets, files, special devices (like stdin/stdout), etc. Internally,
there is a table mapping file descriptors to internal object pointers. The file descriptor table is used by
the BSD Sockets API even if the rest of the POSIX subsystem (filesystem, stdin/stdout) is not enabled.

Secure Sockets Zephyr provides an extension of standard POSIX socket API, allowing to create and
configure sockets with TLS protocol types, facilitating secure communication. Secure functions for the
implementation are provided by mbedTLS library. Secure sockets implementation allows use of both TLS
and DTLS protocols with standard socket calls. See net_ip_protocol_secure type for supported secure
protocol versions.

To enable secure sockets, set the :kconfig:`CONFIG_NET_SOCKETS_SOCKOPT_TLS` option. To enable
DTLS support, use :kconfig:`CONFIG_NET_SOCKETS_ENABLE_DTLS` option.

TLS credentials subsystem TLS credentials must be registered in the system before they can be used
with secure sockets. See tls_credential_add() for more information.

When a specific TLS credential is registered in the system, it is assigned with numeric value of type
sec_tag_t , called a tag. This value can be used later on to reference the credential during secure socket
configuration with socket options.

The following TLS credential types can be registered in the system:

• TLS_CREDENTIAL_CA_CERTIFICATE

• TLS_CREDENTIAL_SERVER_CERTIFICATE

• TLS_CREDENTIAL_PRIVATE_KEY

• TLS_CREDENTIAL_PSK

• TLS_CREDENTIAL_PSK_ID

7.20. Networking 865

Zephyr Project Documentation, Release 2.7.0-rc2

An example registration of CA certificate (provided in ca_certificate array) looks like this:

ret = tls_credential_add(CA_CERTIFICATE_TAG, TLS_CREDENTIAL_CA_CERTIFICATE,
ca_certificate, sizeof(ca_certificate));

By default certificates in DER format are supported. PEM support can be enabled in mbedTLS settings.

Secure Socket Creation A secure socket can be created by specifying secure protocol type, for instance:

sock = socket(AF_INET, SOCK_STREAM, IPPROTO_TLS_1_2);

Once created, it can be configured with socket options. For instance, the CA certificate and hostname
can be set:

sec_tag_t sec_tag_opt[] = {
CA_CERTIFICATE_TAG,

};

ret = setsockopt(sock, SOL_TLS, TLS_SEC_TAG_LIST,
sec_tag_opt, sizeof(sec_tag_opt));

char host[] = "google.com";

ret = setsockopt(sock, SOL_TLS, TLS_HOSTNAME, host, sizeof(host) - 1);

Once configured, socket can be used just like a regular TCP socket.

Several samples in Zephyr use secure sockets for communication. For a sample use see e.g. echo-server
sample application or HTTP GET sample application.

Secure Sockets options Secure sockets offer the following options for socket management:

group secure_sockets_options

Defines

TLS_SEC_TAG_LIST

Socket option to select TLS credentials to use. It accepts and returns an array of sec_tag_t that
indicate which TLS credentials should be used with specific socket.

TLS_HOSTNAME

Write-only socket option to set hostname. It accepts a string containing the hostname (may
be NULL to disable hostname verification). By default, hostname check is enforced for TLS
clients.

TLS_CIPHERSUITE_LIST

Socket option to select ciphersuites to use. It accepts and returns an array of integers with
IANA assigned ciphersuite identifiers. If not set, socket will allow all ciphersuites available in
the system (mebdTLS default behavior).

TLS_CIPHERSUITE_USED

Read-only socket option to read a ciphersuite chosen during TLS handshake. It returns an
integer containing an IANA assigned ciphersuite identifier of chosen ciphersuite.

866 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

TLS_PEER_VERIFY

Write-only socket option to set peer verification level for TLS connection. This option accepts
an integer with a peer verification level, compatible with mbedTLS values:

• 0 - none

• 1 - optional

• 2 - required

If not set, socket will use mbedTLS defaults (none for servers, required for clients).

TLS_DTLS_ROLE

Write-only socket option to set role for DTLS connection. This option is irrelevant for TLS
connections, as for them role is selected based on connect()/listen() usage. By default, DTLS
will assume client role. This option accepts an integer with a TLS role, compatible with
mbedTLS values:

• 0 - client

• 1 - server

TLS_ALPN_LIST

Socket option for setting the supported Application Layer Protocols. It accepts and returns
a const char array of NULL terminated strings representing the supported application layer
protocols listed during the TLS handshake.

TLS_DTLS_HANDSHAKE_TIMEOUT_MIN

Socket option to set DTLS handshake timeout. The timeout starts at min, and upon retrans-
mission the timeout is doubled util max is reached. Min and max arguments are separate
options. The time unit is ms.

TLS_DTLS_HANDSHAKE_TIMEOUT_MAX

API Reference Note that current socket API implementation is not thread safe and caller should not
do socket operations to same socket from multiple threads unless protected by a mutex, semaphore or
similar.

BSD Sockets

group bsd_sockets

BSD Sockets compatible API.

Defines

ZSOCK_POLLIN

zsock_poll: Poll for readability

ZSOCK_POLLPRI

zsock_poll: Compatibility value, ignored

ZSOCK_POLLOUT

zsock_poll: Poll for writability

7.20. Networking 867

Zephyr Project Documentation, Release 2.7.0-rc2

ZSOCK_POLLERR

zsock_poll: Poll results in error condition (output value only)

ZSOCK_POLLHUP

zsock_poll: Poll detected closed connection (output value only)

ZSOCK_POLLNVAL

zsock_poll: Invalid socket (output value only)

ZSOCK_MSG_PEEK

zsock_recv: Read data without removing it from socket input queue

ZSOCK_MSG_TRUNC

zsock_recv: return the real length of the datagram, even when it was longer than the passed
buffer

ZSOCK_MSG_DONTWAIT

zsock_recv/zsock_send: Override operation to non-blocking

ZSOCK_MSG_WAITALL

zsock_recv: block until the full amount of data can be returned

ZSOCK_SHUT_RD

zsock_shutdown: Shut down for reading

ZSOCK_SHUT_WR

zsock_shutdown: Shut down for writing

ZSOCK_SHUT_RDWR

zsock_shutdown: Shut down for both reading and writing

SOL_TLS

Protocol level for TLS. Here, the same socket protocol level for TLS as in Linux was used.

TLS_PEER_VERIFY_NONE

Peer verification disabled.

TLS_PEER_VERIFY_OPTIONAL

Peer verification optional.

TLS_PEER_VERIFY_REQUIRED

Peer verification required.

TLS_DTLS_ROLE_CLIENT

Client role in a DTLS session.

TLS_DTLS_ROLE_SERVER

Server role in a DTLS session.

868 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

AI_PASSIVE

Address for bind() (vs for connect())

AI_CANONNAME

Fill in ai_canonname

AI_NUMERICHOST

Assume host address is in numeric notation, don’t DNS lookup

AI_V4MAPPED

May return IPv4 mapped address for IPv6

AI_ALL

May return both native IPv6 and mapped IPv4 address for IPv6

AI_ADDRCONFIG

IPv4/IPv6 support depends on local system config

AI_NUMERICSERV

Assume service (port) is numeric

NI_NUMERICHOST

zsock_getnameinfo(): Resolve to numeric address.

NI_NUMERICSERV

zsock_getnameinfo(): Resolve to numeric port number.

NI_NOFQDN

zsock_getnameinfo(): Return only hostname instead of FQDN

NI_NAMEREQD

zsock_getnameinfo(): Dummy option for compatibility

NI_DGRAM

zsock_getnameinfo(): Dummy option for compatibility

NI_MAXHOST

zsock_getnameinfo(): Max supported hostname length

IFNAMSIZ

SOL_SOCKET

sockopt: Socket-level option

SO_REUSEADDR

sockopt: Enable server address reuse (ignored, for compatibility)

SO_TYPE

sockopt: Type of the socket

7.20. Networking 869

Zephyr Project Documentation, Release 2.7.0-rc2

SO_ERROR

sockopt: Async error (ignored, for compatibility)

SO_RCVTIMEO

sockopt: Receive timeout Applies to receive functions like recv(), but not to connect()

SO_SNDTIMEO

sockopt: Send timeout

SO_BINDTODEVICE

sockopt: Bind a socket to an interface

SO_TIMESTAMPING

sockopt: Timestamp TX packets

SO_PROTOCOL

sockopt: Protocol used with the socket

TCP_NODELAY

sockopt: Disable TCP buffering (ignored, for compatibility)

IPV6_V6ONLY

sockopt: Don’t support IPv4 access (ignored, for compatibility)

SO_PRIORITY

sockopt: Socket priority

SO_TXTIME

sockopt: Socket TX time (when the data should be sent)

SCM_TXTIME

SO_SOCKS5

sockopt: Enable SOCKS5 for Socket

ZSOCK_FD_SETSIZE

Number of file descriptors which can be added to zsock_fd_set

Typedefs

typedef struct zsock_fd_set zsock_fd_set

Functions

870 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

void *zsock_get_context_object(int sock)

Obtain a file descriptor’s associated net context.

With CONFIG_USERSPACE enabled, the kernel’s object permission system must apply to
socket file descriptors. When a socket is opened, by default only the caller has permission,
access by other threads will fail unless they have been specifically granted permission.

This is achieved by tagging data structure definitions that implement the underlying object
associated with a network socket file descriptor with ‘__net_socket`. All pointers to instances
of these will be known to the kernel as kernel objects with type K_OBJ_NET_SOCKET.

This API is intended for threads that need to grant access to the object associated with a
particular file descriptor to another thread. The returned pointer represents the underlying
K_OBJ_NET_SOCKET and may be passed to APIs like k_object_access_grant().

In a system like Linux which has the notion of threads running in processes in a shared vir-
tual address space, this sort of management is unnecessary as the scope of file descriptors is
implemented at the process level.

However in Zephyr the file descriptor scope is global, and MPU-based systems are not able to
implement a process-like model due to the lack of memory virtualization hardware. They use
discrete object permissions and memory domains instead to define thread access scope.

User threads will have no direct access to the returned object and will fault if they try to access
its memory; the pointer can only be used to make permission assignment calls, which follow
exactly the rules for other kernel objects like device drivers and IPC.

Parameters

• sock – file descriptor

Returns pointer to associated network socket object, or NULL if the file descriptor
wasn’t valid or the caller had no access permission

int zsock_socket(int family, int type, int proto)

Create a network socket.

See POSIX.1-2017 article for normative description. This function is also exposed as socket()
if :kconfig:`CONFIG_NET_SOCKETS_POSIX_NAMES` is defined.

If CONFIG_USERSPACE is enabled, the caller will be granted access to the context object
associated with the returned file descriptor.

See also:

zsock_get_context_object()

int zsock_socketpair(int family, int type, int proto, int *sv)

Create an unnamed pair of connected sockets.

See POSIX.1-2017 article for normative description. This function is also exposed as
socketpair() if :kconfig:`CONFIG_NET_SOCKETS_POSIX_NAMES` is defined.

int zsock_close(int sock)

Close a network socket.

Close a network socket. This function is also exposed as close() if :kcon-
fig:`CONFIG_NET_SOCKETS_POSIX_NAMES` is defined (in which case it may conflict with
generic POSIX close() function).

7.20. Networking 871

http://pubs.opengroup.org/onlinepubs/9699919799/functions/socket.html
https://pubs.opengroup.org/onlinepubs/009695399/functions/socketpair.html

Zephyr Project Documentation, Release 2.7.0-rc2

int zsock_shutdown(int sock, int how)

Shutdown socket send/receive operations.

See POSIX.1-2017 article for normative description, but currently this function has no effect in
Zephyr and provided solely for compatibility with existing code. This function is also exposed
as shutdown() if :kconfig:`CONFIG_NET_SOCKETS_POSIX_NAMES` is defined.

int zsock_bind(int sock, const struct sockaddr *addr, socklen_t addrlen)

Bind a socket to a local network address.

See POSIX.1-2017 article for normative description. This function is also exposed as bind()
if :kconfig:`CONFIG_NET_SOCKETS_POSIX_NAMES` is defined.

int zsock_connect(int sock, const struct sockaddr *addr, socklen_t addrlen)

Connect a socket to a peer network address.

See POSIX.1-2017 article for normative description. This function is also exposed as
connect() if :kconfig:`CONFIG_NET_SOCKETS_POSIX_NAMES` is defined.

int zsock_listen(int sock, int backlog)

Set up a STREAM socket to accept peer connections.

See POSIX.1-2017 article for normative description. This function is also exposed as listen()
if :kconfig:`CONFIG_NET_SOCKETS_POSIX_NAMES` is defined.

int zsock_accept(int sock, struct sockaddr *addr, socklen_t *addrlen)

Accept a connection on listening socket.

See POSIX.1-2017 article for normative description. This function is also exposed as accept()
if :kconfig:`CONFIG_NET_SOCKETS_POSIX_NAMES` is defined.

ssize_t zsock_sendto(int sock, const void *buf, size_t len, int flags, const struct sockaddr
*dest_addr, socklen_t addrlen)

Send data to an arbitrary network address.

See POSIX.1-2017 article for normative description. This function is also exposed as sendto()
if :kconfig:`CONFIG_NET_SOCKETS_POSIX_NAMES` is defined.

static inline ssize_t zsock_send(int sock, const void *buf, size_t len, int flags)

Send data to a connected peer.

872 Chapter 7. API Reference

http://pubs.opengroup.org/onlinepubs/9699919799/functions/shutdown.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/bind.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/connect.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/listen.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/accept.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/sendto.html

Zephyr Project Documentation, Release 2.7.0-rc2

See POSIX.1-2017 article for normative description. This function is also exposed as send()
if :kconfig:`CONFIG_NET_SOCKETS_POSIX_NAMES` is defined.

ssize_t zsock_sendmsg(int sock, const struct msghdr *msg, int flags)
Send data to an arbitrary network address.

See POSIX.1-2017 article for normative description. This function is also exposed as
sendmsg() if :kconfig:`CONFIG_NET_SOCKETS_POSIX_NAMES` is defined.

ssize_t zsock_recvfrom(int sock, void *buf, size_t max_len, int flags, struct sockaddr *src_addr,
socklen_t *addrlen)

Receive data from an arbitrary network address.

See POSIX.1-2017 article for normative description. This function is also exposed as
recvfrom() if :kconfig:`CONFIG_NET_SOCKETS_POSIX_NAMES` is defined.

static inline ssize_t zsock_recv(int sock, void *buf, size_t max_len, int flags)
Receive data from a connected peer.

See POSIX.1-2017 article for normative description. This function is also exposed as recv()
if :kconfig:`CONFIG_NET_SOCKETS_POSIX_NAMES` is defined.

int zsock_fcntl(int sock, int cmd, int flags)
Control blocking/non-blocking mode of a socket.

This functions allow to (only) configure a socket for blocking or non-blocking
operation (O_NONBLOCK). This function is also exposed as fcntl() if :kcon-
fig:`CONFIG_NET_SOCKETS_POSIX_NAMES` is defined (in which case it may conflict with
generic POSIX fcntl() function).

int zsock_poll(struct zsock_pollfd *fds, int nfds, int timeout)
Efficiently poll multiple sockets for events.

See POSIX.1-2017 article for normative description. (In Zephyr this function works only with
sockets, not arbitrary file descriptors.) This function is also exposed as poll() if :kcon-
fig:`CONFIG_NET_SOCKETS_POSIX_NAMES` is defined (in which case it may conflict with
generic POSIX poll() function).

int zsock_getsockopt(int sock, int level, int optname, void *optval, socklen_t *optlen)
Get various socket options.

See POSIX.1-2017 article for normative description. In Zephyr this function supports a subset
of socket options described by POSIX, but also some additional options available in Linux
(some options are dummy and provided to ease porting of existing code). This function is also
exposed as getsockopt() if :kconfig:`CONFIG_NET_SOCKETS_POSIX_NAMES` is defined.

7.20. Networking 873

http://pubs.opengroup.org/onlinepubs/9699919799/functions/send.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/sendmsg.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/recvfrom.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/recv.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/poll.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/getsockopt.html

Zephyr Project Documentation, Release 2.7.0-rc2

int zsock_setsockopt(int sock, int level, int optname, const void *optval, socklen_t optlen)

Set various socket options.

See POSIX.1-2017 article for normative description. In Zephyr this function supports a subset
of socket options described by POSIX, but also some additional options available in Linux
(some options are dummy and provided to ease porting of existing code). This function is also
exposed as setsockopt() if :kconfig:`CONFIG_NET_SOCKETS_POSIX_NAMES` is defined.

int zsock_getsockname(int sock, struct sockaddr *addr, socklen_t *addrlen)

Get socket name.

See POSIX.1-2017 article for normative description. This function is also exposed as
getsockname() if :kconfig:`CONFIG_NET_SOCKETS_POSIX_NAMES` is defined.

int zsock_gethostname(char *buf, size_t len)

Get local host name.

See POSIX.1-2017 article for normative description. This function is also exposed as
gethostname() if :kconfig:`CONFIG_NET_SOCKETS_POSIX_NAMES` is defined.

static inline char *zsock_inet_ntop(sa_family_t family, const void *src, char *dst, size_t size)

Convert network address from internal to numeric ASCII form.

See POSIX.1-2017 article for normative description. This function is also exposed as
inet_ntop() if :kconfig:`CONFIG_NET_SOCKETS_POSIX_NAMES` is defined.

int zsock_inet_pton(sa_family_t family, const char *src, void *dst)

Convert network address from numeric ASCII form to internal representation.

See POSIX.1-2017 article for normative description. This function is also exposed as
inet_pton() if :kconfig:`CONFIG_NET_SOCKETS_POSIX_NAMES` is defined.

int zsock_getaddrinfo(const char *host, const char *service, const struct zsock_addrinfo *hints,
struct zsock_addrinfo **res)

Resolve a domain name to one or more network addresses.

See POSIX.1-2017 article for normative description. This function is also exposed as
getaddrinfo() if :kconfig:`CONFIG_NET_SOCKETS_POSIX_NAMES` is defined.

void zsock_freeaddrinfo(struct zsock_addrinfo *ai)

Free results returned by zsock_getaddrinfo()

874 Chapter 7. API Reference

http://pubs.opengroup.org/onlinepubs/9699919799/functions/setsockopt.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/getsockname.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/gethostname.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/inet_ntop.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/inet_pton.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/getaddrinfo.html

Zephyr Project Documentation, Release 2.7.0-rc2

See POSIX.1-2017 article for normative description. This function is also exposed as
freeaddrinfo() if :kconfig:`CONFIG_NET_SOCKETS_POSIX_NAMES` is defined.

const char *zsock_gai_strerror(int errcode)

Convert zsock_getaddrinfo() error code to textual message.

See POSIX.1-2017 article for normative description. This function is also exposed as
gai_strerror() if :kconfig:`CONFIG_NET_SOCKETS_POSIX_NAMES` is defined.

int zsock_getnameinfo(const struct sockaddr *addr, socklen_t addrlen, char *host, socklen_t
hostlen, char *serv, socklen_t servlen, int flags)

Resolve a network address to a domain name or ASCII address.

See POSIX.1-2017 article for normative description. This function is also exposed as
getnameinfo() if :kconfig:`CONFIG_NET_SOCKETS_POSIX_NAMES` is defined.

int zsock_select(int nfds, zsock_fd_set *readfds, zsock_fd_set *writefds, zsock_fd_set *exceptfds,
struct zsock_timeval *timeout)

Legacy function to poll multiple sockets for events.

See POSIX.1-2017 article for normative description. This function is provided to ease porting
of existing code and not recommended for usage due to its inefficiency, use zsock_poll()
instead. In Zephyr this function works only with sockets, not arbitrary file descriptors. This
function is also exposed as select() if :kconfig:`CONFIG_NET_SOCKETS_POSIX_NAMES`
is defined (in which case it may conflict with generic POSIX select() function).

void ZSOCK_FD_ZERO(zsock_fd_set *set)

Initialize (clear) fd_set.

See POSIX.1-2017 article for normative description. This function is also exposed as
FD_ZERO() if :kconfig:`CONFIG_NET_SOCKETS_POSIX_NAMES` is defined.

int ZSOCK_FD_ISSET(int fd, zsock_fd_set *set)

Check whether socket is a member of fd_set.

See POSIX.1-2017 article for normative description. This function is also exposed as
FD_ISSET() if :kconfig:`CONFIG_NET_SOCKETS_POSIX_NAMES` is defined.

void ZSOCK_FD_CLR(int fd, zsock_fd_set *set)

Remove socket from fd_set.

See POSIX.1-2017 article for normative description. This function is also exposed as FD_CLR()
if :kconfig:`CONFIG_NET_SOCKETS_POSIX_NAMES` is defined.

7.20. Networking 875

http://pubs.opengroup.org/onlinepubs/9699919799/functions/freeaddrinfo.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/gai_strerror.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/getnameinfo.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/select.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/select.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/select.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/select.html

Zephyr Project Documentation, Release 2.7.0-rc2

void ZSOCK_FD_SET(int fd, zsock_fd_set *set)

Add socket to fd_set.

See POSIX.1-2017 article for normative description. This function is also exposed as FD_SET()
if :kconfig:`CONFIG_NET_SOCKETS_POSIX_NAMES` is defined.

struct zsock_pollfd

#include <socket.h>

struct zsock_addrinfo

#include <socket.h>

struct ifreq

#include <socket.h> Interface description structure

struct zsock_fd_set

#include <socket_select.h>

struct zsock_timeval

#include <socket_types.h>

TLS Credentials

group tls_credentials

TLS credentials management.

Typedefs

typedef int sec_tag_t

Secure tag, a reference to TLS credential

Secure tag can be used to reference credential after it was registered in the system.

Note: Some TLS credentials come in pairs:

• TLS_CREDENTIAL_SERVER_CERTIFICATE with TLS_CREDENTIAL_PRIVATE_KEY,

• TLS_CREDENTIAL_PSK with TLS_CREDENTIAL_PSK_ID. Such pairs of credentials must
be assigned the same secure tag to be correctly handled in the system.

Enums

enum tls_credential_type

TLS credential types

Values:

876 Chapter 7. API Reference

http://pubs.opengroup.org/onlinepubs/9699919799/functions/select.html

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator TLS_CREDENTIAL_NONE

Unspecified credential.

enumerator TLS_CREDENTIAL_CA_CERTIFICATE

A trusted CA certificate. Use this to authenticate remote servers. Used with certificate-
based ciphersuites.

enumerator TLS_CREDENTIAL_SERVER_CERTIFICATE

A public server certificate. Use this to register your own server certificate. Should be
registered together with a corresponding private key. Used with certificate-based cipher-
suites.

enumerator TLS_CREDENTIAL_PRIVATE_KEY

Private key. Should be registered together with a corresponding public certificate. Used
with certificate-based ciphersuites.

enumerator TLS_CREDENTIAL_PSK

Pre-shared key. Should be registered together with a corresponding PSK identity. Used
with PSK-based ciphersuites.

enumerator TLS_CREDENTIAL_PSK_ID

Pre-shared key identity. Should be registered together with a corresponding PSK. Used
with PSK-based ciphersuites.

Functions

int tls_credential_add(sec_tag_t tag, enum tls_credential_type type, const void *cred, size_t
credlen)

Add a TLS credential.

This function adds a TLS credential, that can be used by TLS/DTLS for authentication.

Parameters

• tag – A security tag that credential will be referenced with.

• type – A TLS/DTLS credential type.

• cred – A TLS/DTLS credential.

• credlen – A TLS/DTLS credential length.

Return values

• 0 – TLS credential successfully added.

• -EACCES – Access to the TLS credential subsystem was denied.

• -ENOMEM – Not enough memory to add new TLS credential.

• -EEXIST – TLS credential of specific tag and type already exists.

int tls_credential_get(sec_tag_t tag, enum tls_credential_type type, void *cred, size_t *credlen)

Get a TLS credential.

This function gets an already registered TLS credential, referenced by tag secure tag of type.

Parameters

• tag – A security tag of requested credential.

7.20. Networking 877

Zephyr Project Documentation, Release 2.7.0-rc2

• type – A TLS/DTLS credential type of requested credential.

• cred – A buffer for TLS/DTLS credential.

• credlen – A buffer size on input. TLS/DTLS credential length on output.

Return values

• 0 – TLS credential successfully obtained.

• -EACCES – Access to the TLS credential subsystem was denied.

• -ENOENT – Requested TLS credential was not found.

• -EFBIG – Requested TLS credential does not fit in the buffer provided.

int tls_credential_delete(sec_tag_t tag, enum tls_credential_type type)

Delete a TLS credential.

This function removes a TLS credential, referenced by tag secure tag of type.

Parameters

• tag – A security tag corresponding to removed credential.

• type – A TLS/DTLS credential type of removed credential.

Return values

• 0 – TLS credential successfully deleted.

• -EACCES – Access to the TLS credential subsystem was denied.

• -ENOENT – Requested TLS credential was not found.

IPv4/IPv6 Primitives and Helpers

• Overview

• API Reference

Overview Miscellaneous defines and helper functions for IP addresses and IP protocols.

API Reference

group ip_4_6

IPv4/IPv6 primitives and helpers.

Defines

PF_UNSPEC

Unspecified protocol family.

PF_INET

IP protocol family version 4.

PF_INET6

IP protocol family version 6.

878 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

PF_PACKET

Packet family.

PF_CAN

Controller Area Network.

PF_NET_MGMT

Network management info.

PF_LOCAL

Inter-process communication

PF_UNIX

Inter-process communication

AF_UNSPEC

Unspecified address family.

AF_INET

IP protocol family version 4.

AF_INET6

IP protocol family version 6.

AF_PACKET

Packet family.

AF_CAN

Controller Area Network.

AF_NET_MGMT

Network management info.

AF_LOCAL

Inter-process communication

AF_UNIX

Inter-process communication

ntohs(x)
Convert 16-bit value from network to host byte order.

Parameters

• x – The network byte order value to convert.

Returns Host byte order value.

ntohl(x)
Convert 32-bit value from network to host byte order.

Parameters

• x – The network byte order value to convert.

7.20. Networking 879

Zephyr Project Documentation, Release 2.7.0-rc2

Returns Host byte order value.

ntohll(x)

Convert 64-bit value from network to host byte order.

Parameters

• x – The network byte order value to convert.

Returns Host byte order value.

htons(x)

Convert 16-bit value from host to network byte order.

Parameters

• x – The host byte order value to convert.

Returns Network byte order value.

htonl(x)

Convert 32-bit value from host to network byte order.

Parameters

• x – The host byte order value to convert.

Returns Network byte order value.

htonll(x)

Convert 64-bit value from host to network byte order.

Parameters

• x – The host byte order value to convert.

Returns Network byte order value.

ALIGN_H(x)

ALIGN_D(x)

CMSG_FIRSTHDR(msghdr)

CMSG_NXTHDR(msghdr, cmsg)

CMSG_DATA(cmsg)

CMSG_SPACE(length)

CMSG_LEN(length)

INET_ADDRSTRLEN

Max length of the IPv4 address as a string. Defined by POSIX.

INET6_ADDRSTRLEN

Max length of the IPv6 address as a string. Takes into account possible mapped IPv4 addresses.

NET_MAX_PRIORITIES

net_ipaddr_copy(dest, src)

Copy an IPv4 or IPv6 address.

Parameters

• dest – Destination IP address.

880 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• src – Source IP address.

Returns Destination address.

Typedefs

typedef unsigned short int sa_family_t

Socket address family type

typedef size_t socklen_t

Length of a socket address

Enums

enum net_ip_protocol

Protocol numbers from IANA/BSD

Values:

enumerator IPPROTO_IP = 0

IP protocol (pseudo-val for setsockopt()

enumerator IPPROTO_ICMP = 1

ICMP protocol

enumerator IPPROTO_IGMP = 2

IGMP protocol

enumerator IPPROTO_IPIP = 4

IPIP tunnels

enumerator IPPROTO_TCP = 6

TCP protocol

enumerator IPPROTO_UDP = 17

UDP protocol

enumerator IPPROTO_IPV6 = 41

IPv6 protocol

enumerator IPPROTO_ICMPV6 = 58

ICMPv6 protocol

enumerator IPPROTO_RAW = 255

RAW IP packets

enum net_ip_protocol_secure

Protocol numbers for TLS protocols

Values:

7.20. Networking 881

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator IPPROTO_TLS_1_0 = 256

TLS 1.0 protocol

enumerator IPPROTO_TLS_1_1 = 257

TLS 1.1 protocol

enumerator IPPROTO_TLS_1_2 = 258

TLS 1.2 protocol

enumerator IPPROTO_DTLS_1_0 = 272

DTLS 1.0 protocol

enumerator IPPROTO_DTLS_1_2 = 273

DTLS 1.2 protocol

enum net_sock_type

Socket type

Values:

enumerator SOCK_STREAM = 1

Stream socket type

enumerator SOCK_DGRAM

Datagram socket type

enumerator SOCK_RAW

RAW socket type

enum net_ip_mtu

Values:

enumerator NET_IPV6_MTU = 1280

IPv6 MTU length. We must be able to receive this size IPv6 packet without fragmentation.

enumerator NET_IPV4_MTU = 576

IPv4 MTU length. We must be able to receive this size IPv4 packet without fragmentation.

enum net_priority

Network packet priority settings described in IEEE 802.1Q Annex I.1

Values:

enumerator NET_PRIORITY_BK = 1

Background (lowest)

enumerator NET_PRIORITY_BE = 0

Best effort (default)

882 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator NET_PRIORITY_EE = 2

Excellent effort

enumerator NET_PRIORITY_CA = 3

Critical applications (highest)

enumerator NET_PRIORITY_VI = 4

Video, < 100 ms latency and jitter

enumerator NET_PRIORITY_VO = 5

Voice, < 10 ms latency and jitter

enumerator NET_PRIORITY_IC = 6

Internetwork control

enumerator NET_PRIORITY_NC = 7

Network control

enum net_addr_state

What is the current state of the network address

Values:

enumerator NET_ADDR_ANY_STATE = -1

Default (invalid) address type

enumerator NET_ADDR_TENTATIVE = 0

Tentative address

enumerator NET_ADDR_PREFERRED

Preferred address

enumerator NET_ADDR_DEPRECATED

Deprecated address

enum net_addr_type

How the network address is assigned to network interface

Values:

enumerator NET_ADDR_ANY = 0

Default value. This is not a valid value.

enumerator NET_ADDR_AUTOCONF

Auto configured address

enumerator NET_ADDR_DHCP

Address is from DHCP

7.20. Networking 883

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator NET_ADDR_MANUAL

Manually set address

enumerator NET_ADDR_OVERRIDABLE

Manually set address which is overridable by DHCP

Functions

static inline bool net_ipv6_is_addr_loopback(struct in6_addr *addr)

Check if the IPv6 address is a loopback address (::1).

Parameters

• addr – IPv6 address

Returns True if address is a loopback address, False otherwise.

static inline bool net_ipv6_is_addr_mcast(const struct in6_addr *addr)

Check if the IPv6 address is a multicast address.

Parameters

• addr – IPv6 address

Returns True if address is multicast address, False otherwise.

struct net_if_addr *net_if_ipv6_addr_lookup(const struct in6_addr *addr, struct net_if **iface)

static inline bool net_ipv6_is_my_addr(struct in6_addr *addr)

Check if IPv6 address is found in one of the network interfaces.

Parameters

• addr – IPv6 address

Returns True if address was found, False otherwise.

struct net_if_mcast_addr *net_if_ipv6_maddr_lookup(const struct in6_addr *addr, struct net_if
**iface)

static inline bool net_ipv6_is_my_maddr(struct in6_addr *maddr)

Check if IPv6 multicast address is found in one of the network interfaces.

Parameters

• maddr – Multicast IPv6 address

Returns True if address was found, False otherwise.

static inline bool net_ipv6_is_prefix(const uint8_t *addr1, const uint8_t *addr2, uint8_t
length)

Check if two IPv6 addresses are same when compared after prefix mask.

Parameters

• addr1 – First IPv6 address.

• addr2 – Second IPv6 address.

• length – Prefix length (max length is 128).

Returns True if IPv6 prefixes are the same, False otherwise.

884 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline bool net_ipv4_is_addr_loopback(struct in_addr *addr)

Check if the IPv4 address is a loopback address (127.0.0.0/8).

Parameters

• addr – IPv4 address

Returns True if address is a loopback address, False otherwise.

static inline bool net_ipv4_is_addr_unspecified(const struct in_addr *addr)

Check if the IPv4 address is unspecified (all bits zero)

Parameters

• addr – IPv4 address.

Returns True if the address is unspecified, false otherwise.

static inline bool net_ipv4_is_addr_mcast(const struct in_addr *addr)

Check if the IPv4 address is a multicast address.

Parameters

• addr – IPv4 address

Returns True if address is multicast address, False otherwise.

static inline bool net_ipv4_is_ll_addr(const struct in_addr *addr)

Check if the given IPv4 address is a link local address.

Parameters

• addr – A valid pointer on an IPv4 address

Returns True if it is, false otherwise.

static inline bool net_ipv4_addr_cmp(const struct in_addr *addr1, const struct in_addr *addr2)

Compare two IPv4 addresses.

Parameters

• addr1 – Pointer to IPv4 address.

• addr2 – Pointer to IPv4 address.

Returns True if the addresses are the same, false otherwise.

static inline bool net_ipv6_addr_cmp(const struct in6_addr *addr1, const struct in6_addr
*addr2)

Compare two IPv6 addresses.

Parameters

• addr1 – Pointer to IPv6 address.

• addr2 – Pointer to IPv6 address.

Returns True if the addresses are the same, false otherwise.

static inline bool net_ipv6_is_ll_addr(const struct in6_addr *addr)

Check if the given IPv6 address is a link local address.

Parameters

• addr – A valid pointer on an IPv6 address

Returns True if it is, false otherwise.

7.20. Networking 885

Zephyr Project Documentation, Release 2.7.0-rc2

static inline bool net_ipv6_is_ula_addr(const struct in6_addr *addr)

Check if the given IPv6 address is a unique local address.

Parameters

• addr – A valid pointer on an IPv6 address

Returns True if it is, false otherwise.

const struct in6_addr *net_ipv6_unspecified_address(void)

Return pointer to any (all bits zeros) IPv6 address.

Returns Any IPv6 address.

const struct in_addr *net_ipv4_unspecified_address(void)

Return pointer to any (all bits zeros) IPv4 address.

Returns Any IPv4 address.

const struct in_addr *net_ipv4_broadcast_address(void)

Return pointer to broadcast (all bits ones) IPv4 address.

Returns Broadcast IPv4 address.

bool net_if_ipv4_addr_mask_cmp(struct net_if *iface, const struct in_addr *addr)

static inline bool net_ipv4_addr_mask_cmp(struct net_if *iface, const struct in_addr *addr)

Check if the given address belongs to same subnet that has been configured for the interface.

Parameters

• iface – A valid pointer on an interface

• addr – IPv4 address

Returns True if address is in same subnet, false otherwise.

bool net_if_ipv4_is_addr_bcast(struct net_if *iface, const struct in_addr *addr)

static inline bool net_ipv4_is_addr_bcast(struct net_if *iface, const struct in_addr *addr)

Check if the given IPv4 address is a broadcast address.

Parameters

• iface – Interface to use. Must be a valid pointer to an interface.

• addr – IPv4 address

Returns True if address is a broadcast address, false otherwise.

struct net_if_addr *net_if_ipv4_addr_lookup(const struct in_addr *addr, struct net_if **iface)

static inline bool net_ipv4_is_my_addr(const struct in_addr *addr)

Check if the IPv4 address is assigned to any network interface in the system.

Parameters

• addr – A valid pointer on an IPv4 address

Returns True if IPv4 address is found in one of the network interfaces, False other-
wise.

static inline bool net_ipv6_is_addr_unspecified(const struct in6_addr *addr)

Check if the IPv6 address is unspecified (all bits zero)

Parameters

• addr – IPv6 address.

Returns True if the address is unspecified, false otherwise.

886 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline bool net_ipv6_is_addr_solicited_node(const struct in6_addr *addr)

Check if the IPv6 address is solicited node multicast address FF02:0:0:0:0:1:FFXX:XXXX de-
fined in RFC 3513.

Parameters

• addr – IPv6 address.

Returns True if the address is solicited node address, false otherwise.

static inline bool net_ipv6_is_addr_mcast_scope(const struct in6_addr *addr, int scope)

Check if the IPv6 address is a given scope multicast address (FFyx::).

Parameters

• addr – IPv6 address

• scope – Scope to check

Returns True if the address is in given scope multicast address, false otherwise.

static inline bool net_ipv6_is_same_mcast_scope(const struct in6_addr *addr_1, const struct
in6_addr *addr_2)

Check if the IPv6 addresses have the same multicast scope (FFyx::).

Parameters

• addr_1 – IPv6 address 1

• addr_2 – IPv6 address 2

Returns True if both addresses have same multicast scope, false otherwise.

static inline bool net_ipv6_is_addr_mcast_global(const struct in6_addr *addr)

Check if the IPv6 address is a global multicast address (FFxE::/16).

Parameters

• addr – IPv6 address.

Returns True if the address is global multicast address, false otherwise.

static inline bool net_ipv6_is_addr_mcast_iface(const struct in6_addr *addr)

Check if the IPv6 address is a interface scope multicast address (FFx1::).

Parameters

• addr – IPv6 address.

Returns True if the address is a interface scope multicast address, false otherwise.

static inline bool net_ipv6_is_addr_mcast_link(const struct in6_addr *addr)

Check if the IPv6 address is a link local scope multicast address (FFx2::).

Parameters

• addr – IPv6 address.

Returns True if the address is a link local scope multicast address, false otherwise.

static inline bool net_ipv6_is_addr_mcast_mesh(const struct in6_addr *addr)

Check if the IPv6 address is a mesh-local scope multicast address (FFx3::).

Parameters

• addr – IPv6 address.

Returns True if the address is a mesh-local scope multicast address, false otherwise.

7.20. Networking 887

Zephyr Project Documentation, Release 2.7.0-rc2

static inline bool net_ipv6_is_addr_mcast_site(const struct in6_addr *addr)

Check if the IPv6 address is a site scope multicast address (FFx5::).

Parameters

• addr – IPv6 address.

Returns True if the address is a site scope multicast address, false otherwise.

static inline bool net_ipv6_is_addr_mcast_org(const struct in6_addr *addr)

Check if the IPv6 address is an organization scope multicast address (FFx8::).

Parameters

• addr – IPv6 address.

Returns True if the address is an organization scope multicast address, false other-
wise.

static inline bool net_ipv6_is_addr_mcast_group(const struct in6_addr *addr, const struct
in6_addr *group)

Check if the IPv6 address belongs to certain multicast group.

Parameters

• addr – IPv6 address.

• group – Group id IPv6 address, the values must be in network byte order

Returns True if the IPv6 multicast address belongs to given multicast group, false
otherwise.

static inline bool net_ipv6_is_addr_mcast_all_nodes_group(const struct in6_addr *addr)

Check if the IPv6 address belongs to the all nodes multicast group.

Parameters

• addr – IPv6 address

Returns True if the IPv6 multicast address belongs to the all nodes multicast group,
false otherwise

static inline bool net_ipv6_is_addr_mcast_iface_all_nodes(const struct in6_addr *addr)

Check if the IPv6 address is a interface scope all nodes multicast address (FF01::1).

Parameters

• addr – IPv6 address.

Returns True if the address is a interface scope all nodes multicast address, false
otherwise.

static inline bool net_ipv6_is_addr_mcast_link_all_nodes(const struct in6_addr *addr)

Check if the IPv6 address is a link local scope all nodes multicast address (FF02::1).

Parameters

• addr – IPv6 address.

Returns True if the address is a link local scope all nodes multicast address, false
otherwise.

static inline void net_ipv6_addr_create_solicited_node(const struct in6_addr *src, struct
in6_addr *dst)

Create solicited node IPv6 multicast address FF02:0:0:0:0:1:FFXX:XXXX defined in RFC 3513.

Parameters

• src – IPv6 address.

888 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• dst – IPv6 address.

static inline void net_ipv6_addr_create(struct in6_addr *addr, uint16_t addr0, uint16_t addr1,
uint16_t addr2, uint16_t addr3, uint16_t addr4,
uint16_t addr5, uint16_t addr6, uint16_t addr7)

Construct an IPv6 address from eight 16-bit words.

Parameters

• addr – IPv6 address

• addr0 – 16-bit word which is part of the address

• addr1 – 16-bit word which is part of the address

• addr2 – 16-bit word which is part of the address

• addr3 – 16-bit word which is part of the address

• addr4 – 16-bit word which is part of the address

• addr5 – 16-bit word which is part of the address

• addr6 – 16-bit word which is part of the address

• addr7 – 16-bit word which is part of the address

static inline void net_ipv6_addr_create_ll_allnodes_mcast(struct in6_addr *addr)

Create link local allnodes multicast IPv6 address.

Parameters

• addr – IPv6 address

static inline void net_ipv6_addr_create_ll_allrouters_mcast(struct in6_addr *addr)

Create link local allrouters multicast IPv6 address.

Parameters

• addr – IPv6 address

static inline void net_ipv6_addr_create_iid(struct in6_addr *addr, struct net_linkaddr *lladdr)

Create IPv6 address interface identifier.

Parameters

• addr – IPv6 address

• lladdr – Link local address

static inline bool net_ipv6_addr_based_on_ll(const struct in6_addr *addr, const struct
net_linkaddr *lladdr)

Check if given address is based on link layer address.

Returns True if it is, False otherwise

static inline struct sockaddr_in6 *net_sin6(const struct sockaddr *addr)

Get sockaddr_in6 from sockaddr. This is a helper so that the code calling this function can be
made shorter.

Parameters

• addr – Socket address

Returns Pointer to IPv6 socket address

static inline struct sockaddr_in *net_sin(const struct sockaddr *addr)

Get sockaddr_in from sockaddr. This is a helper so that the code calling this function can be
made shorter.

Parameters

7.20. Networking 889

Zephyr Project Documentation, Release 2.7.0-rc2

• addr – Socket address

Returns Pointer to IPv4 socket address

static inline struct sockaddr_in6_ptr *net_sin6_ptr(const struct sockaddr_ptr *addr)

Get sockaddr_in6_ptr from sockaddr_ptr. This is a helper so that the code calling this function
can be made shorter.

Parameters

• addr – Socket address

Returns Pointer to IPv6 socket address

static inline struct sockaddr_in_ptr *net_sin_ptr(const struct sockaddr_ptr *addr)

Get sockaddr_in_ptr from sockaddr_ptr. This is a helper so that the code calling this function
can be made shorter.

Parameters

• addr – Socket address

Returns Pointer to IPv4 socket address

static inline struct sockaddr_ll_ptr *net_sll_ptr(const struct sockaddr_ptr *addr)

Get sockaddr_ll_ptr from sockaddr_ptr. This is a helper so that the code calling this function
can be made shorter.

Parameters

• addr – Socket address

Returns Pointer to linklayer socket address

static inline struct sockaddr_can_ptr *net_can_ptr(const struct sockaddr_ptr *addr)

Get sockaddr_can_ptr from sockaddr_ptr. This is a helper so that the code needing this func-
tionality can be made shorter.

Parameters

• addr – Socket address

Returns Pointer to CAN socket address

int net_addr_pton(sa_family_t family, const char *src, void *dst)

Convert a string to IP address.

Note: This function doesn’t do precise error checking, do not use for untrusted strings.

Parameters

• family – IP address family (AF_INET or AF_INET6)

• src – IP address in a null terminated string

• dst – Pointer to struct in_addr if family is AF_INET or pointer to struct in6_addr
if family is AF_INET6

Returns 0 if ok, < 0 if error

char *net_addr_ntop(sa_family_t family, const void *src, char *dst, size_t size)

Convert IP address to string form.

Parameters

• family – IP address family (AF_INET or AF_INET6)

890 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• src – Pointer to struct in_addr if family is AF_INET or pointer to struct in6_addr
if family is AF_INET6

• dst – Buffer for IP address as a null terminated string

• size – Number of bytes available in the buffer

Returns dst pointer if ok, NULL if error

bool net_ipaddr_parse(const char *str, size_t str_len, struct sockaddr *addr)

Parse a string that contains either IPv4 or IPv6 address and optional port, and store the infor-
mation in user supplied sockaddr struct.

Syntax of the IP address string: 192.0.2.1:80 192.0.2.42

[2001:db8::2] 2001:db::42 Note that the str_len parameter is used to restrict the amount of
characters that are checked. If the string does not contain port number, then the port number
in sockaddr is not modified.

Parameters

• str – String that contains the IP address.

• str_len – Length of the string to be parsed.

• addr – Pointer to user supplied struct sockaddr.

Returns True if parsing could be done, false otherwise.

static inline int32_t net_tcp_seq_cmp(uint32_t seq1, uint32_t seq2)

Compare TCP sequence numbers.

This function compares TCP sequence numbers, accounting for wraparound effects.

Parameters

• seq1 – First sequence number

• seq2 – Seconds sequence number

Returns < 0 if seq1 < seq2, 0 if seq1 == seq2, > 0 if seq > seq2

static inline bool net_tcp_seq_greater(uint32_t seq1, uint32_t seq2)

Check that one TCP sequence number is greater.

This is convenience function on top of net_tcp_seq_cmp().

Parameters

• seq1 – First sequence number

• seq2 – Seconds sequence number

Returns True if seq > seq2

int net_bytes_from_str(uint8_t *buf, int buf_len, const char *src)

Convert a string of hex values to array of bytes.

The syntax of the string is “ab:02:98:fa:42:01”

Parameters

• buf – Pointer to memory where the bytes are written.

• buf_len – Length of the memory area.

• src – String of bytes.

Returns 0 if ok, <0 if error

7.20. Networking 891

Zephyr Project Documentation, Release 2.7.0-rc2

int net_tx_priority2tc(enum net_priority prio)

Convert Tx network packet priority to traffic class so we can place the packet into correct Tx
queue.

Parameters

• prio – Network priority

Returns Tx traffic class that handles that priority network traffic.

int net_rx_priority2tc(enum net_priority prio)

Convert Rx network packet priority to traffic class so we can place the packet into correct Rx
queue.

Parameters

• prio – Network priority

Returns Rx traffic class that handles that priority network traffic.

static inline enum net_priority net_vlan2priority(uint8_t priority)

Convert network packet VLAN priority to network packet priority so we can place the packet
into correct queue.

Parameters

• priority – VLAN priority

Returns Network priority

static inline uint8_t net_priority2vlan(enum net_priority priority)

Convert network packet priority to network packet VLAN priority.

Parameters

• priority – Packet priority

Returns VLAN priority (PCP)

const char *net_family2str(sa_family_t family)

Return network address family value as a string. This is only usable for debugging.

Parameters

• family – Network address family code

Returns Network address family as a string, or NULL if family is unknown.

struct in6_addr

#include <net_ip.h> IPv6 address struct

struct in_addr

#include <net_ip.h> IPv4 address struct

struct sockaddr_in6

#include <net_ip.h> Socket address struct for IPv6.

struct sockaddr_in6_ptr

#include <net_ip.h>

struct sockaddr_in

#include <net_ip.h> Socket address struct for IPv4.

892 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

struct sockaddr_in_ptr

#include <net_ip.h>

struct sockaddr_ll

#include <net_ip.h> Socket address struct for packet socket.

struct sockaddr_ll_ptr

#include <net_ip.h>

struct sockaddr_can_ptr

#include <net_ip.h>

struct iovec

#include <net_ip.h>

struct msghdr

#include <net_ip.h>

struct cmsghdr

#include <net_ip.h>

struct sockaddr

#include <net_ip.h> Generic sockaddr struct. Must be cast to proper type.

struct net_tuple

#include <net_ip.h> IPv6/IPv4 network connection tuple

Public Members

struct net_addr *remote_addr

IPv6/IPv4 remote address

struct net_addr *local_addr

IPv6/IPv4 local address

uint16_t remote_port

UDP/TCP remote port

uint16_t local_port

UDP/TCP local port

enum net_ip_protocol ip_proto

IP protocol

DNS Resolve

7.20. Networking 893

Zephyr Project Documentation, Release 2.7.0-rc2

• Overview

• Sample usage

• API Reference

Overview The DNS resolver implements a basic DNS resolver according to IETF RFC1035 on Domain
Implementation and Specification. Supported DNS answers are IPv4/IPv6 addresses and CNAME.

If a CNAME is received, the DNS resolver will create another DNS query. The number of addi-
tional queries is controlled by the :kconfig:`CONFIG_DNS_RESOLVER_ADDITIONAL_QUERIES` Kcon-
fig variable.

The multicast DNS (mDNS) client resolver support can be enabled by setting :kcon-
fig:`CONFIG_MDNS_RESOLVER` Kconfig option. See IETF RFC6762 for more details about mDNS.

The link-local multicast name resolution (LLMNR) client resolver support can be enabled by setting the
:kconfig:`CONFIG_LLMNR_RESOLVER` Kconfig variable. See IETF RFC4795 for more details about
LLMNR.

For more information about DNS configuration variables, see: subsys/net/lib/dns/Kconfig. The DNS
resolver API can be found at include/net/dns_resolve.h.

Sample usage See DNS resolve sample application for details.

API Reference

group dns_resolve

DNS resolving library.

Defines

DNS_MAX_NAME_SIZE

Max size of the resolved name.

Typedefs

typedef void (*dns_resolve_cb_t)(enum dns_resolve_status status, struct dns_addrinfo *info,
void *user_data)

DNS resolve callback.

The DNS resolve callback is called after a successful DNS resolving. The resolver can call this
callback multiple times, one for each resolved address.

Param status The status of the query: DNS_EAI_INPROGRESS returned for each
resolved address DNS_EAI_ALLDONE mark end of the resolving, info is set to
NULL in this case DNS_EAI_CANCELED if the query was canceled manually or
timeout happened DNS_EAI_FAIL if the name cannot be resolved by the server
DNS_EAI_NODATA if there is no such name other values means that an error
happened.

Param info Query results are stored here.

Param user_data The user data given in dns_resolve_name() call.

894 Chapter 7. API Reference

https://tools.ietf.org/html/rfc1035
https://tools.ietf.org/html/rfc1035
https://tools.ietf.org/html/rfc6762
https://tools.ietf.org/html/rfc4795
https://github.com/zephyrproject-rtos/zephyr/blob/main/subsys/net/lib/dns/Kconfig
https://github.com/zephyrproject-rtos/zephyr/blob/main/include/net/dns_resolve.h

Zephyr Project Documentation, Release 2.7.0-rc2

Enums

enum dns_query_type

DNS query type enum

Values:

enumerator DNS_QUERY_TYPE_A = 1

IPv4 query

enumerator DNS_QUERY_TYPE_AAAA = 28

IPv6 query

enum dns_resolve_status

Status values for the callback.

Values:

enumerator DNS_EAI_BADFLAGS = -1

Invalid value for ai_flags field

enumerator DNS_EAI_NONAME = -2

NAME or SERVICE is unknown

enumerator DNS_EAI_AGAIN = -3

Temporary failure in name resolution

enumerator DNS_EAI_FAIL = -4

Non-recoverable failure in name res

enumerator DNS_EAI_NODATA = -5

No address associated with NAME

enumerator DNS_EAI_FAMILY = -6

ai_family not supported

enumerator DNS_EAI_SOCKTYPE = -7

ai_socktype not supported

enumerator DNS_EAI_SERVICE = -8

SRV not supported for ai_socktype

enumerator DNS_EAI_ADDRFAMILY = -9

Address family for NAME not supported

enumerator DNS_EAI_MEMORY = -10

Memory allocation failure

enumerator DNS_EAI_SYSTEM = -11

System error returned in errno

7.20. Networking 895

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator DNS_EAI_OVERFLOW = -12

Argument buffer overflow

enumerator DNS_EAI_INPROGRESS = -100

Processing request in progress

enumerator DNS_EAI_CANCELED = -101

Request canceled

enumerator DNS_EAI_NOTCANCELED = -102

Request not canceled

enumerator DNS_EAI_ALLDONE = -103

All requests done

enumerator DNS_EAI_IDN_ENCODE = -105

IDN encoding failed

enum dns_resolve_context_state

Values:

enumerator DNS_RESOLVE_CONTEXT_ACTIVE

enumerator DNS_RESOLVE_CONTEXT_DEACTIVATING

enumerator DNS_RESOLVE_CONTEXT_INACTIVE

Functions

int dns_resolve_init(struct dns_resolve_context *ctx, const char *dns_servers_str[], const struct
sockaddr *dns_servers_sa[])

Init DNS resolving context.

This function sets the DNS server address and initializes the DNS context that is used by the
actual resolver. DNS server addresses can be specified either in textual form, or as struct
sockaddr (or both). Note that the recommended way to resolve DNS names is to use the
dns_get_addr_info() API. In that case user does not need to call dns_resolve_init() as the DNS
servers are already setup by the system.

Parameters

• ctx – DNS context. If the context variable is allocated from the stack, then the
variable needs to be valid for the whole duration of the resolving. Caller does
not need to fill the variable beforehand or edit the context afterwards.

• dns_servers_str – DNS server addresses using textual strings. The array is
NULL terminated. The port number can be given in the string. Syntax for the
server addresses with or without port numbers: IPv4 : 10.0.9.1 IPv4 + port :
10.0.9.1:5353 IPv6 : 2001:db8::22:42 IPv6 + port : [2001:db8::22:42]:5353

• dns_servers_sa – DNS server addresses as struct sockaddr. The array is NULL
terminated. Port numbers are optional in struct sockaddr, the default will be
used if set to 0.

896 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Returns 0 if ok, <0 if error.

int dns_resolve_close(struct dns_resolve_context *ctx)

Close DNS resolving context.

This releases DNS resolving context and marks the context unusable. Caller must call the
dns_resolve_init() again to make context usable.

Parameters

• ctx – DNS context

Returns 0 if ok, <0 if error.

int dns_resolve_reconfigure(struct dns_resolve_context *ctx, const char *servers_str[], const
struct sockaddr *servers_sa[])

Reconfigure DNS resolving context.

Reconfigures DNS context with new server list.

Parameters

• ctx – DNS context

• servers_str – DNS server addresses using textual strings. The array is NULL
terminated. The port number can be given in the string. Syntax for the
server addresses with or without port numbers: IPv4 : 10.0.9.1 IPv4 + port :
10.0.9.1:5353 IPv6 : 2001:db8::22:42 IPv6 + port : [2001:db8::22:42]:5353

• servers_sa – DNS server addresses as struct sockaddr. The array is NULL
terminated. Port numbers are optional in struct sockaddr, the default will be
used if set to 0.

Returns 0 if ok, <0 if error.

int dns_resolve_cancel(struct dns_resolve_context *ctx, uint16_t dns_id)

Cancel a pending DNS query.

This releases DNS resources used by a pending query.

Parameters

• ctx – DNS context

• dns_id – DNS id of the pending query

Returns 0 if ok, <0 if error.

int dns_resolve_cancel_with_name(struct dns_resolve_context *ctx, uint16_t dns_id, const char
*query_name, enum dns_query_type query_type)

Cancel a pending DNS query using id, name and type.

This releases DNS resources used by a pending query.

Parameters

• ctx – DNS context

• dns_id – DNS id of the pending query

• query_name – Name of the resource we are trying to query (hostname)

• query_type – Type of the query (A or AAAA)

Returns 0 if ok, <0 if error.

int dns_resolve_name(struct dns_resolve_context *ctx, const char *query, enum dns_query_type
type, uint16_t *dns_id, dns_resolve_cb_t cb, void *user_data, int32_t
timeout)

7.20. Networking 897

Zephyr Project Documentation, Release 2.7.0-rc2

Resolve DNS name.

This function can be used to resolve e.g., IPv4 or IPv6 address. Note that this is asynchronous
call, the function will return immediately and system will call the callback after resolving has
finished or timeout has occurred. We might send the query to multiple servers (if there are
more than one server configured), but we only use the result of the first received response.

Parameters

• ctx – DNS context

• query – What the caller wants to resolve.

• type – What kind of data the caller wants to get.

• dns_id – DNS id is returned to the caller. This is needed if one wishes to cancel
the query. This can be set to NULL if there is no need to cancel the query.

• cb – Callback to call after the resolving has finished or timeout has happened.

• user_data – The user data.

• timeout – The timeout value for the query. Possible values:
SYS_FOREVER_MS: the query is tried forever, user needs to cancel it
manually if it takes too long time to finish >0: start the query and let the
system timeout it after specified ms

Returns 0 if resolving was started ok, < 0 otherwise

struct dns_resolve_context *dns_resolve_get_default(void)

Get default DNS context.

The system level DNS context uses DNS servers that are defined in project config file. If no
DNS servers are defined by the user, then resolving DNS names using default DNS context will
do nothing. The configuration options are described in subsys/net/lib/dns/Kconfig file.

Returns Default DNS context.

static inline int dns_get_addr_info(const char *query, enum dns_query_type type, uint16_t
*dns_id, dns_resolve_cb_t cb, void *user_data, int32_t
timeout)

Get IP address info from DNS.

This function can be used to resolve e.g., IPv4 or IPv6 address. Note that this is asynchronous
call, the function will return immediately and system will call the callback after resolving has
finished or timeout has occurred. We might send the query to multiple servers (if there are
more than one server configured), but we only use the result of the first received response.
This variant uses system wide DNS servers.

Parameters

• query – What the caller wants to resolve.

• type – What kind of data the caller wants to get.

• dns_id – DNS id is returned to the caller. This is needed if one wishes to cancel
the query. This can be set to NULL if there is no need to cancel the query.

• cb – Callback to call after the resolving has finished or timeout has happened.

• user_data – The user data.

• timeout – The timeout value for the connection. Possible values:
SYS_FOREVER_MS: the query is tried forever, user needs to cancel it manu-
ally if it takes too long time to finish >0: start the query and let the system
timeout it after specified ms

Returns 0 if resolving was started ok, < 0 otherwise

898 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline int dns_cancel_addr_info(uint16_t dns_id)

Cancel a pending DNS query.

This releases DNS resources used by a pending query.

Parameters

• dns_id – DNS id of the pending query

Returns 0 if ok, <0 if error.

struct dns_addrinfo

#include <dns_resolve.h> Address info struct is passed to callback that gets all the results.

struct dns_resolve_context

#include <dns_resolve.h> DNS resolve context structure.

Public Members

struct sockaddr dns_server

DNS server information

struct net_context *net_ctx

Connection to the DNS server

uint8_t is_mdns

Is this server mDNS one

uint8_t is_llmnr

Is this server LLMNR one

struct k_mutex lock

Prevent concurrent access

k_timeout_t buf_timeout

This timeout is also used when a buffer is required from the buffer pools.

enum dns_resolve_context_state state

Is this context in use

struct dns_pending_query

#include <dns_resolve.h> Result callbacks. We have multiple callbacks here so that it is
possible to do multiple queries at the same time.

Contents of this structure can be inspected and changed only when the lock is held.

Public Members

struct k_work_delayable timer

Timeout timer

7.20. Networking 899

Zephyr Project Documentation, Release 2.7.0-rc2

struct dns_resolve_context *ctx

Back pointer to ctx, needed in timeout handler

dns_resolve_cb_t cb

Result callback.

A null value indicates the slot is not in use.

void *user_data

User data

k_timeout_t timeout

TX timeout

const char *query

String containing the thing to resolve like www.example.com

This is set to a non-null value when the query is started, and is not used thereafter.

If the query completed at a point where the work item was still pending the pointer
is cleared to indicate that the query is complete, but release of the query slot will be
deferred until a request for a slot determines that the work item has been released.

enum dns_query_type query_type

Query type

uint16_t id

DNS id of this query

uint16_t query_hash

Hash of the DNS name + query type we are querying. This hash is calculated so we
can match the response that we are receiving. This is needed mainly for mDNS which
is setting the DNS id to 0, which means that the id alone cannot be used to find correct
pending query.

Network Management

• Overview

• Requesting a defined procedure

• Listening to network events

• Defining a network management procedure

• Signaling a network event

• API Reference

Overview The Network Management APIs allow applications, as well as network layer code itself, to
call defined network routines at any level in the IP stack, or receive notifications on relevant network
events. For example, by using these APIs, application code can request a scan be done on a Wi-Fi- or
Bluetooth-based network interface, or request notification if a network interface IP address changes.

900 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

The Network Management API implementation is designed to save memory by eliminating code at
build time for management routines that are not used. Distinct and statically defined APIs for net-
work management procedures are not used. Instead, defined procedure handlers are registered by
using a NET_MGMT_REGISTER_REQUEST_HANDLER macro. Procedure requests are done through a single
net_mgmt() API that invokes the registered handler for the corresponding request.

The current implementation is experimental and may change and improve in future releases.

Requesting a defined procedure All network management requests are of the form
net_mgmt(mgmt_request, ...). The mgmt_request parameter is a bit mask that tells which
stack layer is targeted, if a net_if object is implied, and the specific management procedure being
requested. The available procedure requests depend on what has been implemented in the stack.

To avoid extra cost, all net_mgmt() calls are direct. Though this may change in a future release, it will
not affect the users of this function.

Listening to network events You can receive notifications on network events by registering a callback
function and specifying a set of events used to filter when your callback is invoked. The callback will
have to be unique for a pair of layer and code, whereas on the command part it will be a mask of events.

Two functions are available, net_mgmt_add_event_callback() for registering the callback func-
tion, and net_mgmt_del_event_callback() for unregistering a callback. A helper function,
net_mgmt_init_event_callback() , can be used to ease the initialization of the callback structure.

When an event occurs that matches a callback’s event set, the associated callback function is invoked
with the actual event code. This makes it possible for different events to be handled by the same callback
function, if desired.

Warning: Event set filtering allows false positives for events that have the same layer and layer
code. A callback handler function must check the event code (passed as an argument) against the
specific network events it will handle, regardless of how many events were in the set passed to
net_mgmt_init_event_callback() .

Note that in order to receive events from multiple layers, one must have multiple listeners registered,
one for each layer being listened. The callback handler function can be shared between different
layer events.

(False positives can occur for events which have the same layer and layer code.)

An example follows.

/*
* Set of events to handle.
* See e.g. include/net/net_event.h for some NET_EVENT_xxx values.
*/

define EVENT_IFACE_SET (NET_EVENT_IF_xxx | NET_EVENT_IF_yyy)
define EVENT_IPV4_SET (NET_EVENT_IPV4_xxx | NET_EVENT_IPV4_yyy)

struct net_mgmt_event_callback iface_callback;
struct net_mgmt_event_callback ipv4_callback;

void callback_handler(struct net_mgmt_event_callback *cb,
uint32_t mgmt_event,
struct net_if *iface)

{
if (mgmt_event == NET_EVENT_IF_xxx) {

/* Handle NET_EVENT_IF_xxx */
} else if (mgmt_event == NET_EVENT_IF_yyy) {

(continues on next page)

7.20. Networking 901

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

/* Handle NET_EVENT_IF_yyy */
} else if (mgmt_event == NET_EVENT_IPV4_xxx) {

/* Handle NET_EVENT_IPV4_xxx */
} else if (mgmt_event == NET_EVENT_IPV4_yyy) {

/* Handle NET_EVENT_IPV4_yyy */
} else {

/* Spurious (false positive) invocation. */
}

}

void register_cb(void)
{

net_mgmt_init_event_callback(&iface_callback, callback_handler,
EVENT_IFACE_SET);

net_mgmt_init_event_callback(&ipv4_callback, callback_handler,
EVENT_IPV4_SET);

net_mgmt_add_event_callback(&iface_callback);
net_mgmt_add_event_callback(&ipv4_callback);

}

See include/net/net_event.h for available generic core events that can be listened to.

Defining a network management procedure You can provide additional management procedures
specific to your stack implementation by defining a handler and registering it with an associated
mgmt_request code.

Management request code are defined in relevant places depending on the targeted layer or eventually,
if l2 is the layer, on the technology as well. For instance, all IP layer management request code will be
found in the include/net/net_event.h header file. But in case of an L2 technology, let’s say Ethernet,
these would be found in include/net/ethernet.h

You define your handler modeled with this signature:

static int your_handler(uint32_t mgmt_event, struct net_if *iface,
void *data, size_t len);

and then register it with an associated mgmt_request code:

NET_MGMT_REGISTER_REQUEST_HANDLER(<mgmt_request code>, your_handler);

This new management procedure could then be called by using:

net_mgmt(<mgmt_request code>, ...);

Signaling a network event You can signal a specific network event using the net_mgmt_notify()
function and provide the network event code. See include/net/net_mgmt.h for details. As for the man-
agement request code, event code can be also found on specific L2 technology mgmt headers, for example
include/net/ieee802154_mgmt.h would be the right place if 802.15.4 L2 is the technology one wants to
listen to events.

API Reference

group net_mgmt

Network Management.

902 Chapter 7. API Reference

https://github.com/zephyrproject-rtos/zephyr/blob/main/include/net/net_event.h
https://github.com/zephyrproject-rtos/zephyr/blob/main/include/net/net_event.h
https://github.com/zephyrproject-rtos/zephyr/blob/main/include/net/ethernet.h
https://github.com/zephyrproject-rtos/zephyr/blob/main/include/net/net_mgmt.h
https://github.com/zephyrproject-rtos/zephyr/blob/main/include/net/ieee802154_mgmt.h

Zephyr Project Documentation, Release 2.7.0-rc2

Defines

net_mgmt(_mgmt_request, _iface, _data, _len)

NET_MGMT_DEFINE_REQUEST_HANDLER(_mgmt_request)

NET_MGMT_REGISTER_REQUEST_HANDLER(_mgmt_request, _func)

Typedefs

typedef int (*net_mgmt_request_handler_t)(uint32_t mgmt_request, struct net_if *iface, void
*data, size_t len)

Signature which all Net MGMT request handler need to follow.

Param mgmt_request The exact request value the handler is being called through

Param iface A valid pointer on struct net_if if the request is meant to be tight to a
network interface. NULL otherwise.

Param data A valid pointer on a data understood by the handler. NULL otherwise.

Param len Length in byte of the memory pointed by data.

typedef void (*net_mgmt_event_handler_t)(struct net_mgmt_event_callback *cb, uint32_t
mgmt_event, struct net_if *iface)

Define the user’s callback handler function signature.

Param cb Original struct net_mgmt_event_callback owning this handler.

Param mgmt_event The network event being notified.

Param iface A pointer on a struct net_if to which the the event belongs to, if it’s an
event on an iface. NULL otherwise.

Functions

static inline void net_mgmt_init_event_callback(struct net_mgmt_event_callback *cb,
net_mgmt_event_handler_t handler, uint32_t
mgmt_event_mask)

Helper to initialize a struct net_mgmt_event_callback properly.

Parameters

• cb – A valid application’s callback structure pointer.

• handler – A valid handler function pointer.

• mgmt_event_mask – A mask of relevant events for the handler

void net_mgmt_add_event_callback(struct net_mgmt_event_callback *cb)

Add a user callback.

Parameters

• cb – A valid pointer on user’s callback to add.

void net_mgmt_del_event_callback(struct net_mgmt_event_callback *cb)

Delete a user callback.

Parameters

• cb – A valid pointer on user’s callback to delete.

7.20. Networking 903

Zephyr Project Documentation, Release 2.7.0-rc2

void net_mgmt_event_notify_with_info(uint32_t mgmt_event, struct net_if *iface, const void
*info, size_t length)

Used by the system to notify an event.

Note: info and length are disabled if CONFIG_NET_MGMT_EVENT_INFO is not defined.

Parameters

• mgmt_event – The actual network event code to notify

• iface – a valid pointer on a struct net_if if only the event is based on an iface.
NULL otherwise.

• info – a valid pointer on the information you want to pass along with the
event. NULL otherwise. Note the data pointed there is normalized by the
related event.

• length – size of the data pointed by info pointer.

static inline void net_mgmt_event_notify(uint32_t mgmt_event, struct net_if *iface)

int net_mgmt_event_wait(uint32_t mgmt_event_mask, uint32_t *raised_event, struct net_if
**iface, const void **info, size_t *info_length, k_timeout_t timeout)

Used to wait synchronously on an event mask.

Parameters

• mgmt_event_mask – A mask of relevant events to wait on.

• raised_event – a pointer on a uint32_t to get which event from the mask gen-
erated the event. Can be NULL if the caller is not interested in that information.

• iface – a pointer on a place holder for the iface on which the event has origi-
nated from. This is valid if only the event mask has bit NET_MGMT_IFACE_BIT
set relevantly, depending on events the caller wants to listen to.

• info – a valid pointer if user wants to get the information the event might
bring along. NULL otherwise.

• info_length – tells how long the info memory area is. Only valid if the info is
not NULL.

• timeout – A timeout delay. K_FOREVER can be used to wait indefinitely.

Returns 0 on success, a negative error code otherwise. -ETIMEDOUT will be specifi-
cally returned if the timeout kick-in instead of an actual event.

int net_mgmt_event_wait_on_iface(struct net_if *iface, uint32_t mgmt_event_mask, uint32_t
*raised_event, const void **info, size_t *info_length,
k_timeout_t timeout)

Used to wait synchronously on an event mask for a specific iface.

Parameters

• iface – a pointer on a valid network interface to listen event to

• mgmt_event_mask – A mask of relevant events to wait on. Listened
to events should be relevant to iface events and thus have the bit
NET_MGMT_IFACE_BIT set.

• raised_event – a pointer on a uint32_t to get which event from the mask gen-
erated the event. Can be NULL if the caller is not interested in that information.

• info – a valid pointer if user wants to get the information the event might
bring along. NULL otherwise.

904 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• info_length – tells how long the info memory area is. Only valid if the info is
not NULL.

• timeout – A timeout delay. K_FOREVER can be used to wait indefinitely.

Returns 0 on success, a negative error code otherwise. -ETIMEDOUT will be specifi-
cally returned if the timeout kick-in instead of an actual event.

void net_mgmt_event_init(void)

Used by the core of the network stack to initialize the network event processing.

struct net_mgmt_event_callback

#include <net_mgmt.h> Network Management event callback structure Used to register a
callback into the network management event part, in order to let the owner of this struct to
get network event notification based on given event mask.

Public Members

sys_snode_t node

Meant to be used internally, to insert the callback into a list. So nobody should mess with
it.

net_mgmt_event_handler_t handler

Actual callback function being used to notify the owner

struct k_sem *sync_call

Semaphore meant to be used internaly for the synchronous net_mgmt_event_wait() func-
tion.

uint32_t event_mask

A mask of network events on which the above handler should be called in case those
events come. Note that only the command part is treated as a mask, matching one to
several commands. Layer and layer code will be made of an exact match. This means
that in order to receive events from multiple layers, one must have multiple listeners
registered, one for each layer being listened.

uint32_t raised_event

Internal place holder when a synchronous event wait is successfully unlocked on a event.

union net_mgmt_event_callback.[anonymous] [anonymous]

A mask of network events on which the above handler should be called in case those
events come. Such mask can be modified whenever necessary by the owner, and thus will
affect the handler being called or not.

Network Statistics

• Overview

• API Reference

7.20. Networking 905

Zephyr Project Documentation, Release 2.7.0-rc2

Overview Network statistics are collected if :kconfig:`CONFIG_NET_STATISTICS` is set. Individual
component statistics for IPv4 or IPv6 can be turned off if those statistics are not needed. See various
options in subsys/net/ip/Kconfig.stats file for details.

By default, the system collects network statistics per network interface. This can be controlled by :kcon-
fig:`CONFIG_NET_STATISTICS_PER_INTERFACE` option.

The :kconfig:`CONFIG_NET_STATISTICS_USER_API` option can be set if the application wants to col-
lect statistics for further processing. The network management interface API is used for that. See Network
Management for details.

The :kconfig:`CONFIG_NET_STATISTICS_ETHERNET` option can be set to collect generic Ethernet
statistics. If the :kconfig:`CONFIG_NET_STATISTICS_ETHERNET_VENDOR` option is set, then Ether-
net device driver can collect Ethernet device specific statistics. These statistics can then be transferred to
application for processing.

If the :kconfig:`CONFIG_NET_SHELL` option is set, then network shell can show statistics information
with net stats command.

API Reference

group net_stats

Network statistics library.

Defines

NET_TC_TX_STATS_COUNT

NET_TC_RX_STATS_COUNT

Typedefs

typedef uint32_t net_stats_t

Network statistics counter.

struct net_stats_bytes

#include <net_stats.h> Number of bytes sent and received.

Public Members

net_stats_t sent

Number of bytes sent

net_stats_t received

Number of bytes received

struct net_stats_pkts

#include <net_stats.h> Number of network packets sent and received.

906 Chapter 7. API Reference

https://github.com/zephyrproject-rtos/zephyr/blob/main/subsys/net/ip/Kconfig.stats

Zephyr Project Documentation, Release 2.7.0-rc2

Public Members

net_stats_t tx

Number of packets sent

net_stats_t rx

Number of packets received

struct net_stats_ip

#include <net_stats.h> IP layer statistics.

Public Members

net_stats_t recv

Number of received packets at the IP layer.

net_stats_t sent

Number of sent packets at the IP layer.

net_stats_t forwarded

Number of forwarded packets at the IP layer.

net_stats_t drop

Number of dropped packets at the IP layer.

struct net_stats_ip_errors

#include <net_stats.h> IP layer error statistics.

Public Members

net_stats_t vhlerr

Number of packets dropped due to wrong IP version or header length.

net_stats_t hblenerr

Number of packets dropped due to wrong IP length, high byte.

net_stats_t lblenerr

Number of packets dropped due to wrong IP length, low byte.

net_stats_t fragerr

Number of packets dropped because they were IP fragments.

net_stats_t chkerr

Number of packets dropped due to IP checksum errors.

net_stats_t protoerr

Number of packets dropped because they were neither ICMP, UDP nor TCP.

7.20. Networking 907

Zephyr Project Documentation, Release 2.7.0-rc2

struct net_stats_icmp

#include <net_stats.h> ICMP statistics.

Public Members

net_stats_t recv

Number of received ICMP packets.

net_stats_t sent

Number of sent ICMP packets.

net_stats_t drop

Number of dropped ICMP packets.

net_stats_t typeerr

Number of ICMP packets with a wrong type.

net_stats_t chkerr

Number of ICMP packets with a bad checksum.

struct net_stats_tcp

#include <net_stats.h> TCP statistics.

Public Members

struct net_stats_bytes bytes

Amount of received and sent TCP application data.

net_stats_t resent

Amount of retransmitted data.

net_stats_t drop

Number of dropped packets at the TCP layer.

net_stats_t recv

Number of received TCP segments.

net_stats_t sent

Number of sent TCP segments.

net_stats_t seg_drop

Number of dropped TCP segments.

net_stats_t chkerr

Number of TCP segments with a bad checksum.

908 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

net_stats_t ackerr

Number of received TCP segments with a bad ACK number.

net_stats_t rsterr

Number of received bad TCP RST (reset) segments.

net_stats_t rst

Number of received TCP RST (reset) segments.

net_stats_t rexmit

Number of retransmitted TCP segments.

net_stats_t conndrop

Number of dropped connection attempts because too few connections were available.

net_stats_t connrst

Number of connection attempts for closed ports, triggering a RST.

struct net_stats_udp

#include <net_stats.h> UDP statistics.

Public Members

net_stats_t drop

Number of dropped UDP segments.

net_stats_t recv

Number of received UDP segments.

net_stats_t sent

Number of sent UDP segments.

net_stats_t chkerr

Number of UDP segments with a bad checksum.

struct net_stats_ipv6_nd

#include <net_stats.h> IPv6 neighbor discovery statistics.

struct net_stats_ipv6_mld

#include <net_stats.h> IPv6 multicast listener daemon statistics.

Public Members

net_stats_t recv

Number of received IPv6 MLD queries

7.20. Networking 909

Zephyr Project Documentation, Release 2.7.0-rc2

net_stats_t sent

Number of sent IPv6 MLD reports

net_stats_t drop

Number of dropped IPv6 MLD packets

struct net_stats_ipv4_igmp

#include <net_stats.h> IPv4 IGMP daemon statistics.

Public Members

net_stats_t recv

Number of received IPv4 IGMP queries

net_stats_t sent

Number of sent IPv4 IGMP reports

net_stats_t drop

Number of dropped IPv4 IGMP packets

struct net_stats_tx_time

#include <net_stats.h> Network packet transfer times for calculating average TX time.

struct net_stats_rx_time

#include <net_stats.h> Network packet receive times for calculating average RX time.

struct net_stats_tc

#include <net_stats.h> Traffic class statistics.

struct net_stats_pm

#include <net_stats.h> Power management statistics.

struct net_stats

#include <net_stats.h> All network statistics in one struct.

Public Members

net_stats_t processing_error

Count of malformed packets or packets we do not have handler for

struct net_stats_bytes bytes

This calculates amount of data transferred through all the network interfaces.

struct net_stats_ip_errors ip_errors

IP layer errors

910 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

struct net_stats_eth_errors

#include <net_stats.h> Ethernet error statistics.

struct net_stats_eth_flow

#include <net_stats.h> Ethernet flow control statistics.

struct net_stats_eth_csum

#include <net_stats.h> Ethernet checksum statistics.

struct net_stats_eth_hw_timestamp

#include <net_stats.h> Ethernet hardware timestamp statistics.

struct net_stats_eth

#include <net_stats.h> All Ethernet specific statistics.

struct net_stats_ppp

#include <net_stats.h> All PPP specific statistics.

Public Members

net_stats_t drop

Number of received and dropped PPP frames.

net_stats_t chkerr

Number of received PPP frames with a bad checksum.

Network Timeout

• Overview

• Use

• API Reference

Overview Zephyr’s network infrastructure mostly uses the millisecond-resolution uptime clock to track
timeouts, with both deadlines and durations measured with 32-bit unsigned values. The 32-bit value
rolls over at 49 days 17 hours 2 minutes 47.296 seconds.

Timeout processing is often affected by latency, so that the time at which the timeout is checked may
be some time after it should have expired. Handling this correctly without arbitrary expectations of
maximum latency requires that the maximum delay that can be directly represented be a 31-bit non-
negative number (INT32_MAX), which overflows at 24 days 20 hours 31 minutes 23.648 seconds.

Most network timeouts are shorter than the delay rollover, but a few protocols allow for delays that
are represented as unsigned 32-bit values counting seconds, which corresponds to a 42-bit millisecond
count.

The net_timeout API provides a generic timeout mechanism to correctly track the remaining time for
these extended-duration timeouts.

7.20. Networking 911

Zephyr Project Documentation, Release 2.7.0-rc2

Use The simplest use of this API is:

1. Configure a network timeout using net_timeout_set() .

2. Use net_timeout_evaluate() to determine how long it is until the timeout occurs. Schedule a
timeout to occur after this delay.

3. When the timeout callback is invoked, use net_timeout_evaluate() again to determine whether
the timeout has completed, or whether there is additional time remaining. If the latter, reschedule
the callback.

4. While the timeout is running, use net_timeout_remaining() to get the number of seconds until
the timeout expires. This may be used to explicitly update the timeout, which should be done by
canceling any pending callback and restarting from step 1 with the new timeout.

The net_timeout contains a sys_snode_t that allows multiple timeout instances to be aggregated to
share a single kernel timer element. The application must use net_timeout_evaluate() on all instances
to determine the next timeout event to occur.

net_timeout_deadline() may be used to reconstruct the full-precision deadline of the timeout. This ex-
ists primarily for testing but may have use in some applications, as it does allow a millisecond-resolution
calculation of remaining time.

API Reference

group net_timeout

Network long timeout primitives and helpers.

Defines

NET_TIMEOUT_MAX_VALUE

Divisor used to support ms resolution timeouts.

Because delays are processed in work queues which are not invoked synchronously with clock
changes we need to be able to detect timeouts after they occur, which requires comparing
“deadline” to “now” with enough “slop” to handle any observable latency due to “now” ad-
vancing past “deadline”.

The simplest solution is to use the native conversion of the well-defined 32-bit unsigned dif-
ference to a 32-bit signed difference, which caps the maximum delay at INT32_MAX. This is
compatible with the standard mechanism for detecting completion of deadlines that do not
overflow their representation.

Functions

void net_timeout_set(struct net_timeout *timeout, uint32_t lifetime, uint32_t now)

Configure a network timeout structure.

Parameters

• timeout – a pointer to the timeout state.

• lifetime – the duration of the timeout in seconds.

• now – the time at which the timeout started counting down, in milliseconds.
This is generally a captured value of k_uptime_get_32().

912 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

int64_t net_timeout_deadline(const struct net_timeout *timeout, int64_t now)

Return the 64-bit system time at which the timeout will complete.

Note: Correct behavior requires invocation of net_timeout_evaluate() at its specified intervals.

Parameters

• timeout – state a pointer to the timeout state, initialized by net_timeout_set()
and maintained by net_timeout_evaluate().

• now – the full-precision value of k_uptime_get() relative to which the deadline
will be calculated.

Returns the value of k_uptime_get() at which the timeout will expire.

uint32_t net_timeout_remaining(const struct net_timeout *timeout, uint32_t now)

Calculate the remaining time to the timeout in whole seconds.

Note: This function rounds the remaining time down, i.e. if the timeout will occur in 3500
milliseconds the value 3 will be returned.

Note: Correct behavior requires invocation of net_timeout_evaluate() at its specified intervals.

Parameters

• timeout – a pointer to the timeout state

• now – the time relative to which the estimate of remaining time should be
calculated. This should be recently captured value from k_uptime_get_32().

Return values

• 0 – if the timeout has completed.

• positive – the remaining duration of the timeout, in seconds.

uint32_t net_timeout_evaluate(struct net_timeout *timeout, uint32_t now)

Update state to reflect elapsed time and get new delay.

This function must be invoked periodically to (1) apply the effect of elapsed time on what
remains of a total delay that exceeded the maximum representable delay, and (2) determine
that either the timeout has completed or that the infrastructure must wait a certain period
before checking again for completion.

Parameters

• timeout – a pointer to the timeout state

• now – the time relative to which the estimate of remaining time should be
calculated. This should be recently captured value from k_uptime_get_32().

Return values

• 0 – if the timeout has completed

• positive – the maximum delay until the state of this timeout should be re-
evaluated, in milliseconds.

7.20. Networking 913

Zephyr Project Documentation, Release 2.7.0-rc2

struct net_timeout

#include <net_timeout.h> Generic struct for handling network timeouts.

Except for the linking node, all access to state from these objects must go through the defined
API.

Public Members

sys_snode_t node

Used to link multiple timeouts that share a common timer infrastructure.

For examples a set of related timers may use a single delayed work structure, which is
always scheduled at the shortest time to a timeout event.

Networking Context

The net_context API is not meant for application use. Application should use BSD Sockets API instead.

Promiscuous Mode

• Overview

• Sample usage

• API Reference

Overview Promiscuous mode is a mode for a network interface controller that causes it to pass all
traffic it receives to the application rather than passing only the frames that the controller is specifically
programmed to receive. This mode is normally used for packet sniffing as used to diagnose network
connectivity issues by showing an application all the data being transferred over the network. (See the
Wikipedia article on promiscuous mode for more information.)

The network promiscuous APIs are used to enable and disable this mode, and to wait for and receive
a network data to arrive. Not all network technologies or network device drivers support promiscuous
mode.

Sample usage First the promiscuous mode needs to be turned ON by the application like this:

ret = net_promisc_mode_on(iface);
if (ret < 0) {

if (ret == -EALREADY) {
printf("Promiscuous mode already enabled\n");

} else {
printf("Cannot enable promiscuous mode for "

"interface %p (%d)\n", iface, ret);
}

}

If there is no error, then the application can start to wait for network data:

914 Chapter 7. API Reference

https://en.wikipedia.org/wiki/Promiscuous_mode

Zephyr Project Documentation, Release 2.7.0-rc2

while (true) {
pkt = net_promisc_mode_wait_data(K_FOREVER);
if (pkt) {

print_info(pkt);
}

net_pkt_unref(pkt);
}

Finally the promiscuous mode can be turned OFF by the application like this:

ret = net_promisc_mode_off(iface);
if (ret < 0) {

if (ret == -EALREADY) {
printf("Promiscuous mode already disabled\n");

} else {
printf("Cannot disable promiscuous mode for "

"interface %p (%d)\n", iface, ret);
}

}

See net-promiscuous-mode-sample for a more comprehensive example.

API Reference

group promiscuous

Promiscuous mode support.

Functions

static inline struct net_pkt *net_promisc_mode_wait_data(k_timeout_t timeout)

Start to wait received network packets.

Parameters

• timeout – How long to wait before returning.

Returns Received net_pkt, NULL if not received any packet.

static inline int net_promisc_mode_on(struct net_if *iface)

Enable promiscuous mode for a given network interface.

Parameters

• iface – Network interface

Returns 0 if ok, <0 if error

static inline int net_promisc_mode_off(struct net_if *iface)

Disable promiscuous mode for a given network interface.

Parameters

• iface – Network interface

Returns 0 if ok, <0 if error

7.20. Networking 915

Zephyr Project Documentation, Release 2.7.0-rc2

Simple Network Time Protocol Library

• Overview

• API Reference

Overview The SNTP library implements IETF RFC4330 (Simple Network Time Protocol v4).

SNTP provides a way to synchronize clocks in computer networks.

API Reference

group sntp

Simple Network Time Protocol API.

Functions

int sntp_init(struct sntp_ctx *ctx, struct sockaddr *addr, socklen_t addr_len)
Initialize SNTP context.

Parameters

• ctx – Address of sntp context.

• addr – IP address of NTP/SNTP server.

• addr_len – IP address length of NTP/SNTP server.

Returns 0 if ok, <0 if error.

int sntp_query(struct sntp_ctx *ctx, uint32_t timeout, struct sntp_time *time)
Perform SNTP query.

Parameters

• ctx – Address of sntp context.

• timeout – Timeout of waiting for sntp response (in milliseconds).

• time – Timestamp including integer and fractional seconds since 1 Jan 1970
(output).

Returns 0 if ok, <0 if error (-ETIMEDOUT if timeout).

void sntp_close(struct sntp_ctx *ctx)
Release SNTP context.

Parameters

• ctx – Address of sntp context.

int sntp_simple(const char *server, uint32_t timeout, struct sntp_time *time)
Convenience function to query SNTP in one-shot fashion.

Convenience wrapper which calls getaddrinfo(), sntp_init(), sntp_query(), and sntp_close().

Parameters

• server – Address of server in format addr[:port]

• timeout – Query timeout

• time – Timestamp including integer and fractional seconds since 1 Jan 1970
(output).

916 Chapter 7. API Reference

https://tools.ietf.org/html/rfc4330

Zephyr Project Documentation, Release 2.7.0-rc2

Returns 0 if ok, <0 if error (-ETIMEDOUT if timeout).

struct sntp_ctx

#include <sntp.h> SNTP context

Public Members

uint32_t expected_orig_ts

Timestamp when the request was sent from client to server. This is used to check if the
originated timestamp in the server reply matches the one in client request.

struct sntp_time

#include <sntp.h> Time as returned by SNTP API, fractional seconds since 1 Jan 1970

SOCKS5 Proxy Support

• Overview

• SOCKS5 API

• SOCKS5 Proxy Usage in MQTT

Overview The SOCKS library implements SOCKS5 support, which allows Zephyr to connect to peer
devices via a network proxy.

See this SOCKS5 Wikipedia article for a detailed overview of how SOCKS5 works.

For more information about the protocol itself, see IETF RFC1928 SOCKS Protocol Version 5.

SOCKS5 API The SOCKS5 support is enabled by :kconfig:`CONFIG_SOCKS` Kconfig variable. Appli-
cation wanting to use the SOCKS5 must set the SOCKS5 proxy host adddress by calling setsockopt()
like this:

static int set_proxy(int sock, const struct sockaddr *proxy_addr,
socklen_t proxy_addrlen)

{
int ret;

ret = setsockopt(sock, SOL_SOCKET, SO_SOCKS5,
proxy_addr, proxy_addrlen);

if (ret < 0) {
return -errno;

}

return 0;
}

SOCKS5 Proxy Usage in MQTT For MQTT client, there is mqtt_client_set_proxy() API that the
application can call to setup SOCKS5 proxy. See mqtt-publisher-sample for usage example.

7.20. Networking 917

https://en.wikipedia.org/wiki/SOCKS#SOCKS5
https://tools.ietf.org/html/rfc1928

Zephyr Project Documentation, Release 2.7.0-rc2

Trickle Timer Library

• Overview

• API Reference

Overview The Trickle timer library implements IETF RFC6206 (Trickle Algorithm).

The Trickle algorithm allows nodes in a lossy shared medium (e.g., low-power and lossy networks) to
exchange information in a highly robust, energy efficient, simple, and scalable manner.

API Reference

group trickle

Trickle algorithm library.

Typedefs

typedef void (*net_trickle_cb_t)(struct net_trickle *trickle, bool do_suppress, void *user_data)

Trickle timer callback.

The callback is called after Trickle timeout expires.

Param trickle The trickle context to use.

Param do_suppress Is TX allowed (true) or not (false).

Param user_data The user data given in net_trickle_start() call.

Functions

int net_trickle_create(struct net_trickle *trickle, uint32_t Imin, uint8_t Imax, uint8_t k)

Create a Trickle timer.

Parameters

• trickle – Pointer to Trickle struct.

• Imin – Imin configuration parameter in ms.

• Imax – Max number of doublings.

• k – Redundancy constant parameter. See RFC 6206 for details.

Returns Return 0 if ok and <0 if error.

int net_trickle_start(struct net_trickle *trickle, net_trickle_cb_t cb, void *user_data)

Start a Trickle timer.

Parameters

• trickle – Pointer to Trickle struct.

• cb – User callback to call at time T within the current trickle interval

• user_data – User pointer that is passed to callback.

Returns Return 0 if ok and <0 if error.

918 Chapter 7. API Reference

https://tools.ietf.org/html/rfc6206

Zephyr Project Documentation, Release 2.7.0-rc2

int net_trickle_stop(struct net_trickle *trickle)
Stop a Trickle timer.

Parameters

• trickle – Pointer to Trickle struct.

Returns Return 0 if ok and <0 if error.

void net_trickle_consistency(struct net_trickle *trickle)
To be called by the protocol handler when it hears a consistent network transmission.

Parameters

• trickle – Pointer to Trickle struct.

void net_trickle_inconsistency(struct net_trickle *trickle)
To be called by the protocol handler when it hears an inconsistent network transmission.

Parameters

• trickle – Pointer to Trickle struct.

static inline bool net_trickle_is_running(struct net_trickle *trickle)
Check if the Trickle timer is running or not.

Parameters

• trickle – Pointer to Trickle struct.

Returns Return True if timer is running and False if not.

struct net_trickle

#include <trickle.h> The variable names are taken directly from RFC 6206 when applicable.
Note that the struct members should not be accessed directly but only via the Trickle API.

Public Members

uint32_t Imin

Min interval size in ms

uint8_t Imax

Max number of doublings

uint8_t k

Redundancy constant

uint32_t I

Current interval size

uint32_t Istart

Start of the interval in ms

uint8_t c

Consistency counter

uint32_t Imax_abs

Max interval size in ms (not doublings)

7.20. Networking 919

Zephyr Project Documentation, Release 2.7.0-rc2

net_trickle_cb_t cb

Callback to be called when timer expires

Websocket Client API

• Overview

• Websocket Transport

• API Reference

Overview The Websocket client library allows Zephyr to connect to a Websocket server. The Websocket
client API can be used directly by application to establish a Websocket connection to server, or it can be
used as a transport for other network protocols like MQTT.

See this Websocket Wikipedia article for a detailed overview of how Websocket works.

For more information about the protocol itself, see IETF RFC6455 The WebSocket Protocol.

Websocket Transport The Websocket API allows it to be used as a transport for other high level pro-
tocols like MQTT. The Zephyr MQTT client library can be configured to use Websocket transport by en-
abling :kconfig:`CONFIG_MQTT_LIB_WEBSOCKET` and :kconfig:`CONFIG_WEBSOCKET_CLIENT`
Kconfig options.

First a socket needs to be created and connected to the Websocket server:

sock = socket(family, SOCK_STREAM, IPPROTO_TCP);
...
ret = connect(sock, addr, addr_len);
...

The Websocket transport socket is then created like this:

ws_sock = websocket_connect(sock, &config, timeout, user_data);

The Websocket socket can then be used to send or receive data, and the Websocket client API will
encapsulate the sent or received data to/from Websocket packet payload. Both the websocket_xxx()
API or normal BSD socket API functions can be used to send and receive application data.

ret = websocket_send_msg(ws_sock, buf_to_send, buf_len,
WEBSOCKET_OPCODE_DATA_BINARY, true, true,
K_FOREVER);

...
ret = send(ws_sock, buf_to_send, buf_len, 0);

If normal BSD socket functions are used, then currently only TEXT data is supported. In order to send
BINARY data, the websocket_send_msg() must be used.

When done, the Websocket transport socket must be closed.

ret = close(ws_sock);
or
ret = websocket_disconnect(ws_sock);

920 Chapter 7. API Reference

https://en.wikipedia.org/wiki/WebSocket
https://tools.ietf.org/html/rfc6455

Zephyr Project Documentation, Release 2.7.0-rc2

API Reference

group websocket

Websocket API.

Defines

WEBSOCKET_FLAG_FINAL

Message type values. Returned in websocket_recv_msg() Final frame

WEBSOCKET_FLAG_TEXT

Textual data

WEBSOCKET_FLAG_BINARY

Binary data

WEBSOCKET_FLAG_CLOSE

Closing connection

WEBSOCKET_FLAG_PING

Ping message

WEBSOCKET_FLAG_PONG

Pong message

Typedefs

typedef int (*websocket_connect_cb_t)(int ws_sock, struct http_request *req, void *user_data)

Callback called after Websocket connection is established.

Param ws_sock Websocket id

Param req HTTP handshake request

Param user_data A valid pointer on some user data or NULL

Return 0 if ok, <0 if there is an error and connection should be aborted

Enums

enum websocket_opcode

Values:

enumerator WEBSOCKET_OPCODE_CONTINUE = 0x00

enumerator WEBSOCKET_OPCODE_DATA_TEXT = 0x01

enumerator WEBSOCKET_OPCODE_DATA_BINARY = 0x02

7.20. Networking 921

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator WEBSOCKET_OPCODE_CLOSE = 0x08

enumerator WEBSOCKET_OPCODE_PING = 0x09

enumerator WEBSOCKET_OPCODE_PONG = 0x0A

Functions

int websocket_connect(int http_sock, struct websocket_request *req, int32_t timeout, void
*user_data)

Connect to a server that provides Websocket service. The callback is called after connection is
established. The returned value is a new socket descriptor that can be used to send / receive
data using the BSD socket API.

Parameters

• http_sock – Socket id to the server. Note that this socket is used to do HTTP
handshakes etc. The actual Websocket connectivity is done via the returned
websocket id. Note that the http_sock must not be closed after this function
returns as it is used to deliver the Websocket packets to the Websocket server.

• req – Websocket request. User should allocate and fill the request data.

• timeout – Max timeout to wait for the connection. The timeout value is in
milliseconds. Value SYS_FOREVER_MS means to wait forever.

• user_data – User specified data that is passed to the callback.

Returns Websocket id to be used when sending/receiving Websocket data.

int websocket_send_msg(int ws_sock, const uint8_t *payload, size_t payload_len, enum
websocket_opcode opcode, bool mask, bool final, int32_t timeout)

Send websocket msg to peer.

The function will automatically add websocket header to the message.

Parameters

• ws_sock – Websocket id returned by websocket_connect().

• payload – Websocket data to send.

• payload_len – Length of the data to be sent.

• opcode – Operation code (text, binary, ping, pong, close)

• mask – Mask the data, see RFC 6455 for details

• final – Is this final message for this message send. If final == false, then
the first message must have valid opcode and subsequent messages must have
opcode WEBSOCKET_OPCODE_CONTINUE. If final == true and this is the
only message, then opcode should have proper opcode (text or binary) set.

• timeout – How long to try to send the message. The value is in milliseconds.
Value SYS_FOREVER_MS means to wait forever.

Returns <0 if error, >=0 amount of bytes sent

int websocket_recv_msg(int ws_sock, uint8_t *buf, size_t buf_len, uint32_t *message_type,
uint64_t *remaining, int32_t timeout)

Receive websocket msg from peer.

The function will automatically remove websocket header from the message.

922 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• ws_sock – Websocket id returned by websocket_connect().

• buf – Buffer where websocket data is read.

• buf_len – Length of the data buffer.

• message_type – Type of the message.

• remaining – How much there is data left in the message after this read.

• timeout – How long to try to receive the message. The value is in milliseconds.
Value SYS_FOREVER_MS means to wait forever.

Returns <0 if error, >=0 amount of bytes received

int websocket_disconnect(int ws_sock)

Close websocket.

One must call websocket_connect() after this call to re-establish the connection.

Parameters

• ws_sock – Websocket id returned by websocket_connect().

static inline void websocket_init(void)

struct websocket_request

#include <websocket.h> Websocket client connection request. This contains all the data that
is needed when doing a Websocket connection request.

Public Members

const char *host

Host of the Websocket server when doing HTTP handshakes.

const char *url

URL of the Websocket.

http_header_cb_t optional_headers_cb

User supplied callback function to call when optional headers need to be sent. This can
be NULL, in which case the optional_headers field in http_request is used. The idea of
this optional_headers callback is to allow user to send more HTTP header data that is
practical to store in allocated memory.

const char **optional_headers

A NULL terminated list of any optional headers that should be added to the HTTP request.
May be NULL. If the optional_headers_cb is specified, then this field is ignored.

websocket_connect_cb_t cb

User supplied callback function to call when a connection is established.

const struct http_parser_settings *http_cb

User supplied list of callback functions if the calling application wants to know the parsing
status or the HTTP fields during the handshake. This is optional parameter and normally
not needed but is useful if the caller wants to know something about the fields that the
server is sending.

7.20. Networking 923

Zephyr Project Documentation, Release 2.7.0-rc2

uint8_t *tmp_buf

User supplied buffer where HTTP connection data is stored

size_t tmp_buf_len

Length of the user supplied temp buffer

Network Packet Capture

• Overview

• Sample usage

• API Reference

Overview The net_capture API allows user to monitor the network traffic in one of the Zephyr net-
work interfaces and send that traffic to external system for analysis. The monitoring can be setup either
manually using net-shell or automatically by using the net_capture API.

Sample usage See Network capture sample application and Monitor Network Traffic for details.

API Reference

group net_capture

Network packet capture support functions.

Functions

int net_capture_setup(const char *remote_addr, const char *my_local_addr, const char
*peer_addr, const struct device **dev)

Setup network packet capturing support.

Parameters

• remote_addr – The value tells the tunnel remote/outer endpoint IP address.
The IP address can be either IPv4 or IPv6 address. This address is used to
select the network interface where the tunnel is created.

• my_local_addr – The local/inner IP address of the tunnel. Can contain also
port number which is used as UDP source port.

• peer_addr – The peer/inner IP address of the tunnel. Can contain also port
number which is used as UDP destination port.

• dev – Network capture device. This is returned to the caller.

Returns 0 if ok, <0 if network packet capture setup failed

static inline int net_capture_cleanup(const struct device *dev)

Cleanup network packet capturing support.

This should be called after the capturing is done and resources can be released.

Parameters

• dev – Network capture device. User must allocate using the net_capture_setup()
function.

924 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Returns 0 if ok, <0 if network packet capture cleanup failed

static inline int net_capture_enable(const struct device *dev, struct net_if *iface)

Enable network packet capturing support.

This creates tunnel network interface where all the captured packets are pushed. The captured
network packets are placed in UDP packets that are sent to tunnel peer.

Parameters

• dev – Network capture device

• iface – Network interface we are starting to capture packets.

Returns 0 if ok, <0 if network packet capture enable failed

static inline bool net_capture_is_enabled(const struct device *dev)

Is network packet capture enabled or disabled.

Parameters

• dev – Network capture device

Returns True if enabled, False if network capture is disabled.

static inline int net_capture_disable(const struct device *dev)

Disable network packet capturing support.

Parameters

• dev – Network capture device

Returns 0 if ok, <0 if network packet capture disable failed

static inline int net_capture_send(const struct device *dev, struct net_if *iface, struct net_pkt
*pkt)

Send captured packet.

Parameters

• dev – Network capture device

• iface – Network interface the packet is being sent

• pkt – The network packet that is sent

Returns 0 if ok, <0 if network packet capture send failed

7.20.2 Network Buffer Management

Network Buffer

• Overview

• Creating buffers

• Common Operations

• Reference Counting

• API Reference

Overview Network buffers are a core concept of how the networking stack (as well as the Bluetooth
stack) pass data around. The API for them is defined in include/net/buf.h:.

7.20. Networking 925

https://github.com/zephyrproject-rtos/zephyr/blob/main/include/net/buf.h

Zephyr Project Documentation, Release 2.7.0-rc2

Creating buffers Network buffers are created by first defining a pool of them:

NET_BUF_POOL_DEFINE(pool_name, buf_count, buf_size, user_data_size, NULL);

The pool is a static variable, so if it’s needed to be exported to another module a separate pointer is
needed.

Once the pool has been defined, buffers can be allocated from it with:

buf = net_buf_alloc(&pool_name, timeout);

There is no explicit initialization function for the pool or its buffers, rather this is done implicitly as
net_buf_alloc() gets called.

If there is a need to reserve space in the buffer for protocol headers to be prepended later, it’s possible to
reserve this headroom with:

net_buf_reserve(buf, headroom);

In addition to actual protocol data and generic parsing context, network buffers may also contain
protocol-specific context, known as user data. Both the maximum data and user data capacity of the
buffers is compile-time defined when declaring the buffer pool.

The buffers have native support for being passed through k_fifo kernel objects. This is a very practical
feature when the buffers need to be passed from one thread to another. However, since a net_buf may
have a fragment chain attached to it, instead of using the k_fifo_put() and k_fifo_get() APIs, special
net_buf_put() and net_buf_get() APIs must be used when passing buffers through FIFOs. These APIs
ensure that the buffer chains stay intact. The same applies for passing buffers through a singly linked list,
in which case the net_buf_slist_put() and net_buf_slist_get() functions must be used instead of
sys_slist_append() and sys_slist_get() .

Common Operations The network buffer API provides some useful helpers for encoding and decod-
ing data in the buffers. To fully understand these helpers it’s good to understand the basic names of
operations used with them:

Add Add data to the end of the buffer. Modifies the data length value while leaving the actual data
pointer intact. Requires that there is enough tailroom in the buffer. Some examples of APIs for
adding data:

void *net_buf_add(struct net_buf *buf, size_t len);
void *net_buf_add_mem(struct net_buf *buf, const void *mem, size_t len);
uint8_t *net_buf_add_u8(struct net_buf *buf, uint8_t value);
void net_buf_add_le16(struct net_buf *buf, uint16_t value);
void net_buf_add_le32(struct net_buf *buf, uint32_t value);

Remove Remove data from the end of the buffer. Modifies the data length value while leaving the actual
data pointer intact. Some examples of APIs for removing data:

void *net_buf_remove_mem(struct net_buf *buf, size_t len);
uint8_t net_buf_remove_u8(struct net_buf *buf);
uint16_t net_buf_remove_le16(struct net_buf *buf);
uint32_t net_buf_remove_le32(struct net_buf *buf);

Push Prepend data to the beginning of the buffer. Modifies both the data length value as well as the
data pointer. Requires that there is enough headroom in the buffer. Some examples of APIs for
pushing data:

void *net_buf_push(struct net_buf *buf, size_t len);
void *net_buf_push_mem(struct net_buf *buf, const void *mem, size_t len);
void net_buf_push_u8(struct net_buf *buf, uint8_t value);
void net_buf_push_le16(struct net_buf *buf, uint16_t value);

926 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Pull Remove data from the beginning of the buffer. Modifies both the data length value as well as the
data pointer. Some examples of APIs for pulling data:

void *net_buf_pull(struct net_buf *buf, size_t len);
void *net_buf_pull_mem(struct net_buf *buf, size_t len);
uint8_t net_buf_pull_u8(struct net_buf *buf);
uint16_t net_buf_pull_le16(struct net_buf *buf);
uint32_t net_buf_pull_le32(struct net_buf *buf);

The Add and Push operations are used when encoding data into the buffer, whereas the Remove and Pull
operations are used when decoding data from a buffer.

Reference Counting Each network buffer is reference counted. The buffer is initially acquired from a
free buffers pool by calling net_buf_alloc() , resulting in a buffer with reference count 1. The reference
count can be incremented with net_buf_ref() or decremented with net_buf_unref() . When the
count drops to zero the buffer is automatically placed back to the free buffers pool.

API Reference

group net_buf

Network buffer library.

Defines

NET_BUF_SIMPLE_DEFINE(_name, _size)

Define a net_buf_simple stack variable.

This is a helper macro which is used to define a net_buf_simple object on the stack.

Parameters

• _name – Name of the net_buf_simple object.

• _size – Maximum data storage for the buffer.

NET_BUF_SIMPLE_DEFINE_STATIC(_name, _size)

Define a static net_buf_simple variable.

This is a helper macro which is used to define a static net_buf_simple object.

Parameters

• _name – Name of the net_buf_simple object.

• _size – Maximum data storage for the buffer.

NET_BUF_SIMPLE(_size)

Define a net_buf_simple stack variable and get a pointer to it.

This is a helper macro which is used to define a net_buf_simple object on the stack and the get
a pointer to it as follows:

struct net_buf_simple *my_buf = NET_BUF_SIMPLE(10);

After creating the object it needs to be initialized by calling net_buf_simple_init().

Parameters

• _size – Maximum data storage for the buffer.

Returns Pointer to stack-allocated net_buf_simple object.

7.20. Networking 927

Zephyr Project Documentation, Release 2.7.0-rc2

NET_BUF_FRAGS

Flag indicating that the buffer has associated fragments. Only used internally by the buffer
handling code while the buffer is inside a FIFO, meaning this never needs to be explicitly set
or unset by the net_buf API user. As long as the buffer is outside of a FIFO, i.e. in practice
always for the user for this API, the buf->frags pointer should be used instead.

NET_BUF_EXTERNAL_DATA

Flag indicating that the buffer’s associated data pointer, points to externally allocated memory.
Therefore once ref goes down to zero, the pointed data will not need to be deallocated. This
never needs to be explicitly set or unet by the net_buf API user. Such net_buf is exclusively
instantiated via net_buf_alloc_with_data() function. Reference count mechanism however will
behave the same way, and ref count going to 0 will free the net_buf but no the data pointer in
it.

NET_BUF_POOL_HEAP_DEFINE(_name, _count, _destroy)

Define a new pool for buffers using the heap for the data.

Defines a net_buf_pool struct and the necessary memory storage (array of structs) for the
needed amount of buffers. After this, the buffers can be accessed from the pool through
net_buf_alloc. The pool is defined as a static variable, so if it needs to be exported outside the
current module this needs to happen with the help of a separate pointer rather than an extern
declaration.

The data payload of the buffers will be allocated from the heap using k_malloc, so CON-
FIG_HEAP_MEM_POOL_SIZE must be set to a positive value. This kind of pool does not
support blocking on the data allocation, so the timeout passed to net_buf_alloc will be always
treated as K_NO_WAIT when trying to allocate the data. This means that allocation failures,
i.e. NULL returns, must always be handled cleanly.

If provided with a custom destroy callback, this callback is responsible for eventually calling
net_buf_destroy() to complete the process of returning the buffer to the pool.

Parameters

• _name – Name of the pool variable.

• _count – Number of buffers in the pool.

• _destroy – Optional destroy callback when buffer is freed.

NET_BUF_POOL_FIXED_DEFINE(_name, _count, _data_size, _destroy)

Define a new pool for buffers based on fixed-size data.

Defines a net_buf_pool struct and the necessary memory storage (array of structs) for the
needed amount of buffers. After this, the buffers can be accessed from the pool through
net_buf_alloc. The pool is defined as a static variable, so if it needs to be exported outside the
current module this needs to happen with the help of a separate pointer rather than an extern
declaration.

The data payload of the buffers will be allocated from a byte array of fixed sized chunks.
This kind of pool does not support blocking on the data allocation, so the timeout passed to
net_buf_alloc will be always treated as K_NO_WAIT when trying to allocate the data. This
means that allocation failures, i.e. NULL returns, must always be handled cleanly.

If provided with a custom destroy callback, this callback is responsible for eventually calling
net_buf_destroy() to complete the process of returning the buffer to the pool.

Parameters

• _name – Name of the pool variable.

• _count – Number of buffers in the pool.

• _data_size – Maximum data payload per buffer.

928 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• _destroy – Optional destroy callback when buffer is freed.

NET_BUF_POOL_VAR_DEFINE(_name, _count, _data_size, _destroy)

Define a new pool for buffers with variable size payloads.

Defines a net_buf_pool struct and the necessary memory storage (array of structs) for the
needed amount of buffers. After this, the buffers can be accessed from the pool through
net_buf_alloc. The pool is defined as a static variable, so if it needs to be exported outside the
current module this needs to happen with the help of a separate pointer rather than an extern
declaration.

The data payload of the buffers will be based on a memory pool from which variable size
payloads may be allocated.

If provided with a custom destroy callback, this callback is responsible for eventually calling
net_buf_destroy() to complete the process of returning the buffer to the pool.

Parameters

• _name – Name of the pool variable.

• _count – Number of buffers in the pool.

• _data_size – Total amount of memory available for data payloads.

• _destroy – Optional destroy callback when buffer is freed.

NET_BUF_POOL_DEFINE(_name, _count, _size, _ud_size, _destroy)

Define a new pool for buffers.

Defines a net_buf_pool struct and the necessary memory storage (array of structs) for the
needed amount of buffers. After this,the buffers can be accessed from the pool through
net_buf_alloc. The pool is defined as a static variable, so if it needs to be exported out-
side the current module this needs to happen with the help of a separate pointer rather than
an extern declaration.

If provided with a custom destroy callback this callback is responsible for eventually calling
net_buf_destroy() to complete the process of returning the buffer to the pool.

Parameters

• _name – Name of the pool variable.

• _count – Number of buffers in the pool.

• _size – Maximum data size for each buffer.

• _ud_size – Amount of user data space to reserve.

• _destroy – Optional destroy callback when buffer is freed.

Typedefs

typedef struct net_buf *(*net_buf_allocator_cb)(k_timeout_t timeout, void *user_data)

Network buffer allocator callback.

The allocator callback is called when net_buf_append_bytes needs to allocate a new net_buf .

Param timeout Affects the action taken should the net buf pool be empty. If
K_NO_WAIT, then return immediately. If K_FOREVER, then wait as long as nec-
essary. Otherwise, wait until the specified timeout.

Param user_data The user data given in net_buf_append_bytes call.

Return pointer to allocated net_buf or NULL on error.

7.20. Networking 929

Zephyr Project Documentation, Release 2.7.0-rc2

Functions

static inline void net_buf_simple_init(struct net_buf_simple *buf, size_t reserve_head)

Initialize a net_buf_simple object.

This needs to be called after creating a net_buf_simple object using the NET_BUF_SIMPLE
macro.

Parameters

• buf – Buffer to initialize.

• reserve_head – Headroom to reserve.

void net_buf_simple_init_with_data(struct net_buf_simple *buf, void *data, size_t size)

Initialize a net_buf_simple object with data.

Initialized buffer object with external data.

Parameters

• buf – Buffer to initialize.

• data – External data pointer

• size – Amount of data the pointed data buffer if able to fit.

static inline void net_buf_simple_reset(struct net_buf_simple *buf)

Reset buffer.

Reset buffer data so it can be reused for other purposes.

Parameters

• buf – Buffer to reset.

void net_buf_simple_clone(const struct net_buf_simple *original, struct net_buf_simple *clone)

Clone buffer state, using the same data buffer.

Initializes a buffer to point to the same data as an existing buffer. Allows operations on the
same data without altering the length and offset of the original.

Parameters

• original – Buffer to clone.

• clone – The new clone.

void *net_buf_simple_add(struct net_buf_simple *buf, size_t len)

Prepare data to be added at the end of the buffer.

Increments the data length of a buffer to account for more data at the end.

Parameters

• buf – Buffer to update.

• len – Number of bytes to increment the length with.

Returns The original tail of the buffer.

void *net_buf_simple_add_mem(struct net_buf_simple *buf, const void *mem, size_t len)

Copy given number of bytes from memory to the end of the buffer.

Increments the data length of the buffer to account for more data at the end.

Parameters

• buf – Buffer to update.

• mem – Location of data to be added.

930 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• len – Length of data to be added

Returns The original tail of the buffer.

uint8_t *net_buf_simple_add_u8(struct net_buf_simple *buf, uint8_t val)

Add (8-bit) byte at the end of the buffer.

Increments the data length of the buffer to account for more data at the end.

Parameters

• buf – Buffer to update.

• val – byte value to be added.

Returns Pointer to the value added

void net_buf_simple_add_le16(struct net_buf_simple *buf, uint16_t val)

Add 16-bit value at the end of the buffer.

Adds 16-bit value in little endian format at the end of buffer. Increments the data length of a
buffer to account for more data at the end.

Parameters

• buf – Buffer to update.

• val – 16-bit value to be added.

void net_buf_simple_add_be16(struct net_buf_simple *buf, uint16_t val)

Add 16-bit value at the end of the buffer.

Adds 16-bit value in big endian format at the end of buffer. Increments the data length of a
buffer to account for more data at the end.

Parameters

• buf – Buffer to update.

• val – 16-bit value to be added.

void net_buf_simple_add_le24(struct net_buf_simple *buf, uint32_t val)

Add 24-bit value at the end of the buffer.

Adds 24-bit value in little endian format at the end of buffer. Increments the data length of a
buffer to account for more data at the end.

Parameters

• buf – Buffer to update.

• val – 24-bit value to be added.

void net_buf_simple_add_be24(struct net_buf_simple *buf, uint32_t val)

Add 24-bit value at the end of the buffer.

Adds 24-bit value in big endian format at the end of buffer. Increments the data length of a
buffer to account for more data at the end.

Parameters

• buf – Buffer to update.

• val – 24-bit value to be added.

void net_buf_simple_add_le32(struct net_buf_simple *buf, uint32_t val)

Add 32-bit value at the end of the buffer.

Adds 32-bit value in little endian format at the end of buffer. Increments the data length of a
buffer to account for more data at the end.

Parameters

7.20. Networking 931

Zephyr Project Documentation, Release 2.7.0-rc2

• buf – Buffer to update.

• val – 32-bit value to be added.

void net_buf_simple_add_be32(struct net_buf_simple *buf, uint32_t val)

Add 32-bit value at the end of the buffer.

Adds 32-bit value in big endian format at the end of buffer. Increments the data length of a
buffer to account for more data at the end.

Parameters

• buf – Buffer to update.

• val – 32-bit value to be added.

void net_buf_simple_add_le48(struct net_buf_simple *buf, uint64_t val)

Add 48-bit value at the end of the buffer.

Adds 48-bit value in little endian format at the end of buffer. Increments the data length of a
buffer to account for more data at the end.

Parameters

• buf – Buffer to update.

• val – 48-bit value to be added.

void net_buf_simple_add_be48(struct net_buf_simple *buf, uint64_t val)

Add 48-bit value at the end of the buffer.

Adds 48-bit value in big endian format at the end of buffer. Increments the data length of a
buffer to account for more data at the end.

Parameters

• buf – Buffer to update.

• val – 48-bit value to be added.

void net_buf_simple_add_le64(struct net_buf_simple *buf, uint64_t val)

Add 64-bit value at the end of the buffer.

Adds 64-bit value in little endian format at the end of buffer. Increments the data length of a
buffer to account for more data at the end.

Parameters

• buf – Buffer to update.

• val – 64-bit value to be added.

void net_buf_simple_add_be64(struct net_buf_simple *buf, uint64_t val)

Add 64-bit value at the end of the buffer.

Adds 64-bit value in big endian format at the end of buffer. Increments the data length of a
buffer to account for more data at the end.

Parameters

• buf – Buffer to update.

• val – 64-bit value to be added.

void *net_buf_simple_remove_mem(struct net_buf_simple *buf, size_t len)

Remove data from the end of the buffer.

Removes data from the end of the buffer by modifying the buffer length.

Parameters

• buf – Buffer to update.

932 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• len – Number of bytes to remove.

Returns New end of the buffer data.

uint8_t net_buf_simple_remove_u8(struct net_buf_simple *buf)

Remove a 8-bit value from the end of the buffer.

Same idea as with net_buf_simple_remove_mem(), but a helper for operating on 8-bit values.

Parameters

• buf – A valid pointer on a buffer.

Returns The 8-bit removed value

uint16_t net_buf_simple_remove_le16(struct net_buf_simple *buf)

Remove and convert 16 bits from the end of the buffer.

Same idea as with net_buf_simple_remove_mem(), but a helper for operating on 16-bit little
endian data.

Parameters

• buf – A valid pointer on a buffer.

Returns 16-bit value converted from little endian to host endian.

uint16_t net_buf_simple_remove_be16(struct net_buf_simple *buf)

Remove and convert 16 bits from the end of the buffer.

Same idea as with net_buf_simple_remove_mem(), but a helper for operating on 16-bit big
endian data.

Parameters

• buf – A valid pointer on a buffer.

Returns 16-bit value converted from big endian to host endian.

uint32_t net_buf_simple_remove_le24(struct net_buf_simple *buf)

Remove and convert 24 bits from the end of the buffer.

Same idea as with net_buf_simple_remove_mem(), but a helper for operating on 24-bit little
endian data.

Parameters

• buf – A valid pointer on a buffer.

Returns 24-bit value converted from little endian to host endian.

uint32_t net_buf_simple_remove_be24(struct net_buf_simple *buf)

Remove and convert 24 bits from the end of the buffer.

Same idea as with net_buf_simple_remove_mem(), but a helper for operating on 24-bit big
endian data.

Parameters

• buf – A valid pointer on a buffer.

Returns 24-bit value converted from big endian to host endian.

uint32_t net_buf_simple_remove_le32(struct net_buf_simple *buf)

Remove and convert 32 bits from the end of the buffer.

Same idea as with net_buf_simple_remove_mem(), but a helper for operating on 32-bit little
endian data.

Parameters

• buf – A valid pointer on a buffer.

7.20. Networking 933

Zephyr Project Documentation, Release 2.7.0-rc2

Returns 32-bit value converted from little endian to host endian.

uint32_t net_buf_simple_remove_be32(struct net_buf_simple *buf)

Remove and convert 32 bits from the end of the buffer.

Same idea as with net_buf_simple_remove_mem(), but a helper for operating on 32-bit big
endian data.

Parameters

• buf – A valid pointer on a buffer.

Returns 32-bit value converted from big endian to host endian.

uint64_t net_buf_simple_remove_le48(struct net_buf_simple *buf)

Remove and convert 48 bits from the end of the buffer.

Same idea as with net_buf_simple_remove_mem(), but a helper for operating on 48-bit little
endian data.

Parameters

• buf – A valid pointer on a buffer.

Returns 48-bit value converted from little endian to host endian.

uint64_t net_buf_simple_remove_be48(struct net_buf_simple *buf)

Remove and convert 48 bits from the end of the buffer.

Same idea as with net_buf_simple_remove_mem(), but a helper for operating on 48-bit big
endian data.

Parameters

• buf – A valid pointer on a buffer.

Returns 48-bit value converted from big endian to host endian.

uint64_t net_buf_simple_remove_le64(struct net_buf_simple *buf)

Remove and convert 64 bits from the end of the buffer.

Same idea as with net_buf_simple_remove_mem(), but a helper for operating on 64-bit little
endian data.

Parameters

• buf – A valid pointer on a buffer.

Returns 64-bit value converted from little endian to host endian.

uint64_t net_buf_simple_remove_be64(struct net_buf_simple *buf)

Remove and convert 64 bits from the end of the buffer.

Same idea as with net_buf_simple_remove_mem(), but a helper for operating on 64-bit big
endian data.

Parameters

• buf – A valid pointer on a buffer.

Returns 64-bit value converted from big endian to host endian.

void *net_buf_simple_push(struct net_buf_simple *buf, size_t len)

Prepare data to be added to the start of the buffer.

Modifies the data pointer and buffer length to account for more data in the beginning of the
buffer.

Parameters

• buf – Buffer to update.

934 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• len – Number of bytes to add to the beginning.

Returns The new beginning of the buffer data.

void *net_buf_simple_push_mem(struct net_buf_simple *buf, const void *mem, size_t len)

Copy given number of bytes from memory to the start of the buffer.

Modifies the data pointer and buffer length to account for more data in the beginning of the
buffer.

Parameters

• buf – Buffer to update.

• mem – Location of data to be added.

• len – Length of data to be added.

Returns The new beginning of the buffer data.

void net_buf_simple_push_le16(struct net_buf_simple *buf, uint16_t val)

Push 16-bit value to the beginning of the buffer.

Adds 16-bit value in little endian format to the beginning of the buffer.

Parameters

• buf – Buffer to update.

• val – 16-bit value to be pushed to the buffer.

void net_buf_simple_push_be16(struct net_buf_simple *buf, uint16_t val)

Push 16-bit value to the beginning of the buffer.

Adds 16-bit value in big endian format to the beginning of the buffer.

Parameters

• buf – Buffer to update.

• val – 16-bit value to be pushed to the buffer.

void net_buf_simple_push_u8(struct net_buf_simple *buf, uint8_t val)

Push 8-bit value to the beginning of the buffer.

Adds 8-bit value the beginning of the buffer.

Parameters

• buf – Buffer to update.

• val – 8-bit value to be pushed to the buffer.

void net_buf_simple_push_le24(struct net_buf_simple *buf, uint32_t val)

Push 24-bit value to the beginning of the buffer.

Adds 24-bit value in little endian format to the beginning of the buffer.

Parameters

• buf – Buffer to update.

• val – 24-bit value to be pushed to the buffer.

void net_buf_simple_push_be24(struct net_buf_simple *buf, uint32_t val)

Push 24-bit value to the beginning of the buffer.

Adds 24-bit value in big endian format to the beginning of the buffer.

Parameters

• buf – Buffer to update.

7.20. Networking 935

Zephyr Project Documentation, Release 2.7.0-rc2

• val – 24-bit value to be pushed to the buffer.

void net_buf_simple_push_le32(struct net_buf_simple *buf, uint32_t val)

Push 32-bit value to the beginning of the buffer.

Adds 32-bit value in little endian format to the beginning of the buffer.

Parameters

• buf – Buffer to update.

• val – 32-bit value to be pushed to the buffer.

void net_buf_simple_push_be32(struct net_buf_simple *buf, uint32_t val)

Push 32-bit value to the beginning of the buffer.

Adds 32-bit value in big endian format to the beginning of the buffer.

Parameters

• buf – Buffer to update.

• val – 32-bit value to be pushed to the buffer.

void net_buf_simple_push_le48(struct net_buf_simple *buf, uint64_t val)

Push 48-bit value to the beginning of the buffer.

Adds 48-bit value in little endian format to the beginning of the buffer.

Parameters

• buf – Buffer to update.

• val – 48-bit value to be pushed to the buffer.

void net_buf_simple_push_be48(struct net_buf_simple *buf, uint64_t val)

Push 48-bit value to the beginning of the buffer.

Adds 48-bit value in big endian format to the beginning of the buffer.

Parameters

• buf – Buffer to update.

• val – 48-bit value to be pushed to the buffer.

void net_buf_simple_push_le64(struct net_buf_simple *buf, uint64_t val)

Push 64-bit value to the beginning of the buffer.

Adds 64-bit value in little endian format to the beginning of the buffer.

Parameters

• buf – Buffer to update.

• val – 64-bit value to be pushed to the buffer.

void net_buf_simple_push_be64(struct net_buf_simple *buf, uint64_t val)

Push 64-bit value to the beginning of the buffer.

Adds 64-bit value in big endian format to the beginning of the buffer.

Parameters

• buf – Buffer to update.

• val – 64-bit value to be pushed to the buffer.

936 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

void *net_buf_simple_pull(struct net_buf_simple *buf, size_t len)

Remove data from the beginning of the buffer.

Removes data from the beginning of the buffer by modifying the data pointer and buffer
length.

Parameters

• buf – Buffer to update.

• len – Number of bytes to remove.

Returns New beginning of the buffer data.

void *net_buf_simple_pull_mem(struct net_buf_simple *buf, size_t len)

Remove data from the beginning of the buffer.

Removes data from the beginning of the buffer by modifying the data pointer and buffer
length.

Parameters

• buf – Buffer to update.

• len – Number of bytes to remove.

Returns Pointer to the old location of the buffer data.

uint8_t net_buf_simple_pull_u8(struct net_buf_simple *buf)

Remove a 8-bit value from the beginning of the buffer.

Same idea as with net_buf_simple_pull(), but a helper for operating on 8-bit values.

Parameters

• buf – A valid pointer on a buffer.

Returns The 8-bit removed value

uint16_t net_buf_simple_pull_le16(struct net_buf_simple *buf)

Remove and convert 16 bits from the beginning of the buffer.

Same idea as with net_buf_simple_pull(), but a helper for operating on 16-bit little endian
data.

Parameters

• buf – A valid pointer on a buffer.

Returns 16-bit value converted from little endian to host endian.

uint16_t net_buf_simple_pull_be16(struct net_buf_simple *buf)

Remove and convert 16 bits from the beginning of the buffer.

Same idea as with net_buf_simple_pull(), but a helper for operating on 16-bit big endian data.

Parameters

• buf – A valid pointer on a buffer.

Returns 16-bit value converted from big endian to host endian.

uint32_t net_buf_simple_pull_le24(struct net_buf_simple *buf)

Remove and convert 24 bits from the beginning of the buffer.

Same idea as with net_buf_simple_pull(), but a helper for operating on 24-bit little endian
data.

Parameters

• buf – A valid pointer on a buffer.

7.20. Networking 937

Zephyr Project Documentation, Release 2.7.0-rc2

Returns 24-bit value converted from little endian to host endian.

uint32_t net_buf_simple_pull_be24(struct net_buf_simple *buf)

Remove and convert 24 bits from the beginning of the buffer.

Same idea as with net_buf_simple_pull(), but a helper for operating on 24-bit big endian data.

Parameters

• buf – A valid pointer on a buffer.

Returns 24-bit value converted from big endian to host endian.

uint32_t net_buf_simple_pull_le32(struct net_buf_simple *buf)

Remove and convert 32 bits from the beginning of the buffer.

Same idea as with net_buf_simple_pull(), but a helper for operating on 32-bit little endian
data.

Parameters

• buf – A valid pointer on a buffer.

Returns 32-bit value converted from little endian to host endian.

uint32_t net_buf_simple_pull_be32(struct net_buf_simple *buf)

Remove and convert 32 bits from the beginning of the buffer.

Same idea as with net_buf_simple_pull(), but a helper for operating on 32-bit big endian data.

Parameters

• buf – A valid pointer on a buffer.

Returns 32-bit value converted from big endian to host endian.

uint64_t net_buf_simple_pull_le48(struct net_buf_simple *buf)

Remove and convert 48 bits from the beginning of the buffer.

Same idea as with net_buf_simple_pull(), but a helper for operating on 48-bit little endian
data.

Parameters

• buf – A valid pointer on a buffer.

Returns 48-bit value converted from little endian to host endian.

uint64_t net_buf_simple_pull_be48(struct net_buf_simple *buf)

Remove and convert 48 bits from the beginning of the buffer.

Same idea as with net_buf_simple_pull(), but a helper for operating on 48-bit big endian data.

Parameters

• buf – A valid pointer on a buffer.

Returns 48-bit value converted from big endian to host endian.

uint64_t net_buf_simple_pull_le64(struct net_buf_simple *buf)

Remove and convert 64 bits from the beginning of the buffer.

Same idea as with net_buf_simple_pull(), but a helper for operating on 64-bit little endian
data.

Parameters

• buf – A valid pointer on a buffer.

Returns 64-bit value converted from little endian to host endian.

938 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

uint64_t net_buf_simple_pull_be64(struct net_buf_simple *buf)

Remove and convert 64 bits from the beginning of the buffer.

Same idea as with net_buf_simple_pull(), but a helper for operating on 64-bit big endian data.

Parameters

• buf – A valid pointer on a buffer.

Returns 64-bit value converted from big endian to host endian.

static inline uint8_t *net_buf_simple_tail(struct net_buf_simple *buf)

Get the tail pointer for a buffer.

Get a pointer to the end of the data in a buffer.

Parameters

• buf – Buffer.

Returns Tail pointer for the buffer.

size_t net_buf_simple_headroom(struct net_buf_simple *buf)

Check buffer headroom.

Check how much free space there is in the beginning of the buffer.

buf A valid pointer on a buffer

Returns Number of bytes available in the beginning of the buffer.

size_t net_buf_simple_tailroom(struct net_buf_simple *buf)

Check buffer tailroom.

Check how much free space there is at the end of the buffer.

Parameters

• buf – A valid pointer on a buffer

Returns Number of bytes available at the end of the buffer.

uint16_t net_buf_simple_max_len(struct net_buf_simple *buf)

Check maximum net_buf_simple::len value.

This value is depending on the number of bytes being reserved as headroom.

Parameters

• buf – A valid pointer on a buffer

Returns Number of bytes usable behind the net_buf_simple::data pointer.

static inline void net_buf_simple_save(struct net_buf_simple *buf, struct net_buf_simple_state
*state)

Save the parsing state of a buffer.

Saves the parsing state of a buffer so it can be restored later.

Parameters

• buf – Buffer from which the state should be saved.

• state – Storage for the state.

static inline void net_buf_simple_restore(struct net_buf_simple *buf, struct
net_buf_simple_state *state)

Restore the parsing state of a buffer.

Restores the parsing state of a buffer from a state previously stored by net_buf_simple_save().

Parameters

7.20. Networking 939

Zephyr Project Documentation, Release 2.7.0-rc2

• buf – Buffer to which the state should be restored.

• state – Stored state.

struct net_buf_pool *net_buf_pool_get(int id)

Looks up a pool based on its ID.

Parameters

• id – Pool ID (e.g. from buf->pool_id).

Returns Pointer to pool.

int net_buf_id(struct net_buf *buf)

Get a zero-based index for a buffer.

This function will translate a buffer into a zero-based index, based on its placement in its
buffer pool. This can be useful if you want to associate an external array of meta-data contexts
with the buffers of a pool.

Parameters

• buf – Network buffer.

Returns Zero-based index for the buffer.

struct net_buf *net_buf_alloc_fixed(struct net_buf_pool *pool, k_timeout_t timeout)

Allocate a new fixed buffer from a pool.

Parameters

• pool – Which pool to allocate the buffer from.

• timeout – Affects the action taken should the pool be empty. If K_NO_WAIT,
then return immediately. If K_FOREVER, then wait as long as necessary. Other-
wise, wait until the specified timeout. Note that some types of data allocators
do not support blocking (such as the HEAP type). In this case it’s still possible
for net_buf_alloc() to fail (return NULL) even if it was given K_FOREVER.

Returns New buffer or NULL if out of buffers.

static inline struct net_buf *net_buf_alloc(struct net_buf_pool *pool, k_timeout_t timeout)

Parameters

• pool – Which pool to allocate the buffer from.

• timeout – Affects the action taken should the pool be empty. If K_NO_WAIT,
then return immediately. If K_FOREVER, then wait as long as necessary. Other-
wise, wait until the specified timeout. Note that some types of data allocators
do not support blocking (such as the HEAP type). In this case it’s still possible
for net_buf_alloc() to fail (return NULL) even if it was given K_FOREVER.

Returns New buffer or NULL if out of buffers.

struct net_buf *net_buf_alloc_len(struct net_buf_pool *pool, size_t size, k_timeout_t timeout)

Allocate a new variable length buffer from a pool.

Parameters

• pool – Which pool to allocate the buffer from.

• size – Amount of data the buffer must be able to fit.

• timeout – Affects the action taken should the pool be empty. If K_NO_WAIT,
then return immediately. If K_FOREVER, then wait as long as necessary. Other-
wise, wait until the specified timeout. Note that some types of data allocators
do not support blocking (such as the HEAP type). In this case it’s still possible
for net_buf_alloc() to fail (return NULL) even if it was given K_FOREVER.

940 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Returns New buffer or NULL if out of buffers.

struct net_buf *net_buf_alloc_with_data(struct net_buf_pool *pool, void *data, size_t size,
k_timeout_t timeout)

Allocate a new buffer from a pool but with external data pointer.

Allocate a new buffer from a pool, where the data pointer comes from the user and not from
the pool.

Parameters

• pool – Which pool to allocate the buffer from.

• data – External data pointer

• size – Amount of data the pointed data buffer if able to fit.

• timeout – Affects the action taken should the pool be empty. If K_NO_WAIT,
then return immediately. If K_FOREVER, then wait as long as necessary. Other-
wise, wait until the specified timeout. Note that some types of data allocators
do not support blocking (such as the HEAP type). In this case it’s still possible
for net_buf_alloc() to fail (return NULL) even if it was given K_FOREVER.

Returns New buffer or NULL if out of buffers.

struct net_buf *net_buf_get(struct k_fifo *fifo, k_timeout_t timeout)

Get a buffer from a FIFO.

This function is NOT thread-safe if the buffers in the FIFO contain fragments.

Parameters

• fifo – Which FIFO to take the buffer from.

• timeout – Affects the action taken should the FIFO be empty. If K_NO_WAIT,
then return immediately. If K_FOREVER, then wait as long as necessary. Oth-
erwise, wait until the specified timeout.

Returns New buffer or NULL if the FIFO is empty.

static inline void net_buf_destroy(struct net_buf *buf)

Destroy buffer from custom destroy callback.

This helper is only intended to be used from custom destroy callbacks. If no custom destroy
callback is given to NET_BUF_POOL_*_DEFINE() then there is no need to use this API.

Parameters

• buf – Buffer to destroy.

void net_buf_reset(struct net_buf *buf)

Reset buffer.

Reset buffer data and flags so it can be reused for other purposes.

Parameters

• buf – Buffer to reset.

void net_buf_simple_reserve(struct net_buf_simple *buf, size_t reserve)

Initialize buffer with the given headroom.

The buffer is not expected to contain any data when this API is called.

Parameters

• buf – Buffer to initialize.

• reserve – How much headroom to reserve.

7.20. Networking 941

Zephyr Project Documentation, Release 2.7.0-rc2

void net_buf_slist_put(sys_slist_t *list, struct net_buf *buf)

Put a buffer into a list.

If the buffer contains follow-up fragments this function will take care of inserting them as well
into the list.

Parameters

• list – Which list to append the buffer to.

• buf – Buffer.

struct net_buf *net_buf_slist_get(sys_slist_t *list)

Get a buffer from a list.

If the buffer had any fragments, these will automatically be recovered from the list as well
and be placed to the buffer’s fragment list. This function is NOT thread-safe when recovering
fragments.

Parameters

• list – Which list to take the buffer from.

Returns New buffer or NULL if the FIFO is empty.

void net_buf_put(struct k_fifo *fifo, struct net_buf *buf)

Put a buffer to the end of a FIFO.

If the buffer contains follow-up fragments this function will take care of inserting them as well
into the FIFO.

Parameters

• fifo – Which FIFO to put the buffer to.

• buf – Buffer.

void net_buf_unref(struct net_buf *buf)

Decrements the reference count of a buffer.

The buffer is put back into the pool if the reference count reaches zero.

Parameters

• buf – A valid pointer on a buffer

struct net_buf *net_buf_ref(struct net_buf *buf)

Increment the reference count of a buffer.

Parameters

• buf – A valid pointer on a buffer

Returns the buffer newly referenced

struct net_buf *net_buf_clone(struct net_buf *buf, k_timeout_t timeout)

Clone buffer.

Duplicate given buffer including any data and headers currently stored.

Parameters

• buf – A valid pointer on a buffer

• timeout – Affects the action taken should the pool be empty. If K_NO_WAIT,
then return immediately. If K_FOREVER, then wait as long as necessary. Oth-
erwise, wait until the specified timeout.

Returns Cloned buffer or NULL if out of buffers.

942 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline void *net_buf_user_data(const struct net_buf *buf)

Get a pointer to the user data of a buffer.

Parameters

• buf – A valid pointer on a buffer

Returns Pointer to the user data of the buffer.

static inline void net_buf_reserve(struct net_buf *buf, size_t reserve)

Initialize buffer with the given headroom.

The buffer is not expected to contain any data when this API is called.

Parameters

• buf – Buffer to initialize.

• reserve – How much headroom to reserve.

static inline void *net_buf_add(struct net_buf *buf, size_t len)

Prepare data to be added at the end of the buffer.

Increments the data length of a buffer to account for more data at the end.

Parameters

• buf – Buffer to update.

• len – Number of bytes to increment the length with.

Returns The original tail of the buffer.

static inline void *net_buf_add_mem(struct net_buf *buf, const void *mem, size_t len)

Copies the given number of bytes to the end of the buffer.

Increments the data length of the buffer to account for more data at the end.

Parameters

• buf – Buffer to update.

• mem – Location of data to be added.

• len – Length of data to be added

Returns The original tail of the buffer.

static inline uint8_t *net_buf_add_u8(struct net_buf *buf, uint8_t val)

Add (8-bit) byte at the end of the buffer.

Increments the data length of the buffer to account for more data at the end.

Parameters

• buf – Buffer to update.

• val – byte value to be added.

Returns Pointer to the value added

static inline void net_buf_add_le16(struct net_buf *buf, uint16_t val)

Add 16-bit value at the end of the buffer.

Adds 16-bit value in little endian format at the end of buffer. Increments the data length of a
buffer to account for more data at the end.

Parameters

• buf – Buffer to update.

• val – 16-bit value to be added.

7.20. Networking 943

Zephyr Project Documentation, Release 2.7.0-rc2

static inline void net_buf_add_be16(struct net_buf *buf, uint16_t val)

Add 16-bit value at the end of the buffer.

Adds 16-bit value in big endian format at the end of buffer. Increments the data length of a
buffer to account for more data at the end.

Parameters

• buf – Buffer to update.

• val – 16-bit value to be added.

static inline void net_buf_add_le24(struct net_buf *buf, uint32_t val)

Add 24-bit value at the end of the buffer.

Adds 24-bit value in little endian format at the end of buffer. Increments the data length of a
buffer to account for more data at the end.

Parameters

• buf – Buffer to update.

• val – 24-bit value to be added.

static inline void net_buf_add_be24(struct net_buf *buf, uint32_t val)

Add 24-bit value at the end of the buffer.

Adds 24-bit value in big endian format at the end of buffer. Increments the data length of a
buffer to account for more data at the end.

Parameters

• buf – Buffer to update.

• val – 24-bit value to be added.

static inline void net_buf_add_le32(struct net_buf *buf, uint32_t val)

Add 32-bit value at the end of the buffer.

Adds 32-bit value in little endian format at the end of buffer. Increments the data length of a
buffer to account for more data at the end.

Parameters

• buf – Buffer to update.

• val – 32-bit value to be added.

static inline void net_buf_add_be32(struct net_buf *buf, uint32_t val)

Add 32-bit value at the end of the buffer.

Adds 32-bit value in big endian format at the end of buffer. Increments the data length of a
buffer to account for more data at the end.

Parameters

• buf – Buffer to update.

• val – 32-bit value to be added.

static inline void net_buf_add_le48(struct net_buf *buf, uint64_t val)

Add 48-bit value at the end of the buffer.

Adds 48-bit value in little endian format at the end of buffer. Increments the data length of a
buffer to account for more data at the end.

Parameters

• buf – Buffer to update.

• val – 48-bit value to be added.

944 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline void net_buf_add_be48(struct net_buf *buf, uint64_t val)

Add 48-bit value at the end of the buffer.

Adds 48-bit value in big endian format at the end of buffer. Increments the data length of a
buffer to account for more data at the end.

Parameters

• buf – Buffer to update.

• val – 48-bit value to be added.

static inline void net_buf_add_le64(struct net_buf *buf, uint64_t val)

Add 64-bit value at the end of the buffer.

Adds 64-bit value in little endian format at the end of buffer. Increments the data length of a
buffer to account for more data at the end.

Parameters

• buf – Buffer to update.

• val – 64-bit value to be added.

static inline void net_buf_add_be64(struct net_buf *buf, uint64_t val)

Add 64-bit value at the end of the buffer.

Adds 64-bit value in big endian format at the end of buffer. Increments the data length of a
buffer to account for more data at the end.

Parameters

• buf – Buffer to update.

• val – 64-bit value to be added.

static inline void *net_buf_remove_mem(struct net_buf *buf, size_t len)

Remove data from the end of the buffer.

Removes data from the end of the buffer by modifying the buffer length.

Parameters

• buf – Buffer to update.

• len – Number of bytes to remove.

Returns New end of the buffer data.

static inline uint8_t net_buf_remove_u8(struct net_buf *buf)

Remove a 8-bit value from the end of the buffer.

Same idea as with net_buf_remove_mem(), but a helper for operating on 8-bit values.

Parameters

• buf – A valid pointer on a buffer.

Returns The 8-bit removed value

static inline uint16_t net_buf_remove_le16(struct net_buf *buf)

Remove and convert 16 bits from the end of the buffer.

Same idea as with net_buf_remove_mem(), but a helper for operating on 16-bit little endian
data.

Parameters

• buf – A valid pointer on a buffer.

Returns 16-bit value converted from little endian to host endian.

7.20. Networking 945

Zephyr Project Documentation, Release 2.7.0-rc2

static inline uint16_t net_buf_remove_be16(struct net_buf *buf)

Remove and convert 16 bits from the end of the buffer.

Same idea as with net_buf_remove_mem(), but a helper for operating on 16-bit big endian
data.

Parameters

• buf – A valid pointer on a buffer.

Returns 16-bit value converted from big endian to host endian.

static inline uint32_t net_buf_remove_be24(struct net_buf *buf)

Remove and convert 24 bits from the end of the buffer.

Same idea as with net_buf_remove_mem(), but a helper for operating on 24-bit big endian
data.

Parameters

• buf – A valid pointer on a buffer.

Returns 24-bit value converted from big endian to host endian.

static inline uint32_t net_buf_remove_le24(struct net_buf *buf)

Remove and convert 24 bits from the end of the buffer.

Same idea as with net_buf_remove_mem(), but a helper for operating on 24-bit little endian
data.

Parameters

• buf – A valid pointer on a buffer.

Returns 24-bit value converted from little endian to host endian.

static inline uint32_t net_buf_remove_le32(struct net_buf *buf)

Remove and convert 32 bits from the end of the buffer.

Same idea as with net_buf_remove_mem(), but a helper for operating on 32-bit little endian
data.

Parameters

• buf – A valid pointer on a buffer.

Returns 32-bit value converted from little endian to host endian.

static inline uint32_t net_buf_remove_be32(struct net_buf *buf)

Remove and convert 32 bits from the end of the buffer.

Same idea as with net_buf_remove_mem(), but a helper for operating on 32-bit big endian
data.

Parameters

• buf – A valid pointer on a buffer

Returns 32-bit value converted from big endian to host endian.

static inline uint64_t net_buf_remove_le48(struct net_buf *buf)

Remove and convert 48 bits from the end of the buffer.

Same idea as with net_buf_remove_mem(), but a helper for operating on 48-bit little endian
data.

Parameters

• buf – A valid pointer on a buffer.

Returns 48-bit value converted from little endian to host endian.

946 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline uint64_t net_buf_remove_be48(struct net_buf *buf)

Remove and convert 48 bits from the end of the buffer.

Same idea as with net_buf_remove_mem(), but a helper for operating on 48-bit big endian
data.

Parameters

• buf – A valid pointer on a buffer

Returns 48-bit value converted from big endian to host endian.

static inline uint64_t net_buf_remove_le64(struct net_buf *buf)

Remove and convert 64 bits from the end of the buffer.

Same idea as with net_buf_remove_mem(), but a helper for operating on 64-bit little endian
data.

Parameters

• buf – A valid pointer on a buffer.

Returns 64-bit value converted from little endian to host endian.

static inline uint64_t net_buf_remove_be64(struct net_buf *buf)

Remove and convert 64 bits from the end of the buffer.

Same idea as with net_buf_remove_mem(), but a helper for operating on 64-bit big endian
data.

Parameters

• buf – A valid pointer on a buffer

Returns 64-bit value converted from big endian to host endian.

static inline void *net_buf_push(struct net_buf *buf, size_t len)

Prepare data to be added at the start of the buffer.

Modifies the data pointer and buffer length to account for more data in the beginning of the
buffer.

Parameters

• buf – Buffer to update.

• len – Number of bytes to add to the beginning.

Returns The new beginning of the buffer data.

static inline void *net_buf_push_mem(struct net_buf *buf, const void *mem, size_t len)

Copies the given number of bytes to the start of the buffer.

Modifies the data pointer and buffer length to account for more data in the beginning of the
buffer.

Parameters

• buf – Buffer to update.

• mem – Location of data to be added.

• len – Length of data to be added.

Returns The new beginning of the buffer data.

static inline void net_buf_push_u8(struct net_buf *buf, uint8_t val)

Push 8-bit value to the beginning of the buffer.

Adds 8-bit value the beginning of the buffer.

Parameters

7.20. Networking 947

Zephyr Project Documentation, Release 2.7.0-rc2

• buf – Buffer to update.

• val – 8-bit value to be pushed to the buffer.

static inline void net_buf_push_le16(struct net_buf *buf, uint16_t val)

Push 16-bit value to the beginning of the buffer.

Adds 16-bit value in little endian format to the beginning of the buffer.

Parameters

• buf – Buffer to update.

• val – 16-bit value to be pushed to the buffer.

static inline void net_buf_push_be16(struct net_buf *buf, uint16_t val)

Push 16-bit value to the beginning of the buffer.

Adds 16-bit value in big endian format to the beginning of the buffer.

Parameters

• buf – Buffer to update.

• val – 16-bit value to be pushed to the buffer.

static inline void net_buf_push_le24(struct net_buf *buf, uint32_t val)

Push 24-bit value to the beginning of the buffer.

Adds 24-bit value in little endian format to the beginning of the buffer.

Parameters

• buf – Buffer to update.

• val – 24-bit value to be pushed to the buffer.

static inline void net_buf_push_be24(struct net_buf *buf, uint32_t val)

Push 24-bit value to the beginning of the buffer.

Adds 24-bit value in big endian format to the beginning of the buffer.

Parameters

• buf – Buffer to update.

• val – 24-bit value to be pushed to the buffer.

static inline void net_buf_push_le32(struct net_buf *buf, uint32_t val)

Push 32-bit value to the beginning of the buffer.

Adds 32-bit value in little endian format to the beginning of the buffer.

Parameters

• buf – Buffer to update.

• val – 32-bit value to be pushed to the buffer.

static inline void net_buf_push_be32(struct net_buf *buf, uint32_t val)

Push 32-bit value to the beginning of the buffer.

Adds 32-bit value in big endian format to the beginning of the buffer.

Parameters

• buf – Buffer to update.

• val – 32-bit value to be pushed to the buffer.

948 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline void net_buf_push_le48(struct net_buf *buf, uint64_t val)

Push 48-bit value to the beginning of the buffer.

Adds 48-bit value in little endian format to the beginning of the buffer.

Parameters

• buf – Buffer to update.

• val – 48-bit value to be pushed to the buffer.

static inline void net_buf_push_be48(struct net_buf *buf, uint64_t val)

Push 48-bit value to the beginning of the buffer.

Adds 48-bit value in big endian format to the beginning of the buffer.

Parameters

• buf – Buffer to update.

• val – 48-bit value to be pushed to the buffer.

static inline void net_buf_push_le64(struct net_buf *buf, uint64_t val)

Push 64-bit value to the beginning of the buffer.

Adds 64-bit value in little endian format to the beginning of the buffer.

Parameters

• buf – Buffer to update.

• val – 64-bit value to be pushed to the buffer.

static inline void net_buf_push_be64(struct net_buf *buf, uint64_t val)

Push 64-bit value to the beginning of the buffer.

Adds 64-bit value in big endian format to the beginning of the buffer.

Parameters

• buf – Buffer to update.

• val – 64-bit value to be pushed to the buffer.

static inline void *net_buf_pull(struct net_buf *buf, size_t len)

Remove data from the beginning of the buffer.

Removes data from the beginning of the buffer by modifying the data pointer and buffer
length.

Parameters

• buf – Buffer to update.

• len – Number of bytes to remove.

Returns New beginning of the buffer data.

static inline void *net_buf_pull_mem(struct net_buf *buf, size_t len)

Remove data from the beginning of the buffer.

Removes data from the beginning of the buffer by modifying the data pointer and buffer
length.

Parameters

• buf – Buffer to update.

• len – Number of bytes to remove.

Returns Pointer to the old beginning of the buffer data.

7.20. Networking 949

Zephyr Project Documentation, Release 2.7.0-rc2

static inline uint8_t net_buf_pull_u8(struct net_buf *buf)

Remove a 8-bit value from the beginning of the buffer.

Same idea as with net_buf_pull(), but a helper for operating on 8-bit values.

Parameters

• buf – A valid pointer on a buffer.

Returns The 8-bit removed value

static inline uint16_t net_buf_pull_le16(struct net_buf *buf)

Remove and convert 16 bits from the beginning of the buffer.

Same idea as with net_buf_pull(), but a helper for operating on 16-bit little endian data.

Parameters

• buf – A valid pointer on a buffer.

Returns 16-bit value converted from little endian to host endian.

static inline uint16_t net_buf_pull_be16(struct net_buf *buf)

Remove and convert 16 bits from the beginning of the buffer.

Same idea as with net_buf_pull(), but a helper for operating on 16-bit big endian data.

Parameters

• buf – A valid pointer on a buffer.

Returns 16-bit value converted from big endian to host endian.

static inline uint32_t net_buf_pull_le24(struct net_buf *buf)

Remove and convert 24 bits from the beginning of the buffer.

Same idea as with net_buf_pull(), but a helper for operating on 24-bit little endian data.

Parameters

• buf – A valid pointer on a buffer.

Returns 24-bit value converted from little endian to host endian.

static inline uint32_t net_buf_pull_be24(struct net_buf *buf)

Remove and convert 24 bits from the beginning of the buffer.

Same idea as with net_buf_pull(), but a helper for operating on 24-bit big endian data.

Parameters

• buf – A valid pointer on a buffer.

Returns 24-bit value converted from big endian to host endian.

static inline uint32_t net_buf_pull_le32(struct net_buf *buf)

Remove and convert 32 bits from the beginning of the buffer.

Same idea as with net_buf_pull(), but a helper for operating on 32-bit little endian data.

Parameters

• buf – A valid pointer on a buffer.

Returns 32-bit value converted from little endian to host endian.

static inline uint32_t net_buf_pull_be32(struct net_buf *buf)

Remove and convert 32 bits from the beginning of the buffer.

Same idea as with net_buf_pull(), but a helper for operating on 32-bit big endian data.

Parameters

950 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• buf – A valid pointer on a buffer

Returns 32-bit value converted from big endian to host endian.

static inline uint64_t net_buf_pull_le48(struct net_buf *buf)

Remove and convert 48 bits from the beginning of the buffer.

Same idea as with net_buf_pull(), but a helper for operating on 48-bit little endian data.

Parameters

• buf – A valid pointer on a buffer.

Returns 48-bit value converted from little endian to host endian.

static inline uint64_t net_buf_pull_be48(struct net_buf *buf)

Remove and convert 48 bits from the beginning of the buffer.

Same idea as with net_buf_pull(), but a helper for operating on 48-bit big endian data.

Parameters

• buf – A valid pointer on a buffer

Returns 48-bit value converted from big endian to host endian.

static inline uint64_t net_buf_pull_le64(struct net_buf *buf)

Remove and convert 64 bits from the beginning of the buffer.

Same idea as with net_buf_pull(), but a helper for operating on 64-bit little endian data.

Parameters

• buf – A valid pointer on a buffer.

Returns 64-bit value converted from little endian to host endian.

static inline uint64_t net_buf_pull_be64(struct net_buf *buf)

Remove and convert 64 bits from the beginning of the buffer.

Same idea as with net_buf_pull(), but a helper for operating on 64-bit big endian data.

Parameters

• buf – A valid pointer on a buffer

Returns 64-bit value converted from big endian to host endian.

static inline size_t net_buf_tailroom(struct net_buf *buf)

Check buffer tailroom.

Check how much free space there is at the end of the buffer.

Parameters

• buf – A valid pointer on a buffer

Returns Number of bytes available at the end of the buffer.

static inline size_t net_buf_headroom(struct net_buf *buf)

Check buffer headroom.

Check how much free space there is in the beginning of the buffer.

buf A valid pointer on a buffer

Returns Number of bytes available in the beginning of the buffer.

7.20. Networking 951

Zephyr Project Documentation, Release 2.7.0-rc2

static inline uint16_t net_buf_max_len(struct net_buf *buf)

Check maximum net_buf::len value.

This value is depending on the number of bytes being reserved as headroom.

Parameters

• buf – A valid pointer on a buffer

Returns Number of bytes usable behind the net_buf::data pointer.

static inline uint8_t *net_buf_tail(struct net_buf *buf)

Get the tail pointer for a buffer.

Get a pointer to the end of the data in a buffer.

Parameters

• buf – Buffer.

Returns Tail pointer for the buffer.

struct net_buf *net_buf_frag_last(struct net_buf *frags)

Find the last fragment in the fragment list.

Returns Pointer to last fragment in the list.

void net_buf_frag_insert(struct net_buf *parent, struct net_buf *frag)

Insert a new fragment to a chain of bufs.

Insert a new fragment into the buffer fragments list after the parent.

Note: This function takes ownership of the fragment reference so the caller is not required to
unref.

Parameters

• parent – Parent buffer/fragment.

• frag – Fragment to insert.

struct net_buf *net_buf_frag_add(struct net_buf *head, struct net_buf *frag)

Add a new fragment to the end of a chain of bufs.

Append a new fragment into the buffer fragments list.

Note: This function takes ownership of the fragment reference so the caller is not required to
unref.

Parameters

• head – Head of the fragment chain.

• frag – Fragment to add.

Returns New head of the fragment chain. Either head (if head was non-NULL) or
frag (if head was NULL).

struct net_buf *net_buf_frag_del(struct net_buf *parent, struct net_buf *frag)

Delete existing fragment from a chain of bufs.

Parameters

• parent – Parent buffer/fragment, or NULL if there is no parent.

• frag – Fragment to delete.

Returns Pointer to the buffer following the fragment, or NULL if it had no further
fragments.

952 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

size_t net_buf_linearize(void *dst, size_t dst_len, struct net_buf *src, size_t offset, size_t len)
Copy bytes from net_buf chain starting at offset to linear buffer.

Copy (extract) len bytes from src net_buf chain, starting from offset in it, to a linear buffer dst.
Return number of bytes actually copied, which may be less than requested, if net_buf chain
doesn’t have enough data, or destination buffer is too small.

Parameters

• dst – Destination buffer

• dst_len – Destination buffer length

• src – Source net_buf chain

• offset – Starting offset to copy from

• len – Number of bytes to copy

Returns number of bytes actually copied

size_t net_buf_append_bytes(struct net_buf *buf, size_t len, const void *value, k_timeout_t
timeout, net_buf_allocator_cb allocate_cb, void *user_data)

Append data to a list of net_buf .

Append data to a net_buf . If there is not enough space in the net_buf then more net_buf will
be added, unless there are no free net_buf and timeout occurs. If not allocator is provided it
attempts to allocate from the same pool as the original buffer.

Parameters

• buf – Network buffer.

• len – Total length of input data

• value – Data to be added

• timeout – Timeout is passed to the net_buf allocator callback.

• allocate_cb – When a new net_buf is required, use this callback.

• user_data – A user data pointer to be supplied to the allocate_cb. This pointer
is can be anything from a mem_pool or a net_pkt, the logic is left up to the
allocate_cb function.

Returns Length of data actually added. This may be less than input length if other
timeout than K_FOREVER was used, and there were no free fragments in a pool
to accommodate all data.

static inline struct net_buf *net_buf_skip(struct net_buf *buf, size_t len)
Skip N number of bytes in a net_buf .

Skip N number of bytes starting from fragment’s offset. If the total length of data is placed
in multiple fragments, this function will skip from all fragments until it reaches N number of
bytes. Any fully skipped buffers are removed from the net_buf list.

Parameters

• buf – Network buffer.

• len – Total length of data to be skipped.

Returns Pointer to the fragment or NULL and pos is 0 after successful skip, NULL
and pos is 0xffff otherwise.

static inline size_t net_buf_frags_len(struct net_buf *buf)
Calculate amount of bytes stored in fragments.

Calculates the total amount of data stored in the given buffer and the fragments linked to it.

Parameters

7.20. Networking 953

Zephyr Project Documentation, Release 2.7.0-rc2

• buf – Buffer to start off with.

Returns Number of bytes in the buffer and its fragments.

struct net_buf_simple

#include <buf.h> Simple network buffer representation.

This is a simpler variant of the net_buf object (in fact net_buf uses net_buf_simple internally).
It doesn’t provide any kind of reference counting, user data, dynamic allocation, or in general
the ability to pass through kernel objects such as FIFOs.

The main use of this is for scenarios where the meta-data of the normal net_buf isn’t needed
and causes too much overhead. This could be e.g. when the buffer only needs to be allocated
on the stack or when the access to and lifetime of the buffer is well controlled and constrained.

Public Members

uint8_t *data

Pointer to the start of data in the buffer.

uint16_t len

Length of the data behind the data pointer.

To determine the max length, use net_buf_simple_max_len(), not size!

uint16_t size

Amount of data that net_buf_simple::__buf can store.

struct net_buf_simple_state

#include <buf.h> Parsing state of a buffer.

This is used for temporarily storing the parsing state of a buffer while giving control of the
parsing to a routine which we don’t control.

Public Members

uint16_t offset

Offset of the data pointer from the beginning of the storage

uint16_t len

Length of data

struct net_buf

#include <buf.h> Network buffer representation.

This struct is used to represent network buffers. Such buffers are normally defined through
the NET_BUF_POOL_*_DEFINE() APIs and allocated using the net_buf_alloc() API.

Public Members

sys_snode_t node

Allow placing the buffer into sys_slist_t

954 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

struct net_buf *frags

Fragments associated with this buffer.

uint8_t ref

Reference count.

uint8_t flags

Bit-field of buffer flags.

uint8_t pool_id

Where the buffer should go when freed up.

uint8_t *data

Pointer to the start of data in the buffer.

uint16_t len

Length of the data behind the data pointer.

uint16_t size

Amount of data that this buffer can store.

uint8_t user_data[0]

System metadata for this buffer.

struct net_buf_data_cb

#include <buf.h>

struct net_buf_data_alloc

#include <buf.h>

struct net_buf_pool

#include <buf.h> Network buffer pool representation.

This struct is used to represent a pool of network buffers.

Public Members

struct k_lifo free

LIFO to place the buffer into when free

const uint16_t buf_count

Number of buffers in pool

uint16_t uninit_count

Number of uninitialized buffers

void (*const destroy)(struct net_buf *buf)

Optional destroy callback when buffer is freed.

7.20. Networking 955

Zephyr Project Documentation, Release 2.7.0-rc2

const struct net_buf_data_alloc *alloc

Data allocation handlers.

struct net_buf_pool_fixed

#include <buf.h>

Packet Management

• Overview

– Architectural notes

• Memory management

– Allocation

– Buffer allocation

– Deallocation

• Operations

– Read and Write access

– Data access

• API Reference

Overview Network packets are the main data the networking stack manipulates. Such data is repre-
sented through the net_pkt structure which provides a means to hold the packet, write and read it, as
well as necessary metadata for the core to hold important information. Such an object is called net_pkt
in this document.

The data structure and the whole API around it are defined in include/net/net_pkt.h.

Architectural notes There are two network packets flows within the stack, TX for the transmission
path, and RX for the reception one. In both paths, each net_pkt is written and read from the beginning
to the end, or more specifically from the headers to the payload.

Memory management

Allocation All net_pkt objects come from a pre-defined pool of struct net_pkt. Such pool is defined via

NET_PKT_SLAB_DEFINE(name, count)

Note, however, one will rarely have to use it, as the core provides already two pools, one for the TX path
and one for the RX path.

Allocating a raw net_pkt can be done through:

pkt = net_pkt_alloc(timeout);

However, by its nature, a raw net_pkt is useless without a buffer and needs various metadata information
to become relevant as well. It requires at least to get the network interface it is meant to be sent through
or through which it was received. As this is a very common operation, a helper exist:

956 Chapter 7. API Reference

https://github.com/zephyrproject-rtos/zephyr/blob/main/include/net/net_pkt.h

Zephyr Project Documentation, Release 2.7.0-rc2

pkt = net_pkt_alloc_on_iface(iface, timeout);

A more complete allocator exists, where both the net_pkt and its buffer can be allocated at once:

pkt = net_pkt_alloc_with_buffer(iface, size, family, proto, timeout);

See below how the buffer is allocated.

Buffer allocation The net_pkt object does not define its own buffer, but instead uses an existing object
for this: net_buf . (See Network Buffer for more information). However, it mostly hides the usage of
such a buffer because net_pkt brings network awareness to buffer allocation and, as we will see later, its
operation too.

To allocate a buffer, a net_pkt needs to have at least its network interface set. This works if the family of
the packet is unknown at the time of buffer allocation. Then one could do:

net_pkt_alloc_buffer(pkt, size, proto, timeout);

Where proto could be 0 if unknown (there is no IPPROTO_UNSPEC).

As seen previously, the net_pkt and its buffer can be allocated at once via
net_pkt_alloc_with_buffer() . It is actually the most widely used allocator.

The network interface, the family, and the protocol of the packet are used by the buffer allocation to
determine if the requested size can be allocated. Indeed, the allocator will use the network interface to
know the MTU and then the family and protocol for the headers space (if only these 2 are specified).
If the whole fits within the MTU, the allocated space will be of the requested size plus, eventually, the
headers space. If there is insufficient MTU space, the requested size will be shrunk so the possible headers
space and new size will fit within the MTU.

For instance, on an Ethernet network interface, with an MTU of 1500 bytes:

pkt = net_pkt_alloc_with_buffer(iface, 800, AF_INET4, IPPROTO_UDP, K_FOREVER);

will successfully allocate 800 + 20 + 8 bytes of buffer for the new net_pkt where:

pkt = net_pkt_alloc_with_buffer(iface, 1600, AF_INET4, IPPROTO_UDP, K_FOREVER);

will successfully allocate 1500 bytes, and where 20 + 8 bytes (IPv4 + UDP headers) will not be used for
the payload.

On the receiving side, when the family and protocol are not known:

pkt = net_pkt_rx_alloc_with_buffer(iface, 800, AF_UNSPEC, 0, K_FOREVER);

will allocate 800 bytes and no extra header space. But a:

pkt = net_pkt_rx_alloc_with_buffer(iface, 1600, AF_UNSPEC, 0, K_FOREVER);

will allocate 1514 bytes, the MTU + Ethernet header space.

One can increase the amount of buffer space allocated by calling net_pkt_alloc_buffer() , as it will
take into account the existing buffer. It will also account for the header space if net_pkt’s family is a valid
one, as well as the proto parameter. In that case, the newly allocated buffer space will be appended to
the existing one, and not inserted in the front. Note however such a use case is rather limited. Usually,
one should know from the start how much size should be requested.

Deallocation Each net_pkt is reference counted. At allocation, the reference is set to 1. The reference
count can be incremented with net_pkt_ref() or decremented with net_pkt_unref() . When the
count drops to zero the buffer is also un-referenced and net_pkt is automatically placed back into the
free net_pkt_slabs

7.20. Networking 957

Zephyr Project Documentation, Release 2.7.0-rc2

If net_pkt’s buffer is needed even after net_pkt deallocation, one will need to reference once more all the
chain of net_buf before calling last net_pkt_unref. See Network Buffer for more information.

Operations There are two ways to access the net_pkt buffer, explained in the following sections: basic
read/write access and data access, the latter being the preferred way.

Read and Write access As said earlier, though net_pkt uses net_buf for its buffer, it provides its own API
to access it. Indeed, a network packet might be scattered over a chain of net_buf objects, the functions
provided by net_buf are then limited for such case. Instead, net_pkt provides functions which hide all
the complexity of potential non-contiguous access.

Data movement into the buffer is made through a cursor maintained within each net_pkt. All read/write
operations affect this cursor. Note as well that read or write functions are strict on their length parame-
ters: if it cannot r/w the given length it will fail. Length is not interpreted as an upper limit, it is instead
the exact amount of data that must be read or written.

As there are two paths, TX and RX, there are two access modes: write and overwrite. This might sound
a bit unusual, but is in fact simple and provides flexibility.

In write mode, whatever is written in the buffer affects the length of actual data present in the buffer.
Buffer length should not be confused with the buffer size which is a limit any mode cannot pass. In
overwrite mode then, whatever is written must happen on valid data, and will not affect the buffer
length. By default, a newly allocated net_pkt is on write mode, and its cursor points to the beginning of
its buffer.

Let’s see now, step by step, the functions and how they behave depending on the mode.

When freshly allocated with a buffer of 500 bytes, a net_pkt has 0 length, which means no valid data is
in its buffer. One could verify this by:

len = net_pkt_get_len(pkt);

Now, let’s write 8 bytes:

net_pkt_write(pkt, data, 8);

The buffer length is now 8 bytes. There are various helpers to write a byte, or big endian uint16_t,
uint32_t.

net_pkt_write_u8(pkt, &foo);
net_pkt_write_be16(pkt, &ba);
net_pkt_write_be32(pkt, &bar);

Logically, net_pkt’s length is now 15. But if we try to read at this point, it will fail because there is
nothing to read at the cursor where we are at in the net_pkt. It is possible, while in write mode, to read
what has been already written by resetting the cursor of the net_pkt. For instance:

net_pkt_cursor_init(pkt);
net_pkt_read(pkt, data, 15);

This will reset the cursor of the pkt to the beginning of the buffer and then let you read the actual 15
bytes present. The cursor is then again pointing at the end of the buffer.

To set a large area with the same byte, a memset function is provided:

net_pkt_memset(pkt, 0, 5);

Our net_pkt has now a length of 20 bytes.

Switching between modes can be achieved via net_pkt_set_overwrite() function. It is possible to
switch mode back and forth at any time. The net_pkt will be set to overwrite and its cursor reset:

958 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

net_pkt_set_overwrite(pkt, true);
net_pkt_cursor_init(pkt);

Now the same operators can be used, but it will be limited to the existing data in the buffer, i.e. 20 bytes.

If it is necessary to know how much space is available in the net_pkt call:

net_pkt_available_buffer(pkt);

Or, if headers space needs to be accounted for, call:

net_pkt_available_payload_buffer(pkt, proto);

If you want to place the cursor at a known position use the function net_pkt_skip() . For example, to
go after the IP header, use:

net_pkt_cursor_init(pkt);
net_pkt_skip(pkt, net_pkt_ip_header_len(pkt));

Data access Though the API shown previously is rather simple, it involves always copying things to
and from the net_pkt buffer. In many occasions, it is more relevant to access the information stored in
the buffer contiguously, especially with network packets which embed headers.

These headers are, most of the time, a known fixed set of bytes. It is then more natural to have a
structure representing a certain type of header. In addition to this, if it is known the header size appears
in a contiguous area of the buffer, it will be way more efficient to cast the actual position in the buffer to
the type of header. Either for reading or writing the fields of such header, accessing it directly will save
memory.

Net pkt comes with a dedicated API for this, built on top of the previously described API. It is able to
handle both contiguous and non-contiguous access transparently.

There are two macros used to define a data access descriptor: NET_PKT_DATA_ACCESS_DEFINE
when it is not possible to tell if the data will be in a contiguous area, and
NET_PKT_DATA_ACCESS_CONTIGUOUS_DEFINE when it is guaranteed the data is in a contiguous
area.

Let’s take the example of IP and UDP. Both IPv4 and IPv6 headers are always found at the beginning of
the packet and are small enough to fit in a net_buf of 128 bytes (for instance, though 64 bytes could be
chosen).

NET_PKT_DATA_ACCESS_CONTIGUOUS_DEFINE(ipv4_access, struct net_ipv4_hdr);
struct net_ipv4_hdr *ipv4_hdr;

ipv4_hdr = (struct net_ipv4_hdr *)net_pkt_get_data(pkt, &ipv4_acess);

It would be the same for struct net_ipv4_hdr. For a UDP header it is likely not to be in a contiguous area
in IPv6 for instance so:

NET_PKT_DATA_ACCESS_DEFINE(udp_access, struct net_udp_hdr);
struct net_udp_hdr *udp_hdr;

udp_hdr = (struct net_udp_hdr *)net_pkt_get_data(pkt, &udp_access);

At this point, the cursor of the net_pkt points at the beginning of the requested data. On the RX path,
these headers will be read but not modified so to proceed further the cursor needs to advance past the
data. There is a function dedicated for this:

net_pkt_acknowledge_data(pkt, &ipv4_access);

On the TX path, however, the header fields have been modified. In such a case:

7.20. Networking 959

Zephyr Project Documentation, Release 2.7.0-rc2

net_pkt_set_data(pkt, &ipv4_access);

If the data are in a contiguous area, it will advance the cursor relevantly. If not, it will write the data and
the cursor will be updated. Note that net_pkt_set_data() could be used in the RX path as well, but it
is slightly faster to use net_pkt_acknowledge_data() as this one does not care about contiguity at all,
it just advances the cursor via net_pkt_skip() directly.

API Reference

group net_pkt

Network packet management library.

Defines

NET_PKT_SLAB_DEFINE(name, count)

Create a net_pkt slab.

A net_pkt slab is used to store meta-information about network packets. It must be coupled
with a data fragment pool (:c:macro:NET_PKT_DATA_POOL_DEFINE) used to store the actual
packet data. The macro can be used by an application to define additional custom per-context
TX packet slabs (see :c:func:net_context_setup_pools).

Parameters

• name – Name of the slab.

• count – Number of net_pkt in this slab.

NET_PKT_TX_SLAB_DEFINE(name, count)

NET_PKT_DATA_POOL_DEFINE(name, count)

Create a data fragment net_buf pool.

A net_buf pool is used to store actual data for network packets. It must be coupled with
a net_pkt slab (:c:macro:NET_PKT_SLAB_DEFINE) used to store the packet meta-information.
The macro can be used by an application to define additional custom per-context TX packet
pools (see :c:func:net_context_setup_pools).

Parameters

• name – Name of the pool.

• count – Number of net_buf in this pool.

net_pkt_print_frags(pkt)

Print fragment list and the fragment sizes.

Only available if debugging is activated.

Parameters

• pkt – Network pkt.

NET_PKT_DATA_ACCESS_DEFINE(_name, _type)

NET_PKT_DATA_ACCESS_CONTIGUOUS_DEFINE(_name, _type)

Functions

960 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

struct net_buf *net_pkt_get_reserve_rx_data(k_timeout_t timeout)

Get RX DATA buffer from pool. Normally you should use net_pkt_get_frag() instead.

Normally this version is not useful for applications but is mainly used by network fragmenta-
tion code.

Parameters

• timeout – Affects the action taken should the net buf pool be empty. If
K_NO_WAIT, then return immediately. If K_FOREVER, then wait as long as
necessary. Otherwise, wait up to the specified time.

Returns Network buffer if successful, NULL otherwise.

struct net_buf *net_pkt_get_reserve_tx_data(k_timeout_t timeout)

Get TX DATA buffer from pool. Normally you should use net_pkt_get_frag() instead.

Normally this version is not useful for applications but is mainly used by network fragmenta-
tion code.

Parameters

• timeout – Affects the action taken should the net buf pool be empty. If
K_NO_WAIT, then return immediately. If K_FOREVER, then wait as long as
necessary. Otherwise, wait up to the specified time.

Returns Network buffer if successful, NULL otherwise.

struct net_buf *net_pkt_get_frag(struct net_pkt *pkt, k_timeout_t timeout)

Get a data fragment that might be from user specific buffer pool or from global DATA pool.

Parameters

• pkt – Network packet.

• timeout – Affects the action taken should the net buf pool be empty. If
K_NO_WAIT, then return immediately. If K_FOREVER, then wait as long as
necessary. Otherwise, wait up to the specified time.

Returns Network buffer if successful, NULL otherwise.

void net_pkt_unref(struct net_pkt *pkt)

Place packet back into the available packets slab.

Releases the packet to other use. This needs to be called by application after it has finished
with the packet.

Parameters

• pkt – Network packet to release.

struct net_pkt *net_pkt_ref(struct net_pkt *pkt)

Increase the packet ref count.

Mark the packet to be used still.

Parameters

• pkt – Network packet to ref.

Returns Network packet if successful, NULL otherwise.

struct net_buf *net_pkt_frag_ref(struct net_buf *frag)

Increase the packet fragment ref count.

Mark the fragment to be used still.

Parameters

• frag – Network fragment to ref.

7.20. Networking 961

Zephyr Project Documentation, Release 2.7.0-rc2

Returns a pointer on the referenced Network fragment.

void net_pkt_frag_unref(struct net_buf *frag)

Decrease the packet fragment ref count.

Parameters

• frag – Network fragment to unref.

struct net_buf *net_pkt_frag_del(struct net_pkt *pkt, struct net_buf *parent, struct net_buf
*frag)

Delete existing fragment from a packet.

Parameters

• pkt – Network packet from which frag belongs to.

• parent – parent fragment of frag, or NULL if none.

• frag – Fragment to delete.

Returns Pointer to the following fragment, or NULL if it had no further fragments.

void net_pkt_frag_add(struct net_pkt *pkt, struct net_buf *frag)

Add a fragment to a packet at the end of its fragment list.

Parameters

• pkt – pkt Network packet where to add the fragment

• frag – Fragment to add

void net_pkt_frag_insert(struct net_pkt *pkt, struct net_buf *frag)

Insert a fragment to a packet at the beginning of its fragment list.

Parameters

• pkt – pkt Network packet where to insert the fragment

• frag – Fragment to insert

bool net_pkt_compact(struct net_pkt *pkt)

Compact the fragment list of a packet.

After this there is no more any free space in individual fragments.

Parameters

• pkt – Network packet.

Returns True if compact success, False otherwise.

void net_pkt_get_info(struct k_mem_slab **rx, struct k_mem_slab **tx, struct net_buf_pool
**rx_data, struct net_buf_pool **tx_data)

Get information about predefined RX, TX and DATA pools.

Parameters

• rx – Pointer to RX pool is returned.

• tx – Pointer to TX pool is returned.

• rx_data – Pointer to RX DATA pool is returned.

• tx_data – Pointer to TX DATA pool is returned.

struct net_pkt *net_pkt_alloc(k_timeout_t timeout)

Allocate an initialized net_pkt.

for the time being, 2 pools are used. One for TX and one for RX. This allocator has to be used
for TX.

962 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• timeout – Maximum time to wait for an allocation.

Returns a pointer to a newly allocated net_pkt on success, NULL otherwise.

struct net_pkt *net_pkt_alloc_from_slab(struct k_mem_slab *slab, k_timeout_t timeout)

Allocate an initialized net_pkt from a specific slab.

unlike net_pkt_alloc() which uses core slabs, this one will use an external slab (see
NET_PKT_SLAB_DEFINE()). Do not use it unless you know what you are doing. Basically,
only net_context should be using this, in order to allocate packet and then buffer on its local
slab/pool (if any).

Parameters

• slab – The slab to use for allocating the packet

• timeout – Maximum time to wait for an allocation.

Returns a pointer to a newly allocated net_pkt on success, NULL otherwise.

struct net_pkt *net_pkt_rx_alloc(k_timeout_t timeout)

Allocate an initialized net_pkt for RX.

for the time being, 2 pools are used. One for TX and one for RX. This allocator has to be used
for RX.

Parameters

• timeout – Maximum time to wait for an allocation.

Returns a pointer to a newly allocated net_pkt on success, NULL otherwise.

struct net_pkt *net_pkt_alloc_on_iface(struct net_if *iface, k_timeout_t timeout)

Allocate a network packet for a specific network interface.

Parameters

• iface – The network interface the packet is supposed to go through.

• timeout – Maximum time to wait for an allocation.

Returns a pointer to a newly allocated net_pkt on success, NULL otherwise.

struct net_pkt *net_pkt_rx_alloc_on_iface(struct net_if *iface, k_timeout_t timeout)

int net_pkt_alloc_buffer(struct net_pkt *pkt, size_t size, enum net_ip_protocol proto,
k_timeout_t timeout)

Allocate buffer for a net_pkt.

: such allocator will take into account space necessary for headers, MTU, and existing buffer
(if any). Beware that, due to all these criteria, the allocated size might be smaller/bigger than
requested one.

Parameters

• pkt – The network packet requiring buffer to be allocated.

• size – The size of buffer being requested.

• proto – The IP protocol type (can be 0 for none).

• timeout – Maximum time to wait for an allocation.

Returns 0 on success, negative errno code otherwise.

struct net_pkt *net_pkt_alloc_with_buffer(struct net_if *iface, size_t size, sa_family_t family,
enum net_ip_protocol proto, k_timeout_t timeout)

Allocate a network packet and buffer at once.

7.20. Networking 963

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• iface – The network interface the packet is supposed to go through.

• size – The size of buffer.

• family – The family to which the packet belongs.

• proto – The IP protocol type (can be 0 for none).

• timeout – Maximum time to wait for an allocation.

Returns a pointer to a newly allocated net_pkt on success, NULL otherwise.

struct net_pkt *net_pkt_rx_alloc_with_buffer(struct net_if *iface, size_t size, sa_family_t
family, enum net_ip_protocol proto, k_timeout_t
timeout)

void net_pkt_append_buffer(struct net_pkt *pkt, struct net_buf *buffer)

Append a buffer in packet.

Parameters

• pkt – Network packet where to append the buffer

• buffer – Buffer to append

size_t net_pkt_available_buffer(struct net_pkt *pkt)

Get available buffer space from a pkt.

Note: Reserved bytes (headroom) in any of the fragments are not considered to be available.

Parameters

• pkt – The net_pkt which buffer availability should be evaluated

Returns the amount of buffer available

size_t net_pkt_available_payload_buffer(struct net_pkt *pkt, enum net_ip_protocol proto)

Get available buffer space for payload from a pkt.

Unlike net_pkt_available_buffer(), this will take into account the headers space.

Note: Reserved bytes (headroom) in any of the fragments are not considered to be available.

Parameters

• pkt – The net_pkt which payload buffer availability should be evaluated

• proto – The IP protocol type (can be 0 for none).

Returns the amount of buffer available for payload

void net_pkt_trim_buffer(struct net_pkt *pkt)

Trim net_pkt buffer.

This will basically check for unused buffers and deallocates them relevantly

Parameters

• pkt – The net_pkt which buffer will be trimmed

964 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

int net_pkt_remove_tail(struct net_pkt *pkt, size_t length)

Remove length bytes from tail of packet.

This function does not take packet cursor into account. It is a helper to remove unneeded
bytes from tail of packet (like appended CRC). It takes care of buffer deallocation if removed
bytes span whole buffer(s).

Parameters

• pkt – Network packet

• length – Number of bytes to be removed

Return values

• 0 – On success.

• -EINVAL – If packet length is shorter than length.

void net_pkt_cursor_init(struct net_pkt *pkt)

Initialize net_pkt cursor.

This will initialize the net_pkt cursor from its buffer.

Parameters

• pkt – The net_pkt whose cursor is going to be initialized

static inline void net_pkt_cursor_backup(struct net_pkt *pkt, struct net_pkt_cursor *backup)

Backup net_pkt cursor.

Parameters

• pkt – The net_pkt whose cursor is going to be backed up

• backup – The cursor where to backup net_pkt cursor

static inline void net_pkt_cursor_restore(struct net_pkt *pkt, struct net_pkt_cursor *backup)

Restore net_pkt cursor from a backup.

Parameters

• pkt – The net_pkt whose cursor is going to be restored

• backup – The cursor from where to restore net_pkt cursor

static inline void *net_pkt_cursor_get_pos(struct net_pkt *pkt)

Returns current position of the cursor.

Parameters

• pkt – The net_pkt whose cursor position is going to be returned

Returns cursor’s position

int net_pkt_skip(struct net_pkt *pkt, size_t length)

Skip some data from a net_pkt.

net_pkt’s cursor should be properly initialized Cursor position will be updated after the opera-
tion. Depending on the value of pkt->overwrite bit, this function will affect the buffer length
or not. If it’s true, it will advance the cursor to the requested length. If it’s false, it will do the
same but if the cursor was already also at the end of existing data, it will increment the buffer
length. So in this case, its behavior is just like net_pkt_write or net_pkt_memset, difference
being that it will not affect the buffer content itself (which may be just garbage then).

Parameters

• pkt – The net_pkt whose cursor will be updated to skip given amount of data
from the buffer.

• length – Amount of data to skip in the buffer

7.20. Networking 965

Zephyr Project Documentation, Release 2.7.0-rc2

Returns 0 in success, negative errno code otherwise.

int net_pkt_memset(struct net_pkt *pkt, int byte, size_t length)

Memset some data in a net_pkt.

net_pkt’s cursor should be properly initialized and, if needed, positioned using net_pkt_skip.
Cursor position will be updated after the operation.

Parameters

• pkt – The net_pkt whose buffer to fill starting at the current cursor position.

• byte – The byte to write in memory

• length – Amount of data to memset with given byte

Returns 0 in success, negative errno code otherwise.

int net_pkt_copy(struct net_pkt *pkt_dst, struct net_pkt *pkt_src, size_t length)

Copy data from a packet into another one.

Both net_pkt cursors should be properly initialized and, if needed, positioned using
net_pkt_skip. The cursors will be updated after the operation.

Parameters

• pkt_dst – Destination network packet.

• pkt_src – Source network packet.

• length – Length of data to be copied.

Returns 0 on success, negative errno code otherwise.

struct net_pkt *net_pkt_clone(struct net_pkt *pkt, k_timeout_t timeout)

Clone pkt and its buffer.

Parameters

• pkt – Original pkt to be cloned

• timeout – Timeout to wait for free buffer

Returns NULL if error, cloned packet otherwise.

struct net_pkt *net_pkt_shallow_clone(struct net_pkt *pkt, k_timeout_t timeout)

Clone pkt and increase the refcount of its buffer.

Parameters

• pkt – Original pkt to be shallow cloned

• timeout – Timeout to wait for free packet

Returns NULL if error, cloned packet otherwise.

int net_pkt_read(struct net_pkt *pkt, void *data, size_t length)

Read some data from a net_pkt.

net_pkt’s cursor should be properly initialized and, if needed, positioned using net_pkt_skip.
Cursor position will be updated after the operation.

Parameters

• pkt – The network packet from where to read some data

• data – The destination buffer where to copy the data

• length – The amount of data to copy

Returns 0 on success, negative errno code otherwise.

966 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline int net_pkt_read_u8(struct net_pkt *pkt, uint8_t *data)

int net_pkt_read_be16(struct net_pkt *pkt, uint16_t *data)

Read uint16_t big endian data from a net_pkt.

net_pkt’s cursor should be properly initialized and, if needed, positioned using net_pkt_skip.
Cursor position will be updated after the operation.

Parameters

• pkt – The network packet from where to read

• data – The destination uint16_t where to copy the data

Returns 0 on success, negative errno code otherwise.

int net_pkt_read_le16(struct net_pkt *pkt, uint16_t *data)

Read uint16_t little endian data from a net_pkt.

net_pkt’s cursor should be properly initialized and, if needed, positioned using net_pkt_skip.
Cursor position will be updated after the operation.

Parameters

• pkt – The network packet from where to read

• data – The destination uint16_t where to copy the data

Returns 0 on success, negative errno code otherwise.

int net_pkt_read_be32(struct net_pkt *pkt, uint32_t *data)

Read uint32_t big endian data from a net_pkt.

net_pkt’s cursor should be properly initialized and, if needed, positioned using net_pkt_skip.
Cursor position will be updated after the operation.

Parameters

• pkt – The network packet from where to read

• data – The destination uint32_t where to copy the data

Returns 0 on success, negative errno code otherwise.

int net_pkt_write(struct net_pkt *pkt, const void *data, size_t length)

Write data into a net_pkt.

net_pkt’s cursor should be properly initialized and, if needed, positioned using net_pkt_skip.
Cursor position will be updated after the operation.

Parameters

• pkt – The network packet where to write

• data – Data to be written

• length – Length of the data to be written

Returns 0 on success, negative errno code otherwise.

static inline int net_pkt_write_u8(struct net_pkt *pkt, uint8_t data)

static inline int net_pkt_write_be16(struct net_pkt *pkt, uint16_t data)

static inline int net_pkt_write_be32(struct net_pkt *pkt, uint32_t data)

static inline int net_pkt_write_le32(struct net_pkt *pkt, uint32_t data)

static inline int net_pkt_write_le16(struct net_pkt *pkt, uint16_t data)

7.20. Networking 967

Zephyr Project Documentation, Release 2.7.0-rc2

size_t net_pkt_remaining_data(struct net_pkt *pkt)

Get the amount of data which can be read from current cursor position.

Parameters

• pkt – Network packet

Returns Amount of data which can be read from current pkt cursor

int net_pkt_update_length(struct net_pkt *pkt, size_t length)

Update the overall length of a packet.

Unlike net_pkt_pull() below, this does not take packet cursor into account. It’s mainly a helper
dedicated for ipv4 and ipv6 input functions. It shrinks the overall length by given parameter.

Parameters

• pkt – Network packet

• length – The new length of the packet

Returns 0 on success, negative errno code otherwise.

int net_pkt_pull(struct net_pkt *pkt, size_t length)

Remove data from the packet at current location.

net_pkt’s cursor should be properly initialized and, eventually, properly positioned using
net_pkt_skip/read/write. Note that net_pkt’s cursor is reset by this function.

Parameters

• pkt – Network packet

• length – Number of bytes to be removed

Returns 0 on success, negative errno code otherwise.

uint16_t net_pkt_get_current_offset(struct net_pkt *pkt)

Get the actual offset in the packet from its cursor.

Parameters

• pkt – Network packet.

Returns a valid offset on success, 0 otherwise as there is nothing that can be done to
evaluate the offset.

bool net_pkt_is_contiguous(struct net_pkt *pkt, size_t size)

Check if a data size could fit contiguously.

net_pkt’s cursor should be properly initialized and, if needed, positioned using net_pkt_skip.

Parameters

• pkt – Network packet.

• size – The size to check for contiguity

Returns true if that is the case, false otherwise.

size_t net_pkt_get_contiguous_len(struct net_pkt *pkt)

Get the contiguous buffer space

Parameters

• pkt – Network packet

Returns The available contiguous buffer space in bytes starting from the current
cursor position. 0 in case of an error.

968 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

void *net_pkt_get_data(struct net_pkt *pkt, struct net_pkt_data_access *access)
Get data from a network packet in a contiguous way.

net_pkt’s cursor should be properly initialized and, if needed, positioned using net_pkt_skip.
Cursor position will be updated after the operation.

Parameters

• pkt – The network packet from where to get the data.

• access – A pointer to a valid net_pkt_data_access describing the data to get in
a contiguous way.

Returns a pointer to the requested contiguous data, NULL otherwise.

int net_pkt_set_data(struct net_pkt *pkt, struct net_pkt_data_access *access)
Set contiguous data into a network packet.

net_pkt’s cursor should be properly initialized and, if needed, positioned using net_pkt_skip.
Cursor position will be updated after the operation.

Parameters

• pkt – The network packet to where the data should be set.

• access – A pointer to a valid net_pkt_data_access describing the data to set.

Returns 0 on success, a negative errno otherwise.

static inline int net_pkt_acknowledge_data(struct net_pkt *pkt, struct net_pkt_data_access
*access)

Acknowledge previously contiguous data taken from a network packet Packet needs to be set
to overwrite mode.

struct net_pkt_cursor

#include <net_pkt.h>

Public Members

struct net_buf *buf

Current net_buf pointer by the cursor

uint8_t *pos

Current position in the data buffer of the net_buf

struct net_pkt

#include <net_pkt.h> Network packet.

Note that if you add new fields into net_pkt, remember to update net_pkt_clone() function.

Public Members

intptr_t fifo

The fifo is used by RX/TX threads and by socket layer. The net_pkt is queued via fifo to
the processing thread.

struct k_mem_slab *slab

Slab pointer from where it belongs to

7.20. Networking 969

Zephyr Project Documentation, Release 2.7.0-rc2

union net_pkt.[anonymous] [anonymous]

buffer holding the packet

struct net_pkt_cursor cursor

Internal buffer iterator used for reading/writing

struct net_context *context

Network connection context

struct net_if *iface

Network interface

struct net_pkt_data_access

#include <net_pkt.h>

7.20.3 Networking Technologies

Ethernet

• Overview

• API Reference

Virtual LAN (VLAN) Support

• Overview

• API Reference

Overview Virtual LAN (VLAN) is a partitioned and isolated computer network at the data link layer
(OSI layer 2). For ethernet network this refers to IEEE 802.1Q

In Zephyr, each individual VLAN is modeled as a virtual network interface. This means that there is an
ethernet network interface that corresponds to a real physical ethernet port in the system. A virtual net-
work interface is created for each VLAN, and this virtual network interface connects to the real network
interface. This is similar to how Linux implements VLANs. The eth0 is the real network interface and
vlan0 is a virtual network interface that is run on top of eth0.

VLAN support must be enabled at compile time by setting option :kconfig:`CONFIG_NET_VLAN` and
:kconfig:`CONFIG_NET_VLAN_COUNT` to reflect how many network interfaces there will be in the
system. For example, if there is one network interface without VLAN support, and two with VLAN
support, the :kconfig:`CONFIG_NET_VLAN_COUNT` option should be set to 3.

Even if VLAN is enabled in a prj.conf file, the VLAN needs to be activated at runtime by the application.
The VLAN API provides a net_eth_vlan_enable() function to do that. The application needs to give
the network interface and desired VLAN tag as a parameter to that function. The VLAN tagging for a
given network interface can be disabled by a net_eth_vlan_disable() function. The application needs
to configure the VLAN network interface itself, such as setting the IP address, etc.

See also the VLAN sample application for API usage example. The source code for that sample application
can be found at samples/net/vlan.

970 Chapter 7. API Reference

https://wikipedia.org/wiki/Virtual_LAN
https://en.wikipedia.org/wiki/IEEE_802.1Q
https://github.com/zephyrproject-rtos/zephyr/blob/main/samples/net/vlan

Zephyr Project Documentation, Release 2.7.0-rc2

The net-shell module contains net vlan add and net vlan del commands that can be used to enable or
disable VLAN tags for a given network interface.

See the IEEE 802.1Q spec for more information about ethernet VLANs.

API Reference

group vlan_api

VLAN definitions and helpers.

Defines

NET_VLAN_TAG_UNSPEC

Unspecified VLAN tag value

Functions

static inline uint16_t net_eth_vlan_get_vid(uint16_t tci)

Get VLAN identifier from TCI.

Parameters

• tci – VLAN tag control information.

Returns VLAN identifier.

static inline uint8_t net_eth_vlan_get_dei(uint16_t tci)

Get Drop Eligible Indicator from TCI.

Parameters

• tci – VLAN tag control information.

Returns Drop eligible indicator.

static inline uint8_t net_eth_vlan_get_pcp(uint16_t tci)

Get Priority Code Point from TCI.

Parameters

• tci – VLAN tag control information.

Returns Priority code point.

static inline uint16_t net_eth_vlan_set_vid(uint16_t tci, uint16_t vid)

Set VLAN identifier to TCI.

Parameters

• tci – VLAN tag control information.

• vid – VLAN identifier.

Returns New TCI value.

static inline uint16_t net_eth_vlan_set_dei(uint16_t tci, bool dei)

Set Drop Eligible Indicator to TCI.

Parameters

• tci – VLAN tag control information.

• dei – Drop eligible indicator.

7.20. Networking 971

https://ieeexplore.ieee.org/document/6991462/

Zephyr Project Documentation, Release 2.7.0-rc2

Returns New TCI value.

static inline uint16_t net_eth_vlan_set_pcp(uint16_t tci, uint8_t pcp)

Set Priority Code Point to TCI.

Parameters

• tci – VLAN tag control information.

• pcp – Priority code point.

Returns New TCI value.

Link Layer Discovery Protocol

• Overview

• API Reference

Overview The Link Layer Discovery Protocol (LLDP) is a vendor-neutral link layer protocol used by
network devices for advertising their identity, capabilities, and neighbors on a wired Ethernet network.

For more information, see this LLDP Wikipedia article.

API Reference

group lldp

LLDP definitions and helpers.

Defines

net_lldp_set_lldpdu(iface)

Set LLDP protocol data unit (LLDPDU) for the network interface.

Parameters

• iface – Network interface

Returns <0 if error, index in lldp array if iface is found there

net_lldp_unset_lldpdu(iface)

Unset LLDP protocol data unit (LLDPDU) for the network interface.

Parameters

• iface – Network interface

Typedefs

typedef enum net_verdict (*net_lldp_recv_cb_t)(struct net_if *iface, struct net_pkt *pkt)

LLDP Receive packet callback.

Callback gets called upon receiving packet. It is responsible for freeing packet or indicating to
the stack that it needs to free packet by returning correct net_verdict.

Returns:

• NET_DROP, if packet was invalid, rejected or we want the stack to free it. In this case the
core stack will free the packet.

972 Chapter 7. API Reference

https://en.wikipedia.org/wiki/Link_Layer_Discovery_Protocol

Zephyr Project Documentation, Release 2.7.0-rc2

• NET_OK, if the packet was accepted, in this case the ownership of the net_pkt goes to
callback and core network stack will forget it.

Enums

enum net_lldp_tlv_type

TLV Types. Please refer to table 8-1 from IEEE 802.1AB standard.

Values:

enumerator LLDP_TLV_END_LLDPDU = 0

End Of LLDPDU (optional)

enumerator LLDP_TLV_CHASSIS_ID = 1

Chassis ID (mandatory)

enumerator LLDP_TLV_PORT_ID = 2

Port ID (mandatory)

enumerator LLDP_TLV_TTL = 3

Time To Live (mandatory)

enumerator LLDP_TLV_PORT_DESC = 4

Port Description (optional)

enumerator LLDP_TLV_SYSTEM_NAME = 5

System Name (optional)

enumerator LLDP_TLV_SYSTEM_DESC = 6

System Description (optional)

enumerator LLDP_TLV_SYSTEM_CAPABILITIES = 7

System Capability (optional)

enumerator LLDP_TLV_MANAGEMENT_ADDR = 8

Management Address (optional)

enumerator LLDP_TLV_ORG_SPECIFIC = 127

Org specific TLVs (optional)

Functions

int net_lldp_config(struct net_if *iface, const struct net_lldpdu *lldpdu)
Set the LLDP data unit for a network interface.

Parameters

• iface – Network interface

• lldpdu – LLDP data unit struct

Returns 0 if ok, <0 if error

7.20. Networking 973

Zephyr Project Documentation, Release 2.7.0-rc2

int net_lldp_config_optional(struct net_if *iface, const uint8_t *tlv, size_t len)
Set the Optional LLDP TLVs for a network interface.

Parameters

• iface – Network interface

• tlv – LLDP optional TLVs following mandatory part

• len – Length of the optional TLVs

Returns 0 if ok, <0 if error

void net_lldp_init(void)
Initialize LLDP engine.

int net_lldp_register_callback(struct net_if *iface, net_lldp_recv_cb_t cb)
Register LLDP Rx callback function.

Parameters

• iface – Network interface

• cb – Callback function

Returns 0 if ok, < 0 if error

enum net_verdict net_lldp_recv(struct net_if *iface, struct net_pkt *pkt)
Parse LLDP packet.

Parameters

• iface – Network interface

• pkt – Network packet

Returns Return the policy for network buffer

struct net_lldp_chassis_tlv

#include <lldp.h> Chassis ID TLV, see chapter 8.5.2 in IEEE 802.1AB

Public Members

uint16_t type_length

7 bits for type, 9 bits for length

uint8_t subtype

ID subtype

uint8_t value[NET_LLDP_CHASSIS_ID_VALUE_LEN]

Chassis ID value

struct net_lldp_port_tlv

#include <lldp.h> Port ID TLV, see chapter 8.5.3 in IEEE 802.1AB

Public Members

uint16_t type_length

7 bits for type, 9 bits for length

974 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

uint8_t subtype

ID subtype

uint8_t value[NET_LLDP_PORT_ID_VALUE_LEN]

Port ID value

struct net_lldp_time_to_live_tlv

#include <lldp.h> Time To Live TLV, see chapter 8.5.4 in IEEE 802.1AB

Public Members

uint16_t type_length

7 bits for type, 9 bits for length

uint16_t ttl

Time To Live (TTL) value

struct net_lldpdu

#include <lldp.h> LLDP Data Unit (LLDPDU) shall contain the following ordered TLVs as
stated in “8.2 LLDPDU format” from the IEEE 802.1AB

Public Members

struct net_lldp_chassis_tlv chassis_id

Mandatory Chassis TLV

struct net_lldp_port_tlv port_id

Mandatory Port TLV

struct net_lldp_time_to_live_tlv ttl

Mandatory TTL TLV

IEEE 802.1Qav

Overview Credit-based shaping is an alternative scheduling algorithm used in network schedulers to
achieve fairness when sharing a limited network resource. Zephyr has support for configuring a credit-
based shaper described in the IEEE 802.1Qav-2009 standard. Zephyr does not implement the actual
shaper; it only provides a way to configure the shaper implemented by the Ethernet device driver.

Enabling 802.1Qav To enable 802.1Qav shaper, the Ethernet device driver must declare that it sup-
ports credit-based shaping. The Ethernet driver’s capability function must return ETHERNET_QAV value
for this purpose. Typically also priority queues ETHERNET_PRIORITY_QUEUES need to be supported.

static enum ethernet_hw_caps eth_get_capabilities(const struct device *dev)
{

ARG_UNUSED(dev);

(continues on next page)

7.20. Networking 975

https://standards.ieee.org/standard/802_1Qav-2009.html

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

return ETHERNET_QAV | ETHERNET_PRIORITY_QUEUES |
ETHERNET_HW_VLAN | ETHERNET_LINK_10BASE_T |
ETHERNET_LINK_100BASE_T;

}

See sam-e70-xplained board Ethernet driver drivers/ethernet/eth_sam_gmac.c for an example.

Configuring 802.1Qav The application can configure the credit-based shaper like this:

include <net/net_if.h>
include <net/ethernet.h>
include <net/ethernet_mgmt.h>

static void qav_set_status(struct net_if *iface,
int queue_id, bool enable)

{
struct ethernet_req_params params;
int ret;

memset(¶ms, 0, sizeof(params));

params.qav_param.queue_id = queue_id;
params.qav_param.enabled = enable;
params.qav_param.type = ETHERNET_QAV_PARAM_TYPE_STATUS;

/* Disable or enable Qav for a queue */
ret = net_mgmt(NET_REQUEST_ETHERNET_SET_QAV_PARAM,

iface, ¶ms,
sizeof(struct ethernet_req_params));

if (ret) {
LOG_ERR("Cannot %s Qav for queue %d for interface %p",

enable ? "enable" : "disable",
queue_id, iface);

}
}

static void qav_set_bandwidth_and_slope(struct net_if *iface,
int queue_id,
unsigned int bandwidth,
unsigned int idle_slope)

{
struct ethernet_req_params params;
int ret;

memset(¶ms, 0, sizeof(params));

params.qav_param.queue_id = queue_id;
params.qav_param.delta_bandwidth = bandwidth;
params.qav_param.type = ETHERNET_QAV_PARAM_TYPE_DELTA_BANDWIDTH;

ret = net_mgmt(NET_REQUEST_ETHERNET_SET_QAV_PARAM,
iface, ¶ms,
sizeof(struct ethernet_req_params));

if (ret) {
LOG_ERR("Cannot set Qav delta bandwidth %u for "

"queue %d for interface %p",
(continues on next page)

976 Chapter 7. API Reference

https://github.com/zephyrproject-rtos/zephyr/blob/main/drivers/ethernet/eth_sam_gmac.c

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

bandwidth, queue_id, iface);
}

params.qav_param.idle_slope = idle_slope;
params.qav_param.type = ETHERNET_QAV_PARAM_TYPE_IDLE_SLOPE;

ret = net_mgmt(NET_REQUEST_ETHERNET_SET_QAV_PARAM,
iface, ¶ms,
sizeof(struct ethernet_req_params));

if (ret) {
LOG_ERR("Cannot set Qav idle slope %u for "

"queue %d for interface %p",
idle_slope, queue_id, iface);

}
}

Overview Ethernet is a networking technology commonly used in local area networks (LAN). For more
information, see this Ethernet Wikipedia article.

Zephyr supports following Ethernet features:

• 10, 100 and 1000 Mbit/sec links

• Auto negotiation

• Half/full duplex

• Promiscuous mode

• TX and RX checksum offloading

• MAC address filtering

• Virtual LANs

• Priority queues

• IEEE 802.1AS (gPTP)

• IEEE 802.1Qav (credit based shaping)

• LLDP (Link Layer Discovery Protocol)

Not all Ethernet device drivers support all of these features. You can see what is supported by net iface
net-shell command. It will print currently supported Ethernet features.

API Reference

group ethernet

Ethernet support functions.

Defines

ETH_NET_DEVICE_INIT(dev_name, drv_name, init_fn, pm_control_fn, data, cfg, prio, api, mtu)

Create an Ethernet network interface and bind it to network device.

Parameters

• dev_name – Network device name.

• drv_name – The name this instance of the driver exposes to the system.

7.20. Networking 977

https://en.wikipedia.org/wiki/Ethernet

Zephyr Project Documentation, Release 2.7.0-rc2

• init_fn – Address to the init function of the driver.

• pm_control_fn – Pointer to pm_control function. Can be NULL if not imple-
mented.

• data – Pointer to the device’s private data.

• cfg – The address to the structure containing the configuration information for
this instance of the driver.

• prio – The initialization level at which configuration occurs.

• api – Provides an initial pointer to the API function struct used by the driver.
Can be NULL.

• mtu – Maximum transfer unit in bytes for this network interface.

ETH_NET_DEVICE_DT_DEFINE(node_id, init_fn, pm_control_fn, data, cfg, prio, api, mtu)

Like ETH_NET_DEVICE_INIT but taking metadata from a devicetree. Create an Ethernet net-
work interface and bind it to network device.

Parameters

• node_id – The devicetree node identifier.

• init_fn – Address to the init function of the driver.

• pm_control_fn – Pointer to pm_control function. Can be NULL if not imple-
mented.

• data – Pointer to the device’s private data.

• cfg – The address to the structure containing the configuration information for
this instance of the driver.

• prio – The initialization level at which configuration occurs.

• api – Provides an initial pointer to the API function struct used by the driver.
Can be NULL.

• mtu – Maximum transfer unit in bytes for this network interface.

ETH_NET_DEVICE_DT_INST_DEFINE(inst, ...)

Like ETH_NET_DEVICE_DT_DEFINE for an instance of a DT_DRV_COMPAT compatible.

Parameters

• inst – instance number. This is replaced by DT_DRV_COMPAT(inst) in the call
to ETH_NET_DEVICE_DT_DEFINE.

• ... – other parameters as expected by ETH_NET_DEVICE_DT_DEFINE.

Enums

enum ethernet_hw_caps

Ethernet hardware capabilities

Values:

enumerator ETHERNET_HW_TX_CHKSUM_OFFLOAD = BIT(0)

TX Checksum offloading supported for all of IPv4, UDP, TCP

enumerator ETHERNET_HW_RX_CHKSUM_OFFLOAD = BIT(1)

RX Checksum offloading supported for all of IPv4, UDP, TCP

978 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator ETHERNET_HW_VLAN = BIT(2)

VLAN supported

enumerator ETHERNET_AUTO_NEGOTIATION_SET = BIT(3)

Enabling/disabling auto negotiation supported

enumerator ETHERNET_LINK_10BASE_T = BIT(4)

10 Mbits link supported

enumerator ETHERNET_LINK_100BASE_T = BIT(5)

100 Mbits link supported

enumerator ETHERNET_LINK_1000BASE_T = BIT(6)

1 Gbits link supported

enumerator ETHERNET_DUPLEX_SET = BIT(7)

Changing duplex (half/full) supported

enumerator ETHERNET_PTP = BIT(8)

IEEE 802.1AS (gPTP) clock supported

enumerator ETHERNET_QAV = BIT(9)

IEEE 802.1Qav (credit-based shaping) supported

enumerator ETHERNET_PROMISC_MODE = BIT(10)

Promiscuous mode supported

enumerator ETHERNET_PRIORITY_QUEUES = BIT(11)

Priority queues available

enumerator ETHERNET_HW_FILTERING = BIT(12)

MAC address filtering supported

enumerator ETHERNET_LLDP = BIT(13)

Link Layer Discovery Protocol supported

enumerator ETHERNET_HW_VLAN_TAG_STRIP = BIT(14)

VLAN Tag stripping

enumerator ETHERNET_DSA_SLAVE_PORT = BIT(15)

DSA switch

enumerator ETHERNET_DSA_MASTER_PORT = BIT(16)

enumerator ETHERNET_QBV = BIT(17)

IEEE 802.1Qbv (scheduled traffic) supported

enumerator ETHERNET_QBU = BIT(18)

IEEE 802.1Qbu (frame preemption) supported

7.20. Networking 979

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator ETHERNET_TXTIME = BIT(19)

TXTIME supported

enum ethernet_flags

Values:

enumerator ETH_CARRIER_UP

Functions

void ethernet_init(struct net_if *iface)

Initialize Ethernet L2 stack for a given interface.

Parameters

• iface – A valid pointer to a network interface

void net_eth_ipv6_mcast_to_mac_addr(const struct in6_addr *ipv6_addr, struct net_eth_addr
*mac_addr)

Convert IPv6 multicast address to Ethernet address.

Parameters

• ipv6_addr – IPv6 multicast address

• mac_addr – Output buffer for Ethernet address

static inline enum ethernet_hw_caps net_eth_get_hw_capabilities(struct net_if *iface)

Return ethernet device hardware capability information.

Parameters

• iface – Network interface

Returns Hardware capabilities

static inline int net_eth_vlan_enable(struct net_if *iface, uint16_t tag)

Add VLAN tag to the interface.

Parameters

• iface – Interface to use.

• tag – VLAN tag to add

Returns 0 if ok, <0 if error

static inline int net_eth_vlan_disable(struct net_if *iface, uint16_t tag)

Remove VLAN tag from the interface.

Parameters

• iface – Interface to use.

• tag – VLAN tag to remove

Returns 0 if ok, <0 if error

static inline uint16_t net_eth_get_vlan_tag(struct net_if *iface)

Return VLAN tag specified to network interface.

Parameters

• iface – Network interface.

980 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Returns VLAN tag for this interface or NET_VLAN_TAG_UNSPEC if VLAN is not con-
figured for that interface.

static inline struct net_if *net_eth_get_vlan_iface(struct net_if *iface, uint16_t tag)
Return network interface related to this VLAN tag.

Parameters

• iface – Master network interface. This is used to get the pointer to ethernet
L2 context

• tag – VLAN tag

Returns Network interface related to this tag or NULL if no such interface exists.

static inline bool net_eth_is_vlan_enabled(struct ethernet_context *ctx, struct net_if *iface)
Check if VLAN is enabled for a specific network interface.

Parameters

• ctx – Ethernet context

• iface – Network interface

Returns True if VLAN is enabled for this network interface, false if not.

static inline bool net_eth_get_vlan_status(struct net_if *iface)
Get VLAN status for a given network interface (enabled or not).

Parameters

• iface – Network interface

Returns True if VLAN is enabled for this network interface, false if not.

void net_eth_carrier_on(struct net_if *iface)
Inform ethernet L2 driver that ethernet carrier is detected. This happens when cable is con-
nected.

Parameters

• iface – Network interface

void net_eth_carrier_off(struct net_if *iface)
Inform ethernet L2 driver that ethernet carrier was lost. This happens when cable is discon-
nected.

Parameters

• iface – Network interface

int net_eth_promisc_mode(struct net_if *iface, bool enable)
Set promiscuous mode either ON or OFF.

Parameters

• iface – Network interface

• enable – on (true) or off (false)

Returns 0 if mode set or unset was successful, <0 otherwise.

static inline const struct device *net_eth_get_ptp_clock(struct net_if *iface)
Return PTP clock that is tied to this ethernet network interface.

Parameters

• iface – Network interface

Returns Pointer to PTP clock if found, NULL if not found or if this ethernet interface
does not support PTP.

7.20. Networking 981

Zephyr Project Documentation, Release 2.7.0-rc2

const struct device *net_eth_get_ptp_clock_by_index(int index)

Return PTP clock that is tied to this ethernet network interface index.

Parameters

• index – Network interface index

Returns Pointer to PTP clock if found, NULL if not found or if this ethernet interface
index does not support PTP.

static inline int net_eth_get_ptp_port(struct net_if *iface)

Return gPTP port number attached to this interface.

Parameters

• iface – Network interface

Returns Port number, no such port if < 0

struct ethernet_qav_param

#include <ethernet.h>

Public Members

int queue_id

ID of the priority queue to use

enum ethernet_qav_param_type type

Type of Qav parameter

bool enabled

True if Qav is enabled for queue

unsigned int delta_bandwidth

Delta Bandwidth (percentage of bandwidth)

unsigned int idle_slope

Idle Slope (bits per second)

unsigned int oper_idle_slope

Oper Idle Slope (bits per second)

unsigned int traffic_class

Traffic class the queue is bound to

struct ethernet_qbv_param

#include <ethernet.h>

Public Members

int port_id

Port id

982 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enum ethernet_qbv_param_type type

Type of Qbv parameter

enum ethernet_qbv_state_type state

What state (Admin/Oper) parameters are these

bool enabled

True if Qbv is enabled or not

bool gate_status[NET_TC_TX_COUNT]

True = open, False = closed

enum ethernet_gate_state_operation operation

GateState operation

uint32_t time_interval

Time interval ticks (nanoseconds)

uint16_t row

Gate control list row

uint32_t gate_control_list_len

Number of entries in gate control list

struct net_ptp_extended_time base_time

Base time

struct net_ptp_time cycle_time

Cycle time

uint32_t extension_time

Extension time (nanoseconds)

struct ethernet_qbu_param

#include <ethernet.h>

Public Members

int port_id

Port id

enum ethernet_qbu_param_type type

Type of Qbu parameter

uint32_t hold_advance

Hold advance (nanoseconds)

7.20. Networking 983

Zephyr Project Documentation, Release 2.7.0-rc2

uint32_t release_advance

Release advance (nanoseconds)

enum ethernet_qbu_preempt_status frame_preempt_statuses[NET_TC_TX_COUNT]

sequence of framePreemptionAdminStatus values.

bool enabled

True if Qbu is enabled or not

bool link_partner_status

Link partner status (from Qbr)

uint8_t additional_fragment_size

Additional fragment size (from Qbr). The minimum non-final fragment size is (addi-
tional_fragment_size + 1) * 64 octets

struct ethernet_filter

#include <ethernet.h>

Public Members

enum ethernet_filter_type type

Type of filter

struct net_eth_addr mac_address

MAC address to filter

bool set

Set (true) or unset (false) the filter

struct ethernet_txtime_param

#include <ethernet.h>

Public Members

enum ethernet_txtime_param_type type

Type of TXTIME parameter

int queue_id

Queue number for configuring TXTIME

bool enable_txtime

Enable or disable TXTIME per queue

struct ethernet_api

#include <ethernet.h>

984 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Public Members

struct net_if_api iface_api

The net_if_api must be placed in first position in this struct so that we are compatible
with network interface API.

int (*start)(const struct device *dev)

Start the device

int (*stop)(const struct device *dev)

Stop the device

enum ethernet_hw_caps (*get_capabilities)(const struct device *dev)

Get the device capabilities

int (*set_config)(const struct device *dev, enum ethernet_config_type type, const struct
ethernet_config *config)

Set specific hardware configuration

int (*get_config)(const struct device *dev, enum ethernet_config_type type, struct
ethernet_config *config)

Get hardware specific configuration

int (*send)(const struct device *dev, struct net_pkt *pkt)

Send a network packet

struct ethernet_context

#include <ethernet.h> Ethernet L2 context that is needed for VLAN

Public Members

atomic_t flags

Flags representing ethernet state, which are accessed from multiple threads.

struct k_work carrier_work

Carrier ON/OFF handler worker. This is used to create network interface UP/DOWN event
when ethernet L2 driver notices carrier ON/OFF situation. We must not create another
network management event from inside management handler thus we use worker thread
to trigger the UP/DOWN event.

struct net_if *iface

Network interface.

enum net_l2_flags ethernet_l2_flags

This tells what L2 features does ethernet support.

bool is_net_carrier_up

Is network carrier up

7.20. Networking 985

Zephyr Project Documentation, Release 2.7.0-rc2

bool is_init

Is this context already initialized

group ethernet_mii

Ethernet MII (media independent interface) functions.

Defines

MII_BMCR

Basic Mode Control Register

MII_BMSR

Basic Mode Status Register

MII_PHYID1R

PHY ID 1 Register

MII_PHYID2R

PHY ID 2 Register

MII_ANAR

Auto-Negotiation Advertisement Register

MII_ANLPAR

Auto-Negotiation Link Partner Ability Reg

MII_ANER

Auto-Negotiation Expansion Register

MII_ANNPTR

Auto-Negotiation Next Page Transmit Register

MII_ANLPRNPR

Auto-Negotiation Link Partner Received Next Page Reg

MII_MMD_ACR

MMD Access Control Register

MII_MMD_AADR

MMD Access Address Data Register

MII_ESTAT

Extended Status Register

MII_BMCR_RESET

PHY reset

986 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

MII_BMCR_LOOPBACK

enable loopback mode

MII_BMCR_SPEED_LSB

10=1000Mbps 01=100Mbps; 00=10Mbps

MII_BMCR_AUTONEG_ENABLE

Auto-Negotiation enable

MII_BMCR_POWER_DOWN

power down mode

MII_BMCR_ISOLATE

isolate electrically PHY from MII

MII_BMCR_AUTONEG_RESTART

restart auto-negotiation

MII_BMCR_DUPLEX_MODE

full duplex mode

MII_BMCR_SPEED_MSB

10=1000Mbps 01=100Mbps; 00=10Mbps

MII_BMCR_SPEED_MASK

Link Speed Field

MII_BMCR_SPEED_10

select speed 10 Mb/s

MII_BMCR_SPEED_100

select speed 100 Mb/s

MII_BMCR_SPEED_1000

select speed 1000 Mb/s

MII_BMSR_100BASE_T4

100BASE-T4 capable

MII_BMSR_100BASE_X_FULL

100BASE-X full duplex capable

MII_BMSR_100BASE_X_HALF

100BASE-X half duplex capable

MII_BMSR_10_FULL

10 Mb/s full duplex capable

7.20. Networking 987

Zephyr Project Documentation, Release 2.7.0-rc2

MII_BMSR_10_HALF

10 Mb/s half duplex capable

MII_BMSR_100BASE_T2_FULL

100BASE-T2 full duplex capable

MII_BMSR_100BASE_T2_HALF

100BASE-T2 half duplex capable

MII_BMSR_EXTEND_STATUS

extend status information in reg 15

MII_BMSR_MF_PREAMB_SUPPR

PHY accepts management frames with preamble suppressed

MII_BMSR_AUTONEG_COMPLETE

Auto-negotiation process completed

MII_BMSR_REMOTE_FAULT

remote fault detected

MII_BMSR_AUTONEG_ABILITY

PHY is able to perform Auto-Negotiation

MII_BMSR_LINK_STATUS

link is up

MII_BMSR_JABBER_DETECT

jabber condition detected

MII_BMSR_EXTEND_CAPAB

extended register capabilities

MII_ADVERTISE_NEXT_PAGE

next page

MII_ADVERTISE_LPACK

link partner acknowledge response

MII_ADVERTISE_REMOTE_FAULT

remote fault

MII_ADVERTISE_ASYM_PAUSE

try for asymmetric pause

MII_ADVERTISE_PAUSE

try for pause

988 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

MII_ADVERTISE_100BASE_T4

try for 100BASE-T4 support

MII_ADVERTISE_100_FULL

try for 100BASE-X full duplex support

MII_ADVERTISE_100_HALF

try for 100BASE-X support

MII_ADVERTISE_10_FULL

try for 10 Mb/s full duplex support

MII_ADVERTISE_10_HALF

try for 10 Mb/s half duplex support

MII_ADVERTISE_SEL_MASK

Selector Field

MII_ADVERTISE_SEL_IEEE_802_3

MII_ADVERTISE_ALL

IEEE 802.15.4

• Overview

• API Reference

– IEEE 802.15.4

– IEEE 802.15.4 Management

Overview IEEE 802.15.4 is a technical standard which defines the operation of low-rate wireless per-
sonal area networks (LR-WPANs). For more detailed overview of this standard, see this IEEE 802.15.4
Wikipedia article. Also, see IEEE GET Program for creating an IEEE account and downloading the speci-
fication.

Zephyr supports IEEE 802.15.4 with Thread and 6LoWPAN. The Thread implementation is based on
OpenThread. The IPv6 header compression in 6LoWPAN is shared with the Bluetooth IPSP (IP support
profile).

API Reference

IEEE 802.15.4

group ieee802154

IEEE 802.15.4 library.

7.20. Networking 989

https://en.wikipedia.org/wiki/IEEE_802.15.4
https://en.wikipedia.org/wiki/IEEE_802.15.4
https://ieeexplore.ieee.org/browse/standards/get-program/page/series?id=68
https://openthread.io/

Zephyr Project Documentation, Release 2.7.0-rc2

Defines

IEEE802154_MAX_ADDR_LENGTH

IEEE802154_NO_CHANNEL

IEEE802154_L2_CTX_TYPE

IEEE802154_AR_FLAG_SET

Typedefs

typedef void (*energy_scan_done_cb_t)(const struct device *dev, int16_t max_ed)

typedef void (*ieee802154_event_cb_t)(const struct device *dev, enum ieee802154_event evt,
void *event_params)

Enums

enum ieee802154_channel

IEEE 802.15.4 Channel assignments.

Channel numbering for 868 MHz, 915 MHz, and 2450 MHz bands.

• Channel 0 is for 868.3 MHz.

• Channels 1-10 are for 906 to 924 MHz with 2 MHz channel spacing.

• Channels 11-26 are for 2405 to 2530 MHz with 5 MHz channel spacing.

For more information, please refer to 802.15.4-2015 Section 10.1.2.2.

Values:

enumerator IEEE802154_SUB_GHZ_CHANNEL_MIN = 0

enumerator IEEE802154_SUB_GHZ_CHANNEL_MAX = 10

enumerator IEEE802154_2_4_GHZ_CHANNEL_MIN = 11

enumerator IEEE802154_2_4_GHZ_CHANNEL_MAX = 26

enum ieee802154_hw_caps

Values:

enumerator IEEE802154_HW_FCS = BIT(0)

enumerator IEEE802154_HW_PROMISC = BIT(1)

990 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator IEEE802154_HW_FILTER = BIT(2)

enumerator IEEE802154_HW_CSMA = BIT(3)

enumerator IEEE802154_HW_2_4_GHZ = BIT(4)

enumerator IEEE802154_HW_TX_RX_ACK = BIT(5)

enumerator IEEE802154_HW_SUB_GHZ = BIT(6)

enumerator IEEE802154_HW_ENERGY_SCAN = BIT(7)

enumerator IEEE802154_HW_TXTIME = BIT(8)

enumerator IEEE802154_HW_SLEEP_TO_TX = BIT(9)

enumerator IEEE802154_HW_TX_SEC = BIT(10)

enumerator IEEE802154_HW_RXTIME = BIT(11)

enum ieee802154_filter_type

Values:

enumerator IEEE802154_FILTER_TYPE_IEEE_ADDR

enumerator IEEE802154_FILTER_TYPE_SHORT_ADDR

enumerator IEEE802154_FILTER_TYPE_PAN_ID

enumerator IEEE802154_FILTER_TYPE_SRC_IEEE_ADDR

enumerator IEEE802154_FILTER_TYPE_SRC_SHORT_ADDR

enum ieee802154_event

Values:

enumerator IEEE802154_EVENT_TX_STARTED

enumerator IEEE802154_EVENT_RX_FAILED

enumerator IEEE802154_EVENT_SLEEP

enum ieee802154_rx_fail_reason

Values:

enumerator IEEE802154_RX_FAIL_NOT_RECEIVED

7.20. Networking 991

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator IEEE802154_RX_FAIL_INVALID_FCS

enumerator IEEE802154_RX_FAIL_ADDR_FILTERED

enumerator IEEE802154_RX_FAIL_OTHER

enum ieee802154_tx_mode

IEEE802.15.4 Transmission mode.

Values:

enumerator IEEE802154_TX_MODE_DIRECT

Transmit packet immediately, no CCA.

enumerator IEEE802154_TX_MODE_CCA

Perform CCA before packet transmission.

enumerator IEEE802154_TX_MODE_CSMA_CA

Perform full CSMA CA procedure before packet transmission.

enumerator IEEE802154_TX_MODE_TXTIME

Transmit packet in the future, at specified time, no CCA.

enumerator IEEE802154_TX_MODE_TXTIME_CCA

Transmit packet in the future, perform CCA before transmission.

enum ieee802154_fpb_mode

IEEE802.15.4 Frame Pending Bit table address matching mode.

Values:

enumerator IEEE802154_FPB_ADDR_MATCH_THREAD

The pending bit shall be set only for addresses found in the list.

enumerator IEEE802154_FPB_ADDR_MATCH_ZIGBEE

The pending bit shall be cleared for short addresses found in the list.

enum ieee802154_config_type

IEEE802.15.4 driver configuration types.

Values:

enumerator IEEE802154_CONFIG_AUTO_ACK_FPB

Indicates how radio driver should set Frame Pending bit in ACK responses for Data Re-
quests. If enabled, radio driver should determine whether to set the bit or not based
on the information provided with IEEE802154_CONFIG_ACK_FPB config and FPB address
matching mode specified. Otherwise, Frame Pending bit should be set to 1(see IEEE Std
802.15.4-2006, 7.2.2.3.1).

992 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator IEEE802154_CONFIG_ACK_FPB

Indicates whether to set ACK Frame Pending bit for specific address or not. Disabling
the Frame Pending bit with no address provided (NULL pointer) should disable it for all
enabled addresses.

enumerator IEEE802154_CONFIG_PAN_COORDINATOR

Indicates whether the device is a PAN coordinator.

enumerator IEEE802154_CONFIG_PROMISCUOUS

Enable/disable promiscuous mode.

enumerator IEEE802154_CONFIG_EVENT_HANDLER

Specifies new radio event handler. Specifying NULL as a handler will disable radio events
notification.

enumerator IEEE802154_CONFIG_MAC_KEYS

Updates MAC keys and key index for radios supporting transmit security.

enumerator IEEE802154_CONFIG_FRAME_COUNTER

Sets the current MAC frame counter value for radios supporting transmit security.

enumerator IEEE802154_CONFIG_RX_SLOT

Configure a radio reception slot. This can be used for any scheduler reception, e.g.:
Zigbee GP device, CSL, TSCH, etc.

In order to configure a CSL receiver the upper layer should combine several configuration
options in the following way:

i. Use IEEE802154_CONFIG_ENH_ACK_HEADER_IE once to inform the radio driver of the
short and extended addresses of the peer to which it should inject CSL IEs.

ii. Use IEEE802154_CONFIG_CSL_RX_TIME periodically, before each use of
IEEE802154_CONFIG_CSL_PERIOD setting parameters of the nearest CSL RX window,
and before each use of IEEE_CONFIG_RX_SLOT setting parameters of the following
(not the nearest one) CSL RX window, to allow the radio driver to calculate the
proper CSL Phase to the nearest CSL window to inject in the CSL IEs for both
transmitted data and ack frames.

iii. Use IEEE802154_CONFIG_CSL_PERIOD on each value change to update the current
CSL period value which will be injected in the CSL IEs together with the CSL Phase
based on IEEE802154_CONFIG_CSL_RX_TIME.

iv. Use IEEE802154_CONFIG_RX_SLOT periodically to schedule the immediate receive
window earlier enough before the expected window start time, taking into account
possible clock drifts and scheduling uncertainties.

This diagram shows the usage of the four options over time: Start CSL Schedule CSL
window

ENH_ACK_HEADER_IE CSL_RX_TIME (following window) | | | CSL_RX_TIME (nearest
window) | RX_SLOT (nearest window) | | | | | | CSL_PERIOD | | | | | | | v v v v v
——————————————————-—[CSL window]–—+ ^ | | |
+——————— loop ———+

enumerator IEEE802154_CONFIG_CSL_PERIOD

Configure CSL receiver (Endpoint) period

enumerator IEEE802154_CONFIG_CSL_RX_TIME

7.20. Networking 993

Zephyr Project Documentation, Release 2.7.0-rc2

Configure the next CSL receive window center, in units of microseconds, based on the
radio time.

enumerator IEEE802154_CONFIG_ENH_ACK_HEADER_IE

Indicates whether to inject IE into ENH ACK Frame for specific address or not. Disabling
the ENH ACK with no address provided (NULL pointer) should disable it for all enabled
addresses.

Functions

static inline bool ieee802154_is_ar_flag_set(struct net_buf *frag)

Check if AR flag is set on the frame inside given net_pkt.

Parameters

• frag – A valid pointer on a net_buf structure, must not be NULL, and its length
should be at least made of 1 byte (ACK frames are the smallest frames on 15.4
and made of 3 bytes, not not counting the FCS part).

Returns True if AR flag is set, False otherwise

enum net_verdict ieee802154_radio_handle_ack(struct net_if *iface, struct net_pkt *pkt)

Radio driver ACK handling function that hw drivers should use.

ACK handling requires fast handling and thus such function helps to hook directly the hw
drivers to the radio driver.

Parameters

• iface – A valid pointer on a network interface that received the packet

• pkt – A valid pointer on a packet to check

Returns NET_OK if it was handled, NET_CONTINUE otherwise

void ieee802154_init(struct net_if *iface)

Initialize L2 stack for a given interface.

Parameters

• iface – A valid pointer on a network interface

struct ieee802154_security_ctx

#include <ieee802154.h>

struct ieee802154_context

#include <ieee802154.h>

struct ieee802154_filter

#include <ieee802154_radio.h>

struct ieee802154_key

#include <ieee802154_radio.h>

struct ieee802154_config

#include <ieee802154_radio.h> IEEE802.15.4 driver configuration data.

994 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Public Members

struct ieee802154_config.[anonymous].[anonymous] auto_ack_fpb

IEEE802154_CONFIG_AUTO_ACK_FPB

struct ieee802154_config.[anonymous].[anonymous] ack_fpb

IEEE802154_CONFIG_ACK_FPB

bool pan_coordinator

IEEE802154_CONFIG_PAN_COORDINATOR

bool promiscuous

IEEE802154_CONFIG_PROMISCUOUS

ieee802154_event_cb_t event_handler

IEEE802154_CONFIG_EVENT_HANDLER

struct ieee802154_key *mac_keys

IEEE802154_CONFIG_MAC_KEYS Pointer to an array containing a list of keys used for MAC
encryption. Refer to secKeyIdLookupDescriptor and secKeyDescriptor in IEEE 802.15.4

key_value field points to a buffer containing the 16 byte key. The buffer is copied by the
callee.

The variable length array is terminated by key_value field set to NULL.

uint32_t frame_counter

IEEE802154_CONFIG_FRAME_COUNTER

struct ieee802154_config.[anonymous].[anonymous] rx_slot

IEEE802154_CONFIG_RX_SLOT

uint32_t csl_period

IEEE802154_CONFIG_CSL_PERIOD

uint32_t csl_rx_time

IEEE802154_CONFIG_CSL_RX_TIME

const uint8_t *ext_addr

The extended address is expected to be passed starting with the leftmost octet and ending
with the rightmost octet. A device with an extended address 01:23:45:67:89:ab:cd:ef
should provide a pointer to array containing values in the same exact order.

struct ieee802154_config.[anonymous].[anonymous] ack_ie

IEEE802154_CONFIG_ENH_ACK_HEADER_IE

union ieee802154_config.[anonymous] [anonymous]

Configuration data.

struct ieee802154_radio_api

#include <ieee802154_radio.h> IEEE 802.15.4 radio interface API.

7.20. Networking 995

Zephyr Project Documentation, Release 2.7.0-rc2

Public Members

struct net_if_api iface_api

Mandatory to get in first position. A network device should indeed provide a pointer on
such net_if_api structure. So we make current structure pointer that can be casted to a
net_if_api structure pointer.

enum ieee802154_hw_caps (*get_capabilities)(const struct device *dev)

Get the device capabilities

int (*cca)(const struct device *dev)

Clear Channel Assesment - Check channel’s activity

int (*set_channel)(const struct device *dev, uint16_t channel)

Set current channel

int (*filter)(const struct device *dev, bool set, enum ieee802154_filter_type type, const
struct ieee802154_filter *filter)

Set/Unset filters (for IEEE802154_HW_FILTER)

int (*set_txpower)(const struct device *dev, int16_t dbm)

Set TX power level in dbm

int (*tx)(const struct device *dev, enum ieee802154_tx_mode mode, struct net_pkt *pkt,
struct net_buf *frag)

Transmit a packet fragment

int (*start)(const struct device *dev)

Start the device

int (*stop)(const struct device *dev)

Stop the device

int (*configure)(const struct device *dev, enum ieee802154_config_type type, const struct
ieee802154_config *config)

Set specific radio driver configuration.

uint16_t (*get_subg_channel_count)(const struct device *dev)

Get the available amount of Sub-GHz channels

int (*ed_scan)(const struct device *dev, uint16_t duration, energy_scan_done_cb_t done_cb)

Run an energy detection scan. Note: channel must be set prior to request this function.
duration parameter is in ms.

uint64_t (*get_time)(const struct device *dev)

Get the current radio time in microseconds

uint8_t (*get_sch_acc)(const struct device *dev)

Get the current accuracy, in units of ± ppm, of the clock used for scheduling delayed
receive or transmit radio operations. Note: Implementations may optimize this value
based on operational conditions (i.e.: temperature).

996 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

IEEE 802.15.4 Management

group ieee802154_mgmt

IEEE 802.15.4 library.

Defines

NET_REQUEST_IEEE802154_SET_ACK

NET_REQUEST_IEEE802154_UNSET_ACK

NET_REQUEST_IEEE802154_PASSIVE_SCAN

NET_REQUEST_IEEE802154_ACTIVE_SCAN

NET_REQUEST_IEEE802154_CANCEL_SCAN

NET_REQUEST_IEEE802154_ASSOCIATE

NET_REQUEST_IEEE802154_DISASSOCIATE

NET_REQUEST_IEEE802154_SET_CHANNEL

NET_REQUEST_IEEE802154_GET_CHANNEL

NET_REQUEST_IEEE802154_SET_PAN_ID

NET_REQUEST_IEEE802154_GET_PAN_ID

NET_REQUEST_IEEE802154_SET_EXT_ADDR

NET_REQUEST_IEEE802154_GET_EXT_ADDR

NET_REQUEST_IEEE802154_SET_SHORT_ADDR

NET_REQUEST_IEEE802154_GET_SHORT_ADDR

NET_REQUEST_IEEE802154_GET_TX_POWER

NET_REQUEST_IEEE802154_SET_TX_POWER

NET_EVENT_IEEE802154_SCAN_RESULT

IEEE802154_IS_CHAN_SCANNED(_channel_set, _chan)

IEEE802154_IS_CHAN_UNSCANNED(_channel_set, _chan)

IEEE802154_ALL_CHANNELS

7.20. Networking 997

Zephyr Project Documentation, Release 2.7.0-rc2

Enums

enum net_request_ieee802154_cmd

Values:

enumerator NET_REQUEST_IEEE802154_CMD_SET_ACK = 1

enumerator NET_REQUEST_IEEE802154_CMD_UNSET_ACK

enumerator NET_REQUEST_IEEE802154_CMD_PASSIVE_SCAN

enumerator NET_REQUEST_IEEE802154_CMD_ACTIVE_SCAN

enumerator NET_REQUEST_IEEE802154_CMD_CANCEL_SCAN

enumerator NET_REQUEST_IEEE802154_CMD_ASSOCIATE

enumerator NET_REQUEST_IEEE802154_CMD_DISASSOCIATE

enumerator NET_REQUEST_IEEE802154_CMD_SET_CHANNEL

enumerator NET_REQUEST_IEEE802154_CMD_GET_CHANNEL

enumerator NET_REQUEST_IEEE802154_CMD_SET_PAN_ID

enumerator NET_REQUEST_IEEE802154_CMD_GET_PAN_ID

enumerator NET_REQUEST_IEEE802154_CMD_SET_EXT_ADDR

enumerator NET_REQUEST_IEEE802154_CMD_GET_EXT_ADDR

enumerator NET_REQUEST_IEEE802154_CMD_SET_SHORT_ADDR

enumerator NET_REQUEST_IEEE802154_CMD_GET_SHORT_ADDR

enumerator NET_REQUEST_IEEE802154_CMD_GET_TX_POWER

enumerator NET_REQUEST_IEEE802154_CMD_SET_TX_POWER

enumerator NET_REQUEST_IEEE802154_CMD_SET_SECURITY_SETTINGS

enumerator NET_REQUEST_IEEE802154_CMD_GET_SECURITY_SETTINGS

enum net_event_ieee802154_cmd

Values:

998 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator NET_EVENT_IEEE802154_CMD_SCAN_RESULT = 1

struct ieee802154_req_params

#include <ieee802154_mgmt.h> Scanning parameters.

Used to request a scan and get results as well

Public Members

uint32_t channel_set

The set of channels to scan, use above macros to manage it

uint32_t duration

Duration of scan, per-channel, in milliseconds

uint16_t channel

Current channel in use as a result

uint16_t pan_id

Current pan_id in use as a result

union ieee802154_req_params.[anonymous] [anonymous]

Result address

uint8_t len

length of address

uint8_t lqi

Link quality information, between 0 and 255

struct ieee802154_security_params

#include <ieee802154_mgmt.h> Security parameters.

Used to setup the link-layer security settings

Thread protocol

• Overview

• Internet connectivity

• Sample usage

Overview Thread is a low-power mesh networking technology, designed specifically for home automa-
tion applications. It is an IPv6-based standard, which uses 6LoWPAN technology over IEEE 802.15.4
protocol. IP connectivity lets you easily connect a Thread mesh network to the internet with a Thread
Border Router.

7.20. Networking 999

Zephyr Project Documentation, Release 2.7.0-rc2

The Thread specification provides a high level of network security. Mesh networks built with Thread are
secure - only authenticated devices can join the network and all communications within the mesh are
encrypted. More information about Thread protocol can be found at Thread Group website.

Zephyr integrates an open source Thread protocol implementation called OpenThread, documented on
the OpenThread website.

Internet connectivity A Thread Border Router is required to connect mesh network to the internet. An
open source implementation of Thread Border Router is provided by the OpenThread community. See
OpenThread Border Router guide for instructions on how to set up a Border Router.

Sample usage You can try using OpenThread with the Zephyr Echo server and Echo client samples,
which provide out-of-the-box configuration for OpenThread. To enable OpenThread support in these
samples, build them with overlay-ot.conf overlay config file. See sockets-echo-server-sample and
sockets-echo-client-sample for details.

Point-to-Point Protocol (PPP) Support

• Overview

• Testing

Overview Point-to-Point Protocol (PPP) is a data link layer (layer 2) communications protocol used to
establish a direct connection between two nodes. PPP is used over many types of serial links since IP
packets cannot be transmitted over a modem line on their own, without some data link protocol.

In Zephyr, each individual PPP link is modelled as a network interface. This is similar to how Linux
implements PPP.

PPP support must be enabled at compile time by setting option :kconfig:`CONFIG_NET_PPP` and
:kconfig:`CONFIG_NET_L2_PPP`. The PPP support in Zephyr 2.0 is still experimental and the im-
plementation supports only these protocols:

• LCP (Link Control Protocol, RFC1661)

• HDLC (High-level data link control, RFC1662)

• IPCP (IP Control Protocol, RFC1332)

• IPV6CP (IPv6 Control Protocol, RFC5072)

See also the samples/net/sockets/echo_server/overlay-ppp.conf file for configuration option examples.
For using PPP with GSM modem, see Generic GSM Modem for additional information.

Testing See the net-tools README file for more details on how to test the Zephyr PPP against pppd
running in Linux.

7.20.4 Protocols

CoAP

• Overview

• Sample Usage

1000 Chapter 7. API Reference

https://www.threadgroup.org
https://openthread.io/
https://openthread.io/guides/border-router
https://en.wikipedia.org/wiki/Point-to-Point_Protocol
https://tools.ietf.org/html/rfc1661
https://tools.ietf.org/html/rfc1662
https://tools.ietf.org/html/rfc1332
https://tools.ietf.org/html/rfc5072
https://github.com/zephyrproject-rtos/zephyr/blob/main/samples/net/sockets/echo_server/overlay-ppp.conf
https://github.com/zephyrproject-rtos/net-tools/blob/master/README.md#ppp-connectivity

Zephyr Project Documentation, Release 2.7.0-rc2

– CoAP Server

– CoAP Client

• Testing

– libcoap

– TTCN3

• API Reference

Overview The Constrained Application Protocol (CoAP) is a specialized web transfer protocol for use
with constrained nodes and constrained (e.g., low-power, lossy) networks. It provides a convenient API
for RESTful Web services that support CoAP’s features. For more information about the protocol itself,
see IETF RFC7252 The Constrained Application Protocol.

Zephyr provides a CoAP library which supports client and server roles. The library is configurable as per
user needs. The Zephyr CoAP library is implemented using plain buffers. Users of the API create sockets
for communication and pass the buffer to the library for parsing and other purposes. The library itself
doesn’t create any sockets for users.

On top of CoAP, Zephyr has support for LWM2M “Lightweight Machine 2 Machine” protocol, a simple,
low-cost remote management and service enablement mechanism. See Lightweight M2M (LWM2M) for
more information.

Supported RFCs:

Supported RFCs:

• RFC7252: The Constrained Application Protocol (CoAP)

• RFC6690: Constrained RESTful Environments (CoRE) Link Format

• RFC7959: Block-Wise Transfers in the Constrained Application Protocol (CoAP)

• RFC7641: Observing Resources in the Constrained Application Protocol (CoAP)

Note: Not all parts of these RFCs are supported. Features are supported based on Zephyr requirements.

Sample Usage

CoAP Server To create a CoAP server, resources for the server need to be defined. The .well-known/
core resource should be added before all other resources that should be included in the responses of the
.well-known/core resource.

static struct coap_resource resources[] = {
{ .get = well_known_core_get,

.path = COAP_WELL_KNOWN_CORE_PATH,
},
{ .get = sample_get,

.post = sample_post,

.del = sample_del,

.put = sample_put,

.path = sample_path
},
{ },

};

7.20. Networking 1001

https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc6690
https://tools.ietf.org/html/rfc7959
https://tools.ietf.org/html/rfc7641

Zephyr Project Documentation, Release 2.7.0-rc2

An application reads data from the socket and passes the buffer to the CoAP library to parse the message.
If the CoAP message is proper, the library uses the buffer along with resources defined above to call
the correct callback function to handle the CoAP request from the client. It’s the callback function’s
responsibility to either reply or act according to CoAP request.

coap_packet_parse(&request, data, data_len, options, opt_num);
...
coap_handle_request(&request, resources, options, opt_num,

client_addr, client_addr_len);

If :kconfig:`CONFIG_COAP_URI_WILDCARD` enabled, server may accept multiple resources using
MQTT-like wildcard style:

• the plus symbol represents a single-level wild card in the path;

• the hash symbol represents the multi-level wild card in the path.

static const char * const led_set[] = { "led","+","set", NULL };
static const char * const btn_get[] = { "button","#", NULL };
static const char * const no_wc[] = { "test","+1", NULL };

It accepts /led/0/set, led/1234/set, led/any/set, /button/door/1, /test/+1, but returns -ENOENT for
/led/1, /test/21, /test/1.

This option is enabled by default, disable it to avoid unexpected behaviour with resource path like
‘/some_resource/+/#’.

CoAP Client If the CoAP client knows about resources in the CoAP server, the client can start prepare
CoAP requests and wait for responses. If the client doesn’t know about resources in the CoAP server, it
can request resources through the .well-known/core CoAP message.

/* Initialize the CoAP message */
char *path = "test";
struct coap_packet request;
uint8_t data[100];
uint8_t payload[20];

coap_packet_init(&request, data, sizeof(data),
1, COAP_TYPE_CON, 8, coap_next_token(),
COAP_METHOD_GET, coap_next_id());

/* Append options */
coap_packet_append_option(&request, COAP_OPTION_URI_PATH,

path, strlen(path));

/* Append Payload marker if you are going to add payload */
coap_packet_append_payload_marker(&request);

/* Append payload */
coap_packet_append_payload(&request, (uint8_t *)payload,

sizeof(payload) - 1);

/* send over sockets */

Testing There are various ways to test Zephyr CoAP library.

libcoap libcoap implements a lightweight application-protocol for devices that are resource con-
strained, such as by computing power, RF range, memory, bandwidth, or network packet sizes. Sources

1002 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

can be found here libcoap. libcoap has a script (examples/etsi_coaptest.sh) to test coap-server func-
tionality in Zephyr.

See the net-tools project for more details

The coap-server-sample sample can be built and executed on QEMU as described in Networking with
QEMU.

Use this command on the host to run the libcoap implementation of the ETSI test cases:

sudo ./libcoap/examples/etsi_coaptest.sh -i tap0 2001:db8::1

TTCN3 Eclipse has TTCN3 based tests to run against CoAP implementations.

Install eclipse-titan and set symbolic links for titan tools

sudo apt-get install eclipse-titan

cd /usr/share/titan

sudo ln -s /usr/bin bin
sudo ln /usr/bin/titanver bin
sudo ln -s /usr/bin/mctr_cli bin
sudo ln -s /usr/include/titan include
sudo ln -s /usr/lib/titan lib

export TTCN3_DIR=/usr/share/titan

git clone https://github.com/eclipse/titan.misc.git

cd titan.misc

Follow the instruction to setup CoAP test suite from here:

• https://github.com/eclipse/titan.misc

• https://github.com/eclipse/titan.misc/tree/master/CoAP_Conf

After the build is complete, the coap-server-sample sample can be built and executed on QEMU as de-
scribed in Networking with QEMU.

Change the client (test suite) and server (Zephyr coap-server sample) addresses in coap.cfg file as per
your setup.

Execute the test cases with following command.

ttcn3_start coaptests coap.cfg

Sample output of ttcn3 tests looks like this.

Verdict statistics: 0 none (0.00 %), 10 pass (100.00 %), 0 inconc (0.00 %), 0 fail (0.
→˓00 %), 0 error (0.00 %).
Test execution summary: 10 test cases were executed. Overall verdict: pass

API Reference

group coap

COAP library.

7.20. Networking 1003

https://github.com/obgm/libcoap
https://github.com/zephyrproject-rtos/net-tools
https://github.com/eclipse/titan.misc
https://github.com/eclipse/titan.misc/tree/master/CoAP_Conf

Zephyr Project Documentation, Release 2.7.0-rc2

Defines

COAP_REQUEST_MASK

COAP_VERSION_1

coap_make_response_code(class, det)

COAP_CODE_EMPTY

COAP_TOKEN_MAX_LEN

GET_BLOCK_NUM(v)

GET_BLOCK_SIZE(v)

GET_MORE(v)

COAP_DEFAULT_MAX_RETRANSMIT

COAP_DEFAULT_ACK_RANDOM_FACTOR

COAP_WELL_KNOWN_CORE_PATH

This resource should be added before all other resources that should be included in the re-
sponses of the .well-known/core resource.

Typedefs

typedef int (*coap_method_t)(struct coap_resource *resource, struct coap_packet *request, struct
sockaddr *addr, socklen_t addr_len)

Type of the callback being called when a resource’s method is invoked by the remote entity.

typedef void (*coap_notify_t)(struct coap_resource *resource, struct coap_observer *observer)

Type of the callback being called when a resource’s has observers to be informed when an
update happens.

typedef int (*coap_reply_t)(const struct coap_packet *response, struct coap_reply *reply, const
struct sockaddr *from)

Helper function to be called when a response matches the a pending request.

Enums

enum coap_option_num

Set of CoAP packet options we are aware of.

Users may add options other than these to their packets, provided they know how to format
them correctly. The only restriction is that all options must be added to a packet in numeric
order.

Refer to RFC 7252, section 12.2 for more information.

Values:

1004 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator COAP_OPTION_IF_MATCH = 1

enumerator COAP_OPTION_URI_HOST = 3

enumerator COAP_OPTION_ETAG = 4

enumerator COAP_OPTION_IF_NONE_MATCH = 5

enumerator COAP_OPTION_OBSERVE = 6

enumerator COAP_OPTION_URI_PORT = 7

enumerator COAP_OPTION_LOCATION_PATH = 8

enumerator COAP_OPTION_URI_PATH = 11

enumerator COAP_OPTION_CONTENT_FORMAT = 12

enumerator COAP_OPTION_MAX_AGE = 14

enumerator COAP_OPTION_URI_QUERY = 15

enumerator COAP_OPTION_ACCEPT = 17

enumerator COAP_OPTION_LOCATION_QUERY = 20

enumerator COAP_OPTION_BLOCK2 = 23

enumerator COAP_OPTION_BLOCK1 = 27

enumerator COAP_OPTION_SIZE2 = 28

enumerator COAP_OPTION_PROXY_URI = 35

enumerator COAP_OPTION_PROXY_SCHEME = 39

enumerator COAP_OPTION_SIZE1 = 60

enum coap_method

Available request methods.

To be used when creating a request or a response.

Values:

enumerator COAP_METHOD_GET = 1

7.20. Networking 1005

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator COAP_METHOD_POST = 2

enumerator COAP_METHOD_PUT = 3

enumerator COAP_METHOD_DELETE = 4

enum coap_msgtype

CoAP packets may be of one of these types.

Values:

enumerator COAP_TYPE_CON = 0

Confirmable message.

The packet is a request or response the destination end-point must acknowledge.

enumerator COAP_TYPE_NON_CON = 1

Non-confirmable message.

The packet is a request or response that doesn’t require acknowledgements.

enumerator COAP_TYPE_ACK = 2

Acknowledge.

Response to a confirmable message.

enumerator COAP_TYPE_RESET = 3

Reset.

Rejecting a packet for any reason is done by sending a message of this type.

enum coap_response_code

Set of response codes available for a response packet.

To be used when creating a response.

Values:

enumerator COAP_RESPONSE_CODE_OK = ((2 << 5) | (0))

enumerator COAP_RESPONSE_CODE_CREATED = ((2 << 5) | (1))

enumerator COAP_RESPONSE_CODE_DELETED = ((2 << 5) | (2))

enumerator COAP_RESPONSE_CODE_VALID = ((2 << 5) | (3))

enumerator COAP_RESPONSE_CODE_CHANGED = ((2 << 5) | (4))

enumerator COAP_RESPONSE_CODE_CONTENT = ((2 << 5) | (5))

enumerator COAP_RESPONSE_CODE_CONTINUE = ((2 << 5) | (31))

1006 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator COAP_RESPONSE_CODE_BAD_REQUEST = ((4 << 5) | (0))

enumerator COAP_RESPONSE_CODE_UNAUTHORIZED = ((4 << 5) | (1))

enumerator COAP_RESPONSE_CODE_BAD_OPTION = ((4 << 5) | (2))

enumerator COAP_RESPONSE_CODE_FORBIDDEN = ((4 << 5) | (3))

enumerator COAP_RESPONSE_CODE_NOT_FOUND = ((4 << 5) | (4))

enumerator COAP_RESPONSE_CODE_NOT_ALLOWED = ((4 << 5) | (5))

enumerator COAP_RESPONSE_CODE_NOT_ACCEPTABLE = ((4 << 5) | (6))

enumerator COAP_RESPONSE_CODE_INCOMPLETE = ((4 << 5) | (8))

enumerator COAP_RESPONSE_CODE_PRECONDITION_FAILED = ((4 << 5) | (12))

enumerator COAP_RESPONSE_CODE_REQUEST_TOO_LARGE = ((4 << 5) | (13))

enumerator COAP_RESPONSE_CODE_UNSUPPORTED_CONTENT_FORMAT = ((4 << 5) | (15))

enumerator COAP_RESPONSE_CODE_INTERNAL_ERROR = ((5 << 5) | (0))

enumerator COAP_RESPONSE_CODE_NOT_IMPLEMENTED = ((5 << 5) | (1))

enumerator COAP_RESPONSE_CODE_BAD_GATEWAY = ((5 << 5) | (2))

enumerator COAP_RESPONSE_CODE_SERVICE_UNAVAILABLE = ((5 << 5) | (3))

enumerator COAP_RESPONSE_CODE_GATEWAY_TIMEOUT = ((5 << 5) | (4))

enumerator COAP_RESPONSE_CODE_PROXYING_NOT_SUPPORTED = ((5 << 5) | (5))

enum coap_content_format

Set of Content-Format option values for CoAP.

To be used when encoding or decoding a Content-Format option.

Values:

enumerator COAP_CONTENT_FORMAT_TEXT_PLAIN = 0

enumerator COAP_CONTENT_FORMAT_APP_LINK_FORMAT = 40

enumerator COAP_CONTENT_FORMAT_APP_XML = 41

7.20. Networking 1007

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator COAP_CONTENT_FORMAT_APP_OCTET_STREAM = 42

enumerator COAP_CONTENT_FORMAT_APP_EXI = 47

enumerator COAP_CONTENT_FORMAT_APP_JSON = 50

enumerator COAP_CONTENT_FORMAT_APP_CBOR = 60

enum coap_block_size

Represents the size of each block that will be transferred using block-wise transfers
[RFC7959]:

Each entry maps directly to the value that is used in the wire.

https://tools.ietf.org/html/rfc7959

Values:

enumerator COAP_BLOCK_16

enumerator COAP_BLOCK_32

enumerator COAP_BLOCK_64

enumerator COAP_BLOCK_128

enumerator COAP_BLOCK_256

enumerator COAP_BLOCK_512

enumerator COAP_BLOCK_1024

Functions

uint8_t coap_header_get_version(const struct coap_packet *cpkt)

Returns the version present in a CoAP packet.

Parameters

• cpkt – CoAP packet representation

Returns the CoAP version in packet

uint8_t coap_header_get_type(const struct coap_packet *cpkt)

Returns the type of the CoAP packet.

Parameters

• cpkt – CoAP packet representation

Returns the type of the packet

1008 Chapter 7. API Reference

https://tools.ietf.org/html/rfc7959

Zephyr Project Documentation, Release 2.7.0-rc2

uint8_t coap_header_get_token(const struct coap_packet *cpkt, uint8_t *token)

Returns the token (if any) in the CoAP packet.

Parameters

• cpkt – CoAP packet representation

• token – Where to store the token, must point to a buffer containing at least
COAP_TOKEN_MAX_LEN bytes

Returns Token length in the CoAP packet (0 - COAP_TOKEN_MAX_LEN).

uint8_t coap_header_get_code(const struct coap_packet *cpkt)

Returns the code of the CoAP packet.

Parameters

• cpkt – CoAP packet representation

Returns the code present in the packet

uint16_t coap_header_get_id(const struct coap_packet *cpkt)

Returns the message id associated with the CoAP packet.

Parameters

• cpkt – CoAP packet representation

Returns the message id present in the packet

const uint8_t *coap_packet_get_payload(const struct coap_packet *cpkt, uint16_t *len)

Returns the data pointer and length of the CoAP packet.

Parameters

• cpkt – CoAP packet representation

• len – Total length of CoAP payload

Returns data pointer and length if payload exists NULL pointer and length set to 0
in case there is no payload

int coap_packet_parse(struct coap_packet *cpkt, uint8_t *data, uint16_t len, struct coap_option
*options, uint8_t opt_num)

Parses the CoAP packet in data, validating it and initializing cpkt. data must remain valid
while cpkt is used.

Parameters

• cpkt – Packet to be initialized from received data.

• data – Data containing a CoAP packet, its data pointer is positioned on the
start of the CoAP packet.

• len – Length of the data

• options – Parse options and cache its details.

• opt_num – Number of options

Returns 0 in case of success or negative in case of error.

int coap_packet_init(struct coap_packet *cpkt, uint8_t *data, uint16_t max_len, uint8_t ver,
uint8_t type, uint8_t token_len, const uint8_t *token, uint8_t code,
uint16_t id)

Creates a new CoAP Packet from input data.

Parameters

• cpkt – New packet to be initialized using the storage from data.

7.20. Networking 1009

Zephyr Project Documentation, Release 2.7.0-rc2

• data – Data that will contain a CoAP packet information

• max_len – Maximum allowable length of data

• ver – CoAP header version

• type – CoAP header type

• token_len – CoAP header token length

• token – CoAP header token

• code – CoAP header code

• id – CoAP header message id

Returns 0 in case of success or negative in case of error.

int coap_ack_init(struct coap_packet *cpkt, const struct coap_packet *req, uint8_t *data,
uint16_t max_len, uint8_t code)

Create a new CoAP Acknowledgment message for given request.

This function works like coap_packet_init, filling CoAP header type, CoAP header token, and
CoAP header message id fields according to acknowledgment rules.

Parameters

• cpkt – New packet to be initialized using the storage from data.

• req – CoAP request packet that is being acknowledged

• data – Data that will contain a CoAP packet information

• max_len – Maximum allowable length of data

• code – CoAP header code

Returns 0 in case of success or negative in case of error.

uint8_t *coap_next_token(void)

Returns a randomly generated array of 8 bytes, that can be used as a message’s token.

Returns a 8-byte pseudo-random token.

uint16_t coap_next_id(void)

Helper to generate message ids.

Returns a new message id

int coap_find_options(const struct coap_packet *cpkt, uint16_t code, struct coap_option
*options, uint16_t veclen)

Return the values associated with the option of value code.

Parameters

• cpkt – CoAP packet representation

• code – Option number to look for

• options – Array of coap_option where to store the value of the options found

• veclen – Number of elements in the options array

Returns The number of options found in packet matching code, negative on error.

int coap_packet_append_option(struct coap_packet *cpkt, uint16_t code, const uint8_t *value,
uint16_t len)

Appends an option to the packet.

Note: options must be added in numeric order of their codes. Otherwise error will be returned.
TODO: Add support for placing options according to its delta value.

1010 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• cpkt – Packet to be updated

• code – Option code to add to the packet, see coap_option_num

• value – Pointer to the value of the option, will be copied to the packet

• len – Size of the data to be added

Returns 0 in case of success or negative in case of error.

unsigned int coap_option_value_to_int(const struct coap_option *option)

Converts an option to its integer representation.

Assumes that the number is encoded in the network byte order in the option.

Parameters

• option – Pointer to the option value, retrieved by coap_find_options()

Returns The integer representation of the option

int coap_append_option_int(struct coap_packet *cpkt, uint16_t code, unsigned int val)

Appends an integer value option to the packet.

The option must be added in numeric order of their codes, and the least amount of bytes will
be used to encode the value.

Parameters

• cpkt – Packet to be updated

• code – Option code to add to the packet, see coap_option_num

• val – Integer value to be added

Returns 0 in case of success or negative in case of error.

int coap_packet_append_payload_marker(struct coap_packet *cpkt)

Append payload marker to CoAP packet.

Parameters

• cpkt – Packet to append the payload marker (0xFF)

Returns 0 in case of success or negative in case of error.

int coap_packet_append_payload(struct coap_packet *cpkt, const uint8_t *payload, uint16_t
payload_len)

Append payload to CoAP packet.

Parameters

• cpkt – Packet to append the payload

• payload – CoAP packet payload

• payload_len – CoAP packet payload len

Returns 0 in case of success or negative in case of error.

int coap_handle_request(struct coap_packet *cpkt, struct coap_resource *resources, struct
coap_option *options, uint8_t opt_num, struct sockaddr *addr,
socklen_t addr_len)

When a request is received, call the appropriate methods of the matching resources.

Parameters

• cpkt – Packet received

• resources – Array of known resources

7.20. Networking 1011

Zephyr Project Documentation, Release 2.7.0-rc2

• options – Parsed options from coap_packet_parse()

• opt_num – Number of options

• addr – Peer address

• addr_len – Peer address length

Returns 0 in case of success or negative in case of error.

static inline uint16_t coap_block_size_to_bytes(enum coap_block_size block_size)

Helper for converting the enumeration to the size expressed in bytes.

Parameters

• block_size – The block size to be converted

Returns The size in bytes that the block_size represents

int coap_block_transfer_init(struct coap_block_context *ctx, enum coap_block_size block_size,
size_t total_size)

Initializes the context of a block-wise transfer.

Parameters

• ctx – The context to be initialized

• block_size – The size of the block

• total_size – The total size of the transfer, if known

Returns 0 in case of success or negative in case of error.

int coap_append_block1_option(struct coap_packet *cpkt, struct coap_block_context *ctx)

Append BLOCK1 option to the packet.

Parameters

• cpkt – Packet to be updated

• ctx – Block context from which to retrieve the information for the Block1 op-
tion

Returns 0 in case of success or negative in case of error.

int coap_append_block2_option(struct coap_packet *cpkt, struct coap_block_context *ctx)

Append BLOCK2 option to the packet.

Parameters

• cpkt – Packet to be updated

• ctx – Block context from which to retrieve the information for the Block2 op-
tion

Returns 0 in case of success or negative in case of error.

int coap_append_size1_option(struct coap_packet *cpkt, struct coap_block_context *ctx)

Append SIZE1 option to the packet.

Parameters

• cpkt – Packet to be updated

• ctx – Block context from which to retrieve the information for the Size1 option

Returns 0 in case of success or negative in case of error.

1012 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

int coap_append_size2_option(struct coap_packet *cpkt, struct coap_block_context *ctx)

Append SIZE2 option to the packet.

Parameters

• cpkt – Packet to be updated

• ctx – Block context from which to retrieve the information for the Size2 option

Returns 0 in case of success or negative in case of error.

int coap_get_option_int(const struct coap_packet *cpkt, uint16_t code)

Get the integer representation of a CoAP option.

Parameters

• cpkt – Packet to be inspected

• code – CoAP option code

Returns Integer value >= 0 in case of success or negative in case of error.

int coap_update_from_block(const struct coap_packet *cpkt, struct coap_block_context *ctx)

Retrieves BLOCK{1,2} and SIZE{1,2} from cpkt and updates ctx accordingly.

Parameters

• cpkt – Packet in which to look for block-wise transfers options

• ctx – Block context to be updated

Returns 0 in case of success or negative in case of error.

size_t coap_next_block(const struct coap_packet *cpkt, struct coap_block_context *ctx)

Updates ctx so after this is called the current entry indicates the correct offset in the body of
data being transferred.

Parameters

• cpkt – Packet in which to look for block-wise transfers options

• ctx – Block context to be updated

Returns The offset in the block-wise transfer, 0 if the transfer has finished.

void coap_observer_init(struct coap_observer *observer, const struct coap_packet *request,
const struct sockaddr *addr)

Indicates that the remote device referenced by addr, with request, wants to observe a resource.

Parameters

• observer – Observer to be initialized

• request – Request on which the observer will be based

• addr – Address of the remote device

bool coap_register_observer(struct coap_resource *resource, struct coap_observer *observer)

After the observer is initialized, associate the observer with an resource.

Parameters

• resource – Resource to add an observer

• observer – Observer to be added

Returns true if this is the first observer added to this resource.

7.20. Networking 1013

Zephyr Project Documentation, Release 2.7.0-rc2

void coap_remove_observer(struct coap_resource *resource, struct coap_observer *observer)
Remove this observer from the list of registered observers of that resource.

Parameters

• resource – Resource in which to remove the observer

• observer – Observer to be removed

struct coap_observer *coap_find_observer_by_addr(struct coap_observer *observers, size_t len,
const struct sockaddr *addr)

Returns the observer that matches address addr.

Parameters

• observers – Pointer to the array of observers

• len – Size of the array of observers

• addr – Address of the endpoint observing a resource

Returns A pointer to a observer if a match is found, NULL otherwise.

struct coap_observer *coap_observer_next_unused(struct coap_observer *observers, size_t len)
Returns the next available observer representation.

Parameters

• observers – Pointer to the array of observers

• len – Size of the array of observers

Returns A pointer to a observer if there’s an available observer, NULL otherwise.

void coap_reply_init(struct coap_reply *reply, const struct coap_packet *request)
Indicates that a reply is expected for request.

Parameters

• reply – Reply structure to be initialized

• request – Request from which reply will be based

int coap_pending_init(struct coap_pending *pending, const struct coap_packet *request, const
struct sockaddr *addr, uint8_t retries)

Initialize a pending request with a request.

The request’s fields are copied into the pending struct, so request doesn’t have to live for as
long as the pending struct lives, but “data” that needs to live for at least that long.

Parameters

• pending – Structure representing the waiting for a confirmation message, ini-
tialized with data from request

• request – Message waiting for confirmation

• addr – Address to send the retransmission

• retries – Maximum number of retransmissions of the message.

Returns 0 in case of success or negative in case of error.

struct coap_pending *coap_pending_next_unused(struct coap_pending *pendings, size_t len)
Returns the next available pending struct, that can be used to track the retransmission status
of a request.

Parameters

• pendings – Pointer to the array of coap_pending structures

• len – Size of the array of coap_pending structures

1014 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Returns pointer to a free coap_pending structure, NULL in case none could be found.

struct coap_reply *coap_reply_next_unused(struct coap_reply *replies, size_t len)

Returns the next available reply struct, so it can be used to track replies and notifications
received.

Parameters

• replies – Pointer to the array of coap_reply structures

• len – Size of the array of coap_reply structures

Returns pointer to a free coap_reply structure, NULL in case none could be found.

struct coap_pending *coap_pending_received(const struct coap_packet *response, struct
coap_pending *pendings, size_t len)

After a response is received, returns if there is any matching pending request exits. User has
to clear all pending retransmissions related to that response by calling coap_pending_clear().

Parameters

• response – The received response

• pendings – Pointer to the array of coap_reply structures

• len – Size of the array of coap_reply structures

Returns pointer to the associated coap_pending structure, NULL in case none could
be found.

struct coap_reply *coap_response_received(const struct coap_packet *response, const struct
sockaddr *from, struct coap_reply *replies, size_t
len)

After a response is received, call coap_reply_t handler registered in coap_reply structure.

Parameters

• response – A response received

• from – Address from which the response was received

• replies – Pointer to the array of coap_reply structures

• len – Size of the array of coap_reply structures

Returns Pointer to the reply matching the packet received, NULL if none could be
found.

struct coap_pending *coap_pending_next_to_expire(struct coap_pending *pendings, size_t len)

Returns the next pending about to expire, pending->timeout informs how many ms to next
expiration.

Parameters

• pendings – Pointer to the array of coap_pending structures

• len – Size of the array of coap_pending structures

Returns The next coap_pending to expire, NULL if none is about to expire.

bool coap_pending_cycle(struct coap_pending *pending)

After a request is sent, user may want to cycle the pending retransmission so the timeout is
updated.

Parameters

• pending – Pending representation to have its timeout updated

Returns false if this is the last retransmission.

7.20. Networking 1015

Zephyr Project Documentation, Release 2.7.0-rc2

void coap_pending_clear(struct coap_pending *pending)

Cancels the pending retransmission, so it again becomes available.

Parameters

• pending – Pending representation to be canceled

void coap_pendings_clear(struct coap_pending *pendings, size_t len)

Cancels all pending retransmissions, so they become available again.

Parameters

• pendings – Pointer to the array of coap_pending structures

• len – Size of the array of coap_pending structures

void coap_reply_clear(struct coap_reply *reply)

Cancels awaiting for this reply, so it becomes available again. User responsibility to free the
memory associated with data.

Parameters

• reply – The reply to be canceled

void coap_replies_clear(struct coap_reply *replies, size_t len)

Cancels all replies, so they become available again.

Parameters

• replies – Pointer to the array of coap_reply structures

• len – Size of the array of coap_reply structures

int coap_resource_notify(struct coap_resource *resource)

Indicates that this resource was updated and that the notify callback should be called for every
registered observer.

Parameters

• resource – Resource that was updated

Returns 0 in case of success or negative in case of error.

bool coap_request_is_observe(const struct coap_packet *request)

Returns if this request is enabling observing a resource.

Parameters

• request – Request to be checked

Returns True if the request is enabling observing a resource, False otherwise

int coap_well_known_core_get(struct coap_resource *resource, struct coap_packet *request,
struct coap_packet *response, uint8_t *data, uint16_t len)

struct coap_resource

#include <coap.h> Description of CoAP resource.

CoAP servers often want to register resources, so that clients can act on them, by fetching
their state or requesting updates to them.

Public Members

coap_method_t get

Which function to be called for each CoAP method

1016 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

struct coap_observer

#include <coap.h> Represents a remote device that is observing a local resource.

struct coap_packet

#include <coap.h> Representation of a CoAP Packet.

struct coap_option

#include <coap.h>

struct coap_pending

#include <coap.h> Represents a request awaiting for an acknowledgment (ACK).

struct coap_reply

#include <coap.h> Represents the handler for the reply of a request, it is also used when
observing resources.

struct coap_block_context

#include <coap.h> Represents the current state of a block-wise transaction.

struct coap_core_metadata

#include <coap_link_format.h> In case you want to add attributes to the resources included
in the ‘well-known/core’ “virtual” resource, the ‘user_data’ field should point to a valid
coap_core_metadata structure.

Lightweight M2M (LWM2M)

• Overview

• Example LwM2M object and resources: Device

• Sample usage

• Using LwM2M library with DTLS

• API Reference

Overview Lightweight Machine to Machine (LwM2M) is an application layer protocol designed with
device management, data reporting and device actuation in mind. Based on CoAP/UDP, LwM2M is a
standard defined by the Open Mobile Alliance and suitable for constrained devices by its use of CoAP
packet-size optimization and a simple, stateless flow that supports a REST API.

One of the key differences between LwM2M and CoAP is that an LwM2M client initiates the connection
to an LwM2M server. The server can then use the REST API to manage various interfaces with the client.

LwM2M uses a simple resource model with the core set of objects and resources defined in the specifica-
tion.

Example LwM2M object and resources: Device Object definition

Object ID Name Instance Mandatory
3 Device Single Mandatory

7.20. Networking 1017

https://www.omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-lwm2m/
http://openmobilealliance.org/release/LightweightM2M/

Zephyr Project Documentation, Release 2.7.0-rc2

Resource definitions

* R=Read, W=Write, E=Execute

ID Name OP* Instance Mandatory Type
0 Manufacturer R Single Optional String
1 Model R Single Optional String
2 Serial number R Single Optional String
3 Firmware version R Single Optional String
4 Reboot E Single Mandatory
5 Factory Reset E Single Optional
6 Available Power Sources R Multiple Optional Integer 0-7
7 Power Source Voltage (mV) R Multiple Optional Integer
8 Power Source Current (mA) R Multiple Optional Integer
9 Battery Level % R Single Optional Integer
10 Memory Free (Kb) R Single Optional Integer
11 Error Code R Multiple Optional Integer 0-8
12 Reset Error E Single Optional
13 Current Time RW Single Optional Time
14 UTC Offset RW Single Optional String
15 Timezone RW Single Optional String
16 Supported Binding R Single Mandatory String
17 Device Type R Single Optional String
18 Hardware Version R Single Optional String
19 Software Version R Single Optional String
20 Battery Status R Single Optional Integer 0-6
21 Memory Total (Kb) R Single Optional Integer
22 ExtDevInfo R Multiple Optional ObjLnk

The server could query the Manufacturer resource for Device object instance 0 (the default and only
instance) by sending a READ 3/0/0 operation to the client.

The full list of registered objects and resource IDs can be found in the LwM2M registry.

Zephyr’s LwM2M library lives in the subsys/net/lib/lwm2m, with a client sample in sam-
ples/net/lwm2m_client. For more information about the provided sample see: lwm2m-client-sample
The sample can be configured to use normal unsecure network sockets or sockets secured via DTLS.

The Zephyr LwM2M library implements the following items:

• engine to process networking events and core functions

• RD client which performs BOOTSTRAP and REGISTRATION functions

• TLV, JSON, and plain text formatting functions

• LwM2M Technical Specification Enabler objects such as Security, Server, Device, Firmware Update,
etc.

• Extended IPSO objects such as Light Control, Temperature Sensor, and Timer

The library currently implements up to LwM2M specification 1.0.2.

For more information about LwM2M visit OMA Specworks LwM2M.

Sample usage To use the LwM2M library, start by creating an LwM2M client context lwm2m_ctx struc-
ture:

/* LwM2M client context */
static struct lwm2m_ctx client;

Create callback functions for LwM2M resource exuctions:

1018 Chapter 7. API Reference

http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html
https://github.com/zephyrproject-rtos/zephyr/blob/main/subsys/net/lib/lwm2m
https://github.com/zephyrproject-rtos/zephyr/blob/main/samples/net/lwm2m_client
https://github.com/zephyrproject-rtos/zephyr/blob/main/samples/net/lwm2m_client
http://openmobilealliance.org/release/LightweightM2M/V1_0_2-20180209-A/OMA-TS-LightweightM2M-V1_0_2-20180209-A.pdf
https://www.omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-lwm2m/

Zephyr Project Documentation, Release 2.7.0-rc2

static int device_reboot_cb(uint16_t obj_inst_id, uint8_t *args,
uint16_t args_len)

{
LOG_INF("Device rebooting.");
LOG_PANIC();
sys_reboot(0);
return 0; /* wont reach this */

}

The LwM2M RD client can send events back to the sample. To receive those events, setup a callback
function:

static void rd_client_event(struct lwm2m_ctx *client,
enum lwm2m_rd_client_event client_event)

{
switch (client_event) {

case LWM2M_RD_CLIENT_EVENT_NONE:
/* do nothing */
break;

case LWM2M_RD_CLIENT_EVENT_BOOTSTRAP_REG_FAILURE:
LOG_DBG("Bootstrap registration failure!");
break;

case LWM2M_RD_CLIENT_EVENT_BOOTSTRAP_REG_COMPLETE:
LOG_DBG("Bootstrap registration complete");
break;

case LWM2M_RD_CLIENT_EVENT_BOOTSTRAP_TRANSFER_COMPLETE:
LOG_DBG("Bootstrap transfer complete");
break;

case LWM2M_RD_CLIENT_EVENT_REGISTRATION_FAILURE:
LOG_DBG("Registration failure!");
break;

case LWM2M_RD_CLIENT_EVENT_REGISTRATION_COMPLETE:
LOG_DBG("Registration complete");
break;

case LWM2M_RD_CLIENT_EVENT_REG_UPDATE_FAILURE:
LOG_DBG("Registration update failure!");
break;

case LWM2M_RD_CLIENT_EVENT_REG_UPDATE_COMPLETE:
LOG_DBG("Registration update complete");
break;

case LWM2M_RD_CLIENT_EVENT_DEREGISTER_FAILURE:
LOG_DBG("Deregister failure!");
break;

case LWM2M_RD_CLIENT_EVENT_DISCONNECT:
LOG_DBG("Disconnected");
break;

(continues on next page)

7.20. Networking 1019

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

}
}

Next we assign Security resource values to let the client know where and how to connect as well as
set the Manufacturer and Reboot resources in the Device object with some data and the callback we
defined above:

/*
* Server URL of default Security object = 0/0/0
* Use leshan.eclipse.org server IP (5.39.83.206) for connection
*/

lwm2m_engine_set_string("0/0/0", "coap://5.39.83.206");

/*
* Security Mode of default Security object = 0/0/2
* 3 = NoSec mode (no security beware!)
*/

lwm2m_engine_set_u8("0/0/2", 3);

define CLIENT_MANUFACTURER "Zephyr Manufacturer"

/*
* Manufacturer resource of Device object = 3/0/0
* We use lwm2m_engine_set_res_data() function to set a pointer to the
* CLIENT_MANUFACTURER string.
* Note the LWM2M_RES_DATA_FLAG_RO flag which stops the engine from
* trying to assign a new value to the buffer.
*/

lwm2m_engine_set_res_data("3/0/0", CLIENT_MANUFACTURER,
sizeof(CLIENT_MANUFACTURER),
LWM2M_RES_DATA_FLAG_RO);

/* Reboot resource of Device object = 3/0/4 */
lwm2m_engine_register_exec_callback("3/0/4", device_reboot_cb);

Lastly, we start the LwM2M RD client (which in turn starts the LwM2M engine). The second parameter
of lwm2m_rd_client_start() is the client endpoint name. This is important as it needs to be unique
per LwM2M server:

(void)memset(&client, 0x0, sizeof(client));
lwm2m_rd_client_start(&client, "unique-endpoint-name", 0, rd_client_event);

Using LwM2M library with DTLS The Zephyr LwM2M library can be used with DTLS transport for
secure communication by selecting :kconfig:`CONFIG_LWM2M_DTLS_SUPPORT`. In the client initial-
ization we need to create a PSK and identity. These need to match the security information loaded onto
the LwM2M server. Normally, the endpoint name is used to lookup the related security information:

/* "000102030405060708090a0b0c0d0e0f" */
static unsigned char client_psk[] = {

0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f

};

static const char client_identity[] = "Client_identity";

Next we alter the Security object resources to include DTLS security information. The server URL

1020 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

should begin with coaps:// to indicate security is required. Assign a 0 value (Pre-shared Key mode) to
the Security Mode resource. Lastly, set the client identity and PSK resources.

/* Use coaps:// for server URL protocol */
lwm2m_engine_set_string("0/0/0", "coaps://5.39.83.206");
/* 0 = Pre-Shared Key mode */
lwm2m_engine_set_u8("0/0/2", 0);
/* Set the client identity */
lwm2m_engine_set_string("0/0/3", (char *)client_identity);
/* Set the client pre-shared key (PSK) */
lwm2m_engine_set_opaque("0/0/5", (void *)client_psk, sizeof(client_psk));

Before calling lwm2m_rd_client_start() assign the tls_tag # where the LwM2M library should store
the DTLS information prior to connection (normally a value of 1 is ok here).

(void)memset(&client, 0x0, sizeof(client));
client.tls_tag = 1; /* <---- */
lwm2m_rd_client_start(&client, "endpoint-name", 0, rd_client_event);

For a more detailed LwM2M client sample see: lwm2m-client-sample.

API Reference

group lwm2m_api

LwM2M high-level API.

LwM2M high-level interface is defined in this header.

Note: The implementation assumes UDP module is enabled.

Note: LwM2M 1.0.x is currently the only supported version.

Defines

LWM2M_OBJECT_SECURITY_ID

LwM2M Objects managed by OMA for LwM2M tech specification. Objects in this range
have IDs from 0 to 1023. For more information refer to Technical Specification OMA-TS-
LightweightM2M-V1_0_2-20180209-A.

LWM2M_OBJECT_SERVER_ID

LWM2M_OBJECT_ACCESS_CONTROL_ID

LWM2M_OBJECT_DEVICE_ID

LWM2M_OBJECT_CONNECTIVITY_MONITORING_ID

LWM2M_OBJECT_FIRMWARE_ID

LWM2M_OBJECT_LOCATION_ID

7.20. Networking 1021

Zephyr Project Documentation, Release 2.7.0-rc2

LWM2M_OBJECT_CONNECTIVITY_STATISTICS_ID

IPSO_OBJECT_GENERIC_SENSOR_ID

LwM2M Objects produced by 3rd party Standards Development Organizations. Objects in
this range have IDs from 2048 to 10240 Refer to the OMA LightweightM2M (LwM2M)
Object and Resource Registry: http://www.openmobilealliance.org/wp/OMNA/LwM2M/
LwM2MRegistry.html.

IPSO_OBJECT_TEMP_SENSOR_ID

IPSO_OBJECT_HUMIDITY_SENSOR_ID

IPSO_OBJECT_LIGHT_CONTROL_ID

IPSO_OBJECT_ACCELEROMETER_ID

IPSO_OBJECT_PRESSURE_ID

IPSO_OBJECT_BUZZER_ID

IPSO_OBJECT_TIMER_ID

IPSO_OBJECT_ONOFF_SWITCH_ID

IPSO_OBJECT_PUSH_BUTTON_ID

LWM2M_DEVICE_PWR_SRC_TYPE_DC_POWER

Power source types used for the “Available Power Sources” resource of the LwM2M Device
object.

LWM2M_DEVICE_PWR_SRC_TYPE_BAT_INT

LWM2M_DEVICE_PWR_SRC_TYPE_BAT_EXT

LWM2M_DEVICE_PWR_SRC_TYPE_UNUSED

LWM2M_DEVICE_PWR_SRC_TYPE_PWR_OVER_ETH

LWM2M_DEVICE_PWR_SRC_TYPE_USB

LWM2M_DEVICE_PWR_SRC_TYPE_AC_POWER

LWM2M_DEVICE_PWR_SRC_TYPE_SOLAR

LWM2M_DEVICE_PWR_SRC_TYPE_MAX

1022 Chapter 7. API Reference

http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html
http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html

Zephyr Project Documentation, Release 2.7.0-rc2

LWM2M_DEVICE_ERROR_NONE

Error codes used for the “Error Code” resource of the LwM2M Device object. An LwM2M
client can register one of the following error codes via the lwm2m_device_add_err() function.

LWM2M_DEVICE_ERROR_LOW_POWER

LWM2M_DEVICE_ERROR_EXT_POWER_SUPPLY_OFF

LWM2M_DEVICE_ERROR_GPS_FAILURE

LWM2M_DEVICE_ERROR_LOW_SIGNAL_STRENGTH

LWM2M_DEVICE_ERROR_OUT_OF_MEMORY

LWM2M_DEVICE_ERROR_SMS_FAILURE

LWM2M_DEVICE_ERROR_NETWORK_FAILURE

LWM2M_DEVICE_ERROR_PERIPHERAL_FAILURE

LWM2M_DEVICE_BATTERY_STATUS_NORMAL

Battery status codes used for the “Battery Status” resource (3/0/20) of the LwM2M Device
object. As the battery status changes, an LwM2M client can set one of the following codes via:
lwm2m_engine_set_u8(“3/0/20”, [battery status])

LWM2M_DEVICE_BATTERY_STATUS_CHARGING

LWM2M_DEVICE_BATTERY_STATUS_CHARGE_COMP

LWM2M_DEVICE_BATTERY_STATUS_DAMAGED

LWM2M_DEVICE_BATTERY_STATUS_LOW

LWM2M_DEVICE_BATTERY_STATUS_NOT_INST

LWM2M_DEVICE_BATTERY_STATUS_UNKNOWN

STATE_IDLE

LWM2M Firmware Update object states.

An LwM2M client or the LwM2M Firmware Update object use the following codes to represent
the LwM2M Firmware Update state (5/0/3).

STATE_DOWNLOADING

STATE_DOWNLOADED

7.20. Networking 1023

Zephyr Project Documentation, Release 2.7.0-rc2

STATE_UPDATING

RESULT_DEFAULT

LWM2M Firmware Update object result codes.

After processing a firmware update, the client sets the result via one of the following codes
via lwm2m_engine_set_u8(“5/0/5”, [result code])

RESULT_SUCCESS

RESULT_NO_STORAGE

RESULT_OUT_OF_MEM

RESULT_CONNECTION_LOST

RESULT_INTEGRITY_FAILED

RESULT_UNSUP_FW

RESULT_INVALID_URI

RESULT_UPDATE_FAILED

RESULT_UNSUP_PROTO

LWM2M_FLOAT32_DEC_MAX

Data structure used to represent the LwM2M float type: val1 is the whole number portion of
the decimal val2 is the decimal portion *1000000 for 32bit, *1000000000 for 64bit Example:
123.456 == val1: 123, val2:456000 Example: 123.000456 = val1: 123, val2:456.

Maximum precision value for 32-bit LwM2M float val2

LWM2M_OBJLNK_MAX_ID

Maximum value for ObjLnk resource fields.

LWM2M_RES_DATA_READ_ONLY

Resource read-only value bit.

LWM2M_RES_DATA_FLAG_RO

Resource read-only flag.

LWM2M_HAS_RES_FLAG(res, f)

Read resource flags helper macro.

LWM2M_RD_CLIENT_FLAG_BOOTSTRAP

Run bootstrap procedure in current session.

1024 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Typedefs

typedef void (*lwm2m_socket_fault_cb_t)(int error)

typedef void (*lwm2m_notify_timeout_cb_t)(void)

typedef void *(*lwm2m_engine_get_data_cb_t)(uint16_t obj_inst_id, uint16_t res_id, uint16_t
res_inst_id, size_t *data_len)

Asynchronous callback to get a resource buffer and length.

Prior to accessing the data buffer of a resource, the engine can use this callback to get the
buffer pointer and length instead of using the resource’s data buffer.

The client or LwM2M objects can register a function of this type via:
lwm2m_engine_register_read_callback() lwm2m_engine_register_pre_write_callback()

Param obj_inst_id [in] Object instance ID generating the callback.

Param res_id [in] Resource ID generating the callback.

Param res_inst_id [in] Resource instance ID generating the callback (typically 0 for
non-multi instance resources).

Param data_len [out] Length of the data buffer.

Return Callback returns a pointer to the data buffer or NULL for failure.

typedef int (*lwm2m_engine_set_data_cb_t)(uint16_t obj_inst_id, uint16_t res_id, uint16_t
res_inst_id, uint8_t *data, uint16_t data_len, bool last_block, size_t total_size)

Asynchronous callback when data has been set to a resource buffer.

After changing the data of a resource buffer, the LwM2M engine can make use of this callback
to pass the data back to the client or LwM2M objects.

A function of this type can be registered via: lwm2m_engine_register_validate_callback()
lwm2m_engine_register_post_write_callback()

Param obj_inst_id [in] Object instance ID generating the callback.

Param res_id [in] Resource ID generating the callback.

Param res_inst_id [in] Resource instance ID generating the callback (typically 0 for
non-multi instance resources).

Param data [in] Pointer to data.

Param data_len [in] Length of the data.

Param last_block [in] Flag used during block transfer to indicate the last block of
data. For non-block transfers this is always false.

Param total_size [in] Expected total size of data for a block transfer. For non-block
transfers this is 0.

Return Callback returns a negative error code (errno.h) indicating reason of failure
or 0 for success.

typedef int (*lwm2m_engine_user_cb_t)(uint16_t obj_inst_id)

Asynchronous event notification callback.

Various object instance and resource-based events in the LwM2M engine can trigger a callback
of this function type: object instance create, and object instance delete.

Register a function of this type via: lwm2m_engine_register_create_callback()
lwm2m_engine_register_delete_callback()

7.20. Networking 1025

Zephyr Project Documentation, Release 2.7.0-rc2

Param obj_inst_id [in] Object instance ID generating the callback.

Return Callback returns a negative error code (errno.h) indicating reason of failure
or 0 for success.

typedef int (*lwm2m_engine_execute_cb_t)(uint16_t obj_inst_id, uint8_t *args, uint16_t
args_len)

Asynchronous execute notification callback.

Resource executes trigger a callback of this type.

Register a function of this type via: lwm2m_engine_register_exec_callback()

Param obj_inst_id [in] Object instance ID generating the callback.

Param args [in] Pointer to execute arguments payload. (This can be NULL if no
arguments are provided)

Param args_len [in] Length of argument payload in bytes.

Return Callback returns a negative error code (errno.h) indicating reason of failure
or 0 for success.

typedef struct float32_value float32_value_t

32-bit variant of the LwM2M float structure

typedef void (*lwm2m_ctx_event_cb_t)(struct lwm2m_ctx *ctx, enum lwm2m_rd_client_event
event)

Asynchronous RD client event callback.

Param ctx [in] LwM2M context generating the event

Param event [in] LwM2M RD client event code

Enums

enum lwm2m_rd_client_event

LwM2M RD client events.

LwM2M client events are passed back to the event_cb function in lwm2m_rd_client_start()

Values:

enumerator LWM2M_RD_CLIENT_EVENT_NONE

enumerator LWM2M_RD_CLIENT_EVENT_BOOTSTRAP_REG_FAILURE

enumerator LWM2M_RD_CLIENT_EVENT_BOOTSTRAP_REG_COMPLETE

enumerator LWM2M_RD_CLIENT_EVENT_BOOTSTRAP_TRANSFER_COMPLETE

enumerator LWM2M_RD_CLIENT_EVENT_REGISTRATION_FAILURE

enumerator LWM2M_RD_CLIENT_EVENT_REGISTRATION_COMPLETE

enumerator LWM2M_RD_CLIENT_EVENT_REG_UPDATE_FAILURE

1026 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator LWM2M_RD_CLIENT_EVENT_REG_UPDATE_COMPLETE

enumerator LWM2M_RD_CLIENT_EVENT_DEREGISTER_FAILURE

enumerator LWM2M_RD_CLIENT_EVENT_DISCONNECT

enumerator LWM2M_RD_CLIENT_EVENT_QUEUE_MODE_RX_OFF

enumerator LWM2M_RD_CLIENT_EVENT_NETWORK_ERROR

Functions

int lwm2m_device_add_err(uint8_t error_code)

Register a new error code with LwM2M Device object.

Parameters

• error_code – [in] New error code.

Returns 0 for success or negative in case of error.

int lwm2m_engine_update_observer_min_period(char *pathstr, uint32_t period_s)

Change an observer’s pmin value.

LwM2M clients use this function to modify the pmin attribute for an observation be-
ing made. Example to update the pmin of a temperature sensor value being observed:
lwm2m_engine_update_observer_min_period(“3303/0/5700”,5);

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res”

• period_s – [in] Value of pmin to be given (in seconds).

Returns 0 for success or negative in case of error.

int lwm2m_engine_update_observer_max_period(char *pathstr, uint32_t period_s)

Change an observer’s pmax value.

LwM2M clients use this function to modify the pmax attribute for an observation be-
ing made. Example to update the pmax of a temperature sensor value being observed:
lwm2m_engine_update_observer_max_period(“3303/0/5700”,5);

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res”

• period_s – [in] Value of pmax to be given (in seconds).

Returns 0 for success or negative in case of error.

int lwm2m_engine_create_obj_inst(char *pathstr)

Create an LwM2M object instance.

LwM2M clients use this function to create non-default LwM2M objects: Example to create
first temperature sensor object: lwm2m_engine_create_obj_inst(“3303/0”);

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst”

Returns 0 for success or negative in case of error.

7.20. Networking 1027

Zephyr Project Documentation, Release 2.7.0-rc2

int lwm2m_engine_delete_obj_inst(char *pathstr)

Delete an LwM2M object instance.

LwM2M clients use this function to delete LwM2M objects.

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst”

Returns 0 for success or negative in case of error.

int lwm2m_engine_set_opaque(char *pathstr, char *data_ptr, uint16_t data_len)

Set resource (instance) value (opaque buffer)

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res(/res-inst)”

• data_ptr – [in] Data buffer

• data_len – [in] Length of buffer

Returns 0 for success or negative in case of error.

int lwm2m_engine_set_string(char *pathstr, char *data_ptr)

Set resource (instance) value (string)

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res(/res-inst)”

• data_ptr – [in] NULL terminated char buffer

Returns 0 for success or negative in case of error.

int lwm2m_engine_set_u8(char *pathstr, uint8_t value)

Set resource (instance) value (u8)

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res(/res-inst)”

• value – [in] u8 value

Returns 0 for success or negative in case of error.

int lwm2m_engine_set_u16(char *pathstr, uint16_t value)

Set resource (instance) value (u16)

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res(/res-inst)”

• value – [in] u16 value

Returns 0 for success or negative in case of error.

int lwm2m_engine_set_u32(char *pathstr, uint32_t value)

Set resource (instance) value (u32)

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res(/res-inst)”

• value – [in] u32 value

Returns 0 for success or negative in case of error.

1028 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

int lwm2m_engine_set_u64(char *pathstr, uint64_t value)

Set resource (instance) value (u64)

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res(/res-inst)”

• value – [in] u64 value

Returns 0 for success or negative in case of error.

int lwm2m_engine_set_s8(char *pathstr, int8_t value)

Set resource (instance) value (s8)

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res(/res-inst)”

• value – [in] s8 value

Returns 0 for success or negative in case of error.

int lwm2m_engine_set_s16(char *pathstr, int16_t value)

Set resource (instance) value (s16)

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res(/res-inst)”

• value – [in] s16 value

Returns 0 for success or negative in case of error.

int lwm2m_engine_set_s32(char *pathstr, int32_t value)

Set resource (instance) value (s32)

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res(/res-inst)”

• value – [in] s32 value

Returns 0 for success or negative in case of error.

int lwm2m_engine_set_s64(char *pathstr, int64_t value)

Set resource (instance) value (s64)

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res(/res-inst)”

• value – [in] s64 value

Returns 0 for success or negative in case of error.

int lwm2m_engine_set_bool(char *pathstr, bool value)

Set resource (instance) value (bool)

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res(/res-inst)”

• value – [in] bool value

Returns 0 for success or negative in case of error.

int lwm2m_engine_set_float32(char *pathstr, float32_value_t *value)

Set resource (instance) value (32-bit float structure)

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res(/res-inst)”

7.20. Networking 1029

Zephyr Project Documentation, Release 2.7.0-rc2

• value – [in] 32-bit float value

Returns 0 for success or negative in case of error.

int lwm2m_engine_set_objlnk(char *pathstr, struct lwm2m_objlnk *value)
Set resource (instance) value (ObjLnk)

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res(/res-inst)”

• value – [in] pointer to the lwm2m_objlnk structure

Returns 0 for success or negative in case of error.

int lwm2m_engine_get_opaque(char *pathstr, void *buf, uint16_t buflen)
Get resource (instance) value (opaque buffer)

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res(/res-inst)”

• buf – [out] Data buffer to copy data into

• buflen – [in] Length of buffer

Returns 0 for success or negative in case of error.

int lwm2m_engine_get_string(char *pathstr, void *str, uint16_t strlen)
Get resource (instance) value (string)

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res(/res-inst)”

• str – [out] String buffer to copy data into

• strlen – [in] Length of buffer

Returns 0 for success or negative in case of error.

int lwm2m_engine_get_u8(char *pathstr, uint8_t *value)
Get resource (instance) value (u8)

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res(/res-inst)”

• value – [out] u8 buffer to copy data into

Returns 0 for success or negative in case of error.

int lwm2m_engine_get_u16(char *pathstr, uint16_t *value)
Get resource (instance) value (u16)

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res(/res-inst)”

• value – [out] u16 buffer to copy data into

Returns 0 for success or negative in case of error.

int lwm2m_engine_get_u32(char *pathstr, uint32_t *value)
Get resource (instance) value (u32)

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res(/res-inst)”

• value – [out] u32 buffer to copy data into

Returns 0 for success or negative in case of error.

1030 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

int lwm2m_engine_get_u64(char *pathstr, uint64_t *value)

Get resource (instance) value (u64)

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res(/res-inst)”

• value – [out] u64 buffer to copy data into

Returns 0 for success or negative in case of error.

int lwm2m_engine_get_s8(char *pathstr, int8_t *value)

Get resource (instance) value (s8)

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res(/res-inst)”

• value – [out] s8 buffer to copy data into

Returns 0 for success or negative in case of error.

int lwm2m_engine_get_s16(char *pathstr, int16_t *value)

Get resource (instance) value (s16)

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res(/res-inst)”

• value – [out] s16 buffer to copy data into

Returns 0 for success or negative in case of error.

int lwm2m_engine_get_s32(char *pathstr, int32_t *value)

Get resource (instance) value (s32)

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res(/res-inst)”

• value – [out] s32 buffer to copy data into

Returns 0 for success or negative in case of error.

int lwm2m_engine_get_s64(char *pathstr, int64_t *value)

Get resource (instance) value (s64)

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res(/res-inst)”

• value – [out] s64 buffer to copy data into

Returns 0 for success or negative in case of error.

int lwm2m_engine_get_bool(char *pathstr, bool *value)

Get resource (instance) value (bool)

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res(/res-inst)”

• value – [out] bool buffer to copy data into

Returns 0 for success or negative in case of error.

int lwm2m_engine_get_float32(char *pathstr, float32_value_t *buf)

Get resource (instance) value (32-bit float structure)

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res(/res-inst)”

7.20. Networking 1031

Zephyr Project Documentation, Release 2.7.0-rc2

• buf – [out] 32-bit float buffer to copy data into

Returns 0 for success or negative in case of error.

int lwm2m_engine_get_objlnk(char *pathstr, struct lwm2m_objlnk *buf)

Get resource (instance) value (ObjLnk)

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res(/res-inst)”

• buf – [out] lwm2m_objlnk buffer to copy data into

Returns 0 for success or negative in case of error.

int lwm2m_engine_register_read_callback(char *pathstr, lwm2m_engine_get_data_cb_t cb)

Set resource (instance) read callback.

LwM2M clients can use this to set the callback function for resource reads.

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res(/res-inst)”

• cb – [in] Read resource callback

Returns 0 for success or negative in case of error.

int lwm2m_engine_register_pre_write_callback(char *pathstr, lwm2m_engine_get_data_cb_t
cb)

Set resource (instance) pre-write callback.

This callback is triggered before setting the value of a resource. It can pass a special data
buffer to the engine so that the actual resource value can be calculated later, etc.

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res(/res-inst)”

• cb – [in] Pre-write resource callback

Returns 0 for success or negative in case of error.

int lwm2m_engine_register_validate_callback(char *pathstr, lwm2m_engine_set_data_cb_t
cb)

Set resource (instance) validation callback.

This callback is triggered before setting the value of a resource to the resource data buffer.

The callback allows an LwM2M client or object to validate the data before writing and notify
an error if the data should be discarded for any reason (by returning a negative error code).

Note: All resources that have a validation callback registered are initially decoded into a tem-
porary validation buffer. Make sure that CONFIG_LWM2M_ENGINE_VALIDATION_BUFFER_SIZE is
large enough to store each of the validated resources (individually).

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res(/res-inst)”

• cb – [in] Validate resource data callback

Returns 0 for success or negative in case of error.

1032 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

int lwm2m_engine_register_post_write_callback(char *pathstr, lwm2m_engine_set_data_cb_t
cb)

Set resource (instance) post-write callback.

This callback is triggered after setting the value of a resource to the resource data buffer.

It allows an LwM2M client or object to post-process the value of a resource or trigger other
related resource calculations.

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res(/res-inst)”

• cb – [in] Post-write resource callback

Returns 0 for success or negative in case of error.

int lwm2m_engine_register_exec_callback(char *pathstr, lwm2m_engine_execute_cb_t cb)
Set resource execute event callback.

This event is triggered when the execute method of a resource is enabled.

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res”

• cb – [in] Execute resource callback

Returns 0 for success or negative in case of error.

int lwm2m_engine_register_create_callback(uint16_t obj_id, lwm2m_engine_user_cb_t cb)
Set object instance create event callback.

This event is triggered when an object instance is created.

Parameters

• obj_id – [in] LwM2M object id

• cb – [in] Create object instance callback

Returns 0 for success or negative in case of error.

int lwm2m_engine_register_delete_callback(uint16_t obj_id, lwm2m_engine_user_cb_t cb)
Set object instance delete event callback.

This event is triggered when an object instance is deleted.

Parameters

• obj_id – [in] LwM2M object id

• cb – [in] Delete object instance callback

Returns 0 for success or negative in case of error.

int lwm2m_engine_set_res_data(char *pathstr, void *data_ptr, uint16_t data_len, uint8_t
data_flags)

Set data buffer for a resource.

Use this function to set the data buffer and flags for the specified LwM2M resource.

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res(/res-inst)”

• data_ptr – [in] Data buffer pointer

• data_len – [in] Length of buffer

• data_flags – [in] Data buffer flags (such as read-only, etc)

Returns 0 for success or negative in case of error.

7.20. Networking 1033

Zephyr Project Documentation, Release 2.7.0-rc2

int lwm2m_engine_get_res_data(char *pathstr, void **data_ptr, uint16_t *data_len, uint8_t
*data_flags)

Get data buffer for a resource.

Use this function to get the data buffer information for the specified LwM2M resource.

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res(/res-inst)”

• data_ptr – [out] Data buffer pointer

• data_len – [out] Length of buffer

• data_flags – [out] Data buffer flags (such as read-only, etc)

Returns 0 for success or negative in case of error.

int lwm2m_engine_create_res_inst(char *pathstr)

Create a resource instance.

LwM2M clients use this function to create multi-resource instances: Example to create 0
instance of device available power sources: lwm2m_engine_create_res_inst(“3/0/6/0”);

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res/res-inst”

Returns 0 for success or negative in case of error.

int lwm2m_engine_delete_res_inst(char *pathstr)

Delete a resource instance.

Use this function to remove an existing resource instance

Parameters

• pathstr – [in] LwM2M path string “obj/obj-inst/res/res-inst”

Returns 0 for success or negative in case of error.

int lwm2m_engine_update_service_period(k_work_handler_t service, uint32_t period_ms)

Update the period of a given service.

Allow the period modification on an existing service created with
lwm2m_engine_add_service(). Example to frequency at which a periodic_service changes it’s
values : lwm2m_engine_update_service(device_periodic_service,5*MSEC_PER_SEC);

Parameters

• service – [in] Handler of the periodic_service

• period_ms – [in] New period for the periodic_service (in milliseconds)

Returns 0 for success or negative in case of error.

int lwm2m_engine_start(struct lwm2m_ctx *client_ctx)

Start the LwM2M engine.

LwM2M clients normally do not need to call this function as it is called by
lwm2m_rd_client_start(). However, if the client does not use the RD client implementation, it
will need to be called manually.

Parameters

• client_ctx – [in] LwM2M context

Returns 0 for success or negative in case of error.

1034 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

void lwm2m_acknowledge(struct lwm2m_ctx *client_ctx)

Acknowledge the currently processed request with an empty ACK.

LwM2M engine by default sends piggybacked responses for requests. This function allows to
send an empty ACK for a request earlier (from the application callback). The LwM2M engine
will then send the actual response as a separate CON message after all callbacks are executed.

Parameters

• client_ctx – [in] LwM2M context

void lwm2m_rd_client_start(struct lwm2m_ctx *client_ctx, const char *ep_name, uint32_t flags,
lwm2m_ctx_event_cb_t event_cb)

Start the LwM2M RD (Registration / Discovery) Client.

The RD client sits just above the LwM2M engine and performs the necessary actions to imple-
ment the “Registration interface”. For more information see Section 5.3 “Client Registration
Interface” of the LwM2M Technical Specification.

NOTE: lwm2m_engine_start() is called automatically by this function.

Parameters

• client_ctx – [in] LwM2M context

• ep_name – [in] Registered endpoint name

• flags – [in] Flags used to configure current LwM2M session.

• event_cb – [in] Client event callback function

void lwm2m_rd_client_stop(struct lwm2m_ctx *client_ctx, lwm2m_ctx_event_cb_t event_cb)

Stop the LwM2M RD (De-register) Client.

The RD client sits just above the LwM2M engine and performs the necessary actions to imple-
ment the “Registration interface”. For more information see Section 5.3 “Client Registration
Interface” of the LwM2M Technical Specification.

Parameters

• client_ctx – [in] LwM2M context

• event_cb – [in] Client event callback function

void lwm2m_rd_client_update(void)

Trigger a Registration Update of the LwM2M RD Client.

struct lwm2m_ctx

#include <lwm2m.h> LwM2M context structure to maintain information for a single LwM2M
connection.

Public Members

struct sockaddr remote_addr

Destination address storage

struct coap_pending pendings[CONFIG_LWM2M_ENGINE_MAX_PENDING]

Private CoAP and networking structures

7.20. Networking 1035

Zephyr Project Documentation, Release 2.7.0-rc2

void *processed_req

A pointer to currently processed request, for internal LwM2M engine use. The underlying
type is struct lwm2m_message, but since it’s declared in a private header and not exposed
to the application, it’s stored as a void pointer.

bool use_dtls

Flag to indicate if context should use DTLS. Enabled via the use of coaps:// protocol prefix
in connection information. NOTE: requires CONFIG_LWM2M_DTLS_SUPPORT=y

int sec_obj_inst

Current index of Security Object used for server credentials

int srv_obj_inst

Current index of Server Object used in this context.

bool bootstrap_mode

Flag to enable BOOTSTRAP interface. See Section 5.2 “Bootstrap Interface” of LwM2M
Technical Specification 1.0.2 for more information.

int sock_fd

Socket File Descriptor

lwm2m_socket_fault_cb_t fault_cb

Socket fault callback. LwM2M processing thread will call this callback in case of socket
errors on receive.

lwm2m_notify_timeout_cb_t notify_timeout_cb

Notify Timeout Callback. LwM2M processing thread will call this callback in case of notify
timeout.

uint8_t validate_buf[CONFIG_LWM2M_ENGINE_VALIDATION_BUFFER_SIZE]

Validation buffer. Used as a temporary buffer to decode the resource value before valida-
tion. On successful validation, its content is copied into the actual resource buffer.

struct float32_value

#include <lwm2m.h> 32-bit variant of the LwM2M float structure

struct lwm2m_objlnk

#include <lwm2m.h> LWM2M ObjLnk resource type structure.

MQTT

• Overview

• Sample usage

• Using MQTT with TLS

• API Reference

1036 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Overview MQTT (Message Queuing Telemetry Transport) is an application layer protocol which works
on top of the TCP/IP stack. It is a lightweight publish/subscribe messaging transport for machine-to-
machine communication. For more information about the protocol itself, see http://mqtt.org/.

Zephyr provides an MQTT client library built on top of BSD sockets API. The library is configurable at
a per-client basis, with support for MQTT versions 3.1.0 and 3.1.1. The Zephyr MQTT implementation
can be used with either plain sockets communicating over TCP, or with secure sockets communicating
over TLS. See BSD Sockets for more information about Zephyr sockets.

MQTT clients require an MQTT server to connect to. Such a server, called an MQTT Broker, is respon-
sible for managing client subscriptions and distributing messages published by clients. There are many
implementations of MQTT brokers, one of them being Eclipse Mosquitto. See https://mosquitto.org/ for
more information about the Eclipse Mosquitto project.

Sample usage To create an MQTT client, a client context structure and buffers need to be defined:

/* Buffers for MQTT client. */
static uint8_t rx_buffer[256];
static uint8_t tx_buffer[256];

/* MQTT client context */
static struct mqtt_client client_ctx;

Multiple MQTT client instances can be created in the application and managed independently. Addi-
tionally, a structure for MQTT Broker address information is needed. This structure must be accessible
throughout the lifespan of the MQTT client and can be shared among MQTT clients:

/* MQTT Broker address information. */
static struct sockaddr_storage broker;

An MQTT client library will notify MQTT events to the application through a callback function created
to handle respective events:

void mqtt_evt_handler(struct mqtt_client *client,
const struct mqtt_evt *evt)

{
switch (evt->type) {

/* Handle events here. */
}

}

For a list of possible events, see API Reference.

The client context structure needs to be initialized and set up before it can be used. An example config-
uration for TCP transport is shown below:

mqtt_client_init(&client_ctx);

/* MQTT client configuration */
client_ctx.broker = &broker;
client_ctx.evt_cb = mqtt_evt_handler;
client_ctx.client_id.utf8 = (uint8_t *)"zephyr_mqtt_client";
client_ctx.client_id.size = sizeof("zephyr_mqtt_client") - 1;
client_ctx.password = NULL;
client_ctx.user_name = NULL;
client_ctx.protocol_version = MQTT_VERSION_3_1_1;
client_ctx.transport.type = MQTT_TRANSPORT_NON_SECURE;

/* MQTT buffers configuration */
(continues on next page)

7.20. Networking 1037

http://mqtt.org/
https://mosquitto.org/

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

client_ctx.rx_buf = rx_buffer;
client_ctx.rx_buf_size = sizeof(rx_buffer);
client_ctx.tx_buf = tx_buffer;
client_ctx.tx_buf_size = sizeof(tx_buffer);

After the configuration is set up, the MQTT client can connect to the MQTT broker. Call the
mqtt_connect function, which will create the appropriate socket, establish a TCP/TLS connection, and
send an MQTT CONNECT message. When notified, the application should call the mqtt_input function to
process the response received. Note, that mqtt_input is a non-blocking function, therefore the applica-
tion should use socket poll to wait for the response. If the connection was successful, MQTT_EVT_CONNACK
will be notified to the application through the callback function.

rc = mqtt_connect(&client_ctx);
if (rc != 0) {

return rc;
}

fds[0].fd = client_ctx.transport.tcp.sock;
fds[0].events = ZSOCK_POLLIN;
poll(fds, 1, K_MSEC(5000));

mqtt_input(&client_ctx);

if (!connected) {
mqtt_abort(&client_ctx);

}

In the above code snippet, the MQTT callback function should set the connected flag upon a successful
connection. If the connection fails at the MQTT level or a timeout occurs, the connection will be aborted,
and the underlying socket closed.

After the connection is established, an application needs to call mqtt_input and mqtt_live functions
periodically to process incoming data and upkeep the connection. If an MQTT message is received, an
MQTT callback function will be called and an appropriate event notified.

The connection can be closed by calling the mqtt_disconnect function.

Zephyr provides sample code utilizing the MQTT client API. See mqtt-publisher-sample for more infor-
mation.

Using MQTT with TLS The Zephyr MQTT library can be used with TLS transport for secure communi-
cation by selecting a secure transport type (MQTT_TRANSPORT_SECURE) and some additional configuration
information:

client_ctx.transport.type = MQTT_TRANSPORT_SECURE;

struct mqtt_sec_config *tls_config = &client_ctx.transport.tls.config;

tls_config->peer_verify = TLS_PEER_VERIFY_REQUIRED;
tls_config->cipher_list = NULL;
tls_config->sec_tag_list = m_sec_tags;
tls_config->sec_tag_count = ARRAY_SIZE(m_sec_tags);
tls_config->hostname = MQTT_BROKER_HOSTNAME;

In this sample code, the m_sec_tags array holds a list of tags, referencing TLS credentials that the MQTT
library should use for authentication. We do not specify cipher_list, to allow the use of all cipher
suites available in the system. We set hostname field to broker hostname, which is required for server
authentication. Finally, we enforce peer certificate verification by setting the peer_verify field.

1038 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Note, that TLS credentials referenced by the m_sec_tags array must be registered in the system first. For
more information on how to do that, refer to secure sockets documentation.

An example of how to use TLS with MQTT is also present in mqtt-publisher-sample.

API Reference

group mqtt_socket

MQTT Client Implementation.

MQTT Client’s Application interface is defined in this header.

Note: The implementation assumes TCP module is enabled.

Note: By default the implementation uses MQTT version 3.1.1.

Defines

MQTT_UTF8_LITERAL(literal)

Initialize UTF-8 encoded string from C literal string.

Use it as follows:

struct mqtt_utf8 password = MQTT_UTF8_LITERAL(“my_pass”);

Parameters

• literal – [in] Literal string from which to generate mqtt_utf8 object.

Typedefs

typedef void (*mqtt_evt_cb_t)(struct mqtt_client *client, const struct mqtt_evt *evt)

Asynchronous event notification callback registered by the application.

Param client [in] Identifies the client for which the event is notified.

Param evt [in] Event description along with result and associated parameters (if
any).

Enums

enum mqtt_evt_type

MQTT Asynchronous Events notified to the application from the module through the callback
registered by the application.

Values:

enumerator MQTT_EVT_CONNACK

Acknowledgment of connection request. Event result accompanying the event indicates
whether the connection failed or succeeded.

7.20. Networking 1039

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator MQTT_EVT_DISCONNECT

Disconnection Event. MQTT Client Reference is no longer valid once this event is received
for the client.

enumerator MQTT_EVT_PUBLISH

Publish event received when message is published on a topic client is subscribed to.

Note: PUBLISH event structure only contains payload size, the payload data
parameter should be ignored. Payload content has to be read manually with
mqtt_read_publish_payload function.

enumerator MQTT_EVT_PUBACK

Acknowledgment for published message with QoS 1.

enumerator MQTT_EVT_PUBREC

Reception confirmation for published message with QoS 2.

enumerator MQTT_EVT_PUBREL

Release of published message with QoS 2.

enumerator MQTT_EVT_PUBCOMP

Confirmation to a publish release message with QoS 2.

enumerator MQTT_EVT_SUBACK

Acknowledgment to a subscribe request.

enumerator MQTT_EVT_UNSUBACK

Acknowledgment to a unsubscribe request.

enumerator MQTT_EVT_PINGRESP

Ping Response from server.

enum mqtt_version

MQTT version protocol level.

Values:

enumerator MQTT_VERSION_3_1_0 = 3

Protocol level for 3.1.0.

enumerator MQTT_VERSION_3_1_1 = 4

Protocol level for 3.1.1.

enum mqtt_qos

MQTT Quality of Service types.

Values:

enumerator MQTT_QOS_0_AT_MOST_ONCE = 0x00

Lowest Quality of Service, no acknowledgment needed for published message.

1040 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator MQTT_QOS_1_AT_LEAST_ONCE = 0x01

Medium Quality of Service, if acknowledgment expected for published message, duplicate
messages permitted.

enumerator MQTT_QOS_2_EXACTLY_ONCE = 0x02

Highest Quality of Service, acknowledgment expected and message shall be published
only once. Message not published to interested parties unless client issues a PUBREL.

enum mqtt_conn_return_code

MQTT CONNACK return codes.

Values:

enumerator MQTT_CONNECTION_ACCEPTED = 0x00

Connection accepted.

enumerator MQTT_UNACCEPTABLE_PROTOCOL_VERSION = 0x01

The Server does not support the level of the MQTT protocol requested by the Client.

enumerator MQTT_IDENTIFIER_REJECTED = 0x02

The Client identifier is correct UTF-8 but not allowed by the Server.

enumerator MQTT_SERVER_UNAVAILABLE = 0x03

The Network Connection has been made but the MQTT service is unavailable.

enumerator MQTT_BAD_USER_NAME_OR_PASSWORD = 0x04

The data in the user name or password is malformed.

enumerator MQTT_NOT_AUTHORIZED = 0x05

The Client is not authorized to connect.

enum mqtt_suback_return_code

MQTT SUBACK return codes.

Values:

enumerator MQTT_SUBACK_SUCCESS_QoS_0 = 0x00

Subscription with QoS 0 succeeded.

enumerator MQTT_SUBACK_SUCCESS_QoS_1 = 0x01

Subscription with QoS 1 succeeded.

enumerator MQTT_SUBACK_SUCCESS_QoS_2 = 0x02

Subscription with QoS 2 succeeded.

enumerator MQTT_SUBACK_FAILURE = 0x80

Subscription for a topic failed.

enum mqtt_transport_type

MQTT transport type.

Values:

7.20. Networking 1041

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator MQTT_TRANSPORT_NON_SECURE

Use non secure TCP transport for MQTT connection.

enumerator MQTT_TRANSPORT_NUM

Shall not be used as a transport type. Indicator of maximum transport types possible.

Functions

void mqtt_client_init(struct mqtt_client *client)
Initializes the client instance.

Note: Shall be called to initialize client structure, before setting any client parameters and
before connecting to broker.

Parameters

• client – [in] Client instance for which the procedure is requested. Shall not
be NULL.

int mqtt_connect(struct mqtt_client *client)
API to request new MQTT client connection.

Note: This memory is assumed to be resident until mqtt_disconnect is called.

Note: Any subsequent changes to parameters like broker address, user name, device id, etc.
have no effect once MQTT connection is established.

Note: Default protocol revision used for connection request is 3.1.1. Please set
client.protocol_version = MQTT_VERSION_3_1_0 to use protocol 3.1.0.

Note: Please modify :kconfig:`CONFIG_MQTT_KEEPALIVE` time to override default of 1
minute.

Parameters

• client – [in] Client instance for which the procedure is requested. Shall not
be NULL.

Returns 0 or a negative error code (errno.h) indicating reason of failure.

int mqtt_publish(struct mqtt_client *client, const struct mqtt_publish_param *param)
API to publish messages on topics.

Parameters

• client – [in] Client instance for which the procedure is requested. Shall not
be NULL.

• param – [in] Parameters to be used for the publish message. Shall not be NULL.

Returns 0 or a negative error code (errno.h) indicating reason of failure.

1042 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

int mqtt_publish_qos1_ack(struct mqtt_client *client, const struct mqtt_puback_param *param)

API used by client to send acknowledgment on receiving QoS1 publish message. Should be
called on reception of MQTT_EVT_PUBLISH with QoS level MQTT_QOS_1_AT_LEAST_ONCE.

Parameters

• client – [in] Client instance for which the procedure is requested. Shall not
be NULL.

• param – [in] Identifies message being acknowledged.

Returns 0 or a negative error code (errno.h) indicating reason of failure.

int mqtt_publish_qos2_receive(struct mqtt_client *client, const struct mqtt_pubrec_param
*param)

API used by client to send acknowledgment on receiving QoS2 publish message. Should be
called on reception of MQTT_EVT_PUBLISH with QoS level MQTT_QOS_2_EXACTLY_ONCE.

Parameters

• client – [in] Identifies client instance for which the procedure is requested.
Shall not be NULL.

• param – [in] Identifies message being acknowledged.

Returns 0 or a negative error code (errno.h) indicating reason of failure.

int mqtt_publish_qos2_release(struct mqtt_client *client, const struct mqtt_pubrel_param
*param)

API used by client to request release of QoS2 publish message. Should be called on reception
of MQTT_EVT_PUBREC.

Parameters

• client – [in] Client instance for which the procedure is requested. Shall not
be NULL.

• param – [in] Identifies message being released.

Returns 0 or a negative error code (errno.h) indicating reason of failure.

int mqtt_publish_qos2_complete(struct mqtt_client *client, const struct mqtt_pubcomp_param
*param)

API used by client to send acknowledgment on receiving QoS2 publish release message.
Should be called on reception of MQTT_EVT_PUBREL.

Parameters

• client – [in] Identifies client instance for which the procedure is requested.
Shall not be NULL.

• param – [in] Identifies message being completed.

Returns 0 or a negative error code (errno.h) indicating reason of failure.

int mqtt_subscribe(struct mqtt_client *client, const struct mqtt_subscription_list *param)

API to request subscription of one or more topics on the connection.

Parameters

• client – [in] Identifies client instance for which the procedure is requested.
Shall not be NULL.

• param – [in] Subscription parameters. Shall not be NULL.

Returns 0 or a negative error code (errno.h) indicating reason of failure.

7.20. Networking 1043

Zephyr Project Documentation, Release 2.7.0-rc2

int mqtt_unsubscribe(struct mqtt_client *client, const struct mqtt_subscription_list *param)

API to request unsubscription of one or more topics on the connection.

Note: QoS included in topic description is unused in this API.

Parameters

• client – [in] Identifies client instance for which the procedure is requested.
Shall not be NULL.

• param – [in] Parameters describing topics being unsubscribed from. Shall not
be NULL.

Returns 0 or a negative error code (errno.h) indicating reason of failure.

int mqtt_ping(struct mqtt_client *client)

API to send MQTT ping. The use of this API is optional, as the library handles the connection
keep-alive on it’s own, see mqtt_live.

Parameters

• client – [in] Identifies client instance for which procedure is requested.

Returns 0 or a negative error code (errno.h) indicating reason of failure.

int mqtt_disconnect(struct mqtt_client *client)

API to disconnect MQTT connection.

Parameters

• client – [in] Identifies client instance for which procedure is requested.

Returns 0 or a negative error code (errno.h) indicating reason of failure.

int mqtt_abort(struct mqtt_client *client)

API to abort MQTT connection. This will close the corresponding transport without closing
the connection gracefully at the MQTT level (with disconnect message).

Parameters

• client – [in] Identifies client instance for which procedure is requested.

Returns 0 or a negative error code (errno.h) indicating reason of failure.

int mqtt_live(struct mqtt_client *client)

This API should be called periodically for the client to be able to keep the connection alive by
sending Ping Requests if need be.

Note: Application shall ensure that the periodicity of calling this function makes it possible
to respect the Keep Alive time agreed with the broker on connection. mqtt_connect for details
on Keep Alive time.

Parameters

• client – [in] Client instance for which the procedure is requested. Shall not
be NULL.

Returns 0 or a negative error code (errno.h) indicating reason of failure.

1044 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

int mqtt_keepalive_time_left(const struct mqtt_client *client)

Helper function to determine when next keep alive message should be sent. Can be used for
instance as a source for poll timeout.

Parameters

• client – [in] Client instance for which the procedure is requested.

Returns Time in milliseconds until next keep alive message is expected to be sent.
Function will return -1 if keep alive messages are not enabled.

int mqtt_input(struct mqtt_client *client)

Receive an incoming MQTT packet. The registered callback will be called with the packet
content.

Note: In case of PUBLISH message, the payload has to be read separately with
mqtt_read_publish_payload function. The size of the payload to read is provided in the publish
event structure.

Note: This is a non-blocking call.

Parameters

• client – [in] Client instance for which the procedure is requested. Shall not
be NULL.

Returns 0 or a negative error code (errno.h) indicating reason of failure.

int mqtt_read_publish_payload(struct mqtt_client *client, void *buffer, size_t length)

Read the payload of the received PUBLISH message. This function should be called within the
MQTT event handler, when MQTT PUBLISH message is notified.

Note: This is a non-blocking call.

Parameters

• client – [in] Client instance for which the procedure is requested. Shall not
be NULL.

• buffer – [out] Buffer where payload should be stored.

• length – [in] Length of the buffer, in bytes.

Returns Number of bytes read or a negative error code (errno.h) indicating reason
of failure.

int mqtt_read_publish_payload_blocking(struct mqtt_client *client, void *buffer, size_t length)

Blocking version of mqtt_read_publish_payload function.

Parameters

• client – [in] Client instance for which the procedure is requested. Shall not
be NULL.

• buffer – [out] Buffer where payload should be stored.

• length – [in] Length of the buffer, in bytes.

Returns Number of bytes read or a negative error code (errno.h) indicating reason
of failure.

7.20. Networking 1045

Zephyr Project Documentation, Release 2.7.0-rc2

int mqtt_readall_publish_payload(struct mqtt_client *client, uint8_t *buffer, size_t length)
Blocking version of mqtt_read_publish_payload function which runs until the required number
of bytes are read.

Parameters

• client – [in] Client instance for which the procedure is requested. Shall not
be NULL.

• buffer – [out] Buffer where payload should be stored.

• length – [in] Number of bytes to read.

Returns 0 if success, otherwise a negative error code (errno.h) indicating reason of
failure.

struct mqtt_utf8

#include <mqtt.h> Abstracts UTF-8 encoded strings.

Public Members

const uint8_t *utf8

Pointer to UTF-8 string.

uint32_t size

Size of UTF string, in bytes.

struct mqtt_binstr

#include <mqtt.h> Abstracts binary strings.

Public Members

uint8_t *data

Pointer to binary stream.

uint32_t len

Length of binary stream.

struct mqtt_topic

#include <mqtt.h> Abstracts MQTT UTF-8 encoded topic that can be subscribed to or pub-
lished.

Public Members

struct mqtt_utf8 topic

Topic on to be published or subscribed to.

uint8_t qos

Quality of service requested for the subscription. mqtt_qos for details.

struct mqtt_publish_message

#include <mqtt.h> Parameters for a publish message.

1046 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Public Members

struct mqtt_topic topic

Topic on which data was published.

struct mqtt_binstr payload

Payload on the topic published.

struct mqtt_connack_param

#include <mqtt.h> Parameters for a connection acknowledgment (CONNACK).

Public Members

uint8_t session_present_flag

The Session Present flag enables a Client to establish whether the Client and Server have
a consistent view about whether there is already stored Session state.

enum mqtt_conn_return_code return_code

The appropriate non-zero Connect return code indicates if the Server is unable to process
a connection request for some reason.

struct mqtt_puback_param

#include <mqtt.h> Parameters for MQTT publish acknowledgment (PUBACK).

struct mqtt_pubrec_param

#include <mqtt.h> Parameters for MQTT publish receive (PUBREC).

struct mqtt_pubrel_param

#include <mqtt.h> Parameters for MQTT publish release (PUBREL).

struct mqtt_pubcomp_param

#include <mqtt.h> Parameters for MQTT publish complete (PUBCOMP).

struct mqtt_suback_param

#include <mqtt.h> Parameters for MQTT subscription acknowledgment (SUBACK).

struct mqtt_unsuback_param

#include <mqtt.h> Parameters for MQTT unsubscribe acknowledgment (UNSUBACK).

struct mqtt_publish_param

#include <mqtt.h> Parameters for a publish message.

Public Members

struct mqtt_publish_message message

Messages including topic, QoS and its payload (if any) to be published.

7.20. Networking 1047

Zephyr Project Documentation, Release 2.7.0-rc2

uint16_t message_id

Message id used for the publish message. Redundant for QoS 0.

uint8_t dup_flag

Duplicate flag. If 1, it indicates the message is being retransmitted. Has no meaning with
QoS 0.

uint8_t retain_flag

Retain flag. If 1, the message shall be stored persistently by the broker.

struct mqtt_subscription_list

#include <mqtt.h> List of topics in a subscription request.

Public Members

struct mqtt_topic *list

Array containing topics along with QoS for each.

uint16_t list_count

Number of topics in the subscription list

uint16_t message_id

Message id used to identify subscription request.

union mqtt_evt_param

#include <mqtt.h> Defines event parameters notified along with asynchronous events to the
application.

Public Members

struct mqtt_connack_param connack

Parameters accompanying MQTT_EVT_CONNACK event.

struct mqtt_publish_param publish

Parameters accompanying MQTT_EVT_PUBLISH event.

Note: PUBLISH event structure only contains payload size, the payload data
parameter should be ignored. Payload content has to be read manually with
mqtt_read_publish_payload function.

struct mqtt_puback_param puback

Parameters accompanying MQTT_EVT_PUBACK event.

struct mqtt_pubrec_param pubrec

Parameters accompanying MQTT_EVT_PUBREC event.

1048 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

struct mqtt_pubrel_param pubrel

Parameters accompanying MQTT_EVT_PUBREL event.

struct mqtt_pubcomp_param pubcomp

Parameters accompanying MQTT_EVT_PUBCOMP event.

struct mqtt_suback_param suback

Parameters accompanying MQTT_EVT_SUBACK event.

struct mqtt_unsuback_param unsuback

Parameters accompanying MQTT_EVT_UNSUBACK event.

struct mqtt_evt

#include <mqtt.h> Defines MQTT asynchronous event notified to the application.

Public Members

enum mqtt_evt_type type

Identifies the event.

union mqtt_evt_param param

Contains parameters (if any) accompanying the event.

int result

Event result. 0 or a negative error code (errno.h) indicating reason of failure.

struct mqtt_sec_config

#include <mqtt.h> TLS configuration for secure MQTT transports.

Public Members

int peer_verify

Indicates the preference for peer verification.

uint32_t cipher_count

Indicates the number of entries in the cipher list.

int *cipher_list

Indicates the list of ciphers to be used for the session. May be NULL to use the default
ciphers.

uint32_t sec_tag_count

Indicates the number of entries in the sec tag list.

sec_tag_t *sec_tag_list

Indicates the list of security tags to be used for the session.

7.20. Networking 1049

Zephyr Project Documentation, Release 2.7.0-rc2

const char *hostname

Peer hostname for ceritificate verification. May be NULL to skip hostname verification.

struct mqtt_transport

#include <mqtt.h> MQTT transport specific data.

Public Members

enum mqtt_transport_type type

Transport type selection for client instance. mqtt_transport_type for possible values.
MQTT_TRANSPORT_MAX is not a valid type.

int sock

Socket descriptor.

struct mqtt_internal

#include <mqtt.h> MQTT internal state.

Public Members

struct sys_mutex mutex

Internal. Mutex to protect access to the client instance.

uint32_t last_activity

Internal. Wall clock value (in milliseconds) of the last activity that occurred. Needed for
periodic PING.

uint32_t state

Internal. Client’s state in the connection.

uint32_t rx_buf_datalen

Internal. Packet length read so far.

uint32_t remaining_payload

Internal. Remaining payload length to read.

struct mqtt_client

#include <mqtt.h> MQTT Client definition to maintain information relevant to the client.

Public Members

struct mqtt_internal internal

MQTT client internal state.

struct mqtt_transport transport

MQTT transport configuration and data.

1050 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

struct mqtt_utf8 client_id

Unique client identification to be used for the connection.

const void *broker

Broker details, for example, address, port. Address type should be compatible with trans-
port used.

struct mqtt_utf8 *user_name

User name (if any) to be used for the connection. NULL indicates no user name.

struct mqtt_utf8 *password

Password (if any) to be used for the connection. Note that if password is provided, user
name shall also be provided. NULL indicates no password.

struct mqtt_topic *will_topic

Will topic and QoS. Can be NULL.

struct mqtt_utf8 *will_message

Will message. Can be NULL. Non NULL value valid only if will topic is not NULL.

mqtt_evt_cb_t evt_cb

Application callback registered with the module to get MQTT events.

uint8_t *rx_buf

Receive buffer used for MQTT packet reception in RX path.

uint32_t rx_buf_size

Size of receive buffer.

uint8_t *tx_buf

Transmit buffer used for creating MQTT packet in TX path.

uint32_t tx_buf_size

Size of transmit buffer.

uint16_t keepalive

Keepalive interval for this client in seconds. Default is CONFIG_MQTT_KEEPALIVE.

uint8_t protocol_version

MQTT protocol version.

int8_t unacked_ping

Unanswered PINGREQ count on this connection.

uint8_t will_retain

Will retain flag, 1 if will message shall be retained persistently.

uint8_t clean_session

Clean session flag indicating a fresh (1) or a retained session (0). Default is CON-
FIG_MQTT_CLEAN_SESSION.

7.20. Networking 1051

Zephyr Project Documentation, Release 2.7.0-rc2

7.20.5 Network System Management

Network Configuration Library

• Overview

• Sample usage

• API Reference

Overview The network configuration library sets up networking devices in a semi-automatic way dur-
ing the system boot, based on user-supplied Kconfig options.

The following Kconfig options affect how configuration library will setup the system:

Table 5: Kconfig options for network configuration library
Option
name

Description

:kcon-
fig:`CONFIG_NET_CONFIG_SETTINGS`

This option controls whether the network system is configured or initialized at all. If not
set, then the config library is not used for initialization and the application needs to do all
the network related configuration itself. If this option is set, then the user can optionally
configure static IP addresses to be set to the first network interface in the system. Typically
setting static IP addresses is only usable in testing and should not be used in production
code. See the config library Kconfig file subsys/net/lib/config/Kconfig for specific options
to set the static IP addresses.

:kcon-
fig:`CONFIG_NET_CONFIG_AUTO_INIT`

The networking system is automatically configured when the device is started.

:kcon-
fig:`CONFIG_NET_CONFIG_INIT_TIMEOUT`

This tells how long to wait for the networking to be ready and available. If for ex-
ample IPv4 address from DHCPv4 is not received within this limit, then a call to
net_config_init() will return error during the device startup.

:kcon-
fig:`CONFIG_NET_CONFIG_NEED_IPV4`

The network application needs IPv4 support to function properly. This option makes
sure the network application is initialized properly in order to use IPv4. If :kcon-
fig:`CONFIG_NET_IPV4` is not enabled, then setting this option will automatically en-
able IPv4.

:kcon-
fig:`CONFIG_NET_CONFIG_NEED_IPV6`

The network application needs IPv6 support to function properly. This option makes
sure the network application is initialized properly in order to use IPv6. If :kcon-
fig:`CONFIG_NET_IPV6` is not enabled, then setting this option will automatically en-
able IPv6.

:kcon-
fig:`CONFIG_NET_CONFIG_NEED_IPV6_ROUTER`

If IPv6 is enabled, then this option tells that the network application needs IPv6 router to
exists before continuing. This means in practice that the application wants to wait until it
receives IPv6 router advertisement message before continuing.

:kcon-
fig:`CONFIG_NET_CONFIG_BT_NODE`

Enables application to operate in Bluetooth node mode which requires GATT service to
be registered and start advertising as peripheral.

Sample usage If :kconfig:`CONFIG_NET_CONFIG_AUTO_INIT` is set, then the configuration li-
brary is automatically enabled and run during the device boot. In this case, the library will call
net_config_init() automatically and the application does not need to do any network configuration.

If you want to use the network configuration library but without automatic initialization, you can call
net_config_init() manually. The flags parameter can be used to give hints to the library about what
kind of functionality the application wishes to have before the actual application starts.

API Reference

1052 Chapter 7. API Reference

https://github.com/zephyrproject-rtos/zephyr/blob/main/subsys/net/lib/config/Kconfig

Zephyr Project Documentation, Release 2.7.0-rc2

group net_config

Network configuration library.

Defines

NET_CONFIG_NEED_ROUTER

Application needs routers to be set so that connectivity to remote network is possible. For
IPv6 networks, this means that the device should receive IPv6 router advertisement message
before continuing.

NET_CONFIG_NEED_IPV6

Application needs IPv6 subsystem configured and initialized. Typically this means that the
device has IPv6 address set.

NET_CONFIG_NEED_IPV4

Application needs IPv4 subsystem configured and initialized. Typically this means that the
device has IPv4 address set.

Functions

int net_config_init(const char *app_info, uint32_t flags, int32_t timeout)

Initialize this network application.

This will call net_config_init_by_iface() with NULL network interface.

Parameters

• app_info – String describing this application.

• flags – Flags related to services needed by the client.

• timeout – How long to wait the network setup before continuing the startup.

Returns 0 if ok, <0 if error.

int net_config_init_by_iface(struct net_if *iface, const char *app_info, uint32_t flags, int32_t
timeout)

Initialize this network application using a specific network interface.

If network interface is set to NULL, then the default one is used in the configuration.

Parameters

• iface – Initialize networking using this network interface.

• app_info – String describing this application.

• flags – Flags related to services needed by the client.

• timeout – How long to wait the network setup before continuing the startup.

Returns 0 if ok, <0 if error.

int net_config_init_app(const struct device *dev, const char *app_info)

Initialize this network application.

If CONFIG_NET_CONFIG_AUTO_INIT is set, then this function is called automatically when
the device boots. If that is not desired, unset the config option and call the function manually
when the application starts.

Parameters

7.20. Networking 1053

Zephyr Project Documentation, Release 2.7.0-rc2

• dev – Network device to use. The function will figure out what network inter-
face to use based on the device. If the device is NULL, then default network
interface is used by the function.

• app_info – String describing this application.

Returns 0 if ok, <0 if error.

DHCPv4

• Overview

• Sample usage

• API Reference

Overview The Dynamic Host Configuration Protocol (DHCP) is a network management protocol used
on IPv4 networks. A DHCPv4 server dynamically assigns an IPv4 address and other network configura-
tion parameters to each device on a network so they can communicate with other IP networks. See this
DHCP Wikipedia article for a detailed overview of how DHCP works.

Note that Zephyr only supports DHCP client functionality.

Sample usage See dhcpv4-client-sample for details.

API Reference

group dhcpv4

DHCPv4.

Functions

void net_dhcpv4_start(struct net_if *iface)

Start DHCPv4 client on an iface.

Start DHCPv4 client on a given interface. DHCPv4 client will start negotiation for IPv4 ad-
dress. Once the negotiation is success IPv4 address details will be added to interface.

Parameters

• iface – A valid pointer on an interface

void net_dhcpv4_stop(struct net_if *iface)

Stop DHCPv4 client on an iface.

Stop DHCPv4 client on a given interface. DHCPv4 client will remove all configuration ob-
tained from a DHCP server from the interface and stop any further negotiation with the server.

Parameters

• iface – A valid pointer on an interface

1054 Chapter 7. API Reference

https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol

Zephyr Project Documentation, Release 2.7.0-rc2

Hostname Configuration

• Overview

• API Reference

Overview A networked device might need a hostname, for example, if the device is configured to be a
mDNS responder (see DNS Resolve for details) and needs to respond to <hostname>.local DNS queries.

The :kconfig:`CONFIG_NET_HOSTNAME_ENABLE` must be set in order to store the hostname and
enable the relevant APIs. If the option is enabled, then the default hostname is set to be zephyr by
:kconfig:`CONFIG_NET_HOSTNAME` option.

If the same firmware image is used to flash multiple boards, then it is not practical to use the same host-
name in all of the boards. In that case, one can enable :kconfig:`CONFIG_NET_HOSTNAME_UNIQUE`
which will add a unique postfix to the hostname. By default the link local address of the first net-
work interface is used as a postfix. In Ethernet networks, the link local address refers to MAC ad-
dress. For example, if the link local address is 01:02:03:04:05:06, then the unique hostname could be
zephyr010203040506. If you want to set the prefix yourself, then call net_hostname_set_postfix()
before the network interfaces are created. For example for the Ethernet networks, the initialization pri-
ority is set by :kconfig:`CONFIG_ETH_INIT_PRIORITY` so you would need to set the postfix before
that. The postfix can be set only once.

API Reference

group net_hostname

Network hostname configuration library.

Defines

NET_HOSTNAME_MAX_LEN

Functions

static inline const char *net_hostname_get(void)

Get the device hostname.

Return pointer to device hostname.

Returns Pointer to hostname or NULL if not set.

static inline void net_hostname_init(void)

Initialize and set the device hostname.

static inline int net_hostname_set_postfix(const uint8_t *hostname_postfix, int postfix_len)

Set the device hostname postfix.

Set the device hostname to some value. This is only used if CON-
FIG_NET_HOSTNAME_UNIQUE is set.

Parameters

• hostname_postfix – Usually link address. The function will convert this to a
string.

• postfix_len – Length of the hostname_postfix array.

7.20. Networking 1055

Zephyr Project Documentation, Release 2.7.0-rc2

Returns 0 if ok, <0 if error

Network Core Helpers

• Overview

• API Reference

Overview The network subsystem contains two functions for sending and receiving data from the
network. The net_recv_data() is typically used by network device driver when the received network
data needs to be pushed up in the network stack for further processing. All the data is received via a
network interface which is typically created by the device driver.

For sending, the net_send_data() can be used. Typically applications do not call this function directly
as there is the BSD Sockets API for sending and receiving network data.

API Reference

group net_core

Network core library.

Enums

enum net_verdict

Net Verdict.

Values:

enumerator NET_OK

Packet has been taken care of.

enumerator NET_CONTINUE

Packet has not been touched, other part should decide about its fate.

enumerator NET_DROP

Packet must be dropped.

Functions

int net_recv_data(struct net_if *iface, struct net_pkt *pkt)

Called by lower network stack or network device driver when a network packet has been
received. The function will push the packet up in the network stack for further processing.

Parameters

• iface – Network interface where the packet was received.

• pkt – Network packet data.

Returns 0 if ok, <0 if error.

1056 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

int net_send_data(struct net_pkt *pkt)

Send data to network.

Send data to network. This should not be used normally by applications as it requires that the
network packet is properly constructed.

Parameters

• pkt – Network packet.

Returns 0 if ok, <0 if error. If <0 is returned, then the caller needs to unref the pkt
in order to avoid memory leak.

Network Interface

• Overview

• API Reference

Overview The network interface is a nexus that ties the network device drivers and the upper part of
the network stack together. All the sent and received data is transferred via a network interface. The
network interfaces cannot be created at runtime. A special linker section will contain information about
them and that section is populated at linking time.

Network interfaces are created by NET_DEVICE_INIT() macro. For Ethernet network, a macro called
ETH_NET_DEVICE_INIT() should be used instead as it will create VLAN interfaces automatically if :kcon-
fig:`CONFIG_NET_VLAN` is enabled. These macros are typically used in network device driver source
code.

The network interface can be turned ON by calling net_if_up() and OFF by calling net_if_down().
When the device is powered ON, the network interface is also turned ON by default.

The network interfaces can be referenced either by a struct net_if * pointer or by a network interface
index. The network interface can be resolved from its index by calling net_if_get_by_index() and from
interface pointer by calling net_if_get_by_iface().

The IP address for network devices must be set for them to be connectable. In a typical dynamic net-
work environment, IP addresses are set automatically by DHCPv4, for example. If needed though, the
application can set a device’s IP address manually. See the API documentation below for functions such
as net_if_ipv4_addr_add() that do that.

The net_if_get_default() returns a default network interface. What this default interface
means can be configured via options like :kconfig:`CONFIG_NET_DEFAULT_IF_FIRST` and :kcon-
fig:`CONFIG_NET_DEFAULT_IF_ETHERNET`. See Kconfig file subsys/net/ip/Kconfig what options are
available for selecting the default network interface.

The transmitted and received network packets can be classified via a network packet priority. This is
typically done in Ethernet networks when virtual LANs (VLANs) are used. Higher priority packets can
be sent or received earlier than lower priority packets. The traffic class setup can be configured by
:kconfig:`CONFIG_NET_TC_TX_COUNT` and :kconfig:`CONFIG_NET_TC_RX_COUNT` options.

If the :kconfig:`CONFIG_NET_PROMISCUOUS_MODE` is enabled and if the underlaying network tech-
nology supports promiscuous mode, then it is possible to receive all the network packets that the network
device driver is able to receive. See Promiscuous Mode API for more details.

API Reference

group net_if

Network Interface abstraction layer.

7.20. Networking 1057

https://github.com/zephyrproject-rtos/zephyr/blob/main/subsys/net/ip/Kconfig

Zephyr Project Documentation, Release 2.7.0-rc2

Defines

NET_DEVICE_INIT(dev_name, drv_name, init_fn, pm_control_fn, data, cfg, prio, api, l2,
l2_ctx_type, mtu)

Create a network interface and bind it to network device.

Parameters

• dev_name – Network device name.

• drv_name – The name this instance of the driver exposes to the system.

• init_fn – Address to the init function of the driver.

• pm_control_fn – Pointer to pm_control function. Can be NULL if not imple-
mented.

• data – Pointer to the device’s private data.

• cfg – The address to the structure containing the configuration information for
this instance of the driver.

• prio – The initialization level at which configuration occurs.

• api – Provides an initial pointer to the API function struct used by the driver.
Can be NULL.

• l2 – Network L2 layer for this network interface.

• l2_ctx_type – Type of L2 context data.

• mtu – Maximum transfer unit in bytes for this network interface.

NET_DEVICE_DT_DEFINE(node_id, init_fn, pm_control_fn, data, cfg, prio, api, l2, l2_ctx_type,
mtu)

Like NET_DEVICE_INIT but taking metadata from a devicetree node. Create a network inter-
face and bind it to network device.

Parameters

• node_id – The devicetree node identifier.

• init_fn – Address to the init function of the driver.

• pm_control_fn – Pointer to pm_control function. Can be NULL if not imple-
mented.

• data – Pointer to the device’s private data.

• cfg – The address to the structure containing the configuration information for
this instance of the driver.

• prio – The initialization level at which configuration occurs.

• api – Provides an initial pointer to the API function struct used by the driver.
Can be NULL.

• l2 – Network L2 layer for this network interface.

• l2_ctx_type – Type of L2 context data.

• mtu – Maximum transfer unit in bytes for this network interface.

NET_DEVICE_DT_INST_DEFINE(inst, ...)

Like NET_DEVICE_DT_DEFINE for an instance of a DT_DRV_COMPAT compatible.

Parameters

• inst – instance number. This is replaced by DT_DRV_COMPAT(inst) in the call
to NET_DEVICE_DT_DEFINE.

1058 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• ... – other parameters as expected by NET_DEVICE_DT_DEFINE.

NET_DEVICE_INIT_INSTANCE(dev_name, drv_name, instance, init_fn, pm_control_fn, data, cfg,
prio, api, l2, l2_ctx_type, mtu)

Create multiple network interfaces and bind them to network device. If your network device
needs more than one instance of a network interface, use this macro below and provide a
different instance suffix each time (0, 1, 2, . . . or a, b, c . . . whatever works for you)

Parameters

• dev_name – Network device name.

• drv_name – The name this instance of the driver exposes to the system.

• instance – Instance identifier.

• init_fn – Address to the init function of the driver.

• pm_control_fn – Pointer to pm_control function. Can be NULL if not imple-
mented.

• data – Pointer to the device’s private data.

• cfg – The address to the structure containing the configuration information for
this instance of the driver.

• prio – The initialization level at which configuration occurs.

• api – Provides an initial pointer to the API function struct used by the driver.
Can be NULL.

• l2 – Network L2 layer for this network interface.

• l2_ctx_type – Type of L2 context data.

• mtu – Maximum transfer unit in bytes for this network interface.

NET_DEVICE_DT_DEFINE_INSTANCE(node_id, instance, init_fn, pm_control_fn, data, cfg, prio, api,
l2, l2_ctx_type, mtu)

Like NET_DEVICE_OFFLOAD_INIT but taking metadata from a devicetree. Create multiple
network interfaces and bind them to network device. If your network device needs more than
one instance of a network interface, use this macro below and provide a different instance
suffix each time (0, 1, 2, . . . or a, b, c . . . whatever works for you)

Parameters

• node_id – The devicetree node identifier.

• instance – Instance identifier.

• init_fn – Address to the init function of the driver.

• pm_control_fn – Pointer to pm_control function. Can be NULL if not imple-
mented.

• data – Pointer to the device’s private data.

• cfg – The address to the structure containing the configuration information for
this instance of the driver.

• prio – The initialization level at which configuration occurs.

• api – Provides an initial pointer to the API function struct used by the driver.
Can be NULL.

• l2 – Network L2 layer for this network interface.

• l2_ctx_type – Type of L2 context data.

• mtu – Maximum transfer unit in bytes for this network interface.

7.20. Networking 1059

Zephyr Project Documentation, Release 2.7.0-rc2

NET_DEVICE_DT_INST_DEFINE_INSTANCE(inst, ...)
Like NET_DEVICE_DT_DEFINE_INSTANCE for an instance of a DT_DRV_COMPAT compatible.

Parameters

• inst – instance number. This is replaced by DT_DRV_COMPAT(inst) in the call
to NET_DEVICE_DT_DEFINE_INSTANCE.

• ... – other parameters as expected by NET_DEVICE_DT_DEFINE_INSTANCE.

NET_DEVICE_OFFLOAD_INIT(dev_name, drv_name, init_fn, pm_control_fn, data, cfg, prio, api,
mtu)

Create a offloaded network interface and bind it to network device. The offloaded network
interface is implemented by a device vendor HAL or similar.

Parameters

• dev_name – Network device name.

• drv_name – The name this instance of the driver exposes to the system.

• init_fn – Address to the init function of the driver.

• pm_control_fn – Pointer to pm_control function. Can be NULL if not imple-
mented.

• data – Pointer to the device’s private data.

• cfg – The address to the structure containing the configuration information for
this instance of the driver.

• prio – The initialization level at which configuration occurs.

• api – Provides an initial pointer to the API function struct used by the driver.
Can be NULL.

• mtu – Maximum transfer unit in bytes for this network interface.

NET_DEVICE_DT_OFFLOAD_DEFINE(node_id, init_fn, pm_control_fn, data, cfg, prio, api, mtu)
Like NET_DEVICE_OFFLOAD_INIT but taking metadata from a devicetree node. Create a
offloaded network interface and bind it to network device. The offloaded network interface is
implemented by a device vendor HAL or similar.

Parameters

• node_id – The devicetree node identifier.

• init_fn – Address to the init function of the driver.

• pm_control_fn – Pointer to pm_control function. Can be NULL if not imple-
mented.

• data – Pointer to the device’s private data.

• cfg – The address to the structure containing the configuration information for
this instance of the driver.

• prio – The initialization level at which configuration occurs.

• api – Provides an initial pointer to the API function struct used by the driver.
Can be NULL.

• mtu – Maximum transfer unit in bytes for this network interface.

NET_DEVICE_DT_INST_OFFLOAD_DEFINE(inst, ...)
Like NET_DEVICE_DT_OFFLOAD_DEFINE for an instance of a DT_DRV_COMPAT compatible.

Parameters

• inst – instance number. This is replaced by DT_DRV_COMPAT(inst) in the call
to NET_DEVICE_DT_OFFLOAD_DEFINE.

1060 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• ... – other parameters as expected by NET_DEVICE_DT_OFFLOAD_DEFINE.

Typedefs

typedef void (*net_if_mcast_callback_t)(struct net_if *iface, const struct in6_addr *addr, bool
is_joined)

Define callback that is called whenever IPv6 multicast address group is joined or left.

Param iface A pointer to a struct net_if to which the multicast address is attached.

Param addr IPv6 multicast address.

Param is_joined True if the address is joined, false if left.

typedef void (*net_if_link_callback_t)(struct net_if *iface, struct net_linkaddr *dst, int status)

Define callback that is called after a network packet has been sent.

Param iface A pointer to a struct net_if to which the the net_pkt was sent to.

Param dst Link layer address of the destination where the network packet was sent.

Param status Send status, 0 is ok, < 0 error.

typedef void (*net_if_cb_t)(struct net_if *iface, void *user_data)

Callback used while iterating over network interfaces.

Param iface Pointer to current network interface

Param user_data A valid pointer to user data or NULL

Enums

enum net_if_flag

Values:

enumerator NET_IF_UP

Interface is up/ready to receive and transmit

enumerator NET_IF_POINTOPOINT

Interface is pointopoint

enumerator NET_IF_PROMISC

Interface is in promiscuous mode

enumerator NET_IF_NO_AUTO_START

Do not start the interface immediately after initialization. This requires that either the de-
vice driver or some other entity will need to manually take the interface up when needed.
For example for Ethernet this will happen when the driver calls the net_eth_carrier_on()
function.

enumerator NET_IF_SUSPENDED

Power management specific: interface is being suspended

7.20. Networking 1061

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator NET_IF_FORWARD_MULTICASTS

Flag defines if received multicasts of other interface are forwarded on this interface. This
activates multicast routing / forwarding for this interface.

enumerator NET_IF_IPV4

Interface supports IPv4

enumerator NET_IF_IPV6

Interface supports IPv6

Functions

static inline void net_if_flag_set(struct net_if *iface, enum net_if_flag value)

Set a value in network interface flags.

Parameters

• iface – Pointer to network interface

• value – Flag value

static inline bool net_if_flag_test_and_set(struct net_if *iface, enum net_if_flag value)

Test and set a value in network interface flags.

Parameters

• iface – Pointer to network interface

• value – Flag value

Returns true if the bit was set, false if it wasn’t.

static inline void net_if_flag_clear(struct net_if *iface, enum net_if_flag value)

Clear a value in network interface flags.

Parameters

• iface – Pointer to network interface

• value – Flag value

static inline bool net_if_flag_is_set(struct net_if *iface, enum net_if_flag value)

Check if a value in network interface flags is set.

Parameters

• iface – Pointer to network interface

• value – Flag value

Returns True if the value is set, false otherwise

enum net_verdict net_if_send_data(struct net_if *iface, struct net_pkt *pkt)

Send a packet through a net iface.

return verdict about the packet

Parameters

• iface – Pointer to a network interface structure

• pkt – Pointer to a net packet to send

1062 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline const struct net_l2 *const net_if_l2(struct net_if *iface)

Get a pointer to the interface L2.

Parameters

• iface – a valid pointer to a network interface structure

Returns a pointer to the iface L2

enum net_verdict net_if_recv_data(struct net_if *iface, struct net_pkt *pkt)

Input a packet through a net iface.

Parameters

• iface – Pointer to a network interface structure

• pkt – Pointer to a net packet to input

Returns verdict about the packet

static inline void *net_if_l2_data(struct net_if *iface)

Get a pointer to the interface L2 private data.

Parameters

• iface – a valid pointer to a network interface structure

Returns a pointer to the iface L2 data

static inline const struct device *net_if_get_device(struct net_if *iface)

Get an network interface’s device.

Parameters

• iface – Pointer to a network interface structure

Returns a pointer to the device driver instance

void net_if_queue_tx(struct net_if *iface, struct net_pkt *pkt)

Queue a packet to the net interface TX queue.

Parameters

• iface – Pointer to a network interface structure

• pkt – Pointer to a net packet to queue

static inline bool net_if_is_ip_offloaded(struct net_if *iface)

Return the IP offload status.

Parameters

• iface – Network interface

Returns True if IP offlining is active, false otherwise.

static inline struct net_offload *net_if_offload(struct net_if *iface)

Return the IP offload plugin.

Parameters

• iface – Network interface

Returns NULL if there is no offload plugin defined, valid pointer otherwise

static inline bool net_if_is_socket_offloaded(struct net_if *iface)

Return the socket offload status.

Parameters

• iface – Network interface

7.20. Networking 1063

Zephyr Project Documentation, Release 2.7.0-rc2

Returns True if socket offloading is active, false otherwise.

static inline struct net_linkaddr *net_if_get_link_addr(struct net_if *iface)

Get an network interface’s link address.

Parameters

• iface – Pointer to a network interface structure

Returns a pointer to the network link address

static inline struct net_if_config *net_if_get_config(struct net_if *iface)

Return network configuration for this network interface.

Parameters

• iface – Pointer to a network interface structure

Returns Pointer to configuration

static inline void net_if_start_dad(struct net_if *iface)

Start duplicate address detection procedure.

Parameters

• iface – Pointer to a network interface structure

void net_if_start_rs(struct net_if *iface)

Start neighbor discovery and send router solicitation message.

Parameters

• iface – Pointer to a network interface structure

static inline void net_if_stop_rs(struct net_if *iface)

Stop neighbor discovery.

Parameters

• iface – Pointer to a network interface structure

static inline int net_if_set_link_addr(struct net_if *iface, uint8_t *addr, uint8_t len, enum
net_link_type type)

Set a network interface’s link address.

Parameters

• iface – Pointer to a network interface structure

• addr – A pointer to a uint8_t buffer representing the address. The buffer must
remain valid throughout interface lifetime.

• len – length of the address buffer

• type – network bearer type of this link address

Returns 0 on success

static inline uint16_t net_if_get_mtu(struct net_if *iface)

Get an network interface’s MTU.

Parameters

• iface – Pointer to a network interface structure

Returns the MTU

1064 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline void net_if_set_mtu(struct net_if *iface, uint16_t mtu)

Set an network interface’s MTU.

Parameters

• iface – Pointer to a network interface structure

• mtu – New MTU, note that we store only 16 bit mtu value.

static inline void net_if_addr_set_lf(struct net_if_addr *ifaddr, bool is_infinite)

Set the infinite status of the network interface address.

Parameters

• ifaddr – IP address for network interface

• is_infinite – Infinite status

struct net_if *net_if_get_by_link_addr(struct net_linkaddr *ll_addr)

Get an interface according to link layer address.

Parameters

• ll_addr – Link layer address.

Returns Network interface or NULL if not found.

struct net_if *net_if_lookup_by_dev(const struct device *dev)

Find an interface from it’s related device.

Parameters

• dev – A valid struct device pointer to relate with an interface

Returns a valid struct net_if pointer on success, NULL otherwise

static inline struct net_if_config *net_if_config_get(struct net_if *iface)

Get network interface IP config.

Parameters

• iface – Interface to use.

Returns NULL if not found or pointer to correct config settings.

void net_if_router_rm(struct net_if_router *router)

Remove a router from the system.

Parameters

• router – Pointer to existing router

struct net_if *net_if_get_default(void)

Get the default network interface.

Returns Default interface or NULL if no interfaces are configured.

struct net_if *net_if_get_first_by_type(const struct net_l2 *l2)

Get the first network interface according to its type.

Parameters

• l2 – Layer 2 type of the network interface.

Returns First network interface of a given type or NULL if no such interfaces was
found.

7.20. Networking 1065

Zephyr Project Documentation, Release 2.7.0-rc2

int net_if_config_ipv6_get(struct net_if *iface, struct net_if_ipv6 **ipv6)

Allocate network interface IPv6 config.

This function will allocate new IPv6 config.

Parameters

• iface – Interface to use.

• ipv6 – Pointer to allocated IPv6 struct is returned to caller.

Returns 0 if ok, <0 if error

int net_if_config_ipv6_put(struct net_if *iface)

Release network interface IPv6 config.

Parameters

• iface – Interface to use.

Returns 0 if ok, <0 if error

struct net_if_addr *net_if_ipv6_addr_lookup(const struct in6_addr *addr, struct net_if **iface)

Check if this IPv6 address belongs to one of the interfaces.

Parameters

• addr – IPv6 address

• iface – Pointer to interface is returned

Returns Pointer to interface address, NULL if not found.

struct net_if_addr *net_if_ipv6_addr_lookup_by_iface(struct net_if *iface, struct in6_addr
*addr)

Check if this IPv6 address belongs to this specific interfaces.

Parameters

• iface – Network interface

• addr – IPv6 address

Returns Pointer to interface address, NULL if not found.

int net_if_ipv6_addr_lookup_by_index(const struct in6_addr *addr)

Check if this IPv6 address belongs to one of the interface indices.

Parameters

• addr – IPv6 address

Returns >0 if address was found in given network interface index, all other values
mean address was not found

struct net_if_addr *net_if_ipv6_addr_add(struct net_if *iface, struct in6_addr *addr, enum
net_addr_type addr_type, uint32_t vlifetime)

Add a IPv6 address to an interface.

Parameters

• iface – Network interface

• addr – IPv6 address

• addr_type – IPv6 address type

• vlifetime – Validity time for this address

Returns Pointer to interface address, NULL if cannot be added

1066 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

bool net_if_ipv6_addr_add_by_index(int index, struct in6_addr *addr, enum net_addr_type
addr_type, uint32_t vlifetime)

Add a IPv6 address to an interface by index.

Parameters

• index – Network interface index

• addr – IPv6 address

• addr_type – IPv6 address type

• vlifetime – Validity time for this address

Returns True if ok, false if address could not be added

void net_if_ipv6_addr_update_lifetime(struct net_if_addr *ifaddr, uint32_t vlifetime)

Update validity lifetime time of an IPv6 address.

Parameters

• ifaddr – Network IPv6 address

• vlifetime – Validity time for this address

bool net_if_ipv6_addr_rm(struct net_if *iface, const struct in6_addr *addr)

Remove an IPv6 address from an interface.

Parameters

• iface – Network interface

• addr – IPv6 address

Returns True if successfully removed, false otherwise

bool net_if_ipv6_addr_rm_by_index(int index, const struct in6_addr *addr)

Remove an IPv6 address from an interface by index.

Parameters

• index – Network interface index

• addr – IPv6 address

Returns True if successfully removed, false otherwise

struct net_if_mcast_addr *net_if_ipv6_maddr_add(struct net_if *iface, const struct in6_addr
*addr)

Add a IPv6 multicast address to an interface.

Parameters

• iface – Network interface

• addr – IPv6 multicast address

Returns Pointer to interface multicast address, NULL if cannot be added

bool net_if_ipv6_maddr_rm(struct net_if *iface, const struct in6_addr *addr)

Remove an IPv6 multicast address from an interface.

Parameters

• iface – Network interface

• addr – IPv6 multicast address

Returns True if successfully removed, false otherwise

7.20. Networking 1067

Zephyr Project Documentation, Release 2.7.0-rc2

struct net_if_mcast_addr *net_if_ipv6_maddr_lookup(const struct in6_addr *addr, struct net_if
**iface)

Check if this IPv6 multicast address belongs to a specific interface or one of the interfaces.

Parameters

• addr – IPv6 address

• iface – If *iface is null, then pointer to interface is returned, otherwise the
*iface value needs to be matched.

Returns Pointer to interface multicast address, NULL if not found.

void net_if_mcast_mon_register(struct net_if_mcast_monitor *mon, struct net_if *iface,
net_if_mcast_callback_t cb)

Register a multicast monitor.

Parameters

• mon – Monitor handle. This is a pointer to a monitor storage structure which
should be allocated by caller, but does not need to be initialized.

• iface – Network interface

• cb – Monitor callback

void net_if_mcast_mon_unregister(struct net_if_mcast_monitor *mon)

Unregister a multicast monitor.

Parameters

• mon – Monitor handle

void net_if_mcast_monitor(struct net_if *iface, const struct in6_addr *addr, bool is_joined)

Call registered multicast monitors.

Parameters

• iface – Network interface

• addr – Multicast address

• is_joined – Is this multicast address joined (true) or not (false)

void net_if_ipv6_maddr_join(struct net_if_mcast_addr *addr)

Mark a given multicast address to be joined.

Parameters

• addr – IPv6 multicast address

static inline bool net_if_ipv6_maddr_is_joined(struct net_if_mcast_addr *addr)

Check if given multicast address is joined or not.

Parameters

• addr – IPv6 multicast address

Returns True if address is joined, False otherwise.

void net_if_ipv6_maddr_leave(struct net_if_mcast_addr *addr)

Mark a given multicast address to be left.

Parameters

• addr – IPv6 multicast address

1068 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

struct net_if_ipv6_prefix *net_if_ipv6_prefix_get(struct net_if *iface, struct in6_addr *addr)

Return prefix that corresponds to this IPv6 address.

Parameters

• iface – Network interface

• addr – IPv6 address

Returns Pointer to prefix, NULL if not found.

struct net_if_ipv6_prefix *net_if_ipv6_prefix_lookup(struct net_if *iface, struct in6_addr
*addr, uint8_t len)

Check if this IPv6 prefix belongs to this interface.

Parameters

• iface – Network interface

• addr – IPv6 address

• len – Prefix length

Returns Pointer to prefix, NULL if not found.

struct net_if_ipv6_prefix *net_if_ipv6_prefix_add(struct net_if *iface, struct in6_addr *prefix,
uint8_t len, uint32_t lifetime)

Add a IPv6 prefix to an network interface.

Parameters

• iface – Network interface

• prefix – IPv6 address

• len – Prefix length

• lifetime – Prefix lifetime in seconds

Returns Pointer to prefix, NULL if the prefix was not added.

bool net_if_ipv6_prefix_rm(struct net_if *iface, struct in6_addr *addr, uint8_t len)

Remove an IPv6 prefix from an interface.

Parameters

• iface – Network interface

• addr – IPv6 prefix address

• len – Prefix length

Returns True if successfully removed, false otherwise

static inline void net_if_ipv6_prefix_set_lf(struct net_if_ipv6_prefix *prefix, bool is_infinite)

Set the infinite status of the prefix.

Parameters

• prefix – IPv6 address

• is_infinite – Infinite status

void net_if_ipv6_prefix_set_timer(struct net_if_ipv6_prefix *prefix, uint32_t lifetime)

Set the prefix lifetime timer.

Parameters

• prefix – IPv6 address

• lifetime – Prefix lifetime in seconds

7.20. Networking 1069

Zephyr Project Documentation, Release 2.7.0-rc2

void net_if_ipv6_prefix_unset_timer(struct net_if_ipv6_prefix *prefix)

Unset the prefix lifetime timer.

Parameters

• prefix – IPv6 address

bool net_if_ipv6_addr_onlink(struct net_if **iface, struct in6_addr *addr)

Check if this IPv6 address is part of the subnet of our network interface.

Parameters

• iface – Network interface. This is returned to the caller. The iface can be
NULL in which case we check all the interfaces.

• addr – IPv6 address

Returns True if address is part of our subnet, false otherwise

static inline struct in6_addr *net_if_router_ipv6(struct net_if_router *router)

Get the IPv6 address of the given router.

Parameters

• router – a network router

Returns pointer to the IPv6 address, or NULL if none

struct net_if_router *net_if_ipv6_router_lookup(struct net_if *iface, struct in6_addr *addr)

Check if IPv6 address is one of the routers configured in the system.

Parameters

• iface – Network interface

• addr – IPv6 address

Returns Pointer to router information, NULL if cannot be found

struct net_if_router *net_if_ipv6_router_find_default(struct net_if *iface, struct in6_addr
*addr)

Find default router for this IPv6 address.

Parameters

• iface – Network interface. This can be NULL in which case we go through all
the network interfaces to find a suitable router.

• addr – IPv6 address

Returns Pointer to router information, NULL if cannot be found

void net_if_ipv6_router_update_lifetime(struct net_if_router *router, uint16_t lifetime)

Update validity lifetime time of a router.

Parameters

• router – Network IPv6 address

• lifetime – Lifetime of this router.

struct net_if_router *net_if_ipv6_router_add(struct net_if *iface, struct in6_addr *addr,
uint16_t router_lifetime)

Add IPv6 router to the system.

Parameters

• iface – Network interface

• addr – IPv6 address

1070 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• router_lifetime – Lifetime of the router

Returns Pointer to router information, NULL if could not be added

bool net_if_ipv6_router_rm(struct net_if_router *router)

Remove IPv6 router from the system.

Parameters

• router – Router information.

Returns True if successfully removed, false otherwise

uint8_t net_if_ipv6_get_hop_limit(struct net_if *iface)

Get IPv6 hop limit specified for a given interface. This is the default value but can be overrid-
den by the user.

Parameters

• iface – Network interface

Returns Hop limit

void net_ipv6_set_hop_limit(struct net_if *iface, uint8_t hop_limit)

Set the default IPv6 hop limit of a given interface.

Parameters

• iface – Network interface

• hop_limit – New hop limit

static inline void net_if_ipv6_set_base_reachable_time(struct net_if *iface, uint32_t
reachable_time)

Set IPv6 reachable time for a given interface.

Parameters

• iface – Network interface

• reachable_time – New reachable time

static inline uint32_t net_if_ipv6_get_reachable_time(struct net_if *iface)

Get IPv6 reachable timeout specified for a given interface.

Parameters

• iface – Network interface

Returns Reachable timeout

uint32_t net_if_ipv6_calc_reachable_time(struct net_if_ipv6 *ipv6)

Calculate next reachable time value for IPv6 reachable time.

Parameters

• ipv6 – IPv6 address configuration

Returns Reachable time

static inline void net_if_ipv6_set_reachable_time(struct net_if_ipv6 *ipv6)

Set IPv6 reachable time for a given interface. This requires that base reachable time is set for
the interface.

Parameters

• ipv6 – IPv6 address configuration

7.20. Networking 1071

Zephyr Project Documentation, Release 2.7.0-rc2

static inline void net_if_ipv6_set_retrans_timer(struct net_if *iface, uint32_t retrans_timer)

Set IPv6 retransmit timer for a given interface.

Parameters

• iface – Network interface

• retrans_timer – New retransmit timer

static inline uint32_t net_if_ipv6_get_retrans_timer(struct net_if *iface)

Get IPv6 retransmit timer specified for a given interface.

Parameters

• iface – Network interface

Returns Retransmit timer

static inline const struct in6_addr *net_if_ipv6_select_src_addr(struct net_if *iface, const
struct in6_addr *dst)

Get a IPv6 source address that should be used when sending network data to destination.

Parameters

• iface – Interface that was used when packet was received. If the interface is
not known, then NULL can be given.

• dst – IPv6 destination address

Returns Pointer to IPv6 address to use, NULL if no IPv6 address could be found.

static inline struct net_if *net_if_ipv6_select_src_iface(const struct in6_addr *dst)

Get a network interface that should be used when sending IPv6 network data to destination.

Parameters

• dst – IPv6 destination address

Returns Pointer to network interface to use, NULL if no suitable interface could be
found.

struct in6_addr *net_if_ipv6_get_ll(struct net_if *iface, enum net_addr_state addr_state)

Get a IPv6 link local address in a given state.

Parameters

• iface – Interface to use. Must be a valid pointer to an interface.

• addr_state – IPv6 address state (preferred, tentative, deprecated)

Returns Pointer to link local IPv6 address, NULL if no proper IPv6 address could be
found.

struct in6_addr *net_if_ipv6_get_ll_addr(enum net_addr_state state, struct net_if **iface)

Return link local IPv6 address from the first interface that has a link local address matching
give state.

Parameters

• state – IPv6 address state (ANY, TENTATIVE, PREFERRED, DEPRECATED)

• iface – Pointer to interface is returned

Returns Pointer to IPv6 address, NULL if not found.

void net_if_ipv6_dad_failed(struct net_if *iface, const struct in6_addr *addr)

Stop IPv6 Duplicate Address Detection (DAD) procedure if we find out that our IPv6 address
is already in use.

Parameters

1072 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• iface – Interface where the DAD was running.

• addr – IPv6 address that failed DAD

struct in6_addr *net_if_ipv6_get_global_addr(enum net_addr_state state, struct net_if
**iface)

Return global IPv6 address from the first interface that has a global IPv6 address matching
the given state.

Parameters

• state – IPv6 address state (ANY, TENTATIVE, PREFERRED, DEPRECATED)

• iface – Caller can give an interface to check. If iface is set to NULL, then all the
interfaces are checked. Pointer to interface where the IPv6 address is defined
is returned to the caller.

Returns Pointer to IPv6 address, NULL if not found.

int net_if_config_ipv4_get(struct net_if *iface, struct net_if_ipv4 **ipv4)

Allocate network interface IPv4 config.

This function will allocate new IPv4 config.

Parameters

• iface – Interface to use.

• ipv4 – Pointer to allocated IPv4 struct is returned to caller.

Returns 0 if ok, <0 if error

int net_if_config_ipv4_put(struct net_if *iface)

Release network interface IPv4 config.

Parameters

• iface – Interface to use.

Returns 0 if ok, <0 if error

uint8_t net_if_ipv4_get_ttl(struct net_if *iface)

Get IPv4 time-to-live value specified for a given interface.

Parameters

• iface – Network interface

Returns Time-to-live

void net_if_ipv4_set_ttl(struct net_if *iface, uint8_t ttl)

Set IPv4 time-to-live value specified to a given interface.

Parameters

• iface – Network interface

• ttl – Time-to-live value

struct net_if_addr *net_if_ipv4_addr_lookup(const struct in_addr *addr, struct net_if **iface)

Check if this IPv4 address belongs to one of the interfaces.

Parameters

• addr – IPv4 address

• iface – Interface is returned

Returns Pointer to interface address, NULL if not found.

7.20. Networking 1073

Zephyr Project Documentation, Release 2.7.0-rc2

struct net_if_addr *net_if_ipv4_addr_add(struct net_if *iface, struct in_addr *addr, enum
net_addr_type addr_type, uint32_t vlifetime)

Add a IPv4 address to an interface.

Parameters

• iface – Network interface

• addr – IPv4 address

• addr_type – IPv4 address type

• vlifetime – Validity time for this address

Returns Pointer to interface address, NULL if cannot be added

bool net_if_ipv4_addr_rm(struct net_if *iface, const struct in_addr *addr)

Remove a IPv4 address from an interface.

Parameters

• iface – Network interface

• addr – IPv4 address

Returns True if successfully removed, false otherwise

int net_if_ipv4_addr_lookup_by_index(const struct in_addr *addr)

Check if this IPv4 address belongs to one of the interface indices.

Parameters

• addr – IPv4 address

Returns >0 if address was found in given network interface index, all other values
mean address was not found

bool net_if_ipv4_addr_add_by_index(int index, struct in_addr *addr, enum net_addr_type
addr_type, uint32_t vlifetime)

Add a IPv4 address to an interface by network interface index.

Parameters

• index – Network interface index

• addr – IPv4 address

• addr_type – IPv4 address type

• vlifetime – Validity time for this address

Returns True if ok, false if the address could not be added

bool net_if_ipv4_addr_rm_by_index(int index, const struct in_addr *addr)

Remove a IPv4 address from an interface by interface index.

Parameters

• index – Network interface index

• addr – IPv4 address

Returns True if successfully removed, false otherwise

struct net_if_mcast_addr *net_if_ipv4_maddr_add(struct net_if *iface, const struct in_addr
*addr)

Add a IPv4 multicast address to an interface.

Parameters

• iface – Network interface

1074 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• addr – IPv4 multicast address

Returns Pointer to interface multicast address, NULL if cannot be added

bool net_if_ipv4_maddr_rm(struct net_if *iface, const struct in_addr *addr)

Remove an IPv4 multicast address from an interface.

Parameters

• iface – Network interface

• addr – IPv4 multicast address

Returns True if successfully removed, false otherwise

struct net_if_mcast_addr *net_if_ipv4_maddr_lookup(const struct in_addr *addr, struct net_if
**iface)

Check if this IPv4 multicast address belongs to a specific interface or one of the interfaces.

Parameters

• addr – IPv4 address

• iface – If *iface is null, then pointer to interface is returned, otherwise the
*iface value needs to be matched.

Returns Pointer to interface multicast address, NULL if not found.

void net_if_ipv4_maddr_join(struct net_if_mcast_addr *addr)

Mark a given multicast address to be joined.

Parameters

• addr – IPv4 multicast address

static inline bool net_if_ipv4_maddr_is_joined(struct net_if_mcast_addr *addr)

Check if given multicast address is joined or not.

Parameters

• addr – IPv4 multicast address

Returns True if address is joined, False otherwise.

void net_if_ipv4_maddr_leave(struct net_if_mcast_addr *addr)

Mark a given multicast address to be left.

Parameters

• addr – IPv4 multicast address

static inline struct in_addr *net_if_router_ipv4(struct net_if_router *router)

Get the IPv4 address of the given router.

Parameters

• router – a network router

Returns pointer to the IPv4 address, or NULL if none

struct net_if_router *net_if_ipv4_router_lookup(struct net_if *iface, struct in_addr *addr)

Check if IPv4 address is one of the routers configured in the system.

Parameters

• iface – Network interface

• addr – IPv4 address

Returns Pointer to router information, NULL if cannot be found

7.20. Networking 1075

Zephyr Project Documentation, Release 2.7.0-rc2

struct net_if_router *net_if_ipv4_router_find_default(struct net_if *iface, struct in_addr
*addr)

Find default router for this IPv4 address.

Parameters

• iface – Network interface. This can be NULL in which case we go through all
the network interfaces to find a suitable router.

• addr – IPv4 address

Returns Pointer to router information, NULL if cannot be found

struct net_if_router *net_if_ipv4_router_add(struct net_if *iface, struct in_addr *addr, bool
is_default, uint16_t router_lifetime)

Add IPv4 router to the system.

Parameters

• iface – Network interface

• addr – IPv4 address

• is_default – Is this router the default one

• router_lifetime – Lifetime of the router

Returns Pointer to router information, NULL if could not be added

bool net_if_ipv4_router_rm(struct net_if_router *router)

Remove IPv4 router from the system.

Parameters

• router – Router information.

Returns True if successfully removed, false otherwise

bool net_if_ipv4_addr_mask_cmp(struct net_if *iface, const struct in_addr *addr)

Check if the given IPv4 address belongs to local subnet.

Parameters

• iface – Interface to use. Must be a valid pointer to an interface.

• addr – IPv4 address

Returns True if address is part of local subnet, false otherwise.

bool net_if_ipv4_is_addr_bcast(struct net_if *iface, const struct in_addr *addr)

Check if the given IPv4 address is a broadcast address.

Parameters

• iface – Interface to use. Must be a valid pointer to an interface.

• addr – IPv4 address, this should be in network byte order

Returns True if address is a broadcast address, false otherwise.

static inline struct net_if *net_if_ipv4_select_src_iface(const struct in_addr *dst)

Get a network interface that should be used when sending IPv4 network data to destination.

Parameters

• dst – IPv4 destination address

Returns Pointer to network interface to use, NULL if no suitable interface could be
found.

1076 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline const struct in_addr *net_if_ipv4_select_src_addr(struct net_if *iface, const
struct in_addr *dst)

Get a IPv4 source address that should be used when sending network data to destination.

Parameters

• iface – Interface to use when sending the packet. If the interface is not known,
then NULL can be given.

• dst – IPv4 destination address

Returns Pointer to IPv4 address to use, NULL if no IPv4 address could be found.

struct in_addr *net_if_ipv4_get_ll(struct net_if *iface, enum net_addr_state addr_state)

Get a IPv4 link local address in a given state.

Parameters

• iface – Interface to use. Must be a valid pointer to an interface.

• addr_state – IPv4 address state (preferred, tentative, deprecated)

Returns Pointer to link local IPv4 address, NULL if no proper IPv4 address could be
found.

struct in_addr *net_if_ipv4_get_global_addr(struct net_if *iface, enum net_addr_state
addr_state)

Get a IPv4 global address in a given state.

Parameters

• iface – Interface to use. Must be a valid pointer to an interface.

• addr_state – IPv4 address state (preferred, tentative, deprecated)

Returns Pointer to link local IPv4 address, NULL if no proper IPv4 address could be
found.

void net_if_ipv4_set_netmask(struct net_if *iface, const struct in_addr *netmask)

Set IPv4 netmask for an interface.

Parameters

• iface – Interface to use.

• netmask – IPv4 netmask

bool net_if_ipv4_set_netmask_by_index(int index, const struct in_addr *netmask)

Set IPv4 netmask for an interface index.

Parameters

• index – Network interface index

• netmask – IPv4 netmask

Returns True if netmask was added, false otherwise.

void net_if_ipv4_set_gw(struct net_if *iface, const struct in_addr *gw)

Set IPv4 gateway for an interface.

Parameters

• iface – Interface to use.

• gw – IPv4 address of an gateway

7.20. Networking 1077

Zephyr Project Documentation, Release 2.7.0-rc2

bool net_if_ipv4_set_gw_by_index(int index, const struct in_addr *gw)

Set IPv4 gateway for an interface index.

Parameters

• index – Network interface index

• gw – IPv4 address of an gateway

Returns True if gateway was added, false otherwise.

struct net_if *net_if_select_src_iface(const struct sockaddr *dst)

Get a network interface that should be used when sending IPv6 or IPv4 network data to
destination.

Parameters

• dst – IPv6 or IPv4 destination address

Returns Pointer to network interface to use. Note that the function will return the
default network interface if the best network interface is not found.

void net_if_register_link_cb(struct net_if_link_cb *link, net_if_link_callback_t cb)

Register a link callback.

Parameters

• link – Caller specified handler for the callback.

• cb – Callback to register.

void net_if_unregister_link_cb(struct net_if_link_cb *link)

Unregister a link callback.

Parameters

• link – Caller specified handler for the callback.

void net_if_call_link_cb(struct net_if *iface, struct net_linkaddr *lladdr, int status)

Call a link callback function.

Parameters

• iface – Network interface.

• lladdr – Destination link layer address

• status – 0 is ok, < 0 error

bool net_if_need_calc_rx_checksum(struct net_if *iface)

Check if received network packet checksum calculation can be avoided or not. For example
many ethernet devices support network packet offloading in which case the IP stack does not
need to calculate the checksum.

Parameters

• iface – Network interface

Returns True if checksum needs to be calculated, false otherwise.

bool net_if_need_calc_tx_checksum(struct net_if *iface)

Check if network packet checksum calculation can be avoided or not when sending the packet.
For example many ethernet devices support network packet offloading in which case the IP
stack does not need to calculate the checksum.

Parameters

• iface – Network interface

Returns True if checksum needs to be calculated, false otherwise.

1078 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

struct net_if *net_if_get_by_index(int index)

Get interface according to index.

This is a syscall only to provide access to the object for purposes of assigning permissions.

Parameters

• index – Interface index

Returns Pointer to interface or NULL if not found.

int net_if_get_by_iface(struct net_if *iface)

Get interface index according to pointer.

Parameters

• iface – Pointer to network interface

Returns Interface index

void net_if_foreach(net_if_cb_t cb, void *user_data)

Go through all the network interfaces and call callback for each interface.

Parameters

• cb – User-supplied callback function to call

• user_data – User specified data

int net_if_up(struct net_if *iface)

Bring interface up.

Parameters

• iface – Pointer to network interface

Returns 0 on success

static inline bool net_if_is_up(struct net_if *iface)

Check if interface is up.

Parameters

• iface – Pointer to network interface

Returns True if interface is up, False if it is down.

int net_if_down(struct net_if *iface)

Bring interface down.

Parameters

• iface – Pointer to network interface

Returns 0 on success

int net_if_set_promisc(struct net_if *iface)

Set network interface into promiscuous mode.

Note that not all network technologies will support this.

Parameters

• iface – Pointer to network interface

Returns 0 on success, <0 if error

void net_if_unset_promisc(struct net_if *iface)

Set network interface into normal mode.

Parameters

7.20. Networking 1079

Zephyr Project Documentation, Release 2.7.0-rc2

• iface – Pointer to network interface

bool net_if_is_promisc(struct net_if *iface)

Check if promiscuous mode is set or not.

Parameters

• iface – Pointer to network interface

Returns True if interface is in promisc mode, False if interface is not in in promiscu-
ous mode.

static inline bool net_if_are_pending_tx_packets(struct net_if *iface)

Check if there are any pending TX network data for a given network interface.

Parameters

• iface – Pointer to network interface

Returns True if there are pending TX network packets for this network interface,
False otherwise.

struct net_if_addr

#include <net_if.h> Network Interface unicast IP addresses.

Stores the unicast IP addresses assigned to this network interface.

Public Members

struct net_addr address

IP address

enum net_addr_type addr_type

How the IP address was set

enum net_addr_state addr_state

What is the current state of the address

uint8_t is_infinite

Is the IP address valid forever

uint8_t is_used

Is this IP address used or not

uint8_t is_mesh_local

Is this IP address usage limited to the subnet (mesh) or not

struct net_if_mcast_addr

#include <net_if.h> Network Interface multicast IP addresses.

Stores the multicast IP addresses assigned to this network interface.

Public Members

1080 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

struct net_addr address

IP address

uint8_t is_used

Is this multicast IP address used or not

uint8_t is_joined

Did we join to this group

struct net_if_ipv6_prefix

#include <net_if.h> Network Interface IPv6 prefixes.

Stores the multicast IP addresses assigned to this network interface.

Public Members

struct net_timeout lifetime

Prefix lifetime

struct in6_addr prefix

IPv6 prefix

struct net_if *iface

Backpointer to network interface where this prefix is used

uint8_t len

Prefix length

uint8_t is_infinite

Is the IP prefix valid forever

uint8_t is_used

Is this prefix used or not

struct net_if_router

#include <net_if.h> Information about routers in the system.

Stores the router information.

Public Members

sys_snode_t node

Slist lifetime timer node

struct net_addr address

IP address

struct net_if *iface

Network interface the router is connected to

7.20. Networking 1081

Zephyr Project Documentation, Release 2.7.0-rc2

uint32_t life_start

Router life timer start

uint16_t lifetime

Router lifetime

uint8_t is_used

Is this router used or not

uint8_t is_default

Is default router

uint8_t is_infinite

Is the router valid forever

struct net_if_ipv6

#include <net_if.h>

Public Members

struct net_if_addr unicast[NET_IF_MAX_IPV6_ADDR]

Unicast IP addresses

struct net_if_mcast_addr mcast[NET_IF_MAX_IPV6_MADDR]

Multicast IP addresses

struct net_if_ipv6_prefix prefix[NET_IF_MAX_IPV6_PREFIX]

Prefixes

uint32_t base_reachable_time

Default reachable time (RFC 4861, page 52)

uint32_t reachable_time

Reachable time (RFC 4861, page 20)

uint32_t retrans_timer

Retransmit timer (RFC 4861, page 52)

uint8_t hop_limit

IPv6 hop limit

struct net_if_ipv4

#include <net_if.h>

Public Members

1082 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

struct net_if_addr unicast[NET_IF_MAX_IPV4_ADDR]

Unicast IP addresses

struct net_if_mcast_addr mcast[NET_IF_MAX_IPV4_MADDR]

Multicast IP addresses

struct in_addr gw

Gateway

struct in_addr netmask

Netmask

uint8_t ttl

IPv4 time-to-live

struct net_if_ip

#include <net_if.h> Network interface IP address configuration.

struct net_if_config

#include <net_if.h> IP and other configuration related data for network interface.

Public Members

struct net_if_ip ip

IP address configuration setting

struct net_traffic_class

#include <net_if.h> Network traffic class.

Traffic classes are used when sending or receiving data that is classified with different pri-
orities. So some traffic can be marked as high priority and it will be sent or received first.
Each network packet that is transmitted or received goes through a fifo to a thread that will
transmit it.

Public Members

struct k_fifo fifo

Fifo for handling this Tx or Rx packet

struct k_thread handler

Traffic class handler thread

k_thread_stack_t *stack

Stack for this handler

struct net_if_dev

#include <net_if.h> Network Interface Device structure.

7.20. Networking 1083

Zephyr Project Documentation, Release 2.7.0-rc2

Used to handle a network interface on top of a device driver instance. There can be many
net_if_dev instance against the same device.

Such interface is mainly to be used by the link layer, but is also tight to a network context: it
then makes the relation with a network context and the network device.

Because of the strong relationship between a device driver and such network interface, each
net_if_dev should be instantiated by

Public Members

const struct device *dev

The actually device driver instance the net_if is related to

const struct net_l2 *const l2

Interface’s L2 layer

void *l2_data

Interface’s private L2 data pointer

struct net_linkaddr link_addr

The hardware link address

uint16_t mtu

The hardware MTU

struct net_if

#include <net_if.h> Network Interface structure.

Used to handle a network interface on top of a net_if_dev instance. There can be many net_if
instance against the same net_if_dev instance.

Public Members

struct net_if_dev *if_dev

The net_if_dev instance the net_if is related to

struct net_if_config config

Network interface instance configuration

struct net_if_mcast_monitor

#include <net_if.h> Multicast monitor handler struct.

Stores the multicast callback information. Caller must make sure that the variable pointed by
this is valid during the lifetime of registration. Typically this means that the variable cannot
be allocated from stack.

Public Members

sys_snode_t node

Node information for the slist.

1084 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

struct net_if *iface

Network interface

net_if_mcast_callback_t cb

Multicast callback

struct net_if_link_cb

#include <net_if.h> Link callback handler struct.

Stores the link callback information. Caller must make sure that the variable pointed by this
is valid during the lifetime of registration. Typically this means that the variable cannot be
allocated from stack.

Public Members

sys_snode_t node

Node information for the slist.

net_if_link_callback_t cb

Link callback

L2 Layer Management

• Overview

• L2 layer API

• Network Device drivers

– Ethernet device driver

– IEEE 802.15.4 device driver

• API Reference

Overview The L2 stack is designed to hide the whole networking link-layer part and the related device
drivers from the upper network stack. This is made through a net_if declared in include/net/net_if.h.

The upper layers are unaware of implementation details beyond the net_if object and the generic API
provided by the L2 layer in include/net/net_l2.h as net_l2 .

Only the L2 layer can talk to the device driver, linked to the net_if object. The L2 layer dictates the API
provided by the device driver, specific for that device, and optimized for working together.

Currently, there are L2 layers for Ethernet, IEEE 802.15.4 Soft-MAC, Bluetooth IPSP, CANBUS,
OpenThread, Wi-Fi, and a dummy layer example that can be used as a template for writing a new one.

L2 layer API In order to create an L2 layer, or a driver for a specific L2 layer, one needs to understand
how the L3 layer interacts with it and how the L2 layer is supposed to behave. See also network stack
architecture for more details. The generic L2 API has these functions:

• recv(): All device drivers, once they receive a packet which they put into a net_pkt , will push
this buffer to the network stack via net_recv_data() . At this point, the network stack does not
know what to do with it. Instead, it passes the buffer along to the L2 stack’s recv() function for

7.20. Networking 1085

https://github.com/zephyrproject-rtos/zephyr/blob/main/include/net/net_if.h
https://github.com/zephyrproject-rtos/zephyr/blob/main/include/net/net_l2.h

Zephyr Project Documentation, Release 2.7.0-rc2

handling. The L2 stack does what it needs to do with the packet, for example, parsing the link layer
header, or handling link-layer only packets. The recv() function will return NET_DROP in case of
an erroneous packet, NET_OK if the packet was fully consumed by the L2, or NET_CONTINUE if the
network stack should then handle it.

• send(): Similar to receive function, the network stack will call this function to actually send a
network packet. All relevant link-layer content will be generated and added by this function. The
send() function returns the number of bytes sent, or a negative error code if there was a failure
sending the network packet.

• enable(): This function is used to enable/disable traffic over a network interface. The function
returns <0 if error and >=0 if no error.

• get_flags(): This function will return the capabilities of an L2 driver, for example whether the L2
supports multicast or promiscuous mode.

Network Device drivers Network device drivers fully follows Zephyr device driver model as a basis.
Please refer to Device Driver Model.

There are, however, two differences:

• The driver_api pointer must point to a valid net_if_api pointer.

• The network device driver must use NET_DEVICE_INIT_INSTANCE() or ETH_NET_DEVICE_INIT()
for Ethernet devices. These macros will call the DEVICE_DEFINE() macro, and also instantiate a
unique net_if related to the created device driver instance.

Implementing a network device driver depends on the L2 stack it belongs to: Ethernet, IEEE 802.15.4,
etc. In the next section, we will describe how a device driver should behave when receiving or sending a
network packet. The rest is hardware dependent and is not detailed here.

Ethernet device driver On reception, it is up to the device driver to fill-in the network packet with as
many data buffers as required. The network packet itself is a net_pkt and should be allocated through
net_pkt_rx_alloc_with_buffer() . Then all data buffers will be automatically allocated and filled by
net_pkt_write() .

After all the network data has been received, the device driver needs to call net_recv_data() . If that
call fails, it will be up to the device driver to unreference the buffer via net_pkt_unref() .

On sending, the device driver send function will be called, and it is up to the device driver to send the
network packet all at once, with all the buffers.

Each Ethernet device driver will need, in the end, to call ETH_NET_DEVICE_INIT() like this:

ETH_NET_DEVICE_INIT(..., CONFIG_ETH_INIT_PRIORITY,
&the_valid_net_if_api_instance, 1500);

IEEE 802.15.4 device driver Device drivers for IEEE 802.15.4 L2 work basically the same as for Ether-
net. What has been described above, especially for recv(), applies here as well. There are two specific
differences however:

• It requires a dedicated device driver API: ieee802154_radio_api , which overloads net_if_api.
This is because 802.15.4 L2 needs more from the device driver than just send() and recv() func-
tions. This dedicated API is declared in include/net/ieee802154_radio.h. Each and every IEEE
802.15.4 device driver must provide a valid pointer on such relevantly filled-in API structure.

• Sending a packet is slightly different than in Ethernet. IEEE 802.15.4 sends relatively small
frames, 127 bytes all inclusive: frame header, payload and frame checksum. Buffers are
meant to fit such frame size limitation. But a buffer containing an IPv6/UDP packet might
have more than one fragment. IEEE 802.15.4 drivers handle only one buffer at a time.
This is why the ieee802154_radio_api requires a tx function pointer which differs from

1086 Chapter 7. API Reference

https://github.com/zephyrproject-rtos/zephyr/blob/main/include/net/ieee802154_radio.h

Zephyr Project Documentation, Release 2.7.0-rc2

the net_if_api send function pointer. Instead, the IEEE 802.15.4 L2, provides a generic
ieee802154_radio_send() meant to be given as net_if send function. It turn, the implemen-
tation of ieee802154_radio_send() will ensure the same behavior: sending one buffer at a time
through ieee802154_radio_api tx function, and unreferencing the network packet only when all
the transmission were successful.

Each IEEE 802.15.4 device driver, in the end, will need to call NET_DEVICE_INIT_INSTANCE() that way:

NET_DEVICE_INIT_INSTANCE(...,
the_device_init_prio,
&the_valid_ieee802154_radio_api_instance,
IEEE802154_L2,
NET_L2_GET_CTX_TYPE(IEEE802154_L2), 125);

API Reference

group net_l2

Network Layer 2 abstraction layer.

Enums

enum net_l2_flags

L2 flags

Values:

enumerator NET_L2_MULTICAST = BIT(0)

IP multicast supported

enumerator NET_L2_MULTICAST_SKIP_JOIN_SOLICIT_NODE = BIT(1)

Do not joint solicited node multicast group

enumerator NET_L2_PROMISC_MODE = BIT(2)

Is promiscuous mode supported

enumerator NET_L2_POINT_TO_POINT = BIT(3)

Is this L2 point-to-point with tunneling so no need to have IP address etc to network
interface.

struct net_l2

#include <net_l2.h> Network L2 structure.

Used to provide an interface to lower network stack.

Public Members

enum net_verdict (*recv)(struct net_if *iface, struct net_pkt *pkt)

This function is used by net core to get iface’s L2 layer parsing what’s relevant to itself.

7.20. Networking 1087

Zephyr Project Documentation, Release 2.7.0-rc2

int (*send)(struct net_if *iface, struct net_pkt *pkt)

This function is used by net core to push a packet to lower layer (interface’s L2), which
in turn might work on the packet relevantly. (adding proper header etc. . .) Returns a
negative error code, or the number of bytes sent otherwise.

int (*enable)(struct net_if *iface, bool state)

This function is used to enable/disable traffic over a network interface. The function
returns <0 if error and >=0 if no error.

enum net_l2_flags (*get_flags)(struct net_if *iface)

Return L2 flags for the network interface.

Network Traffic Offloading

• Network Offloading

– Overview

– API Reference

• Socket Offloading

– Overview

Network Offloading

Overview The network offloading API provides hooks that a device vendor can use to provide an
alternate implementation for an IP stack. This means that the actual network connection creation, data
transfer, etc., is done in the vendor HAL instead of the Zephyr network stack.

API Reference

group net_offload

Network offloading interface.

Socket Offloading

Overview In addition to the network offloading API, Zephyr allows offloading of networking function-
ality at the socket API level. With this approach, vendors who provide an alternate implementation of the
networking stack, exposing socket API for their networking devices, can easily integrate it with Zephyr.

See drivers/wifi/simplelink/simplelink_sockets.c for a sample implementation on how to integrate net-
work offloading at socket level.

Link Layer Address Handling

• Overview

• API Reference

1088 Chapter 7. API Reference

https://github.com/zephyrproject-rtos/zephyr/blob/main/drivers/wifi/simplelink/simplelink_sockets.c

Zephyr Project Documentation, Release 2.7.0-rc2

Overview The link layer addresses are set for network interfaces so that L2 connectivity works correctly
in the network stack. Typically the link layer addresses are 6 bytes long like in Ethernet but for IEEE
802.15.4 the link layer address length is 8 bytes.

API Reference

group net_linkaddr

Network link address library.

Defines

NET_LINK_ADDR_MAX_LENGTH

Maximum length of the link address

Enums

enum net_link_type

Type of the link address. This indicates the network technology that this address is used in.
Note that in order to save space we store the value into a uint8_t variable, so please do not
introduce any values > 255 in this enum.

Values:

enumerator NET_LINK_UNKNOWN = 0

Unknown link address type.

enumerator NET_LINK_IEEE802154

IEEE 802.15.4 link address.

enumerator NET_LINK_BLUETOOTH

Bluetooth IPSP link address.

enumerator NET_LINK_ETHERNET

Ethernet link address.

enumerator NET_LINK_DUMMY

Dummy link address. Used in testing apps and loopback support.

enumerator NET_LINK_CANBUS_RAW

CANBUS link address.

enumerator NET_LINK_CANBUS

6loCAN link address.

Functions

7.20. Networking 1089

Zephyr Project Documentation, Release 2.7.0-rc2

static inline bool net_linkaddr_cmp(struct net_linkaddr *lladdr1, struct net_linkaddr *lladdr2)

Compare two link layer addresses.

Parameters

• lladdr1 – Pointer to a link layer address

• lladdr2 – Pointer to a link layer address

Returns True if the addresses are the same, false otherwise.

static inline int net_linkaddr_set(struct net_linkaddr_storage *lladdr_store, uint8_t *new_addr,
uint8_t new_len)

Set the member data of a link layer address storage structure.

Parameters

• lladdr_store – The link address storage structure to change.

• new_addr – Array of bytes containing the link address.

• new_len – Length of the link address array. This value should always be <=
NET_LINK_ADDR_MAX_LENGTH.

struct net_linkaddr

#include <net_linkaddr.h> Hardware link address structure.

Used to hold the link address information

Public Members

uint8_t *addr

The array of byte representing the address

uint8_t len

Length of that address array

uint8_t type

What kind of address is this for

struct net_linkaddr_storage

#include <net_linkaddr.h> Hardware link address structure.

Used to hold the link address information. This variant is needed when we have to store the
link layer address.

Note that you cannot cast this to net_linkaddr as uint8_t * is handled differently than uint8_t
addr[] and the fields are purposely in different order.

Public Members

uint8_t type

What kind of address is this for

uint8_t len

The real length of the ll address.

1090 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

uint8_t addr[6]

The array of bytes representing the address

Ethernet Management

• Overview

• API Reference

Overview Ethernet management API provides functions to manage the Ethernet network interface low
level status. The caller of these functions can:

• raise carrier ON or carrier OFF management events

• raise VLAN enabled or VLAN disabled management events

Typically the carrier OFF event would be generated by the Ethernet device driver when it notices that
the Ethernet cable is disconnected. The carrier ON event would be generated if the Ethernet device
driver notices that the Ethernet cable is re-connected.

Currently the VLAN events are generated by the Ethernet L2 layer when a specific VLAN tag is either
enabled or disabled.

The user application can monitor these events if it needs to act when the corresponding status changes.

API Reference

group ethernet_mgmt

Ethernet library.

Functions

void ethernet_mgmt_raise_carrier_on_event(struct net_if *iface)

Raise CARRIER_ON event when Ethernet is connected.

Parameters

• iface – Ethernet network interface.

void ethernet_mgmt_raise_carrier_off_event(struct net_if *iface)

Raise CARRIER_OFF event when Ethernet is disconnected.

Parameters

• iface – Ethernet network interface.

void ethernet_mgmt_raise_vlan_enabled_event(struct net_if *iface, uint16_t tag)

Raise VLAN_ENABLED event when VLAN is enabled.

Parameters

• iface – Ethernet network interface.

• tag – VLAN tag which is enabled.

7.20. Networking 1091

Zephyr Project Documentation, Release 2.7.0-rc2

void ethernet_mgmt_raise_vlan_disabled_event(struct net_if *iface, uint16_t tag)

Raise VLAN_DISABLED event when VLAN is disabled.

Parameters

• iface – Ethernet network interface.

• tag – VLAN tag which is disabled.

Traffic Classification

Overview Traffic classification is an automated process that categorizes computer network traffic ac-
cording to various parameters. For Zephyr, the VLAN priority code point (PCP) is used to classify both
received and sent network packets. See more information about VLAN priority at IEEE 802.1Q.

By default, all network traffic is treated equal in Zephyr. If desired, the option :kcon-
fig:`CONFIG_NET_TC_TX_COUNT` can be used to set the number of transmit queues. The option
:kconfig:`CONFIG_NET_TC_RX_COUNT` can be used to set the number of receive queues. Each traffic
class queue corresponds to a specific kernel work queue. Each kernel work queue has a priority. The
VLAN priority is mapped to a certain traffic class according to rules specified in IEEE 802.1Q spec chapter
I.3, chapter 8.6.6 table 8-4, and chapter 34.5 table 34-1. Each traffic class is in turn mapped to a certain
kernel work queue. The maximum number of traffic classes for both Rx and Tx is 8.

See subsys/net/ip/net_tc.c for details of how various mappings are done.

Network Shell

Network shell provides helpers for figuring out network status, enabling/disabling features, and issuing
commands like ping or DNS resolving. Note that net-shell should probably not be used in production
code as it will require extra memory. See also generic shell for detailed shell information.

The following net-shell commands are implemented:

1092 Chapter 7. API Reference

https://en.wikipedia.org/wiki/Traffic_classification
https://en.wikipedia.org/wiki/IEEE_802.1Q
https://ieeexplore.ieee.org/document/6991462/
https://github.com/zephyrproject-rtos/zephyr/blob/main/subsys/net/ip/net_tc.c

Zephyr Project Documentation, Release 2.7.0-rc2

Table 6: net-shell commands
Com-
mand

Description

net al-
locs

Print network memory allocations. Only available if :kcon-
fig:`CONFIG_NET_DEBUG_NET_PKT_ALLOC` is set.

net arp Print information about IPv4 ARP cache. Only available if :kconfig:`CONFIG_NET_ARP`
is set in IPv4 enabled networks.

net
cap-
ture

Monitor network traffic See Monitor Network Traffic for details.

net
conn

Print information about network connections.

net
dns

Show how DNS is configured. The command can also be used to resolve a DNS name. Only
available if :kconfig:`CONFIG_DNS_RESOLVER` is set.

net
events

Enable network event monitoring. Only available if :kcon-
fig:`CONFIG_NET_MGMT_EVENT_MONITOR` is set.

net
gptp

Print information about gPTP support. Only available if :kconfig:`CONFIG_NET_GPTP` is
set.

net
iface

Print information about network interfaces.

net
ipv6

Print IPv6 specific information and configuration. Only available if :kcon-
fig:`CONFIG_NET_IPV6` is set.

net
mem

Print information about network memory usage. The command will print more information
if :kconfig:`CONFIG_NET_BUF_POOL_USAGE` is set.

net
nbr

Print neighbor information. Only available if :kconfig:`CONFIG_NET_IPV6` is set.

net
ping

Ping a network host.

net
route

Show IPv6 network routes. Only available if :kconfig:`CONFIG_NET_ROUTE` is set.

net
stats

Show network statistics.

net tcp Connect/send data/close TCP connection. Only available if :kconfig:`CONFIG_NET_TCP`
is set.

net
vlan

Show Ethernet virtual LAN information. Only available if :kconfig:`CONFIG_NET_VLAN`
is set.

7.20.6 Time Sensitive Networking

generic Precision Time Protocol (gPTP)

• Overview

• Supported features

• Supported hardware

• Enabling the stack

• Application interfaces

• Testing

• API Reference

7.20. Networking 1093

Zephyr Project Documentation, Release 2.7.0-rc2

Overview This gPTP stack supports the protocol and procedures as defined in the IEEE 802.1AS-2011
standard (Timing and Synchronization for Time-Sensitive Applications in Bridged Local Area Networks).

Supported features The stack handles communications and state machines defined in the IEEE
802.1AS-2011 standard. Mandatory requirements for a full-duplex point-to-point link endpoint, as de-
fined in Annex A of the standard, are supported.

The stack is in principle capable of handling communications on multiple network interfaces (also de-
fined as “ports” in the standard) and thus act as a 802.1AS bridge. However, this mode of operation has
not been validated on the Zephyr OS.

Supported hardware Although the stack itself is hardware independent, Ethernet frame timestamping
support must be enabled in ethernet drivers.

Boards supported:

• frdm_k64f

• sam_e70_xplained

• native_posix (only usable for simple testing, limited capabilities due to lack of hardware clock)

• qemu_x86 (emulated, limited capabilities due to lack of hardware clock)

Enabling the stack The following configuration option must me enabled in prj.conf file.

• :kconfig:`CONFIG_NET_GPTP`

Application interfaces Only two Application Interfaces as defined in section 9 of the standard are
available:

• ClockTargetPhaseDiscontinuity interface (gptp_register_phase_dis_cb())

• ClockTargetEventCapture interface (gptp_event_capture())

Testing The stack has been informally tested using the OpenAVnu gPTP and Linux ptp4l daemons. The
gPTP sample application from the Zephyr source distribution can be used for testing.

API Reference

group gptp

generic Precision Time Protocol (gPTP) support

Typedefs

typedef void (*gptp_phase_dis_callback_t)(uint8_t *gm_identity, uint16_t *time_base, struct
gptp_scaled_ns *last_gm_ph_change, double *last_gm_freq_change)

Define callback that is called after a phase discontinuity has been sent by the grandmaster.

Param gm_identity A pointer to first element of a ClockIdentity array. The size of
the array is GPTP_CLOCK_ID_LEN.

Param time_base A pointer to the value of timeBaseIndicator of the current grand-
master.

Param last_gm_ph_change A pointer to the value of lastGmPhaseChange received
from grandmaster.

1094 Chapter 7. API Reference

https://standards.ieee.org/findstds/standard/802.1AS-2011.html
https://standards.ieee.org/findstds/standard/802.1AS-2011.html
https://standards.ieee.org/findstds/standard/802.1AS-2011.html
https://standards.ieee.org/findstds/standard/802.1AS-2011.html
https://github.com/AVnu/gptp
http://linuxptp.sourceforge.net/

Zephyr Project Documentation, Release 2.7.0-rc2

Param last_gm_freq_change A pointer to the value of lastGmFreqChange received
from the grandmaster.

typedef void (*gptp_port_cb_t)(int port, struct net_if *iface, void *user_data)

Callback used while iterating over gPTP ports.

Param port Port number

Param iface Pointer to network interface

Param user_data A valid pointer to user data or NULL

Functions

void gptp_register_phase_dis_cb(struct gptp_phase_dis_cb *phase_dis,
gptp_phase_dis_callback_t cb)

Register a phase discontinuity callback.

Parameters

• phase_dis – Caller specified handler for the callback.

• cb – Callback to register.

void gptp_unregister_phase_dis_cb(struct gptp_phase_dis_cb *phase_dis)

Unregister a phase discontinuity callback.

Parameters

• phase_dis – Caller specified handler for the callback.

void gptp_call_phase_dis_cb(void)

Call a phase discontinuity callback function.

int gptp_event_capture(struct net_ptp_time *slave_time, bool *gm_present)

Get gPTP time.

Parameters

• slave_time – A pointer to structure where timestamp will be saved.

• gm_present – A pointer to a boolean where status of the presence of a grand
master will be saved.

Returns Error code. 0 if no error.

char *gptp_sprint_clock_id(const uint8_t *clk_id, char *output, size_t output_len)

Utility function to print clock id to a user supplied buffer.

Parameters

• clk_id – Clock id

• output – Output buffer

• output_len – Output buffer len

Returns Pointer to output buffer

void gptp_foreach_port(gptp_port_cb_t cb, void *user_data)

Go through all the gPTP ports and call callback for each of them.

Parameters

• cb – User-supplied callback function to call

• user_data – User specified data

7.20. Networking 1095

Zephyr Project Documentation, Release 2.7.0-rc2

struct gptp_domain *gptp_get_domain(void)

Get gPTP domain.

This contains all the configuration / status of the gPTP domain.

Returns Pointer to domain or NULL if not found.

void gptp_clk_src_time_invoke(struct gptp_clk_src_time_invoke_params *arg)

This interface is used by the ClockSource entity to provide time to the ClockMaster entity of a
time-aware system.

Parameters

• arg – Current state and parameters of the ClockSource entity.

struct gptp_hdr *gptp_get_hdr(struct net_pkt *pkt)

Return pointer to gPTP packet header in network packet.

Parameters

• pkt – Network packet (received or sent)

Returns Pointer to gPTP header.

struct gptp_scaled_ns

#include <gptp.h> Scaled Nanoseconds.

Public Members

int32_t high

High half.

int64_t low

Low half.

struct gptp_uscaled_ns

#include <gptp.h> UScaled Nanoseconds.

Public Members

uint32_t high

High half.

uint64_t low

Low half.

struct gptp_port_identity

#include <gptp.h> Port Identity.

Public Members

uint8_t clk_id[GPTP_CLOCK_ID_LEN]

Clock identity of the port.

1096 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

uint16_t port_number

Number of the port.

struct gptp_flags

#include <gptp.h>

Public Members

uint8_t octets[2]

Byte access.

uint16_t all

Whole field access.

struct gptp_hdr

#include <gptp.h>

Public Members

uint8_t message_type

Type of the message.

uint8_t transport_specific

Transport specific, always 1.

uint8_t ptp_version

Version of the PTP, always 2.

uint8_t reserved0

Reserved field.

uint16_t message_length

Total length of the message from the header to the last TLV.

uint8_t domain_number

Domain number, always 0.

uint8_t reserved1

Reserved field.

struct gptp_flags flags

Message flags.

int64_t correction_field

Correction Field. The content depends of the message type.

7.20. Networking 1097

Zephyr Project Documentation, Release 2.7.0-rc2

uint32_t reserved2

Reserved field.

struct gptp_port_identity port_id

Port Identity of the sender.

uint16_t sequence_id

Sequence Id.

uint8_t control

Control value. Sync: 0, Follow-up: 2, Others: 5.

int8_t log_msg_interval

Message Interval in Log2 for Sync and Announce messages.

struct gptp_phase_dis_cb

#include <gptp.h> Phase discontinuity callback structure.

Stores the phase discontinuity callback information. Caller must make sure that the vari-
able pointed by this is valid during the lifetime of registration. Typically this means that the
variable cannot be allocated from stack.

Public Members

sys_snode_t node

Node information for the slist.

gptp_phase_dis_callback_t cb

Phase discontinuity callback.

struct gptp_clk_src_time_invoke_params

#include <gptp.h> ClockSourceTime.invoke function parameters.

Parameters passed by ClockSourceTime.invoke function.

Public Members

double last_gm_freq_change

Frequency change on the last Time Base Indicator Change.

struct net_ptp_extended_time src_time

The time this function is invoked.

struct gptp_scaled_ns last_gm_phase_change

Phase change on the last Time Base Indicator Change.

uint16_t time_base_indicator

Time Base - changed only if Phase or Frequency changes.

1098 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Precision Time Protocol (PTP) time format

• Overview

• API Reference

Overview The PTP time struct can store time information in high precision format (nanoseconds). The
extended timestamp format can store the time in fractional nanoseconds accuracy. The PTP time format
is used in generic Precision Time Protocol (gPTP) implementation.

API Reference

group ptp_time

Precision Time Protocol time specification.

struct net_ptp_time

#include <ptp_time.h> Precision Time Protocol Timestamp format.

This structure represents a timestamp according to the Precision Time Protocol standard.

Seconds are encoded as a 48 bits unsigned integer. Nanoseconds are encoded as a 32 bits
unsigned integer.

Public Members

union net_ptp_time.[anonymous] [anonymous]

Seconds encoded on 48 bits.

uint32_t nanosecond

Nanoseconds.

struct net_ptp_extended_time

#include <ptp_time.h> Precision Time Protocol Extended Timestamp format.

This structure represents an extended timestamp according to the Precision Time Protocol
standard.

Seconds are encoded as 48 bits unsigned integer. Fractional nanoseconds are encoded as 48
bits, their unit is 2*(-16) ns.

Public Members

union net_ptp_extended_time.[anonymous] [anonymous]

Seconds encoded on 48 bits.

union net_ptp_extended_time.[anonymous] [anonymous]

Fractional nanoseconds on 48 bits.

7.20. Networking 1099

Zephyr Project Documentation, Release 2.7.0-rc2

7.20.7 Controller Area Network

Controller Area Network (CAN)

• Overview

• Sending

• Receiving

• Setting the bitrate

• SocketCAN

• Samples

• API Reference

Overview Controller Area Network is a two-wire serial bus specified by the Bosch CAN Specification,
Bosch CAN with Flexible Data-Rate specification and the ISO 11898-1:2003 standard. CAN is mostly
known for its application in the automotive domain. However, it is also used in home and industrial
automation and other products.

A CAN transceiver is an external device that converts the logic level signals from the CAN controller to
the bus-levels. The bus lines are called CAN High (CAN H) and CAN Low (CAN L). The transmit wire
from the controller to the transceiver is called CAN TX, and the receive wire is called CAN RX. These
wires use the logic levels whereas the bus-level is interpreted differentially between CAN H and CAN L.
The bus can be either in the recessive (logical one) or dominant (logical zero) state. The recessive state
is when both lines, CAN H and CAN L, at roughly at the same voltage level. This state is also the idle
state. To write a dominant bit to the bus, open-drain transistors tie CAN H to Vdd and CAN L to ground.
The first and last node use a 120-ohm resistor between CAN H and CAN L to terminate the bus. The
dominant state always overrides the recessive state. This structure is called a wired-AND.

Warning: CAN controllers can only initialize when the bus is in the idle (recessive) state for at least
11 recessive bits. Therefore you have to make sure that CAN RX is high, at least for a short time. This
is also necessary for loopback mode.

The bit-timing as defined in ISO 11898-1:2003 looks as following:

1100 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

A single bit is split into four segments.

• Sync_Seg: The nodes synchronize at the edge of the Sync_Seg. It is always one time quantum in
length.

• Prop_Seg: The signal propagation delay of the bus and other delays of the transceiver and node.

• Phase_Seg1 and Phase_Seg2 :Define the sampling point. The bit is sampled at the end of
Phase_Seg1.

The bit-rate is calculated from the time of a time quantum and the values defined above. A bit has the
length of Sync_Seg plus Prop_Seg plus Phase_Seg1 plus Phase_Seg2 multiplied by the time of single time
quantum. The bit-rate is the inverse of the length of a single bit.

A bit is sampled at the sampling point. The sample point is between Phase_Seg1 and PhaseSeg2 and
therefore is a parameter that the user needs to choose. The CiA recommends setting the sample point to
87.5% of the bit.

The resynchronization jump width (SJW) defines the amount of time quantum the sample point can be
moved. The sample point is moved when resynchronization is needed.

The timing parameters (SJW, bitrate and sampling point, or bitrate, Prop_Seg, Phase_Seg1and
Phase_Seg2) are initially set from the device-tree and can be changed at run-time from the timing-API.

CAN uses so-called identifiers to identify the frame instead of addresses to identify a node. This identifier
can either have 11-bit width (Standard or Basic Frame) or 29-bit in case of an Extended Frame. The
Zephyr CAN API supports both Standard and Extended identifiers concurrently. A CAN frame starts with
a dominant Start Of Frame bit. After that, the identifiers follow. This phase is called the arbitration phase.
During the arbitration phase, write collisions are allowed. They resolve by the fact that dominant bits
override recessive bits. Nodes monitor the bus and notice when their transmission is being overridden
and in case, abort their transmission. This effectively gives lower number identifiers priority over higher
number identifiers.

Filters are used to whitelist identifiers that are of interest for the specific node. An identifier that doesn’t
match any filter is ignored. Filters can either match exactly or a specified part of the identifier. This
method is called masking. As an example, a mask with 11 bits set for standard or 29 bits set for extended
identifiers must match perfectly. Bits that are set to zero in the mask are ignored when matching an
identifier. Most CAN controllers implement a limited number of filters in hardware. The number of
filters is also limited in Kconfig to save memory.

Errors may occur during transmission. In case a node detects an erroneous frame, it partially overrides
the current frame with an error-frame. Error-frames can either be error passive or error active, depending
on the state of the controller. In case the controller is in error active state, it sends six consecutive
dominant bits, which is a violation of the stuffing rule that all nodes can detect. The sender may resend
the frame right after.

An initialized node can be in one of the following states:

• Error-active

• Error-passive

• Bus-off

After initialization, the node is in the error-active state. In this state, the node is allowed to send active
error frames, ACK, and overload frames. Every node has a receive- and transmit-error counter. If either
the receive- or the transmit-error counter exceeds 127, the node changes to error-passive state. In this
state, the node is not allowed to send error-active frames anymore. If the transmit-error counter increases
further to 255, the node changes to the bus-off state. In this state, the node is not allowed to send any
dominant bits to the bus. Nodes in the bus-off state may recover after receiving 128 occurrences of 11
concurrent recessive bits.

7.20. Networking 1101

Zephyr Project Documentation, Release 2.7.0-rc2

You can read more about CAN bus in this CAN Wikipedia article.

Zephyr supports following CAN features:

• Standard and Extended Identifers

• Filters with Masking

• Loopback and Silent mode

• Remote Request

Sending The following code snippets show how to send data.

This basic sample sends a CAN frame with standard identifier 0x123 and eight bytes of data. When
passing NULL as the callback, as shown in this example, the send function blocks until the frame is sent
and acknowledged by at least one other node or an error occurred. The timeout only takes effect on
acquiring a mailbox. When a transmitting mailbox is assigned, sending cannot be canceled.

struct zcan_frame frame = {
.id_type = CAN_STANDARD_IDENTIFIER,
.rtr = CAN_DATAFRAME,
.id = 0x123,
.dlc = 8,
.data = {1,2,3,4,5,6,7,8}

};
const struct device *can_dev;
int ret;

can_dev = device_get_binding("CAN_0");

ret = can_send(can_dev, &frame, K_MSEC(100), NULL, NULL);
if (ret != CAN_TX_OK) {

LOG_ERR("Sending failed [%d]", ret);
}

This example shows how to send a frame with extended identifier 0x1234567 and two bytes of data.
The provided callback is called when the message is sent, or an error occurred. Passing K_FOREVER to
the timeout causes the function to block until a transfer mailbox is assigned to the frame or an error
occurred. It does not block until the message is sent like the example above.

void tx_irq_callback(uint32_t error_flags, void *arg)
{

char *sender = (char *)arg;

if (error_flags) {
LOG_ERR("Sendig failed [%d]\nSender: %s\n", error_flags, sender);

}
}

int send_function(const struct device *can_dev)
{

struct zcan_frame frame = {
.id_type = CAN_EXTENDED_IDENTIFIER,
.rtr = CAN_DATAFRAME,
.id = 0x1234567,
.dlc = 2

};

frame.data[0] = 1;
(continues on next page)

1102 Chapter 7. API Reference

https://en.wikipedia.org/wiki/CAN_bus

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

frame.data[1] = 2;

return can_send(can_dev, &frame, K_FOREVER, tx_irq_callback, "Sender 1");
}

Receiving Frames are only received when they match a filter. The following code snippets show how
to receive frames by attaching filters.

Here we have an example for a receiving callback. It is used for can_attach_isr or can_attach_workq .
The argument arg is passed when the filter is attached.

void rx_callback_function(struct zcan_frame *frame, void *arg)
{

... do something with the frame ...
}

The following snippet shows how to attach a filter with an interrupt callback. It is the most efficient but
also the most critical way to receive messages. The callback function is called from an interrupt context,
which means that the callback function should be as short as possible and must not block. Attaching
ISRs is not allowed from userspace context.

The filter for this example is configured to match the identifier 0x123 exactly.

const struct zcan_filter my_filter = {
.id_type = CAN_STANDARD_IDENTIFIER,
.rtr = CAN_DATAFRAME,
.id = 0x123,
.rtr_mask = 1,
.id_mask = CAN_STD_ID_MASK

};
int filter_id;
const struct device *can_dev;

can_dev = device_get_binding("CAN_0");

filter_id = can_attach_isr(can_dev, rx_callback_function, callback_arg, &my_filter);
if (filter_id < 0) {

LOG_ERR("Unable to attach isr [%d]", filter_id);
}

This example shows how to attach a callback from a work-queue. In contrast to the can_attach_isr
function, here the callback is called from the work-queue provided. In this case, it is the system work
queue. Blocking is generally allowed in the callback but could result in a frame backlog when it is not
limited. For the reason of a backlog, a ring-buffer is applied for every attached filter. The size of this
buffer can be adjusted in Kconfig. This function is not yet callable from userspace context but will be in
the future.

The filter for this example is configured to match a filter range from 0x120 to x12f.

const struct zcan_filter my_filter = {
.id_type = CAN_STANDARD_IDENTIFIER,
.rtr = CAN_DATAFRAME,
.id = 0x120,
.rtr_mask = 1,
.id_mask = 0x7F0

};
struct zcan_work rx_work;

(continues on next page)

7.20. Networking 1103

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

int filter_id;
const struct device *can_dev;

can_dev = device_get_binding("CAN_0");

filter_id = can_attach_workq(can_dev, &k_sys_work_q, &rx_work, callback_arg, callback_
→˓arg, &my_filter);
if (filter_id < 0) {

LOG_ERR("Unable to attach isr [%d]", filter_id);
}

Here an example for can_attach_msgq is shown. With this function, it is possible to receive frames
synchronously. This function can be called from userspace context. The size of the message queue
should be as big as the expected backlog.

The filter for this example is configured to match the extended identifier 0x1234567 exactly.

const struct zcan_filter my_filter = {
.id_type = CAN_EXTENDED_IDENTIFIER,
.rtr = CAN_DATAFRAME,
.id = 0x1234567,
.rtr_mask = 1,
.id_mask = CAN_EXT_ID_MASK

};
CAN_DEFINE_MSGQ(my_can_msgq, 2);
struct zcan_frame rx_frame;
int filter_id;
const struct device *can_dev;

can_dev = device_get_binding("CAN_0");

filter_id = can_attach_msgq(can_dev, &my_can_msgq, &my_filter);
if (filter_id < 0) {

LOG_ERR("Unable to attach isr [%d]", filter_id);
return;

}

while (true) {
k_msgq_get(&my_can_msgq, &rx_frame, K_FOREVER);
... do something with the frame ...

}

can_detach removes the given filter.

can_detach(can_dev, filter_id);

Setting the bitrate The bitrate and sampling point is initially set at runtime. To change it from the
application, one can use the can_set_timing API. This function takes three arguments. The first timing
parameter sets the timing for classic CAN and arbitration phase for CAN-FD. The second parameter sets
the timing of the data phase for CAN-FD. For classic CAN, you can use only the first parameter and
put NULL to the second one. The can_calc_timing function can calculate timing from a bitrate and
sampling point in permille. The following example sets the bitrate to 250k baud with the sampling point
at 87.5%.

struct can_timing timing;
const struct device *can_dev;

(continues on next page)

1104 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

int ret;

can_dev = device_get_binding("CAN_0");

ret = can_calc_timing(can_dev, &timing, 250000, 875);
if (ret > 0) {

LOG_INF("Sample-Point error: %d", ret);
}

if (ret < 0) {
LOG_ERR("Failed to calc a valid timing");
return;

}

ret = can_set_timing(can_dev, &timing, NULL);
if (ret != 0) {

LOG_ERR("Failed to set timing");
}

SocketCAN Zephyr additionally supports SocketCAN, a BSD socket implementation of the Zephyr CAN
API. SocketCAN brings the convenience of the well-known BSD Socket API to Controller Area Networks.
It is compatible with the Linux SocketCAN implementation, where many other high-level CAN projects
build on top. Note that frames are routed to the network stack instead of passed directly, which adds
some computation and memory overhead.

Samples We have two ready-to-build samples demonstrating use of the Zephyr CAN API Zephyr CAN
sample and SocketCAN sample.

API Reference

group can_interface

CAN Interface.

Defines

CAN_EX_ID

CAN_MAX_STD_ID

CAN_STD_ID_MASK

CAN_EXT_ID_MASK

CAN_MAX_DLC

CANFD_MAX_DLC

CAN_MAX_DLEN

7.20. Networking 1105

Zephyr Project Documentation, Release 2.7.0-rc2

CAN_TX_OK

send successfully

CAN_TX_ERR

general send error

CAN_TX_ARB_LOST

bus arbitration lost during sending

CAN_TX_BUS_OFF

controller is in bus off state

CAN_TX_UNKNOWN

unexpected error

CAN_TX_EINVAL

invalid parameter

CAN_NO_FREE_FILTER

attach_* failed because there is no unused filter left

CAN_TIMEOUT

operation timed out

CAN_DEFINE_MSGQ(name, size)

Statically define and initialize a can message queue.

The message queue’s ring buffer contains space for size messages.

Parameters

• name – Name of the message queue.

• size – Number of can messages.

CAN_SJW_NO_CHANGE

SWJ value to indicate that the SJW should not be changed

CONFIG_CAN_WORKQ_FRAMES_BUF_CNT

Typedefs

typedef uint32_t canid_t

typedef void (*can_tx_callback_t)(uint32_t error_flags, void *arg)

Define the application callback handler function signature.

Param error_flags status of the performed send operation

Param arg argument that was passed when the message was sent

1106 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

typedef void (*can_rx_callback_t)(struct zcan_frame *msg, void *arg)

Define the application callback handler function signature for receiving.

Param msg received message

Param arg argument that was passed when the filter was attached

typedef void (*can_state_change_isr_t)(enum can_state state, struct can_bus_err_cnt err_cnt)

Defines the state change isr handler function signature.

Param state state of the node

Param err_cnt struct with the error counter values

typedef int (*can_set_timing_t)(const struct device *dev, const struct can_timing *timing, const
struct can_timing *timing_data)

typedef int (*can_set_mode_t)(const struct device *dev, enum can_mode mode)

typedef int (*can_send_t)(const struct device *dev, const struct zcan_frame *msg, k_timeout_t
timeout, can_tx_callback_t callback_isr, void *callback_arg)

typedef int (*can_attach_msgq_t)(const struct device *dev, struct k_msgq *msg_q, const struct
zcan_filter *filter)

typedef int (*can_attach_isr_t)(const struct device *dev, can_rx_callback_t isr, void
*callback_arg, const struct zcan_filter *filter)

typedef void (*can_detach_t)(const struct device *dev, int filter_id)

typedef int (*can_recover_t)(const struct device *dev, k_timeout_t timeout)

typedef enum can_state (*can_get_state_t)(const struct device *dev, struct can_bus_err_cnt
*err_cnt)

typedef void (*can_register_state_change_isr_t)(const struct device *dev,
can_state_change_isr_t isr)

typedef int (*can_get_core_clock_t)(const struct device *dev, uint32_t *rate)

Enums

enum can_ide

can_ide enum Define if the message has a standard (11bit) or extended (29bit) identifier

Values:

enumerator CAN_STANDARD_IDENTIFIER

enumerator CAN_EXTENDED_IDENTIFIER

7.20. Networking 1107

Zephyr Project Documentation, Release 2.7.0-rc2

enum can_rtr

can_rtr enum Define if the message is a data or remote frame

Values:

enumerator CAN_DATAFRAME

enumerator CAN_REMOTEREQUEST

enum can_mode

can_mode enum Defines the mode of the can controller

Values:

enumerator CAN_NORMAL_MODE

enumerator CAN_SILENT_MODE

enumerator CAN_LOOPBACK_MODE

enumerator CAN_SILENT_LOOPBACK_MODE

enum can_state

can_state enum Defines the possible states of the CAN bus

Values:

enumerator CAN_ERROR_ACTIVE

enumerator CAN_ERROR_PASSIVE

enumerator CAN_BUS_OFF

enumerator CAN_BUS_UNKNOWN

Functions

static inline uint8_t can_dlc_to_bytes(uint8_t dlc)

Convert the DLC to the number of bytes.

This function converts a the Data Length Code to the number of bytes.

Parameters

• dlc – The Data Length Code

Return values Number – of bytes

static inline uint8_t can_bytes_to_dlc(uint8_t num_bytes)

Convert a number of bytes to the DLC.

This function converts a number of bytes to the Data Length Code

Parameters

1108 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• num_bytes – The number of bytes

Return values The – DLC

int can_send(const struct device *dev, const struct zcan_frame *msg, k_timeout_t timeout,
can_tx_callback_t callback_isr, void *callback_arg)

Perform data transfer to CAN bus.

This routine provides a generic interface to perform data transfer to the can bus. Use
can_write() for simple write.

•

Parameters

• dev – Pointer to the device structure for the driver instance.

• msg – Message to transfer.

• timeout – Waiting for empty tx mailbox timeout or K_FOREVER.

• callback_isr – Is called when message was sent or a transmission error oc-
curred. If NULL, this function is blocking until message is sent. This must be
NULL if called from user mode.

• callback_arg – This will be passed whenever the isr is called.

Return values

• 0 – If successful.

• CAN_TX_* – on failure.

static inline int can_write(const struct device *dev, const uint8_t *data, uint8_t length, uint32_t
id, enum can_rtr rtr, k_timeout_t timeout)

Write a set amount of data to the can bus.

This routine writes a set amount of data synchronously.

Parameters

• dev – Pointer to the device structure for the driver instance.

• data – Data to send.

• length – Number of bytes to write (max. 8).

• id – Identifier of the can message.

• rtr – Send remote transmission request or data frame

• timeout – Waiting for empty tx mailbox timeout or K_FOREVER

Return values

• 0 – If successful.

• -EIO – General input / output error.

• -EINVAL – if length > 8.

int can_attach_workq(const struct device *dev, struct k_work_q *work_q, struct zcan_work
*work, can_rx_callback_t callback, void *callback_arg, const struct
zcan_filter *filter)

Attach a CAN work queue to a single or group of identifiers.

This routine attaches a work queue to identifiers specified by a filter. Whenever the filter
matches, the message is pushed to the buffer of the zcan_work structure and the work element
is put to the workqueue. If a message passes more than one filter the priority of the match is

7.20. Networking 1109

Zephyr Project Documentation, Release 2.7.0-rc2

hardware dependent. A CAN work queue can be attached to more than one filter. The work
queue must be initialized before and the caller must have appropriate permissions on it.

Parameters

• dev – Pointer to the device structure for the driver instance.

• work_q – Pointer to the already initialized work queue.

• work – Pointer to a zcan_work. The work will be initialized.

• callback – This function is called by workq whenever a message arrives.

• callback_arg – Is passed to the callback when called.

• filter – Pointer to a zcan_filter structure defining the id filtering.

Return values

• filter_id – on success.

• CAN_NO_FREE_FILTER – if there is no filter left.

int can_attach_msgq(const struct device *dev, struct k_msgq *msg_q, const struct zcan_filter
*filter)

Attach a message queue to a single or group of identifiers.

This routine attaches a message queue to identifiers specified by a filter. Whenever the filter
matches, the message is pushed to the queue If a message passes more than one filter the
priority of the match is hardware dependent. A message queue can be attached to more than
one filter. The message queue must me initialized before, and the caller must have appropriate
permissions on it.

Parameters

• dev – Pointer to the device structure for the driver instance.

• msg_q – Pointer to the already initialized message queue.

• filter – Pointer to a zcan_filter structure defining the id filtering.

Return values

• filter_id – on success.

• CAN_NO_FREE_FILTER – if there is no filter left.

static inline int can_attach_isr(const struct device *dev, can_rx_callback_t isr, void
*callback_arg, const struct zcan_filter *filter)

Attach an isr callback function to a single or group of identifiers.

This routine attaches an isr callback to identifiers specified by a filter. Whenever the filter
matches, the callback function is called with isr context. If a message passes more than one
filter the priority of the match is hardware dependent. A callback function can be attached to
more than one filter.

•

Parameters

• dev – Pointer to the device structure for the driver instance.

• isr – Callback function pointer.

• callback_arg – This will be passed whenever the isr is called.

• filter – Pointer to a zcan_filter structure defining the id filtering.

Return values

• filter_id – on success.

1110 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• CAN_NO_FREE_FILTER – if there is no filter left.

void can_detach(const struct device *dev, int filter_id)
Detach an isr or message queue from the identifier filtering.

This routine detaches an isr callback or message queue from the identifier filtering.

•

Parameters

• dev – Pointer to the device structure for the driver instance.

• filter_id – filter id returned by can_attach_isr or can_attach_msgq.

Return values none –

int can_get_core_clock(const struct device *dev, uint32_t *rate)
Read the core clock value.

Returns the core clock value. One time quantum is 1/core clock.

Parameters

• dev – Pointer to the device structure for the driver instance.

• rate – [out] controller clock rate

Return values

• 0 – on success

• negative – on error

int can_calc_timing(const struct device *dev, struct can_timing *res, uint32_t bitrate, uint16_t
sample_pnt)

Calculate timing parameters from bitrate and sample point.

Calculate the timing parameters from a given bitrate in bits/s and the sampling point in per-
mill (1/1000) of the entire bit time. The bitrate must alway match perfectly. If no result
can be given for the, give parameters, -EINVAL is returned. The sample_pnt does not always
match perfectly. The algorithm tries to find the best match possible.

Parameters

• dev – Pointer to the device structure for the driver instance.

• res – Result is written into the can_timing struct provided.

• bitrate – Target bitrate in bits/s

• sample_pnt – Sampling point in permill of the entire bit time.

Return values

• Positive – sample point error on success

• -EINVAL – if there is no solution for the desired values

• -EIO – if core_clock is not available

int can_calc_prescaler(const struct device *dev, struct can_timing *timing, uint32_t bitrate)
Fill in the prescaler value for a given bitrate and timing.

Fill the prescaler value in the timing struct. sjw, prop_seg, phase_seg1 and phase_seg2 must
be given. The returned bitrate error is reminder of the devision of the clockrate by the bitrate
times the timing segments.

Parameters

• dev – Pointer to the device structure for the driver instance.

7.20. Networking 1111

Zephyr Project Documentation, Release 2.7.0-rc2

• timing – Result is written into the can_timing struct provided.

• bitrate – Target bitrate.

Return values

• bitrate – error

• negative – on error

int can_set_mode(const struct device *dev, enum can_mode mode)

Set the controller to the given mode.

Parameters

• dev – Pointer to the device structure for the driver instance.

• mode – Operation mode

Return values

• 0 – If successful.

• -EIO – General input / output error, failed to configure device.

int can_set_timing(const struct device *dev, const struct can_timing *timing, const struct
can_timing *timing_data)

Configure timing of a host controller.

If the sjw equals CAN_SJW_NO_CHANGE, the sjw parameter is not changed.

The second parameter timing_data is only relevant for CAN-FD. If the controller does not
support CAN-FD or the FD mode is not enabled, this parameter is ignored.

Parameters

• dev – Pointer to the device structure for the driver instance.

• timing – Bus timings

• timing_data – Bus timings for data phase (CAN-FD only)

Return values

• 0 – If successful.

• -EIO – General input / output error, failed to configure device.

static inline int can_set_bitrate(const struct device *dev, uint32_t bitrate, uint32_t bitrate_data)

Set the bitrate of the CAN controller.

The second parameter bitrate_data is only relevant for CAN-FD. If the controller does not
support CAN-FD or the FD mode is not enabled, this parameter is ignored. The sample point
is set to the CiA DS 301 reccommended value of 87.5%

Parameters

• dev – Pointer to the device structure for the driver instance.

• bitrate – Desired arbitration phase bitrate

• bitrate_data – Desired data phase bitrate

Return values

• 0 – If successful.

• -EINVAL – bitrate cannot be reached.

• -EIO – General input / output error, failed to set bitrate.

1112 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline int can_configure(const struct device *dev, enum can_mode mode, uint32_t bitrate)

Configure operation of a host controller.

Parameters

• dev – Pointer to the device structure for the driver instance.

• mode – Operation mode

• bitrate – bus-speed in Baud/s

Return values

• 0 – If successful.

• -EIO – General input / output error, failed to configure device.

enum can_state can_get_state(const struct device *dev, struct can_bus_err_cnt *err_cnt)

Get current state.

Returns the actual state of the CAN controller.

Parameters

• dev – Pointer to the device structure for the driver instance.

• err_cnt – Pointer to the err_cnt destination structure or NULL.

Return values state –

int can_recover(const struct device *dev, k_timeout_t timeout)

Recover from bus-off state.

Recover the CAN controller from bus-off state to error-active state.

Parameters

• dev – Pointer to the device structure for the driver instance.

• timeout – Timeout for waiting for the recovery or K_FOREVER.

Return values

• 0 – on success.

• CAN_TIMEOUT – on timeout.

static inline void can_register_state_change_isr(const struct device *dev,
can_state_change_isr_t isr)

Register an ISR callback for state change interrupt.

Only one callback can be registered per controller. Calling this function again, overrides the
previous call.

Parameters

• dev – Pointer to the device structure for the driver instance.

• isr – Pointer to ISR

static inline void can_copy_frame_to_zframe(const struct can_frame *frame, struct zcan_frame
*zframe)

Converter that translates between can_frame and zcan_frame structs.

Parameters

• frame – Pointer to can_frame struct.

• zframe – Pointer to zcan_frame struct.

7.20. Networking 1113

Zephyr Project Documentation, Release 2.7.0-rc2

static inline void can_copy_zframe_to_frame(const struct zcan_frame *zframe, struct can_frame
*frame)

Converter that translates between zcan_frame and can_frame structs.

Parameters

• zframe – Pointer to zcan_frame struct.

• frame – Pointer to can_frame struct.

static inline void can_copy_filter_to_zfilter(const struct can_filter *filter, struct zcan_filter
*zfilter)

Converter that translates between can_filter and zcan_frame_filter structs.

Parameters

• filter – Pointer to can_filter struct.

• zfilter – Pointer to zcan_frame_filter struct.

static inline void can_copy_zfilter_to_filter(const struct zcan_filter *zfilter, struct can_filter
*filter)

Converter that translates between zcan_filter and can_filter structs.

Parameters

• zfilter – Pointer to zcan_filter struct.

• filter – Pointer to can_filter struct.

struct can_frame

#include <can.h> CAN frame structure that is compatible with Linux. This is mainly used by
Socket CAN code.

Used to pass CAN messages from userspace to the socket CAN and vice versa.

Public Members

canid_t can_id

32 bit CAN_ID + EFF/RTR/ERR flags

uint8_t can_dlc

The length of the message

uint8_t data[8]

The message data

struct can_filter

#include <can.h> CAN filter that is compatible with Linux. This is mainly used by Socket
CAN code.

A filter matches, when “received_can_id & mask == can_id & mask”

struct zcan_frame

#include <can.h> CAN message structure.

Used to pass can messages from userspace to the driver and from driver to userspace

1114 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Public Members

uint32_t id

Message identifier

uint32_t fd

Frame is in the CAN-FD frame format

uint32_t rtr

Set the message to a transmission request instead of data frame use can_rtr enum for
assignment

uint32_t id_type

Indicates the identifier type (standard or extended) use can_ide enum for assignment

uint8_t dlc

The length of the message (max. 8) in byte

uint8_t brs

Baud Rate Switch. Frame transfer with different timing during the data phase. Only valid
for CAN-FD

uint8_t res

Reserved for future flags

union zcan_frame.[anonymous] [anonymous]

The frame payload data.

struct zcan_filter

#include <can.h> CAN filter structure.

Used to pass can identifier filter information to the driver. rtr_mask and *_id_mask are used
to mask bits of the rtr and id fields. If the mask bit is 0, the value of the corresponding bit in
the id or rtr field don’t care for the filter matching.

Public Members

uint32_t id

target state of the identifier

uint32_t rtr

target state of the rtr bit

uint32_t id_type

Indicates the identifier type (standard or extended) use can_ide enum for assignment

uint32_t id_mask

identifier mask

7.20. Networking 1115

Zephyr Project Documentation, Release 2.7.0-rc2

uint32_t rtr_mask

rtr bit mask

struct can_bus_err_cnt

#include <can.h> can bus error count structure

Used to pass the bus error counters to userspace

struct can_timing

#include <can.h> canbus timings

Used to pass bus timing values to the config and bitrate calculator function.

The propagation segment represents the time of the signal propagation. Phase segment
1 and phase segment 2 define the sampling point. prop_seg and phase_seg1 affect the
sampling-point in the same way and some controllers only have a register for the sum
of those two. The sync segment always has a length of 1 tq +———+——-
—+————+————+ |sync_seg | prop_seg | phase_seg1 |
phase_seg2 | +———+——-—+————+————+ ^
Sampling-Point 1 tq (time quantum) has the length of 1/(core_clock / prescaler) The bitrate
is defined by the core clock divided by the prescaler and the sum of the segments. br =
(core_clock / prescaler) / (1 + prop_seg + phase_seg1 + phase_seg2) The resynchronization
jump width (SJW) defines the amount of time quantum the sample point can be moved. The
sample point is moved when resynchronization is needed.

Public Members

uint16_t sjw

Synchronisation jump width

uint16_t prop_seg

Propagation Segment

uint16_t phase_seg1

Phase Segment 1

uint16_t phase_seg2

Phase Segment 2

uint16_t prescaler

Prescaler value

struct can_frame_buffer

#include <can.h>

struct zcan_work

#include <can.h> CAN work structure.

Used to attach a work queue to a filter.

struct can_driver_api

#include <can.h>

1116 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

ISO-TP Transport Protocol

• Overview

• API Reference

Overview ISO-TP is a transport protocol defined in the ISO-Standard ISO15765-2 Road vehicles - Di-
agnostic communication over Controller Area Network (DoCAN). Part2: Transport protocol and network
layer services. As its name already implies, it is originally designed, and still used in road vehicle diag-
nostic over Controller Area Networks. Nevertheless, it’s not limited to applications in road vehicles or
the automotive domain.

This transport protocol extends the limited payload data size for classical CAN (8 bytes) and CAN-FD (64
bytes) to theoretically four gigabytes. Additionally, it adds a flow control mechanism to influence the
sender’s behavior. ISO-TP segments packets into small fragments depending on the payload size of the
CAN frame. The header of those segments is called Protocol Control Information (PCI).

Packets smaller or equal to seven bytes on Classical CAN are called single-frames (SF). They don’t need
to fragment and do not have any flow-control.

Packets larger than that are segmented into a first-frame (FF) and as many consecutive-frames as re-
quired. The FF contains information about the length of the entire payload data and additionally, the
first few bytes of payload data. The receiving peer sends back a flow-control-frame (FC) to either deny,
postpone, or accept the following consecutive frames. The FC also defines the conditions of sending,
namely the block-size (BS) and the minimum separation time between frames (STmin). The block size
defines how many CF the sender is allowed to send, before he has to wait for another FC.

API Reference

group can_isotp

CAN ISO-TP Interf.

Defines

ISOTP_N_OK

Completed successfully

ISOTP_N_TIMEOUT_A

Ar/As has timed out

ISOTP_N_TIMEOUT_BS

Reception of next FC has timed out

ISOTP_N_TIMEOUT_CR

Cr has timed out

7.20. Networking 1117

Zephyr Project Documentation, Release 2.7.0-rc2

ISOTP_N_WRONG_SN

Unexpected sequence number

ISOTP_N_INVALID_FS

Invalid flow status received

ISOTP_N_UNEXP_PDU

Unexpected PDU received

ISOTP_N_WFT_OVRN

Maximum number of WAIT flowStatus PDUs exceeded

ISOTP_N_BUFFER_OVERFLW

FlowStatus OVFLW PDU was received

ISOTP_N_ERROR

General error

ISOTP_NO_FREE_FILTER

Implementation specific errors Can’t bind or send because the CAN device has no filter left

ISOTP_NO_NET_BUF_LEFT

No net buffer left to allocate

ISOTP_NO_BUF_DATA_LEFT

Not sufficient space in the buffer left for the data

ISOTP_NO_CTX_LEFT

No context buffer left to allocate

ISOTP_RECV_TIMEOUT

Timeout for recv

ISOTP_FIXED_ADDR_SA_POS

Position of fixed source address (SA)

ISOTP_FIXED_ADDR_SA_MASK

Mask to obtain fixed source address (SA)

ISOTP_FIXED_ADDR_TA_POS

Position of fixed target address (TA)

ISOTP_FIXED_ADDR_TA_MASK

Mask to obtain fixed target address (TA)

ISOTP_FIXED_ADDR_PRIO_POS

Position of priority in fixed addressing mode

1118 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

ISOTP_FIXED_ADDR_PRIO_MASK

Mask for priority in fixed addressing mode

ISOTP_FIXED_ADDR_RX_MASK

Typedefs

typedef void (*isotp_tx_callback_t)(int error_nr, void *arg)

Functions

int isotp_bind(struct isotp_recv_ctx *ctx, const struct device *can_dev, const struct isotp_msg_id
*rx_addr, const struct isotp_msg_id *tx_addr, const struct isotp_fc_opts *opts,
k_timeout_t timeout)

Bind an address to a receiving context.

This function binds an RX and TX address combination to an RX context. When data arrives
from the specified address, it is buffered and can be read by calling isotp_recv. When calling
this routine, a filter is applied in the CAN device, and the context is initialized. The context
must be valid until calling unbind.

Parameters

• ctx – Context to store the internal states.

• can_dev – The CAN device to be used for sending and receiving.

• rx_addr – Identifier for incoming data.

• tx_addr – Identifier for FC frames.

• opts – Flow control options.

• timeout – Timeout for FF SF buffer allocation.

Return values

• ISOTP_N_OK – on success

• ISOTP_NO_FREE_FILTER – if CAN device has no filters left.

void isotp_unbind(struct isotp_recv_ctx *ctx)

Unbind a context from the interface.

This function removes the binding from isotp_bind. The filter is detached from the CAN
device, and if a transmission is ongoing, buffers are freed. The context can be discarded
safely after calling this function.

Parameters

• ctx – Context that should be unbound.

int isotp_recv(struct isotp_recv_ctx *ctx, uint8_t *data, size_t len, k_timeout_t timeout)

Read out received data from fifo.

This function reads the data from the receive FIFO of the context. It blocks if the FIFO is
empty. If an error occurs, the function returns a negative number and leaves the data buffer
unchanged.

Parameters

• ctx – Context that is already bound.

7.20. Networking 1119

Zephyr Project Documentation, Release 2.7.0-rc2

• data – Pointer to a buffer where the data is copied to.

• len – Size of the buffer.

• timeout – Timeout for incoming data.

Return values

• Number – of bytes copied on success

• ISOTP_WAIT_TIMEOUT – when “timeout” timed out

• ISOTP_N_* – on error

int isotp_recv_net(struct isotp_recv_ctx *ctx, struct net_buf **buffer, k_timeout_t timeout)

Get the net buffer on data reception.

This function reads incoming data into net-buffers. It blocks until the entire packet is received,
BS is reached, or an error occurred. If BS was zero, the data is in a single net_buf . Otherwise,
the data is fragmented in chunks of BS size. The net-buffers are referenced and must be freed
with net_buf_unref after the data is processed.

Parameters

• ctx – Context that is already bound.

• buffer – Pointer where the net_buf pointer is written to.

• timeout – Timeout for incoming data.

Return values

• Remaining – data length for this transfer if BS > 0, 0 for BS = 0

• ISOTP_WAIT_TIMEOUT – when “timeout” timed out

• ISOTP_N_* – on error

int isotp_send(struct isotp_send_ctx *ctx, const struct device *can_dev, const uint8_t *data,
size_t len, const struct isotp_msg_id *tx_addr, const struct isotp_msg_id *rx_addr,
isotp_tx_callback_t complete_cb, void *cb_arg)

Send data.

This function is used to send data to a peer that listens to the tx_addr. An internal work-queue
is used to transfer the segmented data. Data and context must be valid until the transmission
has finished. If a complete_cb is given, this function is non-blocking, and the callback is called
on completion with the return value as a parameter.

Parameters

• ctx – Context to store the internal states.

• can_dev – The CAN device to be used for sending and receiving.

• data – Data to be sent.

• len – Length of the data to be sent.

• rx_addr – Identifier for FC frames.

• tx_addr – Identifier for outgoing frames the receiver listens on.

• complete_cb – Function called on completion or NULL.

• cb_arg – Argument passed to the complete callback.

Return values

• ISOTP_N_OK – on success

• ISOTP_N_* – on error

1120 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

struct isotp_msg_id

#include <isotp.h> ISO-TP message id struct.

Used to pass addresses to the bind and send functions.

Public Members

union isotp_msg_id.[anonymous] [anonymous]

CAN identifier

If ISO-TP fixed addressing is used, isotp_bind ignores SA and priority sections and modi-
fies TA section in flow control frames.

uint8_t ext_addr

ISO-TP extended address (if used)

uint8_t id_type

Indicates the CAN identifier type (standard or extended)

uint8_t use_ext_addr

Indicates if ISO-TP extended addressing is used

uint8_t use_fixed_addr

Indicates if ISO-TP fixed addressing (acc. to SAE J1939) is used

struct isotp_fc_opts

#include <isotp.h> ISO-TP frame control options struct.

Used to pass the options to the bind and send functions.

Public Members

uint8_t bs

Block size. Number of CF PDUs before next CF is sent

uint8_t stmin

Minimum separation time. Min time between frames

7.20.8 Generic GSM Modem

Overview

The generic GSM modem driver allows the user to connect Zephyr to a GSM modem which provides a
data connection to cellular operator’s network. The Zephyr uses PPP (Point-to-Point Protocol) to connect
to the GSM modem using UART. Note that some cellular modems have proprietary offloading support
using AT commands, but usually those modems also support 3GPP standards and provide PPP connection
to them. See GSM modem sample application how to setup Zephyr to use the GSM modem.

The GSM muxing, that is defined in GSM 07.10, and which allows mixing of AT commands and PPP
traffic, is also supported in this version of Zephyr. One needs to enable :kconfig:`CONFIG_GSM_MUX`
and :kconfig:`CONFIG_UART_MUX` configuration options to enable muxing.

7.20. Networking 1121

https://www.etsi.org/deliver/etsi_ts/127000_127099/127010/15.00.00_60/ts_127010v150000p.pdf

Zephyr Project Documentation, Release 2.7.0-rc2

7.21 Peripherals

7.21.1 ADC

Overview

API Reference

group adc_interface

ADC driver APIs.

Typedefs

typedef enum adc_action (*adc_sequence_callback)(const struct device *dev, const struct
adc_sequence *sequence, uint16_t sampling_index)

Type definition of the optional callback function to be called after a requested sampling is
done.

Param dev Pointer to the device structure for the driver instance.

Param sequence Pointer to the sequence structure that triggered the sampling. This
parameter points to a copy of the structure that was supplied to the call that
started the sampling sequence, thus it cannot be used with the CONTAINER_OF()
macro to retrieve some other data associated with the sequence. Instead, the
adc_sequence_options::user_data field should be used for such purpose.

Param sampling_index Index (0-65535) of the sampling done.

Return Action to be performed by the driver. See adc_action.

typedef int (*adc_api_channel_setup)(const struct device *dev, const struct adc_channel_cfg
*channel_cfg)

Type definition of ADC API function for configuring a channel. See adc_channel_setup() for
argument descriptions.

typedef int (*adc_api_read)(const struct device *dev, const struct adc_sequence *sequence)

Type definition of ADC API function for setting a read request. See adc_read() for argument
descriptions.

typedef int (*adc_api_read_async)(const struct device *dev, const struct adc_sequence *sequence,
struct k_poll_signal *async)

Type definition of ADC API function for setting an asynchronous read request. See
adc_read_async() for argument descriptions.

Enums

enum adc_gain

ADC channel gain factors.

Values:

enumerator ADC_GAIN_1_6

x 1/6.

1122 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator ADC_GAIN_1_5

x 1/5.

enumerator ADC_GAIN_1_4

x 1/4.

enumerator ADC_GAIN_1_3

x 1/3.

enumerator ADC_GAIN_1_2

x 1/2.

enumerator ADC_GAIN_2_3

x 2/3.

enumerator ADC_GAIN_1

x 1.

enumerator ADC_GAIN_2

x 2.

enumerator ADC_GAIN_3

x 3.

enumerator ADC_GAIN_4

x 4.

enumerator ADC_GAIN_6

x 6.

enumerator ADC_GAIN_8

x 8.

enumerator ADC_GAIN_12

x 12.

enumerator ADC_GAIN_16

x 16.

enumerator ADC_GAIN_24

x 24.

enumerator ADC_GAIN_32

x 32.

enumerator ADC_GAIN_64

x 64.

7.21. Peripherals 1123

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator ADC_GAIN_128

x 128.

enum adc_reference

ADC references.

Values:

enumerator ADC_REF_VDD_1

VDD.

enumerator ADC_REF_VDD_1_2

VDD/2.

enumerator ADC_REF_VDD_1_3

VDD/3.

enumerator ADC_REF_VDD_1_4

VDD/4.

enumerator ADC_REF_INTERNAL

Internal.

enumerator ADC_REF_EXTERNAL0

External, input 0.

enumerator ADC_REF_EXTERNAL1

External, input 1.

enum adc_action

Action to be performed after a sampling is done.

Values:

enumerator ADC_ACTION_CONTINUE = 0

The sequence should be continued normally.

enumerator ADC_ACTION_REPEAT

The sampling should be repeated. New samples or sample should be read from the ADC
and written in the same place as the recent ones.

enumerator ADC_ACTION_FINISH

The sequence should be finished immediately.

Functions

int adc_gain_invert(enum adc_gain gain, int32_t *value)

Invert the application of gain to a measurement value.

For example, if the gain passed in is ADC_GAIN_1_6 and the referenced value is 10, the value
after the function returns is 60.

1124 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• gain – the gain used to amplify the input signal.

• value – a pointer to a value that initially has the effect of the applied gain
but has that effect removed when this function successfully returns. If the gain
cannot be reversed the value remains unchanged.

Return values

• 0 – if the gain was successfully reversed

• -EINVAL – if the gain could not be interpreted

static inline int adc_raw_to_millivolts(int32_t ref_mv, enum adc_gain gain, uint8_t resolution,
int32_t *valp)

Convert a raw ADC value to millivolts.

This function performs the necessary conversion to transform a raw ADC measurement to a
voltage in millivolts.

Parameters

• ref_mv – the reference voltage used for the measurement, in millivolts. This
may be from adc_ref_internal() or a known external reference.

• gain – the ADC gain configuration used to sample the input

• resolution – the number of bits in the absolute value of the sample. For differ-
ential sampling this may be one less than the resolution in struct adc_sequence.

• valp – pointer to the raw measurement value on input, and the corresponding
millivolt value on successful conversion. If conversion fails the stored value is
left unchanged.

Return values

• 0 – on successful conversion

• -EINVAL – if the gain is not reversible

int adc_channel_setup(const struct device *dev, const struct adc_channel_cfg *channel_cfg)

Configure an ADC channel.

It is required to call this function and configure each channel before it is selected for a read
request.

Parameters

• dev – Pointer to the device structure for the driver instance.

• channel_cfg – Channel configuration.

Return values

• 0 – On success.

• -EINVAL – If a parameter with an invalid value has been provided.

int adc_read(const struct device *dev, const struct adc_sequence *sequence)

Set a read request.

If invoked from user mode, any sequence struct options for callback must be NULL.

Parameters

• dev – Pointer to the device structure for the driver instance.

• sequence – Structure specifying requested sequence of samplings.

7.21. Peripherals 1125

Zephyr Project Documentation, Release 2.7.0-rc2

Return values

• 0 – On success.

• -EINVAL – If a parameter with an invalid value has been provided.

• -ENOMEM – If the provided buffer is to small to hold the results of all requested
samplings.

• -ENOTSUP – If the requested mode of operation is not supported.

• -EBUSY – If another sampling was triggered while the previous one was still in
progress. This may occur only when samplings are done with intervals, and
it indicates that the selected interval was too small. All requested samples are
written in the buffer, but at least some of them were taken with an extra delay
compared to what was scheduled.

int adc_read_async(const struct device *dev, const struct adc_sequence *sequence, struct
k_poll_signal *async)

Set an asynchronous read request.

If invoked from user mode, any sequence struct options for callback must be NULL.

Note: This function is available only if :kconfig:`CONFIG_ADC_ASYNC` is selected.

Parameters

• dev – Pointer to the device structure for the driver instance.

• sequence – Structure specifying requested sequence of samplings.

• async – Pointer to a valid and ready to be signaled struct k_poll_signal. (Note:
if NULL this function will not notify the end of the transaction, and whether it
went successfully or not).

Returns 0 on success, negative error code otherwise. See adc_read() for a list of
possible error codes.

static inline uint16_t adc_ref_internal(const struct device *dev)

Get the internal reference voltage.

Returns the voltage corresponding to ADC_REF_INTERNAL, measured in millivolts.

Returns a positive value is the reference voltage value. Returns zero if reference
voltage information is not available.

struct adc_channel_cfg

#include <adc.h> Structure for specifying the configuration of an ADC channel.

Public Members

enum adc_gain gain

Gain selection.

enum adc_reference reference

Reference selection.

1126 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

uint16_t acquisition_time

Acquisition time. Use the ADC_ACQ_TIME macro to compose the value for this field
or pass ADC_ACQ_TIME_DEFAULT to use the default setting for a given hardware (e.g.
when the hardware does not allow to configure the acquisition time). Particular drivers
do not necessarily support all the possible units. Value range is 0-16383 for a given unit.

uint8_t channel_id

Channel identifier. This value primarily identifies the channel within the ADC API - when
a read request is done, the corresponding bit in the “channels” field of the “adc_sequence”
structure must be set to include this channel in the sampling. For hardware that does not
allow selection of analog inputs for given channels, but rather have dedicated ones, this
value also selects the physical ADC input to be used in the sampling. Otherwise, when it is
needed to explicitly select an analog input for the channel, or two inputs when the channel
is a differential one, the selection is done in “input_positive” and “input_negative” fields.
Particular drivers indicate which one of the above two cases they support by selecting or
not a special hidden Kconfig option named ADC_CONFIGURABLE_INPUTS. If this option
is not selected, the macro CONFIG_ADC_CONFIGURABLE_INPUTS is not defined and
consequently the mentioned two fields are not present in this structure. While this API
allows identifiers from range 0-31, particular drivers may support only a limited number
of channel identifiers (dependent on the underlying hardware capabilities or configured
via a dedicated Kconfig option).

uint8_t differential

Channel type: single-ended or differential.

struct adc_sequence_options

#include <adc.h> Structure defining additional options for an ADC sampling sequence.

Public Members

uint32_t interval_us

Interval between consecutive samplings (in microseconds), 0 means sample as fast as
possible, without involving any timer. The accuracy of this interval is dependent on the
implementation of a given driver. The default routine that handles the intervals uses
a kernel timer for this purpose, thus, it has the accuracy of the kernel’s system clock.
Particular drivers may use some dedicated hardware timers and achieve a better precision.

adc_sequence_callback callback

Callback function to be called after each sampling is done. Optional - set to NULL if it is
not needed.

void *user_data

Pointer to user data. It can be used to associate the sequence with any other data that is
needed in the callback function.

uint16_t extra_samplings

Number of extra samplings to perform (the total number of samplings is 1 + ex-
tra_samplings).

struct adc_sequence

#include <adc.h> Structure defining an ADC sampling sequence.

7.21. Peripherals 1127

Zephyr Project Documentation, Release 2.7.0-rc2

Public Members

const struct adc_sequence_options *options

Pointer to a structure defining additional options for the sequence. If NULL, the sequence
consists of a single sampling.

uint32_t channels

Bit-mask indicating the channels to be included in each sampling of this sequence. All
selected channels must be configured with adc_channel_setup() before they are used in a
sequence.

void *buffer

Pointer to a buffer where the samples are to be written. Samples from subsequent sam-
plings are written sequentially in the buffer. The number of samples written for each
sampling is determined by the number of channels selected in the “channels” field. The
buffer must be of an appropriate size, taking into account the number of selected chan-
nels and the ADC resolution used, as well as the number of samplings contained in the
sequence.

size_t buffer_size

Specifies the actual size of the buffer pointed by the “buffer” field (in bytes). The driver
must ensure that samples are not written beyond the limit and it must return an error if
the buffer turns out to be not large enough to hold all the requested samples.

uint8_t resolution

ADC resolution. For single-ended channels the sample values are from range: 0 .. 2^res-
olution - 1, for differential ones:

• 2^(resolution-1) .. 2^(resolution-1) - 1.

uint8_t oversampling

Oversampling setting. Each sample is averaged from 2^oversampling conversion results.
This feature may be unsupported by a given ADC hardware, or in a specific mode (e.g.
when sampling multiple channels).

bool calibrate

Perform calibration before the reading is taken if requested.

The impact of channel configuration on the calibration process is specific to the underlying
hardware. ADC implementations that do not support calibration should ignore this flag.

struct adc_driver_api

#include <adc.h> ADC driver API.

This is the mandatory API any ADC driver needs to expose.

7.21.2 Counter

Overview

API Reference

group counter_interface

Counter Interface.

1128 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Typedefs

typedef void (*counter_alarm_callback_t)(const struct device *dev, uint8_t chan_id, uint32_t
ticks, void *user_data)

Alarm callback.

Param dev Pointer to the device structure for the driver instance.

Param chan_id Channel ID.

Param ticks Counter value that triggered the alarm.

Param user_data User data.

typedef void (*counter_top_callback_t)(const struct device *dev, void *user_data)

Callback called when counter turns around.

Param dev Pointer to the device structure for the driver instance.

Param user_data User data provided in counter_set_top_value.

typedef int (*counter_api_start)(const struct device *dev)

typedef int (*counter_api_stop)(const struct device *dev)

typedef int (*counter_api_get_value)(const struct device *dev, uint32_t *ticks)

typedef int (*counter_api_set_alarm)(const struct device *dev, uint8_t chan_id, const struct
counter_alarm_cfg *alarm_cfg)

typedef int (*counter_api_cancel_alarm)(const struct device *dev, uint8_t chan_id)

typedef int (*counter_api_set_top_value)(const struct device *dev, const struct counter_top_cfg
*cfg)

typedef uint32_t (*counter_api_get_pending_int)(const struct device *dev)

typedef uint32_t (*counter_api_get_top_value)(const struct device *dev)

typedef uint32_t (*counter_api_get_guard_period)(const struct device *dev, uint32_t flags)

typedef int (*counter_api_set_guard_period)(const struct device *dev, uint32_t ticks, uint32_t
flags)

Functions

bool counter_is_counting_up(const struct device *dev)
Function to check if counter is counting up.

Parameters

• dev – [in] Pointer to the device structure for the driver instance.

Return values

• true – if counter is counting up.

7.21. Peripherals 1129

Zephyr Project Documentation, Release 2.7.0-rc2

• false – if counter is counting down.

uint8_t counter_get_num_of_channels(const struct device *dev)

Function to get number of alarm channels.

Parameters

• dev – [in] Pointer to the device structure for the driver instance.

Returns Number of alarm channels.

uint32_t counter_get_frequency(const struct device *dev)

Function to get counter frequency.

Parameters

• dev – [in] Pointer to the device structure for the driver instance.

Returns Frequency of the counter in Hz, or zero if the counter does not have a fixed
frequency.

uint32_t counter_us_to_ticks(const struct device *dev, uint64_t us)

Function to convert microseconds to ticks.

Parameters

• dev – [in] Pointer to the device structure for the driver instance.

• us – [in] Microseconds.

Returns Converted ticks. Ticks will be saturated if exceed 32 bits.

uint64_t counter_ticks_to_us(const struct device *dev, uint32_t ticks)

Function to convert ticks to microseconds.

Parameters

• dev – [in] Pointer to the device structure for the driver instance.

• ticks – [in] Ticks.

Returns Converted microseconds.

uint32_t counter_get_max_top_value(const struct device *dev)

Function to retrieve maximum top value that can be set.

Parameters

• dev – [in] Pointer to the device structure for the driver instance.

Returns Max top value.

int counter_start(const struct device *dev)

Start counter device in free running mode.

Parameters

• dev – Pointer to the device structure for the driver instance.

Return values

• 0 – If successful.

• Negative – errno code if failure.

int counter_stop(const struct device *dev)

Stop counter device.

Parameters

• dev – Pointer to the device structure for the driver instance.

1130 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Return values

• 0 – If successful.

• -ENOTSUP – if the device doesn’t support stopping the counter.

int counter_get_value(const struct device *dev, uint32_t *ticks)

Get current counter value.

Parameters

• dev – Pointer to the device structure for the driver instance.

• ticks – Pointer to where to store the current counter value

Return values

• 0 – If successful.

• Negative – error code on failure getting the counter value

int counter_set_channel_alarm(const struct device *dev, uint8_t chan_id, const struct
counter_alarm_cfg *alarm_cfg)

Set a single shot alarm on a channel.

After expiration alarm can be set again, disabling is not needed. When alarm expiration
handler is called, channel is considered available and can be set again in that context.

Note: API is not thread safe.

Parameters

• dev – Pointer to the device structure for the driver instance.

• chan_id – Channel ID.

• alarm_cfg – Alarm configuration.

Return values

• 0 – If successful.

• -ENOTSUP – if request is not supported (device does not support interrupts or
requested channel).

• -EINVAL – if alarm settings are invalid.

• -ETIME – if absolute alarm was set too late.

int counter_cancel_channel_alarm(const struct device *dev, uint8_t chan_id)

Cancel an alarm on a channel.

Note: API is not thread safe.

Parameters

• dev – Pointer to the device structure for the driver instance.

• chan_id – Channel ID.

Return values

• 0 – If successful.

• -ENOTSUP – if request is not supported or the counter was not started yet.

7.21. Peripherals 1131

Zephyr Project Documentation, Release 2.7.0-rc2

int counter_set_top_value(const struct device *dev, const struct counter_top_cfg *cfg)

Set counter top value.

Function sets top value and optionally resets the counter to 0 or top value depending on
counter direction. On turnaround, counter can be reset and optional callback is periodically
called. Top value can only be changed when there is no active channel alarm.

COUNTER_TOP_CFG_DONT_RESET prevents counter reset. When counter is running
while top value is updated, it is possible that counter progresses outside the new top
value. In that case, error is returned and optionally driver can reset the counter (see
COUNTER_TOP_CFG_RESET_WHEN_LATE).

Parameters

• dev – Pointer to the device structure for the driver instance.

• cfg – Configuration. Cannot be NULL.

Return values

• 0 – If successful.

• -ENOTSUP – if request is not supported (e.g. top value cannot be changed or
counter cannot/must be reset during top value update).

• -EBUSY – if any alarm is active.

• -ETIME – if COUNTER_TOP_CFG_DONT_RESET was set and new top value is
smaller than current counter value (counter counting up).

int counter_get_pending_int(const struct device *dev)

Function to get pending interrupts.

The purpose of this function is to return the interrupt status register for the device. This is
especially useful when waking up from low power states to check the wake up source.

Parameters

• dev – Pointer to the device structure for the driver instance.

Return values

• 1 – if any counter interrupt is pending.

• 0 – if no counter interrupt is pending.

uint32_t counter_get_top_value(const struct device *dev)

Function to retrieve current top value.

Parameters

• dev – [in] Pointer to the device structure for the driver instance.

Returns Top value.

int counter_set_guard_period(const struct device *dev, uint32_t ticks, uint32_t flags)

Set guard period in counter ticks.

Setting non-zero guard period enables detection of setting absolute alarm too late. It limits
how far in the future absolute alarm can be set.

Detection of too late setting is vital since if it is not detected alarm is delayed by full period
of the counter (up to 32 bits). Because of the wrapping, it is impossible to distinguish alarm
which is short in the past from alarm which is targeted to expire after full counter period.
In order to detect too late setting, longest possible alarm is limited. Absolute value cannot
exceed: (now + top_value - guard_period) % top_value.

Guard period depends on application and counter frequency. If it is expected that absolute
alarms setting might be delayed then guard period should exceed maximal potential delay. If
use case allows, guard period can be set very high (e.g. half of the counter top value).

1132 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

After initialization guard period is set to 0 and late detection is disabled.

Parameters

• dev – Pointer to the device structure for the driver instance.

• ticks – Guard period in counter ticks.

• flags – See Counter guard period flags.

Return values

• 0 – if successful.

• -ENOTSUP – if function or flags are not supported.

• -EINVAL – if ticks value is invalid.

uint32_t counter_get_guard_period(const struct device *dev, uint32_t flags)

Return guard period.

See counter_set_guard_period.

Parameters

• dev – Pointer to the device structure for the driver instance.

• flags – See Counter guard period flags.

Returns Guard period given in counter ticks or 0 if function or flags are not sup-
ported.

struct counter_alarm_cfg

#include <counter.h> Alarm callback structure.

Param callback Callback called on alarm (cannot be NULL).

Param ticks Number of ticks that triggers the alarm. It can be relative (to now) or
absolute value (see COUNTER_ALARM_CFG_ABSOLUTE). Absolute alarm can-
not be set further in future than top_value decremented by the guard period.
Relative alarm ticks cannot exceed current top value (see counter_get_top_value).
If counter is clock driven then ticks can be converted to microseconds (see
counter_ticks_to_us). Alternatively, counter implementation may count asyn-
chronous events.

Param user_data User data returned in callback.

Param flags Alarm flags. See Alarm configuration flags.

struct counter_top_cfg

#include <counter.h> Top value configuration structure.

Param ticks Top value.

Param callback Callback function. Can be NULL.

Param user_data User data passed to callback function. Not valid if callback is
NULL.

Param flags Flags. See Flags used by .

struct counter_config_info

#include <counter.h> Structure with generic counter features.

Param max_top_value Maximal (default) top value on which counter is reset
(cleared or reloaded).

Param freq Frequency of the source clock if synchronous events are counted.

7.21. Peripherals 1133

Zephyr Project Documentation, Release 2.7.0-rc2

Param flags Flags. See Counter device capabilities.

Param channels Number of channels that can be used for setting alarm, see
counter_set_channel_alarm.

struct counter_driver_api

#include <counter.h>

7.21.3 Clock Control

Overview

The clock control API provides access to clocks in the system, including the ability to turn them on and
off.

Configuration Options

Related configuration options:

• :kconfig:`CONFIG_CLOCK_CONTROL`

API Reference

group clock_control_interface

Clock Control Interface.

Defines

CLOCK_CONTROL_SUBSYS_ALL

Typedefs

typedef void *clock_control_subsys_t

clock_control_subsys_t is a type to identify a clock controller sub-system. Such data pointed
is opaque and relevant only to the clock controller driver instance being used.

typedef void (*clock_control_cb_t)(const struct device *dev, clock_control_subsys_t subsys, void
*user_data)

Callback called on clock started.

Param dev Device structure whose driver controls the clock.

Param subsys Opaque data representing the clock.

Param user_data User data.

typedef int (*clock_control)(const struct device *dev, clock_control_subsys_t sys)

typedef int (*clock_control_get)(const struct device *dev, clock_control_subsys_t sys, uint32_t
*rate)

1134 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

typedef int (*clock_control_async_on_fn)(const struct device *dev, clock_control_subsys_t sys,
clock_control_cb_t cb, void *user_data)

typedef enum clock_control_status (*clock_control_get_status_fn)(const struct device *dev,
clock_control_subsys_t sys)

Enums

enum clock_control_status

Current clock status.

Values:

enumerator CLOCK_CONTROL_STATUS_STARTING

enumerator CLOCK_CONTROL_STATUS_OFF

enumerator CLOCK_CONTROL_STATUS_ON

enumerator CLOCK_CONTROL_STATUS_UNAVAILABLE

enumerator CLOCK_CONTROL_STATUS_UNKNOWN

Functions

static inline int clock_control_on(const struct device *dev, clock_control_subsys_t sys)

Enable a clock controlled by the device.

On success, the clock is enabled and ready when this function returns. This function may
sleep, and thus can only be called from thread context.

Use clock_control_async_on() for non-blocking operation.

Parameters

• dev – Device structure whose driver controls the clock.

• sys – Opaque data representing the clock.

Returns 0 on success, negative errno on failure.

static inline int clock_control_off(const struct device *dev, clock_control_subsys_t sys)

Disable a clock controlled by the device.

This function is non-blocking and can be called from any context. On success, the clock is
disabled when this function returns.

Parameters

• dev – Device structure whose driver controls the clock

• sys – Opaque data representing the clock

Returns 0 on success, negative errno on failure.

7.21. Peripherals 1135

Zephyr Project Documentation, Release 2.7.0-rc2

static inline int clock_control_async_on(const struct device *dev, clock_control_subsys_t sys,
clock_control_cb_t cb, void *user_data)

Request clock to start with notification when clock has been started.

Function is non-blocking and can be called from any context. User callback is called when
clock is started.

Parameters

• dev – Device.

• sys – A pointer to an opaque data representing the sub-system.

• cb – Callback.

• user_data – User context passed to the callback.

Return values

• 0 – if start is successfully initiated.

• -EALREADY – if clock was already started and is starting or running.

• -ENOTSUP – If the requested mode of operation is not supported.

• -ENOSYS – if the interface is not implemented.

• other – negative errno on vendor specific error.

static inline enum clock_control_status clock_control_get_status(const struct device *dev,
clock_control_subsys_t sys)

Get clock status.

Parameters

• dev – Device.

• sys – A pointer to an opaque data representing the sub-system.

Returns Status.

static inline int clock_control_get_rate(const struct device *dev, clock_control_subsys_t sys,
uint32_t *rate)

Obtain the clock rate of given sub-system.

Parameters

• dev – Pointer to the device structure for the clock controller driver instance

• sys – A pointer to an opaque data representing the sub-system

• rate – [out] Subsystem clock rate

struct clock_control_driver_api

#include <clock_control.h>

7.21.4 DAC

Overview

The DAC API provides access to Digital-to-Analog Converter (DAC) devices.

1136 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Configuration Options

Related configuration options:

• :kconfig:`CONFIG_DAC`

API Reference

group dac_interface

DAC driver APIs.

Functions

int dac_channel_setup(const struct device *dev, const struct dac_channel_cfg *channel_cfg)
Configure a DAC channel.

It is required to call this function and configure each channel before it is selected for a write
request.

Parameters

• dev – Pointer to the device structure for the driver instance.

• channel_cfg – Channel configuration.

Return values

• 0 – On success.

• -EINVAL – If a parameter with an invalid value has been provided.

• -ENOTSUP – If the requested resolution is not supported.

int dac_write_value(const struct device *dev, uint8_t channel, uint32_t value)
Write a single value to a DAC channel.

Parameters

• dev – Pointer to the device structure for the driver instance.

• channel – Number of the channel to be used.

• value – Data to be written to DAC output registers.

Return values

• 0 – On success.

• -EINVAL – If a parameter with an invalid value has been provided.

struct dac_channel_cfg

#include <dac.h> Structure for specifying the configuration of a DAC channel.

Param channel_id Channel identifier of the DAC that should be configured.

Param resolution Desired resolution of the DAC (depends on device capabilities).

7.21.5 DMA

Overview

API Reference

7.21. Peripherals 1137

Zephyr Project Documentation, Release 2.7.0-rc2

group dma_interface

DMA Interface.

Defines

DMA_MAGIC

Typedefs

typedef void (*dma_callback_t)(const struct device *dev, void *user_data, uint32_t channel, int
status)

Callback function for DMA transfer completion.

If enabled, callback function will be invoked at transfer completion or when error happens.

Param dev Pointer to the DMA device calling the callback.

Param user_data A pointer to some user data or NULL

Param channel The channel number

Param status 0 on success, a negative errno otherwise

Enums

enum dma_channel_direction

Values:

enumerator MEMORY_TO_MEMORY = 0x0

enumerator MEMORY_TO_PERIPHERAL

enumerator PERIPHERAL_TO_MEMORY

enumerator PERIPHERAL_TO_PERIPHERAL

enum dma_addr_adj

Valid values for source_addr_adj and dest_addr_adj

Values:

enumerator DMA_ADDR_ADJ_INCREMENT

enumerator DMA_ADDR_ADJ_DECREMENT

enumerator DMA_ADDR_ADJ_NO_CHANGE

enum dma_channel_filter

Values:

1138 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator DMA_CHANNEL_NORMAL

enumerator DMA_CHANNEL_PERIODIC

Functions

static inline int dma_config(const struct device *dev, uint32_t channel, struct dma_config *config)

Configure individual channel for DMA transfer.

Parameters

• dev – Pointer to the device structure for the driver instance.

• channel – Numeric identification of the channel to configure

• config – Data structure containing the intended configuration for the selected
channel

Return values

• 0 – if successful.

• Negative – errno code if failure.

static inline int dma_reload(const struct device *dev, uint32_t channel, uint32_t src, uint32_t dst,
size_t size)

Reload buffer(s) for a DMA channel.

Parameters

• dev – Pointer to the device structure for the driver instance.

• channel – Numeric identification of the channel to configure selected channel

• src – source address for the DMA transfer

• dst – destination address for the DMA transfer

• size – size of DMA transfer

Return values

• 0 – if successful.

• Negative – errno code if failure.

int dma_start(const struct device *dev, uint32_t channel)

Enables DMA channel and starts the transfer, the channel must be configured beforehand.

Implementations must check the validity of the channel ID passed in and return -EINVAL if it
is invalid.

Parameters

• dev – Pointer to the device structure for the driver instance.

• channel – Numeric identification of the channel where the transfer will be
processed

Return values

• 0 – if successful.

• Negative – errno code if failure.

7.21. Peripherals 1139

Zephyr Project Documentation, Release 2.7.0-rc2

int dma_stop(const struct device *dev, uint32_t channel)

Stops the DMA transfer and disables the channel.

Implementations must check the validity of the channel ID passed in and return -EINVAL if it
is invalid.

Parameters

• dev – Pointer to the device structure for the driver instance.

• channel – Numeric identification of the channel where the transfer was being
processed

Return values

• 0 – if successful.

• Negative – errno code if failure.

int dma_request_channel(const struct device *dev, void *filter_param)

request DMA channel.

request DMA channel resources return -EINVAL if there is no valid channel available.

Parameters

• dev – Pointer to the device structure for the driver instance.

• filter_param – filter function parameter

Return values

• dma – channel if successful.

• Negative – errno code if failure.

void dma_release_channel(const struct device *dev, uint32_t channel)

release DMA channel.

release DMA channel resources

Parameters

• dev – Pointer to the device structure for the driver instance.

• channel – channel number

int dma_chan_filter(const struct device *dev, int channel, void *filter_param)

DMA channel filter.

filter channel by attribute

Parameters

• dev – Pointer to the device structure for the driver instance.

• channel – channel number

• filter_param – filter attribute

Return values Negative – errno code if not support

static inline int dma_get_status(const struct device *dev, uint32_t channel, struct dma_status
*stat)

get current runtime status of DMA transfer

Implementations must check the validity of the channel ID passed in and return -EINVAL if it
is invalid or -ENOSYS if not supported.

Parameters

• dev – Pointer to the device structure for the driver instance.

1140 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• channel – Numeric identification of the channel where the transfer was being
processed

• stat – a non-NULL dma_status object for storing DMA status

Return values

• non-negative – if successful.

• Negative – errno code if failure.

static inline uint32_t dma_width_index(uint32_t size)
Look-up generic width index to be used in registers.

WARNING: This look-up works for most controllers, but may not work for yours. Ensure
your controller expects the most common register bit values before using this convenience
function. If your controller does not support these values, you will have to write your own
look-up inside the controller driver.

Parameters

• size – width of bus (in bytes)

Return values common – DMA index to be placed into registers.

static inline uint32_t dma_burst_index(uint32_t burst)
Look-up generic burst index to be used in registers.

WARNING: This look-up works for most controllers, but may not work for yours. Ensure
your controller expects the most common register bit values before using this convenience
function. If your controller does not support these values, you will have to write your own
look-up inside the controller driver.

Parameters

• burst – number of bytes to be sent in a single burst

Return values common – DMA index to be placed into registers.

struct dma_block_config

#include <dma.h> DMA block configuration structure.

Param source_address is block starting address at source

Param source_gather_interval is the address adjustment at gather boundary

Param dest_address is block starting address at destination

Param dest_scatter_interval is the address adjustment at scatter boundary

Param dest_scatter_count is the continuous transfer count between scatter bound-
aries

Param source_gather_count is the continuous transfer count between gather
boundaries

Param block_size is the number of bytes to be transferred for this block.

Param config is a bit field with the following parts:

source_gather_en [0] - 0-disable, 1-enable.
dest_scatter_en [1] - 0-disable, 1-enable.
source_addr_adj [2 : 3] - 00-increment, 01-decrement,

10-no change.
dest_addr_adj [4 : 5] - 00-increment, 01-decrement,

10-no change.
source_reload_en [6] - reload source address at the end␣
→˓of

(continues on next page)

7.21. Peripherals 1141

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

block transfer
0-disable, 1-enable.

dest_reload_en [7] - reload destination address at␣
→˓the end

of block transfer
0-disable, 1-enable.

fifo_mode_control [8 : 11] - How full of the fifo before␣
→˓transfer

start. HW specific.
flow_control_mode [12] - 0-source request served upon data

availability.
1-source request postponed until

destination request happens.
reserved [13 : 15]

struct dma_config

#include <dma.h> DMA configuration structure.

Param dma_slot [0 : 6] - which peripheral and direction (HW specific)

Param channel_direction [7 : 9] - 000-memory to memory, 001-memory to pe-
ripheral, 010-peripheral to memory, 011-peripheral to peripheral, . . .

Param complete_callback_en [10] - 0-callback invoked at completion only 1-
callback invoked at completion of each block

Param error_callback_en [11] - 0-error callback enabled 1-error callback disabled

Param source_handshake [12] - 0-HW, 1-SW

Param dest_handshake [13] - 0-HW, 1-SW

Param channel_priority [14 : 17] - DMA channel priority

Param source_chaining_en [18] - enable/disable source block chaining 0-disable,
1-enable

Param dest_chaining_en [19] - enable/disable destination block chaining. 0-
disable, 1-enable

Param linked_channel [20 : 26] - after channel count exhaust will initiate a chan-
nel service request at this channel

Param reserved [27 : 31]

Param source_data_size [0 : 15] - width of source data (in bytes)

Param dest_data_size [16 : 31] - width of dest data (in bytes)

Param source_burst_length [0 : 15] - number of source data units

Param dest_burst_length [16 : 31] - number of destination data units

Param block_count is the number of blocks used for block chaining, this depends
on availability of the DMA controller.

Param user_data private data from DMA client.

Param dma_callback see dma_callback_t for details

struct dma_status

#include <dma.h> DMA runtime status structure

busy - is current DMA transfer busy or idle dir - DMA transfer direction pending_length - data
length pending to be transferred in bytes or platform dependent.

1142 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

struct dma_context

#include <dma.h> DMA context structure Note: the dma_context shall be the first member of
DMA client driver Data, got by dev->data

magic - magic code to identify the context dma_channels - dma channels atomic - driver
atomic_t pointer

7.21.6 EC Host Command

Overview

API Reference

group ec_host_cmd_periph_interface

EC Host Command Interface.

Defines

EC_HOST_CMD_HANDLER(_function, _id, _version_mask, _request_type, _response_type)

Statically define and register a host command handler.

Helper macro to statically define and register a host command handler that has a compile-
time-fixed sizes for its both request and response structures.

Parameters

• _function – Name of handler function.

• _id – Id of host command to handle request for.

• _version_mask – The bitfield of all versions that the _function supports. E.g.
BIT(0) corresponse to version 0.

• _request_type – The datatype of the request parameters for _function.

• _response_type – The datatype of the response parameters for _function.

EC_HOST_CMD_HANDLER_UNBOUND(_function, _id, _version_mask)

Statically define and register a host command handler without sizes.

Helper macro to statically define and register a host command handler whose request or
response structure size is not known as compile time.

Parameters

• _function – Name of handler function.

• _id – Id of host command to handle request for.

• _version_mask – The bitfield of all versions that the _function supports. E.g.
BIT(0) corresponse to version 0.

Typedefs

typedef enum ec_host_cmd_status (*ec_host_cmd_handler_cb)(struct ec_host_cmd_handler_args
*args)

7.21. Peripherals 1143

Zephyr Project Documentation, Release 2.7.0-rc2

Enums

enum ec_host_cmd_status

Values:

enumerator EC_HOST_CMD_SUCCESS = 0

Host command was successful.

enumerator EC_HOST_CMD_INVALID_COMMAND = 1

The specified command id is not recognized or supported.

enumerator EC_HOST_CMD_ERROR = 2

Generic Error.

enumerator EC_HOST_CMD_INVALID_PARAM = 3

One of more of the input request parameters is invalid.

enumerator EC_HOST_CMD_ACCESS_DENIED = 4

Host command is not permitted.

enumerator EC_HOST_CMD_INVALID_RESPONSE = 5

Response was invalid (e.g. not version 3 of header).

enumerator EC_HOST_CMD_INVALID_VERSION = 6

Host command id version unsupported.

enumerator EC_HOST_CMD_INVALID_CHECKSUM = 7

Checksum did not match

enumerator EC_HOST_CMD_IN_PROGRESS = 8

A host command is currently being processed.

enumerator EC_HOST_CMD_UNAVAILABLE = 9

Requested information is currently unavailable.

enumerator EC_HOST_CMD_TIMEOUT = 10

Timeout during processing.

enumerator EC_HOST_CMD_OVERFLOW = 11

Data or table overflow.

enumerator EC_HOST_CMD_INVALID_HEADER = 12

Header is invalid or unsupported (e.g. not version 3 of header).

enumerator EC_HOST_CMD_REQUEST_TRUNCATED = 13

Did not receive all expected request data.

enumerator EC_HOST_CMD_RESPONSE_TOO_BIG = 14

Response was too big to send within one response packet.

1144 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator EC_HOST_CMD_BUS_ERROR = 15

Error on underlying communication bus.

enumerator EC_HOST_CMD_BUSY = 16

System busy. Should retry later.

enumerator EC_HOST_CMD_MAX = UINT16_MAX

struct ec_host_cmd_handler_args

#include <ec_host_cmd.h> Arguments passed into every installed host command handler.

Public Members

const void *const input_buf

The incoming data that can be cast to the handlers request type.

const uint16_t input_buf_size

The number of valid bytes that can be read from input_buf.

void *const output_buf

The data written to this buffer will be send to the host.

uint16_t output_buf_size

[in/out] Upon entry, this is the maximum number of bytes that can be written to the
output_buf. Upon exit, this should be the number of bytes of output_buf to send to the
host.

const uint8_t version

The version of the host command that is being requested. This will be a value that has
been static registered as valid for the handler.

struct ec_host_cmd_handler

#include <ec_host_cmd.h> Structure use for statically registering host command handlers.

Public Members

ec_host_cmd_handler_cb handler

Callback routine to process commands that match id.

uint16_t id

The numberical command id used as the lookup for commands.

uint16_t version_mask

The bitfield of all versions that the handler supports, where each bit value represents that
the handler supports that version. E.g. BIT(0) corresponse to version 0.

7.21. Peripherals 1145

Zephyr Project Documentation, Release 2.7.0-rc2

uint16_t min_rqt_size

The minimum input_buf_size enforced by the framework before passing to the handler.

uint16_t min_rsp_size

The minimum output_buf_size enforced by the framework before passing to the handler.

struct ec_host_cmd_request_header

#include <ec_host_cmd.h> Header for requests from host to embedded controller.

Represent the over-the-wire header in LE format for host command requests. This represent
version 3 of the host command header. The requests are always sent from host to embedded
controller.

Public Members

uint8_t prtcl_ver

Should be 3. The EC will return EC_HOST_CMD_INVALID_HEADER if it receives a header
with a version it doesn’t know how to parse.

uint8_t checksum

Checksum of response and data; sum of all bytes including checksum. Should total to 0.

uint16_t cmd_id

Id of command that is being sent.

uint8_t cmd_ver

Version of the specific cmd_id being requested. Valid versions start at 0.

uint8_t reserved

Unused byte in current protocol version; set to 0.

uint16_t data_len

Length of data which follows this header.

struct ec_host_cmd_response_header

#include <ec_host_cmd.h> Header for responses from embedded controller to host.

Represent the over-the-wire header in LE format for host command responses. This represent
version 3 of the host command header. Responses are always sent from embedded controller
to host.

Public Members

uint8_t prtcl_ver

Should be 3.

uint8_t checksum

Checksum of response and data; sum of all bytes including checksum. Should total to 0.

1146 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

uint16_t result

A ec_host_cmd_status response code for specific command.

uint16_t data_len

Length of data which follows this header.

uint16_t reserved

Unused bytes in current protocol version; set to 0.

7.21.7 EEPROM

Overview

The EEPROM API provides read and write access to Electrically Erasable Programmable Read-Only Mem-
ory (EEPROM) devices.

EEPROMs have an erase block size of 1 byte, a long lifetime, and allow overwriting data on byte-by-byte
access.

Configuration Options

Related configuration options:

• :kconfig:`CONFIG_EEPROM`

API Reference

group eeprom_interface

EEPROM Interface.

Typedefs

typedef int (*eeprom_api_read)(const struct device *dev, off_t offset, void *data, size_t len)

typedef int (*eeprom_api_write)(const struct device *dev, off_t offset, const void *data, size_t
len)

typedef size_t (*eeprom_api_size)(const struct device *dev)

Functions

int eeprom_read(const struct device *dev, off_t offset, void *data, size_t len)

Read data from EEPROM.

Parameters

• dev – EEPROM device

• offset – Address offset to read from.

• data – Buffer to store read data.

7.21. Peripherals 1147

Zephyr Project Documentation, Release 2.7.0-rc2

• len – Number of bytes to read.

Returns 0 on success, negative errno code on failure.

int eeprom_write(const struct device *dev, off_t offset, const void *data, size_t len)

Write data to EEPROM.

Parameters

• dev – EEPROM device

• offset – Address offset to write data to.

• data – Buffer with data to write.

• len – Number of bytes to write.

Returns 0 on success, negative errno code on failure.

size_t eeprom_get_size(const struct device *dev)

Get the size of the EEPROM in bytes.

Parameters

• dev – EEPROM device.

Returns EEPROM size in bytes.

struct eeprom_driver_api

#include <eeprom.h>

7.21.8 Entropy

Overview

The entropy API provides functions to retrieve entropy values from entropy hardware present on the
platform. The entropy APIs are provided for use by the random subsystem and cryptographic services.
They are not suitable to be used as random number generation functions.

API Reference

group entropy_interface

Entropy Interface.

Defines

ENTROPY_BUSYWAIT

Typedefs

typedef int (*entropy_get_entropy_t)(const struct device *dev, uint8_t *buffer, uint16_t length)

Callback API to get entropy.

See entropy_get_entropy() for argument description

1148 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

typedef int (*entropy_get_entropy_isr_t)(const struct device *dev, uint8_t *buffer, uint16_t
length, uint32_t flags)

Callback API to get entropy from an ISR.

See entropy_get_entropy_isr() for argument description

Functions

int entropy_get_entropy(const struct device *dev, uint8_t *buffer, uint16_t length)
Fills a buffer with entropy. Blocks if required in order to generate the necessary random data.

Parameters

• dev – Pointer to the entropy device.

• buffer – Buffer to fill with entropy.

• length – Buffer length.

Return values

• 0 – on success.

• -ERRNO – errno code on error.

static inline int entropy_get_entropy_isr(const struct device *dev, uint8_t *buffer, uint16_t
length, uint32_t flags)

Fills a buffer with entropy in a non-blocking or busy-wait manner. Callable from ISRs.

Parameters

• dev – Pointer to the device structure.

• buffer – Buffer to fill with entropy.

• length – Buffer length.

• flags – Flags to modify the behavior of the call.

Return values number – of bytes filled with entropy or -error.

struct entropy_driver_api

#include <entropy.h>

7.21.9 Flash

Overview

Flash offset concept

Offsets used by the user API are expressed in relation to the flash memory beginning address. This rule
shall be applied to all flash controller regular memory that layout is accessible via API for retrieving the
layout of pages (see option:CONFIG_FLASH_PAGE_LAYOUT).

An exception from the rule may be applied to a vendor-specific flash dedicated-purpose region (such a
region obviously can’t be covered under API for retrieving the layout of pages).

User API Reference

group flash_interface

FLASH Interface.

7.21. Peripherals 1149

Zephyr Project Documentation, Release 2.7.0-rc2

Typedefs

typedef bool (*flash_page_cb)(const struct flash_pages_info *info, void *data)

Callback type for iterating over flash pages present on a device.

The callback should return true to continue iterating, and false to halt.

See also:

flash_page_foreach()

Param info Information for current page

Param data Private data for callback

Return True to continue iteration, false to halt iteration.

Functions

int flash_read(const struct device *dev, off_t offset, void *data, size_t len)

Read data from flash.

All flash drivers support reads without alignment restrictions on the read offset, the read size,
or the destination address.

Parameters

• dev – : flash dev

• offset – : Offset (byte aligned) to read

• data – : Buffer to store read data

• len – : Number of bytes to read.

Returns 0 on success, negative errno code on fail.

int flash_write(const struct device *dev, off_t offset, const void *data, size_t len)

Write buffer into flash memory.

All flash drivers support a source buffer located either in RAM or SoC flash, without alignment
restrictions on the source address. Write size and offset must be multiples of the minimum
write block size supported by the driver.

Any necessary write protection management is performed by the driver write implementation
itself.

Parameters

• dev – : flash device

• offset – : starting offset for the write

• data – : data to write

• len – : Number of bytes to write

Returns 0 on success, negative errno code on fail.

int flash_erase(const struct device *dev, off_t offset, size_t size)

Erase part or all of a flash memory.

Acceptable values of erase size and offset are subject to hardware-specific multiples of page
size and offset. Please check the API implemented by the underlying sub driver, for example
by using flash_get_page_info_by_offs() if that is supported by your flash driver.

1150 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Any necessary erase protection management is performed by the driver erase implementation
itself.

See also:

flash_get_page_info_by_offs()

See also:

flash_get_page_info_by_idx()

Parameters

• dev – : flash device

• offset – : erase area starting offset

• size – : size of area to be erased

Returns 0 on success, negative errno code on fail.

int flash_write_protection_set(const struct device *dev, bool enable)
Enable or disable write protection for a flash memory.

This API is deprecated and will be removed in Zephyr 2.8. It will be keep as No-Operation
until removal. Flash write/erase protection management has been moved to write and erase
operations implementations in flash driver shims. For Out-of-tree drivers which are not up-
dated yet flash write/erase protection management is done in flash_erase() and flash_write()
using deprecated

write_protection

shim handler.

Parameters

• dev – : flash device

• enable – : enable or disable flash write protection

Returns 0 on success, negative errno code on fail.

int flash_get_page_info_by_offs(const struct device *dev, off_t offset, struct flash_pages_info
*info)

Get the size and start offset of flash page at certain flash offset.

Parameters

• dev – flash device

• offset – Offset within the page

• info – Page Info structure to be filled

Returns 0 on success, -EINVAL if page of the offset doesn’t exist.

int flash_get_page_info_by_idx(const struct device *dev, uint32_t page_index, struct
flash_pages_info *info)

Get the size and start offset of flash page of certain index.

Parameters

• dev – flash device

• page_index – Index of the page. Index are counted from 0.

• info – Page Info structure to be filled

Returns 0 on success, -EINVAL if page of the index doesn’t exist.

7.21. Peripherals 1151

Zephyr Project Documentation, Release 2.7.0-rc2

size_t flash_get_page_count(const struct device *dev)

Get the total number of flash pages.

Parameters

• dev – flash device

Returns Number of flash pages.

void flash_page_foreach(const struct device *dev, flash_page_cb cb, void *data)

Iterate over all flash pages on a device.

This routine iterates over all flash pages on the given device, ordered by increasing start offset.
For each page, it invokes the given callback, passing it the page’s information and a private
data object.

Parameters

• dev – Device whose pages to iterate over

• cb – Callback to invoke for each flash page

• data – Private data for callback function

int flash_sfdp_read(const struct device *dev, off_t offset, void *data, size_t len)

Read data from Serial Flash Discoverable Parameters.

This routine reads data from a serial flash device compatible with the JEDEC JESD216 stan-
dard for encoding flash memory characteristics.

Availability of this API is conditional on selecting CONFIG_FLASH_JESD216_API and support of
that functionality in the driver underlying dev.

Parameters

• dev – device from which parameters will be read

• offset – address within the SFDP region containing data of interest

• data – where the data to be read will be placed

• len – the number of bytes of data to be read

Return values

• 0 – on success

• -ENOTSUP – if the flash driver does not support SFDP access

• negative – values for other errors.

int flash_read_jedec_id(const struct device *dev, uint8_t *id)

Read the JEDEC ID from a compatible flash device.

Parameters

• dev – device from which id will be read

• id – pointer to a buffer of at least 3 bytes into which id will be stored

Return values

• 0 – on successful store of 3-byte JEDEC id

• -ENOTSUP – if flash driver doesn’t support this function

• negative – values for other errors

1152 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

size_t flash_get_write_block_size(const struct device *dev)

Get the minimum write block size supported by the driver.

The write block size supported by the driver might differ from the write block size of memory
used because the driver might implements write-modify algorithm.

Parameters

• dev – flash device

Returns write block size in bytes.

const struct flash_parameters *flash_get_parameters(const struct device *dev)

Get pointer to flash_parameters structure.

Returned pointer points to a structure that should be considered constant through a runtime,
regardless if it is defined in RAM or Flash. Developer is free to cache the structure pointer or
copy its contents.

Returns pointer to flash_parameters structure characteristic for the device.

struct flash_parameters

#include <flash.h> Flash memory parameters. Contents of this structure suppose to be filled
in during flash device initialization and stay constant through a runtime.

struct flash_pages_info

#include <flash.h>

Implementation interface API Reference

group flash_internal_interface

FLASH internal Interface.

Typedefs

typedef int (*flash_api_read)(const struct device *dev, off_t offset, void *data, size_t len)

typedef int (*flash_api_write)(const struct device *dev, off_t offset, const void *data, size_t len)

Flash write implementation handler type.

Note: Any necessary write protection management must be performed by the driver, with the
driver responsible for ensuring the “write-protect” after the operation completes (successfully
or not) matches the write-protect state when the operation was started.

typedef int (*flash_api_erase)(const struct device *dev, off_t offset, size_t size)

Flash erase implementation handler type.

Note: Any necessary erase protection management must be performed by the driver, with the
driver responsible for ensuring the “erase-protect” after the operation completes (successfully
or not) matches the erase-protect state when the operation was started.

7.21. Peripherals 1153

Zephyr Project Documentation, Release 2.7.0-rc2

typedef int (*flash_api_write_protection)(const struct device *dev, bool enable)

typedef const struct flash_parameters *(*flash_api_get_parameters)(const struct device *dev)

typedef void (*flash_api_pages_layout)(const struct device *dev, const struct flash_pages_layout
**layout, size_t *layout_size)

Retrieve a flash device’s layout.

A flash device layout is a run-length encoded description of the pages on the device. (Here,
“page” means the smallest erasable area on the flash device.)

For flash memories which have uniform page sizes, this routine returns an array of length 1,
which specifies the page size and number of pages in the memory.

Layouts for flash memories with nonuniform page sizes will be returned as an array with
multiple elements, each of which describes a group of pages that all have the same size. In
this case, the sequence of array elements specifies the order in which these groups occur on
the device.

Param dev Flash device whose layout to retrieve.

Param layout The flash layout will be returned in this argument.

Param layout_size The number of elements in the returned layout.

typedef int (*flash_api_sfdp_read)(const struct device *dev, off_t offset, void *data, size_t len)

typedef int (*flash_api_read_jedec_id)(const struct device *dev, uint8_t *id)

struct flash_pages_layout

#include <flash.h>

struct flash_driver_api

#include <flash.h>

7.21.10 GNA

Overview

The GNA API provides access to Intel’s Gaussian Mixture Model and Neural Network Accelerator (GNA).

Configuration Options

Related configuration options:

• :kconfig:`CONFIG_INTEL_GNA`

API Reference

group gna_interface

This file contains the driver APIs for Intel’s Gaussian Mixture Model and Neural Network Accelera-
tor (GNA)

1154 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Enums

enum gna_result

Result of an inference operation

Values:

enumerator GNA_RESULT_INFERENCE_COMPLETE

enumerator GNA_RESULT_SATURATION_OCCURRED

enumerator GNA_RESULT_OUTPUT_BUFFER_FULL_ERROR

enumerator GNA_RESULT_PARAM_OUT_OF_RANGE_ERROR

enumerator GNA_RESULT_GENERIC_ERROR

Functions

static inline int gna_configure(const struct device *dev, struct gna_config *cfg)

Configure the GNA device.

Configure the GNA device. The GNA device must be configured before registering a model or
performing inference

Parameters

• dev – Pointer to the device structure for the driver instance.

• cfg – Device configuration information

Return values

• 0 – If the configuration is successful

• A – negative error code in case of a failure.

static inline int gna_register_model(const struct device *dev, struct gna_model_info *model, void
**model_handle)

Register a neural network model.

Register a neural network model with the GNA device A model needs to be registered before
it can be used to perform inference

Parameters

• dev – Pointer to the device structure for the driver instance.

• model – Information about the neural network model

• model_handle – Handle to the registered model if registration succeeds

Return values

• 0 – If registration of the model is successful.

• A – negative error code in case of a failure.

7.21. Peripherals 1155

Zephyr Project Documentation, Release 2.7.0-rc2

static inline int gna_deregister_model(const struct device *dev, void *model)

De-register a previously registered neural network model.

De-register a previously registered neural network model from the GNA device De-registration
may be done to free up memory for registering another model Once de-registered, the model
can no longer be used to perform inference

Parameters

• dev – Pointer to the device structure for the driver instance.

• model – Model handle output by gna_register_model API

Return values

• 0 – If de-registration of the model is successful.

• A – negative error code in case of a failure.

static inline int gna_infer(const struct device *dev, struct gna_inference_req *req, gna_callback
callback)

Perform inference on a model with input vectors.

Make an inference request on a previously registered model with an of input data vector A
callback is provided for notification of inference completion

Parameters

• dev – Pointer to the device structure for the driver instance.

• req – Information required to perform inference on a neural network

• callback – A callback function to notify inference completion

Return values

• 0 – If the request is accepted

• A – negative error code in case of a failure.

struct gna_config

#include <gna.h> GNA driver configuration structure. Currently empty.

struct gna_model_header

#include <gna.h> GNA Neural Network model header Describes the key parameters of the
neural network model

struct gna_model_info

#include <gna.h> GNA Neural Network model information to be provided by application
during model registration

struct gna_inference_req

#include <gna.h> Request to perform inference on the given neural network model

struct gna_inference_stats

#include <gna.h> Statistics of the inference operation returned after completion

struct gna_inference_resp

#include <gna.h> Structure containing a response to the inference request

1156 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

7.21.11 GPIO

Overview

Configuration Options

Related configuration options:

• :kconfig:`CONFIG_GPIO`

API Reference

group gpio_interface

GPIO Driver APIs.

GPIO input/output configuration flags

GPIO_INPUT

Enables pin as input.

GPIO_OUTPUT

Enables pin as output, no change to the output state.

GPIO_DISCONNECTED

Disables pin for both input and output.

GPIO_OUTPUT_LOW

Configures GPIO pin as output and initializes it to a low state.

GPIO_OUTPUT_HIGH

Configures GPIO pin as output and initializes it to a high state.

GPIO_OUTPUT_INACTIVE

Configures GPIO pin as output and initializes it to a logic 0.

GPIO_OUTPUT_ACTIVE

Configures GPIO pin as output and initializes it to a logic 1.

GPIO interrupt configuration flags

The GPIO_INT_* flags are used to specify how input GPIO pins will trigger interrupts. The interrupts
can be sensitive to pin physical or logical level. Interrupts sensitive to pin logical level take into
account GPIO_ACTIVE_LOW flag. If a pin was configured as Active Low, physical level low will be
considered as logical level 1 (an active state), physical level high will be considered as logical level
0 (an inactive state).

GPIO_INT_DISABLE

Disables GPIO pin interrupt.

7.21. Peripherals 1157

Zephyr Project Documentation, Release 2.7.0-rc2

GPIO_INT_EDGE_RISING

Configures GPIO interrupt to be triggered on pin rising edge and enables it.

GPIO_INT_EDGE_FALLING

Configures GPIO interrupt to be triggered on pin falling edge and enables it.

GPIO_INT_EDGE_BOTH

Configures GPIO interrupt to be triggered on pin rising or falling edge and enables it.

GPIO_INT_LEVEL_LOW

Configures GPIO interrupt to be triggered on pin physical level low and enables it.

GPIO_INT_LEVEL_HIGH

Configures GPIO interrupt to be triggered on pin physical level high and enables it.

GPIO_INT_EDGE_TO_INACTIVE

Configures GPIO interrupt to be triggered on pin state change to logical level 0 and enables it.

GPIO_INT_EDGE_TO_ACTIVE

Configures GPIO interrupt to be triggered on pin state change to logical level 1 and enables it.

GPIO_INT_LEVEL_INACTIVE

Configures GPIO interrupt to be triggered on pin logical level 0 and enables it.

GPIO_INT_LEVEL_ACTIVE

Configures GPIO interrupt to be triggered on pin logical level 1 and enables it.

GPIO drive strength flags

The GPIO_DS_* flags are used with gpio_pin_configure to specify the drive strength configuration
of a GPIO pin.

The drive strength of individual pins can be configured independently for when the pin output is
low and high.

The GPIO_DS_*_LOW enumerations define the drive strength of a pin when output is low.

The GPIO_DS_*_HIGH enumerations define the drive strength of a pin when output is high.

The interface supports two different drive strengths: DFLT - The lowest drive strength supported
by the HW ALT - The highest drive strength supported by the HW

On hardware that supports only one standard drive strength, both DFLT and ALT have the same
behavior.

GPIO_DS_DFLT_LOW

Default drive strength standard when GPIO pin output is low.

GPIO_DS_ALT_LOW

Alternative drive strength when GPIO pin output is low. For hardware that does not support
configurable drive strength use the default drive strength.

1158 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

GPIO_DS_DFLT_HIGH

Default drive strength when GPIO pin output is high.

GPIO_DS_ALT_HIGH

Alternative drive strength when GPIO pin output is high. For hardware that does not support
configurable drive strengths use the default drive strength.

GPIO pin active level flags

GPIO_ACTIVE_LOW

GPIO pin is active (has logical value ‘1’) in low state.

GPIO_ACTIVE_HIGH

GPIO pin is active (has logical value ‘1’) in high state.

GPIO pin drive flags

GPIO_OPEN_DRAIN

Configures GPIO output in open drain mode (wired AND).

Note: ‘Open Drain’ mode also known as ‘Open Collector’ is an output configuration which
behaves like a switch that is either connected to ground or disconnected.

GPIO_OPEN_SOURCE

Configures GPIO output in open source mode (wired OR).

Note: ‘Open Source’ is a term used by software engineers to describe output mode opposite
to ‘Open Drain’. It behaves like a switch that is either connected to power supply or discon-
nected. There exist no corresponding hardware schematic and the term is generally unknown
to hardware engineers.

GPIO pin bias flags

GPIO_PULL_UP

Enables GPIO pin pull-up.

GPIO_PULL_DOWN

Enable GPIO pin pull-down.

GPIO pin voltage flags

The voltage flags are a Zephyr specific extension of the standard GPIO flags specified by the Linux
GPIO binding. Only applicable if SoC allows to configure pin voltage per individual pin.

7.21. Peripherals 1159

Zephyr Project Documentation, Release 2.7.0-rc2

GPIO_VOLTAGE_DEFAULT

Set pin at the default voltage level

GPIO_VOLTAGE_1P8

Set pin voltage level at 1.8 V

GPIO_VOLTAGE_3P3

Set pin voltage level at 3.3 V

GPIO_VOLTAGE_5P0

Set pin voltage level at 5.0 V

Defines

GPIO_INT_DEBOUNCE

Enable GPIO pin debounce.

Note: Drivers that do not support a debounce feature should ignore this flag rather than
rejecting the configuration with -ENOTSUP.

GPIO_DT_SPEC_GET_BY_IDX(node_id, prop, idx)

Static initializer for a gpio_dt_spec .

This returns a static initializer for a gpio_dt_spec structure given a devicetree node identifier,
a property specifying a GPIO and an index.

Example devicetree fragment:

n: node {
foo-gpios = <&gpio0 1 GPIO_ACTIVE_LOW>,

<&gpio1 2 GPIO_ACTIVE_LOW>;
}

Example usage:

const struct gpio_dt_spec spec = GPIO_DT_SPEC_GET_BY_IDX(DT_NODELABEL(n),
foo_gpios, 1);

// Initializes 'spec' to:
// {
// .port = DEVICE_DT_GET(DT_NODELABEL(gpio1)),
// .pin = 2,
// .dt_flags = GPIO_ACTIVE_LOW
// }

The ‘gpio’ field must still be checked for readiness, e.g. using device_is_ready(). It is an error
to use this macro unless the node exists, has the given property, and that property specifies a
GPIO controller, pin number, and flags as shown above.

Parameters

• node_id – devicetree node identifier

• prop – lowercase-and-underscores property name

• idx – logical index into “prop”

1160 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Returns static initializer for a struct gpio_dt_spec for the property

GPIO_DT_SPEC_GET_BY_IDX_OR(node_id, prop, idx, default_value)

Like GPIO_DT_SPEC_GET_BY_IDX(), with a fallback to a default value.

If the devicetree node identifier ‘node_id’ refers to a node with a property ‘prop’, this expands
to GPIO_DT_SPEC_GET_BY_IDX(node_id, prop, idx) . The default_value parameter is not
expanded in this case.

Otherwise, this expands to default_value.

Parameters

• node_id – devicetree node identifier

• prop – lowercase-and-underscores property name

• idx – logical index into “prop”

• default_value – fallback value to expand to

Returns static initializer for a struct gpio_dt_spec for the property, or default_value if
the node or property do not exist

GPIO_DT_SPEC_GET(node_id, prop)

Equivalent to GPIO_DT_SPEC_GET_BY_IDX(node_id, prop, 0).

See also:

GPIO_DT_SPEC_GET_BY_IDX()

Parameters

• node_id – devicetree node identifier

• prop – lowercase-and-underscores property name

Returns static initializer for a struct gpio_dt_spec for the property

GPIO_DT_SPEC_GET_OR(node_id, prop, default_value)

Equivalent to GPIO_DT_SPEC_GET_BY_IDX_OR(node_id, prop, 0, default_value).

See also:

GPIO_DT_SPEC_GET_BY_IDX_OR()

Parameters

• node_id – devicetree node identifier

• prop – lowercase-and-underscores property name

• default_value – fallback value to expand to

Returns static initializer for a struct gpio_dt_spec for the property

GPIO_DT_SPEC_INST_GET_BY_IDX(inst, prop, idx)

Static initializer for a gpio_dt_spec from a DT_DRV_COMPAT instance’s GPIO property at an
index.

See also:

GPIO_DT_SPEC_GET_BY_IDX()

7.21. Peripherals 1161

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• inst – DT_DRV_COMPAT instance number

• prop – lowercase-and-underscores property name

• idx – logical index into “prop”

Returns static initializer for a struct gpio_dt_spec for the property

GPIO_DT_SPEC_INST_GET_BY_IDX_OR(inst, prop, idx, default_value)

Static initializer for a gpio_dt_spec from a DT_DRV_COMPAT instance’s GPIO property at an
index, with fallback.

See also:

GPIO_DT_SPEC_GET_BY_IDX()

Parameters

• inst – DT_DRV_COMPAT instance number

• prop – lowercase-and-underscores property name

• idx – logical index into “prop”

• default_value – fallback value to expand to

Returns static initializer for a struct gpio_dt_spec for the property

GPIO_DT_SPEC_INST_GET(inst, prop)

Equivalent to GPIO_DT_SPEC_INST_GET_BY_IDX(inst, prop, 0).

See also:

GPIO_DT_SPEC_INST_GET_BY_IDX()

Parameters

• inst – DT_DRV_COMPAT instance number

• prop – lowercase-and-underscores property name

Returns static initializer for a struct gpio_dt_spec for the property

GPIO_DT_SPEC_INST_GET_OR(inst, prop, default_value)

Equivalent to GPIO_DT_SPEC_INST_GET_BY_IDX_OR(inst, prop, 0, default_value).

See also:

GPIO_DT_SPEC_INST_GET_BY_IDX()

Parameters

• inst – DT_DRV_COMPAT instance number

• prop – lowercase-and-underscores property name

• default_value – fallback value to expand to

Returns static initializer for a struct gpio_dt_spec for the property

1162 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

GPIO_MAX_PINS_PER_PORT

Maximum number of pins that are supported by gpio_port_pins_t.

Typedefs

typedef uint32_t gpio_port_pins_t

Identifies a set of pins associated with a port.

The pin with index n is present in the set if and only if the bit identified by (1U << n) is set.

typedef uint32_t gpio_port_value_t

Provides values for a set of pins associated with a port.

The value for a pin with index n is high (physical mode) or active (logical mode) if and only if
the bit identified by (1U << n) is set. Otherwise the value for the pin is low (physical mode)
or inactive (logical mode).

Values of this type are often paired with a gpio_port_pins_t value that specifies which en-
coded pin values are valid for the operation.

typedef uint8_t gpio_pin_t

Provides a type to hold a GPIO pin index.

This reduced-size type is sufficient to record a pin number, e.g. from a devicetree GPIOS
property.

typedef uint8_t gpio_dt_flags_t

Provides a type to hold GPIO devicetree flags.

All GPIO flags that can be expressed in devicetree fit in the low 8 bits of the full flags field, so
use a reduced-size type to record that part of a GPIOS property.

typedef uint32_t gpio_flags_t

Provides a type to hold GPIO configuration flags.

This type is sufficient to hold all flags used to control GPIO configuration, whether pin or
interrupt.

typedef void (*gpio_callback_handler_t)(const struct device *port, struct gpio_callback *cb,
gpio_port_pins_t pins)

Define the application callback handler function signature.

Note: cb pointer can be used to retrieve private data through CONTAINER_OF() if original
struct gpio_callback is stored in another private structure.

Param port Device struct for the GPIO device.

Param cb Original struct gpio_callback owning this handler

Param pins Mask of pins that triggers the callback handler

Functions

7.21. Peripherals 1163

Zephyr Project Documentation, Release 2.7.0-rc2

int gpio_pin_interrupt_configure(const struct device *port, gpio_pin_t pin, gpio_flags_t flags)

Configure pin interrupt.

Note: This function can also be used to configure interrupts on pins not controlled directly
by the GPIO module. That is, pins which are routed to other modules such as I2C, SPI, UART.

Parameters

• port – Pointer to device structure for the driver instance.

• pin – Pin number.

• flags – Interrupt configuration flags as defined by GPIO_INT_*.

Return values

• 0 – If successful.

• -ENOTSUP – If any of the configuration options is not supported (unless other-
wise directed by flag documentation).

• -EINVAL – Invalid argument.

• -EBUSY – Interrupt line required to configure pin interrupt is already in use.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

static inline int gpio_pin_interrupt_configure_dt(const struct gpio_dt_spec *spec, gpio_flags_t
flags)

Configure pin interrupts from a gpio_dt_spec .

This is equivalent to:

gpio_pin_interrupt_configure(spec->port, spec->pin, flags);

The spec->dt_flags value is not used.

Parameters

• spec – GPIO specification from devicetree

• flags – interrupt configuration flags

Returns a value from gpio_pin_interrupt_configure()

int gpio_pin_configure(const struct device *port, gpio_pin_t pin, gpio_flags_t flags)

Configure a single pin.

Parameters

• port – Pointer to device structure for the driver instance.

• pin – Pin number to configure.

• flags – Flags for pin configuration: ‘GPIO input/output configuration flags’,
‘GPIO drive strength flags’, ‘GPIO pin drive flags’, ‘GPIO pin bias flags’,
GPIO_INT_DEBOUNCE.

Return values

• 0 – If successful.

• -ENOTSUP – if any of the configuration options is not supported (unless other-
wise directed by flag documentation).

• -EINVAL – Invalid argument.

1164 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

static inline int gpio_pin_configure_dt(const struct gpio_dt_spec *spec, gpio_flags_t extra_flags)

Configure a single pin from a gpio_dt_spec and some extra flags.

This is equivalent to:

gpio_pin_configure(spec->port, spec->pin, spec->dt_flags | extra_flags);

Parameters

• spec – GPIO specification from devicetree

• extra_flags – additional flags

Returns a value from gpio_pin_configure()

int gpio_port_get_raw(const struct device *port, gpio_port_value_t *value)

Get physical level of all input pins in a port.

A low physical level on the pin will be interpreted as value 0. A high physical level will be
interpreted as value 1. This function ignores GPIO_ACTIVE_LOW flag.

Value of a pin with index n will be represented by bit n in the returned port value.

Parameters

• port – Pointer to the device structure for the driver instance.

• value – Pointer to a variable where pin values will be stored.

Return values

• 0 – If successful.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

static inline int gpio_port_get(const struct device *port, gpio_port_value_t *value)

Get logical level of all input pins in a port.

Get logical level of an input pin taking into account GPIO_ACTIVE_LOW flag. If pin is con-
figured as Active High, a low physical level will be interpreted as logical value 0. If pin is
configured as Active Low, a low physical level will be interpreted as logical value 1.

Value of a pin with index n will be represented by bit n in the returned port value.

Parameters

• port – Pointer to the device structure for the driver instance.

• value – Pointer to a variable where pin values will be stored.

Return values

• 0 – If successful.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

int gpio_port_set_masked_raw(const struct device *port, gpio_port_pins_t mask,
gpio_port_value_t value)

Set physical level of output pins in a port.

Writing value 0 to the pin will set it to a low physical level. Writing value 1 will set it to a high
physical level. This function ignores GPIO_ACTIVE_LOW flag.

7.21. Peripherals 1165

Zephyr Project Documentation, Release 2.7.0-rc2

Pin with index n is represented by bit n in mask and value parameter.

Parameters

• port – Pointer to the device structure for the driver instance.

• mask – Mask indicating which pins will be modified.

• value – Value assigned to the output pins.

Return values

• 0 – If successful.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

static inline int gpio_port_set_masked(const struct device *port, gpio_port_pins_t mask,
gpio_port_value_t value)

Set logical level of output pins in a port.

Set logical level of an output pin taking into account GPIO_ACTIVE_LOW flag. Value 0 sets
the pin in logical 0 / inactive state. Value 1 sets the pin in logical 1 / active state. If pin is
configured as Active High, the default, setting it in inactive state will force the pin to a low
physical level. If pin is configured as Active Low, setting it in inactive state will force the pin
to a high physical level.

Pin with index n is represented by bit n in mask and value parameter.

Parameters

• port – Pointer to the device structure for the driver instance.

• mask – Mask indicating which pins will be modified.

• value – Value assigned to the output pins.

Return values

• 0 – If successful.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

int gpio_port_set_bits_raw(const struct device *port, gpio_port_pins_t pins)

Set physical level of selected output pins to high.

Parameters

• port – Pointer to the device structure for the driver instance.

• pins – Value indicating which pins will be modified.

Return values

• 0 – If successful.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

static inline int gpio_port_set_bits(const struct device *port, gpio_port_pins_t pins)

Set logical level of selected output pins to active.

Parameters

• port – Pointer to the device structure for the driver instance.

• pins – Value indicating which pins will be modified.

Return values

1166 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• 0 – If successful.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

int gpio_port_clear_bits_raw(const struct device *port, gpio_port_pins_t pins)

Set physical level of selected output pins to low.

Parameters

• port – Pointer to the device structure for the driver instance.

• pins – Value indicating which pins will be modified.

Return values

• 0 – If successful.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

static inline int gpio_port_clear_bits(const struct device *port, gpio_port_pins_t pins)

Set logical level of selected output pins to inactive.

Parameters

• port – Pointer to the device structure for the driver instance.

• pins – Value indicating which pins will be modified.

Return values

• 0 – If successful.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

int gpio_port_toggle_bits(const struct device *port, gpio_port_pins_t pins)

Toggle level of selected output pins.

Parameters

• port – Pointer to the device structure for the driver instance.

• pins – Value indicating which pins will be modified.

Return values

• 0 – If successful.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

static inline int gpio_port_set_clr_bits_raw(const struct device *port, gpio_port_pins_t
set_pins, gpio_port_pins_t clear_pins)

Set physical level of selected output pins.

Parameters

• port – Pointer to the device structure for the driver instance.

• set_pins – Value indicating which pins will be set to high.

• clear_pins – Value indicating which pins will be set to low.

Return values

• 0 – If successful.

• -EIO – I/O error when accessing an external GPIO chip.

7.21. Peripherals 1167

Zephyr Project Documentation, Release 2.7.0-rc2

• -EWOULDBLOCK – if operation would block.

static inline int gpio_port_set_clr_bits(const struct device *port, gpio_port_pins_t set_pins,
gpio_port_pins_t clear_pins)

Set logical level of selected output pins.

Parameters

• port – Pointer to the device structure for the driver instance.

• set_pins – Value indicating which pins will be set to active.

• clear_pins – Value indicating which pins will be set to inactive.

Return values

• 0 – If successful.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

static inline int gpio_pin_get_raw(const struct device *port, gpio_pin_t pin)

Get physical level of an input pin.

A low physical level on the pin will be interpreted as value 0. A high physical level will be
interpreted as value 1. This function ignores GPIO_ACTIVE_LOW flag.

Parameters

• port – Pointer to the device structure for the driver instance.

• pin – Pin number.

Return values

• 1 – If pin physical level is high.

• 0 – If pin physical level is low.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

static inline int gpio_pin_get(const struct device *port, gpio_pin_t pin)

Get logical level of an input pin.

Get logical level of an input pin taking into account GPIO_ACTIVE_LOW flag. If pin is con-
figured as Active High, a low physical level will be interpreted as logical value 0. If pin is
configured as Active Low, a low physical level will be interpreted as logical value 1.

Note: If pin is configured as Active High, the default, gpio_pin_get() function is equivalent to
gpio_pin_get_raw().

Parameters

• port – Pointer to the device structure for the driver instance.

• pin – Pin number.

Return values

• 1 – If pin logical value is 1 / active.

• 0 – If pin logical value is 0 / inactive.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

1168 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline int gpio_pin_get_dt(const struct gpio_dt_spec *spec)

Get logical level of an input pin from a gpio_dt_spec .

This is equivalent to:

gpio_pin_get(spec->port, spec->pin);

Parameters

• spec – GPIO specification from devicetree

Returns a value from gpio_pin_get()

static inline int gpio_pin_set_raw(const struct device *port, gpio_pin_t pin, int value)

Set physical level of an output pin.

Writing value 0 to the pin will set it to a low physical level. Writing any value other than 0
will set it to a high physical level. This function ignores GPIO_ACTIVE_LOW flag.

Parameters

• port – Pointer to the device structure for the driver instance.

• pin – Pin number.

• value – Value assigned to the pin.

Return values

• 0 – If successful.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

static inline int gpio_pin_set(const struct device *port, gpio_pin_t pin, int value)

Set logical level of an output pin.

Set logical level of an output pin taking into account GPIO_ACTIVE_LOW flag. Value 0 sets
the pin in logical 0 / inactive state. Any value other than 0 sets the pin in logical 1 / active
state. If pin is configured as Active High, the default, setting it in inactive state will force the
pin to a low physical level. If pin is configured as Active Low, setting it in inactive state will
force the pin to a high physical level.

Note: If pin is configured as Active High, gpio_pin_set() function is equivalent to
gpio_pin_set_raw().

Parameters

• port – Pointer to the device structure for the driver instance.

• pin – Pin number.

• value – Value assigned to the pin.

Return values

• 0 – If successful.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

static inline int gpio_pin_set_dt(const struct gpio_dt_spec *spec, int value)

Set logical level of a output pin from a gpio_dt_spec .

This is equivalent to:

gpio_pin_set(spec->port, spec->pin, value);

7.21. Peripherals 1169

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• spec – GPIO specification from devicetree

• value – Value assigned to the pin.

Returns a value from gpio_pin_set()

static inline int gpio_pin_toggle(const struct device *port, gpio_pin_t pin)

Toggle pin level.

Parameters

• port – Pointer to the device structure for the driver instance.

• pin – Pin number.

Return values

• 0 – If successful.

• -EIO – I/O error when accessing an external GPIO chip.

• -EWOULDBLOCK – if operation would block.

static inline int gpio_pin_toggle_dt(const struct gpio_dt_spec *spec)

Toggle pin level from a gpio_dt_spec .

This is equivalent to:

gpio_pin_toggle(spec->port, spec->pin);

Parameters

• spec – GPIO specification from devicetree

Returns a value from gpio_pin_toggle()

static inline void gpio_init_callback(struct gpio_callback *callback, gpio_callback_handler_t
handler, gpio_port_pins_t pin_mask)

Helper to initialize a struct gpio_callback properly.

Parameters

• callback – A valid Application’s callback structure pointer.

• handler – A valid handler function pointer.

• pin_mask – A bit mask of relevant pins for the handler

static inline int gpio_add_callback(const struct device *port, struct gpio_callback *callback)

Add an application callback.

Note: enables to add as many callback as needed on the same port.

Note: Callbacks may be added to the device from within a callback handler invocation, but
whether they are invoked for the current GPIO event is not specified.

Parameters

• port – Pointer to the device structure for the driver instance.

• callback – A valid Application’s callback structure pointer.

Returns 0 if successful, negative errno code on failure.

1170 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline int gpio_remove_callback(const struct device *port, struct gpio_callback *callback)

Remove an application callback.

Note: enables to remove as many callbacks as added through gpio_add_callback().

Warning: It is explicitly permitted, within a callback handler, to remove the registration
for the callback that is running, i.e. callback. Attempts to remove other registrations on
the same device may result in undefined behavior, including failure to invoke callbacks
that remain registered and unintended invocation of removed callbacks.

Parameters

• port – Pointer to the device structure for the driver instance.

• callback – A valid application’s callback structure pointer.

Returns 0 if successful, negative errno code on failure.

int gpio_get_pending_int(const struct device *dev)

Function to get pending interrupts.

The purpose of this function is to return the interrupt status register for the device. This is
especially useful when waking up from low power states to check the wake up source.

Parameters

• dev – Pointer to the device structure for the driver instance.

Return values

• status – != 0 if at least one gpio interrupt is pending.

• 0 – if no gpio interrupt is pending.

struct gpio_dt_spec

#include <gpio.h> Provides a type to hold GPIO information specified in devicetree.

This type is sufficient to hold a GPIO device pointer, pin number, and the subset of the flags
used to control GPIO configuration which may be given in devicetree.

struct gpio_driver_config

#include <gpio.h> This structure is common to all GPIO drivers and is expected to be the first
element in the object pointed to by the config field in the device structure.

struct gpio_driver_data

#include <gpio.h> This structure is common to all GPIO drivers and is expected to be the first
element in the driver’s struct driver_data declaration.

struct gpio_callback

#include <gpio.h> GPIO callback structure.

Used to register a callback in the driver instance callback list. As many callbacks as needed
can be added as long as each of them are unique pointers of struct gpio_callback. Beware such
structure should not be allocated on stack.

Note: To help setting it, see gpio_init_callback() below

7.21. Peripherals 1171

Zephyr Project Documentation, Release 2.7.0-rc2

Public Members

sys_snode_t node

This is meant to be used in the driver and the user should not mess with it (see
drivers/gpio/gpio_utils.h)

gpio_callback_handler_t handler

Actual callback function being called when relevant.

gpio_port_pins_t pin_mask

A mask of pins the callback is interested in, if 0 the callback will never be called. Such
pin_mask can be modified whenever necessary by the owner, and thus will affect the
handler being called or not. The selected pins must be configured to trigger an interrupt.

7.21.12 Hardware Information

Overview

The HW Info API provides access to hardware information such as device identifiers and reset cause
flags.

Reset cause flags can be used to determine why the device was reset; for example due to a watch-
dog timeout or due to power cycling. Different devices support different subset of flags. Use
hwinfo_get_supported_reset_cause to retrieve the flags that are supported by that device.

Configuration Options

Related configuration options:

• :kconfig:`CONFIG_HWINFO`

API Reference

group hwinfo_interface

Hardware Information Interface.

Defines

RESET_PIN

RESET_SOFTWARE

RESET_BROWNOUT

RESET_POR

RESET_WATCHDOG

1172 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

RESET_DEBUG

RESET_SECURITY

RESET_LOW_POWER_WAKE

RESET_CPU_LOCKUP

RESET_PARITY

RESET_PLL

RESET_CLOCK

Functions

ssize_t hwinfo_get_device_id(uint8_t *buffer, size_t length)
Copy the device id to a buffer.

This routine copies “length” number of bytes of the device ID to the buffer. If the device ID is
smaller then length, the rest of the buffer is left unchanged. The ID depends on the hardware
and is not guaranteed unique.

Drivers are responsible for ensuring that the ID data structure is a sequence of bytes. The
returned ID value is not supposed to be interpreted based on vendor-specific assumptions
of byte order. It should express the identifier as a raw byte sequence, doing any endian
conversion necessary so that a hex representation of the bytes produces the intended serial
number.

Parameters

• buffer – Buffer to write the ID to.

• length – Max length of the buffer.

Return values

• size – of the device ID copied.

• -ENOTSUP – if there is no implementation for the particular device.

• any – negative value on driver specific errors.

int hwinfo_get_reset_cause(uint32_t *cause)
Retrieve cause of device reset.

This routine retrieves the flags that indicate why the device was reset.

On some platforms the reset cause flags accumulate between successive resets and this routine
may return multiple flags indicating all reset causes since the device was powered on. If you
need to retrieve the cause only for the most recent reset call hwinfo_clear_reset_cause
after calling this routine to clear the hardware flags before the next reset event.

Successive calls to this routine will return the same value, unless hwinfo_clear_reset_cause
has been called.

Parameters

• cause – OR’d reset_cause flags

7.21. Peripherals 1173

Zephyr Project Documentation, Release 2.7.0-rc2

Return values

• zero – if successful.

• -ENOTSUP – if there is no implementation for the particular device.

• any – negative value on driver specific errors.

int hwinfo_clear_reset_cause(void)

Clear cause of device reset.

Clears reset cause flags.

Return values

• zero – if successful.

• -ENOTSUP – if there is no implementation for the particular device.

• any – negative value on driver specific errors.

int hwinfo_get_supported_reset_cause(uint32_t *supported)

Get supported reset cause flags.

Retrieves all reset_cause flags that are supported by this device.

Parameters

• supported – OR’d reset_cause flags that are supported

Return values

• zero – if successful.

• -ENOTSUP – if there is no implementation for the particular device.

• any – negative value on driver specific errors.

7.21.13 I2C EEPROM Slave

Overview

API Reference

group i2c_eeprom_slave_api

I2C EEPROM Slave Driver API.

Functions

int eeprom_slave_program(const struct device *dev, const uint8_t *eeprom_data, unsigned int
length)

Program memory of the virtual EEPROM.

Parameters

• dev – Pointer to the device structure for the driver instance.

• eeprom_data – Pointer of data to program into the virtual eeprom memory

• length – Length of data to program into the virtual eeprom memory

Return values

• 0 – If successful.

1174 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• -EINVAL – Invalid data size

int eeprom_slave_read(const struct device *dev, uint8_t *eeprom_data, unsigned int offset)

Read single byte of virtual EEPROM memory.

Parameters

• dev – Pointer to the device structure for the driver instance.

• eeprom_data – Pointer of byte where to store the virtual eeprom memory

• offset – Offset into EEPROM memory where to read the byte

Return values

• 0 – If successful.

• -EINVAL – Invalid data pointer or offset

7.21.14 I2C

Overview

Note: Zephyr recognizes the need to change the terms “master” and “slave” used in the current I2C
Specification. This will be done when the conditions identified in Rule A.2: Inclusive Language have been
met. Existing documentation, data structures, functions, and value symbols in code are likely to change
at that point.

I2C (Inter-Integrated Circuit, pronounced “eye squared see”) is a commonly-used two-signal shared pe-
ripheral interface bus. Many system-on-chip solutions provide controllers that communicate on an I2C
bus. Devices on the bus can operate in two roles: as a “master” that initiates transactions and controls
the clock, or as a “slave” that responds to transaction commands. A I2C controller on a given SoC will
generally support the master role, and some will also support the slave mode. Zephyr has API for both
roles.

I2C Master API Zephyr’s I2C master API is used when an I2C peripheral controls the bus, in particularly
the start and stop conditions and the clock. This is the most common mode, used to interact with I2C
devices like sensors and serial memory.

This API is supported in all in-tree I2C peripheral drivers and is considered stable.

I2C Slave API Zephyr’s I2C slave API is used when an I2C peripheral responds to transactions initiated
by a different controller on the bus. It might be used for a Zephyr application with transducer roles that
are controlled by another device such as a host processor.

This API is supported in very few in-tree I2C peripheral drivers. The API is considered experimental, as
it is not compatible with the capabilities of all I2C peripherals supported in master mode.

Configuration Options

Related configuration options:

• :kconfig:`CONFIG_I2C`

7.21. Peripherals 1175

Zephyr Project Documentation, Release 2.7.0-rc2

API Reference

group i2c_interface

I2C Interface.

Defines

I2C_SPEED_STANDARD

I2C Standard Speed: 100 kHz

I2C_SPEED_FAST

I2C Fast Speed: 400 kHz

I2C_SPEED_FAST_PLUS

I2C Fast Plus Speed: 1 MHz

I2C_SPEED_HIGH

I2C High Speed: 3.4 MHz

I2C_SPEED_ULTRA

I2C Ultra Fast Speed: 5 MHz

I2C_SPEED_SHIFT

I2C_SPEED_SET(speed)

I2C_SPEED_MASK

I2C_SPEED_GET(cfg)

I2C_ADDR_10_BITS

Use 10-bit addressing. DEPRECATED - Use I2C_MSG_ADDR_10_BITS instead.

I2C_MODE_MASTER

Controller to act as Master.

I2C_DT_SPEC_GET(node_id)
Structure initializer for i2c_dt_spec from devicetree.

This helper macro expands to a static initializer for a struct i2c_dt_spec by reading the
relevant bus and address data from the devicetree.

Parameters

• node_id – Devicetree node identifier for the I2C device whose struct i2c_dt_spec
to create an initializer for

I2C_DT_SPEC_INST_GET(inst)
Structure initializer for i2c_dt_spec from devicetree instance.

This is equivalent to I2C_DT_SPEC_GET(DT_DRV_INST(inst)) .

Parameters

• inst – Devicetree instance number

1176 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

I2C_MSG_WRITE

Write message to I2C bus.

I2C_MSG_READ

Read message from I2C bus.

I2C_MSG_STOP

Send STOP after this message.

I2C_MSG_RESTART

RESTART I2C transaction for this message.

Note: Not all I2C drivers have or require explicit support for this feature. Some drivers
require this be present on a read message that follows a write, or vice-versa. Some drivers
will merge adjacent fragments into a single transaction using this flag; some will not.

I2C_MSG_ADDR_10_BITS

Use 10-bit addressing for this message.

Note: Not all SoC I2C implementations support this feature.

I2C_SLAVE_FLAGS_ADDR_10_BITS

Slave device responds to 10-bit addressing.

I2C_DECLARE_CLIENT_CONFIG

I2C_CLIENT(_master, _addr)

I2C_GET_MASTER(_conf)

I2C_GET_ADDR(_conf)

Typedefs

typedef int (*i2c_slave_write_requested_cb_t)(struct i2c_slave_config *config)

Function called when a write to the device is initiated.

This function is invoked by the controller when the bus completes a start condition for a write
operation to the address associated with a particular device.

A success return shall cause the controller to ACK the next byte received. An error return shall
cause the controller to NACK the next byte received.

Param config the configuration structure associated with the device to which the
operation is addressed.

Return 0 if the write is accepted, or a negative error code.

7.21. Peripherals 1177

Zephyr Project Documentation, Release 2.7.0-rc2

typedef int (*i2c_slave_write_received_cb_t)(struct i2c_slave_config *config, uint8_t val)

Function called when a write to the device is continued.

This function is invoked by the controller when it completes reception of a byte of data in an
ongoing write operation to the device.

A success return shall cause the controller to ACK the next byte received. An error return shall
cause the controller to NACK the next byte received.

Param config the configuration structure associated with the device to which the
operation is addressed.

Param val the byte received by the controller.

Return 0 if more data can be accepted, or a negative error code.

typedef int (*i2c_slave_read_requested_cb_t)(struct i2c_slave_config *config, uint8_t *val)

Function called when a read from the device is initiated.

This function is invoked by the controller when the bus completes a start condition for a read
operation from the address associated with a particular device.

The value returned in *val will be transmitted. A success return shall cause the controller to
react to additional read operations. An error return shall cause the controller to ignore bus
operations until a new start condition is received.

Param config the configuration structure associated with the device to which the
operation is addressed.

Param val pointer to storage for the first byte of data to return for the read request.

Return 0 if more data can be requested, or a negative error code.

typedef int (*i2c_slave_read_processed_cb_t)(struct i2c_slave_config *config, uint8_t *val)

Function called when a read from the device is continued.

This function is invoked by the controller when the bus is ready to provide additional data for
a read operation from the address associated with the device device.

The value returned in *val will be transmitted. A success return shall cause the controller to
react to additional read operations. An error return shall cause the controller to ignore bus
operations until a new start condition is received.

Param config the configuration structure associated with the device to which the
operation is addressed.

Param val pointer to storage for the next byte of data to return for the read request.

Return 0 if data has been provided, or a negative error code.

typedef int (*i2c_slave_stop_cb_t)(struct i2c_slave_config *config)

Function called when a stop condition is observed after a start condition addressed to a par-
ticular device.

This function is invoked by the controller when the bus is ready to provide additional data
for a read operation from the address associated with the device device. After the function
returns the controller shall enter a state where it is ready to react to new start conditions.

Param config the configuration structure associated with the device to which the
operation is addressed.

Return Ignored.

1178 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Functions

int i2c_configure(const struct device *dev, uint32_t dev_config)

Configure operation of a host controller.

Parameters

• dev – Pointer to the device structure for the driver instance.

• dev_config – Bit-packed 32-bit value to the device runtime configuration for
the I2C controller.

Return values

• 0 – If successful.

• -EIO – General input / output error, failed to configure device.

int i2c_transfer(const struct device *dev, struct i2c_msg *msgs, uint8_t num_msgs, uint16_t
addr)

Perform data transfer to another I2C device in master mode.

This routine provides a generic interface to perform data transfer to another I2C device syn-
chronously. Use i2c_read()/i2c_write() for simple read or write.

The array of message msgs must not be NULL. The number of message num_msgs may be
zero,in which case no transfer occurs.

Note: Not all scatter/gather transactions can be supported by all drivers. As an example, a
gather write (multiple consecutive i2c_msg buffers all configured for I2C_MSG_WRITE) may
be packed into a single transaction by some drivers, but others may emit each fragment as a
distinct write transaction, which will not produce the same behavior. See the documentation
of struct i2c_msg for limitations on support for multi-message bus transactions.

Parameters

• dev – Pointer to the device structure for an I2C controller driver configured in
master mode.

• msgs – Array of messages to transfer.

• num_msgs – Number of messages to transfer.

• addr – Address of the I2C target device.

Return values

• 0 – If successful.

• -EIO – General input / output error.

static inline int i2c_transfer_dt(const struct i2c_dt_spec *spec, struct i2c_msg *msgs, uint8_t
num_msgs)

Perform data transfer to another I2C device in master mode.

This is equivalent to:

i2c_transfer(spec->bus, msgs, num_msgs, spec->addr);

Parameters

• spec – I2C specification from devicetree.

• msgs – Array of messages to transfer.

7.21. Peripherals 1179

Zephyr Project Documentation, Release 2.7.0-rc2

• num_msgs – Number of messages to transfer.

Returns a value from i2c_transfer()

int i2c_recover_bus(const struct device *dev)

Recover the I2C bus.

Attempt to recover the I2C bus.

Parameters

• dev – Pointer to the device structure for an I2C controller driver configured in
master mode.

Return values

• 0 – If successful

• -EBUSY – If bus is not clear after recovery attempt.

• -EIO – General input / output error.

• -ENOSYS – If bus recovery is not implemented

static inline int i2c_slave_register(const struct device *dev, struct i2c_slave_config *cfg)

Registers the provided config as Slave device of a controller.

Enable I2C slave mode for the ‘dev’ I2C bus driver using the provided ‘config’ struct containing
the functions and parameters to send bus events. The I2C slave will be registered at the
address provided as ‘address’ struct member. Addressing mode - 7 or 10 bit - depends on the
‘flags’ struct member. Any I2C bus events related to the slave mode will be passed onto I2C
slave device driver via a set of callback functions provided in the ‘callbacks’ struct member.

Most of the existing hardware allows simultaneous support for master and slave mode. This
is however not guaranteed.

Parameters

• dev – Pointer to the device structure for an I2C controller driver configured in
slave mode.

• cfg – Config struct with functions and parameters used by the I2C driver to
send bus events

Return values

• 0 – Is successful

• -EINVAL – If parameters are invalid

• -EIO – General input / output error.

• -ENOSYS – If slave mode is not implemented

static inline int i2c_slave_unregister(const struct device *dev, struct i2c_slave_config *cfg)

Unregisters the provided config as Slave device.

This routine disables I2C slave mode for the ‘dev’ I2C bus driver using the provided ‘config’
struct containing the functions and parameters to send bus events.

Parameters

• dev – Pointer to the device structure for an I2C controller driver configured in
slave mode.

• cfg – Config struct with functions and parameters used by the I2C driver to
send bus events

Return values

• 0 – Is successful

1180 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• -EINVAL – If parameters are invalid

• -ENOSYS – If slave mode is not implemented

int i2c_slave_driver_register(const struct device *dev)

Instructs the I2C Slave device to register itself to the I2C Controller.

This routine instructs the I2C Slave device to register itself to the I2C Controller via its parent
controller’s i2c_slave_register() API.

Parameters

• dev – Pointer to the device structure for the I2C slave device (not itself an I2C
controller).

Return values

• 0 – Is successful

• -EINVAL – If parameters are invalid

• -EIO – General input / output error.

int i2c_slave_driver_unregister(const struct device *dev)

Instructs the I2C Slave device to unregister itself from the I2C Controller.

This routine instructs the I2C Slave device to unregister itself from the I2C Controller via its
parent controller’s i2c_slave_register() API.

Parameters

• dev – Pointer to the device structure for the I2C slave device (not itself an I2C
controller).

Return values

• 0 – Is successful

• -EINVAL – If parameters are invalid

static inline int i2c_write(const struct device *dev, const uint8_t *buf, uint32_t num_bytes,
uint16_t addr)

Write a set amount of data to an I2C device.

This routine writes a set amount of data synchronously.

Parameters

• dev – Pointer to the device structure for an I2C controller driver configured in
master mode.

• buf – Memory pool from which the data is transferred.

• num_bytes – Number of bytes to write.

• addr – Address to the target I2C device for writing.

Return values

• 0 – If successful.

• -EIO – General input / output error.

static inline int i2c_write_dt(const struct i2c_dt_spec *spec, const uint8_t *buf, uint32_t
num_bytes)

Write a set amount of data to an I2C device.

This is equivalent to:

i2c_write(spec->bus, buf, num_bytes, spec->addr);

7.21. Peripherals 1181

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• spec – I2C specification from devicetree.

• buf – Memory pool from which the data is transferred.

• num_bytes – Number of bytes to write.

Returns a value from i2c_write()

static inline int i2c_read(const struct device *dev, uint8_t *buf, uint32_t num_bytes, uint16_t
addr)

Read a set amount of data from an I2C device.

This routine reads a set amount of data synchronously.

Parameters

• dev – Pointer to the device structure for an I2C controller driver configured in
master mode.

• buf – Memory pool that stores the retrieved data.

• num_bytes – Number of bytes to read.

• addr – Address of the I2C device being read.

Return values

• 0 – If successful.

• -EIO – General input / output error.

static inline int i2c_read_dt(const struct i2c_dt_spec *spec, uint8_t *buf, uint32_t num_bytes)

Read a set amount of data from an I2C device.

This is equivalent to:

i2c_read(spec->bus, buf, num_bytes, spec->addr);

Parameters

• spec – I2C specification from devicetree.

• buf – Memory pool that stores the retrieved data.

• num_bytes – Number of bytes to read.

Returns a value from i2c_read()

static inline int i2c_write_read(const struct device *dev, uint16_t addr, const void *write_buf,
size_t num_write, void *read_buf, size_t num_read)

Write then read data from an I2C device.

This supports the common operation “this is what I want”, “now give

it to me” transaction pair through a combined write-then-read bus transaction.

Parameters

• dev – Pointer to the device structure for an I2C controller driver configured in
master mode.

• addr – Address of the I2C device

• write_buf – Pointer to the data to be written

• num_write – Number of bytes to write

1182 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• read_buf – Pointer to storage for read data

• num_read – Number of bytes to read

Return values

• 0 – if successful

• negative – on error.

static inline int i2c_write_read_dt(const struct i2c_dt_spec *spec, const void *write_buf, size_t
num_write, void *read_buf, size_t num_read)

Write then read data from an I2C device.

This is equivalent to:

i2c_write_read(spec->bus, spec->addr,
write_buf, num_write,
read_buf, num_read);

Parameters

• spec – I2C specification from devicetree.

• write_buf – Pointer to the data to be written

• num_write – Number of bytes to write

• read_buf – Pointer to storage for read data

• num_read – Number of bytes to read

Returns a value from i2c_write_read()

static inline int i2c_burst_read(const struct device *dev, uint16_t dev_addr, uint8_t start_addr,
uint8_t *buf, uint32_t num_bytes)

Read multiple bytes from an internal address of an I2C device.

This routine reads multiple bytes from an internal address of an I2C device synchronously.

Instances of this may be replaced by i2c_write_read().

Parameters

• dev – Pointer to the device structure for an I2C controller driver configured in
master mode.

• dev_addr – Address of the I2C device for reading.

• start_addr – Internal address from which the data is being read.

• buf – Memory pool that stores the retrieved data.

• num_bytes – Number of bytes being read.

Return values

• 0 – If successful.

• -EIO – General input / output error.

static inline int i2c_burst_read_dt(const struct i2c_dt_spec *spec, uint8_t start_addr, uint8_t
*buf, uint32_t num_bytes)

Read multiple bytes from an internal address of an I2C device.

This is equivalent to:

i2c_burst_read(spec->bus, spec->addr, start_addr, buf, num_bytes);

7.21. Peripherals 1183

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• spec – I2C specification from devicetree.

• start_addr – Internal address from which the data is being read.

• buf – Memory pool that stores the retrieved data.

• num_bytes – Number of bytes to read.

Returns a value from i2c_burst_read()

static inline int i2c_burst_write(const struct device *dev, uint16_t dev_addr, uint8_t start_addr,
const uint8_t *buf, uint32_t num_bytes)

Write multiple bytes to an internal address of an I2C device.

This routine writes multiple bytes to an internal address of an I2C device synchronously.

Warning: The combined write synthesized by this API may not be supported on all I2C
devices. Uses of this API may be made more portable by replacing them with calls to
i2c_write() passing a buffer containing the combined address and data.

Parameters

• dev – Pointer to the device structure for an I2C controller driver configured in
master mode.

• dev_addr – Address of the I2C device for writing.

• start_addr – Internal address to which the data is being written.

• buf – Memory pool from which the data is transferred.

• num_bytes – Number of bytes being written.

Return values

• 0 – If successful.

• -EIO – General input / output error.

static inline int i2c_burst_write_dt(const struct i2c_dt_spec *spec, uint8_t start_addr, const
uint8_t *buf, uint32_t num_bytes)

Write multiple bytes to an internal address of an I2C device.

This is equivalent to:

i2c_burst_write(spec->bus, spec->addr, start_addr, buf, num_bytes);

Parameters

• spec – I2C specification from devicetree.

• start_addr – Internal address to which the data is being written.

• buf – Memory pool from which the data is transferred.

• num_bytes – Number of bytes being written.

Returns a value from i2c_burst_write()

static inline int i2c_reg_read_byte(const struct device *dev, uint16_t dev_addr, uint8_t reg_addr,
uint8_t *value)

Read internal register of an I2C device.

This routine reads the value of an 8-bit internal register of an I2C device synchronously.

1184 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• dev – Pointer to the device structure for an I2C controller driver configured in
master mode.

• dev_addr – Address of the I2C device for reading.

• reg_addr – Address of the internal register being read.

• value – Memory pool that stores the retrieved register value.

Return values

• 0 – If successful.

• -EIO – General input / output error.

static inline int i2c_reg_read_byte_dt(const struct i2c_dt_spec *spec, uint8_t reg_addr, uint8_t
*value)

Read internal register of an I2C device.

This is equivalent to:

i2c_reg_read_byte(spec->bus, spec->addr, reg_addr, value);

Parameters

• spec – I2C specification from devicetree.

• reg_addr – Address of the internal register being read.

• value – Memory pool that stores the retrieved register value.

Returns a value from i2c_reg_read_byte()

static inline int i2c_reg_write_byte(const struct device *dev, uint16_t dev_addr, uint8_t
reg_addr, uint8_t value)

Write internal register of an I2C device.

This routine writes a value to an 8-bit internal register of an I2C device synchronously.

Note: This function internally combines the register and value into a single bus transaction.

Parameters

• dev – Pointer to the device structure for an I2C controller driver configured in
master mode.

• dev_addr – Address of the I2C device for writing.

• reg_addr – Address of the internal register being written.

• value – Value to be written to internal register.

Return values

• 0 – If successful.

• -EIO – General input / output error.

static inline int i2c_reg_write_byte_dt(const struct i2c_dt_spec *spec, uint8_t reg_addr, uint8_t
value)

Write internal register of an I2C device.

This is equivalent to:

7.21. Peripherals 1185

Zephyr Project Documentation, Release 2.7.0-rc2

i2c_reg_write_byte(spec->bus, spec->addr, reg_addr, value);

Parameters

• spec – I2C specification from devicetree.

• reg_addr – Address of the internal register being written.

• value – Value to be written to internal register.

Returns a value from i2c_reg_write_byte()

static inline int i2c_reg_update_byte(const struct device *dev, uint8_t dev_addr, uint8_t
reg_addr, uint8_t mask, uint8_t value)

Update internal register of an I2C device.

This routine updates the value of a set of bits from an 8-bit internal register of an I2C device
synchronously.

Note: If the calculated new register value matches the value that was read this function will
not generate a write operation.

Parameters

• dev – Pointer to the device structure for an I2C controller driver configured in
master mode.

• dev_addr – Address of the I2C device for updating.

• reg_addr – Address of the internal register being updated.

• mask – Bitmask for updating internal register.

• value – Value for updating internal register.

Return values

• 0 – If successful.

• -EIO – General input / output error.

static inline int i2c_reg_update_byte_dt(const struct i2c_dt_spec *spec, uint8_t reg_addr,
uint8_t mask, uint8_t value)

Update internal register of an I2C device.

This is equivalent to:

i2c_reg_update_byte(spec->bus, spec->addr, reg_addr, mask, value);

Parameters

• spec – I2C specification from devicetree.

• reg_addr – Address of the internal register being updated.

• mask – Bitmask for updating internal register.

• value – Value for updating internal register.

Returns a value from i2c_reg_update_byte()

1186 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

void i2c_dump_msgs(const char *name, const struct i2c_msg *msgs, uint8_t num_msgs, uint16_t
addr)

Dump out an I2C message.

Dumps out a list of I2C messages. For any that are writes (W), the data is displayed in hex.

It looks something like this (with name “testing”):

D: I2C msg: testing, addr=56 D: W len=01: D: contents: D: 06 |. D: W len=0e: D: contents:
D: 00 01 02 03 04 05 06 07 |. D: 08 09 0a 0b 0c 0d |.

Parameters

• name – Name of this dump, displayed at the top.

• msgs – Array of messages to dump.

• num_msgs – Number of messages to dump.

• addr – Address of the I2C target device.

struct i2c_dt_spec

#include <i2c.h> Complete I2C DT information.

Param bus is the I2C bus

Param addr is the slave address

struct i2c_msg

#include <i2c.h> One I2C Message.

This defines one I2C message to transact on the I2C bus.

Note: Some of the configurations supported by this API may not be supported by spe-
cific SoC I2C hardware implementations, in particular features related to bus transactions
intended to read or write data from different buffers within a single transaction. Invocations
of i2c_transfer() may not indicate an error when an unsupported configuration is encoun-
tered. In some cases drivers will generate separate transactions for each message fragment,
with or without presence of I2C_MSG_RESTART in flags.

Public Members

uint8_t *buf

Data buffer in bytes

uint32_t len

Length of buffer in bytes

uint8_t flags

Flags for this message

struct i2c_slave_callbacks

#include <i2c.h> Structure providing callbacks to be implemented for devices that supports
the I2C slave API.

This structure may be shared by multiple devices that implement the same API at different
addresses on the bus.

7.21. Peripherals 1187

Zephyr Project Documentation, Release 2.7.0-rc2

struct i2c_slave_config

#include <i2c.h> Structure describing a device that supports the I2C slave API.

Instances of this are passed to the i2c_slave_register() and i2c_slave_unregister() functions to
indicate addition and removal of a slave device, respective.

Fields other than node must be initialized by the module that implements the device behavior
prior to passing the object reference to i2c_slave_register().

Public Members

sys_snode_t node

Private, do not modify

uint8_t flags

Flags for the slave device defined by I2C_SLAVE_FLAGS_* constants

uint16_t address

Address for this slave device

const struct i2c_slave_callbacks *callbacks

Callback functions

struct i2c_client_config

#include <i2c.h>

7.21.15 IPM

Overview

API Reference

group ipm_interface

IPM Interface.

Typedefs

typedef void (*ipm_callback_t)(const struct device *ipmdev, void *user_data, uint32_t id,
volatile void *data)

Callback API for incoming IPM messages.

These callbacks execute in interrupt context. Therefore, use only interrupt-safe APIS. Regis-
tration of callbacks is done via ipm_register_callback

Param ipmdev Driver instance

Param user_data Pointer to some private data provided at registration time.

Param id Message type identifier.

Param data Message data pointer. The correct amount of data to read out must be
inferred using the message id/upper level protocol.

1188 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

typedef int (*ipm_send_t)(const struct device *ipmdev, int wait, uint32_t id, const void *data, int
size)

Callback API to send IPM messages.

See ipm_send() for argument definitions.

typedef int (*ipm_max_data_size_get_t)(const struct device *ipmdev)

Callback API to get maximum data size.

See ipm_max_data_size_get() for argument definitions.

typedef uint32_t (*ipm_max_id_val_get_t)(const struct device *ipmdev)

Callback API to get the ID’s maximum value.

See ipm_max_id_val_get() for argument definitions.

typedef void (*ipm_register_callback_t)(const struct device *port, ipm_callback_t cb, void
*user_data)

Callback API upon registration.

See ipm_register_callback() for argument definitions.

typedef int (*ipm_set_enabled_t)(const struct device *ipmdev, int enable)

Callback API upon enablement of interrupts.

See ipm_set_enabled() for argument definitions.

Functions

int ipm_send(const struct device *ipmdev, int wait, uint32_t id, const void *data, int size)

Try to send a message over the IPM device.

A message is considered consumed once the remote interrupt handler finishes. If there is
deferred processing on the remote side, or if outgoing messages must be queued and wait on
an event/semaphore, a high-level driver can implement that.

There are constraints on how much data can be sent or the maximum value of id. Use the
ipm_max_data_size_get and ipm_max_id_val_get routines to determine them.

The size parameter is used only on the sending side to determine the amount of data to put
in the message registers. It is not passed along to the receiving side. The upper-level protocol
dictates the amount of data read back.

Parameters

• ipmdev – Driver instance

• wait – If nonzero, busy-wait for remote to consume the message. The message
is considered consumed once the remote interrupt handler finishes. If there is
deferred processing on the remote side, or you would like to queue outgoing
messages and wait on an event/semaphore, you can implement that in a high-
level driver

• id – Message identifier. Values are constrained by ipm_max_data_size_get since
many boards only allow for a subset of bits in a 32-bit register to store the ID.

• data – Pointer to the data sent in the message.

• size – Size of the data.

Return values

7.21. Peripherals 1189

Zephyr Project Documentation, Release 2.7.0-rc2

• -EBUSY – If the remote hasn’t yet read the last data sent.

• -EMSGSIZE – If the supplied data size is unsupported by the driver.

• -EINVAL – If there was a bad parameter, such as: too-large id value. or the
device isn’t an outbound IPM channel.

• 0 – On success.

static inline void ipm_register_callback(const struct device *ipmdev, ipm_callback_t cb, void
*user_data)

Register a callback function for incoming messages.

Parameters

• ipmdev – Driver instance pointer.

• cb – Callback function to execute on incoming message interrupts.

• user_data – Application-specific data pointer which will be passed to the call-
back function when executed.

int ipm_max_data_size_get(const struct device *ipmdev)

Return the maximum number of bytes possible in an outbound message.

IPM implementations vary on the amount of data that can be sent in a single message since
the data payload is typically stored in registers.

Parameters

• ipmdev – Driver instance pointer.

Returns Maximum possible size of a message in bytes.

uint32_t ipm_max_id_val_get(const struct device *ipmdev)

Return the maximum id value possible in an outbound message.

Many IPM implementations store the message’s ID in a register with some bits reserved for
other uses.

Parameters

• ipmdev – Driver instance pointer.

Returns Maximum possible value of a message ID.

int ipm_set_enabled(const struct device *ipmdev, int enable)

Enable interrupts and callbacks for inbound channels.

Parameters

• ipmdev – Driver instance pointer.

• enable – Set to 0 to disable and to nonzero to enable.

Return values

• 0 – On success.

• -EINVAL – If it isn’t an inbound channel.

struct ipm_driver_api

#include <ipm.h>

1190 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

7.21.16 KSCAN

Overview

The kscan driver (keyboard scan matrix) is used for detecting a key press in a connected matrix keyboard
or any device with buttons such as joysticks. Typically, matrix keyboards are implemented using a two-
dimensional configuration in order to sense several keys. This allows interfacing to many keys through
fewer physical pins. Keyboard matrix drivers read the rows while applying power through the columns
one at a time with the purpose of detecting key events. There is no correlation between the physical and
electrical layout of keys. For, example, the physical layout may be one array of 16 or fewer keys, which
may be electrically connected to a 4 x 4 array. In addition, key values are defined by a keymap provided
by the keyboard manufacturer.

Configuration Options

Related configuration options:

• :kconfig:`CONFIG_KSCAN`

API Reference

group kscan_interface

KSCAN APIs.

Typedefs

typedef void (*kscan_callback_t)(const struct device *dev, uint32_t row, uint32_t column, bool
pressed)

Keyboard scan callback called when user press/release a key on a matrix keyboard.

Param dev Pointer to the device structure for the driver instance.

Param row Describes row change.

Param column Describes column change.

Param pressed Describes the kind of key event.

Functions

int kscan_config(const struct device *dev, kscan_callback_t callback)

Configure a Keyboard scan instance.

Parameters

• dev – Pointer to the device structure for the driver instance.

• callback – called when keyboard devices reply to to a keyboard event such as
key pressed/released.

Return values

• 0 – If successful.

• Negative – errno code if failure.

7.21. Peripherals 1191

Zephyr Project Documentation, Release 2.7.0-rc2

int kscan_enable_callback(const struct device *dev)

Enables callback.

Parameters

• dev – Pointer to the device structure for the driver instance.

Return values

• 0 – If successful.

• Negative – errno code if failure.

int kscan_disable_callback(const struct device *dev)

Disables callback.

Parameters

• dev – Pointer to the device structure for the driver instance.

Return values

• 0 – If successful.

• Negative – errno code if failure.

7.21.17 LED

Overview

The LED API provides access to Light Emitting Diodes, both in individual and stip form.

Configuration Options

Related configuration options:

• :kconfig:`CONFIG_LED`

• :kconfig:`CONFIG_LED_STRIP`

API Reference

LED

group led_interface

LED Interface.

Typedefs

typedef int (*led_api_blink)(const struct device *dev, uint32_t led, uint32_t delay_on, uint32_t
delay_off)

Callback API for blinking an LED.

See also:

led_blink() for argument descriptions.

1192 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

typedef int (*led_api_get_info)(const struct device *dev, uint32_t led, const struct led_info
**info)

Optional API callback to get LED information.

See also:

led_get_info() for argument descriptions.

typedef int (*led_api_set_brightness)(const struct device *dev, uint32_t led, uint8_t value)

Callback API for setting brightness of an LED.

See also:

led_set_brightness() for argument descriptions.

typedef int (*led_api_set_color)(const struct device *dev, uint32_t led, uint8_t num_colors,
const uint8_t *color)

Optional API callback to set the colors of a LED.

See also:

led_set_color() for argument descriptions.

typedef int (*led_api_on)(const struct device *dev, uint32_t led)

Callback API for turning on an LED.

See also:

led_on() for argument descriptions.

typedef int (*led_api_off)(const struct device *dev, uint32_t led)

Callback API for turning off an LED.

See also:

led_off() for argument descriptions.

typedef int (*led_api_write_channels)(const struct device *dev, uint32_t start_channel,
uint32_t num_channels, const uint8_t *buf)

Callback API for writing a strip of LED channels.

See also:

led_api_write_channels() for arguments descriptions.

Functions

int led_blink(const struct device *dev, uint32_t led, uint32_t delay_on, uint32_t delay_off)

Blink an LED.

This optional routine starts blinking a LED forever with the given time period.

7.21. Peripherals 1193

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• dev – LED device

• led – LED number

• delay_on – Time period (in milliseconds) an LED should be ON

• delay_off – Time period (in milliseconds) an LED should be OFF

Returns 0 on success, negative on error

int led_get_info(const struct device *dev, uint32_t led, const struct led_info **info)

Get LED information.

This optional routine provides information about a LED.

Parameters

• dev – LED device

• led – LED number

• info – Pointer to a pointer filled with LED information

Returns 0 on success, negative on error

int led_set_brightness(const struct device *dev, uint32_t led, uint8_t value)

Set LED brightness.

This optional routine sets the brightness of a LED to the given value. Calling this function
after led_blink() won’t affect blinking.

LEDs which can only be turned on or off may provide this function. These should simply turn
the LED on if value is nonzero, and off if value is zero.

Parameters

• dev – LED device

• led – LED number

• value – Brightness value to set in percent

Returns 0 on success, negative on error

int led_write_channels(const struct device *dev, uint32_t start_channel, uint32_t
num_channels, const uint8_t *buf)

Write/update a strip of LED channels.

This optional routine writes a strip of LED channels to the given array of levels. Therefore it
can be used to configure several LEDs at the same time.

Calling this function after led_blink() won’t affect blinking.

Parameters

• dev – LED device

• start_channel – Absolute number (i.e. not relative to a LED) of the first
channel to update.

• num_channels – The number of channels to write/update.

• buf – array of values to configure the channels with. num_channels entries
must be provided.

Returns 0 on success, negative on error

1194 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

int led_set_channel(const struct device *dev, uint32_t channel, uint8_t value)

Set a single LED channel.

This optional routine sets a single LED channel to the given value.

Calling this function after led_blink() won’t affect blinking.

Parameters

• dev – LED device

• channel – Absolute channel number (i.e. not relative to a LED)

• value – Value to configure the channel with

Returns 0 on success, negative on error

int led_set_color(const struct device *dev, uint32_t led, uint8_t num_colors, const uint8_t
*color)

Set LED color.

This routine configures all the color channels of a LED with the given color array.

Calling this function after led_blink() won’t affect blinking.

Parameters

• dev – LED device

• led – LED number

• num_colors – Number of colors in the array.

• color – Array of colors. It must be ordered following the color mapping of the
LED controller. See the the color_mapping member in struct led_info.

Returns 0 on success, negative on error

int led_on(const struct device *dev, uint32_t led)

Turn on an LED.

This routine turns on an LED

Parameters

• dev – LED device

• led – LED number

Returns 0 on success, negative on error

int led_off(const struct device *dev, uint32_t led)

Turn off an LED.

This routine turns off an LED

Parameters

• dev – LED device

• led – LED number

Returns 0 on success, negative on error

struct led_info

#include <led.h> LED information structure.

This structure gathers useful information about LED controller.

Param label LED label.

Param num_colors Number of colors per LED.

7.21. Peripherals 1195

Zephyr Project Documentation, Release 2.7.0-rc2

Param index Index of the LED on the controller.

Param color_mapping Mapping of the LED colors.

struct led_driver_api

#include <led.h> LED driver API.

LED Strip

group led_strip_interface

LED Strip Interface.

Typedefs

typedef int (*led_api_update_rgb)(const struct device *dev, struct led_rgb *pixels, size_t
num_pixels)

Callback API for updating an RGB LED strip.

See also:

led_strip_update_rgb() for argument descriptions.

typedef int (*led_api_update_channels)(const struct device *dev, uint8_t *channels, size_t
num_channels)

Callback API for updating channels without an RGB interpretation.

See also:

led_strip_update_channels() for argument descriptions.

Functions

static inline int led_strip_update_rgb(const struct device *dev, struct led_rgb *pixels, size_t
num_pixels)

Update an LED strip made of RGB pixels.

Important: This routine may overwrite pixels.

This routine immediately updates the strip display according to the given pixels array.

Warning: May overwrite pixels

Parameters

• dev – LED strip device

• pixels – Array of pixel data

• num_pixels – Length of pixels array

Returns 0 on success, negative on error

1196 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline int led_strip_update_channels(const struct device *dev, uint8_t *channels, size_t
num_channels)

Update an LED strip on a per-channel basis.

Important: This routine may overwrite channels.

This routine immediately updates the strip display according to the given channels array. Each
channel byte corresponds to an individually addressable color channel or LED. Channels are
updated linearly in strip order.

Warning: May overwrite channels

Parameters

• dev – LED strip device

• channels – Array of per-channel data

• num_channels – Length of channels array

Returns 0 on success, negative on error

struct led_rgb

#include <led_strip.h> Color value for a single RGB LED.

Individual strip drivers may ignore lower-order bits if their resolution in any channel is less
than a full byte.

Public Members

uint8_t r

Red channel

uint8_t g

Green channel

uint8_t b

Blue channel

struct led_strip_driver_api

#include <led_strip.h> LED strip driver API.

This is the mandatory API any LED strip driver needs to expose.

7.21.18 Pinmux

Overview

API Reference

group pinmux_interface

Pinmux Interface.

7.21. Peripherals 1197

Zephyr Project Documentation, Release 2.7.0-rc2

Defines

PINMUX_FUNC_A

PINMUX_FUNC_B

PINMUX_FUNC_C

PINMUX_FUNC_D

PINMUX_FUNC_E

PINMUX_FUNC_F

PINMUX_FUNC_G

PINMUX_FUNC_H

PINMUX_FUNC_I

PINMUX_FUNC_J

PINMUX_FUNC_K

PINMUX_FUNC_L

PINMUX_FUNC_M

PINMUX_FUNC_N

PINMUX_FUNC_O

PINMUX_FUNC_P

PINMUX_FUNC_Q

PINMUX_FUNC_R

PINMUX_FUNC_S

PINMUX_FUNC_T

PINMUX_PULLUP_ENABLE

PINMUX_PULLUP_DISABLE

1198 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

PINMUX_INPUT_ENABLED

PINMUX_OUTPUT_ENABLED

Typedefs

typedef int (*pmux_set)(const struct device *dev, uint32_t pin, uint32_t func)

Callback API upon setting a PIN’s function See pinmux_pin_set() for argument description.

typedef int (*pmux_get)(const struct device *dev, uint32_t pin, uint32_t *func)

Callback API upon getting a PIN’s function See pinmux_pin_get() for argument description.

typedef int (*pmux_pullup)(const struct device *dev, uint32_t pin, uint8_t func)

Callback API upon setting a PIN’s pullup See pinmix_pin_pullup() for argument description.

typedef int (*pmux_input)(const struct device *dev, uint32_t pin, uint8_t func)

Callback API upon setting a PIN’s input function See pinmux_input() for argument descrip-
tion.

Functions

static inline int pinmux_pin_set(const struct device *dev, uint32_t pin, uint32_t func)

static inline int pinmux_pin_get(const struct device *dev, uint32_t pin, uint32_t *func)

static inline int pinmux_pin_pullup(const struct device *dev, uint32_t pin, uint8_t func)

static inline int pinmux_pin_input_enable(const struct device *dev, uint32_t pin, uint8_t func)

struct pinmux_driver_api

#include <pinmux.h>

7.21.19 PWM

Overview

API Reference

group pwm_interface

PWM Interface.

PWM capture configuration flags

PWM_CAPTURE_TYPE_PERIOD

PWM pin capture captures period.

7.21. Peripherals 1199

Zephyr Project Documentation, Release 2.7.0-rc2

PWM_CAPTURE_TYPE_PULSE

PWM pin capture captures pulse width.

PWM_CAPTURE_TYPE_BOTH

PWM pin capture captures both period and pulse width.

PWM_CAPTURE_MODE_SINGLE

PWM pin capture captures a single period/pulse width.

PWM_CAPTURE_MODE_CONTINUOUS

PWM pin capture captures period/pulse width continuously.

Typedefs

typedef uint8_t pwm_flags_t

Provides a type to hold PWM configuration flags.

typedef int (*pwm_pin_set_t)(const struct device *dev, uint32_t pwm, uint32_t period_cycles,
uint32_t pulse_cycles, pwm_flags_t flags)

Callback API upon setting the pin See pwm_pin_set_cycles() for argument description.

typedef void (*pwm_capture_callback_handler_t)(const struct device *dev, uint32_t pwm,
uint32_t period_cycles, uint32_t pulse_cycles, int status, void *user_data)

PWM capture callback handler function signature.

Note: The callback handler will be called in interrupt context.

Note: :kconfig:`CONFIG_PWM_CAPTURE` must be selected to enable PWM capture sup-
port.

Param dev Pointer to the device structure for the driver instance.

Param pwm PWM pin.

Param period_cycles Captured PWM period width (in clock cycles). HW specific.

Param pulse_cycles Captured PWM pulse width (in clock cycles). HW specific.

Param status Status for the PWM capture (0 if no error, negative errno otherwise.
See pwm_pin_capture_cycles() return value descriptions for details).

Param user_data User data passed to pwm_pin_configure_capture()

typedef int (*pwm_pin_configure_capture_t)(const struct device *dev, uint32_t pwm,
pwm_flags_t flags, pwm_capture_callback_handler_t cb, void *user_data)

Callback API upon configuring PWM pin capture See pwm_pin_configure_capture() for argu-
ment description.

typedef int (*pwm_pin_enable_capture_t)(const struct device *dev, uint32_t pwm)

Callback API upon enabling PWM pin capture See pwm_pin_enable_capture() for argument
description.

1200 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

typedef int (*pwm_pin_disable_capture_t)(const struct device *dev, uint32_t pwm)

Callback API upon disabling PWM pin capture See pwm_pin_disable_capture() for argument
description.

typedef int (*pwm_get_cycles_per_sec_t)(const struct device *dev, uint32_t pwm, uint64_t
*cycles)

Callback API upon getting cycles per second See pwm_get_cycles_per_sec() for argument
description.

Functions

int pwm_pin_set_cycles(const struct device *dev, uint32_t pwm, uint32_t period, uint32_t pulse,
pwm_flags_t flags)

Set the period and pulse width for a single PWM output.

The PWM period and pulse width will synchronously be set to the new values without glitches
in the PWM signal, but the call will not block for the change to take effect.

Passing 0 as pulse will cause the pin to be driven to a constant inactive level. Passing a
non-zero pulse equal to period will cause the pin to be driven to a constant active level.

Note: Not all PWM controllers support synchronous, glitch-free updates of the PWM period
and pulse width. Depending on the hardware, changing the PWM period and/or pulse width
may cause a glitch in the generated PWM signal.

Note: Some multi-channel PWM controllers share the PWM period across all channels. De-
pending on the hardware, changing the PWM period for one channel may affect the PWM
period for the other channels of the same PWM controller.

Parameters

• dev – Pointer to the device structure for the driver instance.

• pwm – PWM pin.

• period – Period (in clock cycle) set to the PWM. HW specific.

• pulse – Pulse width (in clock cycle) set to the PWM. HW specific.

• flags – Flags for pin configuration (polarity).

Return values

• 0 – If successful.

• Negative – errno code if failure.

static inline int pwm_pin_configure_capture(const struct device *dev, uint32_t pwm,
pwm_flags_t flags, pwm_capture_callback_handler_t
cb, void *user_data)

Configure PWM period/pulse width capture for a single PWM input.

After configuring PWM capture using this function, the capture can be enabled/disabled using
pwm_pin_enable_capture() and pwm_pin_disable_capture().

7.21. Peripherals 1201

Zephyr Project Documentation, Release 2.7.0-rc2

Note: This API function cannot be invoked from user space due to the use of a func-
tion callback. In user space, one of the simpler API functions (pwm_pin_capture_cycles(),
pwm_pin_capture_usec(), or pwm_pin_capture_nsec()) can be used instead.

Note: :kconfig:`CONFIG_PWM_CAPTURE` must be selected for this function to be avail-
able.

Parameters

• dev – Pointer to the device structure for the driver instance.

• pwm – PWM pin.

• flags – PWM capture flags

• cb – Application callback handler function to be called upon capture

• user_data – User data to pass to the application callback handler function

Return values

• -EINVAL – if invalid function parameters were given

• -ENOSYS – if PWM capture is not supported or the given flags are not supported

• -EIO – if IO error occurred while configuring

• -EBUSY – if PWM capture is already in progress

int pwm_pin_enable_capture(const struct device *dev, uint32_t pwm)

Enable PWM period/pulse width capture for a single PWM input.

The PWM pin must be configured using pwm_pin_configure_capture() prior to calling this
function.

Note: :kconfig:`CONFIG_PWM_CAPTURE` must be selected for this function to be avail-
able.

Parameters

• dev – Pointer to the device structure for the driver instance.

• pwm – PWM pin.

Return values

• 0 – If successful.

• -EINVAL – if invalid function parameters were given

• -ENOSYS – if PWM capture is not supported

• -EIO – if IO error occurred while enabling PWM capture

• -EBUSY – if PWM capture is already in progress

int pwm_pin_disable_capture(const struct device *dev, uint32_t pwm)

Disable PWM period/pulse width capture for a single PWM input.

Note: :kconfig:`CONFIG_PWM_CAPTURE` must be selected for this function to be avail-
able.

1202 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• dev – Pointer to the device structure for the driver instance.

• pwm – PWM pin.

Return values

• 0 – If successful.

• -EINVAL – if invalid function parameters were given

• -ENOSYS – if PWM capture is not supported

• -EIO – if IO error occurred while disabling PWM capture

int pwm_pin_capture_cycles(const struct device *dev, uint32_t pwm, pwm_flags_t flags, uint32_t
*period, uint32_t *pulse, k_timeout_t timeout)

Capture a single PWM period/pulse width in clock cycles for a single PWM input.

This API function wraps calls to pwm_pin_configure_capture(), pwm_pin_enable_capture(),
and pwm_pin_disable_capture() and passes the capture result to the caller. The function is
blocking until either the PWM capture is completed or a timeout occurs.

Note: :kconfig:`CONFIG_PWM_CAPTURE` must be selected for this function to be avail-
able.

Parameters

• dev – Pointer to the device structure for the driver instance.

• pwm – PWM pin.

• flags – PWM capture flags.

• period – Pointer to the memory to store the captured PWM period width (in
clock cycles). HW specific.

• pulse – Pointer to the memory to store the captured PWM pulse width (in clock
cycles). HW specific.

• timeout – Waiting period for the capture to complete.

Return values

• 0 – If successful.

• -EBUSY – PWM capture already in progress.

• -EAGAIN – Waiting period timed out.

• -EIO – IO error while capturing.

• -ERANGE – If result is too large.

int pwm_get_cycles_per_sec(const struct device *dev, uint32_t pwm, uint64_t *cycles)

Get the clock rate (cycles per second) for a single PWM output.

Parameters

• dev – Pointer to the device structure for the driver instance.

• pwm – PWM pin.

• cycles – Pointer to the memory to store clock rate (cycles per sec). HW spe-
cific.

Return values

7.21. Peripherals 1203

Zephyr Project Documentation, Release 2.7.0-rc2

• 0 – If successful.

• Negative – errno code if failure.

static inline int pwm_pin_set_usec(const struct device *dev, uint32_t pwm, uint32_t period,
uint32_t pulse, pwm_flags_t flags)

Set the period and pulse width for a single PWM output.

Parameters

• dev – Pointer to the device structure for the driver instance.

• pwm – PWM pin.

• period – Period (in microseconds) set to the PWM.

• pulse – Pulse width (in microseconds) set to the PWM.

• flags – Flags for pin configuration (polarity).

Return values

• 0 – If successful.

• Negative – errno code if failure.

static inline int pwm_pin_set_nsec(const struct device *dev, uint32_t pwm, uint32_t period,
uint32_t pulse, pwm_flags_t flags)

Set the period and pulse width for a single PWM output.

Parameters

• dev – Pointer to the device structure for the driver instance.

• pwm – PWM pin.

• period – Period (in nanoseconds) set to the PWM.

• pulse – Pulse width (in nanoseconds) set to the PWM.

• flags – Flags for pin configuration (polarity).

Return values

• 0 – If successful.

• Negative – errno code if failure.

static inline int pwm_pin_cycles_to_usec(const struct device *dev, uint32_t pwm, uint32_t
cycles, uint64_t *usec)

Convert from PWM cycles to microseconds.

Parameters

• dev – Pointer to the device structure for the driver instance.

• pwm – PWM pin.

• cycles – Cycles to be converted.

• usec – Pointer to the memory to store calculated usec.

Return values

• 0 – If successful.

• -EIO – If cycles per second cannot be determined.

• -ERANGE – If result is too large.

1204 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline int pwm_pin_cycles_to_nsec(const struct device *dev, uint32_t pwm, uint32_t
cycles, uint64_t *nsec)

Convert from PWM cycles to nanoseconds.

Parameters

• dev – Pointer to the device structure for the driver instance.

• pwm – PWM pin.

• cycles – Cycles to be converted.

• nsec – Pointer to the memory to store the calculated nsec.

Return values

• 0 – If successful.

• -EIO – If cycles per second cannot be determined.

• -ERANGE – If result is too large.

static inline int pwm_pin_capture_usec(const struct device *dev, uint32_t pwm, pwm_flags_t
flags, uint64_t *period, uint64_t *pulse, k_timeout_t
timeout)

Capture a single PWM period/pulse width in microseconds for a single PWM input.

This API function wraps calls to pwm_pin_capture_cycles() and pwm_pin_cycles_to_usec()
and passes the capture result to the caller. The function is blocking until either the PWM
capture is completed or a timeout occurs.

Note: :kconfig:`CONFIG_PWM_CAPTURE` must be selected for this function to be avail-
able.

Parameters

• dev – Pointer to the device structure for the driver instance.

• pwm – PWM pin.

• flags – PWM capture flags.

• period – Pointer to the memory to store the captured PWM period width (in
usec).

• pulse – Pointer to the memory to store the captured PWM pulse width (in
usec).

• timeout – Waiting period for the capture to complete.

Return values

• 0 – If successful.

• -EBUSY – PWM capture already in progress.

• -EAGAIN – Waiting period timed out.

• -EIO – IO error while capturing.

• -ERANGE – If result is too large.

static inline int pwm_pin_capture_nsec(const struct device *dev, uint32_t pwm, pwm_flags_t
flags, uint64_t *period, uint64_t *pulse, k_timeout_t
timeout)

7.21. Peripherals 1205

Zephyr Project Documentation, Release 2.7.0-rc2

Capture a single PWM period/pulse width in nanoseconds for a single PWM input.

This API function wraps calls to pwm_pin_capture_cycles() and pwm_pin_cycles_to_nsec()
and passes the capture result to the caller. The function is blocking until either the PWM
capture is completed or a timeout occurs.

Note: :kconfig:`CONFIG_PWM_CAPTURE` must be selected for this function to be avail-
able.

Parameters

• dev – Pointer to the device structure for the driver instance.

• pwm – PWM pin.

• flags – PWM capture flags.

• period – Pointer to the memory to store the captured PWM period width (in
nsec).

• pulse – Pointer to the memory to store the captured PWM pulse width (in
nsec).

• timeout – Waiting period for the capture to complete.

Return values

• 0 – If successful.

• -EBUSY – PWM capture already in progress.

• -EAGAIN – Waiting period timed out.

• -EIO – IO error while capturing.

• -ERANGE – If result is too large.

struct pwm_driver_api

#include <pwm.h> PWM driver API definition.

7.21.20 PS/2

Overview

The PS/2 connector first hit the market in 1987 on IBM’s desktop PC line of the same name before
becoming an industry-wide standard for mouse and keyboard connections. Starting around 2007, USB
superseded PS/2 and is the modern peripheral device connection standard. For legacy support on boards
with a PS/2 connector, Zephyr provides these PS/2 driver APIs.

Configuration Options

Related configuration options:

• :kconfig:`CONFIG_PS2`

1206 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

API Reference

group ps2_interface

PS/2 Driver APIs.

Typedefs

typedef void (*ps2_callback_t)(const struct device *dev, uint8_t data)

PS/2 callback called when user types or click a mouse.

Param dev Pointer to the device structure for the driver instance.

Param data Data byte passed pack to the user.

Functions

int ps2_config(const struct device *dev, ps2_callback_t callback_isr)

Configure a ps2 instance.

Parameters

• dev – Pointer to the device structure for the driver instance.

• callback_isr – called when PS/2 devices reply to a configuration command
or when a mouse/keyboard send data to the client application.

Return values

• 0 – If successful.

• Negative – errno code if failure.

int ps2_write(const struct device *dev, uint8_t value)

Write to PS/2 device.

Parameters

• dev – Pointer to the device structure for the driver instance.

• value – Data for the PS2 device.

Return values

• 0 – If successful.

• Negative – errno code if failure.

int ps2_read(const struct device *dev, uint8_t *value)

Read slave-to-host values from PS/2 device.

Parameters

• dev – Pointer to the device structure for the driver instance.

• value – Pointer used for reading the PS/2 device.

Return values

• 0 – If successful.

• Negative – errno code if failure.

7.21. Peripherals 1207

Zephyr Project Documentation, Release 2.7.0-rc2

int ps2_enable_callback(const struct device *dev)

Enables callback.

Parameters

• dev – Pointer to the device structure for the driver instance.

Return values

• 0 – If successful.

• Negative – errno code if failure.

int ps2_disable_callback(const struct device *dev)

Disables callback.

Parameters

• dev – Pointer to the device structure for the driver instance.

Return values

• 0 – If successful.

• Negative – errno code if failure.

7.21.21 PECI

Overview

The Platform Environment Control Interface, abbreviated as PECI, is a thermal management standard
introduced in 2006 with the Intel Core 2 Duo Microprocessors. The PECI interface allows external de-
vices to read processor temperature, perform processor manageability functions, and manage processor
interface tuning and diagnostics. The PECI bus driver APIs enable the interaction between Embedded
Microcontrollers and CPUs.

Configuration Options

Related configuration options:

• :kconfig:`CONFIG_PECI`

API Reference

group peci_interface

PECI Interface 3.0.

Defines

PECI_CC_RSP_SUCCESS

PECI read/write supported responses

PECI_CC_RSP_TIMEOUT

PECI_CC_OUT_OF_RESOURCES_TIMEOUT

1208 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

PECI_CC_RESOURCES_LOWPWR_TIMEOUT

PECI_CC_ILLEGAL_REQUEST

PECI_PING_WR_LEN

Ping command format.

PECI_PING_RD_LEN

PECI_PING_LEN

PECI_GET_DIB_WR_LEN

GetDIB command format.

PECI_GET_DIB_RD_LEN

PECI_GET_DIB_CMD_LEN

PECI_GET_DIB_DEVINFO

PECI_GET_DIB_REVNUM

PECI_GET_DIB_DOMAIN_BIT_MASK

PECI_GET_DIB_MAJOR_REV_MASK

PECI_GET_DIB_MINOR_REV_MASK

PECI_GET_TEMP_WR_LEN

GetTemp command format.

PECI_GET_TEMP_RD_LEN

PECI_GET_TEMP_CMD_LEN

PECI_GET_TEMP_LSB

PECI_GET_TEMP_MSB

PECI_GET_TEMP_ERR_MSB

PECI_GET_TEMP_ERR_LSB_GENERAL

PECI_GET_TEMP_ERR_LSB_RES

PECI_GET_TEMP_ERR_LSB_TEMP_LO

7.21. Peripherals 1209

Zephyr Project Documentation, Release 2.7.0-rc2

PECI_GET_TEMP_ERR_LSB_TEMP_HI

PECI_RD_PKG_WR_LEN

RdPkgConfig command format.

PECI_RD_PKG_LEN_BYTE

PECI_RD_PKG_LEN_WORD

PECI_RD_PKG_LEN_DWORD

PECI_RD_PKG_CMD_LEN

PECI_WR_PKG_RD_LEN

WrPkgConfig command format

PECI_WR_PKG_LEN_BYTE

PECI_WR_PKG_LEN_WORD

PECI_WR_PKG_LEN_DWORD

PECI_WR_PKG_CMD_LEN

PECI_RD_IAMSR_WR_LEN

RdIAMSR command format

PECI_RD_IAMSR_LEN_BYTE

PECI_RD_IAMSR_LEN_WORD

PECI_RD_IAMSR_LEN_DWORD

PECI_RD_IAMSR_LEN_QWORD

PECI_RD_IAMSR_CMD_LEN

PECI_WR_IAMSR_RD_LEN

WrIAMSR command format

PECI_WR_IAMSR_LEN_BYTE

PECI_WR_IAMSR_LEN_WORD

PECI_WR_IAMSR_LEN_DWORD

1210 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

PECI_WR_IAMSR_LEN_QWORD

PECI_WR_IAMSR_CMD_LEN

PECI_RD_PCICFG_WR_LEN

RdPCIConfig command format

PECI_RD_PCICFG_LEN_BYTE

PECI_RD_PCICFG_LEN_WORD

PECI_RD_PCICFG_LEN_DWORD

PECI_RD_PCICFG_CMD_LEN

PECI_WR_PCICFG_RD_LEN

WrPCIConfig command format

PECI_WR_PCICFG_LEN_BYTE

PECI_WR_PCICFG_LEN_WORD

PECI_WR_PCICFG_LEN_DWORD

PECI_WR_PCICFG_CMD_LEN

PECI_RD_PCICFGL_WR_LEN

RdPCIConfigLocal command format

PECI_RD_PCICFGL_RD_LEN_BYTE

PECI_RD_PCICFGL_RD_LEN_WORD

PECI_RD_PCICFGL_RD_LEN_DWORD

PECI_RD_PCICFGL_CMD_LEN

PECI_WR_PCICFGL_RD_LEN

WrPCIConfigLocal command format

PECI_WR_PCICFGL_WR_LEN_BYTE

PECI_WR_PCICFGL_WR_LEN_WORD

PECI_WR_PCICFGL_WR_LEN_DWORD

PECI_WR_PCICFGL_CMD_LEN

7.21. Peripherals 1211

Zephyr Project Documentation, Release 2.7.0-rc2

Enums

enum peci_error_code

PECI error codes.

Values:

enumerator PECI_GENERAL_SENSOR_ERROR = 0x8000

enumerator PECI_UNDERFLOW_SENSOR_ERROR = 0x8002

enumerator PECI_OVERFLOW_SENSOR_ERROR = 0x8003

enum peci_command_code

PECI commands.

Values:

enumerator PECI_CMD_PING = 0x00

enumerator PECI_CMD_GET_TEMP0 = 0x01

enumerator PECI_CMD_GET_TEMP1 = 0x02

enumerator PECI_CMD_RD_PCI_CFG0 = 0x61

enumerator PECI_CMD_RD_PCI_CFG1 = 0x62

enumerator PECI_CMD_WR_PCI_CFG0 = 0x65

enumerator PECI_CMD_WR_PCI_CFG1 = 0x66

enumerator PECI_CMD_RD_PKG_CFG0 = 0xA1

enumerator PECI_CMD_RD_PKG_CFG1 = 0xA

enumerator PECI_CMD_WR_PKG_CFG0 = 0xA5

enumerator PECI_CMD_WR_PKG_CFG1 = 0xA6

enumerator PECI_CMD_RD_IAMSR0 = 0xB1

enumerator PECI_CMD_RD_IAMSR1 = 0xB2

enumerator PECI_CMD_WR_IAMSR0 = 0xB5

enumerator PECI_CMD_WR_IAMSR1 = 0xB6

1212 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator PECI_CMD_RD_PCI_CFG_LOCAL0 = 0xE1

enumerator PECI_CMD_RD_PCI_CFG_LOCAL1 = 0xE2

enumerator PECI_CMD_WR_PCI_CFG_LOCAL0 = 0xE5

enumerator PECI_CMD_WR_PCI_CFG_LOCAL1 = 0xE6

enumerator PECI_CMD_GET_DIB = 0xF7

Functions

int peci_config(const struct device *dev, uint32_t bitrate)

Configures the PECI interface.

Parameters

• dev – Pointer to the device structure for the driver instance.

• bitrate – the selected expressed in Kbps. command or when an event needs
to be sent to the client application.

Return values

• 0 – If successful.

• Negative – errno code if failure.

int peci_enable(const struct device *dev)

Enable PECI interface.

Parameters

• dev – Pointer to the device structure for the driver instance.

Return values

• 0 – If successful.

• Negative – errno code if failure.

int peci_disable(const struct device *dev)

Disable PECI interface.

Parameters

• dev – Pointer to the device structure for the driver instance.

Return values

• 0 – If successful.

• Negative – errno code if failure.

int peci_transfer(const struct device *dev, struct peci_msg *msg)

Performs a PECI transaction.

Parameters

• dev – Pointer to the device structure for the driver instance.

• msg – Structure representing a PECI transaction.

Return values

7.21. Peripherals 1213

Zephyr Project Documentation, Release 2.7.0-rc2

• 0 – If successful.

• Negative – errno code if failure.

struct peci_buf

#include <peci.h> PECI buffer structure.

Note: Frame check sequence byte is added into rx buffer, need to allocate an additional byte
for this in rx buffer.

Param buf is a valid pointer on a data buffer, or NULL otherwise.

Param len is the length of the data buffer expected to received without considering
the frame check sequence byte.

struct peci_msg

#include <peci.h> PECI transaction packet format.

Public Members

uint8_t addr

Client address

enum peci_command_code cmd_code

Command code

struct peci_buf tx_buffer

Pointer to buffer of write data

struct peci_buf rx_buffer

Pointer to buffer of read data

uint8_t flags

PECI msg flags

7.21.22 Regulators

This subsystem provides control of voltage and current regulators. A common example is a GPIO that
controls a transistor that supplies current to a device that is not always needed.

Conceptually regulators have two modes: off and on. A transition between modes may involve a time de-
lay, so operations on regulators are inherently asynchronous. To maximize flexibility the On-Off Manager
infrastructure is used in the generic API for the regulator subsystem. Nodes with a devicetree compatible
of regulator-fixed are the most common flexible regulators.

In some cases the transitions are close enough to instantaneous that the the asynchronous driver imple-
mentation is not needed, and the resource cost in RAM is not justified. Such a regulator still uses the
asynchronous API, but may be implemented internally in a way that ensures the result of the operation
is presented before the transition completes. Zephyr recognizes devicetree nodes with a compatible of
regulator-fixed-sync as devices with synchronous transitions.

The vin-supply devicetree property is used to identify the regulator(s) that a devicetree node directly
depends on. Within the driver for the node the regulator API is used to issue requests for power when
the device is to be active, and release the power request when the device shuts down.

1214 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

The simplest case where a regulator is needed is one where there is only one client. For those situations
the cost of using even the optimized synchronous regulator device infrastructure is not justified, and the
supply-gpios devicetree property should be used. There is no device interface to these regulators as
they are entirely controlled within the driver for the corresponding node, e.g. a sensor.

API Reference

group regulator_interface

Regulator Interface.

Functions

static inline int regulator_enable(const struct device *reg, struct onoff_client *cli)

Enable a regulator.

Reference-counted request that a regulator be turned on. This is an asynchronous operation;
if successfully initiated the result will be communicated through the cli parameter.

A regulator is considered “on” when it has reached a stable/usable state.

Note: This function is isr-ok and pre-kernel-ok.

Parameters

• reg – a regulator device

• cli – used to notify the caller when the attempt to turn on the regulator has
completed.

Returns non-negative on successful initiation of the request. Negative values indi-
cate failures from onoff_request() or individual regulator drivers.

static inline int regulator_disable(const struct device *reg)

Disable a regulator.

Release a regulator after a previous regulator_enable() completed successfully.

If the release removes the last dependency on the regulator it will begin a transition to its “off”
state. There is currently no mechanism to notify when the regulator has completely turned
off.

This must be invoked at most once for each successful regulator_enable().

Note: This function is isr-ok.

Parameters

• reg – a regulator device

Returns non-negative on successful completion of the release request. Negative val-
ues indicate failures from onoff_release() or individual regulator drivers.

struct regulator_driver_api

#include <regulator.h> Driver-specific API functions to support regulator control.

7.21. Peripherals 1215

Zephyr Project Documentation, Release 2.7.0-rc2

7.21.23 RTC

Overview

This is a placeholder for API specific to real-time clocks. Currently all RTC peripherals are implemented
through Counter with device-specific API for counters with real-time support.

API Reference

group rtc_interface

RTC DS3231 Driver-Specific API.

Typedefs

typedef void (*maxim_ds3231_alarm_callback_handler_t)(const struct device *dev, uint8_t id,
uint32_t syncclock, void *user_data)

Signature for DS3231 alarm callbacks.

The alarm callback is invoked from the system work queue thread. At the point the callback is
invoked the corresponding alarm flags will have been cleared from the device status register.
The callback is permitted to invoke operations on the device.

Param dev the device from which the callback originated

Param id the alarm id

Param syncclock the value from maxim_ds3231_read_syncclock() at the time the
alarm interrupt was processed.

Param user_data the corresponding parameter from
maxim_ds3231_alarm::user_data.

typedef void (*maxim_ds3231_notify_callback)(const struct device *dev, struct sys_notify
*notify, int res)

Signature used to notify a user of the DS3231 that an asynchronous operation has completed.

Functions compatible with this type are subject to all the constraints of
sys_notify_generic_callback.

Param dev the DS3231 device pointer

Param notify the notification structure provided in the call

Param res the result of the operation.

Functions

static inline uint32_t maxim_ds3231_read_syncclock(const struct device *dev)

Read the local synchronization clock.

Synchronization aligns the DS3231 real-time clock with a stable monotonic local clock which
should have a frequency between 1 kHz and 1 MHz and be itself synchronized with the pri-
mary system time clock. The accuracy of the alignment and the maximum time between
synchronization updates is affected by the resolution of this clock.

On some systems the hardware clock from k_cycles_get_32() is suitable, but on others
that clock advances too quickly. The frequency of the target-specific clock is provided by
maxim_ds3231_syncclock_frequency().

1216 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

At this time the value is captured from k_uptime_get_32() ; future kernel extensions may
make a higher-resolution clock available.

Note: This function is isr-ok.

Parameters

• dev – the DS3231 device pointer

Returns the current value of the synchronization clock.

static inline uint32_t maxim_ds3231_syncclock_frequency(const struct device *dev)

Get the frequency of the synchronization clock.

Provides the frequency of the clock used in maxim_ds3231_read_syncclock().

Parameters

• dev – the DS3231 device pointer

Returns the frequency of the selected synchronization clock.

int maxim_ds3231_ctrl_update(const struct device *dev, uint8_t set_bits, uint8_t clear_bits)

Set and clear specific bits in the control register.

Note: This function assumes the device register cache is valid. It will not read the register
value, and it will write to the device only if the value changes as a result of applying the set
and clear changes.

Note: Unlike maxim_ds3231_stat_update() the return value from this function indicates the
register value after changes were made. That return value is cached for use in subsequent
operations.

Note: This function is supervisor.

Returns the non-negative updated value of the register, or a negative error code from
an I2C transaction.

int maxim_ds3231_stat_update(const struct device *dev, uint8_t set_bits, uint8_t clear_bits)

Read the ctrl_stat register then set and clear bits in it.

The content of the ctrl_stat register will be read, then the set and clear bits applied and the
result written back to the device (regardless of whether there appears to be a change in value).

OSF, A1F, and A2F will be written with 1s if the corresponding bits do not appear in either
set_bits or clear_bits. This ensures that if any flag becomes set between the read and the
write that indicator will not be cleared.

Note: Unlike maxim_ds3231_ctrl_update() the return value from this function indicates the
register value before any changes were made.

Note: This function is supervisor.

7.21. Peripherals 1217

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• dev – the DS3231 device pointer

• set_bits – bits to be set when writing back. Setting bits other than
MAXIM_DS3231_REG_STAT_EN32kHz will have no effect.

• clear_bits – bits to be cleared when writing back. Include the bits for the
status flags you want to clear.

Returns the non-negative register value as originally read (disregarding the effect of
clears and sets), or a negative error code from an I2C transaction.

int maxim_ds3231_get_alarm(const struct device *dev, uint8_t id, struct maxim_ds3231_alarm
*cfg)

Read a DS3231 alarm configuration.

The alarm configuration data is read from the device and reconstructed into the output pa-
rameter.

Note: This function is supervisor.

Parameters

• dev – the DS3231 device pointer.

• id – the alarm index, which must be 0 (for the 1 s resolution alarm) or 1 (for
the 1 min resolution alarm).

• cfg – a pointer to a structure into which the configured alarm data will be
stored.

Returns a non-negative value indicating successful conversion, or a negative error
code from an I2C transaction or invalid parameter.

int maxim_ds3231_set_alarm(const struct device *dev, uint8_t id, const struct
maxim_ds3231_alarm *cfg)

Configure a DS3231 alarm.

The alarm configuration is validated and stored into the device.

To cancel an alarm use counter_cancel_channel_alarm().

Note: This function is supervisor.

Parameters

• dev – the DS3231 device pointer.

• id – 0 Analog to counter index. ALARM1 is 0 and has 1 s resolution, ALARM2 is 1
and has 1 minute resolution.

• cfg – a pointer to the desired alarm configuration. Both alarms are configured;
if only one is to change the application must supply the existing configuration
for the other.

Returns a non-negative value on success, or a negative error code from an I2C trans-
action or an invalid parameter.

1218 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

int maxim_ds3231_synchronize(const struct device *dev, struct sys_notify *notify)

Synchronize the RTC against the local clock.

The RTC advances one tick per second with no access to sub-second precision. Synchronizing
clocks at sub-second resolution requires enabling a 1pps signal then capturing the system
clocks in a GPIO callback. This function provides that operation.

Synchronization is performed in asynchronously, and may take as long as 1 s to complete;
notification of completion is provided through the notify parameter.

Applications should use maxim_ds3231_get_syncpoint() to retrieve the synchronization data
collected by this operation.

Note: This function is supervisor.

Parameters

• dev – the DS3231 device pointer.

• notify – pointer to the object used to specify asynchronous function behavior
and store completion information.

Return values

• non-negative – on success

• -EBUSY – if a synchronization or set is currently in progress

• -EINVAL – if notify is not provided

• -ENOTSUP – if the required interrupt is not configured

int maxim_ds3231_req_syncpoint(const struct device *dev, struct k_poll_signal *signal)

Request to update the synchronization point.

This is a variant of maxim_ds3231_synchronize() for use from user threads.

Parameters

• dev – the DS3231 device pointer.

• signal – pointer to a valid and ready-to-be-signalled k_poll_signal. May be
NULL to request a synchronization point be collected without notifying when
it has been updated.

Return values

• non-negative – on success

• -EBUSY – if a synchronization or set is currently in progress

• -ENOTSUP – if the required interrupt is not configured

int maxim_ds3231_get_syncpoint(const struct device *dev, struct maxim_ds3231_syncpoint
*syncpoint)

Retrieve the most recent synchronization point.

This function returns the synchronization data last captured using
maxim_ds3231_synchronize().

Parameters

• dev – the DS3231 device pointer.

• syncpoint – where to store the synchronization data.

Return values

7.21. Peripherals 1219

Zephyr Project Documentation, Release 2.7.0-rc2

• non-negative – on success

• -ENOENT – if no syncpoint has been captured

int maxim_ds3231_set(const struct device *dev, const struct maxim_ds3231_syncpoint *syncpoint,
struct sys_notify *notify)

Set the RTC to a time consistent with the provided synchronization.

The RTC advances one tick per second with no access to sub-second precision, and setting the
clock resets the internal countdown chain. This function implements the magic necessary to
set the clock while retaining as much sub-second accuracy as possible. It requires a synchro-
nization point that pairs sub-second resolution civil time with a local synchronization clock
captured at the same instant. The set operation may take as long as 1 second to complete;
notification of completion is provided through the notify parameter.

Note: This function is supervisor.

Parameters

• dev – the DS3231 device pointer.

• syncpoint – the structure providing the synchronization point.

• notify – pointer to the object used to specify asynchronous function behavior
and store completion information.

Return values

• non-negative – on success

• -EINVAL – if syncpoint or notify are null

• -ENOTSUP – if the required interrupt signal is not configured

• -EBUSY – if a synchronization or set is currently in progress

int maxim_ds3231_check_alarms(const struct device *dev)

Check for and clear flags indicating that an alarm has fired.

Returns a mask indicating alarms that are marked as having fired, and clears from stat the
flags that it found set. Alarms that have been configured with a callback are not represented
in the return value.

This API may be used when a persistent alarm has been programmed.

Note: This function is supervisor.

Parameters

• dev – the DS3231 device pointer.

Returns a non-negative value that may have MAXIM_DS3231_ALARM1 and/or
MAXIM_DS3231_ALARM2 set, or a negative error code.

struct maxim_ds3231_alarm

#include <maxim_ds3231.h> Information defining the alarm configuration.

DS3231 alarms can be set to fire at specific times or at the rollover of minute, hour, day, or
day of week.

When an alarm is configured with a handler an interrupt will be generated and the handler
called from the system work queue.

1220 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

When an alarm is configured without a handler, or a persisted alarm is present, alarms can be
read using maxim_ds3231_check_alarms().

Public Members

time_t time

Time specification for an RTC alarm.

Though specified as a UNIX time, the alarm parameters are determined by converting
to civil time and interpreting the component hours, minutes, seconds, day-of-week, and
day-of-month fields, mediated by the corresponding flags.

The year and month are ignored, but be aware that gmtime() determines day-of-week
based on calendar date. Decoded alarm times will fall within 1978-01 since 1978-01-01
(first of month) was a Sunday (first of week).

maxim_ds3231_alarm_callback_handler_t handler

Handler to be invoked when alarms are signalled.

If this is null the alarm will not be triggered by the INTn/SQW GPIO. This is a “persisted”
alarm from its role in using the DS3231 to trigger a wake from deep sleep. The application
should use maxim_ds3231_check_alarms() to determine whether such an alarm has been
triggered.

If this is not null the driver will monitor the ISW GPIO for alarm signals and will invoke the
handler with a parameter carrying the value returned by maxim_ds3231_check_alarms().
The corresponding status flags will be cleared in the device before the handler is invoked.

The handler will be invoked from the system work queue.

void *user_data

User-provided pointer passed to alarm callback.

uint8_t flags

Flags controlling configuration of the alarm alarm.

See MAXIM_DS3231_ALARM_FLAGS_IGNSE and related constants.

Note that as described the alarm mask fields require that if a unit is not ignored, higher-
precision units must also not be ignored. For example, if match on hours is enabled, match
on minutes and seconds must also be enabled. Failure to comply with this requirement
will cause maxim_ds3231_set_alarm() to return an error, leaving the alarm configuration
unchanged.

struct maxim_ds3231_syncpoint

#include <maxim_ds3231.h> Register the RTC clock against system clocks.

This captures the same instant in both the RTC time scale and a stable system clock scale,
allowing conversion between those scales.

Public Members

struct timespec rtc

Time from the DS3231.

This maybe in UTC, TAI, or local offset depending on how the RTC is maintained.

7.21. Peripherals 1221

Zephyr Project Documentation, Release 2.7.0-rc2

uint32_t syncclock

Value of a local clock at the same instant as rtc.

This is captured from a stable monotonic system clock running at between 1 kHz and 1
MHz, allowing for microsecond to millisecond accuracy in synchronization.

7.21.24 Sensors

The sensor subsystem exposes an API to uniformly access sensor devices. Common operations are:
reading data and executing code when specific conditions are met.

Basic Operation

Channels Fundamentally, a channel is a quantity that a sensor device can measure.

Sensors can have multiple channels, either to represent different axes of the same physical property (e.g.
acceleration); or because they can measure different properties altogether (ambient temperature, pres-
sure and humidity). Complex sensors cover both cases, so a single device can expose three acceleration
channels and a temperature one.

It is imperative that all sensors that support a given channel express results in the same unit of mea-
surement. Consult the API Reference for all supported channels, along with their description and units of
measurement:

Values Sensor devices return results as sensor_value . This representation avoids use of floating point
values as they may not be supported on certain setups.

Fetching Values Getting a reading from a sensor requires two operations. First, an application instructs
the driver to fetch a sample of all its channels. Then, individual channels may be read. In the case of
channels with multiple axes, they can be read in a single operation by supplying the corresponding _XYZ
channel type and a buffer of 3 sensor_value objects. This approach ensures consistency of channels
between reads and efficiency of communication by issuing a single transaction on the underlying bus.

Below is an example illustrating the usage of the BME280 sensor, which measures ambient tempera-
ture and atmospheric pressure. Note that sensor_sample_fetch() is only called once, as it reads and
compensates data for both channels.

1

2 /*
3 * Get a device structure from a devicetree node with compatible
4 * "bosch,bme280". (If there are multiple, just pick one.)
5 */
6 static const struct device *get_bme280_device(void)
7 {
8 const struct device *dev = DEVICE_DT_GET_ANY(bosch_bme280);
9

10 if (dev == NULL) {
11 /* No such node, or the node does not have status "okay". */
12 printk("\nError: no device found.\n");
13 return NULL;
14 }
15

16 if (!device_is_ready(dev)) {
17 printk("\nError: Device \"%s\" is not ready; "
18 "check the driver initialization logs for errors.\n",

(continues on next page)

1222 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

19 dev->name);
20 return NULL;
21 }
22

23 printk("Found device \"%s\", getting sensor data\n", dev->name);
24 return dev;
25 }
26

27 void main(void)
28 {
29 const struct device *dev = get_bme280_device();
30

31 if (dev == NULL) {
32 return;
33 }
34

35 while (1) {
36 struct sensor_value temp, press, humidity;
37

38 sensor_sample_fetch(dev);
39 sensor_channel_get(dev, SENSOR_CHAN_AMBIENT_TEMP, &temp);
40 sensor_channel_get(dev, SENSOR_CHAN_PRESS, &press);
41 sensor_channel_get(dev, SENSOR_CHAN_HUMIDITY, &humidity);
42

43 printk("temp: %d.%06d; press: %d.%06d; humidity: %d.%06d\n",
44 temp.val1, temp.val2, press.val1, press.val2,
45 humidity.val1, humidity.val2);
46

47 k_sleep(K_MSEC(1000));
48 }
49 }

The example assumes that the returned values have type sensor_value , which is the case for BME280.
A real application supporting multiple sensors should inspect the type field of the temp and press values
and use the other fields of the structure accordingly.

Configuration and Attributes

Setting the communication bus and address is considered the most basic configuration for sensor devices.
This setting is done at compile time, via the configuration menu. If the sensor supports interrupts, the
interrupt lines and triggering parameters described below are also configured at compile time.

Alongside these communication parameters, sensor chips typically expose multiple parameters that con-
trol the accuracy and frequency of measurement. In compliance with Zephyr’s design goals, most of
these values are statically configured at compile time.

However, certain parameters could require runtime configuration, for example, threshold values for
interrupts. These values are configured via attributes. The example in the following section showcases a
sensor with an interrupt line that is triggered when the temperature crosses a threshold. The threshold
is configured at runtime using an attribute.

Triggers

Triggers in Zephyr refer to the interrupt lines of the sensor chips. Many sensor chips support one or more
triggers. Some examples of triggers include: new data is ready for reading, a channel value has crossed
a threshold, or the device has sensed motion.

7.21. Peripherals 1223

Zephyr Project Documentation, Release 2.7.0-rc2

To configure a trigger, an application needs to supply a sensor_trigger and a handler function. The
structure contains the trigger type and the channel on which the trigger must be configured.

Because most sensors are connected via SPI or I2C busses, it is not possible to communicate with them
from the interrupt execution context. The execution of the trigger handler is deferred to a thread, so that
data fetching operations are possible. A driver can spawn its own thread to fetch data, thus ensuring
minimum latency. Alternatively, multiple sensor drivers can share a system-wide thread. The shared
thread approach increases the latency of handling interrupts but uses less memory. You can configure
which approach to follow for each driver. Most drivers can entirely disable triggers resulting in a smaller
footprint.

The following example contains a trigger fired whenever temperature crosses the 26 degree Celsius
threshold. It also samples the temperature every second. A real application would ideally disable periodic
sampling in the interest of saving power. Since the application has direct access to the kernel config
symbols, no trigger is registered when triggering was disabled by the driver’s configuration.

1

2 # define UCEL_PER_CEL 1000000
3 # define UCEL_PER_MCEL 1000
4 # define TEMP_INITIAL_CEL 25
5 # define TEMP_WINDOW_HALF_UCEL 500000
6

7 static const char *now_str(void)
8 {
9 static char buf[16]; /* ...HH:MM:SS.MMM */

10 uint32_t now = k_uptime_get_32();
11 unsigned int ms = now % MSEC_PER_SEC;
12 unsigned int s;
13 unsigned int min;
14 unsigned int h;
15

16 now /= MSEC_PER_SEC;
17 s = now % 60U;
18 now /= 60U;
19 min = now % 60U;
20 now /= 60U;
21 h = now;
22

23 snprintf(buf, sizeof(buf), "%u:%02u:%02u.%03u",
24 h, min, s, ms);
25 return buf;
26 }
27

28 # ifdef CONFIG_MCP9808_TRIGGER
29

30 static struct sensor_trigger trig;
31

32 static int set_window(const struct device *dev,
33 const struct sensor_value *temp)
34 {
35 const int temp_ucel = temp->val1 * UCEL_PER_CEL + temp->val2;
36 const int low_ucel = temp_ucel - TEMP_WINDOW_HALF_UCEL;
37 const int high_ucel = temp_ucel + TEMP_WINDOW_HALF_UCEL;
38 struct sensor_value val = {
39 .val1 = low_ucel / UCEL_PER_CEL,
40 .val2 = low_ucel % UCEL_PER_CEL,
41 };
42 int rc = sensor_attr_set(dev, SENSOR_CHAN_AMBIENT_TEMP,
43 SENSOR_ATTR_LOWER_THRESH, &val);

(continues on next page)

1224 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

44 if (rc == 0) {
45 val.val1 = high_ucel / UCEL_PER_CEL,
46 val.val2 = high_ucel % UCEL_PER_CEL,
47 rc = sensor_attr_set(dev, SENSOR_CHAN_AMBIENT_TEMP,
48 SENSOR_ATTR_UPPER_THRESH, &val);
49 }
50

51 if (rc == 0) {
52 printf("Alert on temp outside [%d, %d] milli-Celsius\n",
53 low_ucel / UCEL_PER_MCEL,
54 high_ucel / UCEL_PER_MCEL);
55 }
56

57 return rc;
58 }
59

60 static inline int set_window_ucel(const struct device *dev,
61 int temp_ucel)
62 {
63 struct sensor_value val = {
64 .val1 = temp_ucel / UCEL_PER_CEL,
65 .val2 = temp_ucel % UCEL_PER_CEL,
66 };
67

68 return set_window(dev, &val);
69 }
70

71 static void trigger_handler(const struct device *dev,
72 struct sensor_trigger *trig)
73 {
74 struct sensor_value temp;
75 static size_t cnt;
76 int rc;
77

78 ++cnt;
79 rc = sensor_sample_fetch(dev);
80 if (rc != 0) {
81 printf("sensor_sample_fetch error: %d\n", rc);
82 return;
83 }
84 rc = sensor_channel_get(dev, SENSOR_CHAN_AMBIENT_TEMP, &temp);
85 if (rc != 0) {
86 printf("sensor_channel_get error: %d\n", rc);
87 return;
88 }
89

90 printf("trigger fired %u, temp %g deg C\n", cnt,
91 sensor_value_to_double(&temp));
92 set_window(dev, &temp);
93 }
94 # endif
95

96 void main(void)
97 {
98 const struct device *dev = DEVICE_DT_GET_ANY(microchip_mcp9808);
99 int rc;

(continues on next page)

7.21. Peripherals 1225

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

100

101 if (dev == NULL) {
102 printf("Device not found.\n");
103 return;
104 }
105 if (!device_is_ready(dev)) {
106 printf("Device %s is not ready.\n", dev->name);
107 return;
108 }
109

110 # ifdef CONFIG_MCP9808_TRIGGER
111 rc = set_window_ucel(dev, TEMP_INITIAL_CEL * UCEL_PER_CEL);
112 if (rc == 0) {
113 trig.type = SENSOR_TRIG_THRESHOLD;
114 trig.chan = SENSOR_CHAN_AMBIENT_TEMP;
115 rc = sensor_trigger_set(dev, &trig, trigger_handler);
116 }
117

118 if (rc != 0) {
119 printf("Trigger set failed: %d\n", rc);
120 return;
121 }
122 printk("Trigger set got %d\n", rc);
123 # endif
124

125 while (1) {
126 struct sensor_value temp;
127

128 rc = sensor_sample_fetch(dev);
129 if (rc != 0) {
130 printf("sensor_sample_fetch error: %d\n", rc);
131 break;
132 }
133

134 rc = sensor_channel_get(dev, SENSOR_CHAN_AMBIENT_TEMP, &temp);
135 if (rc != 0) {
136 printf("sensor_channel_get error: %d\n", rc);
137 break;
138 }
139

140 printf("%s: %g C\n", now_str(),
141 sensor_value_to_double(&temp));
142

143 k_sleep(K_SECONDS(2));
144 }
145 }

API Reference

group sensor_interface

Sensor Interface.

Defines

1226 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

SENSOR_G

The value of gravitational constant in micro m/s^2.

SENSOR_PI

The value of constant PI in micros.

Typedefs

typedef void (*sensor_trigger_handler_t)(const struct device *dev, struct sensor_trigger
*trigger)

Callback API upon firing of a trigger.

Param dev Pointer to the sensor device

Param trigger The trigger

typedef int (*sensor_attr_set_t)(const struct device *dev, enum sensor_channel chan, enum
sensor_attribute attr, const struct sensor_value *val)

Callback API upon setting a sensor’s attributes.

See sensor_attr_set() for argument description

typedef int (*sensor_attr_get_t)(const struct device *dev, enum sensor_channel chan, enum
sensor_attribute attr, struct sensor_value *val)

Callback API upon getting a sensor’s attributes.

See sensor_attr_get() for argument description

typedef int (*sensor_trigger_set_t)(const struct device *dev, const struct sensor_trigger *trig,
sensor_trigger_handler_t handler)

Callback API for setting a sensor’s trigger and handler.

See sensor_trigger_set() for argument description

typedef int (*sensor_sample_fetch_t)(const struct device *dev, enum sensor_channel chan)

Callback API for fetching data from a sensor.

See sensor_sample_fetch() for argument description

typedef int (*sensor_channel_get_t)(const struct device *dev, enum sensor_channel chan, struct
sensor_value *val)

Callback API for getting a reading from a sensor.

See sensor_channel_get() for argument description

Enums

enum sensor_channel

Sensor channels.

Values:

enumerator SENSOR_CHAN_ACCEL_X

Acceleration on the X axis, in m/s^2.

7.21. Peripherals 1227

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator SENSOR_CHAN_ACCEL_Y

Acceleration on the Y axis, in m/s^2.

enumerator SENSOR_CHAN_ACCEL_Z

Acceleration on the Z axis, in m/s^2.

enumerator SENSOR_CHAN_ACCEL_XYZ

Acceleration on the X, Y and Z axes.

enumerator SENSOR_CHAN_GYRO_X

Angular velocity around the X axis, in radians/s.

enumerator SENSOR_CHAN_GYRO_Y

Angular velocity around the Y axis, in radians/s.

enumerator SENSOR_CHAN_GYRO_Z

Angular velocity around the Z axis, in radians/s.

enumerator SENSOR_CHAN_GYRO_XYZ

Angular velocity around the X, Y and Z axes.

enumerator SENSOR_CHAN_MAGN_X

Magnetic field on the X axis, in Gauss.

enumerator SENSOR_CHAN_MAGN_Y

Magnetic field on the Y axis, in Gauss.

enumerator SENSOR_CHAN_MAGN_Z

Magnetic field on the Z axis, in Gauss.

enumerator SENSOR_CHAN_MAGN_XYZ

Magnetic field on the X, Y and Z axes.

enumerator SENSOR_CHAN_DIE_TEMP

Device die temperature in degrees Celsius.

enumerator SENSOR_CHAN_AMBIENT_TEMP

Ambient temperature in degrees Celsius.

enumerator SENSOR_CHAN_PRESS

Pressure in kilopascal.

enumerator SENSOR_CHAN_PROX

Proximity. Adimensional. A value of 1 indicates that an object is close.

enumerator SENSOR_CHAN_HUMIDITY

Humidity, in percent.

1228 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator SENSOR_CHAN_LIGHT

Illuminance in visible spectrum, in lux.

enumerator SENSOR_CHAN_IR

Illuminance in infra-red spectrum, in lux.

enumerator SENSOR_CHAN_RED

Illuminance in red spectrum, in lux.

enumerator SENSOR_CHAN_GREEN

Illuminance in green spectrum, in lux.

enumerator SENSOR_CHAN_BLUE

Illuminance in blue spectrum, in lux.

enumerator SENSOR_CHAN_ALTITUDE

Altitude, in meters

enumerator SENSOR_CHAN_PM_1_0

1.0 micro-meters Particulate Matter, in ug/m^3

enumerator SENSOR_CHAN_PM_2_5

2.5 micro-meters Particulate Matter, in ug/m^3

enumerator SENSOR_CHAN_PM_10

10 micro-meters Particulate Matter, in ug/m^3

enumerator SENSOR_CHAN_DISTANCE

Distance. From sensor to target, in meters

enumerator SENSOR_CHAN_CO2

CO2 level, in parts per million (ppm)

enumerator SENSOR_CHAN_VOC

VOC level, in parts per billion (ppb)

enumerator SENSOR_CHAN_GAS_RES

Gas sensor resistance in ohms.

enumerator SENSOR_CHAN_VOLTAGE

Voltage, in volts

enumerator SENSOR_CHAN_CURRENT

Current, in amps

enumerator SENSOR_CHAN_POWER

Power in watts

7.21. Peripherals 1229

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator SENSOR_CHAN_RESISTANCE

Resistance , in Ohm

enumerator SENSOR_CHAN_ROTATION

Angular rotation, in degrees

enumerator SENSOR_CHAN_POS_DX

Position change on the X axis, in points.

enumerator SENSOR_CHAN_POS_DY

Position change on the Y axis, in points.

enumerator SENSOR_CHAN_POS_DZ

Position change on the Z axis, in points.

enumerator SENSOR_CHAN_RPM

Revolutions per minute, in RPM.

enumerator SENSOR_CHAN_GAUGE_VOLTAGE

Voltage, in volts

enumerator SENSOR_CHAN_GAUGE_AVG_CURRENT

Average current, in amps

enumerator SENSOR_CHAN_GAUGE_STDBY_CURRENT

Standy current, in amps

enumerator SENSOR_CHAN_GAUGE_MAX_LOAD_CURRENT

Max load current, in amps

enumerator SENSOR_CHAN_GAUGE_TEMP

Gauge temperature

enumerator SENSOR_CHAN_GAUGE_STATE_OF_CHARGE

State of charge measurement in %

enumerator SENSOR_CHAN_GAUGE_FULL_CHARGE_CAPACITY

Full Charge Capacity in mAh

enumerator SENSOR_CHAN_GAUGE_REMAINING_CHARGE_CAPACITY

Remaining Charge Capacity in mAh

enumerator SENSOR_CHAN_GAUGE_NOM_AVAIL_CAPACITY

Nominal Available Capacity in mAh

enumerator SENSOR_CHAN_GAUGE_FULL_AVAIL_CAPACITY

Full Available Capacity in mAh

1230 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator SENSOR_CHAN_GAUGE_AVG_POWER

Average power in mW

enumerator SENSOR_CHAN_GAUGE_STATE_OF_HEALTH

State of health measurement in %

enumerator SENSOR_CHAN_GAUGE_TIME_TO_EMPTY

Time to empty in minutes

enumerator SENSOR_CHAN_GAUGE_TIME_TO_FULL

Time to full in minutes

enumerator SENSOR_CHAN_GAUGE_CYCLE_COUNT

Cycle count (total number of charge/discharge cycles)

enumerator SENSOR_CHAN_GAUGE_DESIGN_VOLTAGE

Design voltage of cell in V (max voltage)

enumerator SENSOR_CHAN_GAUGE_DESIRED_VOLTAGE

Desired voltage of cell in V (nominal voltage)

enumerator SENSOR_CHAN_GAUGE_DESIRED_CHARGING_CURRENT

Desired charging current in mA

enumerator SENSOR_CHAN_ALL

All channels.

enumerator SENSOR_CHAN_COMMON_COUNT

Number of all common sensor channels.

enumerator SENSOR_CHAN_PRIV_START = SENSOR_CHAN_COMMON_COUNT

This and higher values are sensor specific. Refer to the sensor header file.

enumerator SENSOR_CHAN_MAX = INT16_MAX

Maximum value describing a sensor channel type.

enum sensor_trigger_type

Sensor trigger types.

Values:

enumerator SENSOR_TRIG_TIMER

Timer-based trigger, useful when the sensor does not have an interrupt line.

enumerator SENSOR_TRIG_DATA_READY

Trigger fires whenever new data is ready.

enumerator SENSOR_TRIG_DELTA

7.21. Peripherals 1231

Zephyr Project Documentation, Release 2.7.0-rc2

Trigger fires when the selected channel varies significantly. This includes any-motion
detection when the channel is acceleration or gyro. If detection is based on slope
between successive channel readings, the slope threshold is configured via the SEN-
SOR_ATTR_SLOPE_TH and SENSOR_ATTR_SLOPE_DUR attributes.

enumerator SENSOR_TRIG_NEAR_FAR

Trigger fires when a near/far event is detected.

enumerator SENSOR_TRIG_THRESHOLD

Trigger fires when channel reading transitions configured thresholds. The thresholds are
configured via the SENSOR_ATTR_LOWER_THRESH, SENSOR_ATTR_UPPER_THRESH,
and SENSOR_ATTR_HYSTERESIS attributes.

enumerator SENSOR_TRIG_TAP

Trigger fires when a single tap is detected.

enumerator SENSOR_TRIG_DOUBLE_TAP

Trigger fires when a double tap is detected.

enumerator SENSOR_TRIG_FREEFALL

Trigger fires when a free fall is detected.

enumerator SENSOR_TRIG_COMMON_COUNT

Number of all common sensor triggers.

enumerator SENSOR_TRIG_PRIV_START = SENSOR_TRIG_COMMON_COUNT

This and higher values are sensor specific. Refer to the sensor header file.

enumerator SENSOR_TRIG_MAX = INT16_MAX

Maximum value describing a sensor trigger type.

enum sensor_attribute

Sensor attribute types.

Values:

enumerator SENSOR_ATTR_SAMPLING_FREQUENCY

Sensor sampling frequency, i.e. how many times a second the sensor takes a measure-
ment.

enumerator SENSOR_ATTR_LOWER_THRESH

Lower threshold for trigger.

enumerator SENSOR_ATTR_UPPER_THRESH

Upper threshold for trigger.

enumerator SENSOR_ATTR_SLOPE_TH

Threshold for any-motion (slope) trigger.

1232 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator SENSOR_ATTR_SLOPE_DUR

Duration for which the slope values needs to be outside the threshold for the trigger to
fire.

enumerator SENSOR_ATTR_HYSTERESIS

enumerator SENSOR_ATTR_OVERSAMPLING

Oversampling factor

enumerator SENSOR_ATTR_FULL_SCALE

Sensor range, in SI units.

enumerator SENSOR_ATTR_OFFSET

The sensor value returned will be altered by the amount indicated by offset: final_value
= sensor_value + offset.

enumerator SENSOR_ATTR_CALIB_TARGET

Calibration target. This will be used by the internal chip’s algorithms to calibrate itself on
a certain axis, or all of them.

enumerator SENSOR_ATTR_CONFIGURATION

Configure the operating modes of a sensor.

enumerator SENSOR_ATTR_CALIBRATION

Set a calibration value needed by a sensor.

enumerator SENSOR_ATTR_FEATURE_MASK

Enable/disable sensor features

enumerator SENSOR_ATTR_ALERT

Alert threshold or alert enable/disable

enumerator SENSOR_ATTR_COMMON_COUNT

Number of all common sensor attributes.

enumerator SENSOR_ATTR_PRIV_START = SENSOR_ATTR_COMMON_COUNT

This and higher values are sensor specific. Refer to the sensor header file.

enumerator SENSOR_ATTR_MAX = INT16_MAX

Maximum value describing a sensor attribute type.

Functions

int sensor_attr_set(const struct device *dev, enum sensor_channel chan, enum sensor_attribute
attr, const struct sensor_value *val)

Set an attribute for a sensor.

Parameters

• dev – Pointer to the sensor device

7.21. Peripherals 1233

Zephyr Project Documentation, Release 2.7.0-rc2

• chan – The channel the attribute belongs to, if any. Some attributes may only
be set for all channels of a device, depending on device capabilities.

• attr – The attribute to set

• val – The value to set the attribute to

Returns 0 if successful, negative errno code if failure.

int sensor_attr_get(const struct device *dev, enum sensor_channel chan, enum sensor_attribute
attr, struct sensor_value *val)

Get an attribute for a sensor.

Parameters

• dev – Pointer to the sensor device

• chan – The channel the attribute belongs to, if any. Some attributes may only
be set for all channels of a device, depending on device capabilities.

• attr – The attribute to get

• val – Pointer to where to store the attribute

Returns 0 if successful, negative errno code if failure.

static inline int sensor_trigger_set(const struct device *dev, struct sensor_trigger *trig,
sensor_trigger_handler_t handler)

Activate a sensor’s trigger and set the trigger handler.

The handler will be called from a thread, so I2C or SPI operations are safe. However, the
thread’s stack is limited and defined by the driver. It is currently up to the caller to ensure that
the handler does not overflow the stack.

Function properties (list may not be complete) supervisor

Parameters

• dev – Pointer to the sensor device

• trig – The trigger to activate

• handler – The function that should be called when the trigger fires

Returns 0 if successful, negative errno code if failure.

int sensor_sample_fetch(const struct device *dev)

Fetch a sample from the sensor and store it in an internal driver buffer.

Read all of a sensor’s active channels and, if necessary, perform any additional operations
necessary to make the values useful. The user may then get individual channel values by
calling sensor_channel_get.

Since the function communicates with the sensor device, it is unsafe to call it in an ISR if the
device is connected via I2C or SPI.

Parameters

• dev – Pointer to the sensor device

Returns 0 if successful, negative errno code if failure.

int sensor_sample_fetch_chan(const struct device *dev, enum sensor_channel type)

Fetch a sample from the sensor and store it in an internal driver buffer.

Read and compute compensation for one type of sensor data (magnetometer, accelerometer,
etc). The user may then get individual channel values by calling sensor_channel_get.

1234 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

This is mostly implemented by multi function devices enabling reading at different sampling
rates.

Since the function communicates with the sensor device, it is unsafe to call it in an ISR if the
device is connected via I2C or SPI.

Parameters

• dev – Pointer to the sensor device

• type – The channel that needs updated

Returns 0 if successful, negative errno code if failure.

int sensor_channel_get(const struct device *dev, enum sensor_channel chan, struct sensor_value
*val)

Get a reading from a sensor device.

Return a useful value for a particular channel, from the driver’s internal data. Before
calling this function, a sample must be obtained by calling sensor_sample_fetch or sen-
sor_sample_fetch_chan. It is guaranteed that two subsequent calls of this function for the
same channels will yield the same value, if sensor_sample_fetch or sensor_sample_fetch_chan
has not been called in the meantime.

For vectorial data samples you can request all axes in just one call by passing the specific
channel with _XYZ suffix. The sample will be returned at val[0], val[1] and val[2] (X, Y and
Z in that order).

Parameters

• dev – Pointer to the sensor device

• chan – The channel to read

• val – Where to store the value

Returns 0 if successful, negative errno code if failure.

static inline int32_t sensor_ms2_to_g(const struct sensor_value *ms2)

Helper function to convert acceleration from m/s^2 to Gs.

Parameters

• ms2 – A pointer to a sensor_value struct holding the acceleration, in m/s^2.

Returns The converted value, in Gs.

static inline void sensor_g_to_ms2(int32_t g, struct sensor_value *ms2)

Helper function to convert acceleration from Gs to m/s^2.

Parameters

• g – The G value to be converted.

• ms2 – A pointer to a sensor_value struct, where the result is stored.

static inline int32_t sensor_rad_to_degrees(const struct sensor_value *rad)

Helper function for converting radians to degrees.

Parameters

• rad – A pointer to a sensor_value struct, holding the value in radians.

Returns The converted value, in degrees.

static inline void sensor_degrees_to_rad(int32_t d, struct sensor_value *rad)

Helper function for converting degrees to radians.

Parameters

• d – The value (in degrees) to be converted.

7.21. Peripherals 1235

Zephyr Project Documentation, Release 2.7.0-rc2

• rad – A pointer to a sensor_value struct, where the result is stored.

static inline double sensor_value_to_double(const struct sensor_value *val)

Helper function for converting struct sensor_value to double.

Parameters

• val – A pointer to a sensor_value struct.

Returns The converted value.

static inline void sensor_value_from_double(struct sensor_value *val, double inp)

Helper function for converting double to struct sensor_value.

Parameters

• val – A pointer to a sensor_value struct.

• inp – The converted value.

struct sensor_value

#include <sensor.h> Representation of a sensor readout value.

The value is represented as having an integer and a fractional part, and can be obtained using
the formula val1 + val2 * 10^(-6). Negative values also adhere to the above formula, but
may need special attention. Here are some examples of the value representation:

0.5: val1 = 0, val2 = 500000
-0.5: val1 = 0, val2 = -500000
-1.0: val1 = -1, val2 = 0
-1.5: val1 = -1, val2 = -500000

Public Members

int32_t val1

Integer part of the value.

int32_t val2

Fractional part of the value (in one-millionth parts).

struct sensor_trigger

#include <sensor.h> Sensor trigger spec.

Public Members

enum sensor_trigger_type type

Trigger type.

enum sensor_channel chan

Channel the trigger is set on.

struct sensor_driver_api

#include <sensor.h>

1236 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

7.21.25 SPI

Overview

API Reference

group spi_interface

SPI Interface.

Defines

SPI_OP_MODE_MASTER

SPI operational mode.

SPI_OP_MODE_SLAVE

SPI_OP_MODE_MASK

SPI_OP_MODE_GET(_operation_)

SPI_MODE_CPOL

SPI Polarity & Phase Modes.

Clock Polarity: if set, clock idle state will be 1 and active state will be 0. If untouched, the
inverse will be true which is the default.

SPI_MODE_CPHA

Clock Phase: this dictates when is the data captured, and depends clock’s polarity. When
SPI_MODE_CPOL is set and this bit as well, capture will occur on low to high transition and
high to low if this bit is not set (default). This is fully reversed if CPOL is not set.

SPI_MODE_LOOP

Whatever data is transmitted is looped-back to the receiving buffer of the controller. This is
fully controller dependent as some may not support this, and can be used for testing purposes
only.

SPI_MODE_MASK

SPI_MODE_GET(_mode_)

SPI_TRANSFER_MSB

SPI Transfer modes (host controller dependent)

SPI_TRANSFER_LSB

SPI_WORD_SIZE_SHIFT

SPI word size.

SPI_WORD_SIZE_MASK

7.21. Peripherals 1237

Zephyr Project Documentation, Release 2.7.0-rc2

SPI_WORD_SIZE_GET(_operation_)

SPI_WORD_SET(_word_size_)

SPI_LINES_SINGLE

SPI MISO lines.

Some controllers support dual, quad or octal MISO lines connected to slaves. Default is single,
which is the case most of the time.

SPI_LINES_DUAL

SPI_LINES_QUAD

SPI_LINES_OCTAL

SPI_LINES_MASK

SPI_HOLD_ON_CS

Specific SPI devices control bits.

SPI_LOCK_ON

SPI_CS_ACTIVE_HIGH

SPI_CS_CONTROL_PTR_DT(node_id, delay_)
Initialize and get a pointer to a spi_cs_control from a devicetree node identifier.

This helper is useful for initializing a device on a SPI bus. It initializes a struct spi_cs_control
and returns a pointer to it. Here, node_id is a node identifier for a SPI device, not a SPI
controller.

Example devicetree fragment:

spi@... {
cs-gpios = <&gpio0 1 GPIO_ACTIVE_LOW>;
spidev: spi-device@0 { ... };

};

Assume that gpio0 follows the standard convention for specifying GPIOs, i.e. it has the fol-
lowing in its binding:

gpio-cells:
- pin
- flags

Example usage:

struct spi_cs_control *ctrl =
SPI_CS_CONTROL_PTR_DT(DT_NODELABEL(spidev), 2);

This example is equivalent to:

struct spi_cs_control *ctrl =
&(struct spi_cs_control) {

.gpio_dev = DEVICE_DT_GET(DT_NODELABEL(gpio0)),
(continues on next page)

1238 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

.delay = 2,

.gpio_pin = 1,

.gpio_dt_flags = GPIO_ACTIVE_LOW
};

This macro is not available in C++.

Parameters

• node_id – Devicetree node identifier for a device on a SPI bus

• delay_ – The delay field to set in the spi_cs_control

Returns a pointer to the spi_cs_control structure

SPI_CS_CONTROL_PTR_DT_INST(inst, delay_)

Get a pointer to a spi_cs_control from a devicetree node.

This is equivalent to SPI_CS_CONTROL_PTR_DT(DT_DRV_INST(inst), delay) .

Therefore, DT_DRV_COMPAT must already be defined before using this macro.

This macro is not available in C++.

Parameters

• inst – Devicetree node instance number

• delay_ – The delay field to set in the spi_cs_control

Returns a pointer to the spi_cs_control structure

SPI_CONFIG_DT(node_id, operation_, delay_)

Structure initializer for spi_config from devicetree.

This helper macro expands to a static initializer for a struct spi_config by reading the
relevant frequency, slave, and cs data from the devicetree.

Important: the cs field is initialized using SPI_CS_CONTROL_PTR_DT(). The gpio_dev value
pointed to by this structure must be checked using device_is_ready() before use.

This macro is not available in C++.

Parameters

• node_id – Devicetree node identifier for the SPI device whose struct spi_config
to create an initializer for

• operation_ – the desired operation field in the struct spi_config

• delay_ – the desired delay field in the struct spi_config’s spi_cs_control, if there
is one

SPI_CONFIG_DT_INST(inst, operation_, delay_)

Structure initializer for spi_config from devicetree instance.

This is equivalent to SPI_CONFIG_DT(DT_DRV_INST(inst), operation_, delay_) .

This macro is not available in C++.

Parameters

• inst – Devicetree instance number

• operation_ – the desired operation field in the struct spi_config

• delay_ – the desired delay field in the struct spi_config’s spi_cs_control, if there
is one

7.21. Peripherals 1239

Zephyr Project Documentation, Release 2.7.0-rc2

SPI_DT_SPEC_GET(node_id, operation_, delay_)

Structure initializer for spi_dt_spec from devicetree.

This helper macro expands to a static initializer for a struct spi_dt_spec by reading the
relevant bus, frequency, slave, and cs data from the devicetree.

Important: multiple fields are automatically constructed by this macro which must be checked
before use. spi_is_ready performs the required device_is_ready checks.

This macro is not available in C++.

Parameters

• node_id – Devicetree node identifier for the SPI device whose struct spi_dt_spec
to create an initializer for

• operation_ – the desired operation field in the struct spi_config

• delay_ – the desired delay field in the struct spi_config’s spi_cs_control, if there
is one

SPI_DT_SPEC_INST_GET(inst, operation_, delay_)

Structure initializer for spi_dt_spec from devicetree instance.

This is equivalent to SPI_DT_SPEC_GET(DT_DRV_INST(inst), operation_, delay_) .

This macro is not available in C++.

Parameters

• inst – Devicetree instance number

• operation_ – the desired operation field in the struct spi_config

• delay_ – the desired delay field in the struct spi_config’s spi_cs_control, if there
is one

Typedefs

typedef int (*spi_api_io)(const struct device *dev, const struct spi_config *config, const struct
spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs)

Callback API for I/O See spi_transceive() for argument descriptions.

Callback API for asynchronous I/O See spi_transceive_async() for argument descriptions.

typedef int (*spi_api_io_async)(const struct device *dev, const struct spi_config *config, const
struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, struct k_poll_signal *async)

typedef int (*spi_api_release)(const struct device *dev, const struct spi_config *config)

Callback API for unlocking SPI device. See spi_release() for argument descriptions.

Functions

static inline bool spi_is_ready(const struct spi_dt_spec *spec)

Validate that SPI bus is ready.

Parameters

• spec – SPI specification from devicetree

Return values

• true – if the SPI bus is ready for use.

1240 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• false – if the SPI bus is not ready for use.

int spi_transceive(const struct device *dev, const struct spi_config *config, const struct
spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs)

Read/write the specified amount of data from the SPI driver.

Note: This function is synchronous.

Parameters

• dev – Pointer to the device structure for the driver instance

• config – Pointer to a valid spi_config structure instance. Pointer-comparison
may be used to detect changes from previous operations.

• tx_bufs – Buffer array where data to be sent originates from, or NULL if none.

• rx_bufs – Buffer array where data to be read will be written to, or NULL if
none.

Return values

• frames – Positive number of frames received in slave mode.

• 0 – If successful in master mode.

• -errno – Negative errno code on failure.

static inline int spi_transceive_dt(const struct spi_dt_spec *spec, const struct spi_buf_set
*tx_bufs, const struct spi_buf_set *rx_bufs)

Read/write data from an SPI bus specified in spi_dt_spec .

This is equivalent to:

spi_transceive(spec->bus, &spec->config, tx_bufs, rx_bufs);

Parameters

• spec – SPI specification from devicetree

• tx_bufs – Buffer array where data to be sent originates from, or NULL if none.

• rx_bufs – Buffer array where data to be read will be written to, or NULL if
none.

Returns a value from spi_transceive().

static inline int spi_read(const struct device *dev, const struct spi_config *config, const struct
spi_buf_set *rx_bufs)

Read the specified amount of data from the SPI driver.

Note: This function is synchronous.

Note: This function is an helper function calling spi_transceive.

Parameters

• dev – Pointer to the device structure for the driver instance

7.21. Peripherals 1241

Zephyr Project Documentation, Release 2.7.0-rc2

• config – Pointer to a valid spi_config structure instance. Pointer-comparison
may be used to detect changes from previous operations.

• rx_bufs – Buffer array where data to be read will be written to.

Return values

• 0 – If successful.

• -errno – Negative errno code on failure.

static inline int spi_read_dt(const struct spi_dt_spec *spec, const struct spi_buf_set *rx_bufs)

Read data from a SPI bus specified in spi_dt_spec .

This is equivalent to:

spi_read(spec->bus, &spec->config, rx_bufs);

Parameters

• spec – SPI specification from devicetree

• rx_bufs – Buffer array where data to be read will be written to.

Returns a value from spi_read().

static inline int spi_write(const struct device *dev, const struct spi_config *config, const struct
spi_buf_set *tx_bufs)

Write the specified amount of data from the SPI driver.

Note: This function is synchronous.

Note: This function is an helper function calling spi_transceive.

Parameters

• dev – Pointer to the device structure for the driver instance

• config – Pointer to a valid spi_config structure instance. Pointer-comparison
may be used to detect changes from previous operations.

• tx_bufs – Buffer array where data to be sent originates from.

Return values

• 0 – If successful.

• -errno – Negative errno code on failure.

static inline int spi_write_dt(const struct spi_dt_spec *spec, const struct spi_buf_set *tx_bufs)

Write data to a SPI bus specified in spi_dt_spec .

This is equivalent to:

spi_write(spec->bus, &spec->config, tx_bufs);

Parameters

• spec – SPI specification from devicetree

• tx_bufs – Buffer array where data to be sent originates from.

Returns a value from spi_write().

1242 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline int spi_transceive_async(const struct device *dev, const struct spi_config *config,
const struct spi_buf_set *tx_bufs, const struct spi_buf_set
*rx_bufs, struct k_poll_signal *async)

Read/write the specified amount of data from the SPI driver.

Note: This function is asynchronous.

Note: This function is available only if :kconfig:`CONFIG_SPI_ASYNC` is selected.

Parameters

• dev – Pointer to the device structure for the driver instance

• config – Pointer to a valid spi_config structure instance. Pointer-comparison
may be used to detect changes from previous operations.

• tx_bufs – Buffer array where data to be sent originates from, or NULL if none.

• rx_bufs – Buffer array where data to be read will be written to, or NULL if
none.

• async – A pointer to a valid and ready to be signaled struct k_poll_signal.
(Note: if NULL this function will not notify the end of the transaction, and
whether it went successfully or not).

Return values

• frames – Positive number of frames received in slave mode.

• 0 – If successful in master mode.

• -errno – Negative errno code on failure.

static inline int spi_read_async(const struct device *dev, const struct spi_config *config, const
struct spi_buf_set *rx_bufs, struct k_poll_signal *async)

Read the specified amount of data from the SPI driver.

Note: This function is asynchronous.

Note: This function is an helper function calling spi_transceive_async.

Note: This function is available only if :kconfig:`CONFIG_SPI_ASYNC` is selected.

Parameters

• dev – Pointer to the device structure for the driver instance

• config – Pointer to a valid spi_config structure instance. Pointer-comparison
may be used to detect changes from previous operations.

• rx_bufs – Buffer array where data to be read will be written to.

• async – A pointer to a valid and ready to be signaled struct k_poll_signal.
(Note: if NULL this function will not notify the end of the transaction, and
whether it went successfully or not).

Return values

7.21. Peripherals 1243

Zephyr Project Documentation, Release 2.7.0-rc2

• 0 – If successful

• -errno – Negative errno code on failure.

static inline int spi_write_async(const struct device *dev, const struct spi_config *config, const
struct spi_buf_set *tx_bufs, struct k_poll_signal *async)

Write the specified amount of data from the SPI driver.

Note: This function is asynchronous.

Note: This function is an helper function calling spi_transceive_async.

Note: This function is available only if :kconfig:`CONFIG_SPI_ASYNC` is selected.

Parameters

• dev – Pointer to the device structure for the driver instance

• config – Pointer to a valid spi_config structure instance. Pointer-comparison
may be used to detect changes from previous operations.

• tx_bufs – Buffer array where data to be sent originates from.

• async – A pointer to a valid and ready to be signaled struct k_poll_signal.
(Note: if NULL this function will not notify the end of the transaction, and
whether it went successfully or not).

Return values

• 0 – If successful.

• -errno – Negative errno code on failure.

int spi_release(const struct device *dev, const struct spi_config *config)

Release the SPI device locked on by the current config.

Note: This synchronous function is used to release the lock on the SPI device that was kept if,
and if only, given config parameter was the last one to be used (in any of the above functions)
and if it has the SPI_LOCK_ON bit set into its operation bits field. This can be used if the caller
needs to keep its hand on the SPI device for consecutive transactions.

Parameters

• dev – Pointer to the device structure for the driver instance

• config – Pointer to a valid spi_config structure instance. Pointer-comparison
may be used to detect changes from previous operations.

Return values

• 0 – If successful.

• -errno – Negative errno code on failure.

static inline int spi_release_dt(const struct spi_dt_spec *spec)

Release the SPI device specified in spi_dt_spec .

This is equivalent to:

spi_release(spec->bus, &spec->config);

1244 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• spec – SPI specification from devicetree

Returns a value from spi_release().

struct spi_cs_control

#include <spi.h> SPI Chip Select control structure.

This can be used to control a CS line via a GPIO line, instead of using the controller inner CS
logic.

Param gpio_dev is a valid pointer to an actual GPIO device. A NULL pointer can be
provided to full inhibit CS control if necessary.

Param gpio_pin is a number representing the gpio PIN that will be used to act as a
CS line

Param delay is a delay in microseconds to wait before starting the transmission and
before releasing the CS line

Param gpio_dt_flags is the devicetree flags corresponding to how the CS line should
be driven. GPIO_ACTIVE_LOW/GPIO_ACTIVE_HIGH should be equivalent to
SPI_CS_ACTIVE_HIGH/SPI_CS_ACTIVE_LOW options in struct spi_config.

struct spi_config

#include <spi.h> SPI controller configuration structure.

Note: Only cs_hold and lock_on can be changed between consecutive transceive call. Rest of
the attributes are not meant to be tweaked.

Warning: Most drivers use pointer comparison to determine whether a passed configura-
tion is different from one used in a previous transaction. Changes to fields in the structure
may not be detected.

Param frequency is the bus frequency in Hertz

Param operation is a bit field with the following parts:

operational mode [0] - master or slave.
mode [1 : 3] - Polarity, phase and loop mode.
transfer [4] - LSB or MSB first.
word_size [5 : 10] - Size of a data frame in bits.
lines [11 : 12] - MISO lines: Single/Dual/Quad/
→˓Octal.
cs_hold [13] - Hold on the CS line if possible.
lock_on [14] - Keep resource locked for the␣
→˓caller.
cs_active_high [15] - Active high CS logic.

Param slave is the slave number from 0 to host controller slave limit.

Param cs is a valid pointer on a struct spi_cs_control is CS line is emulated through
a gpio line, or NULL otherwise.

struct spi_dt_spec

#include <spi.h> Complete SPI DT information.

7.21. Peripherals 1245

Zephyr Project Documentation, Release 2.7.0-rc2

Param bus is the SPI bus

Param config is the slave specific configuration

struct spi_buf

#include <spi.h> SPI buffer structure.

Param buf is a valid pointer on a data buffer, or NULL otherwise.

Param len is the length of the buffer or, if buf is NULL, will be the length which as
to be sent as dummy bytes (as TX buffer) or the length of bytes that should be
skipped (as RX buffer).

struct spi_buf_set

#include <spi.h> SPI buffer array structure.

Param buffers is a valid pointer on an array of spi_buf , or NULL.

Param count is the length of the array pointed by buffers.

struct spi_driver_api

#include <spi.h> SPI driver API This is the mandatory API any SPI driver needs to expose.

7.21.26 UART

Overview

API Reference

group uart_interface

UART Interface.

Typedefs

typedef void (*uart_callback_t)(const struct device *dev, struct uart_event *evt, void
*user_data)

Define the application callback function signature for uart_callback_set() function.

Param dev UART device structure.

Param evt Pointer to uart_event structure.

Param user_data Pointer to data specified by user.

typedef void (*uart_irq_callback_user_data_t)(const struct device *dev, void *user_data)

Define the application callback function signature for uart_irq_callback_user_data_set() func-
tion.

Param dev UART device structure.

Param user_data Arbitrary user data.

typedef void (*uart_irq_config_func_t)(const struct device *dev)

For configuring IRQ on each individual UART device.

Param dev UART device structure.

1246 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Enums

enum uart_line_ctrl

Line control signals.

Values:

enumerator UART_LINE_CTRL_BAUD_RATE = BIT(0)

enumerator UART_LINE_CTRL_RTS = BIT(1)

enumerator UART_LINE_CTRL_DTR = BIT(2)

enumerator UART_LINE_CTRL_DCD = BIT(3)

enumerator UART_LINE_CTRL_DSR = BIT(4)

enum uart_event_type

Types of events passed to callback in UART_ASYNC_API.

Receiving:

a. To start receiving, uart_rx_enable has to be called with first buffer

b. When receiving starts to current buffer, uart_event_type::UART_RX_BUF_REQUEST will be
generated, in response to that user can either:

• Provide second buffer using uart_rx_buf_rsp, when first buffer is filled, receiving will
automatically start to second buffer.

• Ignore the event, this way when current buffer is filled
uart_event_type::UART_RX_RDY event will be generated and receiving will be
stopped.

c. If some data was received and timeout occurred uart_event_type::UART_RX_RDY event
will be generated. It can happen multiples times for the same buffer. RX timeout is
counted from last byte received i.e. if no data was received, there won’t be any timeout
event.

d. After buffer is filled uart_event_type::UART_RX_RDY will be generated, immediately fol-
lowed by uart_event_type::UART_RX_BUF_RELEASED indicating that current buffer is no
longer used.

e. If there was second buffer provided, it will become current buffer and we start
again at point 2. If no second buffer was specified receiving is stopped and
uart_event_type::UART_RX_DISABLED event is generated. After that whole process can
be repeated.

Any time during reception uart_event_type::UART_RX_STOPPED event can occur. if there is
any data received, uart_event_type::UART_RX_RDY event will be generated. It will be fol-
lowed by uart_event_type::UART_RX_BUF_RELEASED event for every buffer currently passed
to driver and finally by uart_event_type::UART_RX_DISABLED event.

Receiving can be disabled using uart_rx_disable, after calling that function, if
there is any data received, uart_event_type::UART_RX_RDY event will be generated.
uart_event_type::UART_RX_BUF_RELEASED event will be generated for every buffer currently
passed to driver and finally uart_event_type::UART_RX_DISABLED event will occur.

Transmitting:

7.21. Peripherals 1247

Zephyr Project Documentation, Release 2.7.0-rc2

a. Transmitting starts by uart_tx function.

b. If whole buffer was transmitted uart_event_type::UART_TX_DONE is generated. If timeout
occurred uart_event_type::UART_TX_ABORTED will be generated.

Transmitting can be aborted using uart_tx_abort, after calling that function
uart_event_type::UART_TX_ABORTED event will be generated.

Values:

enumerator UART_TX_DONE

Whole TX buffer was transmitted.

enumerator UART_TX_ABORTED

Transmitting aborted due to timeout or uart_tx_abort call.

When flow control is enabled, there is a possibility that TX transfer won’t finish in the
allotted time. Some data may have been transferred, information about it can be found
in event data.

enumerator UART_RX_RDY

Received data is ready for processing.

This event is generated in the following cases:
• When RX timeout occurred, and data was stored in provided buffer. This can happen

multiple times in the same buffer.
• When provided buffer is full.
• After uart_rx_disable().
• After stopping due to external event (uart_event_type::UART_RX_STOPPED).

enumerator UART_RX_BUF_REQUEST

Driver requests next buffer for continuous reception.

This event is triggered when receiving has started for a new buffer, i.e. it’s time to provide
a next buffer for a seamless switchover to it. For continuous reliable receiving, user should
provide another RX buffer in response to this event, using uart_rx_buf_rsp function

If uart_rx_buf_rsp is not called before current buffer is filled up, receiving will stop.

enumerator UART_RX_BUF_RELEASED

Buffer is no longer used by UART driver.

enumerator UART_RX_DISABLED

RX has been disabled and can be reenabled.

This event is generated whenever receiver has been stopped, disabled or finished its op-
eration and can be enabled again using uart_rx_enable

enumerator UART_RX_STOPPED

RX has stopped due to external event.

Reason is one of uart_rx_stop_reason.

enum uart_rx_stop_reason

Reception stop reasons.

Values that correspond to events or errors responsible for stopping receiving.

Values:

1248 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator UART_ERROR_OVERRUN = (1 << 0)

Overrun error.

enumerator UART_ERROR_PARITY = (1 << 1)

Parity error.

enumerator UART_ERROR_FRAMING = (1 << 2)

Framing error.

enumerator UART_BREAK = (1 << 3)

Break interrupt.

A break interrupt was received. This happens when the serial input is held at a logic ‘0’
state for longer than the sum of start time + data bits + parity + stop bits.

enumerator UART_ERROR_COLLISION = (1 << 4)

Collision error.

This error is raised when transmitted data does not match received data. Typically this is
useful in scenarios where the TX and RX lines maybe connected together such as RS-485
half-duplex. This error is only valid on UARTs that support collision checking.

enum uart_config_parity

Parity modes.

Values:

enumerator UART_CFG_PARITY_NONE

enumerator UART_CFG_PARITY_ODD

enumerator UART_CFG_PARITY_EVEN

enumerator UART_CFG_PARITY_MARK

enumerator UART_CFG_PARITY_SPACE

enum uart_config_stop_bits

Number of stop bits.

Values:

enumerator UART_CFG_STOP_BITS_0_5

enumerator UART_CFG_STOP_BITS_1

enumerator UART_CFG_STOP_BITS_1_5

enumerator UART_CFG_STOP_BITS_2

7.21. Peripherals 1249

Zephyr Project Documentation, Release 2.7.0-rc2

enum uart_config_data_bits

Number of data bits.

Values:

enumerator UART_CFG_DATA_BITS_5

enumerator UART_CFG_DATA_BITS_6

enumerator UART_CFG_DATA_BITS_7

enumerator UART_CFG_DATA_BITS_8

enumerator UART_CFG_DATA_BITS_9

enum uart_config_flow_control

Hardware flow control options.

With flow control set to none, any operations related to flow control signals can be man-
aged by user with uart_line_ctrl functions. In other cases, flow control is managed by hard-
ware/driver.

Values:

enumerator UART_CFG_FLOW_CTRL_NONE

enumerator UART_CFG_FLOW_CTRL_RTS_CTS

enumerator UART_CFG_FLOW_CTRL_DTR_DSR

Functions

static inline int uart_callback_set(const struct device *dev, uart_callback_t callback, void
*user_data)

Set event handler function.

Parameters

• dev – UART device structure.

• callback – Event handler.

• user_data – Data to pass to event handler function.

Return values

• -ENOTSUP – If not supported.

• 0 – If successful, negative errno code otherwise.

int uart_tx(const struct device *dev, const uint8_t *buf, size_t len, int32_t timeout)

Send given number of bytes from buffer through UART.

Function returns immediately and event handler, set using uart_callback_set, is called after
transfer is finished.

Parameters

1250 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• dev – UART device structure.

• buf – Pointer to transmit buffer.

• len – Length of transmit buffer.

• timeout – Timeout in milliseconds. Valid only if flow control is enabled.
SYS_FOREVER_MS disables timeout.

Return values

• -ENOTSUP – If not supported.

• -EBUSY – There is already an ongoing transfer.

• 0 – If successful, negative errno code otherwise.

int uart_tx_abort(const struct device *dev)

Abort current TX transmission.

uart_event_type::UART_TX_DONE event will be generated with amount of data sent.

Parameters

• dev – UART device structure.

Return values

• -ENOTSUP – If not supported.

• -EFAULT – There is no active transmission.

• 0 – If successful, negative errno code otherwise.

int uart_rx_enable(const struct device *dev, uint8_t *buf, size_t len, int32_t timeout)

Start receiving data through UART.

Function sets given buffer as first buffer for receiving and returns immediately. After that
event handler, set using uart_callback_set, is called with uart_event_type::UART_RX_RDY or
uart_event_type::UART_RX_BUF_REQUEST events.

Parameters

• dev – UART device structure.

• buf – Pointer to receive buffer.

• len – Buffer length.

• timeout – Inactivity period after receiving at least a byte which
triggers uart_event_type::UART_RX_RDY event. Given in milliseconds.
SYS_FOREVER_MS disables timeout. See uart_event_type for details.

Return values

• -ENOTSUP – If not supported.

• -EBUSY – RX already in progress.

• 0 – If successful, negative errno code otherwise.

static inline int uart_rx_buf_rsp(const struct device *dev, uint8_t *buf, size_t len)

Provide receive buffer in response to uart_event_type::UART_RX_BUF_REQUEST event.

Provide pointer to RX buffer, which will be used when current buffer is filled.

Note: Providing buffer that is already in usage by driver leads to undefined behavior. Buffer
can be reused when it has been released by driver.

Parameters

7.21. Peripherals 1251

Zephyr Project Documentation, Release 2.7.0-rc2

• dev – UART device structure.

• buf – Pointer to receive buffer.

• len – Buffer length.

Return values

• -ENOTSUP – If not supported.

• -EBUSY – Next buffer already set.

• -EACCES – Receiver is already disabled (function called too late?).

• 0 – If successful, negative errno code otherwise.

int uart_rx_disable(const struct device *dev)

Disable RX.

uart_event_type::UART_RX_BUF_RELEASED event will be generated for every buffer sched-
uled, after that uart_event_type::UART_RX_DISABLED event will be generated. Additionally,
if there is any pending received data, the uart_event_type::UART_RX_RDY event for that data
will be generated before the uart_event_type::UART_RX_BUF_RELEASED events.

Parameters

• dev – UART device structure.

Return values

• -ENOTSUP – If not supported.

• -EFAULT – There is no active reception.

• 0 – If successful, negative errno code otherwise.

int uart_err_check(const struct device *dev)

Check whether an error was detected.

Parameters

• dev – UART device structure.

Return values

• uart_rx_stop_reason – If error during receiving occurred.

• 0 – Otherwise.

int uart_poll_in(const struct device *dev, unsigned char *p_char)

Poll the device for input.

Parameters

• dev – UART device structure.

• p_char – Pointer to character.

Return values

• 0 – If a character arrived.

• -1 – If no character was available to read (i.e., the UART input buffer was
empty).

• -ENOTSUP – If the operation is not supported.

• -EBUSY – If reception was enabled using uart_rx_enabled

1252 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

void uart_poll_out(const struct device *dev, unsigned char out_char)

Output a character in polled mode.

This routine checks if the transmitter is empty. When the transmitter is empty, it writes a
character to the data register.

To send a character when hardware flow control is enabled, the handshake signal CTS must
be asserted.

Parameters

• dev – UART device structure.

• out_char – Character to send.

int uart_configure(const struct device *dev, const struct uart_config *cfg)

Set UART configuration.

Sets UART configuration using data from *cfg.

Parameters

• dev – UART device structure.

• cfg – UART configuration structure.

Return values

• -ENOSYS – If configuration is not supported by device. or driver does not sup-
port setting configuration in runtime.

• 0 – If successful, negative errno code otherwise.

int uart_config_get(const struct device *dev, struct uart_config *cfg)

Get UART configuration.

Stores current UART configuration to *cfg, can be used to retrieve initial configuration after
device was initialized using data from DTS.

Parameters

• dev – UART device structure.

• cfg – UART configuration structure.

Return values

• -ENOTSUP – If driver does not support getting current configuration.

• 0 – If successful, negative errno code otherwise.

static inline int uart_fifo_fill(const struct device *dev, const uint8_t *tx_data, int size)

Fill FIFO with data.

This function is expected to be called from UART interrupt handler (ISR), if
uart_irq_tx_ready() returns true. Result of calling this function not from an ISR is undefined
(hardware-dependent). Likewise, not calling this function from an ISR if uart_irq_tx_ready()
returns true may lead to undefined behavior, e.g. infinite interrupt loops. It’s mandatory to
test return value of this function, as different hardware has different FIFO depth (oftentimes
just 1).

Parameters

• dev – UART device structure.

• tx_data – Data to transmit.

• size – Number of bytes to send.

Returns Number of bytes sent.

7.21. Peripherals 1253

Zephyr Project Documentation, Release 2.7.0-rc2

static inline int uart_fifo_read(const struct device *dev, uint8_t *rx_data, const int size)

Read data from FIFO.

This function is expected to be called from UART interrupt handler (ISR), if
uart_irq_rx_ready() returns true. Result of calling this function not from an ISR is unde-
fined (hardware-dependent). It’s unspecified whether “RX ready” condition as returned by
uart_irq_rx_ready() is level- or edge- triggered. That means that once uart_irq_rx_ready() is
detected, uart_fifo_read() must be called until it reads all available data in the FIFO (i.e. until
it returns less data than was requested).

Note that the calling context only applies to physical UARTs and no to the virtual ones found
in USB CDC ACM code.

Parameters

• dev – UART device structure.

• rx_data – Data container.

• size – Container size.

Returns Number of bytes read.

void uart_irq_tx_enable(const struct device *dev)

Enable TX interrupt in IER.

Parameters

• dev – UART device structure.

Returns N/A

void uart_irq_tx_disable(const struct device *dev)

Disable TX interrupt in IER.

Parameters

• dev – UART device structure.

Returns N/A

static inline int uart_irq_tx_ready(const struct device *dev)

Check if UART TX buffer can accept a new char.

Check if UART TX buffer can accept at least one character for transmission (i.e. uart_fifo_fill()
will succeed and return non-zero). This function must be called in a UART interrupt
handler, or its result is undefined. Before calling this function in the interrupt handler,
uart_irq_update() must be called once per the handler invocation.

Parameters

• dev – UART device structure.

Return values

• 1 – If at least one char can be written to UART.

• 0 – Otherwise.

void uart_irq_rx_enable(const struct device *dev)

Enable RX interrupt.

Parameters

• dev – UART device structure.

Returns N/A

1254 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

void uart_irq_rx_disable(const struct device *dev)

Disable RX interrupt.

Parameters

• dev – UART device structure.

Returns N/A

static inline int uart_irq_tx_complete(const struct device *dev)

Check if UART TX block finished transmission.

Check if any outgoing data buffered in UART TX block was fully transmitted and TX block is
idle. When this condition is true, UART device (or whole system) can be power off. Note that
this function is not useful to check if UART TX can accept more data, use uart_irq_tx_ready()
for that. This function must be called in a UART interrupt handler, or its result is undefined.
Before calling this function in the interrupt handler, uart_irq_update() must be called once
per the handler invocation.

Parameters

• dev – UART device structure.

Return values

• 1 – If nothing remains to be transmitted.

• 0 – Otherwise.

• -ENOTSUP – if this function is not supported

static inline int uart_irq_rx_ready(const struct device *dev)

Check if UART RX buffer has a received char.

Check if UART RX buffer has at least one pending character (i.e. uart_fifo_read() will succeed
and return non-zero). This function must be called in a UART interrupt handler, or its result
is undefined. Before calling this function in the interrupt handler, uart_irq_update() must
be called once per the handler invocation. It’s unspecified whether condition as returned
by this function is level- or edge- triggered (i.e. if this function returns true when RX FIFO
is non-empty, or when a new char was received since last call to it). See description of
uart_fifo_read() for implication of this.

Parameters

• dev – UART device structure.

Return values

• 1 – If a received char is ready.

• 0 – Otherwise.

• -ENOTSUP – if this function is not supported

void uart_irq_err_enable(const struct device *dev)

Enable error interrupt.

Parameters

• dev – UART device structure.

Returns N/A

void uart_irq_err_disable(const struct device *dev)

Disable error interrupt.

Parameters

• dev – UART device structure.

7.21. Peripherals 1255

Zephyr Project Documentation, Release 2.7.0-rc2

Return values

• 1 – If an IRQ is ready.

• 0 – Otherwise.

int uart_irq_is_pending(const struct device *dev)
Check if any IRQs is pending.

Parameters

• dev – UART device structure.

Return values

• 1 – If an IRQ is pending.

• 0 – Otherwise.

int uart_irq_update(const struct device *dev)
Start processing interrupts in ISR.

This function should be called the first thing in the ISR. Calling uart_irq_rx_ready(),
uart_irq_tx_ready(), uart_irq_tx_complete() allowed only after this.

The purpose of this function is:

• For devices with auto-acknowledge of interrupt status on register read to cache the value
of this register (rx_ready, etc. then use this case).

• For devices with explicit acknowledgement of interrupts, to ack any pending interrupts
and likewise to cache the original value.

• For devices with implicit acknowledgement, this function will be empty. But the ISR must
perform the actions needs to ack the interrupts (usually, call uart_fifo_read() on rx_ready,
and uart_fifo_fill() on tx_ready).

Parameters

• dev – UART device structure.

Return values 1 – Always.

static inline void uart_irq_callback_user_data_set(const struct device *dev,
uart_irq_callback_user_data_t cb, void
*user_data)

Set the IRQ callback function pointer.

This sets up the callback for IRQ. When an IRQ is triggered, the specified function will be
called with specified user data. See description of uart_irq_update() for the requirements on
ISR.

Parameters

• dev – UART device structure.

• cb – Pointer to the callback function.

• user_data – Data to pass to callback function.

Returns N/A

static inline void uart_irq_callback_set(const struct device *dev, uart_irq_callback_user_data_t
cb)

Set the IRQ callback function pointer (legacy).

This sets up the callback for IRQ. When an IRQ is triggered, the specified function will be
called with the device pointer.

1256 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• dev – UART device structure.

• cb – Pointer to the callback function.

Returns N/A

int uart_line_ctrl_set(const struct device *dev, uint32_t ctrl, uint32_t val)
Manipulate line control for UART.

Parameters

• dev – UART device structure.

• ctrl – The line control to manipulate (see enum uart_line_ctrl).

• val – Value to set to the line control.

Return values

• 0 – If successful.

• failed – Otherwise.

int uart_line_ctrl_get(const struct device *dev, uint32_t ctrl, uint32_t *val)
Retrieve line control for UART.

Parameters

• dev – UART device structure.

• ctrl – The line control to retrieve (see enum uart_line_ctrl).

• val – Pointer to variable where to store the line control value.

Return values

• 0 – If successful.

• failed – Otherwise.

int uart_drv_cmd(const struct device *dev, uint32_t cmd, uint32_t p)
Send extra command to driver.

Implementation and accepted commands are driver specific. Refer to the drivers for more
information.

Parameters

• dev – UART device structure.

• cmd – Command to driver.

• p – Parameter to the command.

Return values

• 0 – If successful.

• failed – Otherwise.

struct uart_event_tx

#include <uart.h> UART TX event data.

Public Members

const uint8_t *buf

Pointer to current buffer.

7.21. Peripherals 1257

Zephyr Project Documentation, Release 2.7.0-rc2

size_t len

Number of bytes sent.

struct uart_event_rx

#include <uart.h> UART RX event data.

The data represented by the event is stored in rx.buf[rx.offset] to rx.buf[rx.offset+rx.len].
That is, the length is relative to the offset.

Public Members

uint8_t *buf

Pointer to current buffer.

size_t offset

Currently received data offset in bytes.

size_t len

Number of new bytes received.

struct uart_event_rx_buf

#include <uart.h> UART RX buffer released event data.

struct uart_event_rx_stop

#include <uart.h> UART RX stopped data.

Public Members

enum uart_rx_stop_reason reason

Reason why receiving stopped.

struct uart_event_rx data

Last received data.

struct uart_event

#include <uart.h> Structure containing information about current event.

Public Members

enum uart_event_type type

Type of event.

union uart_event_data

#include <uart.h> Event data.

1258 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Public Members

struct uart_event_tx tx

uart_event_type::UART_TX_DONE and uart_event_type::UART_TX_ABORTED events
data.

struct uart_event_rx rx

uart_event_type::UART_RX_RDY event data.

struct uart_event_rx_buf rx_buf

uart_event_type::UART_RX_BUF_RELEASED event data.

struct uart_event_rx_stop rx_stop

uart_event_type::UART_RX_STOPPED event data.

struct uart_config

#include <uart.h> UART controller configuration structure.

Param baudrate Baudrate setting in bps

Param parity Parity bit, use uart_config_parity

Param stop_bits Stop bits, use uart_config_stop_bits

Param data_bits Data bits, use uart_config_data_bits

Param flow_ctrl Flow control setting, use uart_config_flow_control

struct uart_device_config

#include <uart.h> UART device configuration.

Param port Base port number

Param base Memory mapped base address

Param regs Register address

Param sys_clk_freq System clock frequency in Hz

struct uart_driver_api

#include <uart.h> Driver API structure.

Public Members

int (*poll_in)(const struct device *dev, unsigned char *p_char)

Console I/O function

int (*err_check)(const struct device *dev)

Console I/O function

int (*configure)(const struct device *dev, const struct uart_config *cfg)

UART configuration functions

int (*fifo_fill)(const struct device *dev, const uint8_t *tx_data, int len)

Interrupt driven FIFO fill function

7.21. Peripherals 1259

Zephyr Project Documentation, Release 2.7.0-rc2

int (*fifo_read)(const struct device *dev, uint8_t *rx_data, const int size)

Interrupt driven FIFO read function

void (*irq_tx_enable)(const struct device *dev)

Interrupt driven transfer enabling function

void (*irq_tx_disable)(const struct device *dev)

Interrupt driven transfer disabling function

int (*irq_tx_ready)(const struct device *dev)

Interrupt driven transfer ready function

void (*irq_rx_enable)(const struct device *dev)

Interrupt driven receiver enabling function

void (*irq_rx_disable)(const struct device *dev)

Interrupt driven receiver disabling function

int (*irq_tx_complete)(const struct device *dev)

Interrupt driven transfer complete function

int (*irq_rx_ready)(const struct device *dev)

Interrupt driven receiver ready function

void (*irq_err_enable)(const struct device *dev)

Interrupt driven error enabling function

void (*irq_err_disable)(const struct device *dev)

Interrupt driven error disabling function

int (*irq_is_pending)(const struct device *dev)

Interrupt driven pending status function

int (*irq_update)(const struct device *dev)

Interrupt driven interrupt update function

void (*irq_callback_set)(const struct device *dev, uart_irq_callback_user_data_t cb, void
*user_data)

Set the irq callback function

7.21.27 MDIO

Overview

MDIO is a bus that is commonly used to communicate with ethernet PHY devices. Many ethernet MAC
controllers also provide hardware to communicate over MDIO bus with a peripheral device.

This API is intended to be used primarily by PHY drivers but can also be used by user firmware.

1260 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

API Reference

group mdio_interface

MDIO Interface.

Functions

void mdio_bus_enable(const struct device *dev)

Enable MDIO bus.

Parameters

• dev – [in] Pointer to the device structure for the controller

void mdio_bus_disable(const struct device *dev)

Disable MDIO bus and tri-state drivers.

Parameters

• dev – [in] Pointer to the device structure for the controller

int mdio_read(const struct device *dev, uint8_t prtad, uint8_t devad, uint16_t *data)

Read from MDIO Bus.

This routine provides a generic interface to perform a read on the MDIO bus.

Parameters

• dev – [in] Pointer to the device structure for the controller

• prtad – [in] Port address

• devad – [in] Device address

• data – Pointer to receive read data

Return values

• 0 – If successful.

• -EIO – General input / output error.

• -ETIMEDOUT – If transaction timedout on the bus

int mdio_write(const struct device *dev, uint8_t prtad, uint8_t devad, uint16_t data)

Write to MDIO bus.

This routine provides a generic interface to perform a write on the MDIO bus.

Parameters

• dev – [in] Pointer to the device structure for the controller

• prtad – [in] Port address

• devad – [in] Device address

• data – [in] Data to write

Return values

• 0 – If successful.

• -EIO – General input / output error.

• -ETIMEDOUT – If transaction timedout on the bus

7.21. Peripherals 1261

Zephyr Project Documentation, Release 2.7.0-rc2

7.21.28 Watchdog

Overview

API Reference

group watchdog_interface

Watchdog Interface.

Watchdog Reset Behavior.

Reset behavior after timeout.

WDT_FLAG_RESET_NONE

No reset

WDT_FLAG_RESET_CPU_CORE

CPU core reset

WDT_FLAG_RESET_SOC

Global SoC reset

Defines

WDT_OPT_PAUSE_IN_SLEEP

Pause watchdog timer when CPU is in sleep state.

WDT_OPT_PAUSE_HALTED_BY_DBG

Pause watchdog timer when CPU is halted by the debugger.

WDT_FLAG_RESET_SHIFT

Watchdog reset flag bit field mask shift.

WDT_FLAG_RESET_MASK

Watchdog reset flag bit field mask.

Typedefs

typedef void (*wdt_callback_t)(const struct device *dev, int channel_id)

Watchdog callback.

typedef int (*wdt_api_setup)(const struct device *dev, uint8_t options)

Callback API for setting up watchdog instance. See wdt_setup() for argument descriptions.

typedef int (*wdt_api_disable)(const struct device *dev)

Callback API for disabling watchdog instance. See wdt_disable() for argument descriptions.

1262 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

typedef int (*wdt_api_install_timeout)(const struct device *dev, const struct wdt_timeout_cfg
*cfg)

Callback API for installing new timeout. See wdt_install_timeout() for argument descriptions.

typedef int (*wdt_api_feed)(const struct device *dev, int channel_id)

Callback API for feeding specified watchdog timeout. See (wdt_feed) for argument descrip-
tions.

Functions

int wdt_setup(const struct device *dev, uint8_t options)
Set up watchdog instance.

This function is used for configuring global watchdog settings that affect all timeouts. It
should be called after installing timeouts. After successful return, all installed timeouts are
valid and must be serviced periodically by calling wdt_feed().

Parameters

• dev – Pointer to the device structure for the driver instance.

• options – Configuration options as defined by the WDT_OPT_* constants

Return values

• 0 – If successful.

• -ENOTSUP – If any of the set options is not supported.

• -EBUSY – If watchdog instance has been already setup.

int wdt_disable(const struct device *dev)
Disable watchdog instance.

This function disables the watchdog instance and automatically uninstalls all timeouts. To set
up a new watchdog, install timeouts and call wdt_setup() again. Not all watchdogs can be
restarted after they are disabled.

Parameters

• dev – Pointer to the device structure for the driver instance.

Return values

• 0 – If successful.

• -EFAULT – If watchdog instance is not enabled.

• -EPERM – If watchdog can not be disabled directly by application code.

static inline int wdt_install_timeout(const struct device *dev, const struct wdt_timeout_cfg *cfg)
Install new timeout.

This function must be used before wdt_setup(). Changes applied here have no effects until
wdt_setup() is called.

Parameters

• dev – Pointer to the device structure for the driver instance.

• cfg – Pointer to timeout configuration structure.

Return values

• channel_id – If successful, a non-negative value indicating the index of the
channel to which the timeout was assigned. This value is supposed to be used
as the parameter in calls to wdt_feed().

7.21. Peripherals 1263

Zephyr Project Documentation, Release 2.7.0-rc2

• -EBUSY – If timeout can not be installed while watchdog has already been
setup.

• -ENOMEM – If no more timeouts can be installed.

• -ENOTSUP – If any of the set flags is not supported.

• -EINVAL – If any of the window timeout value is out of possible range. This
value is also returned if watchdog supports only one timeout value for all time-
outs and the supplied timeout window differs from windows for alarms in-
stalled so far.

int wdt_feed(const struct device *dev, int channel_id)

Feed specified watchdog timeout.

Parameters

• dev – Pointer to the device structure for the driver instance.

• channel_id – Index of the fed channel.

Return values

• 0 – If successful.

• -EAGAIN – If completing the feed operation would stall the caller, for example
due to an in-progress watchdog operation such as a previous wdt_feed() .

• -EINVAL – If there is no installed timeout for supplied channel.

struct wdt_window

#include <watchdog.h> Watchdog timeout window.

Each installed timeout needs feeding within the specified time window, otherwise the watch-
dog will trigger. If the watchdog instance does not support window timeouts then min value
must be equal to 0.

Note: If specified values can not be precisely set they are always rounded up.

Param min Lower limit of watchdog feed timeout in milliseconds.

Param max Upper limit of watchdog feed timeout in milliseconds.

struct wdt_timeout_cfg

#include <watchdog.h> Watchdog timeout configuration struct.

Param window Timing parameters of watchdog timeout.

Param callback Timeout callback. Passing NULL means that no callback will be run.

Param next Pointer to the next timeout configuration. This pointer is used for watch-
dogs with staged timeouts functionality. Value must be NULL for single stage
timeout.

Param flags Bit field with following parts:

reset [0 : 1] - perform specified reset after timeout/
→˓callback

7.21.29 Video

The video driver API offers a generic interface to video devices.

1264 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Basic Operation

Video Device A video device is the abstraction of a hardware or software video function, which can
produce, process, consume or transform video data. The video API is designed to offer flexible way to
create, handle and combine various video devices.

Endpoint Each video device can have one or more endpoints. Output endpoints configure video output
function and generate data. Input endpoints configure video input function and consume data.

Video Buffer A video buffer provides the transport mechanism for the data. There is no particular
requirement on the content. The requirement for the content is defined by the endpoint format. A video
buffer can be queued to a device endpoint for filling (input ep) or consuming (output ep) operation,
once the operation is achieved, buffer can be dequeued for post-processing, release or reuse.

Controls A video control is accessed and identified by a CID (control identifier). It represents a video
control property. Different devices will have different controls available which can be generic, related
to a device class or vendor specific. The set/get control functions provide a generic scalable interface to
handle and create controls.

Configuration Options

Related configuration options:

• :kconfig:`CONFIG_VIDEO`

API Reference

group video_interface

Video Interface.

Defines

video_fourcc(a, b, c, d)

VIDEO_PIX_FMT_BGGR8

VIDEO_PIX_FMT_GBRG8

VIDEO_PIX_FMT_GRBG8

VIDEO_PIX_FMT_RGGB8

VIDEO_PIX_FMT_RGB565

VIDEO_PIX_FMT_JPEG

VIDEO_PIX_FMT_YUYV

7.21. Peripherals 1265

Zephyr Project Documentation, Release 2.7.0-rc2

VIDEO_PIX_FMT_YVYU

VIDEO_PIX_FMT_VYVU

VIDEO_PIX_FMT_UYVY

Typedefs

typedef int (*video_api_set_format_t)(const struct device *dev, enum video_endpoint_id ep,
struct video_format *fmt)

Set video format See video_set_format() for argument descriptions.

typedef int (*video_api_get_format_t)(const struct device *dev, enum video_endpoint_id ep,
struct video_format *fmt)

get current video format See video_get_format() for argument descriptions.

typedef int (*video_api_enqueue_t)(const struct device *dev, enum video_endpoint_id ep, struct
video_buffer *buf)

Enqueue a buffer in the driver’s incoming queue. See video_enqueue() for argument descrip-
tions.

typedef int (*video_api_dequeue_t)(const struct device *dev, enum video_endpoint_id ep, struct
video_buffer **buf, k_timeout_t timeout)

Dequeue a buffer from the driver’s outgoing queue. See video_dequeue() for argument de-
scriptions.

typedef int (*video_api_flush_t)(const struct device *dev, enum video_endpoint_id ep, bool
cancel)

Flush endpoint buffers, buffer are moved from incoming queue to outgoing queue. See
video_flush() for argument descriptions.

typedef int (*video_api_stream_start_t)(const struct device *dev)

Start the capture or output process. See video_stream_start() for argument descriptions.

typedef int (*video_api_stream_stop_t)(const struct device *dev)

Stop the capture or output process. See video_stream_stop() for argument descriptions.

typedef int (*video_api_set_ctrl_t)(const struct device *dev, unsigned int cid, void *value)

set a video control value. See video_set_ctrl() for argument descriptions.

typedef int (*video_api_get_ctrl_t)(const struct device *dev, unsigned int cid, void *value)

get a video control value. See video_get_ctrl() for argument descriptions.

typedef int (*video_api_get_caps_t)(const struct device *dev, enum video_endpoint_id ep, struct
video_caps *caps)

Get capabilities of a video endpoint. See video_get_caps() for argument descriptions.

typedef int (*video_api_set_signal_t)(const struct device *dev, enum video_endpoint_id ep,
struct k_poll_signal *signal)

1266 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Register/Unregister poll signal for buffer events. See video_set_signal() for argument descrip-
tions.

Enums

enum video_endpoint_id

video_endpoint_id enum Identify the video device endpoint.

Values:

enumerator VIDEO_EP_NONE

enumerator VIDEO_EP_ANY

enumerator VIDEO_EP_IN

enumerator VIDEO_EP_OUT

enum video_signal_result

video_event enum Identify video event.

Values:

enumerator VIDEO_BUF_DONE

enumerator VIDEO_BUF_ABORTED

enumerator VIDEO_BUF_ERROR

Functions

static inline int video_set_format(const struct device *dev, enum video_endpoint_id ep, struct
video_format *fmt)

Set video format.

Configure video device with a specific format.

Parameters

• dev – Pointer to the device structure for the driver instance.

• ep – Endpoint ID.

• fmt – Pointer to a video format struct.

Return values

• 0 – Is successful.

• -EINVAL – If parameters are invalid.

• -ENOTSUP – If format is not supported.

• -EIO – General input / output error.

7.21. Peripherals 1267

Zephyr Project Documentation, Release 2.7.0-rc2

static inline int video_get_format(const struct device *dev, enum video_endpoint_id ep, struct
video_format *fmt)

Get video format.

Get video device current video format.

Parameters

• dev – Pointer to the device structure for the driver instance.

• ep – Endpoint ID.

• fmt – Pointer to video format struct.

Return values pointer – to video format

static inline int video_enqueue(const struct device *dev, enum video_endpoint_id ep, struct
video_buffer *buf)

Enqueue a video buffer.

Enqueue an empty (capturing) or filled (output) video buffer in the driver’s endpoint incoming
queue.

Parameters

• dev – Pointer to the device structure for the driver instance.

• ep – Endpoint ID.

• buf – Pointer to the video buffer.

Return values

• 0 – Is successful.

• -EINVAL – If parameters are invalid.

• -EIO – General input / output error.

static inline int video_dequeue(const struct device *dev, enum video_endpoint_id ep, struct
video_buffer **buf, k_timeout_t timeout)

Dequeue a video buffer.

Dequeue a filled (capturing) or displayed (output) buffer from the driver’s enpoint outgoing
queue.

Parameters

• dev – Pointer to the device structure for the driver instance.

• ep – Endpoint ID.

• buf – Pointer a video buffer pointer.

• timeout – Timeout

Return values

• 0 – Is successful.

• -EINVAL – If parameters are invalid.

• -EIO – General input / output error.

static inline int video_flush(const struct device *dev, enum video_endpoint_id ep, bool cancel)

Flush endpoint buffers.

A call to flush finishes when all endpoint buffers have been moved from incoming queue to
outgoing queue. Either because canceled or fully processed through the video function.

Parameters

1268 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• dev – Pointer to the device structure for the driver instance.

• ep – Endpoint ID.

• cancel – If true, cancel buffer processing instead of waiting for completion.

Return values 0 – Is successful, -ERRNO code otherwise.

static inline int video_stream_start(const struct device *dev)

Start the video device function.

video_stream_start is called to enter ‘streaming’ state (capture, output. . .). The driver may
receive buffers with video_enqueue() before video_stream_start is called. If driver/device
needs a minimum number of buffers before being able to start streaming, then driver set
the min_vbuf_count to the related endpoint capabilities.

Return values

• 0 – Is successful.

• -EIO – General input / output error.

static inline int video_stream_stop(const struct device *dev)

Stop the video device function.

On video_stream_stop, driver must stop any transactions or wait until they finish.

Return values

• 0 – Is successful.

• -EIO – General input / output error.

static inline int video_get_caps(const struct device *dev, enum video_endpoint_id ep, struct
video_caps *caps)

Get the capabilities of a video endpoint.

Parameters

• dev – Pointer to the device structure for the driver instance.

• ep – Endpoint ID.

• caps – Pointer to the video_caps struct to fill.

Return values 0 – Is successful, -ERRNO code otherwise.

static inline int video_set_ctrl(const struct device *dev, unsigned int cid, void *value)

Set the value of a control.

This set the value of a video control, value type depends on control ID, and must be interpreted
accordingly.

Parameters

• dev – Pointer to the device structure for the driver instance.

• cid – Control ID.

• value – Pointer to the control value.

Return values

• 0 – Is successful.

• -EINVAL – If parameters are invalid.

• -ENOTSUP – If format is not supported.

• -EIO – General input / output error.

7.21. Peripherals 1269

Zephyr Project Documentation, Release 2.7.0-rc2

static inline int video_get_ctrl(const struct device *dev, unsigned int cid, void *value)
Get the current value of a control.

This retrieve the value of a video control, value type depends on control ID, and must be
interpreted accordingly.

Parameters

• dev – Pointer to the device structure for the driver instance.

• cid – Control ID.

• value – Pointer to the control value.

Return values

• 0 – Is successful.

• -EINVAL – If parameters are invalid.

• -ENOTSUP – If format is not supported.

• -EIO – General input / output error.

static inline int video_set_signal(const struct device *dev, enum video_endpoint_id ep, struct
k_poll_signal *signal)

Register/Unregister k_poll signal for a video endpoint.

Register a poll signal to the endpoint, which will be signaled on frame completion (done,
aborted, error). Registering a NULL poll signal unregisters any previously registered signal.

Parameters

• dev – Pointer to the device structure for the driver instance.

• ep – Endpoint ID.

• signal – Pointer to k_poll_signal

Return values 0 – Is successful, -ERRNO code otherwise.

struct video_buffer *video_buffer_alloc(size_t size)
Allocate video buffer.

Parameters

• size – Size of the video buffer.

Return values pointer – to allocated video buffer

void video_buffer_release(struct video_buffer *buf)
Release a video buffer.

Parameters

• buf – Pointer to the video buffer to release.

struct video_format

#include <video.h> video format structure

Used to configure frame format.

Param pixelformat is the fourcc pixel format value.

Param width is the frame width in pixels.

Param height is the frame height in pixels.

Param pitch is the line stride, the number of bytes that needs to be added to the
address in the first pixel of a row in order to go to the address of the first pixel of
the next row (>=width).

1270 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

struct video_format_cap

#include <video.h> video format capability

Used to describe a video endpoint format capability.

Param pixelformat is a list of supported pixel formats (0 terminated).

Param width_min is the minimum supported frame width.

Param width_max is the maximum supported frame width.

Param height_min is the minimum supported frame width.

Param height_max is the maximum supported frame width.

Param width_step is the width step size.

Param height_step is the height step size.

struct video_caps

#include <video.h> video capabilities

Used to describe video endpoint capabilities.

Param format_caps is a list of video format capabilities (zero terminated).

Param min_vbuf_count is the minimal count of video buffers to enqueue before
being able to start the stream.

struct video_buffer

#include <video.h> video buffer structure

Represent a video frame.

Param driver_data is a pointer to driver specific data.

Param buffer is a pointer to the start of the buffer.

Param size is the size in bytes of the buffer.

Param bytesused is the number of bytes occupied by the valid data in the buffer.

Param timestamp is a time reference in milliseconds at which the last data byte was
actually received for input endpoints or to be consumed for output endpoints.

struct video_driver_api

#include <video.h>

group video_controls

Video controls.

Defines

VIDEO_CTRL_CLASS_GENERIC

VIDEO_CTRL_CLASS_CAMERA

VIDEO_CTRL_CLASS_MPEG

7.21. Peripherals 1271

Zephyr Project Documentation, Release 2.7.0-rc2

VIDEO_CTRL_CLASS_JPEG

VIDEO_CTRL_CLASS_VENDOR

VIDEO_CID_HFLIP

VIDEO_CID_VFLIP

VIDEO_CID_CAMERA_EXPOSURE

VIDEO_CID_CAMERA_GAIN

VIDEO_CID_CAMERA_ZOOM

VIDEO_CID_CAMERA_BRIGHTNESS

VIDEO_CID_CAMERA_SATURATION

VIDEO_CID_CAMERA_WHITE_BAL

VIDEO_CID_CAMERA_CONTRAST

VIDEO_CID_CAMERA_COLORBAR

VIDEO_CID_CAMERA_QUALITY

7.21.30 eSPI

Overview

The eSPI (enhanced serial peripheral interface) is a serial bus that is based on SPI. It also features a
four-wire interface (receive, transmit, clock and slave select) and three configurations: single IO, dual
IO and quad IO.

The technical advancements include lower voltage signal levels (1.8V vs. 3.3V), lower pin count, and the
frequency is twice as fast (66MHz vs. 33MHz) Because of its enhancements, the eSPI is used to replace
the LPC (lower pin count) interface, SPI, SMBus and sideband signals.

See eSPI interface specification for additional details.

API Reference

group espi_interface

eSPI Driver APIs

eSPI SAF Driver APIs

1272 Chapter 7. API Reference

https://www.intel.com/content/dam/support/us/en/documents/software/chipset-software/327432-004_espi_base_specification_rev1.0_cb.pdf

Zephyr Project Documentation, Release 2.7.0-rc2

Defines

HOST_KBC_EVT_IBF

HOST_KBC_EVT_OBE

Typedefs

typedef void (*espi_callback_handler_t)(const struct device *dev, struct espi_callback *cb,
struct espi_event espi_evt)

Define the application callback handler function signature.

Param dev Device struct for the eSPI device.

Param cb Original struct espi_callback owning this handler.

Param espi_evt event details that trigger the callback handler.

Enums

enum espi_io_mode

eSPI I/O mode capabilities

Values:

enumerator ESPI_IO_MODE_SINGLE_LINE = BIT(0)

enumerator ESPI_IO_MODE_DUAL_LINES = BIT(1)

enumerator ESPI_IO_MODE_QUAD_LINES = BIT(2)

enum espi_channel

eSPI channel.

+——————————————————————-—+ | | | eSPI host +———-
—+ | | +——–—+ | Power | +——-—+ | | |Out of band| | man-
agement | | GPIO | | | +————+ |processor | | controller | | sources | | | |
SPI flash | +——–—+ +———-—+ +——-—+ | | | controller | | |
		+————+								+—–—+ +—————+												
					+–—+ +—–—+ +——-—+ +-—v–—+																	
		LPC		Tunneled		Tunneled							bridge		SMBus		GPIO					
+—–—+ +——-—+ +——-—+													——+									
												+——v–—+ +—v—-—v———-—v-										
—+					eSPI Flash		eSPI protocol block						access +—>+									
		+————+ +——————————+								+——–—+												
			v v			XXXXXXXXXXXXXXXXXXXXXXX			XXXXXXXXXXXXXXXXXXXXX													
XXXXXXXXXXXXXXXXXXX	+——————————————————————-—+																					
	v +————–—+ +———+							Flash							+———+							
+ + + +	eSPI bus	CH0 CH1 CH2 CH3	(logical channels)	+ + + +																		
+————–—+ | +——————————————————————–—+ |
eSPI slave | | | | CH0 | CH1 | CH2 | CH3 | | eSPI endpoint | VWIRE | OOB | Flash |
+——————————————————————–—+

7.21. Peripherals 1273

Zephyr Project Documentation, Release 2.7.0-rc2

Identifies each eSPI logical channel supported by eSPI controller Each channel allows inde-
pendent traffic, but the assignment of channel type to channel number is fixed.

Note that generic commands are not associated with any channel, so traffic over eSPI can
occur if all channels are disabled or not ready

Values:

enumerator ESPI_CHANNEL_PERIPHERAL = BIT(0)

enumerator ESPI_CHANNEL_VWIRE = BIT(1)

enumerator ESPI_CHANNEL_OOB = BIT(2)

enumerator ESPI_CHANNEL_FLASH = BIT(3)

enum espi_bus_event

eSPI bus event.

eSPI bus event to indicate events for which user can register callbacks

Values:

enumerator ESPI_BUS_RESET = BIT(0)

enumerator ESPI_BUS_EVENT_CHANNEL_READY = BIT(1)

enumerator ESPI_BUS_EVENT_VWIRE_RECEIVED = BIT(2)

enumerator ESPI_BUS_EVENT_OOB_RECEIVED = BIT(3)

enumerator ESPI_BUS_PERIPHERAL_NOTIFICATION = BIT(4)

enum espi_virtual_peripheral

eSPI peripheral notification type.

eSPI peripheral notification event details to indicate which peripheral trigger the eSPI callback

Values:

enumerator ESPI_PERIPHERAL_UART

enumerator ESPI_PERIPHERAL_8042_KBC

enumerator ESPI_PERIPHERAL_HOST_IO

enumerator ESPI_PERIPHERAL_DEBUG_PORT80

enumerator ESPI_PERIPHERAL_HOST_IO_PVT

1274 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enum espi_cycle_type

eSPI cycle types supported over eSPI peripheral channel

Values:

enumerator ESPI_CYCLE_MEMORY_READ32

enumerator ESPI_CYCLE_MEMORY_READ64

enumerator ESPI_CYCLE_MEMORY_WRITE32

enumerator ESPI_CYCLE_MEMORY_WRITE64

enumerator ESPI_CYCLE_MESSAGE_NODATA

enumerator ESPI_CYCLE_MESSAGE_DATA

enumerator ESPI_CYCLE_OK_COMPLETION_NODATA

enumerator ESPI_CYCLE_OKCOMPLETION_DATA

enumerator ESPI_CYCLE_NOK_COMPLETION_NODATA

enum espi_vwire_signal

eSPI system platform signals that can be send or receive through virtual wire channel

Values:

enumerator ESPI_VWIRE_SIGNAL_SLP_S3

enumerator ESPI_VWIRE_SIGNAL_SLP_S4

enumerator ESPI_VWIRE_SIGNAL_SLP_S5

enumerator ESPI_VWIRE_SIGNAL_OOB_RST_WARN

enumerator ESPI_VWIRE_SIGNAL_PLTRST

enumerator ESPI_VWIRE_SIGNAL_SUS_STAT

enumerator ESPI_VWIRE_SIGNAL_NMIOUT

enumerator ESPI_VWIRE_SIGNAL_SMIOUT

enumerator ESPI_VWIRE_SIGNAL_HOST_RST_WARN

enumerator ESPI_VWIRE_SIGNAL_SLP_A

7.21. Peripherals 1275

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator ESPI_VWIRE_SIGNAL_SUS_PWRDN_ACK

enumerator ESPI_VWIRE_SIGNAL_SUS_WARN

enumerator ESPI_VWIRE_SIGNAL_SLP_WLAN

enumerator ESPI_VWIRE_SIGNAL_SLP_LAN

enumerator ESPI_VWIRE_SIGNAL_HOST_C10

enumerator ESPI_VWIRE_SIGNAL_DNX_WARN

enumerator ESPI_VWIRE_SIGNAL_PME

enumerator ESPI_VWIRE_SIGNAL_WAKE

enumerator ESPI_VWIRE_SIGNAL_OOB_RST_ACK

enumerator ESPI_VWIRE_SIGNAL_SLV_BOOT_STS

enumerator ESPI_VWIRE_SIGNAL_ERR_NON_FATAL

enumerator ESPI_VWIRE_SIGNAL_ERR_FATAL

enumerator ESPI_VWIRE_SIGNAL_SLV_BOOT_DONE

enumerator ESPI_VWIRE_SIGNAL_HOST_RST_ACK

enumerator ESPI_VWIRE_SIGNAL_RST_CPU_INIT

enumerator ESPI_VWIRE_SIGNAL_SMI

enumerator ESPI_VWIRE_SIGNAL_SCI

enumerator ESPI_VWIRE_SIGNAL_DNX_ACK

enumerator ESPI_VWIRE_SIGNAL_SUS_ACK

enum lpc_peripheral_opcode

Values:

enumerator E8042_OBF_HAS_CHAR = 0x50

enumerator E8042_IBF_HAS_CHAR

1276 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator E8042_WRITE_KB_CHAR

enumerator E8042_WRITE_MB_CHAR

enumerator E8042_RESUME_IRQ

enumerator E8042_PAUSE_IRQ

enumerator E8042_CLEAR_OBF

enumerator E8042_READ_KB_STS

enumerator E8042_SET_FLAG

enumerator E8042_CLEAR_FLAG

enumerator EACPI_OBF_HAS_CHAR = EACPI_START_OPCODE

enumerator EACPI_IBF_HAS_CHAR

enumerator EACPI_WRITE_CHAR

enumerator EACPI_READ_STS

enumerator EACPI_WRITE_STS

Functions

int espi_config(const struct device *dev, struct espi_cfg *cfg)
Configure operation of a eSPI controller.

This routine provides a generic interface to override eSPI controller capabilities.

If this eSPI controller is acting as slave, the values set here will be discovered as part through
the GET_CONFIGURATION command issued by the eSPI master during initialization.

If this eSPI controller is acting as master, the values set here will be used by eSPI master to de-
termine minimum common capabilities with eSPI slave then send via SET_CONFIGURATION
command.

+—–—+ +———+ +——+ +———+ +———+ | eSPI
| | eSPI | | eSPI | | eSPI | | eSPI | | slave | | driver | | bus | | driver | | host |
+—–—+ +———+ +——+ +———+ +———+ | | |
| | | espi_config | Set eSPI | Set eSPI | espi_config | +———–—+ ctrl regs | cap ctrl
reg| +——–—+ | +—-—+ | +—–—+ |

<——+ +—-—>

GET_CONFIGURATION

7.21. Peripherals 1277

Zephyr Project Documentation, Release 2.7.0-rc2

| | +<——————+ | | |<——–—| | | | | eSPI caps | | | |
|——–—>+ response | | | | |——————>+ | | | | | | | | |
SET_CONFIGURATION | | | | +<——————+ | | | | accept | | | |
+——————>+ |

• + + + +

Parameters

• dev – Pointer to the device structure for the driver instance.

• cfg – the device runtime configuration for the eSPI controller.

Return values

• 0 – If successful.

• -EIO – General input / output error, failed to configure device.

• -EINVAL – invalid capabilities, failed to configure device.

• -ENOTSUP – capability not supported by eSPI slave.

bool espi_get_channel_status(const struct device *dev, enum espi_channel ch)

Query to see if it a channel is ready.

This routine allows to check if logical channel is ready before use. Note that queries for
channels not supported will always return false.

Parameters

• dev – Pointer to the device structure for the driver instance.

• ch – the eSPI channel for which status is to be retrieved.

Return values

• true – If eSPI channel is ready.

• false – otherwise.

int espi_read_request(const struct device *dev, struct espi_request_packet *req)

Sends memory, I/O or message read request over eSPI.

This routines provides a generic interface to send a read request packet.

Parameters

• dev – Pointer to the device structure for the driver instance.

• req – Address of structure representing a memory, I/O or message read request.

Return values

• 0 – If successful.

• -ENOTSUP – if eSPI controller doesn’t support raw packets and instead low
memory transactions are handled by controller hardware directly.

• -EIO – General input / output error, failed to send over the bus.

int espi_write_request(const struct device *dev, struct espi_request_packet *req)

Sends memory, I/O or message write request over eSPI.

This routines provides a generic interface to send a write request packet.

Parameters

• dev – Pointer to the device structure for the driver instance.

• req – Address of structure representing a memory, I/O or message write re-
quest.

1278 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Return values

• 0 – If successful.

• -ENOTSUP – if eSPI controller doesn’t support raw packets and instead low
memory transactions are handled by controller hardware directly.

• -EINVAL – General input / output error, failed to send over the bus.

int espi_read_lpc_request(const struct device *dev, enum lpc_peripheral_opcode op, uint32_t
*data)

Reads SOC data from a LPC peripheral with information updated over eSPI.

This routine provides a generic interface to read a block whose information was updated by
an eSPI transaction. Reading may trigger a transaction. The eSPI packet is assembled by the
HW block.

Parameters

• dev – Pointer to the device structure for the driver instance.

• op – Enum representing opcode for peripheral type and read request.

• data – Parameter to be read from to the LPC peripheral.

Return values

• 0 – If successful.

• -ENOTSUP – if eSPI peripheral is off or not supported.

• -EINVAL – for unimplemented lpc opcode, but in range.

int espi_write_lpc_request(const struct device *dev, enum lpc_peripheral_opcode op, uint32_t
*data)

Writes data to a LPC peripheral which generates an eSPI transaction.

This routine provides a generic interface to write data to a block which triggers an eSPI trans-
action. The eSPI packet is assembled by the HW block.

Parameters

• dev – Pointer to the device structure for the driver instance.

• op – Enum representing an opcode for peripheral type and write request.

• data – Represents the parameter passed to the LPC peripheral.

Return values

• 0 – If successful.

• -ENOTSUP – if eSPI peripheral is off or not supported.

• -EINVAL – for unimplemented lpc opcode, but in range.

int espi_send_vwire(const struct device *dev, enum espi_vwire_signal signal, uint8_t level)

Sends system/platform signal as a virtual wire packet.

This routines provides a generic interface to send a virtual wire packet from slave to master.

Parameters

• dev – Pointer to the device structure for the driver instance.

• signal – The signal to be send to eSPI master.

• level – The level of signal requested LOW or HIGH.

Return values

• 0 – If successful.

7.21. Peripherals 1279

Zephyr Project Documentation, Release 2.7.0-rc2

• -EIO – General input / output error, failed to send over the bus.

int espi_receive_vwire(const struct device *dev, enum espi_vwire_signal signal, uint8_t *level)

Retrieves level status for a signal encapsulated in a virtual wire.

This routines provides a generic interface to request a virtual wire packet from eSPI master
and retrieve the signal level.

Parameters

• dev – Pointer to the device structure for the driver instance.

• signal – the signal to be requested from eSPI master.

• level – the level of signal requested 0b LOW, 1b HIGH.

Return values -EIO – General input / output error, failed request to master.

int espi_send_oob(const struct device *dev, struct espi_oob_packet *pckt)

Sends SMBus transaction (out-of-band) packet over eSPI bus.

This routines provides an interface to encapsulate a SMBus transaction and send into packet
over eSPI bus

Parameters

• dev – Pointer to the device structure for the driver instance.

• pckt – Address of the packet representation of SMBus transaction.

Return values -EIO – General input / output error, failed request to master.

int espi_receive_oob(const struct device *dev, struct espi_oob_packet *pckt)

Receives SMBus transaction (out-of-band) packet from eSPI bus.

This routines provides an interface to receive and decoded a SMBus transaction from eSPI bus

Parameters

• dev – Pointer to the device structure for the driver instance.

• pckt – Address of the packet representation of SMBus transaction.

Return values -EIO – General input / output error, failed request to master.

int espi_read_flash(const struct device *dev, struct espi_flash_packet *pckt)

Sends a read request packet for shared flash.

This routines provides an interface to send a request to read the flash component shared
between the eSPI master and eSPI slaves.

Parameters

• dev – Pointer to the device structure for the driver instance.

• pckt – Adddress of the representation of read flash transaction.

Return values

• -ENOTSUP – eSPI flash logical channel transactions not supported.

• -EBUSY – eSPI flash channel is not ready or disabled by master.

• -EIO – General input / output error, failed request to master.

int espi_write_flash(const struct device *dev, struct espi_flash_packet *pckt)

Sends a write request packet for shared flash.

This routines provides an interface to send a request to write to the flash components shared
between the eSPI master and eSPI slaves.

Parameters

1280 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• dev – Pointer to the device structure for the driver instance.

• pckt – Address of the representation of write flash transaction.

Return values

• -ENOTSUP – eSPI flash logical channel transactions not supported.

• -EBUSY – eSPI flash channel is not ready or disabled by master.

• -EIO – General input / output error, failed request to master.

int espi_flash_erase(const struct device *dev, struct espi_flash_packet *pckt)

Sends a write request packet for shared flash.

This routines provides an interface to send a request to write to the flash components shared
between the eSPI master and eSPI slaves.

Parameters

• dev – Pointer to the device structure for the driver instance.

• pckt – Address of the representation of write flash transaction.

Return values

• -ENOTSUP – eSPI flash logical channel transactions not supported.

• -EBUSY – eSPI flash channel is not ready or disabled by master.

• -EIO – General input / output error, failed request to master.

static inline void espi_init_callback(struct espi_callback *callback, espi_callback_handler_t
handler, enum espi_bus_event evt_type)

Helper to initialize a struct espi_callback properly.

Callback model

+—-—+ +———-—+ +——+ +———+ | App
| | eSPI driver | | HW | |eSPI Host| +—+—+ +—-
—+–—+ +—+—+ +-—+-—+ | | | | |
espi_init_callback | | | +————————-—> | | | | espi_add_callback | |
+————————–—>+ | | | | eSPI reset | eSPI host | | IRQ +<————+
resets the

<——–—+ bus

Processed

within the

driver

| | | VW CH ready| eSPI host | | IRQ +<————+ enables VW

7.21. Peripherals 1281

Zephyr Project Documentation, Release 2.7.0-rc2

<——–—+ channel

Processed

within the

driver

| | | Memory I/O | Peripheral | | <———-—+ event | +<————+ |
+<————————–—+ callback | | | Report peripheral event | | | | and data
for the event | | | | | | | | | | SLP_S5 | eSPI host | | <———-—+ send
VWire | +<————+ | +<————————–—+ callback | | | App en-
ables/configures | | |

discrete regulator

espi_send_vwire_signal

+——————————>————>|————>| | | | | | | |
HOST_RST | eSPI host | | <———-—+ send VWire | +<————+ |
+<————————–—+ callback | | | App reset host-related | | | | data structures
| | | | | | | | | | C10 | eSPI host | | +<————+ send VWire | <———-—+
| <——————————+ | | | App executes | | |

• power mgmt policy | | |

Parameters

• callback – A valid Application’s callback structure pointer.

• handler – A valid handler function pointer.

• evt_type – indicates the eSPI event relevant for the handler. for
VWIRE_RECEIVED event the data will indicate the new level asserted

static inline int espi_add_callback(const struct device *dev, struct espi_callback *callback)

Add an application callback.

Note: enables to add as many callback as needed on the same device.

Note: Callbacks may be added to the device from within a callback handler invocation, but
whether they are invoked for the current eSPI event is not specified.

Parameters

• dev – Pointer to the device structure for the driver instance.

• callback – A valid Application’s callback structure pointer.

Returns 0 if successful, negative errno code on failure.

1282 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline int espi_remove_callback(const struct device *dev, struct espi_callback *callback)

Remove an application callback.

Note: enables to remove as many callbacks as added through espi_add_callback().

Warning: It is explicitly permitted, within a callback handler, to remove the registration
for the callback that is running, i.e. callback. Attempts to remove other registrations on
the same device may result in undefined behavior, including failure to invoke callbacks
that remain registered and unintended invocation of removed callbacks.

Parameters

• dev – Pointer to the device structure for the driver instance.

• callback – A valid application’s callback structure pointer.

Returns 0 if successful, negative errno code on failure.

int espi_saf_config(const struct device *dev, const struct espi_saf_cfg *cfg)

Configure operation of a eSPI controller.

This routine provides a generic interface to override eSPI controller capabilities.

If this eSPI controller is acting as slave, the values set here will be discovered as part through
the GET_CONFIGURATION command issued by the eSPI master during initialization.

If this eSPI controller is acting as master, the values set here will be used by eSPI master to de-
termine minimum common capabilities with eSPI slave then send via SET_CONFIGURATION
command.

+—–—+ +———+ +——+ +———+ +———+ | eSPI
| | eSPI | | eSPI | | eSPI | | eSPI | | slave | | driver | | bus | | driver | | host |
+—–—+ +———+ +——+ +———+ +———+ | | |
| | | espi_config | Set eSPI | Set eSPI | espi_config | +———–—+ ctrl regs | cap ctrl
reg| +——–—+ | +—-—+ | +—–—+ |

<——+ +—-—>

GET_CONFIGURATION

| | +<——————+ | | |<——–—| | | | | eSPI caps | | | |
|——–—>+ response | | | | |——————>+ | | | | | | | | |
SET_CONFIGURATION | | | | +<——————+ | | | | accept | | | |
+——————>+ |

• + + + +

Parameters

• dev – Pointer to the device structure for the driver instance.

• cfg – the device runtime configuration for the eSPI controller.

Return values

• 0 – If successful.

• -EIO – General input / output error, failed to configure device.

7.21. Peripherals 1283

Zephyr Project Documentation, Release 2.7.0-rc2

• -EINVAL – invalid capabilities, failed to configure device.

• -ENOTSUP – capability not supported by eSPI slave.

int espi_saf_set_protection_regions(const struct device *dev, const struct espi_saf_protection
*pr)

Set one or more SAF protection regions.

This routine provides an interface to override the default flash protection regions of the SAF
controller.

Parameters

• dev – Pointer to the device structure for the driver instance.

• pr – Pointer to the SAF protection region structure.

Return values

• 0 – If successful.

• -EIO – General input / output error, failed to configure device.

• -EINVAL – invalid capabilities, failed to configure device.

• -ENOTSUP – capability not supported by eSPI slave.

int espi_saf_activate(const struct device *dev)
Activate SAF block.

This routine activates the SAF block and should only be called after SAF has been configured
and the eSPI Master has enabled the Flash Channel.

Parameters

• dev – Pointer to the device structure for the driver instance.

Return values

• 0 – If successful

• -EINVAL – if failed to activate SAF.

bool espi_saf_get_channel_status(const struct device *dev)
Query to see if SAF is ready.

This routine allows to check if SAF is ready before use.

Parameters

• dev – Pointer to the device structure for the driver instance.

Return values

• true – If eSPI SAF is ready.

• false – otherwise.

int espi_saf_flash_read(const struct device *dev, struct espi_saf_packet *pckt)
Sends a read request packet for slave attached flash.

This routines provides an interface to send a request to read the flash component shared
between the eSPI master and eSPI slaves.

Parameters

• dev – Pointer to the device structure for the driver instance.

• pckt – Adddress of the representation of read flash transaction.

Return values

• -ENOTSUP – eSPI flash logical channel transactions not supported.

1284 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• -EBUSY – eSPI flash channel is not ready or disabled by master.

• -EIO – General input / output error, failed request to master.

int espi_saf_flash_write(const struct device *dev, struct espi_saf_packet *pckt)

Sends a write request packet for slave attached flash.

This routines provides an interface to send a request to write to the flash components shared
between the eSPI master and eSPI slaves.

Parameters

• dev – Pointer to the device structure for the driver instance.

• pckt – Address of the representation of write flash transaction.

Return values

• -ENOTSUP – eSPI flash logical channel transactions not supported.

• -EBUSY – eSPI flash channel is not ready or disabled by master.

• -EIO – General input / output error, failed request to master.

int espi_saf_flash_erase(const struct device *dev, struct espi_saf_packet *pckt)

Sends a write request packet for slave attached flash.

This routines provides an interface to send a request to write to the flash components shared
between the eSPI master and eSPI slaves.

Parameters

• dev – Pointer to the device structure for the driver instance.

• pckt – Address of the representation of erase flash transaction.

Return values

• -ENOTSUP – eSPI flash logical channel transactions not supported.

• -EBUSY – eSPI flash channel is not ready or disabled by master.

• -EIO – General input / output error, failed request to master.

static inline void espi_saf_init_callback(struct espi_callback *callback,
espi_callback_handler_t handler, enum espi_bus_event
evt_type)

Helper to initialize a struct espi_callback properly.

Callback model

+—-—+ +———-—+ +——+ +———+ | App
| | eSPI driver | | HW | |eSPI Host| +—+—+ +—-
—+–—+ +—+—+ +-—+-—+ | | | | |
espi_init_callback | | | +————————-—> | | | | espi_add_callback | |
+————————–—>+ | | | | eSPI reset | eSPI host | | IRQ +<————+
resets the

<——–—+ bus

Processed

within the

driver

7.21. Peripherals 1285

Zephyr Project Documentation, Release 2.7.0-rc2

| | | VW CH ready| eSPI host | | IRQ +<————+ enables VW

<——–—+ channel

Processed

within the

driver

| | | Memory I/O | Peripheral | | <———-—+ event | +<————+ |
+<————————–—+ callback | | | Report peripheral event | | | | and data
for the event | | | | | | | | | | SLP_S5 | eSPI host | | <———-—+ send
VWire | +<————+ | +<————————–—+ callback | | | App en-
ables/configures | | |

discrete regulator

espi_send_vwire_signal

+——————————>————>|————>| | | | | | | |
HOST_RST | eSPI host | | <———-—+ send VWire | +<————+ |
+<————————–—+ callback | | | App reset host-related | | | | data structures
| | | | | | | | | | C10 | eSPI host | | +<————+ send VWire | <———-—+
| <——————————+ | | | App executes | | |

• power mgmt policy | | |

Parameters

• callback – A valid Application’s callback structure pointer.

• handler – A valid handler function pointer.

• evt_type – indicates the eSPI event relevant for the handler. for
VWIRE_RECEIVED event the data will indicate the new level asserted

static inline int espi_saf_add_callback(const struct device *dev, struct espi_callback *callback)

Add an application callback.

Note: enables to add as many callback as needed on the same device.

Note: Callbacks may be added to the device from within a callback handler invocation, but
whether they are invoked for the current eSPI event is not specified.

Parameters

• dev – Pointer to the device structure for the driver instance.

• callback – A valid Application’s callback structure pointer.

Returns 0 if successful, negative errno code on failure.

1286 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline int espi_saf_remove_callback(const struct device *dev, struct espi_callback
*callback)

Remove an application callback.

Note: enables to remove as many callbacks as added through espi_add_callback().

Warning: It is explicitly permitted, within a callback handler, to remove the registration
for the callback that is running, i.e. callback. Attempts to remove other registrations on
the same device may result in undefined behavior, including failure to invoke callbacks
that remain registered and unintended invocation of removed callbacks.

Parameters

• dev – Pointer to the device structure for the driver instance.

• callback – A valid application’s callback structure pointer.

Returns 0 if successful, negative errno code on failure.

struct espi_evt_data_kbc

#include <espi.h> Bit field definition of evt_data in struct espi_event for KBC.

struct espi_evt_data_acpi

#include <espi.h> Bit field definition of evt_data in struct espi_event for ACPI.

struct espi_event

#include <espi.h> eSPI event

Public Members

enum espi_bus_event evt_type

Event type

uint32_t evt_details

Additional details for bus event type

uint32_t evt_data

Data associated to the event

struct espi_cfg

#include <espi.h> eSPI bus configuration parameters

Public Members

enum espi_io_mode io_caps

Supported I/O mode

enum espi_channel channel_caps

Supported channels

7.21. Peripherals 1287

Zephyr Project Documentation, Release 2.7.0-rc2

uint8_t max_freq

Maximum supported frequency in MHz

struct espi_request_packet

#include <espi.h> eSPI peripheral request packet format

struct espi_oob_packet

#include <espi.h> eSPI out-of-band transaction packet format

struct espi_flash_packet

#include <espi.h> eSPI flash transactions packet format

struct espi_saf_cfg

#include <espi_saf.h> eSPI SAF configuration parameters

struct espi_saf_packet

#include <espi_saf.h> eSPI SAF transaction packet format

7.22 Power Management

Zephyr RTOS power management subsystem provides several means for a system integrator to imple-
ment power management support that can take full advantage of the power saving features of SOCs.

7.22.1 Terminology

SOC interface This is a general term for the components that have knowledge of the SOC and pro-
vide interfaces to the hardware features. It will abstract the SOC specific implementations to the
applications and the OS.

Idle Thread A system thread that runs when there are no other threads ready to run.

Power gating Power gating reduces power consumption by shutting off current to blocks of the inte-
grated circuit that are not in use.

Power State SOC Power State describes processor and device power states implemented at the SOC
level. Power states are represented by pm_state and each one has a different meaning.

Device Runtime Power Management Device Runtime Power Management (PM) refers the capability of
devices be able of saving energy independently of the the system. Devices will keep reference
of their usage and will automatically be suspended or resumed. This feature is enabled via the
::kconfig:`CONFIG_PM_DEVICE_RUNTIME` Kconfig option.

7.22.2 Overview

The interfaces and APIs provided by the power management subsystem are designed to be architec-
ture and SOC independent. This enables power management implementations to be easily adapted to
different SOCs and architectures.

The architecture and SOC independence is achieved by separating the core infrastructure and the SOC
specific implementations. The SOC specific implementations are abstracted to the application and the
OS using hardware abstraction layers.

The power management features are classified into the following categories.

1288 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• System Power Management

• Device Power Management

7.22.3 System Power Management

The kernel enters the idle state when it has nothing to schedule. If enabled via the :kcon-
fig:`CONFIG_PM` Kconfig option, the Power Management Subsystem can put an idle system in one
of the supported power states, based on the selected power management policy and the duration of the
idle time allotted by the kernel.

It is an application responsibility to set up a wake up event. A wake up event will typically be an interrupt
triggered by one of the SoC peripheral modules such as a SysTick, RTC, counter, or GPIO. Depending on
the power mode entered, only some SoC peripheral modules may be active and can be used as a wake
up source.

The following diagram describes system power management:

7.22. Power Management 1289

Zephyr Project Documentation, Release 2.7.0-rc2

Idle Thread

arch_irq_lock()

pm_system_supspend (ticks)

CONFIG_PM
no

yes

k_cpu_idle()

ACTIVE

SUSPEND_TO_RAM... RUNTIME_IDLE...

pm_policy_next_state()

pm_low_power_devices()pm_suspend_devices()

k_schedule_lock()

pm_state_notify()

CONFI...

SoC Implementation

pm_state_notify()

pm_power_state_set(state)

pm_resume_devices()

pm_power_state_exit_post_ops()

k_sched_unlock()

Viewer does not support full SVG 1.1

1290 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Some handful examples using different power management features:

• samples/boards/stm32/power_mgmt/blinky/

• samples/boards/nrf/system_off/

• samples/subsys/pm/device_pm/

• tests/subsys/pm/power_mgmt/

• tests/subsys/pm/power_mgmt_soc/

• tests/subsys/pm/power_state_api/

Power States

The power management subsystem contains a set of states based on power consumption and context
retention.

The list of available power states is defined by pm_state. In general power states with higher indexes
will offer greater power savings and have higher wake latencies. Following is a thorough list of available
states:

enumerator PM_STATE_ACTIVE

Runtime active state.

The system is fully powered and active.

Note: This state is correlated with ACPI G0/S0 state

enumerator PM_STATE_RUNTIME_IDLE

Runtime idle state.

Runtime idle is a system sleep state in which all of the cores enter deepest possible idle state and
wait for interrupts, no requirements for the devices, leaving them at the states where they are.

Note: This state is correlated with ACPI S0ix state

enumerator PM_STATE_SUSPEND_TO_IDLE

Suspend to idle state.

The system goes through a normal platform suspend where it puts all of the cores in deepest
possible idle state and may puts peripherals into low-power states. No operating state is lost (ie.
the cpu core does not lose execution context), so the system can go back to where it left off easily
enough.

Note: This state is correlated with ACPI S1 state

enumerator PM_STATE_STANDBY

Standby state.

In addition to putting peripherals into low-power states all non-boot CPUs are powered off. It
should allow more energy to be saved relative to suspend to idle, but the resume latency will
generally be greater than for that state. But it should be the same state with suspend to idle state
on uniprocesser system.

7.22. Power Management 1291

https://github.com/zephyrproject-rtos/zephyr/blob/main/samples/boards/stm32/power_mgmt/blinky/
https://github.com/zephyrproject-rtos/zephyr/blob/main/samples/boards/nrf/system_off/
https://github.com/zephyrproject-rtos/zephyr/blob/main/samples/subsys/pm/device_pm/
https://github.com/zephyrproject-rtos/zephyr/blob/main/tests/subsys/pm/power_mgmt/
https://github.com/zephyrproject-rtos/zephyr/blob/main/tests/subsys/pm/power_mgmt_soc/
https://github.com/zephyrproject-rtos/zephyr/blob/main/tests/subsys/pm/power_state_api/

Zephyr Project Documentation, Release 2.7.0-rc2

Note: This state is correlated with ACPI S2 state

enumerator PM_STATE_SUSPEND_TO_RAM

Suspend to ram state.

This state offers significant energy savings by powering off as much of the system as possible, where
memory should be placed into the self-refresh mode to retain its contents. The state of devices and
CPUs is saved and held in memory, and it may require some boot- strapping code in ROM to resume
the system from it.

Note: This state is correlated with ACPI S3 state

enumerator PM_STATE_SUSPEND_TO_DISK

Suspend to disk state.

This state offers significant energy savings by powering off as much of the system as possible,
including the memory. The contents of memory are written to disk or other non-volatile storage,
and on resume it’s read back into memory with the help of boot-strapping code, restores the system
to the same point of execution where it went to suspend to disk.

Note: This state is correlated with ACPI S4 state

enumerator PM_STATE_SOFT_OFF

Soft off state.

This state consumes a minimal amount of power and requires a large latency in order to return
to runtime active state. The contents of system(CPU and memory) will not be preserved, so the
system will be restarted as if from initial power-up and kernel boot.

Note: This state is correlated with ACPI G2/S5 state

Power States Constraint

The power management subsystem allows different Zephyr components and applications to set con-
straints on various power states preventing the system from transitiioning into these states. This can be
used by devices when executing tasks in background to avoid the system to go to a specific state where
it would lose context. Constraints can be set, released and checked using the follow APIs:

Warning: doxygenfunction: Cannot find function “pm_constraint_set” in doxygen xml output for
project “Zephyr” from directory: /build/doc/_build/latex/doxygen/xml

Warning: doxygenfunction: Cannot find function “pm_constraint_release” in doxygen xml output
for project “Zephyr” from directory: /build/doc/_build/latex/doxygen/xml

1292 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Warning: doxygenfunction: Cannot find function “pm_constraint_get” in doxygen xml output for
project “Zephyr” from directory: /build/doc/_build/latex/doxygen/xml

Power Management Policies

The power management subsystem supports the following power management policies:

• Residency based

• Application defined

The policy manager is responsible for informing the power subsystem which power state the system
should transition to based on states defined by the platform and possible runtime constraints

Information about states can be found in the device tree, see dts/bindings/power/state.yaml.

Residency The power management system enters the power state which offers the highest power sav-
ings, and with a minimum residency value (in device tree, see dts/bindings/power/state.yaml) less than
or equal to the scheduled system idle time duration.

This policy also accounts for the time necessary to become active again. The core logic used by this policy
to select the best power state is:

if (time_to_next_scheduled_event >= (state.min_residency_us + state.exit_latency))) {
return state

}

Application The power management policy is defined by the application which has to implement the
following function.

struct pm_state_info pm_policy_next_state(int32_t ticks);

In this policy the application is free to decide which power state the system should transition to based
on the remaining time for the next scheduled timeout.

An example of an application that defines its own policy can be found in tests/subsys/pm/power_mgmt/.

7.22.4 Device Power Management Infrastructure

The device power management infrastructure consists of interfaces to the Device Driver Model. These
APIs send control commands to the device driver to update its power state or to get its current power
state.

Zephyr RTOS supports two methods of doing device power management.

• Runtime Device Power Management

• System Power Management

Runtime Device Power Management

In this method, the application or any component that deals with devices directly and has the best
knowledge of their use, performs the device power management. This saves power if some devices that
are not in use can be turned off or put in power saving mode. This method allows saving power even
when the CPU is active. The components that use the devices need to be power aware and should be
able to make decisions related to managing device power.

7.22. Power Management 1293

https://github.com/zephyrproject-rtos/zephyr/blob/main/dts/bindings/power/state.yaml
https://github.com/zephyrproject-rtos/zephyr/blob/main/dts/bindings/power/state.yaml
https://github.com/zephyrproject-rtos/zephyr/blob/main/tests/subsys/pm/power_mgmt/

Zephyr Project Documentation, Release 2.7.0-rc2

In this method, the SOC interface can enter CPU or SOC power states quickly when
pm_system_suspend() gets called. This is because it does not need to spend time doing device power
management if the devices are already put in the appropriate power state by the application or compo-
nent managing the devices.

System Power Management

In this method device power management is mostly done inside pm_system_suspend() along with en-
tering a CPU or SOC power state.

If a decision to enter a lower power state is made, the implementation would enter it only after checking
if the devices are not in the middle of a hardware transaction that cannot be interrupted. This method
can be used in implementations where the applications and components using devices are not expected
to be power aware and do not implement runtime device power management.

Idle Thread... Power...
PM_STATE_ACTIVEPM_STATE_RUNTIME_IDLEPM_STATE_...

next scheduled t...
Clock Gate CPU...

Resume at the place it stopped

Resume at startup code, de...

Reboot, CPU and devic...

Depends on selected state

Viewer does not support full SVG 1.1

This method can also be used to emulate a hardware feature supported by some SOCs which triggers
automatic entry to a lower power state when all devices are idle. Refer to Busy Status Indication to see
how to indicate whether a device is busy or idle.

Device Power Management States

The power management subsystem defines four device states. These states are classified based on the
degree of device context that gets lost in those states, kind of operations done to save power, and the
impact on the device behavior due to the state transition. Device context includes device registers, clocks,
memory etc.

The four device power states:

PM_DEVICE_STATE_ACTIVE

Normal operation of the device. All device context is retained.

PM_DEVICE_STATE_LOW_POWER

Device context is preserved by the HW and need not be restored by the driver.

PM_DEVICE_STATE_SUSPENDED

Most device context is lost by the hardware. Device drivers must save and restore or reini-
tialize any context lost by the hardware.

PM_DEVICE_STATE_OFF

1294 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Power has been fully removed from the device. The device context is lost when this state is
entered. Need to reinitialize the device when powering it back on.

Device Power Management Operations

Zephyr RTOS power management subsystem provides a control function interface to device drivers to
indicate power management operations to perform. Each device driver defines:

• The device’s supported power states.

• The device’s supported transitions between power states.

• The device’s necessary operations to handle the transition between power states.

The following are some examples of operations that the device driver may perform in transition between
power states:

• Save/Restore device states.

• Gate/Un-gate clocks.

• Gate/Un-gate power.

• Mask/Un-mask interrupts.

Device Model with Power Management Support

Drivers initialize the devices using macros. See Device Driver Model for details on how these macros are
used. Use the DEVICE_DEFINE macro to initialize drivers providing power management support via the
PM control function. One of the macro parameters is the pointer to the pm_control handler function. If
the driver doesn’t implement any power control operations, it can initialize the corresponding pointer
with NULL.

Device Power Management API

The SOC interface and application use these APIs to perform power management operations on the
devices.

Get Device List

size_t z_device_get_all_static(struct device const **device_list);

The Zephyr RTOS kernel internally maintains a list of all devices in the system. The SOC interface uses
this API to get the device list. The SOC interface can use the list to identify the devices on which to
execute power management operations.

Note: Ensure that the SOC interface does not alter the original list. Since the kernel uses the original
list, it must remain unchanged.

Device Set Power State

int pm_device_state_set(const struct device *dev, enum pm_device_state state);

Calls the pm_control() handler function implemented by the device driver with the provided state.

7.22. Power Management 1295

Zephyr Project Documentation, Release 2.7.0-rc2

Device Get Power State

int pm_device_state_get(const struct device *dev, enum pm_device_state *state);

Busy Status Indication

The SOC interface executes some power policies that can turn off power to devices, causing them to
lose their state. If the devices are in the middle of some hardware transaction, like writing to flash
memory when the power is turned off, then such transactions would be left in an inconsistent state. This
infrastructure guards such transactions by indicating to the SOC interface that the device is in the middle
of a hardware transaction.

When the pm_system_suspend() is called, depending on the power state returned by the policy manager,
the system may suspend or put devices in low power if they are not marked as busy.

Here are the APIs used to set, clear, and check the busy status of devices.

Indicate Busy Status API

void device_busy_set(const struct device *busy_dev);

Sets a bit corresponding to the device, in a data structure maintained by the kernel, to indicate whether
or not it is in the middle of a transaction.

Clear Busy Status API

void device_busy_clear(const struct device *busy_dev);

Clears the bit corresponding to the device in a data structure maintained by the kernel to indicate that
the device is not in the middle of a transaction.

Check Busy Status of Single Device API

int device_busy_check(const struct device *chk_dev);

Checks whether a device is busy. The API returns 0 if the device is not busy.

This API is used by the system power management.

Check Busy Status of All Devices API

int device_any_busy_check(void);

Checks if any device is busy. The API returns 0 if no device in the system is busy.

Wakeup capability Some devices are capable of waking the system up from a sleep state. When a
device has such capability, applications can enable or disable this feature on a device dynamically using
pm_device_wakeup_enable() .

This property can be set on device declaring the property wakeup-source in the device node in device-
tree. For example, this devicetree fragment sets the gpio0 device as a “wakeup” source:

gpio0: gpio@40022000 {
compatible = "ti,cc13xx-cc26xx-gpio";
reg = <0x40022000 0x400>;
interrupts = <0 0>;
status = "disabled";
label = "GPIO_0";

(continues on next page)

1296 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

gpio-controller;
wakeup-source;
#gpio-cells = <2>;

};

By default, “wakeup” capable devices do not have this functionality enabled during the device initializa-
tion. Applications can enable this functionality later calling pm_device_wakeup_enable() .

Note: This property is only used by the system power management to identify devices that should not
be suspended. It is responsability of driver or the application to do any additional configuration required
by the device to support it.

7.22.5 Device Runtime Power Management

The Device Runtime Power Management framework is an Active Power Management mechanism which
reduces the overall system Power consumtion by suspending the devices which are idle or not being used
while the System is active or running.

The framework uses pm_device_state_set() API set the device power state accordingly based on the
usage count.

The interfaces and APIs provided by the Device Runtime PM are designed to be generic and architecture
independent.

Device Runtime Power Management API

The Device Drivers use these APIs to perform device runtime power management operations on the
devices.

Enable Device Runtime Power Management of a Device API

void pm_device_enable(const struct device *dev);

Enables Runtime Power Management of the device.

Disable Device Runtime Power Management of a Device API

void pm_device_disable(const struct device *dev);

Disables Runtime Power Management of the device.

Resume Device asynchronously API

int pm_device_get_async(const struct device *dev);

Marks the device as being used. This API will asynchronously bring the device to resume state if it was
suspended. If the device was already active, it just increments the device usage count. The API returns 0
on success.

Device drivers can monitor this operation to finish calling pm_device_wait().

7.22. Power Management 1297

Zephyr Project Documentation, Release 2.7.0-rc2

Resume Device synchronously API

int pm_device_get(const struct device *dev);

Marks the device as being used. It will bring up or resume the device if it is in suspended state based
on the device usage count. This call is blocked until the device PM state is changed to active. The API
returns 0 on success.

Suspend Device asynchronously API

int pm_device_put_async(const struct device *dev);

Releases a device. This API asynchronously puts the device to suspend state if not already in suspend
state if the usage count of this device reaches 0.

Device drivers can monitor this operation to finish calling pm_device_wait().

Suspend Device synchronously API

int pm_device_put(const struct device *dev);

Marks the device as being released. It will put the device to suspended state if is is in active state based
on the device usage count. This call is blocked until the device PM state is changed to resume. The API
returns 0 on success. This call is blocked until the device is suspended.

7.22.6 Power Management Configuration Flags

The Power Management features can be individually enabled and disabled using the following configu-
ration flags.

:kconfig:`CONFIG_PM`

This flag enables the power management subsystem.

:kconfig:`CONFIG_PM_DEVICE`

This flag is enabled if the SOC interface and the devices support device power management.

:kconfig:`CONFIG_PM_DEVICE_RUNTIME`

This flag enables the Runtime Power Management.

7.22.7 API Reference

Power Management Hook Interface

Warning: doxygengroup: Cannot find group “power_management_hook_interface” in doxygen xml
output for project “Zephyr” from directory: /build/doc/_build/latex/doxygen/xml

System Power Management APIs

group system_power_management_api

System Power Management API.

1298 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Defines

pm_notifier_register(notifier)

pm_notifier_unregister(notifier)

pm_constraint_set(pm_state)

pm_constraint_release(pm_state)

pm_constraint_get(pm_state)

pm_power_state_set(info)

pm_power_state_exit_post_ops(info)

Variables

void (*state_entry)(enum pm_state state)

Application defined function for doing any target specific operations for power state entry.

void (*state_exit)(enum pm_state state)

Application defined function for doing any target specific operations for power state exit.

struct pm_notifier

#include <pm.h> Power management notifier struct

This struct contains callbacks that are called when the target enters and exits power states.

As currently implemented the entry callback is invoked when transitioning from
PM_STATE_ACTIVE to another state, and the exit callback is invoked when transitioning from
a non-active state to PM_STATE_ACTIVE. This behavior may change in the future.

Note: These callbacks can be called from the ISR of the event that caused the kernel exit
from idling.

Note: It is not allowed to call pm_notifier_unregister or pm_notifier_register from these call-
backs because they are called with the spin locked in those functions.

Public Members

void (*state_entry)(enum pm_state state)

Application defined function for doing any target specific operations for power state entry.

void (*state_exit)(enum pm_state state)

Application defined function for doing any target specific operations for power state exit.

Device Power Management APIs

group device_power_management_api

Device Power Management API.

7.22. Power Management 1299

Zephyr Project Documentation, Release 2.7.0-rc2

Defines

device_pm_control_nop

Alias for legacy use of device_pm_control_nop

Typedefs

typedef int (*pm_device_control_callback_t)(const struct device *dev, enum pm_device_action
action)

Device power management control function callback.

Param dev Device instance.

Param action Requested action.

Retval 0 If successful.

Retval -ENOTSUP If the requested action is not supported.

Retval Errno Other negative errno on failure.

Enums

enum pm_device_state

Device power states.

Values:

enumerator PM_DEVICE_STATE_ACTIVE

Device is in active or regular state.

enumerator PM_DEVICE_STATE_LOW_POWER

Device is in low power state.

Note: Device context is preserved.

enumerator PM_DEVICE_STATE_SUSPENDED

Device is suspended.

Note: Device context may be lost.

enumerator PM_DEVICE_STATE_OFF

Device is turned off (power removed).

Note: Device context is lost.

enum pm_device_flag

Device PM flags.

Values:

1300 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator PM_DEVICE_FLAG_BUSY

Indicate if the device is busy or not.

enumerator PM_DEVICE_FLAGS_WS_CAPABLE

Indicates whether or not the device is capable of waking the system up.

enumerator PM_DEVICE_FLAGS_WS_ENABLED

Indicates if the device is being used as wakeup source.

enumerator PM_DEVICE_FLAG_TRANSITIONING

Indicates that the device is changing its state

enumerator PM_DEVICE_FLAG_COUNT

Number of flags (internal use only).

enum pm_device_action

Device PM actions.

Values:

enumerator PM_DEVICE_ACTION_SUSPEND

Suspend.

enumerator PM_DEVICE_ACTION_RESUME

Resume.

enumerator PM_DEVICE_ACTION_TURN_OFF

Turn off.

enumerator PM_DEVICE_ACTION_FORCE_SUSPEND

Force suspend.

enumerator PM_DEVICE_ACTION_LOW_POWER

Low power.

Functions

const char *pm_device_state_str(enum pm_device_state state)

Get name of device PM state.

Parameters

• state – State id which name should be returned

int pm_device_state_set(const struct device *dev, enum pm_device_state state)

Set the power state of a device.

This function calls the device PM control callback so that the device does the necessary oper-
ations to put the device into the given state.

Note: Some devices may not support all device power states.

7.22. Power Management 1301

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• dev – Device instance.

• state – Device power state to be set.

Return values

• 0 – If successful.

• -ENOTSUP – If requested state is not supported.

• -EALREADY – If device is already at the requested state.

• -EBUSY – If device is changing its state.

• Errno – Other negative errno on failure.

int pm_device_state_get(const struct device *dev, enum pm_device_state *state)

Obtain the power state of a device.

Parameters

• dev – Device instance.

• state – Pointer where device power state will be stored.

Return values

• 0 – If successful.

• -ENOSYS – If device does not implement power management.

static inline void pm_device_busy_set(const struct device *dev)

static inline void pm_device_busy_clear(const struct device *dev)

static inline bool pm_device_is_any_busy(void)

static inline bool pm_device_is_busy(const struct device *dev)

static inline void device_busy_set(const struct device *dev)

static inline void device_busy_clear(const struct device *dev)

static inline int device_any_busy_check(void)

static inline int device_busy_check(const struct device *dev)

bool pm_device_wakeup_enable(struct device *dev, bool enable)

Enable a power management wakeup source.

Enable a wakeup source. This will keep the current device active when the system is sus-
pended, allowing it to be used to wake up the system.

Parameters

• dev – device object to enable.

• enable – true to enable or false to disable

Return values

• true – if the wakeup source was successfully enabled.

• false – if the wakeup source was not successfully enabled.

1302 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

bool pm_device_wakeup_is_enabled(const struct device *dev)

Check if a power management wakeup source is enabled.

Checks if a wake up source is enabled.

Parameters

• dev – device object to check.

Return values

• true – if the wakeup source is enabled.

• false – if the wakeup source is not enabled.

bool pm_device_wakeup_is_capable(const struct device *dev)

Check if a device is wake up capable.

Parameters

• dev – device object to check.

Return values

• true – if the device is wake up capable.

• false – if the device is not wake up capable.

struct pm_device

#include <device.h> Device PM info.

Public Members

const struct device *dev

Pointer to the device

struct k_mutex lock

Lock to synchronize the get/put operations

bool enable

Device pm enable flag

uint32_t usage

Device usage count

enum pm_device_state state

Device power state

struct k_work_delayable work

Work object for asynchronous calls

struct k_condvar condvar

Event conditional var to listen to the sync request events

7.22. Power Management 1303

Zephyr Project Documentation, Release 2.7.0-rc2

7.23 Random Number Generation

The random API subsystem provides random number generation APIs in both cryptographically and non-
cryptographically secure instances. Which random API to use is based on the cryptographic requirements
of the random number. The non-cryptographic APIs will return random values much faster if non-
cryptographic values are needed.

The cryptographically secure random functions shall be compliant to the FIPS 140-2 [?] recommended
algorithms. Hardware based random-number generators (RNG) can be used on platforms with appro-
priate hardware support. Platforms without hardware RNG support shall use the CTR-DRBG algorithm.
The algorithm can be provided by TinyCrypt or mbedTLS depending on your application performance
and resource requirements.

Note: The CTR-DRBG generator needs an entropy source to establish and maintain the
cryptographic security of the PRNG.

7.23.1 Kconfig Options

These options can be found in the following path subsys/random/Kconfig.

:kconfig:`CONFIG_TEST_RANDOM_GENERATOR` For testing, this option permits random number
APIs to return values that are not truly random.

The random number generator choice group allows selection of the RNG source function for the system
via the RNG_GENERATOR_CHOICE choice group. An override of the default value can be specified in
the SOC or board .defconfig file by using:

choice RNG_GENERATOR_CHOICE
default XOSHIRO_RANDOM_GENERATOR

endchoice

The random number generators available include:

:kconfig:`CONFIG_TIMER_RANDOM_GENERATOR` enables number generator based on system timer
clock. This number generator is not random and used for testing only.

:kconfig:`CONFIG_ENTROPY_DEVICE_RANDOM_GENERATOR` enables a random number generator
that uses the enabled hardware entropy gathering driver to generate random numbers.

:kconfig:`CONFIG_XOSHIRO_RANDOM_GENERATOR` enables the Xoshiro128++ pseudo-random
number generator, that uses the entropy driver as a seed source.

The CSPRNG_GENERATOR_CHOICE choice group provides selection of the cryptographically secure ran-
dom number generator source function. An override of the default value can be specified in the SOC or
board .defconfig file by using:

choice CSPRNG_GENERATOR_CHOICE
default CTR_DRBG_CSPRNG_GENERATOR

endchoice

The cryptographically secure random number generators available include:

:kconfig:`CONFIG_HARDWARE_DEVICE_CS_GENERATOR` enables a cryptographically secure ran-
dom number generator using the hardware random generator driver

:kconfig:`CONFIG_CTR_DRBG_CSPRNG_GENERATOR` enables the CTR-DRBG pseudo-random num-
ber generator. The CTR-DRBG is a FIPS140-2 recommended cryptographically secure random
number generator.

Personalization data can be provided in addition to the entropy source to make the initialization of the
CTR-DRBG as unique as possible.

1304 Chapter 7. API Reference

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://01.org/tinycrypt
https://tls.mbed.org/ctr-drbg-source-code
https://github.com/zephyrproject-rtos/zephyr/blob/main/subsys/random/Kconfig

Zephyr Project Documentation, Release 2.7.0-rc2

:kconfig:`CONFIG_CS_CTR_DRBG_PERSONALIZATION` CTR-DRBG Initialization Personalization
string

7.23.2 API Reference

group random_api

Random Function APIs.

Functions

uint32_t sys_rand32_get(void)

Return a 32-bit random value that should pass general randomness tests.

Note: The random value returned is not a cryptographically secure random number value.

Returns 32-bit random value.

void sys_rand_get(void *dst, size_t len)

Fill the destination buffer with random data values that should pass general randomness tests.

Note: The random values returned are not considered cryptographically secure random
number values.

Parameters

• dst – [out] destination buffer to fill with random data.

• len – size of the destination buffer.

int sys_csrand_get(void *dst, size_t len)

Fill the destination buffer with cryptographically secure random data values.

Note: If the random values requested do not need to be cryptographically secure then use
sys_rand_get() instead.

Parameters

• dst – [out] destination buffer to fill.

• len – size of the destination buffer.

Returns 0 if success, -EIO if entropy reseed error

7.24 Resource Management

There are various situations where it’s necessary to coordinate resource use at runtime among multiple
clients. These include power rails, clocks, other peripherals, and binary device power management. The
complexity of properly managing multiple consumers of a device in a multithreaded system, especially
when transitions may be asynchronous, suggests that a shared implementation is desirable.

7.24. Resource Management 1305

Zephyr Project Documentation, Release 2.7.0-rc2

Zephyr provides managers for several coordination policies. These managers are embedded into services
that use them for specific functions.

• On-Off Manager

7.24.1 On-Off Manager

An on-off manager supports an arbitrary number of clients of a service which has a binary state. Example
applications are power rails, clocks, and binary device power management.

The manager has the following properties:

• The stable states are off, on, and error. The service always begins in the off state. The service may
also be in a transition to a given state.

• The core operations are request (add a dependency) and release (remove a dependency). Sup-
porting operations are reset (to clear an error state) and cancel (to reclaim client data from an
in-progress transition). The service manages the state based on calls to functions that initiate these
operations.

• The service transitions from off to on when first client request is received.

• The service transitions from on to off when last client release is received.

• Each service configuration provides functions that implement the transition from off to on, from
on to off, and optionally from an error state to off. Transitions must be invokable from both thread
and interrupt context.

• The request and reset operations are asynchronous using Asynchronous Notification APIs. Both
operations may be cancelled, but cancellation has no effect on the in-progress transition.

• Requests to turn on may be queued while a transition to off is in progress: when the service has
turned off successfully it will be immediately turned on again (where context allows) and waiting
clients notified when the start completes.

Requests are reference counted, but not tracked. That means clients are responsible for recording
whether their requests were accepted, and for initiating a release only if they have previously successfully
completed a request. Improper use of the API can cause an active client to be shut out, and the manager
does not maintain a record of specific clients that have been granted a request.

Failures in executing a transition are recorded and inhibit further requests or releases until the manager
is reset. Pending requests are notified (and cancelled) when errors are discovered.

Transition operation completion notifications are provided through Asynchronous Notification APIs.

Clients and other components interested in tracking all service state changes, including when a service
begins turning off or enters an error state, can be informed of state transitions by registering a monitor
with onoff_monitor_register(). Notification of changes are provided before issuing completion notifica-
tions associated with the new state.

Note: A generic API may be implemented by multiple drivers where the common case is asynchronous.
The on-off client structure may be an appropriate solution for the generic API. Where drivers that can
guarantee synchronous context-independent transitions a driver may use onoff_sync_service and its
supporting API rather than onoff_manager , with only a small reduction in functionality (primarily no
support for the monitor API).

group resource_mgmt_onoff_apis

1306 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Defines

ONOFF_FLAG_ERROR

Flag indicating an error state.

Error states are cleared using onoff_reset().

ONOFF_FLAG_ONOFF

ONOFF_FLAG_TRANSITION

ONOFF_STATE_MASK

Mask used to isolate bits defining the service state.

Mask a value with this then test for ONOFF_FLAG_ERROR to determine whether the ma-
chine has an unfixed error, or compare against ONOFF_STATE_ON, ONOFF_STATE_OFF,
ONOFF_STATE_TO_ON, ONOFF_STATE_TO_OFF, or ONOFF_STATE_RESETTING.

ONOFF_STATE_OFF

Value exposed by ONOFF_STATE_MASK when service is off.

ONOFF_STATE_ON

Value exposed by ONOFF_STATE_MASK when service is on.

ONOFF_STATE_ERROR

Value exposed by ONOFF_STATE_MASK when the service is in an error state (and not in the
process of resetting its state).

ONOFF_STATE_TO_ON

Value exposed by ONOFF_STATE_MASK when service is transitioning to on.

ONOFF_STATE_TO_OFF

Value exposed by ONOFF_STATE_MASK when service is transitioning to off.

ONOFF_STATE_RESETTING

Value exposed by ONOFF_STATE_MASK when service is in the process of resetting.

ONOFF_TRANSITIONS_INITIALIZER(_start, _stop, _reset)

Initializer for a onoff_transitions object.

Parameters

• _start – a function used to transition from off to on state.

• _stop – a function used to transition from on to off state.

• _reset – a function used to clear errors and force the service to an off state.
Can be null.

ONOFF_MANAGER_INITIALIZER(_transitions)

ONOFF_CLIENT_EXTENSION_POS

Identify region of sys_notify flags available for containing services.

Bits of the flags field of the sys_notify structure contained within the queued_operation struc-
ture at and above this position may be used by extensions to the onoff_client structure.

7.24. Resource Management 1307

Zephyr Project Documentation, Release 2.7.0-rc2

These bits are intended for use by containing service implementations to record client-specific
information and are subject to other conditions of use specified on the sys_notify API.

Typedefs

typedef void (*onoff_notify_fn)(struct onoff_manager *mgr, int res)

Signature used to notify an on-off manager that a transition has completed.

Functions of this type are passed to service-specific transition functions to be used to report
the completion of the operation. The functions may be invoked from any context.

Param mgr the manager for which transition was requested.

Param res the result of the transition. This shall be non-negative on success, or a
negative error code. If an error is indicated the service shall enter an error state.

typedef void (*onoff_transition_fn)(struct onoff_manager *mgr, onoff_notify_fn notify)

Signature used by service implementations to effect a transition.

Service definitions use two required function pointers of this type to be notified that a transi-
tion is required, and a third optional one to reset the service when it is in an error state.

The start function will be called only from the off state.

The stop function will be called only from the on state.

The reset function (where supported) will be called only when onoff_has_error() returns true.

Note: All transitions functions must be isr-ok.

Param mgr the manager for which transition was requested.

Param notify the function to be invoked when the transition has completed. If the
transition is synchronous, notify shall be invoked by the implementation before
the transition function returns. Otherwise the implementation shall capture this
parameter and invoke it when the transition completes.

typedef void (*onoff_client_callback)(struct onoff_manager *mgr, struct onoff_client *cli,
uint32_t state, int res)

Signature used to notify an on-off service client of the completion of an operation.

These functions may be invoked from any context including pre-kernel, ISR, or cooperative or
pre-emptible threads. Compatible functions must be isr-ok and not sleep.

Param mgr the manager for which the operation was initiated. This may be null if
the on-off service uses synchronous transitions.

Param cli the client structure passed to the function that initiated the operation.

Param state the state of the machine at the time of completion, restricted by
ONOFF_STATE_MASK. ONOFF_FLAG_ERROR must be checked independently of
whether res is negative as a machine error may indicate that all future operations
except onoff_reset() will fail.

Param res the result of the operation. Expected values are service-specific, but the
value shall be non-negative if the operation succeeded, and negative if the oper-
ation failed. If res is negative ONOFF_FLAG_ERROR will be set in state, but if res
is non-negative ONOFF_FLAG_ERROR may still be set in state.

1308 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

typedef void (*onoff_monitor_callback)(struct onoff_manager *mgr, struct onoff_monitor *mon,
uint32_t state, int res)

Signature used to notify a monitor of an onoff service of errors or completion of a state
transition.

This is similar to onoff_client_callback but provides information about all transitions, not just
ones associated with a specific client. Monitor callbacks are invoked before any completion
notifications associated with the state change are made.

These functions may be invoked from any context including pre-kernel, ISR, or cooperative or
pre-emptible threads. Compatible functions must be isr-ok and not sleep.

The callback is permitted to unregister itself from the manager, but must not register or un-
register any other monitors.

Param mgr the manager for which a transition has completed.

Param mon the monitor instance through which this notification arrived.

Param state the state of the machine at the time of completion, restricted by
ONOFF_STATE_MASK. All valid states may be observed.

Param res the result of the operation. Expected values are service- and state-specific,
but the value shall be non-negative if the operation succeeded, and negative if the
operation failed.

Functions

int onoff_manager_init(struct onoff_manager *mgr, const struct onoff_transitions *transitions)

Initialize an on-off service to off state.

This function must be invoked exactly once per service instance, by the infrastructure that
provides the service, and before any other on-off service API is invoked on the service.

This function should never be invoked by clients of an on-off service.

Parameters

• mgr – the manager definition object to be initialized.

• transitions – pointer to a structure providing transition functions. The refer-
enced object must persist as long as the manager can be referenced.

Return values

• 0 – on success

• -EINVAL – if start, stop, or flags are invalid

static inline bool onoff_has_error(const struct onoff_manager *mgr)

Test whether an on-off service has recorded an error.

This function can be used to determine whether the service has recorded an error. Errors may
be cleared by invoking onoff_reset().

This is an unlocked convenience function suitable for use only when it is known that no other
process might invoke an operation that transitions the service between an error and non-error
state.

Returns true if and only if the service has an uncleared error.

int onoff_request(struct onoff_manager *mgr, struct onoff_client *cli)

Request a reservation to use an on-off service.

The return value indicates the success or failure of an attempt to initiate an operation to
request the resource be made available. If initiation of the operation succeeds the result of

7.24. Resource Management 1309

Zephyr Project Documentation, Release 2.7.0-rc2

the request operation is provided through the configured client notification method, possibly
before this call returns.

Note that the call to this function may succeed in a case where the actual request fails. Always
check the operation completion result.

Parameters

• mgr – the manager that will be used.

• cli – a non-null pointer to client state providing instructions on synchronous
expectations and how to notify the client when the request completes. Behavior
is undefined if client passes a pointer object associated with an incomplete
service operation.

Return values

• non-negative – the observed state of the machine at the time the request was
processed, if successful.

• -EIO – if service has recorded an an error.

• -EINVAL – if the parameters are invalid.

• -EAGAIN – if the reference count would overflow.

int onoff_release(struct onoff_manager *mgr)

Release a reserved use of an on-off service.

This synchronously releases the caller’s previous request. If the last request is released
the manager will initiate a transition to off, which can be observed by registering an
onoff_monitor.

Note: Behavior is undefined if this is not paired with a preceding onoff_request() call that
completed successfully.

Parameters

• mgr – the manager for which a request was successful.

Return values

• non-negative – the observed state (ONOFF_STATE_ON) of the machine at the
time of the release, if the release succeeds.

• -EIO – if service has recorded an an error.

• -ENOTSUP – if the machine is not in a state that permits release.

int onoff_cancel(struct onoff_manager *mgr, struct onoff_client *cli)

Attempt to cancel an in-progress client operation.

It may be that a client has initiated an operation but needs to shut down before the operation
has completed. For example, when a request was made and the need is no longer present.

Cancelling is supported only for onoff_request() and onoff_reset() operations, and is a syn-
chronous operation. Be aware that any transition that was initiated on behalf of the client
will continue to progress to completion: it is only notification of transition completion that
may be eliminated. If there are no active requests when a transition to on completes the
manager will initiate a transition to off.

Client notification does not occur for cancelled operations.

Parameters

• mgr – the manager for which an operation is to be cancelled.

1310 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• cli – a pointer to the same client state that was provided when the operation
to be cancelled was issued.

Return values

• non-negative – the observed state of the machine at the time of the cancella-
tion, if the cancellation succeeds. On successful cancellation ownership of *cli
reverts to the client.

• -EINVAL – if the parameters are invalid.

• -EALREADY – if cli was not a record of an uncompleted notification at the time
the cancellation was processed. This likely indicates that the operation and
client notification had already completed.

static inline int onoff_cancel_or_release(struct onoff_manager *mgr, struct onoff_client *cli)

Helper function to safely cancel a request.

Some applications may want to issue requests on an asynchronous event (such as connection
to a USB bus) and to release on a paired event (such as loss of connection to a USB bus).
Applications cannot precisely determine that an in-progress request is still pending without
using onoff_monitor and carefully avoiding race conditions.

This function is a helper that attempts to cancel the operation and issues a release if cancel-
lation fails because the request was completed. This synchronously ensures that ownership of
the client data reverts to the client so is available for a future request.

Parameters

• mgr – the manager for which an operation is to be cancelled.

• cli – a pointer to the same client state that was provided when onoff_request()
was invoked. Behavior is undefined if this is a pointer to client data associated
with an onoff_reset() request.

Return values

• ONOFF_STATE_TO_ON – if the cancellation occurred before the transition com-
pleted.

• ONOFF_STATE_ON – if the cancellation occurred after the transition completed.

• -EINVAL – if the parameters are invalid.

• negative – other errors produced by onoff_release().

int onoff_reset(struct onoff_manager *mgr, struct onoff_client *cli)

Clear errors on an on-off service and reset it to its off state.

A service can only be reset when it is in an error state as indicated by onoff_has_error().

The return value indicates the success or failure of an attempt to initiate an operation to reset
the resource. If initiation of the operation succeeds the result of the reset operation itself is
provided through the configured client notification method, possibly before this call returns.
Multiple clients may request a reset; all are notified when it is complete.

Note that the call to this function may succeed in a case where the actual reset fails. Always
check the operation completion result.

Note: Due to the conditions on state transition all incomplete asynchronous operations will
have been informed of the error when it occurred. There need be no concern about dangling
requests left after a reset completes.

Parameters

• mgr – the manager to be reset.

7.24. Resource Management 1311

Zephyr Project Documentation, Release 2.7.0-rc2

• cli – pointer to client state, including instructions on how to notify the client
when reset completes. Behavior is undefined if cli references an object associ-
ated with an incomplete service operation.

Return values

• non-negative – the observed state of the machine at the time of the reset, if
the reset succeeds.

• -ENOTSUP – if reset is not supported by the service.

• -EINVAL – if the parameters are invalid.

• -EALREADY – if the service does not have a recorded error.

int onoff_monitor_register(struct onoff_manager *mgr, struct onoff_monitor *mon)
Add a monitor of state changes for a manager.

Parameters

• mgr – the manager for which a state changes are to be monitored.

• mon – a linkable node providing a non-null callback to be invoked on state
changes.

Returns non-negative on successful addition, or a negative error code.

int onoff_monitor_unregister(struct onoff_manager *mgr, struct onoff_monitor *mon)
Remove a monitor of state changes from a manager.

Parameters

• mgr – the manager for which a state changes are to be monitored.

• mon – a linkable node providing the callback to be invoked on state changes.

Returns non-negative on successful removal, or a negative error code.

int onoff_sync_lock(struct onoff_sync_service *srv, k_spinlock_key_t *keyp)
Lock a synchronous onoff service and provide its state.

Note: If an error state is returned it is the caller’s responsibility to decide whether to preserve
it (finalize with the same error state) or clear the error (finalize with a non-error result).

Parameters

• srv – pointer to the synchronous service state.

• keyp – pointer to where the lock key should be stored

Returns negative if the service is in an error state, otherwise the number of active
requests at the time the lock was taken. The lock is held on return regardless of
whether a negative state is returned.

int onoff_sync_finalize(struct onoff_sync_service *srv, k_spinlock_key_t key, struct onoff_client
*cli, int res, bool on)

Process the completion of a transition in a synchronous service and release lock.

This function updates the service state on the res and on parameters then releases the lock.
If cli is not null it finalizes the client notification using res.

If the service was in an error state when locked, and res is non-negative when finalized, the
count is reset to zero before completing finalization.

Parameters

• srv – pointer to the synchronous service state

1312 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• key – the key returned by the preceding invocation of onoff_sync_lock().

• cli – pointer to the onoff client through which completion information is re-
turned. If a null pointer is passed only the state of the service is updated. For
compatibility with the behavior of callbacks used with the manager API cli
must be null when on is false (the manager does not support callbacks when
turning off devices).

• res – the result of the transition. A negative value places the service into an
error state. A non-negative value increments or decrements the reference count
as specified by on.

• on – Only when res is non-negative, the service reference count will be incre-
mented ifon is true, and decremented if on is false.

Returns negative if the service is left or put into an error state, otherwise the number
of active requests at the time the lock was released.

struct onoff_transitions

#include <onoff.h> On-off service transition functions.

struct onoff_manager

#include <onoff.h> State associated with an on-off manager.

No fields in this structure are intended for use by service providers or clients. The state is
to be initialized once, using onoff_manager_init(), when the service provider is initialized. In
case of error it may be reset through the onoff_reset() API.

struct onoff_client

#include <onoff.h> State associated with a client of an on-off service.

Objects of this type are allocated by a client, which is responsible for zero-initializing the node
field and invoking the approprite sys_notify init function to configure notification.

Control of the object content transfers to the service provider when a pointer to the object
is passed to any on-off manager function. While the service provider controls the object the
client must not change any object fields. Control reverts to the client concurrent with release
of the owned sys_notify structure, or when indicated by an onoff_cancel() return value.

After control has reverted to the client the notify field must be reinitialized for the next oper-
ation.

Public Members

struct sys_notify notify

Notification configuration.

struct onoff_monitor

#include <onoff.h> Registration state for notifications of onoff service transitions.

Any given onoff_monitor structure can be associated with at most one onoff_manager instance.

Public Members

onoff_monitor_callback callback

Callback to be invoked on state change.

This must not be null.

7.24. Resource Management 1313

Zephyr Project Documentation, Release 2.7.0-rc2

struct onoff_sync_service

#include <onoff.h> State used when a driver uses the on-off service API for synchronous
operations.

This is useful when a subsystem API uses the on-off API to support asynchronous opera-
tions but the transitions required by a particular driver are isr-ok and not sleep. It serves
as a substitute for onoff_manager, with locking and persisted state updates supported by
onoff_sync_lock() and onoff_sync_finalize().

7.25 Shell

• Overview

– Connecting to Segger RTT via TCP (on macOS, for example)

• Commands

– Creating commands

– Dictionary commands

– Commands execution

– Built-in commands

• Tab Feature

• History Feature

• Wildcards Feature

• Meta Keys Feature

• Getopt Feature

• Obscured Input Feature

• Shell Logger Backend Feature

• Usage

• API Reference

7.25.1 Overview

This module allows you to create and handle a shell with a user-defined command set. You can use it in
examples where more than simple button or LED user interaction is required. This module is a Unix-like
shell with these features:

• Support for multiple instances.

• Advanced cooperation with the Logging.

• Support for static and dynamic commands.

• Support for dictionary commands.

• Smart command completion with the Tab key.

• Built-in commands: clear, shell, colors, echo, history and resize.

• Viewing recently executed commands using keys: ↑ ↓ or meta keys.

• Text edition using keys: ←, →, Backspace, Delete, End, Home, Insert.

1314 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• Support for ANSI escape codes: VT100 and ESC[n~ for cursor control and color printing.

• Support for editing multiline commands.

• Built-in handler to display help for the commands.

• Support for wildcards: * and ?.

• Support for meta keys.

• Support for getopt.

• Kconfig configuration to optimize memory usage.

Note: Some of these features have a significant impact on RAM and flash usage, but many can be
disabled when not needed. To default to options which favor reduced RAM and flash requirements
instead of features, you should enable :kconfig:`CONFIG_SHELL_MINIMAL` and selectively enable
just the features you want.

The module can be connected to any transport for command input and output. At this point, the follow-
ing transport layers are implemented:

• Segger RTT

• SMP

• Telnet

• UART

• USB

• DUMMY - not a physical transport layer.

Connecting to Segger RTT via TCP (on macOS, for example)

On macOS JLinkRTTClient won’t let you enter input. Instead, please use following procedure:

• Open up a first Terminal window and enter:

JLinkRTTLogger -Device NRF52840_XXAA -RTTChannel 1 -if SWD -Speed 4000 ~/rtt.log

(change device if required)

• Open up a second Terminal window and enter:

nc localhost 19021

• Now you should have a network connection to RTT that will let you enter input to the shell.

7.25.2 Commands

Shell commands are organized in a tree structure and grouped into the following types:

• Root command (level 0): Gathered and alphabetically sorted in a dedicated memory section.

• Static subcommand (level > 0): Number and syntax must be known during compile time. Created
in the software module.

• Dynamic subcommand (level > 0): Number and syntax does not need to be known during compile
time. Created in the software module.

7.25. Shell 1315

Zephyr Project Documentation, Release 2.7.0-rc2

Creating commands

Use the following macros for adding shell commands:

• SHELL_CMD_REGISTER - Create root command. All root commands must have different name.

• SHELL_COND_CMD_REGISTER - Conditionally (if compile time flag is set) create root command. All
root commands must have different name.

• SHELL_CMD_ARG_REGISTER - Create root command with arguments. All root commands must have
different name.

• SHELL_COND_CMD_ARG_REGISTER - Conditionally (if compile time flag is set) create root command
with arguments. All root commands must have different name.

• SHELL_CMD - Initialize a command.

• SHELL_COND_CMD - Initialize a command if compile time flag is set.

• SHELL_EXPR_CMD - Initialize a command if compile time expression is non-zero.

• SHELL_CMD_ARG - Initialize a command with arguments.

• SHELL_COND_CMD_ARG - Initialize a command with arguments if compile time flag is set.

• SHELL_EXPR_CMD_ARG - Initialize a command with arguments if compile time expression is non-
zero.

• SHELL_STATIC_SUBCMD_SET_CREATE - Create a static subcommands array.

• SHELL_SUBCMD_DICT_SET_CREATE - Create a dictionary subcommands array.

• SHELL_DYNAMIC_CMD_CREATE - Create a dynamic subcommands array.

Commands can be created in any file in the system that includes include/shell/shell.h. All created
commands are available for all shell instances.

Static commands Example code demonstrating how to create a root command with static subcom-
mands.

/* Creating subcommands (level 1 command) array for command "demo". */
SHELL_STATIC_SUBCMD_SET_CREATE(sub_demo,

SHELL_CMD(params, NULL, "Print params command.",
cmd_demo_params),

SHELL_CMD(ping, NULL, "Ping command.", cmd_demo_ping),
SHELL_SUBCMD_SET_END

);
/* Creating root (level 0) command "demo" */
SHELL_CMD_REGISTER(demo, &sub_demo, "Demo commands", NULL);

Example implementation can be found under following location: sam-
ples/subsys/shell/shell_module/src/main.c.

1316 Chapter 7. API Reference

https://github.com/zephyrproject-rtos/zephyr/blob/main/include/shell/shell.h
https://github.com/zephyrproject-rtos/zephyr/blob/main/samples/subsys/shell/shell_module/src/main.c
https://github.com/zephyrproject-rtos/zephyr/blob/main/samples/subsys/shell/shell_module/src/main.c

Zephyr Project Documentation, Release 2.7.0-rc2

Dictionary commands

This is a special kind of static commands. Dictionary commands can be used every time you want to use
a pair: (string <-> corresponding data) in a command handler. The string is usually a verbal description
of a given data. The idea is to use the string as a command syntax that can be prompted by the shell and
corresponding data can be used to process the command.

Let’s use an example. Suppose you created a command to set an ADC gain. It is a perfect place where a
dictionary can be used. The dictionary would be a set of pairs: (string: gain_value, int: value) where int
value could be used with the ADC driver API.

Abstract code for this task would look like this:

static int gain_cmd_handler(const struct shell *shell,
size_t argc, char **argv, void *data)

{
int gain;

/* data is a value corresponding to called command syntax */
gain = (int)data;
adc_set_gain(gain);

shell_print(shell, "ADC gain set to: %s\n"
"Value send to ADC driver: %d",
argv[0],
gain);

return 0;
}

SHELL_SUBCMD_DICT_SET_CREATE(sub_gain, gain_cmd_handler,
(gain_1, 1), (gain_2, 2), (gain_1_2, 3), (gain_1_4, 4)

);
SHELL_CMD_REGISTER(gain, &sub_gain, "Set ADC gain", NULL);

This is how it would look like in the shell:

Dynamic commands Example code demonstrating how to create a root command with static and
dynamic subcommands. At the beginning dynamic command list is empty. New commands can be added
by typing:

7.25. Shell 1317

Zephyr Project Documentation, Release 2.7.0-rc2

dynamic add <new_dynamic_command>

Newly added commands can be prompted or autocompleted with the Tab key.

/* Buffer for 10 dynamic commands */
static char dynamic_cmd_buffer[10][50];

/* commands counter */
static uint8_t dynamic_cmd_cnt;

/* Function returning command dynamically created
* in dynamic_cmd_buffer.
*/

static void dynamic_cmd_get(size_t idx,
struct shell_static_entry *entry)

{
if (idx < dynamic_cmd_cnt) {

entry->syntax = dynamic_cmd_buffer[idx];
entry->handler = NULL;
entry->subcmd = NULL;
entry->help = "Show dynamic command name.";

} else {
/* if there are no more dynamic commands available
* syntax must be set to NULL.
*/

entry->syntax = NULL;
}

}

SHELL_DYNAMIC_CMD_CREATE(m_sub_dynamic_set, dynamic_cmd_get);
SHELL_STATIC_SUBCMD_SET_CREATE(m_sub_dynamic,

SHELL_CMD(add, NULL,"Add new command to dynamic_cmd_buffer and"
" sort them alphabetically.",
cmd_dynamic_add),

SHELL_CMD(execute, &m_sub_dynamic_set,
"Execute a command.", cmd_dynamic_execute),

SHELL_CMD(remove, &m_sub_dynamic_set,
"Remove a command from dynamic_cmd_buffer.",
cmd_dynamic_remove),

SHELL_CMD(show, NULL,
"Show all commands in dynamic_cmd_buffer.",
cmd_dynamic_show),

(continues on next page)

1318 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

SHELL_SUBCMD_SET_END
);
SHELL_CMD_REGISTER(dynamic, &m_sub_dynamic,

"Demonstrate dynamic command usage.", cmd_dynamic);

Example implementation can be found under following location: sam-
ples/subsys/shell/shell_module/src/dynamic_cmd.c.

Commands execution

Each command or subcommand may have a handler. The shell executes the handler that is found deepest
in the command tree and further subcommands (without a handler) are passed as arguments. Characters
within parentheses are treated as one argument. If shell wont find a handler it will display an error
message.

Commands can be also executed from a user application using any active backend and a function
shell_execute_cmd() , as shown in this example:

void main(void)
{

/* Below code will execute "clear" command on a DUMMY backend */
shell_execute_cmd(NULL, "clear");

/* Below code will execute "shell colors off" command on
* an UART backend
*/

shell_execute_cmd(shell_backend_uart_get_ptr(),
"shell colors off");

}

Enable the DUMMY backend by setting the Kconfig :kconfig:`CONFIG_SHELL_BACKEND_DUMMY`
option.

Command handler Simple command handler implementation:

static int cmd_handler(const struct shell *shell, size_t argc,
char **argv)

{
ARG_UNUSED(argc);
ARG_UNUSED(argv);

shell_fprintf(shell, SHELL_INFO, "Print info message\n");

shell_print(shell, "Print simple text.");

shell_warn(shell, "Print warning text.");

shell_error(shell, "Print error text.");

return 0;
}

Function shell_fprintf() or the shell print macros: shell_print , shell_info , shell_warn and
shell_error can be used from the command handler or from threads, but not from an interrupt context.
Instead, interrupt handlers should use Logging for printing.

7.25. Shell 1319

https://github.com/zephyrproject-rtos/zephyr/blob/main/samples/subsys/shell/shell_module/src/dynamic_cmd.c
https://github.com/zephyrproject-rtos/zephyr/blob/main/samples/subsys/shell/shell_module/src/dynamic_cmd.c

Zephyr Project Documentation, Release 2.7.0-rc2

Command help Every user-defined command or subcommand can have its own help description. The
help for commands and subcommands can be created with respective macros: SHELL_CMD_REGISTER ,
SHELL_CMD_ARG_REGISTER , SHELL_CMD , and SHELL_CMD_ARG .

Shell prints this help message when you call a command or subcommand with -h or --help parameter.

Parent commands In the subcommand handler, you can access both the parameters passed to com-
mands or the parent commands, depending on how you index argv.

• When indexing argv with positive numbers, you can access the parameters.

• When indexing argv with negative numbers, you can access the parent commands.

• The subcommand to which the handler belongs has the argv index of 0.

static int cmd_handler(const struct shell *shell, size_t argc,
char **argv)

{
ARG_UNUSED(argc);

/* If it is a subcommand handler parent command syntax
* can be found using argv[-1].
*/

shell_print(shell, "This command has a parent command: %s",
argv[-1]);

/* Print this command syntax */
shell_print(shell, "This command syntax is: %s", argv[0]);

/* Print first argument */
shell_print(shell, "%s", argv[1]);

return 0;
}

Built-in commands

These commands are activated by :kconfig:`CONFIG_SHELL_CMDS` set to y.

• clear - Clears the screen.

• history - Shows the recently entered commands.

• resize - Must be executed when terminal width is different than 80 characters or after each change
of terminal width. It ensures proper multiline text display and ←, →, End, Home keys handling.
Currently this command works only with UART flow control switched on. It can be also called with
a subcommand:

– default - Shell will send terminal width = 80 to the terminal and assume successful delivery.

These command needs extra activation: :kconfig:`CONFIG_SHELL_CMDS_RESIZE` set to y.

• select - It can be used to set new root command. Exit to main command tree is with alt+r. This
command needs extra activation: :kconfig:`CONFIG_SHELL_CMDS_SELECT` set to y.

• shell - Root command with useful shell-related subcommands like:

– echo - Toggles shell echo.

– colors - Toggles colored syntax. This might be helpful in case of Bluetooth shell to limit the
amount of transferred bytes.

– stats - Shows shell statistics.

1320 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

7.25.3 Tab Feature

The Tab button can be used to suggest commands or subcommands. This feature is enabled by :kcon-
fig:`CONFIG_SHELL_TAB` set to y. It can also be used for partial or complete auto-completion of
commands. This feature is activated by :kconfig:`CONFIG_SHELL_TAB_AUTOCOMPLETION` set to y.
When user starts writing a command and presses the Tab button then the shell will do one of 3 possible
things:

• Autocomplete the command.

• Prompts available commands and if possible partly completes the command.

• Will not do anything if there are no available or matching commands.

7.25.4 History Feature

This feature enables commands history in the shell. It is activated by: :kcon-
fig:`CONFIG_SHELL_HISTORY` set to y. History can be accessed using keys: ↑ ↓ or Ctrl + n
and Ctrl + p if meta keys are active. Number of commands that can be stored depends on size of
:kconfig:`CONFIG_SHELL_HISTORY_BUFFER` parameter.

7.25.5 Wildcards Feature

The shell module can handle wildcards. Wildcards are interpreted correctly when expanded command
and its subcommands do not have a handler. For example, if you want to set logging level to err for the
app and app_test modules you can execute the following command:

log enable err a*

7.25. Shell 1321

Zephyr Project Documentation, Release 2.7.0-rc2

This feature is activated by :kconfig:`CONFIG_SHELL_WILDCARD` set to y.

7.25.6 Meta Keys Feature

The shell module supports the following meta keys:

Table 7: Implemented meta keys
Meta keys Action
Ctrl + a Moves the cursor to the beginning of the line.
Ctrl + b Moves the cursor backward one character.
Ctrl + c Preserves the last command on the screen and starts a new command in a new

line.
Ctrl + d Deletes the character under the cursor.
Ctrl + e Moves the cursor to the end of the line.
Ctrl + f Moves the cursor forward one character.
Ctrl + k Deletes from the cursor to the end of the line.
Ctrl + l Clears the screen and leaves the currently typed command at the top of the

screen.
Ctrl + n Moves in history to next entry.
Ctrl + p Moves in history to previous entry.
Ctrl + u Clears the currently typed command.
Ctrl + w Removes the word or part of the word to the left of the cursor. Words separated

by period instead of space are treated as one word.
Alt + b Moves the cursor backward one word.
Alt + f Moves the cursor forward one word.

This feature is activated by :kconfig:`CONFIG_SHELL_METAKEYS` set to y.

7.25.7 Getopt Feature

Some shell users apart from subcommands might need to use options as well. the arguments string,
looking for supported options. Typically, this task is accomplished by the getopt function.

For this purpose shell supports the getopt library available in the FreeBSD project. I was modified so that
it can be used by all instances of the shell at the same time, hence its call requires one more parameter.

An example usage:

while ((char c = shell_getopt(shell, argc, argv, "abhc:")) != -1) {
/* some code */

}

This module is activated by :kconfig:`CONFIG_SHELL_GETOPT` set to y.

7.25.8 Obscured Input Feature

With the obscured input feature, the shell can be used for implementing a login prompt or other user in-
teraction whereby the characters the user types should not be revealed on screen, such as when entering
a password.

Once the obscured input has been accepted, it is normally desired to return the shell to normal operation.
Such runtime control is possible with the shell_obscure_set function.

An example of login and logout commands using this feature is lo-
cated in samples/subsys/shell/shell_module/src/main.c and the config file sam-
ples/subsys/shell/shell_module/prj_login.conf.

1322 Chapter 7. API Reference

https://github.com/zephyrproject-rtos/zephyr/blob/main/samples/subsys/shell/shell_module/src/main.c
https://github.com/zephyrproject-rtos/zephyr/blob/main/samples/subsys/shell/shell_module/prj_login.conf
https://github.com/zephyrproject-rtos/zephyr/blob/main/samples/subsys/shell/shell_module/prj_login.conf

Zephyr Project Documentation, Release 2.7.0-rc2

This feature is activated upon startup by :kconfig:`CONFIG_SHELL_START_OBSCURED` set to
y. With this set either way, the option can still be controlled later at runtime. :kcon-
fig:`CONFIG_SHELL_CMDS_SELECT` is useful to prevent entry of any other command be-
sides a login command, by means of the shell_set_root_cmd function. Likewise, :kcon-
fig:`CONFIG_SHELL_PROMPT_UART` allows you to set the prompt upon startup, but it can be changed
later with the shell_prompt_change function.

7.25.9 Shell Logger Backend Feature

Shell instance can act as the Logging backend. Shell ensures that log messages are correctly multiplexed
with shell output. Log messages from logger thread are enqueued and processed in the shell thread.
Logger thread will block for configurable amount of time if queue is full, blocking logger thread context
for that time. Oldest log message is removed from the queue after timeout and new message is enqueued.
Use the shell stats show command to retrieve number of log messages dropped by the shell instance.
Log queue size and timeout are SHELL_DEFINE arguments.

This feature is activated by: :kconfig:`CONFIG_SHELL_LOG_BACKEND` set to y.

Warning: Enqueuing timeout must be set carefully when multiple backends are used in the system.
The shell instance could have a slow transport or could block, for example, by a UART with hardware
flow control. If timeout is set too high, the logger thread could be blocked and impact other logger
backends.

Warning: As the shell is a complex logger backend, it can not output logs if the application
crashes before the shell thread is running. In this situation, you can enable one of the simple log-
ging backends instead, such as UART (:kconfig:`CONFIG_LOG_BACKEND_UART`) or RTT (:kcon-
fig:`CONFIG_LOG_BACKEND_RTT`), which are available earlier during system initialization.

7.25.10 Usage

To create a new shell instance user needs to activate requested backend using menuconfig.

The following code shows a simple use case of this library:

void main(void)
{

}

static int cmd_demo_ping(const struct shell *shell, size_t argc,
char **argv)

{
ARG_UNUSED(argc);
ARG_UNUSED(argv);

shell_print(shell, "pong");
return 0;

}

static int cmd_demo_params(const struct shell *shell, size_t argc,
char **argv)

{
int cnt;

(continues on next page)

7.25. Shell 1323

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

shell_print(shell, "argc = %d", argc);
for (cnt = 0; cnt < argc; cnt++) {

shell_print(shell, " argv[%d] = %s", cnt, argv[cnt]);
}
return 0;

}

/* Creating subcommands (level 1 command) array for command "demo". */
SHELL_STATIC_SUBCMD_SET_CREATE(sub_demo,

SHELL_CMD(params, NULL, "Print params command.",
cmd_demo_params),

SHELL_CMD(ping, NULL, "Ping command.", cmd_demo_ping),
SHELL_SUBCMD_SET_END

);
/* Creating root (level 0) command "demo" without a handler */
SHELL_CMD_REGISTER(demo, &sub_demo, "Demo commands", NULL);

/* Creating root (level 0) command "version" */
SHELL_CMD_REGISTER(version, NULL, "Show kernel version", cmd_version);

Users may use the Tab key to complete a command/subcommand or to see the available subcommands
for the currently entered command level. For example, when the cursor is positioned at the beginning of
the command line and the Tab key is pressed, the user will see all root (level 0) commands:

clear demo shell history log resize version

Note: To view the subcommands that are available for a specific command, you must first type a space
after this command and then hit Tab.

These commands are registered by various modules, for example:

• clear, shell, history, and resize are built-in commands which have been registered by sub-
sys/shell/shell.c

• demo and version have been registered in example code above by main.c

• log has been registered by subsys/logging/log_cmds.c

Then, if a user types a demo command and presses the Tab key, the shell will only print the subcommands
registered for this command:

params ping

7.25.11 API Reference

group shell_api

Shell API.

Defines

SHELL_CMD_ARG_REGISTER(syntax, subcmd, help, handler, mandatory, optional)

Macro for defining and adding a root command (level 0) with required number of arguments.

1324 Chapter 7. API Reference

https://github.com/zephyrproject-rtos/zephyr/blob/main/subsys/shell/shell.c
https://github.com/zephyrproject-rtos/zephyr/blob/main/subsys/shell/shell.c
https://github.com/zephyrproject-rtos/zephyr/blob/main/subsys/logging/log_cmds.c

Zephyr Project Documentation, Release 2.7.0-rc2

Note: Each root command shall have unique syntax. If a command will be called with wrong
number of arguments shell will print an error message and command handler will not be
called.

Parameters

• syntax – [in] Command syntax (for example: history).

• subcmd – [in] Pointer to a subcommands array.

• help – [in] Pointer to a command help string.

• handler – [in] Pointer to a function handler.

• mandatory – [in] Number of mandatory arguments includig command name.

• optional – [in] Number of optional arguments.

SHELL_COND_CMD_ARG_REGISTER(flag, syntax, subcmd, help, handler, mandatory, optional)

Macro for defining and adding a conditional root command (level 0) with required number of
arguments.

Macro can be used to create a command which can be conditionally present. It is and alterna-
tive to #ifdefs around command registration and command handler. If command is disabled
handler and subcommands are removed from the application.

See also:

SHELL_CMD_ARG_REGISTER for details.

Parameters

• flag – [in] Compile time flag. Command is present only if flag exists and
equals 1.

• syntax – [in] Command syntax (for example: history).

• subcmd – [in] Pointer to a subcommands array.

• help – [in] Pointer to a command help string.

• handler – [in] Pointer to a function handler.

• mandatory – [in] Number of mandatory arguments includig command name.

• optional – [in] Number of optional arguments.

SHELL_CMD_REGISTER(syntax, subcmd, help, handler)

Macro for defining and adding a root command (level 0) with arguments.

Note: All root commands must have different name.

Parameters

• syntax – [in] Command syntax (for example: history).

• subcmd – [in] Pointer to a subcommands array.

• help – [in] Pointer to a command help string.

• handler – [in] Pointer to a function handler.

7.25. Shell 1325

Zephyr Project Documentation, Release 2.7.0-rc2

SHELL_COND_CMD_REGISTER(flag, syntax, subcmd, help, handler)

Macro for defining and adding a conditional root command (level 0) with arguments.

See also:

SHELL_COND_CMD_ARG_REGISTER.

Parameters

• flag – [in] Compile time flag. Command is present only if flag exists and
equals 1.

• syntax – [in] Command syntax (for example: history).

• subcmd – [in] Pointer to a subcommands array.

• help – [in] Pointer to a command help string.

• handler – [in] Pointer to a function handler.

SHELL_STATIC_SUBCMD_SET_CREATE(name, ...)

Macro for creating a subcommand set. It must be used outside of any function body.

Example usage: SHELL_STATIC_SUBCMD_SET_CREATE(foo, SHELL_CMD(abc, . . .),
SHELL_CMD(def, . . .), SHELL_SUBCMD_SET_END)

Parameters

• name – [in] Name of the subcommand set.

• ... – [in] List of commands created with SHELL_CMD_ARG or or SHELL_CMD

SHELL_SUBCMD_SET_END

Define ending subcommands set.

SHELL_DYNAMIC_CMD_CREATE(name, get)

Macro for creating a dynamic entry.

Parameters

• name – [in] Name of the dynamic entry.

• get – [in] Pointer to the function returning dynamic commands array

SHELL_CMD_ARG(syntax, subcmd, help, handler, mand, opt)

Initializes a shell command with arguments.

Note: If a command will be called with wrong number of arguments shell will print an error
message and command handler will not be called.

Parameters

• syntax – [in] Command syntax (for example: history).

• subcmd – [in] Pointer to a subcommands array.

• help – [in] Pointer to a command help string.

• handler – [in] Pointer to a function handler.

• mand – [in] Number of mandatory arguments includig command name.

• opt – [in] Number of optional arguments.

1326 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

SHELL_COND_CMD_ARG(flag, syntax, subcmd, help, handler, mand, opt)

Initializes a conditional shell command with arguments.

See also:

SHELL_CMD_ARG. Based on the flag, creates a valid entry or an empty command which is
ignored by the shell. It is an alternative to #ifdefs around command registration and com-
mand handler. However, empty structure is present in the flash even if command is disabled
(subcommands and handler are removed). Macro internally handles case if flag is not defined
so flag must be provided without any wrapper, e.g.: SHELL_COND_CMD_ARG(CONFIG_FOO,
. . .)

Parameters

• flag – [in] Compile time flag. Command is present only if flag exists and
equals 1.

• syntax – [in] Command syntax (for example: history).

• subcmd – [in] Pointer to a subcommands array.

• help – [in] Pointer to a command help string.

• handler – [in] Pointer to a function handler.

• mand – [in] Number of mandatory arguments includig command name.

• opt – [in] Number of optional arguments.

SHELL_EXPR_CMD_ARG(_expr, _syntax, _subcmd, _help, _handler, _mand, _opt)

Initializes a conditional shell command with arguments if expression gives non-zero result at
compile time.

See also:

SHELL_CMD_ARG. Based on the expression, creates a valid entry or an empty command which
is ignored by the shell. It should be used instead of SHELL_COND_CMD_ARG if condition is
not a single configuration flag, e.g.: SHELL_EXPR_CMD_ARG(IS_ENABLED(CONFIG_FOO) &&
IS_ENABLED(CONFIG_FOO_SETTING_1), . . .)

Parameters

• _expr – [in] Expression.

• _syntax – [in] Command syntax (for example: history).

• _subcmd – [in] Pointer to a subcommands array.

• _help – [in] Pointer to a command help string.

• _handler – [in] Pointer to a function handler.

• _mand – [in] Number of mandatory arguments includig command name.

• _opt – [in] Number of optional arguments.

SHELL_CMD(_syntax, _subcmd, _help, _handler)

Initializes a shell command.

Parameters

• _syntax – [in] Command syntax (for example: history).

• _subcmd – [in] Pointer to a subcommands array.

7.25. Shell 1327

Zephyr Project Documentation, Release 2.7.0-rc2

• _help – [in] Pointer to a command help string.

• _handler – [in] Pointer to a function handler.

SHELL_COND_CMD(_flag, _syntax, _subcmd, _help, _handler)

Initializes a conditional shell command.

See also:

SHELL_COND_CMD_ARG.

Parameters

• _flag – [in] Compile time flag. Command is present only if flag exists and
equals 1.

• _syntax – [in] Command syntax (for example: history).

• _subcmd – [in] Pointer to a subcommands array.

• _help – [in] Pointer to a command help string.

• _handler – [in] Pointer to a function handler.

SHELL_EXPR_CMD(_expr, _syntax, _subcmd, _help, _handler)

Initializes shell command if expression gives non-zero result at compile time.

See also:

SHELL_EXPR_CMD_ARG.

Parameters

• _expr – [in] Compile time expression. Command is present only if expression
is non-zero.

• _syntax – [in] Command syntax (for example: history).

• _subcmd – [in] Pointer to a subcommands array.

• _help – [in] Pointer to a command help string.

• _handler – [in] Pointer to a function handler.

SHELL_CMD_DICT_CREATE(_data)

SHELL_SUBCMD_DICT_SET_CREATE(_name, _handler, ...)

Initializes shell dictionary commands.

This is a special kind of static commands. Dictionary commands can be used every time you
want to use a pair: (string <-> corresponding data) in a command handler. The string is
usually a verbal description of a given data. The idea is to use the string as a command
syntax that can be prompted by the shell and corresponding data can be used to process the
command.

Example usage: static int my_handler(const struct shell *shell,

size_t argc, char **argv, void *data) { int val = (int)data;

See also:

shell_dict_cmd_handler

shell_print(shell, “(syntax, value) : (%s, %d)”, argv[0], val); return 0; }

1328 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

SHELL_SUBCMD_DICT_SET_CREATE(sub_dict_cmds, my_handler, (value_0, 0), (value_1,
1), (value_2, 2), (value_3, 3)); SHELL_CMD_REGISTER(dictionary, &sub_dict_cmds, NULL,
NULL);

Parameters

• _name – [in] Name of the dictionary subcommand set

• _handler – [in] Command handler common for all dictionary commands.

• ... – [in] Dictionary pairs: (command_syntax, value). Value will be passed to
the _handler as user data.

SHELL_DEFINE(_name, _prompt, _transport_iface, _log_queue_size, _log_timeout, _shell_flag)

Macro for defining a shell instance.

Parameters

• _name – [in] Instance name.

• _prompt – [in] Shell default prompt string.

• _transport_iface – [in] Pointer to the transport interface.

• _log_queue_size – [in] Logger processing queue size.

• _log_timeout – [in] Logger thread timeout in milliseconds on full log queue.
If queue is full logger thread is blocked for given amount of time before log
message is dropped.

• _shell_flag – [in] Shell output newline sequence.

SHELL_NORMAL

Terminal default text color for shell_fprintf function.

SHELL_INFO

Green text color for shell_fprintf function.

SHELL_OPTION

Cyan text color for shell_fprintf function.

SHELL_WARNING

Yellow text color for shell_fprintf function.

SHELL_ERROR

Red text color for shell_fprintf function.

shell_info(_sh, _ft, ...)

Print info message to the shell.

See shell_fprintf.

Parameters

• _sh – [in] Pointer to the shell instance.

• _ft – [in] Format string.

• ... – [in] List of parameters to print.

shell_print(_sh, _ft, ...)

Print normal message to the shell.

See shell_fprintf.

7.25. Shell 1329

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• _sh – [in] Pointer to the shell instance.

• _ft – [in] Format string.

• ... – [in] List of parameters to print.

shell_warn(_sh, _ft, ...)

Print warning message to the shell.

See shell_fprintf.

Parameters

• _sh – [in] Pointer to the shell instance.

• _ft – [in] Format string.

• ... – [in] List of parameters to print.

shell_error(_sh, _ft, ...)

Print error message to the shell.

See shell_fprintf.

Parameters

• _sh – [in] Pointer to the shell instance.

• _ft – [in] Format string.

• ... – [in] List of parameters to print.

SHELL_CMD_HELP_PRINTED

Typedefs

typedef void (*shell_dynamic_get)(size_t idx, struct shell_static_entry *entry)

Shell dynamic command descriptor.

Function shall fill the received shell_static_entry structure with requested (idx) dynamic sub-
command data. If there is more than one dynamic subcommand available, the function shall
ensure that the returned commands: entry->syntax are sorted in alphabetical order. If idx
exceeds the available dynamic subcommands, the function must write to entry->syntax NULL
value. This will indicate to the shell module that there are no more dynamic commands to
read.

typedef int (*shell_cmd_handler)(const struct shell *shell, size_t argc, char **argv)

Shell command handler prototype.

Param shell Shell instance.

Param argc Arguments count.

Param argv Arguments.

Retval 0 Successful command execution.

Retval 1 Help printed and command not executed.

Retval -EINVAL Argument validation failed.

Retval -ENOEXEC Command not executed.

1330 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

typedef int (*shell_dict_cmd_handler)(const struct shell *shell, size_t argc, char **argv, void
*data)

Shell dictionary command handler prototype.

Param shell Shell instance.

Param argc Arguments count.

Param argv Arguments.

Param data Pointer to the user data.

Retval 0 Successful command execution.

Retval 1 Help printed and command not executed.

Retval -EINVAL Argument validation failed.

Retval -ENOEXEC Command not executed.

typedef void (*shell_transport_handler_t)(enum shell_transport_evt evt, void *context)

typedef void (*shell_uninit_cb_t)(const struct shell *shell, int res)

typedef void (*shell_bypass_cb_t)(const struct shell *shell, uint8_t *data, size_t len)

Bypass callback.

Param shell Shell instance.

Param data Raw data from transport.

Param len Data length.

Enums

enum shell_receive_state

Values:

enumerator SHELL_RECEIVE_DEFAULT

enumerator SHELL_RECEIVE_ESC

enumerator SHELL_RECEIVE_ESC_SEQ

enumerator SHELL_RECEIVE_TILDE_EXP

enum shell_state

Values:

enumerator SHELL_STATE_UNINITIALIZED

enumerator SHELL_STATE_INITIALIZED

enumerator SHELL_STATE_ACTIVE

7.25. Shell 1331

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator SHELL_STATE_PANIC_MODE_ACTIVE

Panic activated.

enumerator SHELL_STATE_PANIC_MODE_INACTIVE

Panic requested, not supported.

enum shell_transport_evt

Shell transport event.

Values:

enumerator SHELL_TRANSPORT_EVT_RX_RDY

enumerator SHELL_TRANSPORT_EVT_TX_RDY

enum shell_signal

Values:

enumerator SHELL_SIGNAL_RXRDY

enumerator SHELL_SIGNAL_LOG_MSG

enumerator SHELL_SIGNAL_KILL

enumerator SHELL_SIGNAL_TXDONE

enumerator SHELL_SIGNALS

enum shell_flag

Flags for setting shell output newline sequence.

Values:

enumerator SHELL_FLAG_CRLF_DEFAULT = (1 << 0)

enumerator SHELL_FLAG_OLF_CRLF = (1 << 1)

Functions

const struct device *shell_device_lookup(size_t idx, const char *prefix)

Get by index a device that matches .

This can be used, for example, to identify I2C_1 as the second I2C device.

Devices that failed to initialize or do not have a non-empty name are excluded from the
candidates for a match.

Parameters

• idx – the device number starting from zero.

1332 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• prefix – optional name prefix used to restrict candidate devices. Indexing is
done relative to devices with names that start with this text. Pass null if no
prefix match is required.

int shell_init(const struct shell *shell, const void *transport_config, bool use_colors, bool
log_backend, uint32_t init_log_level)

Function for initializing a transport layer and internal shell state.

Parameters

• shell – [in] Pointer to shell instance.

• transport_config – [in] Transport configuration during initialization.

• use_colors – [in] Enables colored prints.

• log_backend – If true, the console will be used as logger backend.

• init_log_level – [in] Default severity level for the logger.

Returns Standard error code.

void shell_uninit(const struct shell *shell, shell_uninit_cb_t cb)

Uninitializes the transport layer and the internal shell state.

Parameters

• shell – Pointer to shell instance.

• cb – Callback called when uninitialization is completed.

Returns Standard error code.

int shell_start(const struct shell *shell)

Function for starting shell processing.

Parameters

• shell – Pointer to the shell instance.

Returns Standard error code.

int shell_stop(const struct shell *shell)

Function for stopping shell processing.

Parameters

• shell – Pointer to shell instance.

Returns Standard error code.

void shell_fprintf(const struct shell *shell, enum shell_vt100_color color, const char *fmt, ...)

printf-like function which sends formatted data stream to the shell.

This function can be used from the command handler or from threads, but not from an inter-
rupt context.

Parameters

• shell – [in] Pointer to the shell instance.

• color – [in] Printed text color.

• fmt – [in] Format string.

• ... – [in] List of parameters to print.

7.25. Shell 1333

Zephyr Project Documentation, Release 2.7.0-rc2

void shell_vfprintf(const struct shell *shell, enum shell_vt100_color color, const char *fmt,
va_list args)

vprintf-like function which sends formatted data stream to the shell.

This function can be used from the command handler or from threads, but not from an inter-
rupt context. It is similar to shell_fprintf() but takes a va_list instead of variable arguments.

Parameters

• shell – [in] Pointer to the shell instance.

• color – [in] Printed text color.

• fmt – [in] Format string.

• args – [in] List of parameters to print.

void shell_hexdump_line(const struct shell *shell, unsigned int offset, const uint8_t *data, size_t
len)

Print a line of data in hexadecimal format.

Each line shows the offset, bytes and then ASCII representation.

For example:

00008010: 20 25 00 20 2f 48 00 08 80 05 00 20 af 46 00 | %. /H..F. |

Parameters

• shell – [in] Pointer to the shell instance.

• offset – [in] Offset to show for this line.

• data – [in] Pointer to data.

• len – [in] Length of data.

void shell_hexdump(const struct shell *shell, const uint8_t *data, size_t len)

Print data in hexadecimal format.

Parameters

• shell – [in] Pointer to the shell instance.

• data – [in] Pointer to data.

• len – [in] Length of data.

void shell_process(const struct shell *shell)

Process function, which should be executed when data is ready in the transport interface. To
be used if shell thread is disabled.

Parameters

• shell – [in] Pointer to the shell instance.

int shell_prompt_change(const struct shell *shell, const char *prompt)

Change displayed shell prompt.

Parameters

• shell – [in] Pointer to the shell instance.

• prompt – [in] New shell prompt.

Returns 0 Success.

Returns -EINVAL Pointer to new prompt is not correct.

1334 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

void shell_help(const struct shell *shell)

Prints the current command help.

Function will print a help string with: the currently entered command and subcommands (if
they exist).

Parameters

• shell – [in] Pointer to the shell instance.

int shell_execute_cmd(const struct shell *shell, const char *cmd)

Execute command.

Pass command line to shell to execute.

Note: This by no means makes any of the commands a stable interface, so this function should
only be used for debugging/diagnostic.

This function must not be called from shell command context!

Parameters

• shell – [in] Pointer to the shell instance. It can be NULL when the :kcon-
fig:`CONFIG_SHELL_BACKEND_DUMMY` option is enabled.

• cmd – [in] Command to be executed.

Returns Result of the execution

int shell_set_root_cmd(const char *cmd)

Set root command for all shell instances.

It allows setting from the code the root command. It is an equivalent of calling select com-
mand with one of the root commands as the argument (e.g “select log”) except it sets com-
mand for all shell instances.

Parameters

• cmd – String with one of the root commands or null pointer to reset.

Return values

• 0 – if root command is set.

• -EINVAL – if invalid root command is provided.

void shell_set_bypass(const struct shell *shell, shell_bypass_cb_t bypass)

Set bypass callback.

Bypass callback is called whenever data is received. Shell is bypassed and data is passed
directly to the callback. Use null to disable bypass functionality.

Parameters

• shell – [in] Pointer to the shell instance.

• bypass – [in] Bypass callback or null to disable.

int shell_insert_mode_set(const struct shell *shell, bool val)

Allow application to control text insert mode. Value is modified atomically and the previous
value is returned.

Parameters

• shell – [in] Pointer to the shell instance.

• val – [in] Insert mode.

Return values

• 0 – or 1: previous value

7.25. Shell 1335

Zephyr Project Documentation, Release 2.7.0-rc2

• -EINVAL – if shell is NULL.

int shell_use_colors_set(const struct shell *shell, bool val)
Allow application to control whether terminal output uses colored syntax. Value is modified
atomically and the previous value is returned.

Parameters

• shell – [in] Pointer to the shell instance.

• val – [in] Color mode.

Return values

• 0 – or 1: previous value

• -EINVAL – if shell is NULL.

int shell_echo_set(const struct shell *shell, bool val)
Allow application to control whether user input is echoed back. Value is modified atomically
and the previous value is returned.

Parameters

• shell – [in] Pointer to the shell instance.

• val – [in] Echo mode.

Return values

• 0 – or 1: previous value

• -EINVAL – if shell is NULL.

int shell_obscure_set(const struct shell *shell, bool obscure)
Allow application to control whether user input is obscured with asterisks — useful for
implementing passwords. Value is modified atomically and the previous value is returned.

Parameters

• shell – [in] Pointer to the shell instance.

• obscure – [in] Obscure mode.

Return values

• 0 – or 1: previous value.

• -EINVAL – if shell is NULL.

int shell_mode_delete_set(const struct shell *shell, bool val)
Allow application to control whether the delete key backspaces or deletes. Value is modified
atomically and the previous value is returned.

Parameters

• shell – [in] Pointer to the shell instance.

• val – [in] Delete mode.

Return values

• 0 – or 1: previous value

• -EINVAL – if shell is NULL.

Variables

const struct log_backend_api log_backend_shell_api

1336 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

struct shell_cmd_entry

#include <shell.h> Shell command descriptor.

union union_cmd_entry

#include <shell.h>

Public Members

shell_dynamic_get dynamic_get

< Pointer to function returning dynamic commands. Pointer to array of static com-
mands.

const struct shell_static_entry *entry

struct shell_static_args

#include <shell.h>

Public Members

uint8_t mandatory

Number of mandatory arguments.

uint8_t optional

Number of optional arguments.

struct shell_static_entry

#include <shell.h>

Public Members

const char *syntax

Command syntax strings.

const char *help

Command help string.

const struct shell_cmd_entry *subcmd

Pointer to subcommand.

shell_cmd_handler handler

Command handler.

struct shell_static_args args

Command arguments.

struct shell_transport_api

#include <shell.h> Unified shell transport interface.

7.25. Shell 1337

Zephyr Project Documentation, Release 2.7.0-rc2

Public Members

int (*init)(const struct shell_transport *transport, const void *config,
shell_transport_handler_t evt_handler, void *context)

Function for initializing the shell transport interface.
Param transport [in] Pointer to the transfer instance.
Param config [in] Pointer to instance configuration.
Param evt_handler [in] Event handler.
Param context [in] Pointer to the context passed to event handler.
Return Standard error code.

int (*uninit)(const struct shell_transport *transport)

Function for uninitializing the shell transport interface.
Param transport [in] Pointer to the transfer instance.
Return Standard error code.

int (*enable)(const struct shell_transport *transport, bool blocking_tx)

Function for enabling transport in given TX mode.

Function can be used to reconfigure TX to work in blocking mode.
Param transport Pointer to the transfer instance.
Param blocking_tx If true, the transport TX is enabled in blocking mode.
Return NRF_SUCCESS on successful enabling, error otherwise (also if not sup-

ported).

int (*write)(const struct shell_transport *transport, const void *data, size_t length, size_t
*cnt)

Function for writing data to the transport interface.
Param transport [in] Pointer to the transfer instance.
Param data [in] Pointer to the source buffer.
Param length [in] Source buffer length.
Param cnt [out] Pointer to the sent bytes counter.
Return Standard error code.

int (*read)(const struct shell_transport *transport, void *data, size_t length, size_t *cnt)

Function for reading data from the transport interface.
Param p_transport [in] Pointer to the transfer instance.
Param p_data [in] Pointer to the destination buffer.
Param length [in] Destination buffer length.
Param cnt [out] Pointer to the received bytes counter.
Return Standard error code.

void (*update)(const struct shell_transport *transport)

Function called in shell thread loop.

Can be used for backend operations that require longer execution time
Param transport [in] Pointer to the transfer instance.

struct shell_transport

#include <shell.h>

struct shell_stats

#include <shell.h> Shell statistics structure.

1338 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Public Members

atomic_t log_lost_cnt

Lost log counter.

struct shell_flags

#include <shell.h>

Public Members

uint32_t insert_mode

Controls insert mode for text introduction.

uint32_t use_colors

Controls colored syntax.

uint32_t echo

Controls shell echo.

uint32_t obscure

If echo on, print asterisk instead

uint32_t processing

Shell is executing process function.

uint32_t mode_delete

Operation mode of backspace key

uint32_t history_exit

Request to exit history mode

uint32_t last_nl

Last received new line character

uint32_t cmd_ctx

Shell is executing command

uint32_t print_noinit

Print request from not initialized shell

union shell_internal

#include <shell.h>

Public Members

uint32_t value

7.25. Shell 1339

Zephyr Project Documentation, Release 2.7.0-rc2

struct shell_flags flags

struct shell_ctx

#include <shell.h> Shell instance context.

Public Members

const char *prompt

shell current prompt.

enum shell_state state

Internal module state.

enum shell_receive_state receive_state

Escape sequence indicator. Currently executed command.

const struct shell_static_entry *selected_cmd

VT100 color and cursor position, terminal width.

struct shell_vt100_ctx vt100_ctx

Callback called from shell thread context when unitialization is completed just before
aborting shell thread.

shell_uninit_cb_t uninit_cb

When bypass is set, all incoming data is passed to the callback.

uint16_t cmd_buff_len

Command length.

uint16_t cmd_buff_pos

Command buffer cursor position.

uint16_t cmd_tmp_buff_len

Command length in tmp buffer. Command input buffer.

char cmd_buff[0]

Command temporary buffer.

char temp_buff[0]

Printf buffer size.

volatile union shell_internal internal

Internal shell data.

struct shell

#include <shell.h> Shell instance internals.

1340 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Public Members

const char *default_prompt

shell default prompt.

const struct shell_transport *iface

Transport interface.

struct shell_ctx *ctx

Internal context.

7.26 Storage

7.26.1 Non-Volatile Storage (NVS)

Elements, represented as id-data pairs, are stored in flash using a FIFO-managed circular buffer. The
flash area is divided into sectors. Elements are appended to a sector until storage space in the sector is
exhausted. Then a new sector in the flash area is prepared for use (erased). Before erasing the sector it
is checked that identifier - data pairs exist in the sectors in use, if not the id-data pair is copied.

The id is a 16-bit unsigned number. NVS ensures that for each used id there is at least one id-data pair
stored in flash at all time.

NVS allows storage of binary blobs, strings, integers, longs, and any combination of these.

Each element is stored in flash as metadata (8 byte) and data. The metadata is written in a table starting
from the end of a nvs sector, the data is written one after the other from the start of the sector. The
metadata consists of: id, data offset in sector, data length, part (unused) and a crc.

A write of data to nvs always starts with writing the data, followed by a write of the metadata. Data that
is written in flash without metadata is ignored during initialization.

During initialization NVS will verify the data stored in flash, if it encounters an error it will ignore any
data with missing/incorrect metadata.

NVS checks the id-data pair before writing data to flash. If the id-data pair is unchanged no write to flash
is performed.

To protect the flash area against frequent erases it is important that there is sufficient free space. NVS
has a protection mechanism to avoid getting in a endless loop of flash page erases when there is limited
free space. When such a loop is detected NVS returns that there is no more space available.

For NVS the file system is declared as:

static struct nvs_fs fs = {
.sector_size = NVS_SECTOR_SIZE,
.sector_count = NVS_SECTOR_COUNT,
.offset = NVS_STORAGE_OFFSET,
};

where

• NVS_SECTOR_SIZE is the sector size, it has to be a multiple of the flash erase page size and a power
of 2.

• NVS_SECTOR_COUNT is the number of sectors, it is at least 2, one sector is always kept empty to
allow copying of existing data.

• NVS_STORAGE_OFFSET is the offset of the storage area in flash.

7.26. Storage 1341

Zephyr Project Documentation, Release 2.7.0-rc2

Flash wear

When writing data to flash a study of the flash wear is important. Flash has a limited life which is
determined by the number of times flash can be erased. Flash is erased one page at a time and the
pagesize is determined by the hardware. As an example a nRF51822 device has a pagesize of 1024 bytes
and each page can be erased about 20,000 times.

Calculating expected device lifetime Suppose we use a 4 bytes state variable that is changed every
minute and needs to be restored after reboot. NVS has been defined with a sector_size equal to the
pagesize (1024 bytes) and 2 sectors have been defined.

Each write of the state variable requires 12 bytes of flash storage: 8 bytes for the metadata and 4 bytes
for the data. When storing the data the first sector will be full after 1024/12 = 85.33 minutes. After
another 85.33 minutes, the second sector is full. When this happens, because we’re using only two
sectors, the first sector will be used for storage and will be erased after 171 minutes of system time. With
the expected device life of 20,000 writes, with two sectors writing every 171 minutes, the device should
last about 171 * 20,000 minutes, or about 6.5 years.

More generally then, with

• NS as the number of storage requests per minute,

• DS as the data size in bytes,

• SECTOR_SIZE in bytes, and

• PAGE_ERASES as the number of times the page can be erased,

the expected device life (in minutes) can be calculated as:

SECTOR_COUNT * SECTOR_SIZE * PAGE_ERASES / (NS * (DS+8)) minutes

From this formula it is also clear what to do in case the expected life is too short: increase SECTOR_COUNT
or SECTOR_SIZE.

Flash write block size migration

It is possible that during a DFU process, the flash driver used by the NVS changes the supported minimal
write block size. The NVS in-flash image will stay compatible unless the physical ATE size changes.
Especially, migration between 1,2,4,8-bytes write block sizes is allowed.

Sample

A sample of how NVS can be used is supplied in samples/subsys/nvs.

Troubleshooting

MPU fault while using NVS, or -ETIMEDOUT error returned NVS can use the internal flash of the SoC.
While the MPU is enabled, the flash driver requires MPU RWX access to flash memory, configured
using :kconfig:`CONFIG_MPU_ALLOW_FLASH_WRITE`. If this option is disabled, the NVS appli-
cation will get an MPU fault if it references the internal SoC flash and it’s the only thread running.
In a multi-threaded application, another thread might intercept the fault and the NVS API will
return an -ETIMEDOUT error.

1342 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

API Reference

The NVS subsystem APIs are provided by nvs.h:

group nvs_data_structures

Non-volatile Storage Data Structures.

struct nvs_fs

#include <nvs.h> Non-volatile Storage File system structure.

Param offset File system offset in flash

Param ate_wra Allocation table entry write address. Addresses are stored as
uint32_t: high 2 bytes are sector, low 2 bytes are offset in sector,

Param data_wra Data write address.

Param sector_size File system is divided into sectors each sector should be multiple
of pagesize

Param sector_count Amount of sectors in the file systems

Param write_block_size Alignment size

Param nvs_lock Mutex

Param flash_device Flash Device

group nvs_high_level_api

Non-volatile Storage APIs.

Functions

int nvs_init(struct nvs_fs *fs, const char *dev_name)

nvs_init

Initializes a NVS file system in flash.

Parameters

• fs – Pointer to file system

• dev_name – Pointer to flash device name

Return values

• 0 – Success

• -ERRNO – errno code if error

int nvs_clear(struct nvs_fs *fs)

nvs_clear

Clears the NVS file system from flash.

Parameters

• fs – Pointer to file system

Return values

• 0 – Success

• -ERRNO – errno code if error

7.26. Storage 1343

Zephyr Project Documentation, Release 2.7.0-rc2

ssize_t nvs_write(struct nvs_fs *fs, uint16_t id, const void *data, size_t len)

nvs_write

Write an entry to the file system.

Parameters

• fs – Pointer to file system

• id – Id of the entry to be written

• data – Pointer to the data to be written

• len – Number of bytes to be written

Returns Number of bytes written. On success, it will be equal to the number of bytes
requested to be written. On error returns -ERRNO code.

int nvs_delete(struct nvs_fs *fs, uint16_t id)

nvs_delete

Delete an entry from the file system

Parameters

• fs – Pointer to file system

• id – Id of the entry to be deleted

Return values

• 0 – Success

• -ERRNO – errno code if error

ssize_t nvs_read(struct nvs_fs *fs, uint16_t id, void *data, size_t len)

nvs_read

Read an entry from the file system.

Parameters

• fs – Pointer to file system

• id – Id of the entry to be read

• data – Pointer to data buffer

• len – Number of bytes to be read

Returns Number of bytes read. On success, it will be equal to the number of bytes
requested to be read. When the return value is larger than the number of bytes re-
quested to read this indicates not all bytes were read, and more data is available.
On error returns -ERRNO code.

ssize_t nvs_read_hist(struct nvs_fs *fs, uint16_t id, void *data, size_t len, uint16_t cnt)

nvs_read_hist

Read a history entry from the file system.

Parameters

• fs – Pointer to file system

• id – Id of the entry to be read

• data – Pointer to data buffer

• len – Number of bytes to be read

• cnt – History counter: 0: latest entry, 1:one before latest . . .

1344 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Returns Number of bytes read. On success, it will be equal to the number of bytes
requested to be read. When the return value is larger than the number of bytes re-
quested to read this indicates not all bytes were read, and more data is available.
On error returns -ERRNO code.

ssize_t nvs_calc_free_space(struct nvs_fs *fs)

nvs_calc_free_space

Calculate the available free space in the file system.

Parameters

• fs – Pointer to file system

Returns Number of bytes free. On success, it will be equal to the number of bytes
that can still be written to the file system. Calculating the free space is a time
consuming operation, especially on spi flash. On error returns -ERRNO code.

7.26.2 Disk Access

Overview

The disk access API provides access to storage devices.

SD Card support

Zephyr has support for some SD card controllers and support for interfacing SD cards via SPI. These
drivers use disk driver interface and a file system can access the SD cards via disk access API. Both
standard and high-capacity SD cards are supported.

Note: The system does not support inserting or removing cards while the system is running. The cards
must be present at boot and must not be removed. This may be fixed in future releases.

FAT filesystems are not power safe so the filesystem may become corrupted if power is lost or if the card
is removed.

SD Card support via SPI Example devicetree fragment below shows how to add SD card node to spi1
interface. Example uses pin PA27 for chip select, and runs the SPI bus at 24 MHz once the SD card has
been initialized:

&spi1 {
status = "okay";
cs-gpios = <&porta 27 GPIO_ACTIVE_LOW>;

sdhc0: sdhc@0 {
compatible = "zephyr,mmc-spi-slot";
reg = <0>;
status = "okay";
label = "SDHC0";
spi-max-frequency = <24000000>;

};
};

The SD card will be automatically detected and initialized by the filesystem driver when the board boots.

To read and write files and directories, see the File Systems in include/fs.h such as fs_open() ,
fs_read() , and fs_write() .

7.26. Storage 1345

https://github.com/zephyrproject-rtos/zephyr/blob/main/include/fs.h

Zephyr Project Documentation, Release 2.7.0-rc2

Disk Access API Configuration Options

Related configuration options:

• :kconfig:`CONFIG_DISK_ACCESS`

API Reference

group disk_access_interface

Disk Access APIs.

Functions

int disk_access_init(const char *pdrv)

perform any initialization

This call is made by the consumer before doing any IO calls so that the disk or the backing
device can do any initialization.

Parameters

• pdrv – [in] Disk name

Returns 0 on success, negative errno code on fail

int disk_access_status(const char *pdrv)

Get the status of disk.

This call is used to get the status of the disk

Parameters

• pdrv – [in] Disk name

Returns DISK_STATUS_OK or other DISK_STATUS_*s

int disk_access_read(const char *pdrv, uint8_t *data_buf, uint32_t start_sector, uint32_t
num_sector)

read data from disk

Function to read data from disk to a memory buffer.

Parameters

• pdrv – [in] Disk name

• data_buf – [in] Pointer to the memory buffer to put data.

• start_sector – [in] Start disk sector to read from

• num_sector – [in] Number of disk sectors to read

Returns 0 on success, negative errno code on fail

int disk_access_write(const char *pdrv, const uint8_t *data_buf, uint32_t start_sector, uint32_t
num_sector)

write data to disk

Function write data from memory buffer to disk.

Parameters

• pdrv – [in] Disk name

• data_buf – [in] Pointer to the memory buffer

1346 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• start_sector – [in] Start disk sector to write to

• num_sector – [in] Number of disk sectors to write

Returns 0 on success, negative errno code on fail

int disk_access_ioctl(const char *pdrv, uint8_t cmd, void *buff)

Get/Configure disk parameters.

Function to get disk parameters and make any special device requests.

Parameters

• pdrv – [in] Disk name

• cmd – [in] DISK_IOCTL_* code describing the request

• buff – [in] Command data buffer

Returns 0 on success, negative errno code on fail

Disk Driver Configuration Options

Related driver configuration options:

• :kconfig:`CONFIG_DISK_DRIVERS`

Disk Driver Interface

group disk_driver_interface

Disk Driver Interface.

Defines

DISK_IOCTL_GET_SECTOR_COUNT

Possible Cmd Codes for disk_ioctl()

Get the number of sectors in the disk

DISK_IOCTL_GET_SECTOR_SIZE

Get the size of a disk SECTOR in bytes

DISK_IOCTL_RESERVED

reserved. It used to be DISK_IOCTL_GET_DISK_SIZE

DISK_IOCTL_GET_ERASE_BLOCK_SZ

How many sectors constitute a FLASH Erase block

DISK_IOCTL_CTRL_SYNC

Commit any cached read/writes to disk

DISK_STATUS_OK

Possible return bitmasks for disk_status()

Disk status okay

7.26. Storage 1347

Zephyr Project Documentation, Release 2.7.0-rc2

DISK_STATUS_UNINIT

Disk status uninitialized

DISK_STATUS_NOMEDIA

Disk status no media

DISK_STATUS_WR_PROTECT

Disk status write protected

Functions

int disk_access_register(struct disk_info *disk)

Register disk.

Parameters

• disk – [in] Pointer to the disk info structure

Returns 0 on success, negative errno code on fail

int disk_access_unregister(struct disk_info *disk)

Unregister disk.

Parameters

• disk – [in] Pointer to the disk info structure

Returns 0 on success, negative errno code on fail

struct disk_info

#include <disk.h> Disk info.

Public Members

sys_dnode_t node

Internally used list node

char *name

Disk name

const struct disk_operations *ops

Disk operations

const struct device *dev

Device associated to this disk

struct disk_operations

#include <disk.h> Disk operations.

1348 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

7.26.3 Flash map

The <storage/flash_map.h> API allows accessing information about device flash partitions via
flash_area structures.

Each struct flash_area describes a flash partition. The API provides access to a “flash map”,
which contains predefined flash areas accessible via globally unique ID numbers. You can also create
flash_area structures at runtime for application-specific purposes.

The flash_area structure contains the name of the flash device the partition is part of; this name can
be passed to device_get_binding() to get the corresponding device structure which can be read and
written to using the flash API. The flash_area also contains the start offset and size of the partition
within the flash memory the device represents.

The flash_map.h API provides functions for operating on a flash_area. The main examples are
flash_area_read() and flash_area_write() . These functions are basically wrappers around the
flash API with input parameter range checks. Not all flash APIs have flash_map.h wrappers, but
flash_area_get_device() allows easily retrieving the struct device from a struct flash_area.

Use flash_area_open() to access a struct flash_area. This function takes a flash area ID number
and returns a pointer to the flash area structure. The ID number for a flash area can be obtained from a
human-readable “label” using FLASH_AREA_ID ; these labels are obtained from the devicetree as described
below.

Relationship with Devicetree

The flash_map.h API uses data generated from the Devicetree API, in particular its Fixed flash partitions.
Zephyr additionally has some partitioning conventions used for Device Firmware Upgrade via the MCU-
boot bootloader, as well as defining partitions usable by file systems or other nonvolatile storage.

Here is an example devicetree fragment which uses fixed flash partitions for both MCUboot and a storage
partition. Some details were left out for clarity.

/ {
soc {

flashctrl: flash-controller@deadbeef {
flash0: flash@0 {

compatible = "soc-nv-flash";
reg = <0x0 0x100000>;

partitions {
compatible = "fixed-partitions";
#address-cells = <0x1>;
#size-cells = <0x1>;

boot_partition: partition@0 {
label = "mcuboot";
reg = <0x0 0x10000>;
read-only;

};
storage_partition: partition@1e000 {

label = "storage";
reg = <0x1e000 0x2000>;

};
slot0_partition: partition@20000 {

label = "image-0";
reg = <0x20000 0x60000>;

};
slot1_partition: partition@80000 {

(continues on next page)

7.26. Storage 1349

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

label = "image-1";
reg = <0x80000 0x60000>;

};
scratch_partition: partition@e0000 {

label = "image-scratch";
reg = <0xe0000 0x20000>;

};
};

};
};

};
};

Rule for offsets is that each partition offset shall be expressed in relation to the flash memory beginning
address to which the partition belong.

The boot_partition, slot0_partition, slot1_partition, and scratch_partition nodes are defined
for MCUboot, though not all MCUboot configurations require all of them to be defined. See the MCUboot
documentation for more details.

The storage_partition node is defined for use by a file system or other nonvolatile storage API.

To get a numeric flash area ID from one of the child nodes of the partitions node:

1. take the node’s label property value

2. lowercase it

3. convert all special characters to underscores (_)

4. pass the result without quotes to FLASH_AREA_ID()

For example, the flash_area ID number for slot0_partition is FLASH_AREA_ID(image_0).

The same rules apply for other macros which take a “label”, such as FLASH_AREA_OFFSET and
FLASH_AREA_SIZE . For example, FLASH_AREA_OFFSET(image_0) would return the start offset for
slot0_partition within its flash device. This is determined by the node’s reg property, and in this
case is 0x20000.

To get a pointer to the flash area structure and do something with it starting with a devicetree label like
"image-0", use something like this:

struct flash_area *my_area;
int err = flash_area_open(FLASH_AREA_ID(image_0), &my_area);

if (err != 0) {
handle_the_error(err);

} else {
flash_area_read(my_area, ...);

}

API Reference

group flash_area_api

Abstraction over flash partitions/areas and their drivers.

Defines

1350 Chapter 7. API Reference

https://mcuboot.com/
https://mcuboot.com/

Zephyr Project Documentation, Release 2.7.0-rc2

SOC_FLASH_0_ID

Provided for compatibility with MCUboot

SPI_FLASH_0_ID

Provided for compatibility with MCUboot

FLASH_AREA_LABEL_EXISTS(label)

FLASH_AREA_LABEL_STR(lbl)

FLASH_AREA_ID(label)

FLASH_AREA_OFFSET(label)

FLASH_AREA_SIZE(label)

Typedefs

typedef void (*flash_area_cb_t)(const struct flash_area *fa, void *user_data)

Flash map iteration callback

Param fa flash area

Param user_data User supplied data

Functions

int flash_area_open(uint8_t id, const struct flash_area **fa)

Retrieve partitions flash area from the flash_map.

Function Retrieves flash_area from flash_map for given partition.

Parameters

• id – [in] ID of the flash partition.

• fa – [out] Pointer which has to reference flash_area. If ID is unknown, it will
be NULL on output.

Returns 0 on success, -EACCES if the flash_map is not available , -ENOENT if ID is
unknown.

void flash_area_close(const struct flash_area *fa)

Close flash_area.

Reserved for future usage and external projects compatibility reason. Currently is NOP.

Parameters

• fa – [in] Flash area to be closed.

int flash_area_read(const struct flash_area *fa, off_t off, void *dst, size_t len)

Read flash area data.

Read data from flash area. Area readout boundaries are asserted before read request. API has
the same limitation regard read-block alignment and size as wrapped flash driver.

Parameters

• fa – [in] Flash area

• off – [in] Offset relative from beginning of flash area to read

7.26. Storage 1351

Zephyr Project Documentation, Release 2.7.0-rc2

• dst – [out] Buffer to store read data

• len – [in] Number of bytes to read

Returns 0 on success, negative errno code on fail.

int flash_area_write(const struct flash_area *fa, off_t off, const void *src, size_t len)

Write data to flash area.

Write data to flash area. Area write boundaries are asserted before write request. API has the
same limitation regard write-block alignment and size as wrapped flash driver.

Parameters

• fa – [in] Flash area

• off – [in] Offset relative from beginning of flash area to read

• src – [out] Buffer with data to be written

• len – [in] Number of bytes to write

Returns 0 on success, negative errno code on fail.

int flash_area_erase(const struct flash_area *fa, off_t off, size_t len)

Erase flash area.

Erase given flash area range. Area boundaries are asserted before erase request. API has the
same limitation regard erase-block alignment and size as wrapped flash driver.

Parameters

• fa – [in] Flash area

• off – [in] Offset relative from beginning of flash area.

• len – [in] Number of bytes to be erase

Returns 0 on success, negative errno code on fail.

uint8_t flash_area_align(const struct flash_area *fa)

Get write block size of the flash area.

Currently write block size might be treated as read block size, although most of drivers sup-
ports unaligned readout.

Parameters

• fa – [in] Flash area

Returns Alignment restriction for flash writes in [B].

int flash_area_get_sectors(int fa_id, uint32_t *count, struct flash_sector *sectors)

Retrieve info about sectors within the area.

Parameters

• fa_id – [in] Given flash area ID

• sectors – [out] buffer for sectors data

• count – [inout] On input Capacity of sectors, on output number of sectors
Retrieved.

Returns 0 on success, negative errno code on fail. Especially returns -ENOMEM if
There are too many flash pages on the flash_area to fit in the array.

void flash_area_foreach(flash_area_cb_t user_cb, void *user_data)

Iterate over flash map

Parameters

1352 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• user_cb – User callback

• user_data – User supplied data

int flash_area_has_driver(const struct flash_area *fa)

Check whether given flash area has supporting flash driver in the system.

Parameters

• fa – [in] Flash area.

Returns 1 On success. -ENODEV if no driver match.

const struct device *flash_area_get_device(const struct flash_area *fa)

Get driver for given flash area.

Parameters

• fa – Flash area.

Returns device driver.

uint8_t flash_area_erased_val(const struct flash_area *fa)

Get the value expected to be read when accessing any erased flash byte. This API is compatible
with the MCUBoot’s porting layer.

Parameters

• fa – Flash area.

Returns Byte value of erase memory.

struct flash_area

#include <flash_map.h> Flash partition.

This structure represents a fixed-size partition on a flash device. Each partition contains one
or more flash sectors.

Public Members

uint8_t fa_id

ID number

uint8_t fa_device_id

Provided for compatibility with MCUboot

off_t fa_off

Start offset from the beginning of the flash device

size_t fa_size

Total size

const char *fa_dev_name

Name of the flash device, suitable for passing to device_get_binding().

struct flash_sector

#include <flash_map.h> Structure for transfer flash sector boundaries.

This template is used for presentation of flash memory structure. It consumes much less RAM
than flash_area

7.26. Storage 1353

Zephyr Project Documentation, Release 2.7.0-rc2

Public Members

off_t fs_off

Sector offset from the beginning of the flash device

size_t fs_size

Sector size in bytes

7.26.4 Flash Circular Buffer (FCB)

Flash circular buffer provides an abstraction through which you can treat flash like a FIFO. You append
entries to the end, and read data from the beginning.

Note: As of Zephyr release 2.1 the NVS storage API is recommended over FCB for use as a back-end for
the settings API.

Description

Entries in the flash contain the length of the entry, the data within the entry, and checksum over the
entry contents.

Storage of entries in flash is done in a FIFO fashion. When you request space for the next entry, space is
located at the end of the used area. When you start reading, the first entry served is the oldest entry in
flash.

Entries can be appended to the end of the area until storage space is exhausted. You have control over
what happens next; either erase oldest block of data, thereby freeing up some space, or stop writing new
data until existing data has been collected. FCB treats underlying storage as an array of flash sectors;
when it erases old data, it does this a sector at a time.

Entries in the flash are checksummed. That is how FCB detects whether writing entry to flash completed
ok. It will skip over entries which don’t have a valid checksum.

Usage

To add an entry to circular buffer:

• Call fcb_append to get the location where data can be written. If this fails due to lack of space,
you can call fcb_rotate to erase the oldest sector which will make the space. And then call
fcb_append again.

• Use flash_area_write to write entry contents.

• Call fcb_append_finish when done. This completes the writing of the entry by calculating the
checksum.

To read contents of the circular buffer:

• Call fcb_walk with a pointer to your callback function.

• Within callback function copy in data from the entry using flash_area_read . You can tell when
all data from within a sector has been read by monitoring the returned entry’s area pointer. Then
you can call fcb_rotate , if you’re done with that data.

Alternatively:

• Call fcb_getnext with 0 in entry offset to get the pointer to the oldest entry.

1354 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• Use flash_area_read to read entry contents.

• Call fcb_getnext with pointer to current entry to get the next one. And so on.

API Reference

The FCB subsystem APIs are provided by fcb.h:

Data structures

group fcb_data_structures

Defines

FCB_MAX_LEN

Max length of element

FCB_ENTRY_FA_DATA_OFF(entry)

Helper macro for calculating the data offset related to the fcb flash_area start offset.

Parameters

• entry – fcb entry structure

struct fcb_entry

#include <fcb.h> FCB entry info structure. This data structure describes the element location
in the flash.

You would use it to figure out what parameters to pass to flash_area_read() to read element
contents. Or to flash_area_write() when adding a new element. Entry location is pointer to
area (within fcb->f_sectors), and offset within that area.

Public Members

struct flash_sector *fe_sector

Pointer to info about sector where data are placed

uint32_t fe_elem_off

Offset from the start of the sector to beginning of element.

uint32_t fe_data_off

Offset from the start of the sector to the start of element.

uint16_t fe_data_len

Size of data area in fcb entry

struct fcb_entry_ctx

#include <fcb.h> Structure for transferring complete information about FCB entry location
within flash memory.

7.26. Storage 1355

Zephyr Project Documentation, Release 2.7.0-rc2

Public Members

struct fcb_entry loc

FCB entry info

const struct flash_area *fap

Flash area where the entry is placed

struct fcb

#include <fcb.h> FCB instance structure.

The following data structure describes the FCB itself. First part should be filled in by the user
before calling fcb_init. The second part is used by FCB for its internal bookkeeping.

Public Members

uint32_t f_magic

Magic value, should not be 0xFFFFFFFF. It is xored with inversion of f_erase_value and
placed in the beginning of FCB flash sector. FCB uses this when determining whether
sector contains valid data or not. Giving it value of 0xFFFFFFFF means leaving bytes of
the filed in “erased” state.

uint8_t f_version

Current version number of the data

uint8_t f_sector_cnt

Number of elements in sector array

uint8_t f_scratch_cnt

Number of sectors to keep empty. This can be used if you need to have scratch space for
garbage collecting when FCB fills up.

struct flash_sector *f_sectors

Array of sectors, must be contiguous

struct k_mutex f_mtx

Locking for accessing the FCB data, internal state

struct flash_sector *f_oldest

Pointer to flash sector containing the oldest data, internal state

struct fcb_entry f_active

internal state

uint16_t f_active_id

Flash location where the newest data is, internal state

uint8_t f_align

writes to flash have to aligned to this, internal state

1356 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

const struct flash_area *fap

Flash area used by the fcb instance, , internal state. This can be transfer to FCB user

uint8_t f_erase_value

The value flash takes when it is erased. This is read from flash parameters and initialized
upon call to fcb_init.

API functions

group fcb_api

Flash Circular Buffer APIs.

Typedefs

typedef int (*fcb_walk_cb)(struct fcb_entry_ctx *loc_ctx, void *arg)

FCB Walk callback function type.

Type of function which is expected to be called while walking over fcb entries thanks to a
fcb_walk call.

Entry data can be read using flash_area_read(), using loc_ctx fields as arguments. If cb wants
to stop the walk, it should return non-zero value.

Param loc_ctx [in] entry location information (full context)

Param arg [inout] callback context, transferred from fcb_walk.

Return 0 continue walking, non-zero stop walking.

Functions

int fcb_init(int f_area_id, struct fcb *fcb)

Initialize FCB instance.

Parameters

• f_area_id – [in] ID of flash area where fcb storage resides.

• fcb – [inout] FCB instance structure.

Returns 0 on success, non-zero on failure.

int fcb_append(struct fcb *fcb, uint16_t len, struct fcb_entry *loc)

Appends an entry to circular buffer.

When writing the contents for the entry, use loc->fe_sector and loc->fe_data_off with
flash_area_write() to fcb flash_area. When you’re finished, call fcb_append_finish() with loc as
argument.

Parameters

• fcb – [in] FCB instance structure.

• len – [in] Length of data which are expected to be written as the entry payload.

• loc – [out] entry location information

Returns 0 on success, non-zero on failure.

7.26. Storage 1357

Zephyr Project Documentation, Release 2.7.0-rc2

int fcb_append_finish(struct fcb *fcb, struct fcb_entry *append_loc)

Finishes entry append operation.

Parameters

• fcb – [in] FCB instance structure.

• append_loc – [in] entry location information

Returns 0 on success, non-zero on failure.

int fcb_walk(struct fcb *fcb, struct flash_sector *sector, fcb_walk_cb cb, void *cb_arg)

Walk over all entries in the FCB sector

Parameters

• sector – [in] fcb sector to be walked. If null, traverse entire storage.

• fcb – [in] FCB instance structure.

• cb – [in] pointer to the function which gets called for every entry. If cb wants
to stop the walk, it should return non-zero value.

• cb_arg – [inout] callback context, transferred to the callback implementation.

Returns 0 on success, negative on failure (or transferred form callback return-value),
positive transferred form callback return-value

int fcb_getnext(struct fcb *fcb, struct fcb_entry *loc)

Get next fcb entry location.

Function to obtain fcb entry location in relation to entry pointed by

loc. If loc->fe_sector is set and loc->fe_elem_off is not 0 function fetches next fcb entry
location. If loc->fe_sector is NULL function fetches the oldest entry location within FCB
storage. loc->fe_sector is set and loc->fe_elem_off is 0 function fetches the first entry location
in the fcb sector.

Parameters

• fcb – [in] FCB instance structure.

• loc – [inout] entry location information

Returns 0 on success, non-zero on failure.

int fcb_rotate(struct fcb *fcb)

int fcb_append_to_scratch(struct fcb *fcb)

int fcb_free_sector_cnt(struct fcb *fcb)

Get free sector count.

Parameters

• fcb – [in] FCB instance structure.

Returns Number of free sectors.

int fcb_is_empty(struct fcb *fcb)

Check whether FCB has any data.

Parameters

• fcb – [in] FCB instance structure.

Returns Positive value if fcb is empty, otherwise 0.

1358 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

int fcb_offset_last_n(struct fcb *fcb, uint8_t entries, struct fcb_entry *last_n_entry)

Finds the fcb entry that gives back up to n entries at the end.

Parameters

• fcb – [in] FCB instance structure.

• entries – [in] number of fcb entries the user wants to get

• last_n_entry – [out] last_n_entry the fcb_entry to be returned

Returns 0 on there are any fcbs available; -ENOENT otherwise

int fcb_clear(struct fcb *fcb)

Clear fcb instance storage.

Parameters

• fcb – [in] FCB instance structure.

Returns 0 on success; non-zero on failure

7.26.5 Stream Flash

The Stream Flash module takes contiguous fragments of a stream of data (e.g. from radio packets),
aggregates them into a user-provided buffer, then when the buffer fills (or stream ends) writes it to
a raw flash partition. It supports providing the read-back buffer to the client to use in validating the
persisted stream content.

One typical use of a stream write operation is when receiving a new firmware image to be used in a DFU
operation.

There are several reasons why one might want to use buffered writes instead of writing the data directly
as it is made available. Some devices have hardware limitations which does not allow flash writes to
be performed in parallell with other operations, such as radio RX and TX. Also, fewer write operations
result in faster response times seen from the application.

Persistent stream write progress

Some stream write operations, such as DFU operations, may run for a long time. When performing such
long running operations it can be useful to be able to save the stream write progress to persistent storage
so that the operation can resume at the same point after an unexpected interruption.

The Stream Flash module offers an API for loading, saving and clearing stream write progress
to persistent storage using the Settings module. The API can be enabled using :kcon-
fig:`CONFIG_STREAM_FLASH_PROGRESS`.

API Reference

group stream_flash

Abstraction over stream writes to flash.

Typedefs

7.26. Storage 1359

Zephyr Project Documentation, Release 2.7.0-rc2

typedef int (*stream_flash_callback_t)(uint8_t *buf, size_t len, size_t offset)

Signature for callback invoked after flash write completes.

Functions of this type are invoked with a buffer containing data read back from the flash after
a flash write has completed. This enables verifying that the data has been correctly stored
(for instance by using a SHA function). The write buffer ‘buf’ provided in stream_flash_init is
used as a read buffer for this purpose.

Param buf Pointer to the data read.

Param len The length of the data read.

Param offset The offset the data was read from.

Functions

int stream_flash_init(struct stream_flash_ctx *ctx, const struct device *fdev, uint8_t *buf, size_t
buf_len, size_t offset, size_t size, stream_flash_callback_t cb)

Initialize context needed for stream writes to flash.

Parameters

• ctx – context to be initialized

• fdev – Flash device to operate on

• buf – Write buffer

• buf_len – Length of write buffer. Can not be larger than the page size. Must
be multiple of the flash device write-block-size.

• offset – Offset within flash device to start writing to

• size – Number of bytes available for performing buffered write. If this is ‘0’,
the size will be set to the total size of the flash device minus the offset.

• cb – Callback to be invoked on completed flash write operations.

Returns non-negative on success, negative errno code on fail

size_t stream_flash_bytes_written(struct stream_flash_ctx *ctx)

Read number of bytes written to the flash.

Note: api-tags: pre-kernel-ok isr-ok

Parameters

• ctx – context

Returns Number of payload bytes written to flash.

int stream_flash_buffered_write(struct stream_flash_ctx *ctx, const uint8_t *data, size_t len,
bool flush)

Process input buffers to be written to flash device in single blocks. Will store remainder
between calls.

A final call to this function with flush set to true will write out the remaining block buffer to
flash.

Parameters

• ctx – context

• data – data to write

1360 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• len – Number of bytes to write

• flush – when true this forces any buffered data to be written to flash A flush
write should be the last write operation in a sequence of write operations for
given context (although this is not mandatory if the total data size is a multiple
of the buffer size).

Returns non-negative on success, negative errno code on fail

int stream_flash_erase_page(struct stream_flash_ctx *ctx, off_t off)

Erase the flash page to which a given offset belongs.

This function erases a flash page to which an offset belongs if this page is not the page previ-
ously erased by the provided ctx (ctx->last_erased_page_start_offset).

Parameters

• ctx – context

• off – offset from the base address of the flash device

Returns non-negative on success, negative errno code on fail

int stream_flash_progress_load(struct stream_flash_ctx *ctx, const char *settings_key)

Load persistent stream write progress stored with key settings_key .

This function should be called directly after stream_flash_init to load previous stream write
progress before writing any data. If the loaded progress has fewer bytes written than ctx then
it will be ignored.

Parameters

• ctx – context

• settings_key – key to use with the settings module for loading the stream
write progress

Returns non-negative on success, negative errno code on fail

int stream_flash_progress_save(struct stream_flash_ctx *ctx, const char *settings_key)

Save persistent stream write progress using key settings_key .

Parameters

• ctx – context

• settings_key – key to use with the settings module for storing the stream
write progress

Returns non-negative on success, negative errno code on fail

int stream_flash_progress_clear(struct stream_flash_ctx *ctx, const char *settings_key)

Clear persistent stream write progress stored with key settings_key .

Parameters

• ctx – context

• settings_key – key previously used for storing the stream write progress

Returns non-negative on success, negative errno code on fail

struct stream_flash_ctx

#include <stream_flash.h> Structure for stream flash context.

Users should treat these structures as opaque values and only interact with them through the
below API.

7.26. Storage 1361

Zephyr Project Documentation, Release 2.7.0-rc2

7.27 Task Watchdog

7.27.1 Overview

Many microcontrollers feature a hardware watchdog timer peripheral. Its purpose is to trigger an action
(usually a system reset) in case of severe software malfunctions. Once initialized, the watchdog timer
has to be restarted (“fed”) in regular intervals to prevent it from timing out. If the software got stuck and
does not manage to feed the watchdog anymore, the corrective action is triggered to bring the system
back to normal operation.

In real-time operating systems with multiple tasks running in parallel, a single watchdog instance may
not be sufficient anymore, as it can be used for only one task. This software watchdog based on kernel
timers provides a method to supervise multiple threads or tasks (called watchdog channels).

An existing hardware watchdog can be used as an optional fallback if the task watchdog itself or the
scheduler has a malfunction.

The task watchdog uses a kernel timer as its backend. If configured properly, the timer ISR is never
actually called during normal operation, as the timer is continuously updated in the feed calls.

It’s currently not possible to have multiple instances of task watchdogs. Instead, the task watchdog API
can be accessed globally to add or delete new channels without passing around a context or device
pointer in the firmware.

The maximum number of channels is predefined via Kconfig and should be adjusted to match exactly the
number of channels required by the application.

7.27.2 Configuration Options

Related configuration options can be found under subsys/task_wdt/Kconfig.

• :kconfig:`CONFIG_TASK_WDT`

• :kconfig:`CONFIG_TASK_WDT_CHANNELS`

• :kconfig:`CONFIG_TASK_WDT_HW_FALLBACK`

• :kconfig:`CONFIG_TASK_WDT_MIN_TIMEOUT`

• :kconfig:`CONFIG_TASK_WDT_HW_FALLBACK_DELAY`

7.27.3 API Reference

group task_wdt_api

Task Watchdog APIs.

Typedefs

typedef void (*task_wdt_callback_t)(int channel_id, void *user_data)

Task watchdog callback.

Functions

1362 Chapter 7. API Reference

https://github.com/zephyrproject-rtos/zephyr/blob/main/subsys/task_wdt/Kconfig

Zephyr Project Documentation, Release 2.7.0-rc2

int task_wdt_init(const struct device *hw_wdt)

Initialize task watchdog.

This function sets up necessary kernel timers and the hardware watchdog (if desired as fall-
back). It has to be called before task_wdt_add() and task_wdt_feed().

Parameters

• hw_wdt – Pointer to the hardware watchdog device used as fallback. Pass NULL
if no hardware watchdog fallback is desired.

Return values

• 0 – If successful.

• -ENOTSUP – If assigning a hardware watchdog is not supported.

int task_wdt_add(uint32_t reload_period, task_wdt_callback_t callback, void *user_data)

Install new timeout.

Adds a new timeout to the list of task watchdog channels.

Parameters

• reload_period – Period in milliseconds used to reset the timeout

• callback – Function to be called when watchdog timer expired. Pass NULL to
use system reset handler.

• user_data – User data to associate with the watchdog channel.

Return values

• channel_id – If successful, a non-negative value indicating the index of the
channel to which the timeout was assigned. This ID is supposed to be used as
the parameter in calls to task_wdt_feed().

• -EINVAL – If the reload_period is invalid.

• -ENOMEM – If no more timeouts can be installed.

int task_wdt_delete(int channel_id)

Delete task watchdog channel.

Deletes the specified channel from the list of task watchdog channels. The channel is now
available again for other tasks via task_wdt_add() function.

Parameters

• channel_id – Index of the channel as returned by task_wdt_add().

Return values

• 0 – If successful.

• -EINVAL – If there is no installed timeout for supplied channel.

int task_wdt_feed(int channel_id)

Feed specified watchdog channel.

This function loops through all installed task watchdogs and updates the internal kernel timer
used as for the software watchdog with the next due timeout.

Parameters

• channel_id – Index of the fed channel as returned by task_wdt_add().

Return values

• 0 – If successful.

• -EINVAL – If there is no installed timeout for supplied channel.

7.27. Task Watchdog 1363

Zephyr Project Documentation, Release 2.7.0-rc2

7.28 Time Utilities

7.28.1 Overview

Uptime in Zephyr is based on the a tick counter. With the default :kcon-
fig:`CONFIG_TICKLESS_KERNEL` this counter advances at a nominally constant rate from zero at the
instant the system started. The POSIX equivalent to this counter is something like CLOCK_MONOTONIC or,
in Linux, CLOCK_MONOTONIC_RAW. k_uptime_get() provides a millisecond representation of this time.

Applications often need to correlate the Zephyr internal time with external time scales used in daily life,
such as local time or Coordinated Universal Time. These systems interpret time in different ways and
may have discontinuities due to leap seconds and local time offsets like daylight saving time.

Because of these discontinuities, as well as significant inaccuracies in the clocks underlying the cycle
counter, the offset between time estimated from the Zephyr clock and the actual time in a “real” civil
time scale is not constant and can vary widely over the runtime of a Zephyr application.

The time utilities API supports:

• converting between time representations

• synchronizing and aligning time scales

For terminology and concepts that support these functions see Concepts Underlying Time Support in
Zephyr.

7.28.2 Time Utility APIs

Representation Transformation

Time scale instants can be represented in multiple ways including:

• Seconds since an epoch. POSIX representations of time in this form include time_t and struct
timespec, which are generally interpreted as a representation of “UNIX Time”.

• Calendar time as a year, month, day, hour, minutes, and seconds relative to an epoch. POSIX
representations of time in this form include struct tm.

Keep in mind that these are simply time representations that must be interpreted relative to a time scale
which may be local time, UTC, or some other continuous or discontinuous scale.

Some necessary transformations are available in standard C library routines. For example, time_t mea-
suring seconds since the POSIX EPOCH is converted to struct tm representing calendar time with gm-
time(). Sub-second timestamps like struct timespec can also use this to produce the calendar time
representation and deal with sub-second offsets separately.

The inverse transformation is not standardized: APIs like mktime() expect information about time zones.
Zephyr provides this transformation with timeutil_timegm() and timeutil_timegm64() .

group timeutil_repr_apis

Functions

int64_t timeutil_timegm64(const struct tm *tm)

Convert broken-down time to a POSIX epoch offset in seconds.

See also:

http://man7.org/linux/man-pages/man3/timegm.3.html

1364 Chapter 7. API Reference

https://what-if.xkcd.com/26/
https://tools.ietf.org/html/rfc8536#section-2
https://pubs.opengroup.org/onlinepubs/9699919799/functions/gmtime.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/gmtime.html
http://man7.org/linux/man-pages/man3/timegm.3.html

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• tm – pointer to broken down time.

Returns the corresponding time in the POSIX epoch time scale.

time_t timeutil_timegm(const struct tm *tm)

Convert broken-down time to a POSIX epoch offset in seconds.

See also:

http://man7.org/linux/man-pages/man3/timegm.3.html

Parameters

• tm – pointer to broken down time.

Returns the corresponding time in the POSIX epoch time scale. If the time cannot
be represented then (time_t)-1 is returned and errno is set to ERANGE`.

Time Scale Synchronization

There are several factors that affect synchronizing time scales:

• The rate of discrete instant representation change. For example Zephyr up-
time is tracked in ticks which advance at events that nominally occur at :kcon-
fig:`CONFIG_SYS_CLOCK_TICKS_PER_SEC` Hertz, while an external time source may provide
data in whole or fractional seconds (e.g. microseconds).

• The absolute offset required to align the two scales at a single instant.

• The relative error between observable instants in each scale, required to align multiple instants
consistently. For example a reference clock that’s conditioned by a 1-pulse-per-second GPS signal
will be much more accurate than a Zephyr system clock driven by a RC oscillator with a +/- 250
ppm error.

Synchronization or alignment between time scales is done with a multi-step process:

• An instant in a time scale is represented by an (unsigned) 64-bit integer, assumed to advance at a
fixed nominal rate.

• timeutil_sync_config records the nominal rates of a reference time scale/source (e.g. TAI) and
a local time source (e.g. k_uptime_ticks()).

• timeutil_sync_instant records the representation of a single instant in both the reference and
local time scales.

• timeutil_sync_state provides storage for an initial instant, a recently received second observa-
tion, and a skew that can adjust for relative errors in the actual rate of each time scale.

• timeutil_sync_ref_from_local() and timeutil_sync_local_from_ref() convert instants in
one time scale to another taking into account skew that can be estimated from the two instances
stored in the state structure by timeutil_sync_estimate_skew() .

group timeutil_sync_apis

Functions

7.28. Time Utilities 1365

http://man7.org/linux/man-pages/man3/timegm.3.html

Zephyr Project Documentation, Release 2.7.0-rc2

int timeutil_sync_state_update(struct timeutil_sync_state *tsp, const struct
timeutil_sync_instant *inst)

Record a new instant in the time synchronization state.

Note that this updates only the latest persisted instant. The skew is not adjusted automatically.

Parameters

• tsp – pointer to a timeutil_sync_state object.

• inst – the new instant to be recorded. This becomes the base instant if there
is no base instant, otherwise the value must be strictly after the base instant in
both the reference and local time scales.

Return values

• 0 – if installation succeeded in providing a new base

• 1 – if installation provided a new latest instant

• -EINVAL – if the new instant is not compatible with the base instant

int timeutil_sync_state_set_skew(struct timeutil_sync_state *tsp, float skew, const struct
timeutil_sync_instant *base)

Update the state with a new skew and possibly base value.

Set the skew from a value retrieved from persistent storage, or calculated based on recent
skew estimations including from timeutil_sync_estimate_skew().

Optionally update the base timestamp. If the base is replaced the latest instant will be cleared
until timeutil_sync_state_update() is invoked.

Parameters

• tsp – pointer to a time synchronization state.

• skew – the skew to be used. The value must be positive and shouldn’t be too
far away from 1.

• base – optional new base to be set. If provided this becomes the base times-
tamp that will be used along with skew to convert between reference and local
timescale instants. Setting the base clears the captured latest value.

Returns 0 if skew was updated

Returns -EINVAL if skew was not valid

float timeutil_sync_estimate_skew(const struct timeutil_sync_state *tsp)

Estimate the skew based on current state.

Using the base and latest syncpoints from the state determine the skew of the local clock
relative to the reference clock. See timeutil_sync_state::skew.

Parameters

• tsp – pointer to a time synchronization state. The base and latest syncpoints
must be present and the latest syncpoint must be after the base point in the
local time scale.

Returns the estimated skew, or zero if skew could not be estimated.

int timeutil_sync_ref_from_local(const struct timeutil_sync_state *tsp, uint64_t local,
uint64_t *refp)

Interpolate a reference timescale instant from a local instant.

Parameters

• tsp – pointer to a time synchronization state. This must have a base and a
skew installed.

1366 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• local – an instant measured in the local timescale. This may be before or after
the base instant.

• refp – where the corresponding instant in the reference timescale should be
stored. A negative interpolated reference time produces an error. If interpola-
tion fails the referenced object is not modified.

Return values

• 0 – if interpolated using a skew of 1

• 1 – if interpolated using a skew not equal to 1

• -EINVAL –

– the times synchronization state is not adequately initialized

– refp is null

• -ERANGE – the interpolated reference time would be negative

int timeutil_sync_local_from_ref(const struct timeutil_sync_state *tsp, uint64_t ref, int64_t
*localp)

Interpolate a local timescale instant from a reference instant.

Parameters

• tsp – pointer to a time synchronization state. This must have a base and a
skew installed.

• ref – an instant measured in the reference timescale. This may be before or
after the base instant.

• localp – where the corresponding instant in the local timescale should be
stored. An interpolated value before local time 0 is provided without error. If
interpolation fails the referenced object is not modified.

Return values

• 0 – if successful with a skew of 1

• 1 – if successful with a skew not equal to 1

• -EINVAL –

– the time synchronization state is not adequately initialized

– refp is null

int32_t timeutil_sync_skew_to_ppb(float skew)

Convert from a skew to an error in parts-per-billion.

A skew of 1.0 has zero error. A skew less than 1 has a positive error (clock is faster than it
should be). A skew greater than one has a negative error (clock is slower than it should be).

Note that due to the limited precision of float compared with double the smallest error that
can be represented is about 120 ppb. A “precise” time source may have error on the order of
2000 ppb.

A skew greater than 3.14748 may underflow the 32-bit representation; this represents a clock
running at less than 1/3 its nominal rate.

Returns skew error represented as parts-per-billion, or INT32_MIN if the skew can-
not be represented in the return type.

struct timeutil_sync_config

#include <timeutil.h> Immutable state for synchronizing two clocks.

Values required to convert durations between two time scales.

7.28. Time Utilities 1367

Zephyr Project Documentation, Release 2.7.0-rc2

Note: The accuracy of the translation and calculated skew between sources depends on
the resolution of these frequencies. A reference frequency with microsecond or nanosecond
resolution would produce the most accurate tracking when the local reference is the Zephyr
tick counter. A reference source like an RTC chip with 1 Hz resolution requires a much larger
interval between sampled instants to detect relative clock drift.

Public Members

uint32_t ref_Hz

The nominal instance counter rate in Hz.

This value is assumed to be precise, but may drift depending on the reference clock source.

The value must be positive.

uint32_t local_Hz

The nominal local counter rate in Hz.

This value is assumed to be inaccurate but reasonably stable. For a local clock driven by a
crystal oscillator an error of 25 ppm is common; for an RC oscillator larger errors should
be expected. The timeutil_sync infrastructure can calculate the skew between the local
and reference clocks and apply it when converting between time scales.

The value must be positive.

struct timeutil_sync_instant

#include <timeutil.h> Representation of an instant in two time scales.

Capturing the same instant in two time scales provides a registration point that can be used
to convert between those time scales.

Public Members

uint64_t ref

An instant in the reference time scale.

This must never be zero in an initialized timeutil_sync_instant object.

uint64_t local

The corresponding instance in the local time scale.

This may be zero in a valid timeutil_sync_instant object.

struct timeutil_sync_state

#include <timeutil.h> State required to convert instants between time scales.

This state in conjunction with functions that manipulate it capture the offset information
necessary to convert between two timescales along with information that corrects for skew
due to inaccuracies in clock rates.

State objects should be zero-initialized before use.

1368 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Public Members

const struct timeutil_sync_config *cfg

Pointer to reference and local rate information.

struct timeutil_sync_instant base

The base instant in both time scales.

struct timeutil_sync_instant latest

The most recent instant in both time scales.

This is captured here to provide data for skew calculation.

float skew

The scale factor used to correct for clock skew.

The nominal rate for the local counter is assumed to be inaccurate but stable, i.e. it will
generally be some parts-per-million faster or slower than specified.

A duration in observed local clock ticks must be multiplied by this value to produce a
duration in ticks of a clock operating at the nominal local rate.

A zero value indicates that the skew has not been initialized. If the value is zero when
base is initialized the skew will be set to 1. Otherwise the skew is assigned through
timeutil_sync_state_set_skew().

7.28.3 Concepts Underlying Time Support in Zephyr

Terms from ISO/TC 154/WG 5 N0038 (ISO/WD 8601-1) and elsewhere:

• A time axis is a representation of time as an ordered sequence of instants.

• A time scale is a way of representing an instant relative to an origin that serves as the epoch.

• A time scale is monotonic (increasing) if the representation of successive time instants never de-
creases in value.

• A time scale is continuous if the representation has no abrupt changes in value, e.g. jumping
forward or back when going between successive instants.

• Civil time generally refers to time scales that legally defined by civil authorities, like local govern-
ments, often to align local midnight to solar time.

Relevant Time Scales

International Atomic Time (TAI) is a time scale based on averaging clocks that count in SI seconds. TAI
is a montonic and continuous time scale.

Universal Time (UT) is a time scale based on Earth’s rotation. UT is a discontinuous time scale as it
requires occasional adjustments (leap seconds) to maintain alignment to changes in Earth’s rotation.
Thus the difference between TAI and UT varies over time. There are several variants of UT, with UTC
being the most common.

UT times are independent of location. UT is the basis for Standard Time (or “local time”) which is the
time at a particular location. Standard time has a fixed offset from UT at any given instant, primarily
influenced by longitude, but the offset may be adjusted (“daylight saving time”) to align standard time
to the local solar time. In a sense local time is “more discontinuous” than UT.

7.28. Time Utilities 1369

https://www.loc.gov/standards/datetime/iso-tc154-wg5_n0038_iso_wd_8601-1_2016-02-16.pdf
https://en.wikipedia.org/wiki/Civil_time
https://en.wikipedia.org/wiki/International_Atomic_Time
https://en.wikipedia.org/wiki/Universal_Time
https://en.wikipedia.org/wiki/Leap_second
https://en.wikipedia.org/wiki/Coordinated_Universal_Time

Zephyr Project Documentation, Release 2.7.0-rc2

POSIX Time is a time scale that counts seconds since the “POSIX epoch” at 1970-01-01T00:00:00Z
(i.e. the start of 1970 UTC). UNIX Time is an extension of POSIX time using negative values to rep-
resent times before the POSIX epoch. Both of these scales assume that every day has exactly 86400
seconds. In normal use instants in these scales correspond to times in the UTC scale, so they inherit the
discontinuity.

The continuous analogue is UNIX Leap Time which is UNIX time plus all leap-second corrections added
after the POSIX epoch (when TAI-UTC was 8 s).

Example of Time Scale Differences A positive leap second was introduced at the end of 2016, in-
creasing the difference between TAI and UTC from 36 seconds to 37 seconds. There was no leap second
introduced at the end of 1999, when the difference between TAI and UTC was only 32 seconds. The
following table shows relevant civil and epoch times in several scales:

UTC Date UNIX time TAI Date TAI-UTC UNIX Leap Time
1970-01-01T00:00:00Z 0 1970-01-01T00:00:08 +8 0
1999-12-31T23:59:28Z 946684768 2000-01-01T00:00:00 +32 946684792
1999-12-31T23:59:59Z 946684799 2000-01-01T00:00:31 +32 946684823
2000-01-01T00:00:00Z 946684800 2000-01-01T00:00:32 +32 946684824
2016-12-31T23:59:59Z 1483228799 2017-01-01T00:00:35 +36 1483228827
2016-12-31T23:59:60Z undefined 2017-01-01T00:00:36 +36 1483228828
2017-01-01T00:00:00Z 1483228800 2017-01-01T00:00:37 +37 1483228829

Functional Requirements The Zephyr tick counter has no concept of leap seconds or standard time
offsets and is a continuous time scale. However it can be relatively inaccurate, with drifts as much as
three minutes per hour (assuming an RC timer with 5% tolerance).

There are two stages required to support conversion between Zephyr time and common human time
scales:

• Translation between the continuous but inaccurate Zephyr time scale and an accurate external
stable time scale;

• Translation between the stable time scale and the (possibly discontinuous) civil time scale.

The API around timeutil_sync_state_update() supports the first step of converting between contin-
uous time scales.

The second step requires external information including schedules of leap seconds and local time offset
changes. This may be best provided by an external library, and is not currently part of the time utility
APIs.

Selecting an External Source and Time Scale If an application requires civil time accuracy within
several seconds then UTC could be used as the stable time source. However, if the external source
adjusts to a leap second there will be a discontinuity: the elapsed time between two observations taken
at 1 Hz is not equal to the numeric difference between their timestamps.

For precise activities a continuous scale that is independent of local and solar adjustments simplifies
things considerably. Suitable continuous scales include:

• GPS time: epoch of 1980-01-06T00:00:00Z, continuous following TAI with an offset of TAI-
GPS=19 s.

• Bluetooth mesh time: epoch of 2000-01-01T00:00:00Z, continuous following TAI with an offset of
-32.

• UNIX Leap Time: epoch of 1970-01-01T00:00:00Z, continuous following TAI with an offset of -8.

Because C and Zephyr library functions support conversion between integral and calendar time repre-
sentations using the UNIX epoch, UNIX Leap Time is an ideal choice for the external time scale.

1370 Chapter 7. API Reference

https://tools.ietf.org/html/rfc8536#section-2
https://tools.ietf.org/html/rfc8536#section-2
https://tools.ietf.org/html/rfc8536#section-2

Zephyr Project Documentation, Release 2.7.0-rc2

The mechanism used to populate synchronization points is not relevant: it may involve reading from
a local high-precision RTC peripheral, exchanging packets over a network using a protocol like NTP or
PTP, or processing NMEA messages received a GPS with or without a 1pps signal.

7.29 USB device stack

• USB Vendor and Product identifiers

• USB device controller drivers

– USB Device Controller API

• USB device core layer

– USB Device Core Layer API

• USB device class drivers

– Implementing non standard USB class

• Testing USB over USP/IP in native_posix

• USB Human Interface Devices (HID) support

– HID Item helpers

– HID Mouse and Keyboard report descriptors

• HID Class Device API

7.29.1 USB Vendor and Product identifiers

The USB Vendor ID for the Zephyr project is 0x2FE3. The default USB Product ID for the Zephyr project
is 0x100. The USB bcdDevice Device Release Number represents the Zephyr kernel major and minor
versions as a binary coded decimal value. When a vendor integrates the Zephyr USB subsystem into a
product, the vendor must use the USB Vendor and Product ID assigned to them. A vendor integrating
the Zephyr USB subsystem in a product must not use the Vendor ID of the Zephyr project.

The USB maintainer, if one is assigned, or otherwise the Zephyr Technical Steering Committee, may
allocate other USB Product IDs based on well-motivated and documented requests.

Each USB sample has its own unique Product ID. When adding a new sample, add a new entry in
samples/subsys/usb/usb_pid.Kconfig and a Kconfig file inside your sample subdirectory. The follow-
ing Product IDs are currently used:

• :kconfig:`CONFIG_USB_PID_CDC_ACM_SAMPLE`

• :kconfig:`CONFIG_USB_PID_CDC_ACM_COMPOSITE_SAMPLE`

• :kconfig:`CONFIG_USB_PID_HID_CDC_SAMPLE`

• :kconfig:`CONFIG_USB_PID_CONSOLE_SAMPLE`

• :kconfig:`CONFIG_USB_PID_DFU_SAMPLE`

• :kconfig:`CONFIG_USB_PID_HID_SAMPLE`

• :kconfig:`CONFIG_USB_PID_HID_MOUSE_SAMPLE`

• :kconfig:`CONFIG_USB_PID_MASS_SAMPLE`

• :kconfig:`CONFIG_USB_PID_TESTUSB_SAMPLE`

• :kconfig:`CONFIG_USB_PID_WEBUSB_SAMPLE`

7.29. USB device stack 1371

Zephyr Project Documentation, Release 2.7.0-rc2

• :kconfig:`CONFIG_USB_PID_BLE_HCI_H4_SAMPLE`

7.29.2 USB device controller drivers

The Device Controller Driver Layer implements the low level control routines to deal directly with the
hardware. All device controller drivers should implement the APIs described in file usb_dc.h. This allows
the integration of new USB device controllers to be done without changing the upper layers.

USB Device Controller API

group _usb_device_controller_api

USB Device Controller API.

Typedefs

typedef void (*usb_dc_ep_callback)(uint8_t ep, enum usb_dc_ep_cb_status_code cb_status)

Callback function signature for the USB Endpoint status

typedef void (*usb_dc_status_callback)(enum usb_dc_status_code cb_status, const uint8_t
*param)

Callback function signature for the device

Enums

enum usb_dc_status_code

USB Driver Status Codes.

Status codes reported by the registered device status callback.

Values:

enumerator USB_DC_ERROR

USB error reported by the controller

enumerator USB_DC_RESET

USB reset

enumerator USB_DC_CONNECTED

USB connection established, hardware enumeration is completed

enumerator USB_DC_CONFIGURED

USB configuration done

enumerator USB_DC_DISCONNECTED

USB connection lost

enumerator USB_DC_SUSPEND

USB connection suspended by the HOST

1372 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator USB_DC_RESUME

USB connection resumed by the HOST

enumerator USB_DC_INTERFACE

USB interface selected

enumerator USB_DC_SET_HALT

Set Feature ENDPOINT_HALT received

enumerator USB_DC_CLEAR_HALT

Clear Feature ENDPOINT_HALT received

enumerator USB_DC_SOF

Start of Frame received

enumerator USB_DC_UNKNOWN

Initial USB connection status

enum usb_dc_ep_cb_status_code

USB Endpoint Callback Status Codes.

Status Codes reported by the registered endpoint callback.

Values:

enumerator USB_DC_EP_SETUP

SETUP received

enumerator USB_DC_EP_DATA_OUT

Out transaction on this EP, data is available for read

enumerator USB_DC_EP_DATA_IN

In transaction done on this EP

enum usb_dc_ep_transfer_type

USB Endpoint Transfer Type.

Values:

enumerator USB_DC_EP_CONTROL = 0

Control type endpoint

enumerator USB_DC_EP_ISOCHRONOUS

Isochronous type endpoint

enumerator USB_DC_EP_BULK

Bulk type endpoint

enumerator USB_DC_EP_INTERRUPT

Interrupt type endpoint

7.29. USB device stack 1373

Zephyr Project Documentation, Release 2.7.0-rc2

enum usb_dc_ep_synchronozation_type

USB Endpoint Synchronization Type.

Note: Valid only for Isochronous Endpoints

Values:

enumerator USB_DC_EP_NO_SYNCHRONIZATION = (0U << 2U)

No Synchronization

enumerator USB_DC_EP_ASYNCHRONOUS = (1U << 2U)

Asynchronous

enumerator USB_DC_EP_ADAPTIVE = (2U << 2U)

Adaptive

enumerator USB_DC_EP_SYNCHRONOUS = (3U << 2U)

Synchronous

Functions

int usb_dc_attach(void)

Attach USB for device connection.

Function to attach USB for device connection. Upon success, the USB PLL is enabled, and the
USB device is now capable of transmitting and receiving on the USB bus and of generating
interrupts.

Returns 0 on success, negative errno code on fail.

int usb_dc_detach(void)

Detach the USB device.

Function to detach the USB device. Upon success, the USB hardware PLL is powered down
and USB communication is disabled.

Returns 0 on success, negative errno code on fail.

int usb_dc_reset(void)

Reset the USB device.

This function returns the USB device and firmware back to it’s initial state. N.B. the USB PLL
is handled by the usb_detach function

Returns 0 on success, negative errno code on fail.

int usb_dc_set_address(const uint8_t addr)

Set USB device address.

Parameters

• addr – [in] Device address

Returns 0 on success, negative errno code on fail.

1374 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

void usb_dc_set_status_callback(const usb_dc_status_callback cb)

Set USB device controller status callback.

Function to set USB device controller status callback. The registered callback is used to re-
port changes in the status of the device controller. The status code are described by the
usb_dc_status_code enumeration.

Parameters

• cb – [in] Callback function

int usb_dc_ep_check_cap(const struct usb_dc_ep_cfg_data *const cfg)

check endpoint capabilities

Function to check capabilities of an endpoint. usb_dc_ep_cfg_data structure provides the end-
point configuration parameters: endpoint address, endpoint maximum packet size and end-
point type. The driver should check endpoint capabilities and return 0 if the endpoint config-
uration is possible.

Parameters

• cfg – [in] Endpoint config

Returns 0 on success, negative errno code on fail.

int usb_dc_ep_configure(const struct usb_dc_ep_cfg_data *const cfg)

Configure endpoint.

Function to configure an endpoint. usb_dc_ep_cfg_data structure provides the endpoint con-
figuration parameters: endpoint address, endpoint maximum packet size and endpoint type.

Parameters

• cfg – [in] Endpoint config

Returns 0 on success, negative errno code on fail.

int usb_dc_ep_set_stall(const uint8_t ep)

Set stall condition for the selected endpoint.

Parameters

• ep – [in] Endpoint address corresponding to the one listed in the device con-
figuration table

Returns 0 on success, negative errno code on fail.

int usb_dc_ep_clear_stall(const uint8_t ep)

Clear stall condition for the selected endpoint.

Parameters

• ep – [in] Endpoint address corresponding to the one listed in the device con-
figuration table

Returns 0 on success, negative errno code on fail.

int usb_dc_ep_is_stalled(const uint8_t ep, uint8_t *const stalled)

Check if the selected endpoint is stalled.

Parameters

• ep – [in] Endpoint address corresponding to the one listed in the device con-
figuration table

• stalled – [out] Endpoint stall status

Returns 0 on success, negative errno code on fail.

7.29. USB device stack 1375

Zephyr Project Documentation, Release 2.7.0-rc2

int usb_dc_ep_halt(const uint8_t ep)

Halt the selected endpoint.

Parameters

• ep – [in] Endpoint address corresponding to the one listed in the device con-
figuration table

Returns 0 on success, negative errno code on fail.

int usb_dc_ep_enable(const uint8_t ep)

Enable the selected endpoint.

Function to enable the selected endpoint. Upon success interrupts are enabled for the corre-
sponding endpoint and the endpoint is ready for transmitting/receiving data.

Parameters

• ep – [in] Endpoint address corresponding to the one listed in the device con-
figuration table

Returns 0 on success, negative errno code on fail.

int usb_dc_ep_disable(const uint8_t ep)

Disable the selected endpoint.

Function to disable the selected endpoint. Upon success interrupts are disabled for the corre-
sponding endpoint and the endpoint is no longer able for transmitting/receiving data.

Parameters

• ep – [in] Endpoint address corresponding to the one listed in the device con-
figuration table

Returns 0 on success, negative errno code on fail.

int usb_dc_ep_flush(const uint8_t ep)

Flush the selected endpoint.

This function flushes the FIFOs for the selected endpoint.

Parameters

• ep – [in] Endpoint address corresponding to the one listed in the device con-
figuration table

Returns 0 on success, negative errno code on fail.

int usb_dc_ep_write(const uint8_t ep, const uint8_t *const data, const uint32_t data_len,
uint32_t *const ret_bytes)

Write data to the specified endpoint.

This function is called to write data to the specified endpoint. The supplied usb_ep_callback
function will be called when data is transmitted out.

Parameters

• ep – [in] Endpoint address corresponding to the one listed in the device con-
figuration table

• data – [in] Pointer to data to write

• data_len – [in] Length of the data requested to write. This may be zero for a
zero length status packet.

• ret_bytes – [out] Bytes scheduled for transmission. This value may be NULL
if the application expects all bytes to be written

Returns 0 on success, negative errno code on fail.

1376 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

int usb_dc_ep_read(const uint8_t ep, uint8_t *const data, const uint32_t max_data_len, uint32_t
*const read_bytes)

Read data from the specified endpoint.

This function is called by the endpoint handler function, after an OUT interrupt has been
received for that EP. The application must only call this function through the supplied
usb_ep_callback function. This function clears the ENDPOINT NAK, if all data in the end-
point FIFO has been read, so as to accept more data from host.

Parameters

• ep – [in] Endpoint address corresponding to the one listed in the device con-
figuration table

• data – [in] Pointer to data buffer to write to

• max_data_len – [in] Max length of data to read

• read_bytes – [out] Number of bytes read. If data is NULL and max_data_len
is 0 the number of bytes available for read should be returned.

Returns 0 on success, negative errno code on fail.

int usb_dc_ep_set_callback(const uint8_t ep, const usb_dc_ep_callback cb)

Set callback function for the specified endpoint.

Function to set callback function for notification of data received and available to application
or transmit done on the selected endpoint, NULL if callback not required by application code.
The callback status code is described by usb_dc_ep_cb_status_code.

Parameters

• ep – [in] Endpoint address corresponding to the one listed in the device con-
figuration table

• cb – [in] Callback function

Returns 0 on success, negative errno code on fail.

int usb_dc_ep_read_wait(uint8_t ep, uint8_t *data, uint32_t max_data_len, uint32_t
*read_bytes)

Read data from the specified endpoint.

This is similar to usb_dc_ep_read, the difference being that, it doesn’t clear the endpoint NAKs
so that the consumer is not bogged down by further upcalls till he is done with the processing
of the data. The caller should reactivate ep by invoking usb_dc_ep_read_continue() do so.

Parameters

• ep – [in] Endpoint address corresponding to the one listed in the device con-
figuration table

• data – [in] Pointer to data buffer to write to

• max_data_len – [in] Max length of data to read

• read_bytes – [out] Number of bytes read. If data is NULL and max_data_len
is 0 the number of bytes available for read should be returned.

Returns 0 on success, negative errno code on fail.

int usb_dc_ep_read_continue(uint8_t ep)

Continue reading data from the endpoint.

Clear the endpoint NAK and enable the endpoint to accept more data from the host. Usually
called after usb_dc_ep_read_wait() when the consumer is fine to accept more data. Thus these
calls together act as a flow control mechanism.

Parameters

7.29. USB device stack 1377

Zephyr Project Documentation, Release 2.7.0-rc2

• ep – [in] Endpoint address corresponding to the one listed in the device con-
figuration table

Returns 0 on success, negative errno code on fail.

int usb_dc_ep_mps(uint8_t ep)

Get endpoint max packet size.

Parameters

• ep – [in] Endpoint address corresponding to the one listed in the device con-
figuration table

Returns Enpoint max packet size (mps)

int usb_dc_wakeup_request(void)

Start the host wake up procedure.

Function to wake up the host if it’s currently in sleep mode.

Returns 0 on success, negative errno code on fail.

struct usb_dc_ep_cfg_data

#include <usb_dc.h> USB Endpoint Configuration.

Structure containing the USB endpoint configuration.

Public Members

uint8_t ep_addr

The number associated with the EP in the device configuration structure IN EP = 0x80 |
<endpoint number> OUT EP = 0x00 | <endpoint number>

uint16_t ep_mps

Endpoint max packet size

enum usb_dc_ep_transfer_type ep_type

Endpoint Transfer Type. May be Bulk, Interrupt, Control or Isochronous

7.29.3 USB device core layer

The USB Device core layer is a hardware independent interface between USB device controller driver
and USB device class drivers or customer applications. It’s a port of the LPCUSB device stack. It provides
the following functionalities:

• Responds to standard device requests and returns standard descriptors, essentially handling ‘Chap-
ter 9’ processing, specifically the standard device requests in table 9-3 from the universal serial bus
specification revision 2.0.

• Provides a programming interface to be used by USB device classes or customer applications. The
APIs are described in the usb_device.h file.

• Uses the APIs provided by the device controller drivers to interact with the USB device controller.

1378 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

USB Device Core Layer API

There are two ways to transmit data, using the ‘low’ level read/write API or the ‘high’ level transfer API.

Low level API To transmit data to the host, the class driver should call usb_write(). Upon completion the
registered endpoint callback will be called. Before sending another packet the class driver should
wait for the completion of the previous write. When data is received, the registered endpoint
callback is called. usb_read() should be used for retrieving the received data. For CDC ACM
sample driver this happens via the OUT bulk endpoint handler (cdc_acm_bulk_out) mentioned in
the endpoint array (cdc_acm_ep_data).

High level API The usb_transfer method can be used to transfer data to/from the host. The transfer
API will automatically split the data transmission into one or more USB transaction(s), depending
endpoint max packet size. The class driver does not have to implement endpoint callback and
should set this callback to the generic usb_transfer_ep_callback.

group _usb_device_core_api

USB Device Core Layer API.

Defines

USB_TRANS_READ

USB_TRANS_WRITE

USB_TRANS_NO_ZLP

Typedefs

typedef void (*usb_ep_callback)(uint8_t ep, enum usb_dc_ep_cb_status_code cb_status)

Callback function signature for the USB Endpoint status.

typedef int (*usb_request_handler)(struct usb_setup_packet *setup, int32_t *transfer_len,
uint8_t **payload_data)

Callback function signature for class specific requests.

Function which handles Class specific requests corresponding to an interface number specified
in the device descriptor table. For host to device direction the ‘len’ and ‘payload_data’ contain
the length of the received data and the pointer to the received data respectively. For device
to host class requests, ‘len’ and ‘payload_data’ should be set by the callback function with the
length and the address of the data to be transmitted buffer respectively.

typedef void (*usb_interface_config)(struct usb_desc_header *head, uint8_t
bInterfaceNumber)

Function for interface runtime configuration.

typedef void (*usb_transfer_callback)(uint8_t ep, int tsize, void *priv)

Callback function signature for transfer completion.

7.29. USB device stack 1379

Zephyr Project Documentation, Release 2.7.0-rc2

Functions

int usb_set_config(const uint8_t *usb_descriptor)

Configure USB controller.

Function to configure USB controller. Configuration parameters must be valid or an error is
returned

Parameters

• usb_descriptor – [in] USB descriptor table

Returns 0 on success, negative errno code on fail

int usb_deconfig(void)

Deconfigure USB controller.

This function returns the USB device to it’s initial state

Returns 0 on success, negative errno code on fail

int usb_enable(usb_dc_status_callback status_cb)

Enable the USB subsystem and associated hardware.

This function initializes the USB core subsystem and enables the corresponding hardware so
that it can begin transmitting and receiving on the USB bus, as well as generating interrupts.

Class-specific initialization and registration must be performed by the user before invoking
this, so that any data or events on the bus are processed correctly by the associated class
handling code.

Parameters

• status_cb – [in] Callback registered by user to notify about USB device con-
troller state.

Returns 0 on success, negative errno code on fail.

int usb_disable(void)

Disable the USB device.

Function to disable the USB device. Upon success, the specified USB interface is clock gated
in hardware, it is no longer capable of generating interrupts.

Returns 0 on success, negative errno code on fail

int usb_write(uint8_t ep, const uint8_t *data, uint32_t data_len, uint32_t *bytes_ret)

Write data to the specified endpoint.

Function to write data to the specified endpoint. The supplied usb_ep_callback will be called
when transmission is done.

Parameters

• ep – [in] Endpoint address corresponding to the one listed in the device con-
figuration table

• data – [in] Pointer to data to write

• data_len – [in] Length of data requested to write. This may be zero for a zero
length status packet.

• bytes_ret – [out] Bytes written to the EP FIFO. This value may be NULL if the
application expects all bytes to be written

Returns 0 on success, negative errno code on fail

1380 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

int usb_read(uint8_t ep, uint8_t *data, uint32_t max_data_len, uint32_t *ret_bytes)

Read data from the specified endpoint.

This function is called by the Endpoint handler function, after an OUT interrupt has been
received for that EP. The application must only call this function through the supplied
usb_ep_callback function.

Parameters

• ep – [in] Endpoint address corresponding to the one listed in the device con-
figuration table

• data – [in] Pointer to data buffer to write to

• max_data_len – [in] Max length of data to read

• ret_bytes – [out] Number of bytes read. If data is NULL and max_data_len is
0 the number of bytes available for read is returned.

Returns 0 on success, negative errno code on fail

int usb_ep_set_stall(uint8_t ep)

Set STALL condition on the specified endpoint.

This function is called by USB device class handler code to set stall condition on endpoint.

Parameters

• ep – [in] Endpoint address corresponding to the one listed in the device con-
figuration table

Returns 0 on success, negative errno code on fail

int usb_ep_clear_stall(uint8_t ep)

Clears STALL condition on the specified endpoint.

This function is called by USB device class handler code to clear stall condition on endpoint.

Parameters

• ep – [in] Endpoint address corresponding to the one listed in the device con-
figuration table

Returns 0 on success, negative errno code on fail

int usb_ep_read_wait(uint8_t ep, uint8_t *data, uint32_t max_data_len, uint32_t *read_bytes)

Read data from the specified endpoint.

This is similar to usb_ep_read, the difference being that, it doesn’t clear the endpoint NAKs so
that the consumer is not bogged down by further upcalls till he is done with the processing of
the data. The caller should reactivate ep by invoking usb_ep_read_continue() do so.

Parameters

• ep – [in] Endpoint address corresponding to the one listed in the device con-
figuration table

• data – [in] pointer to data buffer to write to

• max_data_len – [in] max length of data to read

• read_bytes – [out] Number of bytes read. If data is NULL and max_data_len
is 0 the number of bytes available for read should be returned.

Returns 0 on success, negative errno code on fail.

7.29. USB device stack 1381

Zephyr Project Documentation, Release 2.7.0-rc2

int usb_ep_read_continue(uint8_t ep)

Continue reading data from the endpoint.

Clear the endpoint NAK and enable the endpoint to accept more data from the host. Usually
called after usb_ep_read_wait() when the consumer is fine to accept more data. Thus these
calls together acts as flow control mechanism.

Parameters

• ep – [in] Endpoint address corresponding to the one listed in the device con-
figuration table

Returns 0 on success, negative errno code on fail.

void usb_transfer_ep_callback(uint8_t ep, enum usb_dc_ep_cb_status_code)
Transfer management endpoint callback.

If a USB class driver wants to use high-level transfer functions, driver needs to register this
callback as usb endpoint callback.

int usb_transfer(uint8_t ep, uint8_t *data, size_t dlen, unsigned int flags, usb_transfer_callback
cb, void *priv)

Start a transfer.

Start a usb transfer to/from the data buffer. This function is asynchronous and can be executed
in IRQ context. The provided callback will be called on transfer completion (or error) in thread
context.

Parameters

• ep – [in] Endpoint address corresponding to the one listed in the device con-
figuration table

• data – [in] Pointer to data buffer to write-to/read-from

• dlen – [in] Size of data buffer

• flags – [in] Transfer flags (USB_TRANS_READ, USB_TRANS_WRITE. . .)

• cb – [in] Function called on transfer completion/failure

• priv – [in] Data passed back to the transfer completion callback

Returns 0 on success, negative errno code on fail.

int usb_transfer_sync(uint8_t ep, uint8_t *data, size_t dlen, unsigned int flags)

Start a transfer and block-wait for completion.

Synchronous version of usb_transfer, wait for transfer completion before returning.

Parameters

• ep – [in] Endpoint address corresponding to the one listed in the device con-
figuration table

• data – [in] Pointer to data buffer to write-to/read-from

• dlen – [in] Size of data buffer

• flags – [in] Transfer flags

Returns number of bytes transferred on success, negative errno code on fail.

void usb_cancel_transfer(uint8_t ep)

Cancel any ongoing transfer on the specified endpoint.

Parameters

• ep – [in] Endpoint address corresponding to the one listed in the device con-
figuration table

1382 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Returns 0 on success, negative errno code on fail.

void usb_cancel_transfers(void)
Cancel all ongoing transfers.

bool usb_transfer_is_busy(uint8_t ep)
Check that transfer is ongoing for the endpoint.

Parameters

• ep – [in] Endpoint address corresponding to the one listed in the device con-
figuration table

Returns true if transfer is ongoing, false otherwise.

int usb_wakeup_request(void)
Start the USB remote wakeup procedure.

Function to request a remote wakeup. This feature must be enabled in configuration, other-
wise it will always return -ENOTSUP error.

Returns 0 on success, negative errno code on fail, i.e. when the bus is already active.

struct usb_ep_cfg_data

#include <usb_device.h> USB Endpoint Configuration.

This structure contains configuration for the endpoint.

Public Members

usb_ep_callback ep_cb

Callback function for notification of data received and available to application or transmit
done, NULL if callback not required by application code

uint8_t ep_addr

The number associated with the EP in the device configuration structure IN EP = 0x80 |
<endpoint number> OUT EP = 0x00 | <endpoint number>

struct usb_interface_cfg_data

#include <usb_device.h> USB Interface Configuration.

This structure contains USB interface configuration.

Public Members

usb_request_handler class_handler

Handler for USB Class specific Control (EP 0) communications

usb_request_handler vendor_handler

Handler for USB Vendor specific commands

usb_request_handler custom_handler

The custom request handler gets a first chance at handling the request before it is handed
over to the ‘chapter 9’ request handler. return 0 on success, -EINVAL if the request has not
been handled by the custom handler and instead needs to be handled by the core USB
stack. Any other error code to denote failure within the custom handler.

7.29. USB device stack 1383

Zephyr Project Documentation, Release 2.7.0-rc2

struct usb_cfg_data

#include <usb_device.h> USB device configuration.

The Application instantiates this with given parameters added using the “usb_set_config” func-
tion. Once this function is called changes to this structure will result in undefined behavior.
This structure may only be updated after calls to usb_deconfig

Public Members

const uint8_t *usb_device_description

USB device description, see http://www.beyondlogic.org/usbnutshell/usb5.shtml#
DeviceDescriptors

void *interface_descriptor

Pointer to interface descriptor

usb_interface_config interface_config

Function for interface runtime configuration

void (*cb_usb_status)(struct usb_cfg_data *cfg, enum usb_dc_status_code cb_status, const
uint8_t *param)

Callback to be notified on USB connection status change

struct usb_interface_cfg_data interface

USB interface (Class) handler and storage space

uint8_t num_endpoints

Number of individual endpoints in the device configuration

struct usb_ep_cfg_data *endpoint

Pointer to an array of endpoint structs of length equal to the number of EP associated
with the device description, not including control endpoints

7.29.4 USB device class drivers

Zephyr USB Device Stack supports many standard classes, such as HID, MSC Ethernet over USB, DFU,
Bluetooth.

Implementing non standard USB class

Configuration of USB Device is done in the stack layer.

The following structures and callbacks need to be defined:

• Part of USB Descriptor table

• USB Endpoint configuration table

• USB Device configuration structure

• Endpoint callbacks

• Optionally class, vendor and custom handlers

1384 Chapter 7. API Reference

http://www.beyondlogic.org/usbnutshell/usb5.shtml#DeviceDescriptors
http://www.beyondlogic.org/usbnutshell/usb5.shtml#DeviceDescriptors

Zephyr Project Documentation, Release 2.7.0-rc2

For example, for USB loopback application:

1 struct usb_loopback_config {
2 struct usb_if_descriptor if0;
3 struct usb_ep_descriptor if0_out_ep;
4 struct usb_ep_descriptor if0_in_ep;
5 } __packed;
6

7 USBD_CLASS_DESCR_DEFINE(primary, 0) struct usb_loopback_config loopback_cfg = {
8 /* Interface descriptor 0 */
9 .if0 = {

10 .bLength = sizeof(struct usb_if_descriptor),
11 .bDescriptorType = USB_DESC_INTERFACE,
12 .bInterfaceNumber = 0,
13 .bAlternateSetting = 0,
14 .bNumEndpoints = 2,
15 .bInterfaceClass = USB_BCC_VENDOR,
16 .bInterfaceSubClass = 0,
17 .bInterfaceProtocol = 0,
18 .iInterface = 0,
19 },
20

21 /* Data Endpoint OUT */
22 .if0_out_ep = {
23 .bLength = sizeof(struct usb_ep_descriptor),
24 .bDescriptorType = USB_DESC_ENDPOINT,
25 .bEndpointAddress = LOOPBACK_OUT_EP_ADDR,
26 .bmAttributes = USB_DC_EP_BULK,
27 .wMaxPacketSize = sys_cpu_to_le16(CONFIG_LOOPBACK_BULK_EP_MPS),
28 .bInterval = 0x00,
29 },
30

31 /* Data Endpoint IN */
32 .if0_in_ep = {
33 .bLength = sizeof(struct usb_ep_descriptor),
34 .bDescriptorType = USB_DESC_ENDPOINT,
35 .bEndpointAddress = LOOPBACK_IN_EP_ADDR,
36 .bmAttributes = USB_DC_EP_BULK,
37 .wMaxPacketSize = sys_cpu_to_le16(CONFIG_LOOPBACK_BULK_EP_MPS),
38 .bInterval = 0x00,
39 },
40 };

Endpoint configuration:

1 static struct usb_ep_cfg_data ep_cfg[] = {
2 {
3 .ep_cb = loopback_out_cb,
4 .ep_addr = LOOPBACK_OUT_EP_ADDR,
5 },
6 {
7 .ep_cb = loopback_in_cb,
8 .ep_addr = LOOPBACK_IN_EP_ADDR,
9 },

10 };

USB Device configuration structure:

7.29. USB device stack 1385

Zephyr Project Documentation, Release 2.7.0-rc2

1 USBD_CFG_DATA_DEFINE(primary, loopback) struct usb_cfg_data loopback_config = {
2 .usb_device_description = NULL,
3 .interface_config = loopback_interface_config,
4 .interface_descriptor = &loopback_cfg.if0,
5 .cb_usb_status = loopback_status_cb,
6 .interface = {
7 .class_handler = NULL,
8 .custom_handler = NULL,
9 .vendor_handler = loopback_vendor_handler,

10 },
11 .num_endpoints = ARRAY_SIZE(ep_cfg),
12 .endpoint = ep_cfg,
13 };

The vendor device requests are forwarded by the USB stack core driver to the class driver through the
registered vendor handler.

For the loopback class driver, loopback_vendor_handler() processes the vendor requests:

1 static int loopback_vendor_handler(struct usb_setup_packet *setup,
2 int32_t *len, uint8_t **data)
3 {
4 LOG_DBG("Class request: bRequest 0x%x bmRequestType 0x%x len %d",
5 setup->bRequest, setup->bmRequestType, *len);
6

7 if (setup->RequestType.recipient != USB_REQTYPE_RECIPIENT_DEVICE) {
8 return -ENOTSUP;
9 }

10

11 if (usb_reqtype_is_to_device(setup) &&
12 setup->bRequest == 0x5b) {
13 LOG_DBG("Host-to-Device, data %p", *data);
14 /*
15 * Copy request data in loopback_buf buffer and reuse
16 * it later in control device-to-host transfer.
17 */
18 memcpy(loopback_buf, *data,
19 MIN(sizeof(loopback_buf), setup->wLength));
20 return 0;
21 }
22

23 if ((usb_reqtype_is_to_host(setup)) &&
24 (setup->bRequest == 0x5c)) {
25 LOG_DBG("Device-to-Host, wLength %d, data %p",
26 setup->wLength, *data);
27 *data = loopback_buf;
28 *len = MIN(sizeof(loopback_buf), setup->wLength);
29 return 0;
30 }
31

32 return -ENOTSUP;
33 }

The class driver waits for the USB_DC_CONFIGURED device status code before transmitting any data.

1386 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

7.29.5 Testing USB over USP/IP in native_posix

Virtual USB controller implemented through USB/IP might be used to test USB Device stack. Follow
general build procedure to build USB sample for the native_posix configuration.

Run built sample with:

west build -t run

In a terminal window, run the following command to list USB devices:

$ usbip list -r localhost
Exportable USB devices
======================
- 127.0.0.1

1-1: unknown vendor : unknown product (2fe3:0100)
: /sys/devices/pci0000:00/0000:00:01.2/usb1/1-1
: (Defined at Interface level) (00/00/00)
: 0 - Vendor Specific Class / unknown subclass / unknown protocol (ff/00/

→˓00)

In a terminal window, run the following command to attach USB device:

$ sudo usbip attach -r localhost -b 1-1

The USB device should be connected to your Linux host, and verified with the following commands:

$ sudo usbip port
Imported USB devices
====================
Port 00: <Port in Use> at Full Speed(12Mbps)

unknown vendor : unknown product (2fe3:0100)
7-1 -> usbip://localhost:3240/1-1

-> remote bus/dev 001/002
$ lsusb -d 2fe3:0100
Bus 007 Device 004: ID 2fe3:0100

7.29.6 USB Human Interface Devices (HID) support

HID Item helpers

HID item helper macros can be used to compose a HID Report Descriptor. The names correspond to those
used in the USB HID Specification.

Example of a HID Report Descriptor:

static const uint8_t hid_report_desc[] = {
HID_USAGE_PAGE(HID_USAGE_GEN_DESKTOP),
HID_USAGE(HID_USAGE_GEN_DESKTOP_UNDEFINED),
HID_COLLECTION(HID_COLLECTION_APPLICATION),
HID_LOGICAL_MIN8(0),
/* logical maximum 255 */
HID_LOGICAL_MAX16(0xFF, 0x00),
HID_REPORT_ID(1),
HID_REPORT_SIZE(8),
HID_REPORT_COUNT(1),
HID_USAGE(HID_USAGE_GEN_DESKTOP_UNDEFINED),
/* HID_INPUT (Data, Variable, Absolute) */

(continues on next page)

7.29. USB device stack 1387

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

HID_INPUT(0x02),
HID_END_COLLECTION,

};

group usb_hid_items

Defines

HID_ITEM(bTag, bType, bSize)

Define HID short item.

Parameters

• bTag – Item tag

• bType – Item type

• bSize – Item data size

Returns HID Input item

HID_INPUT(a)

Define HID Input item with the data length of one byte.

For usage examples, see HID_MOUSE_REPORT_DESC(), HID_KEYBOARD_REPORT_DESC()

Parameters

• a – Input item data

Returns HID Input item

HID_OUTPUT(a)

Define HID Output item with the data length of one byte.

For usage examples, see HID_KEYBOARD_REPORT_DESC()

Parameters

• a – Output item data

Returns HID Output item

HID_FEATURE(a)

Define HID Feature item with the data length of one byte.

Parameters

• a – Feature item data

Returns HID Feature item

HID_COLLECTION(a)

Define HID Collection item with the data length of one byte.

For usage examples, see HID_MOUSE_REPORT_DESC(), HID_KEYBOARD_REPORT_DESC()

Parameters

• a – Collection item data

Returns HID Collection item

1388 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

HID_END_COLLECTION

Define HID End Collection (non-data) item.

For usage examples, see HID_MOUSE_REPORT_DESC(), HID_KEYBOARD_REPORT_DESC()

Returns HID End Collection item

HID_USAGE_PAGE(page)

Define HID Usage Page item.

For usage examples, see HID_MOUSE_REPORT_DESC(), HID_KEYBOARD_REPORT_DESC()

Parameters

• page – Usage Page

Returns HID Usage Page item

HID_LOGICAL_MIN8(a)

Define HID Logical Minimum item with the data length of one byte.

For usage examples, see HID_MOUSE_REPORT_DESC(), HID_KEYBOARD_REPORT_DESC()

Parameters

• a – Minimum value in logical units

Returns HID Logical Minimum item

HID_LOGICAL_MAX8(a)

Define HID Logical Maximum item with the data length of one byte.

For usage examples, see HID_MOUSE_REPORT_DESC(), HID_KEYBOARD_REPORT_DESC()

Parameters

• a – Maximum value in logical units

Returns HID Logical Maximum item

HID_LOGICAL_MIN16(a, b)

Define HID Logical Minimum item with the data length of two bytes.

Parameters

• a – Minimum value lower byte

• b – Minimum value higher byte

Returns HID Logical Minimum item

HID_LOGICAL_MAX16(a, b)

Define HID Logical Maximum item with the data length of two bytes.

Parameters

• a – Minimum value lower byte

• b – Minimum value higher byte

Returns HID Logical Maximum item

HID_LOGICAL_MIN32(a, b, c, d)

Define HID Logical Minimum item with the data length of four bytes.

Parameters

• a – Minimum value lower byte

• b – Minimum value low middle byte

• c – Minimum value high middle byte

7.29. USB device stack 1389

Zephyr Project Documentation, Release 2.7.0-rc2

• d – Minimum value higher byte

Returns HID Logical Minimum item

HID_LOGICAL_MAX32(a, b, c, d)

Define HID Logical Maximum item with the data length of four bytes.

Parameters

• a – Minimum value lower byte

• b – Minimum value low middle byte

• c – Minimum value high middle byte

• d – Minimum value higher byte

Returns HID Logical Maximum item

HID_REPORT_SIZE(size)

Define HID Report Size item with the data length of one byte.

For usage examples, see HID_MOUSE_REPORT_DESC(), HID_KEYBOARD_REPORT_DESC()

Parameters

• size – Report field size in bits

Returns HID Report Size item

HID_REPORT_ID(id)

Define HID Report ID item with the data length of one byte.

Parameters

• id – Report ID

Returns HID Report ID item

HID_REPORT_COUNT(count)

Define HID Report Count item with the data length of one byte.

For usage examples, see HID_MOUSE_REPORT_DESC(), HID_KEYBOARD_REPORT_DESC()

Parameters

• count – Number of data fields included in the report

Returns HID Report Count item

HID_USAGE(idx)

Define HID Usage Index item with the data length of one byte.

For usage examples, see HID_MOUSE_REPORT_DESC(), HID_KEYBOARD_REPORT_DESC()

Parameters

• idx – Number of data fields included in the report

Returns HID Usage Index item

HID_USAGE_MIN8(a)

Define HID Usage Minimum item with the data length of one byte.

For usage examples, see HID_MOUSE_REPORT_DESC(), HID_KEYBOARD_REPORT_DESC()

Parameters

• a – Starting Usage

Returns HID Usage Minimum item

1390 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

HID_USAGE_MAX8(a)

Define HID Usage Maximum item with the data length of one byte.

For usage examples, see HID_MOUSE_REPORT_DESC(), HID_KEYBOARD_REPORT_DESC()

Parameters

• a – Ending Usage

Returns HID Usage Maximum item

HID_USAGE_MIN16(a, b)

Define HID Usage Minimum item with the data length of two bytes.

For usage examples, see HID_MOUSE_REPORT_DESC(), HID_KEYBOARD_REPORT_DESC()

Parameters

• a – Starting Usage lower byte

• b – Starting Usage higher byte

Returns HID Usage Minimum item

HID_USAGE_MAX16(a, b)

Define HID Usage Maximum item with the data length of two bytes.

For usage examples, see HID_MOUSE_REPORT_DESC(), HID_KEYBOARD_REPORT_DESC()

Parameters

• a – Ending Usage lower byte

• b – Ending Usage higher byte

Returns HID Usage Maximum item

group usb_hid_types

Defines

USB_DESC_HID

USB HID Class HID descriptor type

USB_DESC_HID_REPORT

USB HID Class Report descriptor type

USB_DESC_HID_PHYSICAL

USB HID Class physical descriptor type

USB_HID_GET_REPORT

USB HID Class GetReport bRequest value

USB_HID_GET_IDLE

USB HID Class GetIdle bRequest value

USB_HID_GET_PROTOCOL

USB HID Class GetProtocol bRequest value

7.29. USB device stack 1391

Zephyr Project Documentation, Release 2.7.0-rc2

USB_HID_SET_REPORT

USB HID Class SetReport bRequest value

USB_HID_SET_IDLE

USB HID Class SetIdle bRequest value

USB_HID_SET_PROTOCOL

USB HID Class SetProtocol bRequest value

HID_BOOT_IFACE_CODE_NONE

USB HID Boot Interface Protocol (bInterfaceProtocol) Code None

HID_BOOT_IFACE_CODE_KEYBOARD

USB HID Boot Interface Protocol (bInterfaceProtocol) Code Keyboard

HID_BOOT_IFACE_CODE_MOUSE

USB HID Boot Interface Protocol (bInterfaceProtocol) Code Mouse

HID_PROTOCOL_BOOT

USB HID Class Boot protocol code

HID_PROTOCOL_REPORT

USB HID Class Report protocol code

HID_ITEM_TYPE_MAIN

HID Main item type

HID_ITEM_TYPE_GLOBAL

HID Global item type

HID_ITEM_TYPE_LOCAL

HID Local item type

HID_ITEM_TAG_INPUT

HID Input item tag

HID_ITEM_TAG_OUTPUT

HID Output item tag

HID_ITEM_TAG_COLLECTION

HID Collection item tag

HID_ITEM_TAG_FEATURE

HID Feature item tag

HID_ITEM_TAG_COLLECTION_END

HID End Collection item tag

1392 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

HID_ITEM_TAG_USAGE_PAGE

HID Usage Page item tag

HID_ITEM_TAG_LOGICAL_MIN

HID Logical Minimum item tag

HID_ITEM_TAG_LOGICAL_MAX

HID Logical Maximum item tag

HID_ITEM_TAG_PHYSICAL_MIN

HID Physical Minimum item tag

HID_ITEM_TAG_PHYSICAL_MAX

HID Physical Maximum item tag

HID_ITEM_TAG_UNIT_EXPONENT

HID Unit Exponent item tag

HID_ITEM_TAG_UNIT

HID Unit item tag

HID_ITEM_TAG_REPORT_SIZE

HID Report Size item tag

HID_ITEM_TAG_REPORT_ID

HID Report ID item tag

HID_ITEM_TAG_REPORT_COUNT

HID Report count item tag

HID_ITEM_TAG_USAGE

HID Usage item tag

HID_ITEM_TAG_USAGE_MIN

HID Usage Minimum item tag

HID_ITEM_TAG_USAGE_MAX

HID Usage Maximum item tag

HID_COLLECTION_PHYSICAL

Physical collection type

HID_COLLECTION_APPLICATION

Application collection type

HID_USAGE_GEN_DESKTOP

HID Generic Desktop Controls Usage page

7.29. USB device stack 1393

Zephyr Project Documentation, Release 2.7.0-rc2

HID_USAGE_GEN_KEYBOARD

HID Keyboard Usage page

HID_USAGE_GEN_LEDS

HID LEDs Usage page

HID_USAGE_GEN_BUTTON

HID Button Usage page

HID_USAGE_GEN_DESKTOP_UNDEFINED

HID Generic Desktop Undefined Usage ID

HID_USAGE_GEN_DESKTOP_POINTER

HID Generic Desktop Pointer Usage ID

HID_USAGE_GEN_DESKTOP_MOUSE

HID Generic Desktop Mouse Usage ID

HID_USAGE_GEN_DESKTOP_JOYSTICK

HID Generic Desktop Joystick Usage ID

HID_USAGE_GEN_DESKTOP_GAMEPAD

HID Generic Desktop Gamepad Usage ID

HID_USAGE_GEN_DESKTOP_KEYBOARD

HID Generic Desktop Keyboard Usage ID

HID_USAGE_GEN_DESKTOP_KEYPAD

HID Generic Desktop Keypad Usage ID

HID_USAGE_GEN_DESKTOP_X

HID Generic Desktop X Usage ID

HID_USAGE_GEN_DESKTOP_Y

HID Generic Desktop Y Usage ID

HID_USAGE_GEN_DESKTOP_WHEEL

HID Generic Desktop Wheel Usage ID

HID Mouse and Keyboard report descriptors

The pre-defined Mouse and Keyboard report descriptors can be used by a HID device implementation or
simply as examples.

group usb_hid_mk_report_desc

1394 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Defines

HID_MOUSE_REPORT_DESC(bcnt)

Simple HID mouse report descriptor for n button mouse.

Parameters

• bcnt – Button count. Allowed values from 1 to 8.

HID_KEYBOARD_REPORT_DESC()

Simple HID keyboard report descriptor.

Enums

enum hid_kbd_code

HID keyboard button codes.

Values:

enumerator HID_KEY_A = 4

enumerator HID_KEY_B = 5

enumerator HID_KEY_C = 6

enumerator HID_KEY_D = 7

enumerator HID_KEY_E = 8

enumerator HID_KEY_F = 9

enumerator HID_KEY_G = 10

enumerator HID_KEY_H = 11

enumerator HID_KEY_I = 12

enumerator HID_KEY_J = 13

enumerator HID_KEY_K = 14

enumerator HID_KEY_L = 15

enumerator HID_KEY_M = 16

enumerator HID_KEY_N = 17

enumerator HID_KEY_O = 18

7.29. USB device stack 1395

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator HID_KEY_P = 19

enumerator HID_KEY_Q = 20

enumerator HID_KEY_R = 21

enumerator HID_KEY_S = 22

enumerator HID_KEY_T = 23

enumerator HID_KEY_U = 24

enumerator HID_KEY_V = 25

enumerator HID_KEY_W = 26

enumerator HID_KEY_X = 27

enumerator HID_KEY_Y = 28

enumerator HID_KEY_Z = 29

enumerator HID_KEY_1 = 30

enumerator HID_KEY_2 = 31

enumerator HID_KEY_3 = 32

enumerator HID_KEY_4 = 33

enumerator HID_KEY_5 = 34

enumerator HID_KEY_6 = 35

enumerator HID_KEY_7 = 36

enumerator HID_KEY_8 = 37

enumerator HID_KEY_9 = 38

enumerator HID_KEY_0 = 39

enumerator HID_KEY_ENTER = 40

enumerator HID_KEY_ESC = 41

1396 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator HID_KEY_BACKSPACE = 42

enumerator HID_KEY_TAB = 43

enumerator HID_KEY_SPACE = 44

enumerator HID_KEY_MINUS = 45

enumerator HID_KEY_EQUAL = 46

enumerator HID_KEY_LEFTBRACE = 47

enumerator HID_KEY_RIGHTBRACE = 48

enumerator HID_KEY_BACKSLASH = 49

enumerator HID_KEY_HASH = 50

enumerator HID_KEY_SEMICOLON = 51

enumerator HID_KEY_APOSTROPHE = 52

enumerator HID_KEY_GRAVE = 53

enumerator HID_KEY_COMMA = 54

enumerator HID_KEY_DOT = 55

enumerator HID_KEY_SLASH = 56

enumerator HID_KEY_CAPSLOCK = 57

enumerator HID_KEY_F1 = 58

enumerator HID_KEY_F2 = 59

enumerator HID_KEY_F3 = 60

enumerator HID_KEY_F4 = 61

enumerator HID_KEY_F5 = 62

enumerator HID_KEY_F6 = 63

enumerator HID_KEY_F7 = 64

7.29. USB device stack 1397

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator HID_KEY_F8 = 65

enumerator HID_KEY_F9 = 66

enumerator HID_KEY_F10 = 67

enumerator HID_KEY_F11 = 68

enumerator HID_KEY_F12 = 69

enumerator HID_KEY_SYSRQ = 70

enumerator HID_KEY_SCROLLLOCK = 71

enumerator HID_KEY_PAUSE = 72

enumerator HID_KEY_INSERT = 73

enumerator HID_KEY_HOME = 74

enumerator HID_KEY_PAGEUP = 75

enumerator HID_KEY_DELETE = 76

enumerator HID_KEY_END = 77

enumerator HID_KEY_PAGEDOWN = 78

enumerator HID_KEY_RIGHT = 79

enumerator HID_KEY_LEFT = 80

enumerator HID_KEY_DOWN = 81

enumerator HID_KEY_UP = 82

enumerator HID_KEY_NUMLOCK = 83

enumerator HID_KEY_KPSLASH = 84

enumerator HID_KEY_KPASTERISK = 85

enumerator HID_KEY_KPMINUS = 86

enumerator HID_KEY_KPPLUS = 87

1398 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

enumerator HID_KEY_KPENTER = 88

enumerator HID_KEY_KP_1 = 89

enumerator HID_KEY_KP_2 = 90

enumerator HID_KEY_KP_3 = 91

enumerator HID_KEY_KP_4 = 92

enumerator HID_KEY_KP_5 = 93

enumerator HID_KEY_KP_6 = 94

enumerator HID_KEY_KP_7 = 95

enumerator HID_KEY_KP_8 = 96

enumerator HID_KEY_KP_9 = 97

enumerator HID_KEY_KP_0 = 98

enum hid_kbd_modifier

HID keyboard modifiers.

Values:

enumerator HID_KBD_MODIFIER_NONE = 0x00

enumerator HID_KBD_MODIFIER_LEFT_CTRL = 0x01

enumerator HID_KBD_MODIFIER_LEFT_SHIFT = 0x02

enumerator HID_KBD_MODIFIER_LEFT_ALT = 0x04

enumerator HID_KBD_MODIFIER_LEFT_UI = 0x08

enumerator HID_KBD_MODIFIER_RIGHT_CTRL = 0x10

enumerator HID_KBD_MODIFIER_RIGHT_SHIFT = 0x20

enumerator HID_KBD_MODIFIER_RIGHT_ALT = 0x40

enumerator HID_KBD_MODIFIER_RIGHT_UI = 0x80

7.29. USB device stack 1399

Zephyr Project Documentation, Release 2.7.0-rc2

enum hid_kbd_led

HID keyboard LEDs.

Values:

enumerator HID_KBD_LED_NUM_LOCK = 0x01

enumerator HID_KBD_LED_CAPS_LOCK = 0x02

enumerator HID_KBD_LED_SCROLL_LOCK = 0x04

enumerator HID_KBD_LED_COMPOSE = 0x08

enumerator HID_KBD_LED_KANA = 0x10

7.29.7 HID Class Device API

USB HID devices like mouse, keyboard, or any other specific device use this API.

group usb_hid_device_api

Typedefs

typedef int (*hid_cb_t)(const struct device *dev, struct usb_setup_packet *setup, int32_t *len,
uint8_t **data)

typedef void (*hid_int_ready_callback)(const struct device *dev)

typedef void (*hid_protocol_cb_t)(const struct device *dev, uint8_t protocol)

typedef void (*hid_idle_cb_t)(const struct device *dev, uint16_t report_id)

Functions

void usb_hid_register_device(const struct device *dev, const uint8_t *desc, size_t size, const
struct hid_ops *op)

Register HID device.

Parameters

• dev – [in] Pointer to USB HID device

• desc – [in] Pointer to HID report descriptor

• size – [in] Size of HID report descriptor

• op – [in] Pointer to USB HID device interrupt struct

1400 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

int hid_int_ep_write(const struct device *dev, const uint8_t *data, uint32_t data_len, uint32_t
*bytes_ret)

Write to USB HID interrupt endpoint buffer.

Parameters

• dev – [in] Pointer to USB HID device

• data – [in] Pointer to data buffer

• data_len – [in] Length of data to copy

• bytes_ret – [out] Bytes written to the EP buffer.

Returns 0 on success, negative errno code on fail.

int hid_int_ep_read(const struct device *dev, uint8_t *data, uint32_t max_data_len, uint32_t
*ret_bytes)

Read from USB HID interrupt endpoint buffer.

Parameters

• dev – [in] Pointer to USB HID device

• data – [in] Pointer to data buffer

• max_data_len – [in] Max length of data to copy

• ret_bytes – [out] Number of bytes to copy. If data is NULL and ret_bytes is 0
the number of bytes available in the buffer will be returned.

Returns 0 on success, negative errno code on fail.

int usb_hid_set_proto_code(const struct device *dev, uint8_t proto_code)

Set USB HID class Protocol Code.

Should be called before usb_hid_init().

Parameters

• dev – [in] Pointer to USB HID device

• proto_code – [in] Protocol Code to be used for bInterfaceProtocol

Returns 0 on success, negative errno code on fail.

int usb_hid_init(const struct device *dev)

Initialize USB HID class support.

Parameters

• dev – [in] Pointer to USB HID device

Returns 0 on success, negative errno code on fail.

struct hid_ops

#include <usb_hid.h> USB HID device interface.

7.30 User Mode

Zephyr offers the capability to run threads at a reduced privilege level which we call user mode. The
current implementation is designed for devices with MPU hardware.

For details on creating threads that run in user mode, please see Lifecycle.

7.30. User Mode 1401

Zephyr Project Documentation, Release 2.7.0-rc2

7.30.1 Overview

Threat Model

User mode threads are considered to be untrusted by Zephyr and are therefore isolated from other user
mode threads and from the kernel. A flawed or malicious user mode thread cannot leak or modify the
private data/resources of another thread or the kernel, and cannot interfere with or control another user
mode thread or the kernel.

Example use-cases of Zephyr’s user mode features:

• The kernel can protect against many unintentional programming errors which could otherwise
silently or spectacularly corrupt the system.

• The kernel can sandbox complex data parsers such as interpreters, network protocols, and filesys-
tems such that malicious third-party code or data cannot compromise the kernel or other threads.

• The kernel can support the notion of multiple logical “applications”, each with their own group
of threads and private data structures, which are isolated from each other if one crashes or is
otherwise compromised.

Design Goals For threads running in a non-privileged CPU state (hereafter referred to as ‘user mode’)
we aim to protect against the following:

• We prevent access to memory not specifically granted, or incorrect access to memory that has an
incompatible policy, such as attempting to write to a read-only area.

– Access to thread stack buffers will be controlled with a policy which partially depends on the
underlying memory protection hardware.

* A user thread will by default have read/write access to its own stack buffer.

* A user thread will never by default have access to user thread stacks that are not members
of the same memory domain.

* A user thread will never by default have access to thread stacks owned by a supervisor
thread, or thread stacks used to handle system call privilege elevations, interrupts, or CPU
exceptions.

* A user thread may have read/write access to the stacks of other user threads in the same
memory domain, depending on hardware.

· On MPU systems, threads may only access their own stack buffer.

· On MMU systems, threads may access any user thread stack in the same memory
domain. Portable code should not assume this.

– By default, program text and read-only data are accessible to all threads on read-only basis,
kernel-wide. This policy may be adjusted.

– User threads by default are not granted default access to any memory except what is noted
above.

• We prevent use of device drivers or kernel objects not specifically granted, with the permission
granularity on a per object or per driver instance basis.

• We validate kernel or driver API calls with incorrect parameters that would otherwise cause a crash
or corruption of data structures private to the kernel. This includes:

– Using the wrong kernel object type.

– Using parameters outside of proper bounds or with nonsensical values.

– Passing memory buffers that the calling thread does not have sufficient access to read or write,
depending on the semantics of the API.

– Use of kernel objects that are not in a proper initialization state.

1402 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• We ensure the detection and safe handling of user mode stack overflows.

• We prevent invoking system calls to functions excluded by the kernel configuration.

• We prevent disabling of or tampering with kernel-defined and hardware- enforced memory protec-
tions.

• We prevent re-entry from user to supervisor mode except through the kernel- defined system calls
and interrupt handlers.

• We prevent the introduction of new executable code by user mode threads, except to the extent to
which this is supported by kernel system calls.

We are specifically not protecting against the following attacks:

• The kernel itself, and any threads that are executing in supervisor mode, are assumed to be trusted.

• The toolchain and any supplemental programs used by the build system are assumed to be trusted.

• The kernel build is assumed to be trusted. There is considerable build-time logic for creating the
tables of valid kernel objects, defining system calls, and configuring interrupts. The .elf binary files
that are worked with during this process are all assumed to be trusted code.

• We can’t protect against mistakes made in memory domain configuration done in kernel mode that
exposes private kernel data structures to a user thread. RAM for kernel objects should always be
configured as supervisor-only.

• It is possible to make top-level declarations of user mode threads and assign them permissions
to kernel objects. In general, all C and header files that are part of the kernel build producing
zephyr.elf are assumed to be trusted.

• We do not protect against denial of service attacks through thread CPU starvation. Zephyr has
no thread priority aging and a user thread of a particular priority can starve all threads of lower
priority, and also other threads of the same priority if time-slicing is not enabled.

• There are build-time defined limits on how many threads can be active simultaneously, after which
creation of new user threads will fail.

• Stack overflows for threads running in supervisor mode may be caught, but the integrity of the
system cannot be guaranteed.

High-level Policy Details

Broadly speaking, we accomplish these thread-level memory protection goals through the following
mechanisms:

• Any user thread will only have access to a subset of memory: typically its stack, program text,
read-only data, and any partitions configured in the Memory Protection Design it belongs to. Access
to any other RAM must be done on the thread’s behalf through system calls, or specifically granted
by a supervisor thread using the memory domain APIs. Newly created threads inherit the memory
domain configuration of the parent. Threads may communicate with each other by having shared
membership of the same memory domains, or via kernel objects such as semaphores and pipes.

• User threads cannot directly access memory belonging to kernel objects. Although pointers to
kernel objects are used to reference them, actual manipulation of kernel objects is done through
system call interfaces. Device drivers and threads stacks are also considered kernel objects. This
ensures that any data inside a kernel object that is private to the kernel cannot be tampered with.

• User threads by default have no permission to access any kernel object or driver other than their
own thread object. Such access must be granted by another thread that is either in supervisor mode
or has permission on both the receiving thread object and the kernel object being granted access
to. The creation of new threads has an option to automatically inherit permissions of all kernel
objects granted to the parent, except the parent thread itself.

7.30. User Mode 1403

Zephyr Project Documentation, Release 2.7.0-rc2

• For performance and footprint reasons Zephyr normally does little or no parameter error checking
for kernel object or device driver APIs. Access from user mode through system calls involves an
extra layer of handler functions, which are expected to rigorously validate access permissions and
type of the object, check the validity of other parameters through bounds checking or other means,
and verify proper read/write access to any memory buffers involved.

• Thread stacks are defined in such a way that exceeding the specified stack space will generate a
hardware fault. The way this is done specifically varies per architecture.

Constraints

All kernel objects, thread stacks, and device driver instances must be defined at build time if they are to
be used from user mode. Dynamic use-cases for kernel objects will need to go through pre-defined pools
of available objects.

There are some constraints if additional application binary data is loaded for execution after the kernel
starts:

• Loaded object code will not be able to define any kernel objects that will be recognized by the
kernel. This code will instead need to use APIs for requesting kernel objects from pools.

• Similarly, since the loaded object code will not be part of the kernel build process, this code will not
be able to install interrupt handlers, instantiate device drivers, or define system calls, regardless of
what mode it runs in.

• Loaded object code that does not come from a verified source should always be entered with the
CPU already in user mode.

7.30.2 Memory Protection Design

Zephyr’s memory protection design is geared towards microcontrollers with MPU (Memory Protection
Unit) hardware. We do support some architectures which have a paged MMU (Memory Management
Unit), but in that case the MMU is used like an MPU with an identity page table.

All of the discussion below will be using MPU terminology; systems with MMUs can be considered to
have an MPU with an unlimited number of programmable regions.

There are a few different levels on how memory access is configured when Zephyr memory protection
features are enabled, which we will describe here:

Boot Time Memory Configuration

This is the configuration of the MPU after the kernel has started up. It should contain the following:

• Any configuration of memory regions which need to have special caching or write-back policies for
basic hardware and driver function. Note that most MPUs have the concept of a default memory
access policy map, which can be enabled as a “background” mapping for any area of memory that
doesn’t have an MPU region configuring it. It is strongly recommended to use this to maximize
the number of available MPU regions for the end user. On ARMv7-M/ARMv8-M this is called the
System Address Map, other CPUs may have similar capabilities.

• A read-only, executable region or regions for program text and ro-data, that is accessible to user
mode. This could be further sub-divided into a read-only region for ro-data, and a read-only,
executable region for text, but this will require an additional MPU region. This is required so that
threads running in user mode can read ro-data and fetch instructions.

• Depending on configuration, user-accessible read-write regions to support extra features like GCOV,
HEP, etc.

1404 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Assuming there is a background map which allows supervisor mode to access any memory it needs, and
regions are defined which grant user mode access to text/ro-data, this is sufficient for the boot time
configuration.

Hardware Stack Overflow

CONFIG_HW_STACK_PROTECTION is an optional feature which detects stack buffer overflows when the
system is running in supervisor mode. This catches issues when the entire stack buffer has overflowed,
and not individual stack frames, use compiler-assisted :kconfig:`CONFIG_STACK_CANARIES` for that.

Like any crash in supervisor mode, no guarantees can be made about the overall health of the system
after a supervisor mode stack overflow, and any instances of this should be treated as a serious error.
However it’s still very useful to know when these overflows happen, as without robust detection logic
the system will either crash in mysterious ways or behave in an undefined manner when the stack buffer
overflows.

Some systems implement this feature by creating at runtime a ‘guard’ MPU region which is set to be
read-only and is at either the beginning or immediately preceding the supervisor mode stack buffer. If
the stack overflows an exception will be generated.

This feature is optional and is not required to catch stack overflows in user mode; disabling this may free
1-2 MPU regions depending on the MPU design.

Other systems may have dedicated CPU support for catching stack overflows and no extra MPU regions
will be required.

Thread Stack

Any thread running in user mode will need access to its own stack buffer. On context switch into a user
mode thread, a dedicated MPU region will be programmed with the bounds of the stack buffer. A thread
exceeding its stack buffer will start pushing data onto memory it doesn’t have access to and a memory
access violation exception will be generated.

Thread Resource Pools

A small subset of kernel APIs, invoked as system calls, require heap memory allocations. This memory is
used only by the kernel and is not accessible directly by user mode. In order to use these system calls,
invoking threads must assign themselves to a resource pool, which is a k_mem_pool object. Memory is
drawn from a thread’s resource pool using z_thread_malloc() and freed with k_free() .

The APIs which use resource pools are as follows, with any alternatives noted for users who do not want
heap allocations within their application:

• k_stack_alloc_init() sets up a k_stack with its storage buffer allocated out of a resource pool
instead of a buffer provided by the user. An alternative is to declare k_stacks that are automatically
initialized at boot with K_STACK_DEFINE() , or to initialize the k_stack in supervisor mode with
k_stack_init() .

• k_pipe_alloc_init() sets up a k_pipe object with its storage buffer allocated out of a resource
pool instead of a buffer provided by the user. An alternative is to declare k_pipes that are automat-
ically initialized at boot with K_PIPE_DEFINE() , or to initialize the k_pipe in supervisor mode with
k_pipe_init() .

• k_msgq_alloc_init() sets up a k_msgq object with its storage buffer allocated out of a resource
pool instead of a buffer provided by the user. An alternative is to declare a k_msgq that is auto-
matically initialized at boot with K_MSGQ_DEFINE() , or to initialize the k_msgq in supervisor mode
with k_msgq_init() .

• k_poll() when invoked from user mode, needs to make a kernel-side copy of the provided events
array while waiting for an event. This copy is freed when k_poll() returns for any reason.

7.30. User Mode 1405

Zephyr Project Documentation, Release 2.7.0-rc2

• k_queue_alloc_prepend() and k_queue_alloc_append() allocate a container structure to place
the data in, since the internal bookkeeping information that defines the queue cannot be placed in
the memory provided by the user.

• k_object_alloc() allows for entire kernel objects to be dynamically allocated at runtime and a
usable pointer to them returned to the caller.

The relevant API is k_thread_heap_assign() which assigns a k_heap to draw these allocations from for
the target thread.

If the system heap is enabled, then the system heap may be used with
k_thread_system_pool_assign() , but it is preferable for different logical applications running
on the system to have their own pools.

Memory Domains

The kernel ensures that any user thread will have access to its own stack buffer, plus program text and
read-only data. The memory domain APIs are the way to grant access to additional blocks of memory to
a user thread.

Conceptually, a memory domain is a collection of some number of memory partitions. The maximum
number of memory partitions in a domain is limited by the number of available MPU regions. This is
why it is important to minimize the number of boot-time MPU regions.

Memory domains are not intended to control access to memory from supervisor mode. In some cases
this may be unavoidable; for example some architectures do not allow for the definition of regions which
are read-only to user mode but read-write to supervisor mode. A great deal of care must be taken when
working with such regions to not unintentionally cause the kernel to crash when accessing such a region.
Any attempt to use memory domain APIs to control supervisor mode access is at best undefined behavior;
supervisor mode access policy is only intended to be controlled by boot-time memory regions.

Memory domain APIs are only available to supervisor mode. The only control user mode has over
memory domains is that any user thread’s child threads will automatically become members of the
parent’s domain.

All threads are members of a memory domain, including supervisor threads (even though this has no
implications on their memory access). There is a default domain k_mem_domain_default which will be
assigned to threads if they have not been specifically assigned to a domain, or inherited a memory domain
membership from their parent thread. The main thread starts as a member of the default domain.

Memory Partitions Each memory partition consists of a memory address, a size, and access attributes.
It is intended that memory partitions are used to control access to system memory. Defining memory
partitions are subject to the following constraints:

• The partition must represent a memory region that can be programmed by the underlying memory
management hardware, and needs to conform to any underlying hardware constraints. For exam-
ple, many MPU-based systems require that partitions be sized to some power of two, and aligned
to their own size. For MMU-based systems, the partition must be aligned to a page and the size
some multiple of the page size.

• Partitions within the same memory domain may not overlap each other. There is no notion of
precedence among partitions within a memory domain. Partitions within a memory domain are
assumed to have a higher precedence than any boot-time memory regions, however whether a
memory domain partition can overlap a boot-time memory region is architecture specific.

• The same partition may be specified in multiple memory domains. For example there may be a
shared memory area that multiple domains grant access to.

• Care must be taken in determining what memory to expose in a partition. It is not appropriate to
provide direct user mode access to any memory containing private kernel data.

1406 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

• Memory domain partitions are intended to control access to system RAM. Configuration of memory
partitions which do not correspond to RAM may not be supported by the architecture; this is true
for MMU-based systems.

There are two ways to define memory partitions: either manually or automatically.

Manual Memory Partitions The following code declares a global array buf, and then declares a read-
write partition for it which may be added to a domain:

uint8_t __aligned(32) buf[32];

K_MEM_PARTITION_DEFINE(my_partition, buf, sizeof(buf),
K_MEM_PARTITION_P_RW_U_RW);

This does not scale particularly well when we are trying to contain multiple objects spread out across
several C files into a single partition.

Automatic Memory Partitions Automatic memory partitions are created by the build system. All
globals which need to be placed inside a partition are tagged with their destination partition. The build
system will then coalesce all of these into a single contiguous block of memory, zero any BSS variables at
boot, and define a memory partition of appropriate base address and size which contains all the tagged
data.

Fig. 9: Automatic Memory Domain build flow

Automatic memory partitions are only configured as read-write regions. They are defined with
K_APPMEM_PARTITION_DEFINE(). Global variables are then routed to this partition using K_APP_DMEM()
for initialized data and K_APP_BMEM() for BSS.

include <app_memory/app_memdomain.h>

/* Declare a k_mem_partition "my_partition" that is read-write to
* user mode. Note that we do not specify a base address or size.
*/

K_APPMEM_PARTITION_DEFINE(my_partition);

/* The global variable var1 will be inside the bounds of my_partition
* and be initialized with 37 at boot.

(continues on next page)

7.30. User Mode 1407

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

*/
K_APP_DMEM(my_partition) int var1 = 37;

/* The global variable var2 will be inside the bounds of my_partition
* and be zeroed at boot size K_APP_BMEM() was used, indicating a BSS
* variable.
*/

K_APP_BMEM(my_partition) int var2;

The build system will ensure that the base address of my_partition will be properly aligned, and the
total size of the region conforms to the memory management hardware requirements, adding padding if
necessary.

If multiple partitions are being created, a variadic preprocessor macro can be used as provided in
app_macro_support.h:

FOR_EACH(K_APPMEM_PARTITION_DEFINE, part0, part1, part2);

Automatic Partitions for Static Library Globals The build-time logic for setting up automatic memory
partitions is in scripts/gen_app_partitions.py. If a static library is linked into Zephyr, it is possible
to route all the globals in that library to a specific memory partition with the --library argument.

For example, if the Newlib C library is enabled, the Newlib globals all need to be placed in
z_libc_partition. The invocation of the script in the top-level CMakeLists.txt adds the following:

gen_app_partitions.py ... --library libc.a z_libc_partition ..

For pre-compiled libraries there is no support for expressing this in the project-level configuration or
build files; the toplevel CMakeLists.txt must be edited.

For Zephyr libraries created using zephyr_library or zephyr_library_named the
zephyr_library_app_memory function can be used to specify the memory partition where all
globals in the library should be placed.

Pre-defined Memory Partitions There are a few memory partitions which are pre-defined by the sys-
tem:

• z_malloc_partition - This partition contains the system-wide pool of memory used by libc mal-
loc(). Due to possible starvation issues, it is not recommended to draw heap memory from a global
pool, instead it is better to define various sys_heap objects and assign them to specific memory
domains.

• z_libc_partition - Contains globals required by the C library and runtime. Required
when using either the Minimal C library or the Newlib C Library. Required when op-
tion:CONFIG_STACK_CANARIES is enabled.

Library-specific partitions are listed in include/app_memory/partitions.h. For example, to use the
MBEDTLS library from user mode, the k_mbedtls_partition must be added to the domain.

Memory Domain Usage

Create a Memory Domain A memory domain is defined using a variable of type k_mem_domain . It
must then be initialized by calling k_mem_domain_init() .

The following code defines and initializes an empty memory domain.

1408 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

struct k_mem_domain app0_domain;

k_mem_domain_init(&app0_domain, 0, NULL);

Add Memory Partitions into a Memory Domain There are two ways to add memory partitions into a
memory domain.

This first code sample shows how to add memory partitions while creating a memory domain.

/* the start address of the MPU region needs to align with its size */
uint8_t __aligned(32) app0_buf[32];
uint8_t __aligned(32) app1_buf[32];

K_MEM_PARTITION_DEFINE(app0_part0, app0_buf, sizeof(app0_buf),
K_MEM_PARTITION_P_RW_U_RW);

K_MEM_PARTITION_DEFINE(app0_part1, app1_buf, sizeof(app1_buf),
K_MEM_PARTITION_P_RW_U_RO);

struct k_mem_partition *app0_parts[] = {
app0_part0,
app0_part1

};

k_mem_domain_init(&app0_domain, ARRAY_SIZE(app0_parts), app0_parts);

This second code sample shows how to add memory partitions into an initialized memory domain one
by one.

/* the start address of the MPU region needs to align with its size */
uint8_t __aligned(32) app0_buf[32];
uint8_t __aligned(32) app1_buf[32];

K_MEM_PARTITION_DEFINE(app0_part0, app0_buf, sizeof(app0_buf),
K_MEM_PARTITION_P_RW_U_RW);

K_MEM_PARTITION_DEFINE(app0_part1, app1_buf, sizeof(app1_buf),
K_MEM_PARTITION_P_RW_U_RO);

k_mem_domain_add_partition(&app0_domain, &app0_part0);
k_mem_domain_add_partition(&app0_domain, &app0_part1);

Note: The maximum number of memory partitions is limited by the maximum number of MPU regions
or the maximum number of MMU tables.

Memory Domain Assignment Any thread may join a memory domain, and any memory domain may
have multiple threads assigned to it. Threads are assigned to memory domains with an API call:

k_mem_domain_add_thread(&app0_domain, app_thread_id);

If the thread was already a member of some other domain (including the default domain), it will be
removed from it in favor of the new one.

In addition, if a thread is a member of a memory domain, and it creates a child thread, that thread will
belong to the domain as well.

7.30. User Mode 1409

Zephyr Project Documentation, Release 2.7.0-rc2

Remove a Memory Partition from a Memory Domain The following code shows how to remove a
memory partition from a memory domain.

k_mem_domain_remove_partition(&app0_domain, &app0_part1);

The k_mem_domain_remove_partition() API finds the memory partition that matches the given param-
eter and removes that partition from the memory domain.

Available Partition Attributes When defining a partition, we need to set access permission attributes
to the partition. Since the access control of memory partitions relies on either an MPU or MMU, the
available partition attributes would be architecture dependent.

The complete list of available partition attributes for a specific architecture is found in the architecture-
specific include file include/arch/<arch name>/arch.h, (for example, include/arch/arm/aarch32/
arch.h.) Some examples of partition attributes are:

/* Denote partition is privileged read/write, unprivileged read/write */
K_MEM_PARTITION_P_RW_U_RW
/* Denote partition is privileged read/write, unprivileged read-only */
K_MEM_PARTITION_P_RW_U_RO

In almost all cases K_MEM_PARTITION_P_RW_U_RW is the right choice.

Configuration Options

Related configuration options:

• :kconfig:`CONFIG_MAX_DOMAIN_PARTITIONS`

API Reference

The following memory domain APIs are provided by include/kernel.h:

group mem_domain_apis

Defines

K_MEM_PARTITION_DEFINE(name, start, size, attr)

Statically declare a memory partition.

Functions

void k_mem_domain_init(struct k_mem_domain *domain, uint8_t num_parts, struct
k_mem_partition *parts[])

Initialize a memory domain.

Initialize a memory domain with given name and memory partitions.

See documentation for k_mem_domain_add_partition() for details about partition constraints.

Do not call k_mem_domain_init() on the same memory domain more than once, doing so is
undefined behavior.

Parameters

• domain – The memory domain to be initialized.

1410 Chapter 7. API Reference

https://github.com/zephyrproject-rtos/zephyr/blob/main/include/kernel.h

Zephyr Project Documentation, Release 2.7.0-rc2

• num_parts – The number of array items of “parts” parameter.

• parts – An array of pointers to the memory partitions. Can be NULL if
num_parts is zero.

void k_mem_domain_add_partition(struct k_mem_domain *domain, struct k_mem_partition
*part)

Add a memory partition into a memory domain.

Add a memory partition into a memory domain. Partitions must conform to the following
constraints:

• Partitions in the same memory domain may not overlap each other.

• Partitions must not be defined which expose private kernel data structures or kernel ob-
jects.

• The starting address alignment, and the partition size must conform to the constraints of
the underlying memory management hardware, which varies per architecture.

• Memory domain partitions are only intended to control access to memory from user mode
threads.

• If CONFIG_EXECUTE_XOR_WRITE is enabled, the partition must not allow both writes
and execution.

Violating these constraints may lead to CPU exceptions or undefined behavior.

Parameters

• domain – The memory domain to be added a memory partition.

• part – The memory partition to be added

void k_mem_domain_remove_partition(struct k_mem_domain *domain, struct k_mem_partition
*part)

Remove a memory partition from a memory domain.

Remove a memory partition from a memory domain.

Parameters

• domain – The memory domain to be removed a memory partition.

• part – The memory partition to be removed

void k_mem_domain_add_thread(struct k_mem_domain *domain, k_tid_t thread)

Add a thread into a memory domain.

Add a thread into a memory domain. It will be removed from whatever memory domain it
previously belonged to.

Parameters

• domain – The memory domain that the thread is going to be added into.

• thread – ID of thread going to be added into the memory domain.

Variables

struct k_mem_domain k_mem_domain_default

Default memory domain

7.30. User Mode 1411

Zephyr Project Documentation, Release 2.7.0-rc2

All threads are a member of some memory domain, even if running in supervisor mode.
Threads belong to this default memory domain if they haven’t been added to or inherited
membership from some other domain.

This memory domain has the z_libc_partition partition for the C library added to it if exists.

struct k_mem_partition

#include <mem_domain.h> Memory Partition.

A memory partition is a region of memory in the linear address space with a specific access
policy.

The alignment of the starting address, and the alignment of the size value may have varying
requirements based on the capabilities of the underlying memory management hardware;
arbitrary values are unlikely to work.

Public Members

uintptr_t start

start address of memory partition

size_t size

size of memory partition

k_mem_partition_attr_t attr

attribute of memory partition

struct k_mem_domain

#include <mem_domain.h> Memory Domain.

A memory domain is a collection of memory partitions, used to represent a user thread’s
access policy for the linear addresss space. A thread may be a member of only one memory
domain, but any memory domain may have multiple threads that are members.

Supervisor threads may also be a member of a memory domain; this has no implications
on their memory access but can be useful as any child threads inherit the memory domain
membership of the parent.

A user thread belonging to a memory domain with no active partitions will have guaranteed
access to its own stack buffer, program text, and read-only data.

Public Members

struct k_mem_partition partitions[CONFIG_MAX_DOMAIN_PARTITIONS]

partitions in the domain

sys_dlist_t mem_domain_q

Doubly linked list of member threads

uint8_t num_partitions

number of active partitions in the domain

1412 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

7.30.3 Kernel Objects

A kernel object can be one of three classes of data:

• A core kernel object, such as a semaphore, thread, pipe, etc.

• A thread stack, which is an array of z_thread_stack_element and declared with
K_THREAD_STACK_DEFINE()

• A device driver instance (const struct device) that belongs to one of a defined set of subsystems

The set of known kernel objects and driver subsystems is defined in include/kernel.h as k_objects.

Kernel objects are completely opaque to user threads. User threads work with addresses to kernel ob-
jects when making API calls, but may never dereference these addresses, doing so will cause a memory
protection fault. All kernel objects must be placed in memory that is not accessible by user threads.

Since user threads may not directly manipulate kernel objects, all use of them must go through system
calls. In order to perform a system call on a kernel object, checks are performed by system call handler
functions that the kernel object address is valid and that the calling thread has sufficient permissions to
work with it.

Permission on an object also has the semantics of a reference to an object. This is significant for certain
object APIs which do temporary allocations, or objects which themselves have been allocated from a
runtime memory pool.

If an object loses all references, two events may happen:

• If the object has an associated cleanup function, the cleanup function may be called to release any
runtime-allocated buffers the object was using.

• If the object itself was dynamically allocated, the memory for the object will be freed.

Object Placement

Kernel objects that are only used by supervisor threads have no restrictions and can be located anywhere
in the binary, or even declared on stacks. However, to prevent accidental or intentional corruption by
user threads, they must not be located in any memory that user threads have direct access to.

In order for a static kernel object to be usable by a user thread via system call APIs, several conditions
must be met on how the kernel object is declared:

• The object must be declared as a top-level global at build time, such that it appears in the ELF
symbol table. It is permitted to declare kernel objects with static scope. The post-build script
scripts/gen_kobject_list.py scans the generated ELF file to find kernel objects and places their mem-
ory addresses in a special table of kernel object metadata. Kernel objects may be members of arrays
or embedded within other data structures.

• Kernel objects must be located in memory reserved for the kernel. They must not be located in any
memory partitions that are user-accessible.

• Any memory reserved for a kernel object must be used exclusively for that object. Kernel objects
may not be members of a union data type.

Kernel objects that are found but do not meet the above conditions will not be included in the generated
table that is used to validate kernel object pointers passed in from user mode.

The debug output of the scripts/gen_kobject_list.py script may be useful when debugging why some
object was unexpectedly not being tracked. This information will be printed if the script is run with the
--verbose flag, or if the build system is invoked with verbose output.

7.30. User Mode 1413

Zephyr Project Documentation, Release 2.7.0-rc2

Dynamic Objects

Kernel objects may also be allocated at runtime if :kconfig:`CONFIG_DYNAMIC_OBJECTS` is enabled.
In this case, the k_object_alloc() API may be used to instantiate an object from the calling thread’s
resource pool. Such allocations may be freed in two ways:

• Supervisor threads may call k_object_free() to force a dynamic object to be released.

• If an object’s references drop to zero (which happens when no threads have permissions on it)
the object will be automatically freed. User threads may drop their own permission on an ob-
ject with k_object_release() , and their permissions are automatically cleared when a thread
terminates. Supervisor threads may additionally revoke references for another thread using
k_object_access_revoke() .

Because permissions are also used for reference counting, it is important for supervisor threads to acquire
permissions on objects they are using even though the access control aspects of the permission system
are not enforced.

Implementation Details The scripts/gen_kobject_list.py script is a post-build step which finds all the
valid kernel object instances in the binary. It accomplishes this by parsing the DWARF debug information
present in the generated ELF file for the kernel.

Any instances of structs or arrays corresponding to kernel objects that meet the object placement criteria
will have their memory addresses placed in a special perfect hash table of kernel objects generated by
the ‘gperf’ tool. When a system call is made and the kernel is presented with a memory address of what
may or may not be a valid kernel object, the address can be validated with a constant-time lookup in this
table.

Drivers are a special case. All drivers are instances of device , but it is important to know what subsystem
a driver belongs to so that incorrect operations, such as calling a UART API on a sensor driver object, can
be prevented. When a device struct is found, its API pointer is examined to determine what subsystem
the driver belongs to.

The table itself maps kernel object memory addresses to instances of z_object, which has all the meta-
data for that object. This includes:

• A bitfield indicating permissions on that object. All threads have a numerical ID assigned to them at
build time, used to index the permission bitfield for an object to see if that thread has permission on
it. The size of this bitfield is controlled by the :kconfig:`CONFIG_MAX_THREAD_BYTES` option
and the build system will generate an error if this value is too low.

• A type field indicating what kind of object this is, which is some instance of k_objects.

• A set of flags for that object. This is currently used to track initialization state and whether an
object is public or not.

• An extra data field. The semantics of this field vary by object type, see the definition of
z_object_data.

Dynamic objects allocated at runtime are tracked in a runtime red/black tree which is used in parallel to
the gperf table when validating object pointers.

Supervisor Thread Access Permission

Supervisor threads can access any kernel object. However, permissions for supervisor threads are still
tracked for two reasons:

• If a supervisor thread calls k_thread_user_mode_enter() , the thread will then run in user mode
with any permissions it had been granted (in many cases, by itself) when it was a supervisor thread.

• If a supervisor thread creates a user thread with the K_INHERIT_PERMS option, the child thread will
be granted the same permissions as the parent thread, except the parent thread object.

1414 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

User Thread Access Permission

By default, when a user thread is created, it will only have access permissions on its own thread object.
Other kernel objects by default are not usable. Access to them needs to be explicitly or implicitly granted.
There are several ways to do this.

• If a thread is created with the K_INHERIT_PERMS , that thread will inherit all the permissions of the
parent thread, except the parent thread object.

• A thread that has permission on an object, or is running in supervisor mode, may grant permis-
sion on that object to another thread via the k_object_access_grant() API. The convenience
pseudo-function k_thread_access_grant() may also be used, which accepts an arbitrary number
of pointers to kernel objects and calls k_object_access_grant() on each of them. The thread
being granted permission, or the object whose access is being granted, do not need to be in an ini-
tialized state. If the caller is from user mode, the caller must have permissions on both the kernel
object and the target thread object.

• Supervisor threads may declare a particular kernel object to be a public object, usable by all cur-
rent and future threads with the k_object_access_all_grant() API. You must assume that any
untrusted or exploited code will then be able to access the object. Use this API with caution!

• If a thread was declared statically with K_THREAD_DEFINE() , then the K_THREAD_ACCESS_GRANT()
may be used to grant that thread access to a set of kernel objects at boot time.

Once a thread has been granted access to an object, such access may be removed with the
k_object_access_revoke() API. This API is not available to user threads, however user threads may
use k_object_release() to relinquish their own permissions on an object.

API calls from supervisor mode to set permissions on kernel objects that are not being tracked by the
kernel will be no-ops. Doing the same from user mode will result in a fatal error for the calling thread.

Objects allocated with k_object_alloc() implicitly grant permission on the allocated object to the
calling thread.

Initialization State

Most operations on kernel objects will fail if the object is considered to be in an uninitialized state. The
appropriate init function for the object must be performed first.

Some objects will be implicitly initialized at boot:

• Kernel objects that were declared with static initialization macros (such as K_SEM_DEFINE for
semaphores) will be in an initialized state at build time.

• Device driver objects are considered initialized after their init function is run by the kernel early in
the boot process.

If a kernel object is initialized with a private static initializer, the object must have z_object_init()
called on it at some point by a supervisor thread, otherwise the kernel will consider the object unini-
tialized if accessed by a user thread. This is very uncommon, typically only for kernel objects that are
embedded within some larger struct and initialized statically.

struct foo {
struct k_sem sem;
...

};

struct foo my_foo = {
.sem = Z_SEM_INITIALIZER(my_foo.sem, 0, 1),
...

};

(continues on next page)

7.30. User Mode 1415

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

...
z_object_init(&my_foo.sem);
...

Creating New Kernel Object Types

When implementing new kernel features or driver subsystems, it may be necessary to define some new
kernel object types. There are different steps needed for creating core kernel objects and new driver
subsystems.

Creating New Core Kernel Objects

• In scripts/gen_kobject_list.py, add the name of the struct to the kobjects list.

Instances of the new struct should now be tracked.

Creating New Driver Subsystem Kernel Objects All driver instances are device . They are differenti-
ated by what API struct they are set to.

• In scripts/gen_kobject_list.py, add the name of the API struct for the new subsystem to the
subsystems list.

Driver instances of the new subsystem should now be tracked.

Configuration Options

Related configuration options:

• :kconfig:`CONFIG_USERSPACE`

• :kconfig:`CONFIG_MAX_THREAD_BYTES`

API Reference

group usermode_apis

Defines

K_THREAD_ACCESS_GRANT(name_, ...)

Grant a static thread access to a list of kernel objects.

For threads declared with K_THREAD_DEFINE(), grant the thread access to a set of kernel
objects. These objects do not need to be in an initialized state. The permissions will be
granted when the threads are initialized in the early boot sequence.

All arguments beyond the first must be pointers to kernel objects.

Parameters

• name_ – Name of the thread, as passed to K_THREAD_DEFINE()

K_OBJ_FLAG_INITIALIZED

Object initialized

1416 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

K_OBJ_FLAG_PUBLIC

Object is Public

K_OBJ_FLAG_ALLOC

Object allocated

K_OBJ_FLAG_DRIVER

Driver Object

Functions

void k_object_access_grant(const void *object, struct k_thread *thread)

Grant a thread access to a kernel object

The thread will be granted access to the object if the caller is from supervisor mode, or the
caller is from user mode AND has permissions on both the object and the thread whose access
is being granted.

Parameters

• object – Address of kernel object

• thread – Thread to grant access to the object

void k_object_access_revoke(const void *object, struct k_thread *thread)

Revoke a thread’s access to a kernel object

The thread will lose access to the object if the caller is from supervisor mode, or the caller is
from user mode AND has permissions on both the object and the thread whose access is being
revoked.

Parameters

• object – Address of kernel object

• thread – Thread to remove access to the object

void k_object_release(const void *object)

Release an object.

Allows user threads to drop their own permission on an object Their permissions are automat-
ically cleared when a thread terminates.

Parameters

• object – The object to be released

void k_object_access_all_grant(const void *object)

Grant all present and future threads access to an object

If the caller is from supervisor mode, or the caller is from user mode and have sufficient
permissions on the object, then that object will have permissions granted to it for all current
and future threads running in the system, effectively becoming a public kernel object.

Use of this API should be avoided on systems that are running untrusted code as it is possible
for such code to derive the addresses of kernel objects and perform unwanted operations on
them.

It is not possible to revoke permissions on public objects; once public, any thread may use it.

Parameters

• object – Address of kernel object

7.30. User Mode 1417

Zephyr Project Documentation, Release 2.7.0-rc2

void *k_object_alloc(enum k_objects otype)

Allocate a kernel object of a designated type

This will instantiate at runtime a kernel object of the specified type, returning a pointer to
it. The object will be returned in an uninitialized state, with the calling thread being granted
permission on it. The memory for the object will be allocated out of the calling thread’s
resource pool.

Currently, allocation of thread stacks is not supported.

Parameters

• otype – Requested kernel object type

Returns A pointer to the allocated kernel object, or NULL if memory wasn’t available

static inline void k_object_free(void *obj)

Free an object.

Parameters

• obj –

7.30.4 System Calls

User threads run with a reduced set of privileges than supervisor threads: certain CPU instructions may
not be used, and they have access to only a limited part of the memory map. System calls (may) allow
user threads to perform operations not directly available to them.

When defining system calls, it is very important to ensure that access to the API’s private data is done
exclusively through system call interfaces. Private kernel data should never be made available to user
mode threads directly. For example, the k_queue APIs were intentionally not made available as they
store bookkeeping information about the queue directly in the queue buffers which are visible from user
mode.

APIs that allow the user to register callback functions that run in supervisor mode should never be
exposed as system calls. Reserve these for supervisor-mode access only.

This section describes how to declare new system calls and discusses a few implementation details rele-
vant to them.

Components

All system calls have the following components:

• A C prototype prefixed with __syscall for the API. It will be declared in some header under
include/ or in another SYSCALL_INCLUDE_DIRS directory. This prototype is never implemented
manually, instead it gets created by the scripts/gen_syscalls.py script. What gets generated is an
inline function which either calls the implementation function directly (if called from supervisor
mode) or goes through privilege elevation and validation steps (if called from user mode).

• An implementation function, which is the real implementation of the system call. The implemen-
tation function may assume that all parameters passed in have been validated if it was invoked
from user mode.

• A verification function, which wraps the implementation function and does validation of all the
arguments passed in.

• An unmarshalling function, which is an automatically generated handler that must be included
by user source code.

1418 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

C Prototype

The C prototype represents how the API is invoked from either user or supervisor mode. For example, to
initialize a semaphore:

__syscall void k_sem_init(struct k_sem *sem, unsigned int initial_count,
unsigned int limit);

The __syscall attribute is very special. To the C compiler, it simply expands to ‘static inline’. How-
ever to the post-build scripts/parse_syscalls.py script, it indicates that this API is a system call. The
scripts/parse_syscalls.py script does some parsing of the function prototype, to determine the data types
of its return value and arguments, and has some limitations:

• Array arguments must be passed in as pointers, not arrays. For example, int foo[] or int
foo[12] is not allowed, but should instead be expressed as int *foo.

• Function pointers horribly confuse the limited parser. The workaround is to typedef them first, and
then express in the argument list in terms of that typedef.

• __syscall must be the first thing in the prototype.

The preprocessor is intentionally not used when determining the set of system calls to generate. How-
ever, any generated system calls that don’t actually have a verification function defined (because the
related feature is not enabled in the kernel configuration) will instead point to a special verification for
unimplemented system calls. Data type definitions for APIs should not have conditional visibility to the
compiler.

Any header file that declares system calls must include a special generated header at the very bottom
of the header file. This header follows the naming convention syscalls/<name of header file>. For
example, at the bottom of include/sensor.h:

include <syscalls/sensor.h>

C prototype functions must be declared in one of the directories listed in the CMake variable
SYSCALL_INCLUDE_DIRS. This list always contains ${ZEPHYR_BASE}/include, but will also contain
APPLICATION_SOURCE_DIR when CONFIG_APPLICATION_DEFINED_SYSCALL is set, or ${ZEPHYR_BASE}/
subsys/testsuite/ztest/include when CONFIG_ZTEST is set. Additional paths can be added to the
list through the CMake command line or in CMake code that is run before ${ZEPHYR_BASE}/cmake/app/
boilerplate.cmake is run.

Invocation Context Source code that uses system call APIs can be made more efficient if it is known
that all the code inside a particular C file runs exclusively in user mode, or exclusively in supervisor
mode. The system will look for the definition of macros __ZEPHYR_SUPERVISOR__ or __ZEPHYR_USER__,
typically these will be added to the compiler flags in the build system for the related files.

• If :kconfig:`CONFIG_USERSPACE` is not enabled, all APIs just directly call the implementation
function.

• Otherwise, the default case is to make a runtime check to see if the processor is currently running
in user mode, and either make the system call or directly call the implementation function as
appropriate.

• If __ZEPHYR_SUPERVISOR__ is defined, then it is assumed that all the code runs in supervisor mode
and all APIs just directly call the implementation function. If the code was actually running in user
mode, there will be a CPU exception as soon as it tries to do something it isn’t allowed to do.

• If __ZEPHYR_USER__ is defined, then it is assumed that all the code runs in user mode and system
calls are unconditionally made.

Implementation Details Declaring an API with __syscall causes some code to be generated in C and
header files by the scripts/gen_syscalls.py script, all of which can be found in the project out directory
under include/generated/:

7.30. User Mode 1419

Zephyr Project Documentation, Release 2.7.0-rc2

• The system call is added to the enumerated type of system call IDs, which is expressed in include/
generated/syscall_list.h. It is the name of the API in uppercase, prefixed with K_SYSCALL_.

• An entry for the system call is created in the dispatch table _k_syscall_table, expressed in
include/generated/syscall_dispatch.c

• A weak verification function is declared, which is just an alias of the ‘unimplemented system call’
verifier. This is necessary since the real verification function may or may not be built depending on
the kernel configuration. For example, if a user thread makes a sensor subsystem API call, but the
sensor subsystem is not enabled, the weak verifier will be invoked instead.

• An unmarshalling function is defined in include/generated/<name>_mrsh.c

The body of the API is created in the generated system header. Using the example of k_sem_init() , this
API is declared in include/kernel.h. At the bottom of include/kernel.h is:

#include <syscalls/kernel.h>

Inside this header is the body of k_sem_init() :

static inline void k_sem_init(struct k_sem * sem, unsigned int initial_count,␣
→˓unsigned int limit)
{
#ifdef CONFIG_USERSPACE

if (z_syscall_trap()) {
arch_syscall_invoke3(*(uintptr_t *)&sem, *(uintptr_t *)&initial_count,

→˓ *(uintptr_t *)&limit, K_SYSCALL_K_SEM_INIT);
return;

}
compiler_barrier();

#endif
z_impl_k_sem_init(sem, initial_count, limit);

}

This generates an inline function that takes three arguments with void return value. Depending on
context it will either directly call the implementation function or go through a system call elevation. A
prototype for the implementation function is also automatically generated.

The final layer is the invocation of the system call itself. All architectures implementing system calls must
implement the seven inline functions _arch_syscall_invoke0() through _arch_syscall_invoke6().
These functions marshal arguments into designated CPU registers and perform the necessary privilege
elevation. Parameters of API inline function, before being passed as arguments to system call, are C
casted to uintptr_t which matches size of register. Exception to above is passing 64-bit parameters on
32-bit systems, in which case 64-bit parameters are split into lower and higher part and passed as two
consecutive arguments. There is always a uintptr_t type return value, which may be neglected if not
needed.

Some system calls may have more than six arguments, but number of arguments passed via registers is
limited to six for all architectures. Additional arguments will need to be passed in an array in the source
memory space, which needs to be treated as untrusted memory in the verification function. This code
(packing, unpacking and validation) is generated automatically as needed in the stub above and in the
unmarshalling function.

System calls return uintptr_t type value that is C casted, by wrapper, to a return type of API prototype
declaration. This means that 64-bit value may not be directly returned, from a system call to its wrapper,
on 32-bit systems. To solve the problem the automatically generated wrapper function defines 64-bit
intermediate variable, which is considered untrusted buffer, on its stack and passes pointer to that
variable to the system call, as a final argument. Upon return from the system call the value written to
that buffer will be returned by the wrapper function. The problem does not exist on 64-bit systems which
are able to return 64-bit values directly.

1420 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Fig. 10: System Call execution flow

Implementation Function

The implementation function is what actually does the work for the API. Zephyr normally does little
to no error checking of arguments, or does this kind of checking with assertions. When writing the
implementation function, validation of any parameters is optional and should be done with assertions.

All implementation functions must follow the naming convention, which is the name of the API prefixed
with z_impl_. Implementation functions may be declared in the same header as the API as a static inline
function or declared in some C file. There is no prototype needed for implementation functions, these
are automatically generated.

Verification Function

The verification function runs on the kernel side when a user thread makes a system call. When the user
thread makes a software interrupt to elevate to supervisor mode, the common system call entry point
uses the system call ID provided by the user to look up the appropriate unmarshalling function for that
system call and jump into it. This in turn calls the verification function.

Verification and unmarshalling functions only run when system call APIs are invoked from user mode. If
an API is invoked from supervisor mode, the implementation is simply called and there is no software
trap.

The purpose of the verification function is to validate all the arguments passed in. This includes:

• Any kernel object pointers provided. For example, the semaphore APIs must ensure that the
semaphore object passed in is a valid semaphore and that the calling thread has permission on
it.

• Any memory buffers passed in from user mode. Checks must be made that the calling thread has
read or write permissions on the provided buffer.

• Any other arguments that have a limited range of valid values.

Verification functions involve a great deal of boilerplate code which has been made simpler by some
macros in include/syscall_handler.h. Verification functions should be declared using these macros.

Argument Validation Several macros exist to validate arguments:

• Z_SYSCALL_OBJ() Checks a memory address to assert that it is a valid kernel object of the expected
type, that the calling thread has permissions on it, and that the object is initialized.

• Z_SYSCALL_OBJ_INIT() is the same as Z_SYSCALL_OBJ(), except that the provided object may be
uninitialized. This is useful for verifiers of object init functions.

7.30. User Mode 1421

https://github.com/zephyrproject-rtos/zephyr/blob/main/include/syscall_handler.h

Zephyr Project Documentation, Release 2.7.0-rc2

• Z_SYSCALL_OBJ_NEVER_INIT() is the same as Z_SYSCALL_OBJ(), except that the provided object
must be uninitialized. This is not used very often, currently only for k_thread_create() .

• Z_SYSCALL_MEMORY_READ() validates a memory buffer of a particular size. The calling thread must
have read permissions on the entire buffer.

• Z_SYSCALL_MEMORY_WRITE() is the same as Z_SYSCALL_MEMORY_READ() but the calling thread must
additionally have write permissions.

• Z_SYSCALL_MEMORY_ARRAY_READ() validates an array whose total size is expressed as separate ar-
guments for the number of elements and the element size. This macro correctly accounts for mul-
tiplication overflow when computing the total size. The calling thread must have read permissions
on the total size.

• Z_SYSCALL_MEMORY_ARRAY_WRITE() is the same as Z_SYSCALL_MEMORY_ARRAY_READ() but the call-
ing thread must additionally have write permissions.

• Z_SYSCALL_VERIFY_MSG() does a runtime check of some boolean expression which must evaluate
to true otherwise the check will fail. A variant Z_SYSCALL_VERIFY exists which does not take a
message parameter, instead printing the expression tested if it fails. The latter should only be used
for the most obvious of tests.

• Z_SYSCALL_DRIVER_OP() checks at runtime if a driver instance is capable of performing a particular
operation. While this macro can be used by itself, it’s mostly a building block for macros that are
automatically generated for every driver subsystem. For instance, to validate the GPIO driver, one
could use the Z_SYSCALL_DRIVER_GPIO() macro.

• Z_SYSCALL_SPECIFIC_DRIVER() is a runtime check to verify that a provided pointer is a valid
instance of a specific device driver, that the calling thread has permissions on it, and that the driver
has been initialized. It does this by checking the API structure pointer that is stored within the
driver instance and ensuring that it matches the provided value, which should be the address of
the specific driver’s API structure.

If any check fails, the macros will return a nonzero value. The macro Z_OOPS() can be used to induce a
kernel oops which will kill the calling thread. This is done instead of returning some error condition to
keep the APIs the same when calling from supervisor mode.

Verifier Definition All system calls are dispatched to a verifier function with a prefixed z_vrfy_ name
based on the system call. They have exactly the same return type and argument types as the wrapped
system call. Their job is to execute the system call (generally by calling the implementation function)
after having validated all arguments.

The verifier is itself invoked by an automatically generated unmarshaller function which takes care of
unpacking the register arguments from the architecture layer and casting them to the correct type. This
is defined in a header file that must be included from user code, generally somewhere after the definition
of the verifier in a translation unit (so that it can be inlined).

For example:

static int z_vrfy_k_sem_take(struct k_sem *sem, int32_t timeout)
{

Z_OOPS(Z_SYSCALL_OBJ(sem, K_OBJ_SEM));
return z_impl_k_sem_take(sem, timeout);

}
include <syscalls/k_sem_take_mrsh.c>

Verification Memory Access Policies Parameters passed to system calls by reference require special
handling, because the value of these parameters can be changed at any time by any user thread that has
access to the memory that parameter points to. If the kernel makes any logical decisions based on the
contents of this memory, this can open up the kernel to attacks even if checking is done. This is a class
of exploits known as TOCTOU (Time Of Check to Time Of Use).

1422 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

The proper procedure to mitigate these attacks is to make a copies in the verification function, and only
perform parameter checks on the copies, which user threads will never have access to. The implemen-
tation functions get passed the copy and not the original data sent by the user. The z_user_to_copy()
and z_user_from_copy() APIs exist for this purpose.

There is one exception in place, with respect to large data buffers which are only used to provide a
memory area that is either only written to, or whose contents are never used for any validation or
control flow. Further discussion of this later in this section.

As a first example, consider a parameter which is used as an output parameter for some integral value:

int z_vrfy_some_syscall(int *out_param)
{

int local_out_param;
int ret;

ret = z_impl_some_syscall(&local_out_param);
Z_OOPS(z_user_to_copy(out_param, &local_out_param, sizeof(*out_param)));
return ret;

}

Here we have allocated local_out_param on the stack, passed its address to the implementation func-
tion, and then used z_user_to_copy() to fill in the memory passed in by the caller.

It might be tempting to do something more concise:

int z_vrfy_some_syscall(int *out_param)
{

Z_OOPS(Z_SYSCALL_MEMORY_WRITE(out_param, sizeof(*out_param)));
return z_impl_some_syscall(out_param);

}

However, this is unsafe if the implementation ever does any reads to this memory as part of its logic. For
example, it could be used to store some counter value, and this could be meddled with by user threads
that have access to its memory. It is by far safest for small integral values to do the copying as shown in
the first example.

Some parameters may be input/output. For instance, it’s not uncommon to see APIs which pass in a
pointer to some size_t which is a maximum allowable size, which is then updated by the implementa-
tion to reflect the actual number of bytes processed. This too should use a stack copy:

int z_vrfy_in_out_syscall(size_t *size_ptr)
{

size_t size;
int ret;

Z_OOPS(z_user_from_copy(&size, size_ptr, sizeof(size));
ret = z_impl_in_out_syscall(&size);
*size_ptr = size;
return ret;

}

Many system calls pass in structures or even linked data structures. All should be copied. Typically this
is done by allocating copies on the stack:

struct bar {
...

};

struct foo {
(continues on next page)

7.30. User Mode 1423

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

...
struct bar *bar_left;
struct bar *bar_right;

};

int z_vrfy_must_alloc(struct foo *foo)
{

int ret;
struct foo foo_copy;
struct bar bar_right_copy;
struct bar bar_left_copy;

Z_OOPS(z_user_from_copy(&foo_copy, foo, sizeof(*foo)));
Z_OOPS(z_user_from_copy(&bar_right_copy, foo_copy.bar_right,

sizeof(struct bar)));
foo_copy.bar_right = &bar_right_copy;
Z_OOPS(z_user_from_copy(&bar_left_copy, foo_copy.bar_left,

sizeof(struct bar)));
foo_copy.bar_left = &bar_left_copy;

return z_impl_must_alloc(&foo_copy);
}

In some cases the amount of data isn’t known at compile time or may be too large to allocate on
the stack. In this scenario, it may be necessary to draw memory from the caller’s resource pool via
z_thread_malloc(). This should always be considered last resort. Functional safety programming
guidelines heavily discourage usage of heap and the fact that a resource pool is used must be clearly
documented. Any issues with allocation must be reported, to a caller, with returning the -ENOMEM . The
Z_OOPS() should never be used to verify if resource allocation has been successful.

struct bar {
...

};

struct foo {
size_t count;
struct bar *bar_list; /* array of struct bar of size count */

};

int z_vrfy_must_alloc(struct foo *foo)
{

int ret;
struct foo foo_copy;
struct bar *bar_list_copy;
size_t bar_list_bytes;

/* Safely copy foo into foo_copy */
Z_OOPS(z_user_from_copy(&foo_copy, foo, sizeof(*foo)));

/* Bounds check the count member, in the copy we made */
if (foo_copy.count > 32) {

return -EINVAL;
}

/* Allocate RAM for the bar_list, replace the pointer in
* foo_copy */

(continues on next page)

1424 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

bar_list_bytes = foo_copy.count * sizeof(struct_bar);
bar_list_copy = z_thread_malloc(bar_list_bytes);
if (bar_list_copy == NULL) {

return -ENOMEM;
}
Z_OOPS(z_user_from_copy(bar_list_copy, foo_copy.bar_list,

bar_list_bytes));
foo_copy.bar_list = bar_list_copy;

ret = z_impl_must_alloc(&foo_copy);

/* All done with the memory, free it and return */
k_free(foo_copy.bar_list_copy);
return ret;

}

Finally, we must consider large data buffers. These represent areas of user memory which either have
data copied out of, or copied into. It is permitted to pass these pointers to the implementation function
directly. The caller’s access to the buffer still must be validated with Z_SYSCALL_MEMORY APIs. The
following constraints need to be met:

• If the buffer is used by the implementation function to write data, such as data captured from some
MMIO region, the implementation function must only write this data, and never read it.

• If the buffer is used by the implementation function to read data, such as a block of memory to
write to some hardware destination, this data must be read without any processing. No conditional
logic can be implemented due to the data buffer’s contents. If such logic is required a copy must
be made.

• The buffer must only be used synchronously with the call. The implementation must not ever save
the buffer address and use it asynchronously, such as when an interrupt fires.

int z_vrfy_get_data_from_kernel(void *buf, size_t size)
{

Z_OOPS(Z_SYSCALL_MEMORY_WRITE(buf, size));
return z_impl_get_data_from_kernel(buf, size);

}

Verification Return Value Policies When verifying system calls, it’s important to note which kinds
of verification failures should propagate a return value to the caller, and which should simply invoke
Z_OOPS() which kills the calling thread. The current conventions are as follows:

1. For system calls that are defined but not compiled, invocations of these missing system calls are
routed to handler_no_syscall() which invokes Z_OOPS().

2. Any invalid access to memory found by the set of Z_SYSCALL_MEMORY APIs, z_user_from_copy(),
z_user_to_copy() should trigger a Z_OOPS. This happens when the caller doesn’t have appropriate
permissions on the memory buffer or some size calculation overflowed.

3. Most system calls take kernel object pointers as an argument, checked either with one of the
Z_SYSCALL_OBJ functions, Z_SYSCALL_DRIVER_nnnnn, or manually using z_object_validate().
These can fail for a variety of reasons: missing driver API, bad kernel object pointer, wrong kernel
object type, or improper initialization state. These issues should always invoke Z_OOPS().

4. Any error resulting from a failed memory heap allocation, often from invoking
z_thread_malloc(), should propagate -ENOMEM to the caller.

5. General parameter checks should be done in the implementation function, in most cases using
CHECKIF().

7.30. User Mode 1425

Zephyr Project Documentation, Release 2.7.0-rc2

• The behavior of CHECKIF() depends on the kernel configuration, but if user mode is enabled,
:kconfig:`CONFIG_RUNTIME_ERROR_CHECKS` is enforced, which guarantees that these
checks will be made and a return value propagated.

6. It is totally forbidden for any kind of kernel mode callback function to be registered from user mode.
APIs which simply install callbacks shall not be exposed as system calls. Some driver subsystem
APIs may take optional function callback pointers. User mode verification functions for these APIs
must enforce that these are NULL and should invoke Z_OOPS() if not.

7. Some parameter checks are enforced only from user mode. These should be checked in the verifi-
cation function and propagate a return value to the caller if possible.

There are some known exceptions to these policies currently in Zephyr:

• k_thread_join() and k_thread_abort() are no-ops if the thread object isn’t initialized. This is
because for threads, the initialization bit pulls double-duty to indicate whether a thread is running,
cleared upon exit. See #23030.

• k_thread_create() invokes Z_OOPS() for parameter checks, due to a great deal of existing code
ignoring the return value. This will also be addressed by #23030.

• k_thread_abort() invokes Z_OOPS() if an essential thread is aborted, as the function has no
return value.

• Various system calls related to logging invoke Z_OOPS() when bad parameters are passed in as they
do not propagate errors.

Configuration Options

Related configuration options:

• :kconfig:`CONFIG_USERSPACE`

APIs

Helper macros for creating system call verification functions are provided in include/syscall_handler.h:

• Z_SYSCALL_OBJ()

• Z_SYSCALL_OBJ_INIT()

• Z_SYSCALL_OBJ_NEVER_INIT()

• Z_OOPS()

• Z_SYSCALL_MEMORY_READ()

• Z_SYSCALL_MEMORY_WRITE()

• Z_SYSCALL_MEMORY_ARRAY_READ()

• Z_SYSCALL_MEMORY_ARRAY_WRITE()

• Z_SYSCALL_VERIFY_MSG()

• Z_SYSCALL_VERIFY

Functions for invoking system calls are defined in include/syscall.h:

• _arch_syscall_invoke0()

• _arch_syscall_invoke1()

• _arch_syscall_invoke2()

• _arch_syscall_invoke3()

• _arch_syscall_invoke4()

1426 Chapter 7. API Reference

https://github.com/zephyrproject-rtos/zephyr/blob/main/include/syscall_handler.h
https://github.com/zephyrproject-rtos/zephyr/blob/main/include/syscall.h

Zephyr Project Documentation, Release 2.7.0-rc2

• _arch_syscall_invoke5()

• _arch_syscall_invoke6()

7.30.5 MPU Stack Objects

Thread Stack Creation

Thread stacks are declared statically with K_THREAD_STACK_DEFINE() or embedded within structures
using K_THREAD_STACK_MEMBER()

For architectures which utilize memory protection unit (MPU) hardware, stacks are physically contiguous
allocations. This contiguous allocation has implications for the placement of stacks in memory, as well
as the implementation of other features such as stack protection and userspace. The implications for
placement are directly attributed to the alignment requirements for MPU regions. This is discussed in
the memory placement section below.

Stack Guards

Stack protection mechanisms require hardware support that can restrict access to memory. Memory
protection units can provide this kind of support. The MPU provides a fixed number of regions. Each
region contains information about the start, end, size, and access attributes to be enforced on that
particular region.

Stack guards are implemented by using a single MPU region and setting the attributes for that region to
not allow write access. If invalid accesses occur, a fault ensues. The stack guard is defined at the bottom
(the lowest address) of the stack.

Memory Placement

During stack creation, a set of constraints are enforced on the allocation of memory. These constraints
include determining the alignment of the stack and the correct sizing of the stack. During linking of the
binary, these constraints are used to place the stacks properly.

The main source of the memory constraints is the MPU design for the SoC. The MPU design may re-
quire specific constraints on the region definition. These can include alignment of beginning and end
addresses, sizes of allocations, or even interactions between overlapping regions.

Some MPUs require that each region be aligned to a power of two. These SoCs will have :kcon-
fig:`CONFIG_MPU_REQUIRES_POWER_OF_TWO_ALIGNMENT` defined. This means that a 1500
byte stack should be aligned to a 2kB boundary and the stack size should also be adjusted to 2kB to
ensure that nothing else is placed in the remainder of the region. SoCs which include the unmodified
ARM v7m MPU will have these constraints.

Some ARM MPUs use start and end addresses to define MPU regions and both the start and end addresses
require 32 byte alignment. An example of this kind of MPU is found in the NXP FRDM K64F.

MPUs may have a region priority mechanisms that use the highest priority region that covers the memory
access to determine the enforcement policy. Others may logically OR regions to determine enforcement
policy.

Size and alignment constraints may result in stack allocations being larger than the requested size.
Region priority mechanisms may result in some added complexity when implementing stack guards.

7.30. User Mode 1427

Zephyr Project Documentation, Release 2.7.0-rc2

7.30.6 MPU Backed Userspace

The MPU backed userspace implementation requires the creation of a secondary set of stacks. These
stacks exist in a 1:1 relationship with each thread stack defined in the system. The privileged stacks are
created as a part of the build process.

A post-build script scripts/gen_kobject_list.py scans the generated ELF file and finds all of the thread stack
objects. A set of privileged stacks, a lookup table, and a set of helper functions are created and added to
the image.

During the process of dropping a thread to user mode, the privileged stack information is filled in and
later used by the swap and system call infrastructure to configure the MPU regions properly for the
thread stack and guard (if applicable).

During system calls, the user mode thread’s access to the system call and the passed-in parameters are
all validated. The user mode thread is then elevated to privileged mode, the stack is switched to use
the privileged stack, and the call is made to the specified kernel API. On return from the kernel API, the
thread is set back to user mode and the stack is restored to the user stack.

7.31 Utilities

This page contains reference documentation for <sys/util.h>, which provides miscellaneous utility
functions and macros.

group sys-util

Defines

POINTER_TO_UINT(x)

Cast x, a pointer, to an unsigned integer.

UINT_TO_POINTER(x)

Cast x, an unsigned integer, to a void*.

POINTER_TO_INT(x)

Cast x, a pointer, to a signed integer.

INT_TO_POINTER(x)

Cast x, a signed integer, to a void*.

BITS_PER_LONG

Number of bits in a long int.

GENMASK(h, l)

Create a contiguous bitmask starting at bit position l and ending at position h.

ZERO_OR_COMPILE_ERROR(cond)

0 if cond is true-ish; causes a compile error otherwise.

IS_ARRAY(array)

Zero if array has an array type, a compile error otherwise.

This macro is available only from C, not C++.

1428 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

ARRAY_SIZE(array)

Number of elements in the given array.

In C++, due to language limitations, this will accept as array any type that implements
operator[]. The results may not be particulary meaningful in this case.

In C, passing a pointer as array causes a compile error.

PART_OF_ARRAY(array, ptr)

Check if a pointer ptr lies within array.

In C but not C++, this causes a compile error if array is not an array (e.g. if ptr and array
are mixed up).

Parameters

• ptr – a pointer

• array – an array

Returns 1 if ptr is part of array, 0 otherwise

CONTAINER_OF(ptr, type, field)

Get a pointer to a container structure from an element.

Example:

struct foo {
int bar;

};

struct foo my_foo;
int *ptr = &my_foo.bar;

struct foo *container = CONTAINER_OF(ptr, struct foo, bar);

Above, container points at my_foo.

Parameters

• ptr – pointer to a structure element

• type – name of the type that ptr is an element of

• field – the name of the field within the struct ptr points to

Returns a pointer to the structure that contains ptr

ROUND_UP(x, align)

Value of x rounded up to the next multiple of align, which must be a power of 2.

ROUND_DOWN(x, align)

Value of x rounded down to the previous multiple of align, which must be a power of 2.

WB_UP(x)

Value of x rounded up to the next word boundary.

WB_DN(x)

Value of x rounded down to the previous word boundary.

ceiling_fraction(numerator, divider)

Ceiling function applied to numerator / divider as a fraction.

7.31. Utilities 1429

Zephyr Project Documentation, Release 2.7.0-rc2

MAX(a, b)

The larger value between a and b.

Note: Arguments are evaluated twice.

MIN(a, b)

The smaller value between a and b.

Note: Arguments are evaluated twice.

CLAMP(val, low, high)

Clamp a value to a given range.

Note: Arguments are evaluated multiple times.

KB(x)

Number of bytes in x kibibytes.

MB(x)

Number of bytes in x mebibytes.

GB(x)

Number of bytes in x gibibytes.

KHZ(x)

Number of Hz in x kHz.

MHZ(x)

Number of Hz in x MHz.

BIT(n)

Unsigned integer with bit position n set (signed in assembly language).

BIT64(_n)

64-bit unsigned integer with bit position _n set.

WRITE_BIT(var, bit, set)

Set or clear a bit depending on a boolean value.

The argument var is a variable whose value is written to as a side effect.

Parameters

• var – Variable to be altered

• bit – Bit number

• set – if 0, clears bit in var; any other value sets bit

BIT_MASK(n)

Bit mask with bits 0 through n-1 (inclusive) set, or 0 if n is 0.

BIT64_MASK(n)

64-bit bit mask with bits 0 through n-1 (inclusive) set, or 0 if n is 0.

IS_ENABLED(config_macro)

Check for macro definition in compiler-visible expressions.

This trick was pioneered in Linux as the config_enabled() macro. It has the effect of taking
a macro value that may be defined to “1” or may not be defined at all and turning it into a

1430 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

literal expression that can be handled by the C compiler instead of just the preprocessor. It is
often used with a CONFIG_FOO macro which may be defined to 1 via Kconfig, or left undefined.

That is, it works similarly to #if defined(CONFIG_FOO) except that its expansion is a C ex-
pression. Thus, much #ifdef usage can be replaced with equivalents like:

if (IS_ENABLED(CONFIG_FOO)) {
do_something_with_foo

}

This is cleaner since the compiler can generate errors and warnings for
do_something_with_foo even when CONFIG_FOO is undefined.

Parameters

• config_macro – Macro to check

Returns 1 if config_macro is defined to 1, 0 otherwise (including if config_macro
is not defined)

COND_CODE_1(_flag, _if_1_code, _else_code)

Insert code depending on whether _flag expands to 1 or not.

This relies on similar tricks as IS_ENABLED(), but as the result of _flag expansion, results in
either _if_1_code or _else_code is expanded.

To prevent the preprocessor from treating commas as argument separators, the _if_1_code
and _else_code expressions must be inside brackets/parentheses: (). These are stripped
away during macro expansion.

Example:

COND_CODE_1(CONFIG_FLAG, (uint32_t x;), (there_is_no_flag();))

If CONFIG_FLAG is defined to 1, this expands to:

uint32_t x;

It expands to there_is_no_flag(); otherwise.

This could be used as an alternative to:

#if defined(CONFIG_FLAG) && (CONFIG_FLAG == 1)
#define MAYBE_DECLARE(x) uint32_t x
#else
#define MAYBE_DECLARE(x) there_is_no_flag()
#endif

MAYBE_DECLARE(x);

However, the advantage of COND_CODE_1() is that code is resolved in place where it is used,
while the #if method defines MAYBE_DECLARE on two lines and requires it to be invoked again
on a separate line. This makes COND_CODE_1() more concise and also sometimes more useful
when used within another macro’s expansion.

Note: _flag can be the result of preprocessor expansion, e.g. an expression involving
NUM_VA_ARGS_LESS_1(...) . However, _if_1_code is only expanded if _flag expands to the
integer literal 1. Integer expressions that evaluate to 1, e.g. after doing some arithmetic, will
not work.

Parameters

7.31. Utilities 1431

Zephyr Project Documentation, Release 2.7.0-rc2

• _flag – evaluated flag

• _if_1_code – result if _flag expands to 1; must be in parentheses

• _else_code – result otherwise; must be in parentheses

COND_CODE_0(_flag, _if_0_code, _else_code)

Like COND_CODE_1() except tests if _flag is 0.

This is like COND_CODE_1(), except that it tests whether _flag expands to the integer literal
0. It expands to _if_0_code if so, and _else_code otherwise; both of these must be enclosed
in parentheses.

See also:

COND_CODE_1()

Parameters

• _flag – evaluated flag

• _if_0_code – result if _flag expands to 0; must be in parentheses

• _else_code – result otherwise; must be in parentheses

IF_ENABLED(_flag, _code)

Insert code if _flag is defined and equals 1.

Like COND_CODE_1(), this expands to _code if _flag is defined to 1; it expands to nothing
otherwise.

Example:

IF_ENABLED(CONFIG_FLAG, (uint32_t foo;))

If CONFIG_FLAG is defined to 1, this expands to:

uint32_t foo;

and to nothing otherwise.

It can be considered as a more compact alternative to:

#if defined(CONFIG_FLAG) && (CONFIG_FLAG == 1)
uint32_t foo;
#endif

Parameters

• _flag – evaluated flag

• _code – result if _flag expands to 1; must be in parentheses

IS_EMPTY(a)

Check if a macro has a replacement expression.

If a is a macro defined to a nonempty value, this will return true, otherwise it will return false.
It only works with defined macros, so an additional #ifdef test may be needed in some cases.

This macro may be used with COND_CODE_1() and COND_CODE_0() while processing to
avoid processing empty arguments.

Note that this macro is intended to check macro names that evaluate to replacement lists
being empty or containing numbers or macro name like tokens.

1432 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Example:

#define EMPTY
#define NON_EMPTY 1
#undef UNDEFINED
IS_EMPTY(EMPTY)
IS_EMPTY(NON_EMPTY)
IS_EMPTY(UNDEFINED)
#if defined(EMPTY) && IS_EMPTY(EMPTY) == true
some_conditional_code
#endif

In above examples, the invocations of IS_EMPTY(. . .) return true, false, and true;
some_conditional_code is included.

Note: Not all arguments are accepted by this macro and compilation will fail if argument
cannot be concatenated with literal constant. That will happen if argument does not start
with letter or number. Example arguments that will fail during compilation: .arg, (arg), “arg”,
{arg}.

Parameters

• a – macro to check for emptiness

LIST_DROP_EMPTY(...)

Remove empty arguments from list.

During macro expansion, and other preprocessor generated lists may contain empty elements,
e.g.:

#define LIST ,a,b,,d,

Using EMPTY to show each empty element, LIST contains:

EMPTY, a, b, EMPTY, d

When processing such lists, e.g. using FOR_EACH(), all empty elements will be pro-
cessed, and may require filtering out. To make that process easier, it is enough to invoke
LIST_DROP_EMPTY which will remove all empty elements.

Example:

LIST_DROP_EMPTY(LIST)

expands to:

a, b, d

Parameters

• ... – list to be processed

EMPTY

Macro with an empty expansion.

This trivial definition is provided for readability when a macro should expand to an empty
result, which e.g. is sometimes needed to silence checkpatch.

7.31. Utilities 1433

Zephyr Project Documentation, Release 2.7.0-rc2

Example:

#define LIST_ITEM(n) , item##n

The above would cause checkpatch to complain, but:

#define LIST_ITEM(n) EMPTY, item##n

would not.

IDENTITY(V)

Macro that expands to its argument.

This is useful in macros like FOR_EACH() when there is no transformation required on the list
elements.

Parameters

• V – any value

GET_ARG_N(N, ...)

Get nth argument from argument list.

Parameters

• N – Argument index to fetch. Counter from 1.

• ... – Variable list of argments from which one argument is returned.

Returns Nth argument.

GET_ARGS_LESS_N(N, ...)

Strips n first arguments from the argument list.

Parameters

• N – Number of arguments to discard.

• ... – Variable list of argments.

Returns argument list without N first arguments.

UTIL_OR(a, b)

Like a || b, but does evaluation and short-circuiting at C preprocessor time.

This is not the same as the binary || operator; in particular, a should expand to an integer
literal 0 or 1. However, b can be any value.

This can be useful when b is an expression that would cause a build error when a is 1.

UTIL_AND(a, b)

Like a && b, but does evaluation and short-circuiting at C preprocessor time.

This is not the same as the binary &&, however; in particular, a should expand to an integer
literal 0 or 1. However, b can be any value.

This can be useful when b is an expression that would cause a build error when a is 0.

UTIL_LISTIFY(LEN, F, ...)

Generates a sequence of code.

Example:

#define FOO(i, _) MY_PWM ## i ,
{ UTIL_LISTIFY(PWM_COUNT, FOO) }

1434 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

The above two lines expand to:

{ MY_PWM0 , MY_PWM1 , }

Note: Calling UTIL_LISTIFY with undefined arguments has undefined behavior.

Parameters

• LEN – The length of the sequence. Must be an integer literal less than 255.

• F – A macro function that accepts at least two arguments: F(i, ...). F is
called repeatedly in the expansion. Its first argument i is the index in the
sequence, and the variable list of arguments passed to UTIL_LISTIFY are passed
through to F.

FOR_EACH(F, sep, ...)

Call a macro F on each provided argument with a given separator between each call.

Example:

#define F(x) int a##x
FOR_EACH(F, (;), 4, 5, 6);

This expands to:

int a4;
int a5;
int a6;

Parameters

• F – Macro to invoke

• sep – Separator (e.g. comma or semicolon). Must be in parentheses; this is
required to enable providing a comma as separator.

• ... – Variable argument list. The macro F is invoked as F(element) for each
element in the list.

FOR_EACH_NONEMPTY_TERM(F, term, ...)

Like FOR_EACH(), but with a terminator instead of a separator, and drops empty elements
from the argument list.

The sep argument to FOR_EACH(F, (sep), a, b) is a separator which is placed between
calls to F, like this:

FOR_EACH(F, (sep), a, b) // F(a) sep F(b)
// ^^^ no sep here!

By contrast, the term argument to FOR_EACH_NONEMPTY_TERM(F, (term),a, b) is added af-
ter each time F appears in the expansion:

FOR_EACH_NONEMPTY_TERM(F, (term), a, b) // F(a) term F(b) term
// ^^^^

Further, any empty elements are dropped:

FOR_EACH_NONEMPTY_TERM(F, (term), a, EMPTY, b) // F(a) term F(b) term

7.31. Utilities 1435

Zephyr Project Documentation, Release 2.7.0-rc2

This is more convenient in some cases, because FOR_EACH_NONEMPTY_TERM() expands to
nothing when given an empty argument list, and it’s often cumbersome to write a macro F
that does the right thing even when given an empty argument.

One example is when may or may not be empty, and the results are embedded in a larger
initializer:

#define SQUARE(x) ((x)*(x))

int my_array[] = {
FOR_EACH_NONEMPTY_TERM(SQUARE, (,), FOO(...))
FOR_EACH_NONEMPTY_TERM(SQUARE, (,), BAR(...))
FOR_EACH_NONEMPTY_TERM(SQUARE, (,), BAZ(...))

};

This is more convenient than:

a. figuring out whether the FOO, BAR, and BAZ expansions are empty and adding a comma
manually (or not) between FOR_EACH() calls

b. rewriting SQUARE so it reacts appropriately when “x” is empty (which would be necessary
if e.g. FOO expands to nothing)

Parameters

• F – Macro to invoke on each nonempty element of the variable arguments

• term – Terminator (e.g. comma or semicolon) placed after each invocation
of F. Must be in parentheses; this is required to enable providing a comma as
separator.

• ... – Variable argument list. The macro F is invoked as F(element) for each
nonempty element in the list.

FOR_EACH_IDX(F, sep, ...)

Call macro F on each provided argument, with the argument’s index as an additional param-
eter.

This is like FOR_EACH(), except F should be a macro which takes two arguments: F(index,
variable_arg).

Example:

#define F(idx, x) int a##idx = x
FOR_EACH_IDX(F, (;), 4, 5, 6);

This expands to:

int a0 = 4;
int a1 = 5;
int a2 = 6;

Parameters

• F – Macro to invoke

• sep – Separator (e.g. comma or semicolon). Must be in parentheses; this is
required to enable providing a comma as separator.

• ... – Variable argument list. The macro F is invoked as F(index, element)
for each element in the list.

1436 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

FOR_EACH_FIXED_ARG(F, sep, fixed_arg, ...)

Call macro F on each provided argument, with an additional fixed argument as a parameter.

This is like FOR_EACH(), except F should be a macro which takes two arguments:
F(variable_arg, fixed_arg).

Example:

static void func(int val, void *dev);
FOR_EACH_FIXED_ARG(func, (;), dev, 4, 5, 6);

This expands to:

func(4, dev);
func(5, dev);
func(6, dev);

Parameters

• F – Macro to invoke

• sep – Separator (e.g. comma or semicolon). Must be in parentheses; this is
required to enable providing a comma as separator.

• fixed_arg – Fixed argument passed to F as the second macro parameter.

• ... – Variable argument list. The macro F is invoked as F(element,
fixed_arg) for each element in the list.

FOR_EACH_IDX_FIXED_ARG(F, sep, fixed_arg, ...)

Calls macro F for each variable argument with an index and fixed argument.

This is like the combination of FOR_EACH_IDX() with FOR_EACH_FIXED_ARG().

Example:

#define F(idx, x, fixed_arg) int fixed_arg##idx = x
FOR_EACH_IDX_FIXED_ARG(F, (;), a, 4, 5, 6);

This expands to:

int a0 = 4;
int a1 = 5;
int a2 = 6;

Parameters

• F – Macro to invoke

• sep – Separator (e.g. comma or semicolon). Must be in parentheses; This is
required to enable providing a comma as separator.

• fixed_arg – Fixed argument passed to F as the third macro parameter.

• ... – Variable list of arguments. The macro F is invoked as F(index,
element, fixed_arg) for each element in the list.

REVERSE_ARGS(...)

Reverse arguments order.

Parameters

• ... – Variable argument list.

7.31. Utilities 1437

Zephyr Project Documentation, Release 2.7.0-rc2

NUM_VA_ARGS_LESS_1(...)

Number of arguments in the variable arguments list minus one.

Parameters

• ... – List of arguments

Returns Number of variadic arguments in the argument list, minus one

MACRO_MAP_CAT(...)

Mapping macro that pastes results together.

This is similar to FOR_EACH() in that it invokes a macro repeatedly on each element of .
However, unlike FOR_EACH(), MACRO_MAP_CAT() pastes the results together into a single
token.

For example, with this macro FOO:

#define FOO(x) item_##x##_

MACRO_MAP_CAT(FOO, a, b, c) , expands to the token:

item_a_item_b_item_c_

Parameters

• ... – Macro to expand on each argument, followed by its arguments. (The
macro should take exactly one argument.)

Returns The results of expanding the macro on each argument, all pasted together

MACRO_MAP_CAT_N(N, ...)

Mapping macro that pastes a fixed number of results together.

Similar to MACRO_MAP_CAT(), but expects a fixed number of arguments. If more arguments
are given than are expected, the rest are ignored.

Parameters

• N – Number of arguments to map

• ... – Macro to expand on each argument, followed by its arguments. (The
macro should take exactly one argument.)

Returns The results of expanding the macro on each argument, all pasted together

Functions

static inline bool is_power_of_two(unsigned int x)

Is x a power of two?

Parameters

• x – value to check

Returns true if x is a power of two, false otherwise

static inline int64_t arithmetic_shift_right(int64_t value, uint8_t shift)

Arithmetic shift right.

Parameters

• value – value to shift

• shift – number of bits to shift

1438 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Returns value shifted right by shift; opened bit positions are filled with the sign
bit

static inline void bytecpy(void *dst, const void *src, size_t size)

byte by byte memcpy.

Copy size bytes of src into dest. This is guaranteed to be done byte by byte.

Parameters

• dst – Pointer to the destination memory.

• src – Pointer to the source of the data.

• size – The number of bytes to copy.

int char2hex(char c, uint8_t *x)

Convert a single character into a hexadecimal nibble.

Parameters

• c – The character to convert

• x – The address of storage for the converted number.

Returns Zero on success or (negative) error code otherwise.

int hex2char(uint8_t x, char *c)

Convert a single hexadecimal nibble into a character.

Parameters

• c – The number to convert

• x – The address of storage for the converted character.

Returns Zero on success or (negative) error code otherwise.

size_t bin2hex(const uint8_t *buf, size_t buflen, char *hex, size_t hexlen)

Convert a binary array into string representation.

Parameters

• buf – The binary array to convert

• buflen – The length of the binary array to convert

• hex – Address of where to store the string representation.

• hexlen – Size of the storage area for string representation.

Returns The length of the converted string, or 0 if an error occurred.

size_t hex2bin(const char *hex, size_t hexlen, uint8_t *buf, size_t buflen)

Convert a hexadecimal string into a binary array.

Parameters

• hex – The hexadecimal string to convert

• hexlen – The length of the hexadecimal string to convert.

• buf – Address of where to store the binary data

• buflen – Size of the storage area for binary data

Returns The length of the binary array, or 0 if an error occurred.

static inline uint8_t bcd2bin(uint8_t bcd)

Convert a binary coded decimal (BCD 8421) value to binary.

Parameters

7.31. Utilities 1439

Zephyr Project Documentation, Release 2.7.0-rc2

• bcd – BCD 8421 value to convert.

Returns Binary representation of input value.

static inline uint8_t bin2bcd(uint8_t bin)

Convert a binary value to binary coded decimal (BCD 8421).

Parameters

• bin – Binary value to convert.

Returns BCD 8421 representation of input value.

uint8_t u8_to_dec(char *buf, uint8_t buflen, uint8_t value)

Convert a uint8_t into a decimal string representation.

Convert a uint8_t value into its ASCII decimal string representation. The string is terminated
if there is enough space in buf.

Parameters

• buf – Address of where to store the string representation.

• buflen – Size of the storage area for string representation.

• value – The value to convert to decimal string

Returns The length of the converted string (excluding terminator if any), or 0 if an
error occurred.

7.32 Settings

The settings subsystem gives modules a way to store persistent per-device configuration and runtime
state. A variety of storage implementations are provided behind a common API using FCB, NVS, or
a file system. These different implementations give the application developer flexibility to select an
appropriate storage medium, and even change it later as needs change. This subsystem is used by
various Zephyr components and can be used simultaneously by user applications.

Settings items are stored as key-value pair strings. By convention, the keys can be organized by the pack-
age and subtree defining the key, for example the key id/serial would define the serial configuration
element for the package id.

Convenience routines are provided for converting a key value to and from a string type.

For an example of the settings subsystem refer to the sample.

Note: As of Zephyr release 2.1 the recommended backend for non-filesystem storage is NVS.

7.32.1 Handlers

Settings handlers for subtree implement a set of handler functions. These are registered using a call to
settings_register().

h_get This gets called when asking for a settings element value by its name using
settings_runtime_get() from the runtime backend.

h_set This gets called when the value is loaded from persisted storage with settings_load(), or when
using settings_runtime_set() from the runtime backend.

h_commit This gets called after the settings have been loaded in full. Sometimes you don’t want an
individual setting value to take effect right away, for example if there are multiple settings which
are interdependent.

1440 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

h_export This gets called to write all current settings. This happens when settings_save() tries to
save the settings or transfer to any user-implemented back-end.

7.32.2 Backends

Backends are meant to load and save data to/from setting handlers, and implement a set of handler
functions. These are registered using a call to settings_src_register() for backends that can load
data, and/or settings_dst_register() for backends that can save data. The current implementation
allows for multiple source backends but only a single destination backend.

csi_load This gets called when loading values from persistent storage using settings_load().

csi_save This gets called when a saving a single setting to persistent storage using
settings_save_one().

csi_save_start This gets called when starting a save of all current settings using settings_save().

csi_save_end This gets called after having saved of all current settings using settings_save().

7.32.3 Zephyr Storage Backends

Zephyr has three storage backends: a Flash Circular Buffer (:kconfig:`CONFIG_SETTINGS_FCB`),
a file in the filesystem (:kconfig:`CONFIG_SETTINGS_FS`), or non-volatile storage (:kcon-
fig:`CONFIG_SETTINGS_NVS`).

You can declare multiple sources for settings; settings from all of these are restored when
settings_load() is called.

There can be only one target for writing settings; this is where data is stored when you call
settings_save(), or settings_save_one().

FCB read target is registered using settings_fcb_src(), and write target using settings_fcb_dst().
As a side-effect, settings_fcb_src() initializes the FCB area, so it must be called before calling
settings_fcb_dst(). File read target is registered using settings_file_src(), and write target by
using settings_file_dst(). Non-volatile storage read target is registered using settings_nvs_src(),
and write target by using settings_nvs_dst().

7.32.4 Loading data from persisted storage

A call to settings_load() uses an h_set implementation to load settings data from storage to volatile
memory. After all data is loaded, the h_commit handler is issued, signalling the application that the
settings were successfully retrieved.

Technically FCB and filesystem backends may store some history of the entities. This means that the
newest data entity is stored after any older existing data entities. Starting with Zephyr 2.1, the back-end
must filter out all old entities and call the callback with only the newest entity.

7.32.5 Storing data to persistent storage

A call to settings_save_one() uses a backend implementation to store settings data to the storage
medium. A call to settings_save() uses an h_export implementation to store different data in one
operation using settings_save_one(). A key need to be covered by a h_export only if it is supposed to
be stored by settings_save() call.

For both FCB and filesystem back-end only storage requests with data which changes most actual key’s
value are stored, therefore there is no need to check whether a value changed by the application. Such
a storage mechanism implies that storage can contain multiple value assignments for a key , while only
the last is the current value for the key.

7.32. Settings 1441

Zephyr Project Documentation, Release 2.7.0-rc2

Garbage collection

When storage becomes full (FCB) or consumes too much space (file system), the backend removes non-
recent key-value pairs records and unnecessary key-delete records.

7.32.6 Example: Device Configuration

This is a simple example, where the settings handler only implements h_set and h_export. h_set is
called when the value is restored from storage (or when set initially), and h_export is used to write the
value to storage thanks to storage_func(). The user can also implement some other export functional-
ity, for example, writing to the shell console).

define DEFAULT_FOO_VAL_VALUE 1

static int8 foo_val = DEFAULT_FOO_VAL_VALUE;

static int foo_settings_set(const char *name, size_t len,
settings_read_cb read_cb, void *cb_arg)

{
const char *next;
int rc;

if (settings_name_steq(name, "bar", &next) && !next) {
if (len != sizeof(foo_val)) {

return -EINVAL;
}

rc = read_cb(cb_arg, &foo_val, sizeof(foo_val));
if (rc >= 0) {

/* key-value pair was properly read.
* rc contains value length.
*/

return 0;
}
/* read-out error */
return rc;

}

return -ENOENT;
}

static int foo_settings_export(int (*storage_func)(const char *name,
void *value,
size_t val_len))

{
return storage_func("foo/bar", &foo_val, sizeof(foo_val));

}

struct settings_handler my_conf = {
.name = "foo",
.h_set = foo_settings_set,
.h_export = foo_settings_export

};

1442 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

7.32.7 Example: Persist Runtime State

This is a simple example showing how to persist runtime state. In this example, only h_set is defined,
which is used when restoring value from persisted storage.

In this example, the main function increments foo_val, and then persists the latest number. When
the system restarts, the application calls settings_load() while initializing, and foo_val will continue
counting up from where it was before restart.

include <zephyr.h>
include <sys/reboot.h>
include <settings/settings.h>
include <sys/printk.h>
include <inttypes.h>

define DEFAULT_FOO_VAL_VALUE 0

static uint8_t foo_val = DEFAULT_FOO_VAL_VALUE;

static int foo_settings_set(const char *name, size_t len,
settings_read_cb read_cb, void *cb_arg)

{
const char *next;
int rc;

if (settings_name_steq(name, "bar", &next) && !next) {
if (len != sizeof(foo_val)) {

return -EINVAL;
}

rc = read_cb(cb_arg, &foo_val, sizeof(foo_val));
if (rc >= 0) {

return 0;
}

return rc;
}

return -ENOENT;
}

struct settings_handler my_conf = {
.name = "foo",
.h_set = foo_settings_set

};

void main(void)
{

settings_subsys_init();
settings_register(&my_conf);
settings_load();

foo_val++;
settings_save_one("foo/bar", &foo_val, sizeof(foo_val));

printk("foo: %d\n", foo_val);

(continues on next page)

7.32. Settings 1443

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

k_sleep(1000);
sys_reboot(SYS_REBOOT_COLD);

}

7.32.8 Example: Custom Backend Implementation

This is a simple example showing how to register a simple custom backend handler (:kcon-
fig:`CONFIG_SETTINGS_CUSTOM`).

static int settings_custom_load(struct settings_store *cs)
{

//...
}

static int settings_custom_save(struct settings_store *cs, const char *name,
const char *value, size_t val_len)

{
//...

}

/* custom backend interface */
static struct settings_store_itf settings_custom_itf = {

.csi_load = settings_custom_load,

.csi_save = settings_custom_save,
};

/* custom backend node */
static struct settings_store settings_custom_store = {

.cs_itf = &settings_custom_itf
}

int settings_backend_init(void)
{

/* register custom backend */
settings_dst_register(&settings_custom_store);
settings_src_register(&settings_custom_store);
return 0;

}

7.32.9 API Reference

The Settings subsystem APIs are provided by settings.h:

API for general settings usage

group settings

Defines

SETTINGS_MAX_DIR_DEPTH

1444 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

SETTINGS_MAX_NAME_LEN

SETTINGS_MAX_VAL_LEN

SETTINGS_NAME_SEPARATOR

SETTINGS_NAME_END

SETTINGS_EXTRA_LEN

SETTINGS_STATIC_HANDLER_DEFINE(_hname, _tree, _get, _set, _commit, _export)

Define a static handler for settings items

This creates a variable hname prepended by settings_handler.

Parameters

• _hname – handler name

• _tree – subtree name

• _get – get routine (can be NULL)

• _set – set routine (can be NULL)

• _commit – commit routine (can be NULL)

• _export – export routine (can be NULL)

Typedefs

typedef ssize_t (*settings_read_cb)(void *cb_arg, void *data, size_t len)

Function used to read the data from the settings storage in h_set handler implementations.

Param cb_arg [in] arguments for the read function. Appropriate cb_arg is trans-
ferred to h_set handler implementation by the backend.

Param data [out] the destination buffer

Param len [in] length of read

Return positive: Number of bytes read, 0: key-value pair is deleted. On error returns
-ERRNO code.

typedef int (*settings_load_direct_cb)(const char *key, size_t len, settings_read_cb read_cb,
void *cb_arg, void *param)

Callback function used for direct loading. Used by settings_load_subtree_direct function.

• key[in] the name with skipped part that was used as name in handler registration

• len[in] the size of the data found in the backend.

• read_cb[in] function provided to read the data from the backend.

• cb_arg[in] arguments for the read function provided by the backend.

Param key [in] the name with skipped part that was used as name in handler regis-
tration

7.32. Settings 1445

Zephyr Project Documentation, Release 2.7.0-rc2

Param len [in] the size of the data found in the backend.

Param read_cb [in] function provided to read the data from the backend.

Param cb_arg [inout] arguments for the read function provided by the backend.

Param param [inout] parameter given to the settings_load_subtree_direct function.

Return When nonzero value is returned, further subtree searching is stopped. Use
with care as some settings backends would iterate through old values, and the
current value is returned last.

Functions

int settings_subsys_init(void)

Initialization of settings and backend

Can be called at application startup. In case the backend is a FS Remember to call it after the
FS was mounted. For FCB backend it can be called without such a restriction.

Returns 0 on success, non-zero on failure.

int settings_register(struct settings_handler *cf)

Register a handler for settings items stored in RAM.

Parameters

• cf – Structure containing registration info.

Returns 0 on success, non-zero on failure.

int settings_load(void)

Load serialized items from registered persistence sources. Handlers for serialized item sub-
trees registered earlier will be called for encountered values.

Returns 0 on success, non-zero on failure.

int settings_load_subtree(const char *subtree)

Load limited set of serialized items from registered persistence sources. Handlers for serial-
ized item subtrees registered earlier will be called for encountered values that belong to the
subtree.

Parameters

• subtree – [in] name of the subtree to be loaded.

Returns 0 on success, non-zero on failure.

int settings_load_subtree_direct(const char *subtree, settings_load_direct_cb cb, void
*param)

Load limited set of serialized items using given callback.

This function bypasses the normal data workflow in settings module. All the settings values
that are found are passed to the given callback.

Note: This function does not call commit function. It works as a blocking function, so it is
up to the user to call any kind of commit function when this operation ends.

Parameters

• subtree – [in] subtree name of the subtree to be loaded.

• cb – [in] pointer to the callback function.

• param – [inout] parameter to be passed when callback function is called.

1446 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Returns 0 on success, non-zero on failure.

int settings_save(void)

Save currently running serialized items. All serialized items which are different from currently
persisted values will be saved.

Returns 0 on success, non-zero on failure.

int settings_save_one(const char *name, const void *value, size_t val_len)

Write a single serialized value to persisted storage (if it has changed value).

Parameters

• name – Name/key of the settings item.

• value – Pointer to the value of the settings item. This value will be transferred
to the settings_handler::h_export handler implementation.

• val_len – Length of the value.

Returns 0 on success, non-zero on failure.

int settings_delete(const char *name)

Delete a single serialized in persisted storage.

Deleting an existing key-value pair in the settings mean to set its value to NULL.

Parameters

• name – Name/key of the settings item.

Returns 0 on success, non-zero on failure.

int settings_commit(void)

Call commit for all settings handler. This should apply all settings which has been set, but not
applied yet.

Returns 0 on success, non-zero on failure.

int settings_commit_subtree(const char *subtree)

Call commit for settings handler that belong to subtree. This should apply all settings which
has been set, but not applied yet.

Parameters

• subtree – [in] name of the subtree to be committed.

Returns 0 on success, non-zero on failure.

struct settings_handler

#include <settings.h> Config handlers for subtree implement a set of handler functions. These
are registered using a call to settings_register.

Public Members

const char *name

Name of subtree.

int (*h_get)(const char *key, char *val, int val_len_max)

Get values handler of settings items identified by keyword names.

Parameters:
• key[in] the name with skipped part that was used as name in handler registration

7.32. Settings 1447

Zephyr Project Documentation, Release 2.7.0-rc2

• val[out] buffer to receive value.
• val_len_max[in] size of that buffer.

Return: length of data read on success, negative on failure.

int (*h_set)(const char *key, size_t len, settings_read_cb read_cb, void *cb_arg)

Set value handler of settings items identified by keyword names.

Parameters:
• key[in] the name with skipped part that was used as name in handler registration
• len[in] the size of the data found in the backend.
• read_cb[in] function provided to read the data from the backend.
• cb_arg[in] arguments for the read function provided by the backend.

Return: 0 on success, non-zero on failure.

int (*h_commit)(void)

This handler gets called after settings has been loaded in full. User might use it to apply
setting to the application.

Return: 0 on success, non-zero on failure.

int (*h_export)(int (*export_func)(const char *name, const void *val, size_t val_len))

This gets called to dump all current settings items.

This happens when settings_save tries to save the settings. Parameters:
• export_func: the pointer to the internal function which appends a single key-value

pair to persisted settings. Don’t store duplicated value. The name is subtree/key
string, val is the string with value.

Return: 0 on success, non-zero on failure.

Remark

The User might limit a implementations of handler to serving only one keyword at one
call - what will impose limit to get/set values using full subtree/key name.

sys_snode_t node

Linked list node info for module internal usage.

struct settings_handler_static

#include <settings.h> Config handlers without the node element, used for static handlers.
These are registered using a call to SETTINGS_REGISTER_STATIC().

Public Members

const char *name

Name of subtree.

int (*h_get)(const char *key, char *val, int val_len_max)

Get values handler of settings items identified by keyword names.

Parameters:
• key[in] the name with skipped part that was used as name in handler registration
• val[out] buffer to receive value.
• val_len_max[in] size of that buffer.

1448 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Return: length of data read on success, negative on failure.

int (*h_set)(const char *key, size_t len, settings_read_cb read_cb, void *cb_arg)

Set value handler of settings items identified by keyword names.

Parameters:
• key[in] the name with skipped part that was used as name in handler registration
• len[in] the size of the data found in the backend.
• read_cb[in] function provided to read the data from the backend.
• cb_arg[in] arguments for the read function provided by the backend.

Return: 0 on success, non-zero on failure.

int (*h_commit)(void)

This handler gets called after settings has been loaded in full. User might use it to apply
setting to the application.

int (*h_export)(int (*export_func)(const char *name, const void *val, size_t val_len))

This gets called to dump all current settings items.

This happens when settings_save tries to save the settings. Parameters:
• export_func: the pointer to the internal function which appends a single key-value

pair to persisted settings. Don’t store duplicated value. The name is subtree/key
string, val is the string with value.

Return: 0 on success, non-zero on failure.

Remark

The User might limit a implementations of handler to serving only one keyword at one
call - what will impose limit to get/set values using full subtree/key name.

API for key-name processing

group settings_name_proc

API for const name processing.

Functions

int settings_name_steq(const char *name, const char *key, const char **next)

Compares the start of name with a key

Some examples: settings_name_steq(“bt/btmesh/iv”, “b”, &next) returns 1,
next=”t/btmesh/iv” settings_name_steq(“bt/btmesh/iv”, “bt”, &next) returns 1,
next=”btmesh/iv” settings_name_steq(“bt/btmesh/iv”, “bt/”, &next) returns 0, next=NULL
settings_name_steq(“bt/btmesh/iv”, “bta”, &next) returns 0, next=NULL

REMARK: This routine could be simplified if the settings_handler names would include a sep-
arator at the end.

Parameters

• name – [in] in string format

• key – [in] comparison string

7.32. Settings 1449

Zephyr Project Documentation, Release 2.7.0-rc2

• next – [out] pointer to remaining of name, when the remaining part starts
with a separator the separator is removed from next

Returns 0: no match 1: match, next can be used to check if match is full

int settings_name_next(const char *name, const char **next)

determine the number of characters before the first separator

Parameters

• name – [in] in string format

• next – [out] pointer to remaining of name (excluding separator)

Returns index of the first separator, in case no separator was found this is the size of
name

API for runtime settings manipulation

group settings_rt

API for runtime settings.

Functions

int settings_runtime_set(const char *name, const void *data, size_t len)

Set a value with a specific key to a module handler.

Parameters

• name – Key in string format.

• data – Binary value.

• len – Value length in bytes.

Returns 0 on success, non-zero on failure.

int settings_runtime_get(const char *name, void *data, size_t len)

Get a value corresponding to a key from a module handler.

Parameters

• name – Key in string format.

• data – Returned binary value.

• len – requested value length in bytes.

Returns length of data read on success, negative on failure.

int settings_runtime_commit(const char *name)

Apply settings in a module handler.

Parameters

• name – Key in string format.

Returns 0 on success, non-zero on failure.

API of backend interface

group settings_backend

settings

1450 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Functions

void settings_src_register(struct settings_store *cs)

Register a backend handler acting as source.

Parameters

• cs – Backend handler node containing handler information.

void settings_dst_register(struct settings_store *cs)

Register a backend handler acting as destination.

Parameters

• cs – Backend handler node containing handler information.

struct settings_handler_ *settings_parse_and_lookup(const char *name, const char **next)

Parses a key to an array of elements and locate corresponding module handler.

Parameters

• name – [in] in string format

• next – [out] remaining of name after matched handler

Returns settings_handler_static on success, NULL on failure.

int settings_call_set_handler(const char *name, size_t len, settings_read_cb read_cb, void
*read_cb_arg, const struct settings_load_arg *load_arg)

Calls settings handler.

Parameters

• name – [in] The name of the data found in the backend.

• len – [in] The size of the data found in the backend.

• read_cb – [in] Function provided to read the data from the backend.

• read_cb_arg – [inout] Arguments for the read function provided by the back-
end.

• load_arg – [inout] Arguments for data loading.

Returns 0 or negative error code

struct settings_store

#include <settings.h> Backend handler node for storage handling.

Public Members

sys_snode_t cs_next

Linked list node info for internal usage.

const struct settings_store_itf *cs_itf

Backend handler structure.

struct settings_load_arg

#include <settings.h> Arguments for data loading. Holds all parameters that changes the
way data should be loaded from backend.

7.32. Settings 1451

Zephyr Project Documentation, Release 2.7.0-rc2

Public Members

const char *subtree

Name of the subtree to be loaded.

If NULL, all values would be loaded.

settings_load_direct_cb cb

Pointer to the callback function.

If NULL then matching registered function would be used.

void *param

Parameter for callback function.

Parameter to be passed to the callback function.

struct settings_store_itf

#include <settings.h> Backend handler functions. Sources are registered using a call to set-
tings_src_register. Destinations are registered using a call to settings_dst_register.

Public Members

int (*csi_load)(struct settings_store *cs, const struct settings_load_arg *arg)

Loads values from storage limited to subtree defined by subtree.

Parameters:
• cs - Corresponding backend handler node,
• arg - Structure that holds additional data for data loading.

Note: Backend is expected not to provide duplicates of the entities. It means that if the
backend does not contain any functionality to really delete old keys, it has to filter out
old entities and call load callback only on the final entity.

int (*csi_save_start)(struct settings_store *cs)

Handler called before an export operation.

Parameters:
• cs - Corresponding backend handler node

int (*csi_save)(struct settings_store *cs, const char *name, const char *value, size_t val_len)

Save a single key-value pair to storage.

Parameters:
• cs - Corresponding backend handler node
• name - Key in string format
• value - Binary value
• val_len - Length of value in bytes.

int (*csi_save_end)(struct settings_store *cs)

Handler called after an export operation.

Parameters:
• cs - Corresponding backend handler node

1452 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

7.33 Executing Time Functions

The timing functions can be used to obtain execution time of a section of code to aid in analysis and
optimization.

Please note that the timing functions may use a different timer than the default kernel timer, where the
timer being used is specified by architecture, SoC or board configuration.

7.33.1 Configuration

To allow using the timing functions, :kconfig:`CONFIG_TIMING_FUNCTIONS` needs to be enabled.

7.33.2 Usage

To gather timing information:

1. Call timing_init() to initialize the timer.

2. Call timing_start() to signal the start of gathering of timing information. This usually starts the
timer.

3. Call timing_counter_get() to mark the start of code execution.

4. Call timing_counter_get() to mark the end of code execution.

5. Call timing_cycles_get() to get the number of timer cycles between start and end of code exe-
cution.

6. Call timing_cycles_to_ns() with total number of cycles to convert number of cycles to nanosec-
onds.

7. Repeat from step 3 to gather timing information for other blocks of code.

8. Call timing_stop() to signal the end of gathering of timing information. This usually stops the
timer.

Example

This shows an example on how to use the timing functions:

include <timing/timing.h>

void gather_timing(void)
{

timing_t start_time, end_time;
uint64_t total_cycles;
uint64_t total_ns;

timing_init();
timing_start();

start_time = timing_counter_get();

code_execution_to_be_measured();

end_time = timing_counter_get();

total_cycles = timing_cycles_get(&start_time, &end_time);
total_ns = timing_cycles_to_ns(total_cycles);

(continues on next page)

7.33. Executing Time Functions 1453

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

timing_stop();
}

7.33.3 API documentation

group timing_api

Timing Measurement APIs.

Functions

void timing_init(void)
Initialize the timing subsystem.

Perform the necessary steps to initialize the timing subsystem.

void timing_start(void)
Signal the start of the timing information gathering.

Signal to the timing subsystem that timing information will be gathered from this point for-
ward.

void timing_stop(void)
Signal the end of the timing information gathering.

Signal to the timing subsystem that timing information is no longer being gathered from this
point forward.

static inline timing_t timing_counter_get(void)
Return timing counter.

Returns Timing counter.

static inline uint64_t timing_cycles_get(volatile timing_t *const start, volatile timing_t *const
end)

Get number of cycles between start and end.

For some architectures or SoCs, the raw numbers from counter need to be scaled to obtain
actual number of cycles.

Parameters

• start – Pointer to counter at start of a measured execution.

• end – Pointer to counter at stop of a measured execution.

Returns Number of cycles between start and end.

static inline uint64_t timing_freq_get(void)
Get frequency of counter used (in Hz).

Returns Frequency of counter used for timing in Hz.

static inline uint64_t timing_cycles_to_ns(uint64_t cycles)
Convert number of cycles into nanoseconds.

Parameters

• cycles – Number of cycles

Returns Converted time value

1454 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

static inline uint64_t timing_cycles_to_ns_avg(uint64_t cycles, uint32_t count)

Convert number of cycles into nanoseconds with averaging.

Parameters

• cycles – Number of cycles

• count – Times of accumulated cycles to average over

Returns Converted time value

static inline uint32_t timing_freq_get_mhz(void)

Get frequency of counter used (in MHz).

Returns Frequency of counter used for timing in MHz.

7.34 Virtualization

7.34.1 Inter-VM Shared Memory

• Overview

• Support

• API Reference

Overview

As Zephyr is enabled to run as a guest OS on Qemu and ACRN it might be necessary to make VMs aware
of each other, or aware of the host. This is made possible by exposing a shared memory among parties
via a feature called ivshmem, which stands for inter-VM Shared Memory.

The Two types are supported: a plain shared memory (ivshmem-plain) or a shared memory with the
ability for a VM to generate an interruption on another, and thus to be interrupted as well itself (ivshmem-
doorbell).

Please refer to the official Qemu ivshmem documentation for more information.

Support

Zephyr supports both version: plain and doorbell. Ivshmem driver can be build by en-
abling :kconfig:`CONFIG_IVSHMEM`. By default, this will expose the plain version. :kcon-
fig:`CONFIG_IVSHMEM_DOORBELL` needs to be enabled to get the doorbell version.

Because the doorbell version uses MSI-X vectors to support notification vectors, the :kcon-
fig:`CONFIG_IVSHMEM_MSI_X_VECTORS` has to be tweaked to the amount of vectors that will be
needed.

Note that a tiny shell module can be exposed to test the ivshmem feature by enabling :kcon-
fig:`CONFIG_IVSHMEM_SHELL`.

API Reference

group ivshmem

ivshmem reference API

7.34. Virtualization 1455

https://projectacrn.github.io/latest/tutorials/using_zephyr_as_uos.html
https://www.qemu.org/docs/master/system/ivshmem.html

Zephyr Project Documentation, Release 2.7.0-rc2

Typedefs

typedef size_t (*ivshmem_get_mem_f)(const struct device *dev, uintptr_t *memmap)

typedef uint32_t (*ivshmem_get_id_f)(const struct device *dev)

typedef uint16_t (*ivshmem_get_vectors_f)(const struct device *dev)

typedef int (*ivshmem_int_peer_f)(const struct device *dev, uint32_t peer_id, uint16_t vector)

typedef int (*ivshmem_register_handler_f)(const struct device *dev, struct k_poll_signal
*signal, uint16_t vector)

Functions

size_t ivshmem_get_mem(const struct device *dev, uintptr_t *memmap)

Get the inter-VM shared memory.

Parameters

• dev – Pointer to the device structure for the driver instance

• memmap – A pointer to fill in with the memory address

Returns the size of the memory mapped, or 0

uint32_t ivshmem_get_id(const struct device *dev)

Get our VM ID.

Parameters

• dev – Pointer to the device structure for the driver instance

Returns our VM ID or 0 if we are not running on doorbell version

uint16_t ivshmem_get_vectors(const struct device *dev)

Get the number of interrupt vectors we can use.

Parameters

• dev – Pointer to the device structure for the driver instance

Returns the number of available interrupt vectors

int ivshmem_int_peer(const struct device *dev, uint32_t peer_id, uint16_t vector)

Interrupt another VM.

Parameters

• dev – Pointer to the device structure for the driver instance

• peer_id – The VM ID to interrupt

• vector – The interrupt vector to use

Returns 0 on success, a negative errno otherwise

int ivshmem_register_handler(const struct device *dev, struct k_poll_signal *signal, uint16_t
vector)

Register a vector notification (interrupt) handler.

1456 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.0-rc2

Note: The returned status, if positive, to a raised signal is the vector that generated the signal.
This lets the possibility to the user to have one signal for all vectors, or one per-vector.

Parameters

• dev – Pointer to the device structure for the driver instance

• signal – A pointer to a valid and ready to be signaled struct k_poll_signal. Or
NULL to unregister any handler registered for the given vector.

• vector – The interrupt vector to get notification from

Returns 0 on success, a negative errno otherwise

struct ivshmem_driver_api

#include <ivshmem.h>

7.34. Virtualization 1457

Zephyr Project Documentation, Release 2.7.0-rc2

1458 Chapter 7. API Reference

Chapter 8

User and Developer Guides

8.1 Beyond the Getting Started Guide

The Getting Started Guide gives a straight-forward path to set up your Linux, macOS, or Windows en-
vironment for Zephyr development. In this document, we delve deeper into Zephyr development setup
issues and alternatives.

8.1.1 Python and pip

Python 3 and its package manager, pip1, are used extensively by Zephyr to install and run scripts required
to compile and run Zephyr applications, set up and maintain the Zephyr development environment, and
build project documentation.

Depending on your operating system, you may need to provide the --user flag to the pip3 command
when installing new packages. This is documented throughout the instructions. See Installing Packages
in the Python Packaging User Guide for more information about pip1, including information on -\-user.

• On Linux, make sure ~/.local/bin is at the front of your PATH environment variable, or programs
installed with --user won’t be found. Installing with --user avoids conflicts between pip and the
system package manager, and is the default on Debian-based distributions.

• On macOS, Homebrew disables -\-user.

• On Windows, see the Installing Packages information on --user if you require using this option.

On all operating systems, pip’s -U flag installs or updates the package if the package is already installed
locally but a more recent version is available. It is good practice to use this flag if the latest version of a
package is required. (Check the scripts/requirements.txt file to see if a specific Python package version
is expected.)

8.1.2 Advanced Setup and tool chain alternatives

Here are some alternative instructions for more advanced platform setup configurations for supported
development platforms:

1 pip is Python’s package installer. Its install command first tries to re-use packages and package dependencies already
installed on your computer. If that is not possible, pip install downloads them from the Python Package Index (PyPI) on the
Internet.

The package versions requested by Zephyr’s requirements.txt may conflict with other requirements on your system, in which
case you may want to set up a virtualenv for Zephyr development.

1459

https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/#installing-to-the-user-site
https://docs.brew.sh/Homebrew-and-Python#note-on-pip-install---user
https://packaging.python.org/tutorials/installing-packages/
https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/requirements.txt

Zephyr Project Documentation, Release 2.7.0-rc2

Install Linux Host Dependencies

Documentation is available for these Linux distributions:

• Ubuntu

• Fedora

• Clear Linux

• Arch Linux

For distributions that are not based on rolling releases, some of the requirements and dependencies may
not be met by your package manager. In that case please follow the additional instructions that are
provided to find software from sources other than the package manager.

Note: If you’re working behind a corporate firewall, you’ll likely need to configure a proxy for accessing
the internet, if you haven’t done so already. While some tools use the environment variables http_proxy
and https_proxy to get their proxy settings, some use their own configuration files, most notably apt
and git.

Update Your Operating System Ensure your host system is up to date.

Ubuntu

sudo apt-get update
sudo apt-get upgrade

Fedora

sudo dnf upgrade

Clear Linux

sudo swupd update

Arch Linux

sudo pacman -Syu

Install Requirements and Dependencies Note that both Ninja and Make are installed with these
instructions; you only need one.

Ubuntu

sudo apt-get install --no-install-recommends git cmake ninja-build gperf \
ccache dfu-util device-tree-compiler wget \
python3-dev python3-pip python3-setuptools python3-tk python3-wheel xz-utils file␣

→˓libpython3.8-dev \
make gcc gcc-multilib g++-multilib libsdl2-dev

Fedora

sudo dnf group install "Development Tools" "C Development Tools and Libraries"
dnf install git cmake ninja-build gperf ccache dfu-util dtc wget \

python3-pip python3-tkinter xz file glibc-devel.i686 libstdc++-devel.i686 python38 \
SDL2-devel

Clear Linux

1460 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

sudo swupd bundle-add c-basic dev-utils dfu-util dtc \
os-core-dev python-basic python3-basic python3-tcl

The Clear Linux focus is on native performance and security and not cross-compilation. For that reason
it uniquely exports by default to the environment of all users a list of compiler and linker flags. Zephyr’s
CMake build system will either warn or fail because of these. To clear the C/C++ flags among these and
fix the Zephyr build, run the following command as root then log out and back in:

echo 'unset CFLAGS CXXFLAGS' >> /etc/profile.d/unset_cflags.sh

Note this command unsets the C/C++ flags for all users on the system. Each Linux distribution has a
unique, relatively complex and potentially evolving sequence of bash initialization files sourcing each
other and Clear Linux is no exception. If you need a more flexible solution, start by looking at the logic
in /usr/share/defaults/etc/profile.

Arch Linux

sudo pacman -S git cmake ninja gperf ccache dfu-util dtc wget \
python-pip python-setuptools python-wheel tk xz file make

CMake A recent CMake version is required. Check what version you have by using cmake --version.
If you have an older version, there are several ways of obtaining a more recent one:

• On Ubuntu, you can follow the instructions for adding the kitware third-party apt repository to get
an updated version of cmake using apt.

• Download and install a packaged cmake from the CMake project site. (Note this won’t uninstall
the previous version of cmake.)

cd ~
wget https://github.com/Kitware/CMake/releases/download/v3.21.1/cmake-3.21.1-
→˓Linux-x86_64.sh
chmod +x cmake-3.21.1-Linux-x86_64.sh
sudo ./cmake-3.21.1-Linux-x86_64.sh --skip-license --prefix=/usr/local
hash -r

The hash -r command may be necessary if the installation script put cmake into a new location
on your PATH.

• Download and install from the pre-built binaries provided by the CMake project itself in the CMake
Downloads page. For example, to install version 3.21.1 in ~/bin/cmake:

mkdir $HOME/bin/cmake && cd $HOME/bin/cmake
wget https://github.com/Kitware/CMake/releases/download/v3.21.1/cmake-3.21.1-
→˓Linux-x86_64.sh
yes | sh cmake-3.21.1-Linux-x86_64.sh | cat
echo "export PATH=$PWD/cmake-3.21.1-Linux-x86_64/bin:\$PATH" >> $HOME/.zephyrrc

• Use pip3:

pip3 install --user cmake

Note this won’t uninstall the previous version of cmake and will install the new cmake into your
~/.local/bin folder so you’ll need to add ~/.local/bin to your PATH. (See Python and pip for de-
tails.)

• Check your distribution’s beta or unstable release package library for an update.

• On Ubuntu you can also use snap to get the latest version available:

8.1. Beyond the Getting Started Guide 1461

https://apt.kitware.com/
https://cmake.org/download
https://cmake.org/download

Zephyr Project Documentation, Release 2.7.0-rc2

sudo snap install cmake

After updating cmake, verify that the newly installed cmake is found using cmake --version. You might
also want to uninstall the CMake provided by your package manager to avoid conflicts. (Use whereis
cmake to find other installed versions.)

DTC (Device Tree Compiler) A recent DTC version is required. Check what version you have by using
dtc --version. If you have an older version, either install a more recent one by building from source,
or use the one that is bundled in the Zephyr SDK by installing it.

Python A modern Python 3 version is required. Check what version you have by using python3
--version.

If you have an older version, you will need to install a more recent Python 3. You can build from source,
or use a backport from your distribution’s package manager channels if one is available. Isolating this
Python in a virtual environment is recommended to avoid interfering with your system Python.

Install the Zephyr Software Development Kit (SDK) Use of the Zephyr SDK is optional, but recom-
mended. Some of the dependencies installed above are only needed for installing the SDK.

Zephyr’s SDK (Software Development Kit) contains all necessary tools to build Zephyr on all supported
architectures. Additionally, it includes host tools such as custom QEMU binaries and a host compiler. The
SDK supports the following target architectures:

• X86 (Intel Architecture 32 bits)

• ARM (Advanced RISC Machine)

• ARC (Argonaut RISC Core)

• NIOS II

• RISC-V

• SPARC

• XTENSA

Follow these steps to install the Zephyr SDK:

1. Download the latest SDK as a self-extracting installation binary:

wget https://github.com/zephyrproject-rtos/sdk-ng/releases/download/v0.13.1/
→˓zephyr-sdk-0.13.1-linux-x86_64-setup.run

(You can change 0.13.1 to another version if needed; the Zephyr Downloads page contains all
available SDK releases.)

2. Run the installation binary, installing the SDK at ~/zephyr-sdk-0.13.1:

cd <sdk download directory>
chmod +x zephyr-sdk-0.13.1-linux-x86_64-setup.run
./zephyr-sdk-0.13.1-linux-x86_64-setup.run -- -d ~/zephyr-sdk-0.13.1

You can pick another directory if you want. If this fails, make sure Zephyr’s dependencies were
installed as described in Install Requirements and Dependencies.

If you ever want to uninstall the SDK, just remove the directory where you installed it.

Note: It is recommended to install the Zephyr SDK at one of the following locations:

• $HOME/zephyr-sdk[-x.y.z]

1462 Chapter 8. User and Developer Guides

https://github.com/zephyrproject-rtos/sdk-ng/releases
https://github.com/zephyrproject-rtos/sdk-ng/releases

Zephyr Project Documentation, Release 2.7.0-rc2

• $HOME/.local/zephyr-sdk[-x.y.z]

• $HOME/.local/opt/zephyr-sdk[-x.y.z]

• $HOME/bin/zephyr-sdk[-x.y.z]

• /opt/zephyr-sdk[-x.y.z]

• /usr/zephyr-sdk[-x.y.z]

• /usr/local/zephyr-sdk[-x.y.z]

where [-x.y.z] is optional text, and can be any text, for example -0.13.1.

If you install the Zephyr SDK outside any of those locations, then it is required to register the Zephyr
SDK in the CMake package registry during installation or set ZEPHYR_SDK_INSTALL_DIR to point to the
Zephyr SDK installation folder.

ZEPHYR_SDK_INSTALL_DIR can also be used for pointing to a folder containing multiple Zephyr SDKs,
allowing for automatic toolchain selection, for example: ZEPHYR_SDK_INSTALL_DIR=/company/tools

• /company/tools/zephyr-sdk-0.13.1

• /company/tools/zephyr-sdk-a.b.c

• /company/tools/zephyr-sdk-x.y.z

this allow Zephyr to pick the right toolchain, while allowing multiple Zephyr SDKs to be grouped together
at a custom location.

Building on Linux without the Zephyr SDK The Zephyr SDK is provided for convenience and ease of
use. It provides toolchains for all Zephyr target architectures, and does not require any extra flags when
building applications or running tests. In addition to cross-compilers, the Zephyr SDK also provides pre-
built host tools. It is, however, possible to build without the SDK’s toolchain by using another toolchain
as as described in the main Getting Started Guide document.

As already noted above, the SDK also includes prebuilt host tools. To use the SDK’s prebuilt host tools
with a toolchain from another source, you must set the ZEPHYR_SDK_INSTALL_DIR environment variable
to the Zephyr SDK installation directory. To build without the Zephyr SDK’s prebuilt host tools, the
ZEPHYR_SDK_INSTALL_DIR environment variable must be unset.

To make sure this variable is unset, run:

unset ZEPHYR_SDK_INSTALL_DIR

macOS alternative setup instructions

Important note about Gatekeeper Starting with macOS 10.15 Catalina, applications launched from
the macOS Terminal application (or any other terminal emulator) are subject to the same system security
policies that are applied to applications launched from the Dock. This means that if you download
executable binaries using a web browser, macOS will not let you execute those from the Terminal by
default. In order to get around this issue you can take two different approaches:

• Run xattr -r -d com.apple.quarantine /path/to/folder where path/to/folder is the path
to the enclosing folder where the executables you want to run are located.

• Open “System Preferences” -> “Security and Privacy” -> “Privacy” and then scroll down to “Devel-
oper Tools”. Then unlock the lock to be able to make changes and check the checkbox correspond-
ing to your terminal emulator of choice. This will apply to any executable being launched from
such terminal program.

Note that this section does not apply to executables installed with Homebrew, since those are automati-
cally un-quarantined by brew itself. This is however relevant for most 3rd Party Toolchains.

8.1. Beyond the Getting Started Guide 1463

Zephyr Project Documentation, Release 2.7.0-rc2

Additional notes for MacPorts users While MacPorts is not officially supported in this guide, it is
possible to use MacPorts instead of Homebrew to get all the required dependencies on macOS. Note also
that you may need to install rust and cargo for the Python dependencies to install correctly.

Windows alternative setup instructions

Windows 10 WSL (Windows Subsystem for Linux) If you are running a recent version of Windows
10 you can make use of the built-in functionality to natively run Ubuntu binaries directly on a standard
command-prompt. This allows you to use software such as the Zephyr SDK without setting up a virtual
machine.

Warning: Windows 10 version 1803 has an issue that will cause CMake to not work properly and is
fixed in version 1809 (and later). More information can be found in Zephyr Issue 10420

1. Install the Windows Subsystem for Linux (WSL).

Note: For the Zephyr SDK to function properly you will need Windows 10 build 15002 or greater.
You can check which Windows 10 build you are running in the “About your PC” section of the
System Settings. If you are running an older Windows 10 build you might need to install the
Creator’s Update.

2. Follow the Ubuntu instructions in the Install Linux Host Dependencies document.

8.1.3 Set Up a Toolchain

Zephyr binaries are compiled and linked by a toolchain comprised of a cross-compiler and related tools
which are different than the compiler and tools used for developing software that runs natively on your
operating system.

On Linux systems, you can install the Zephyr SDK to get toolchains for all supported architectures.
Otherwise, you can install other toolchains in the usual way for your operating system: with installer
programs or system package managers, by downloading and extracting a zip archive, etc.

You configure the Zephyr build system to use a specific toolchain by setting environment variables such
as ZEPHYR_TOOLCHAIN_VARIANT to a supported value, along with additional variable(s) specific to the
toolchain variant.

While the Zephyr SDK includes standard tool chains for all supported architectures, there are also cus-
tomized alternatives as described in these documents. (If you’re not sure which to use, check your
specific board-level documentation. If you’re targeting an Arm Cortex-M board, for example, GNU ARM
Embedded is a safe bet.)

3rd Party Toolchains

A “3rd party toolchain” is an officially supported toolchain provided by an external organization. Several
of these are available.

GNU ARM Embedded

Warning: Do not install the toolchain into a path with spaces.

1464 Chapter 8. User and Developer Guides

https://github.com/zephyrproject-rtos/zephyr/issues/10420
https://msdn.microsoft.com/en-us/commandline/wsl/install_guide

Zephyr Project Documentation, Release 2.7.0-rc2

1. Download and install a GNU ARM Embedded build for your operating system and extract it on
your file system.

Note: On Windows, we’ll assume you install into the directory C:\gnu_arm_embedded.

Warning: On macOS Catalina or later you might need to change a security policy for the
toolchain to be able to run from the terminal.

2. Set these environment variables:

• Set ZEPHYR_TOOLCHAIN_VARIANT to gnuarmemb.

• Set GNUARMEMB_TOOLCHAIN_PATH to the toolchain installation directory.

3. To check that you have set these variables correctly in your current environment, follow these
example shell sessions (the GNUARMEMB_TOOLCHAIN_PATH values may be different on your system):

Linux, macOS:
$ echo $ZEPHYR_TOOLCHAIN_VARIANT
gnuarmemb
$ echo $GNUARMEMB_TOOLCHAIN_PATH
/home/you/Downloads/gnu_arm_embedded

Windows:
> echo %ZEPHYR_TOOLCHAIN_VARIANT%
gnuarmemb
> echo %GNUARMEMB_TOOLCHAIN_PATH%
C:\gnu_arm_embedded

Warning: On macOS, if you are having trouble with the suggested procedure, there is an
unofficial package on brew that might help you. Run brew install gcc-arm-embedded and
configure the variables

• Set ZEPHYR_TOOLCHAIN_VARIANT to gnuarmemb.

• Set GNUARMEMB_TOOLCHAIN_PATH to the brew installation directory (something like /usr/
local)

Intel oneAPI Toolkit

1. Download Intel oneAPI Base Toolkit

2. Assuming the toolkit is installed in /opt/intel/oneApi, set environment using:

Linux, macOS:
export ONEAPI_TOOLCHAIN_PATH=/opt/intel/oneapi
source $ONEAPI_TOOLCHAIN_PATH/compiler/latest/env/vars.sh

Windows:
> set ONEAPI_TOOLCHAIN_PATH=C:\Users\Intel\oneapi

To setup the complete oneApi environment, use:

source /opt/intel/oneapi/setvars.sh

The above will also change the python environment to the one used by the toolchain and might
conflict with what Zephyr uses.

8.1. Beyond the Getting Started Guide 1465

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm
https://software.intel.com/content/www/us/en/develop/tools/oneapi/all-toolkits.html

Zephyr Project Documentation, Release 2.7.0-rc2

3. Set ZEPHYR_TOOLCHAIN_VARIANT to oneApi.

DesignWare ARC MetaWare Development Toolkit (MWDT)

1. You need to have ARC MWDT installed on your host.

2. Set these environment variables:

• Set ZEPHYR_TOOLCHAIN_VARIANT to arcmwdt.

• Set ARCMWDT_TOOLCHAIN_PATH to the toolchain installation directory. MWDT installation
provides METAWARE_ROOT so simply set ARCMWDT_TOOLCHAIN_PATH to $METAWARE_ROOT/../
(Linux) or %METAWARE_ROOT%\..\ (Windows)

3. To check that you have set these variables correctly in your current environment, follow these
example shell sessions (the ARCMWDT_TOOLCHAIN_PATH values may be different on your system):

Linux:
$ echo $ZEPHYR_TOOLCHAIN_VARIANT
arcmwdt
$ echo $ARCMWDT_TOOLCHAIN_PATH
/home/you/ARC/MWDT_2019.12/

Windows:
> echo %ZEPHYR_TOOLCHAIN_VARIANT%
arcmwdt
> echo %ARCMWDT_TOOLCHAIN_PATH%
C:\ARC\MWDT_2019.12\

Crosstool-NG You can build toolchains from source code using crosstool-NG.

1. Follow the steps on the crosstool-NG website to prepare your host.

2. Follow the Zephyr SDK with Crosstool NG instructions to build your toolchain. Repeat as necessary
to build toolchains for multiple target architectures.

You will need to clone the sdk-ng repo and run the following command:

./go.sh <arch>

Note: Currently, only i586 and Arm toolchain builds are verified.

3. Set these environment variables:

• Set ZEPHYR_TOOLCHAIN_VARIANT to xtools.

• Set XTOOLS_TOOLCHAIN_PATH to the toolchain build directory.

4. To check that you have set these variables correctly in your current environment, follow these
example shell sessions (the XTOOLS_TOOLCHAIN_PATH values may be different on your system):

Linux, macOS:
$ echo $ZEPHYR_TOOLCHAIN_VARIANT
xtools
$ echo $XTOOLS_TOOLCHAIN_PATH
/Volumes/CrossToolNGNew/build/output/

1466 Chapter 8. User and Developer Guides

https://www.synopsys.com/dw/ipdir.php?ds=sw_metaware
http://crosstool-ng.github.io/docs/os-setup/
https://github.com/zephyrproject-rtos/sdk-ng/blob/master/README.md

Zephyr Project Documentation, Release 2.7.0-rc2

Other Cross Compilers

This toolchain variant is borrowed from the Linux kernel build system’s mechanism of using a
CROSS_COMPILE environment variable to set up a GNU-based cross toolchain.

Examples of such “other cross compilers” are cross toolchains that your Linux distribution packaged, that
you compiled on your own, or that you downloaded from the net. Unlike toolchains specifically listed in
3rd Party Toolchains, the Zephyr build system may not have been tested with them, and doesn’t officially
support them. (Nonetheless, the toolchain set-up mechanism itself is supported.)

Follow these steps to use one of these toolchains.

1. Install a cross compiler suitable for your host and target systems.

For example, you might install the gcc-arm-none-eabi package on Debian-based Linux systems,
or arm-none-eabi-newlib on Fedora or Red Hat:

On Debian or Ubuntu
sudo apt-get install gcc-arm-none-eabi
On Fedora or Red Hat
sudo dnf install arm-none-eabi-newlib

2. Set these environment variables:

• Set ZEPHYR_TOOLCHAIN_VARIANT to cross-compile.

• Set CROSS_COMPILE to the common path prefix which your toolchain’s binaries have, e.g. the
path to the directory containing the compiler binaries plus the target triplet and trailing dash.

3. To check that you have set these variables correctly in your current environment, follow these
example shell sessions (the CROSS_COMPILE value may be different on your system):

Linux, macOS:
$ echo $ZEPHYR_TOOLCHAIN_VARIANT
cross-compile
$ echo $CROSS_COMPILE
/usr/bin/arm-none-eabi-

You can also set CROSS_COMPILE as a CMake variable.

When using this option, all of your toolchain binaries must reside in the same directory and have a
common file name prefix. The CROSS_COMPILE variable is set to the directory concatenated with the
file name prefix. In the Debian example above, the gcc-arm-none-eabi package installs binaries such as
arm-none-eabi-gcc and arm-none-eabi-ld in directory /usr/bin/, so the common prefix is /usr/bin/
arm-none-eabi- (including the trailing dash, -). If your toolchain is installed in /opt/mytoolchain/bin
with binary names based on target triplet myarch-none-elf, CROSS_COMPILE would be set to /opt/
mytoolchain/bin/myarch-none-elf-.

Host Toolchains

In some specific configurations, like when building for non-MCU x86 targets on a Linux host, you may
be able to re-use the native development tools provided by your operating system.

To use your host gcc, set the ZEPHYR_TOOLCHAIN_VARIANT environment variable to host. To use clang,
set ZEPHYR_TOOLCHAIN_VARIANT to llvm.

Custom CMake Toolchains

To use a custom toolchain defined in an external CMake file, set these environment variables:

• Set ZEPHYR_TOOLCHAIN_VARIANT to your toolchain’s name

8.1. Beyond the Getting Started Guide 1467

Zephyr Project Documentation, Release 2.7.0-rc2

• Set TOOLCHAIN_ROOT to the path to the directory containing your toolchain’s CMake configuration
files.

Zephyr will then include the toolchain cmake files located in the TOOLCHAIN_ROOT directory:

• cmake/toolchain/<toolchain name>/generic.cmake: configures the toolchain for “generic” use,
which mostly means running the C preprocessor on the generated Devicetree file.

• cmake/toolchain/<toolchain name>/target.cmake: configures the toolchain for “target” use,
i.e. building Zephyr and your application’s source code.

Here <toolchain name> is the same as the name provided in ZEPHYR_TOOLCHAIN_VARIANT See the
zephyr files cmake/generic_toolchain.cmake and cmake/target_toolchain.cmake for more details on
what your generic.cmake and target.cmake files should contain.

You can also set ZEPHYR_TOOLCHAIN_VARIANT and TOOLCHAIN_ROOT as CMake variables when generating
a build system for a Zephyr application, like so:

west build ... -- -DZEPHYR_TOOLCHAIN_VARIANT=... -DTOOLCHAIN_ROOT=...

cmake -DZEPHYR_TOOLCHAIN_VARIANT=... -DTOOLCHAIN_ROOT=...

If you do this, -C <initial-cache> cmake option may useful. If you save your
ZEPHYR_TOOLCHAIN_VARIANT, TOOLCHAIN_ROOT, and other settings in a file named my-toolchain.
cmake, you can then invoke cmake as cmake -C my-toolchain.cmake ... to save typing.

Zephyr includes include/toolchain.h which again includes a toolchain specific header based on the
compiler identifier, such as __llvm__ or __GNUC__. Some custom compilers identify themselves as the
compiler on which they are based, for example llvm which then gets the toolchain/llvm.h included.
This included file may though not be right for the custom toolchain. In order to solve this, and thus
to get the include/other.h included instead, add the set(TOOLCHAIN_USE_CUSTOM 1) cmake line
to the generic.cmake and/or target.cmake files located under <TOOLCHAIN_ROOT>/cmake/toolchain/
<toolchain name>/.

When TOOLCHAIN_USE_CUSTOM is set, the other.h must be available out-of-tree and it must include the
correct header for the custom toolchain. A good location for the other.h header file, would be a directory
under the directory specified in TOOLCHAIN_ROOT as include/toolchain. To get the toolchain header
included in zephyr’s build, the USERINCLUDE can be set to point to the include directory, as shown here:

west build -- -DZEPHYR_TOOLCHAIN_VARIANT=... -DTOOLCHAIN_ROOT=... -DUSERINCLUDE=...

8.1.4 Cloning the Zephyr Repositories

The Zephyr project source is maintained in the GitHub zephyr repo. External modules used by Zephyr
are found in the parent GitHub Zephyr project. Because of these dependencies, it’s convenient to use the
Zephyr-created west tool to fetch and manage the Zephyr and external module source code. See Basics
for more details.

Once your development tools are installed, use West (Zephyr’s meta-tool) to create, initialize, and down-
load sources from the zephyr and external module repos. We’ll use the name zephyrproject, but you
can choose any name that does not contain a space anywhere in the path.

west init zephyrproject
cd zephyrproject
west update

The west update command fetches and keeps Modules (External projects) in the zephyrproject folder
in sync with the code in the local zephyr repo.

1468 Chapter 8. User and Developer Guides

https://github.com/zephyrproject-rtos/zephyr/blob/main/cmake/generic_toolchain.cmake
https://github.com/zephyrproject-rtos/zephyr/blob/main/cmake/target_toolchain.cmake
https://cmake.org/cmake/help/latest/manual/cmake.1.html#options
https://github.com/zephyrproject-rtos/zephyr
https://github.com/zephyrproject-rtos/

Zephyr Project Documentation, Release 2.7.0-rc2

Warning: You must run west update any time the zephyr/west.yml changes, caused, for example,
when you pull the zephyr repository, switch branches in it, or perform a git bisect inside of it.

Keeping Zephyr updated

To update the Zephyr project source code, you need to get the latest changes via git. Afterwards, run
west update as mentioned in the previous paragraph.

replace zephyrproject with the path you gave west init
cd zephyrproject/zephyr
git pull
west update

8.1.5 Export Zephyr CMake package

The Zephyr CMake Package can be exported to CMake’s user package registry if it has not already been
done as part of Getting Started Guide.

8.1.6 Board Aliases

Developers who work with multiple boards may find explicit board names cumbersome and want to use
aliases for common targets. This is supported by a CMake file with content like this:

Variable foo_BOARD_ALIAS=bar replaces BOARD=foo with BOARD=bar and
sets BOARD_ALIAS=foo in the CMake cache.
set(pca10028_BOARD_ALIAS nrf51dk_nrf51422)
set(pca10056_BOARD_ALIAS nrf52840dk_nrf52840)
set(k64f_BOARD_ALIAS frdm_k64f)
set(sltb004a_BOARD_ALIAS efr32mg_sltb004a)

and specifying its location in ZEPHYR_BOARD_ALIASES. This enables use of aliases pca10028 in contexts
like cmake -DBOARD=pca10028 and west -b pca10028.

8.1.7 Build and Run an Application

You can build, flash, and run Zephyr applications on real hardware using a supported host system. De-
pending on your operating system, you can also run it in emulation with QEMU, or as a native POSIX
application. Additional information about building applications can be found in the Building an Applica-
tion section.

Build Blinky

Let’s build the blinky-sample sample application.

Zephyr applications are built to run on specific hardware, called a “board”2. We’ll use the Phytec
reel_board here, but you can change the reel_board build target to another value if you have a dif-
ferent board. See boards or run west boards from anywhere inside the zephyrproject directory for a
list of supported boards.

2 This has become something of a misnomer over time. While the target can be, and often is, a microprocessor running on its
own dedicated hardware board, Zephyr also supports using QEMU to run targets built for other architectures in emulation, targets
which produce native host system binaries that implement Zephyr’s driver interfaces with POSIX APIs, and even running different
Zephyr-based binaries on CPU cores of differing architectures on the same physical chip. Each of these hardware configurations is
called a “board,” even though that doesn’t always make perfect sense in context.

8.1. Beyond the Getting Started Guide 1469

Zephyr Project Documentation, Release 2.7.0-rc2

1. Go to the zephyr repository:

cd zephyrproject/zephyr

2. Build the blinky sample for the reel_board:

west build -b reel_board samples/basic/blinky

The main build products will be in build/zephyr; build/zephyr/zephyr.elf is the blinky application
binary in ELF format. Other binary formats, disassembly, and map files may be present depending on
your board.

The other sample applications in the samples folder are documented in samples-and-demos.

Note: If you want to re-use an existing build directory for another board or application, you need to
add the parameter -p=auto to west build to clean out settings and artifacts from the previous build.

Run the Application by Flashing to a Board

Most hardware boards supported by Zephyr can be flashed by running west flash. This may require
board-specific tool installation and configuration to work properly.

See Run an Application and your specific board’s documentation in boards for additional details.

Setting udev rules

Flashing a board requires permission to directly access the board hardware, usually managed by installa-
tion of the flashing tools. On Linux systems, if the west flash command fails, you likely need to define
udev rules to grant the needed access permission.

Udev is a device manager for the Linux kernel and the udev daemon handles all user space events raised
when a hardware device is added (or removed) from the system. We can add a rules file to grant access
permission by non-root users to certain USB-connected devices.

The OpenOCD (On-Chip Debugger) project conveniently provides a rules file that defined board-specific
rules for most Zephyr-supported arm-based boards, so we recommend installing this rules file by down-
loading it from their sourceforge repo, or if you’ve installed the Zephyr SDK there is a copy of this rules
file in the SDK folder:

• Either download the OpenOCD rules file and copy it to the right location:

wget -O 60-openocd.rules https://sf.net/p/openocd/code/ci/master/tree/contrib/60-
→˓openocd.rules?format=raw
sudo cp 60-openocd.rules /etc/udev/rules.d

• or copy the rules file from the Zephyr SDK folder:

sudo cp ${ZEPHYR_SDK_INSTALL_DIR}/sysroots/x86_64-pokysdk-linux/usr/share/
→˓openocd/contrib/60-openocd.rules /etc/udev/rules.d

Then, in either case, ask the udev daemon to reload these rules:

sudo udevadm control --reload

Unplug and plug in the USB connection to your board, and you should have permission to access the
board hardware for flashing. Check your board-specific documentation (boards) for further information
if needed.

1470 Chapter 8. User and Developer Guides

https://github.com/zephyrproject-rtos/zephyr/blob/main/samples

Zephyr Project Documentation, Release 2.7.0-rc2

Run the Application in QEMU

On Linux and macOS, you can run Zephyr applications via emulation on your host system using QEMU
when targeting either the x86 or ARM Cortex-M3 architectures. (QEMU is included with the Zephyr SDK
installation.)

For example, you can build and run the hello_world sample using the x86 emulation board configuration
(qemu_x86), with:

From the root of the zephyr repository
west build -b qemu_x86 samples/hello_world
west build -t run

To exit QEMU, type Ctrl-a, then x.

Use qemu_cortex_m3 to target an emulated Arm Cortex-M3 sample.

Run a Sample Application natively (POSIX OS)

You can compile some samples to run as host processes on a POSIX OS. This is currently only tested
on Linux hosts. See native_posix for more information. On 64-bit host operating systems, you need to
install a 32-bit C library; see native_posix_deps for details.

First, build Hello World for native_posix.

From the root of the zephyr repository
west build -b native_posix samples/hello_world

Next, run the application.

west build -t run
or just run zephyr.exe directly:
./build/zephyr/zephyr.exe

Press Ctrl-C to exit.

You can run ./build/zephyr/zephyr.exe --help to get a list of available options.

This executable can be instrumented using standard tools, such as gdb or valgrind.

8.2 Architecture-related Guides

8.2.1 Zephyr support status on ARC processors

Overview

This page describes current state of Zephyr for ARC processors and some future plans. Please note that

• plans are given without exact deadlines

• software features require corresponding hardware to be present and configured the proper way

• not all the features can be enabled at the same time

Support status

Legend: Y - yes, supported; N - no, not supported; WIP - Work In Progress; TBD - to be decided

8.2. Architecture-related Guides 1471

https://www.qemu.org/

Zephyr Project Documentation, Release 2.7.0-rc2

Processor families
EM HS3x/4x EV HS6x

Port status up-
streamed

up-
streamed

WIP up-
streamed

Features
Closely coupled memories (ICCM, DCCM)1 Y Y TBD TBD
Execution with caches - Instruction/Data, L1/L2 caches Y Y Y Y
Hardware-assisted unaligned memory access Y2 Y TBD Y
Regular interrupts with multiple priority levels, direct
interrupts

Y Y TBD Y

Fast interrupts, separate register banks for fast inter-
rupts

Y Y TBD N

Hardware floating point unit (FPU) Y Y N TBD
Symmetric multiprocessing (SMP) support, switch-
based

N/A Y TBD WIP

Hardware-assisted stack checking Y Y TBD N
Hardware-assisted atomic operations N/A Y TBD Y
DSP ISA Y N3 TBD TBD
DSP AGU/XY extensions NPage 1472, 3 NPage 1472, 3 TBD TBD
Userspace Y Y N TBD
Memory protection unit (MPU) Y Y TBD N
Memory management unit (MMU) N/A N N/A N
SecureShield Y N/A N/A N/A
Toolchains
GNU (open source GCC-based) Y Y N Y
MetaWare (proprietary Clang-based) Y Y Y WIP4

Simulators
QEMU (open source)5 Y Y N Y
nSIM (proprietary, provided by MetaWare Development
Tools)

Y Y Y Y

Notes

8.2.2 Arm Cortex-M Developer Guide

Overview

This page contains detailed information about the status of the Arm Cortex-M architecture porting in the
Zephyr RTOS and describes key aspects when developing Zephyr applications for Arm Cortex-M-based
platforms.

Key supported features

The table below summarizes the status of key OS features in the different Arm Cortex-M implementation
variants.

1 usage of CCMs is limited on SMP systems
2 except the systems with secure features (SecureShield) due to HW limitation
3 We only support save/restore ACCL/ACCH registers in task’s context. Rest of DSP/AGU registers save/restore isn’t imple-

mented but kernel itself does not use these registers. This allows single task per core to use DSP/AGU safely.
4 MetaWare toolchain supports building for ARCv3 HS6x, however, it’s not integrated to Zephyr itself
5 QEMU doesn’t support all the ARC processor’s HW features. For the detailed info please check the ARC QEMU documentation

1472 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Processor families
Architecture variant Arm v6-M Arm v7-M Arm v8-

M
Arm
v8.1-
M

M0/M1M0+ M3 M4 M7 M23 M33 M55
OS Features
Programmable fault IRQ
priorities

Y N Y Y Y N Y Y

Single-thread kernel sup-
port

Y Y Y Y Y Y Y Y

Thread local storage sup-
port

Y Y Y Y Y Y Y Y

Interrupt handling
Regular inter-
rupts

Y Y Y Y Y Y Y Y

Dynamic inter-
rupts

Y Y Y Y Y Y Y Y

Direct interrupts Y Y Y Y Y Y Y Y
Zero Latency in-
terrupts

N N Y Y Y Y Y Y

CPU idling Y Y Y Y Y Y Y Y
Native system timer (Sy-
sTick)

N1 Y Y Y Y Y Y Y

Memory protection
User mode N Y Y Y Y Y Y Y
HW stack protec-
tion (MPU)

N N Y Y Y Y Y Y

HW-assisted stack
limit checking

N N N N N Y2 Y Y

HW-assisted null-pointer
dereference detection

N N Y Y Y Y Y Y

HW-assisted atomic oper-
ations

N N Y Y Y N Y Y

Support for non-
cacheable regions

N N Y Y Y N Y Y

Execute SRAM functions N N Y Y Y N Y Y
Floating Point Services N N N Y Y N Y Y
DSP ISA N N N Y Y N Y Y
Trusted-Execution

Native TrustZone-
M support

N N N N N Y Y Y

TF-M integration N N N N N N Y N
Code relocation Y Y Y Y Y Y Y Y
SW-based vector table re-
laying

Y Y Y Y Y Y Y Y

HW-assisted timing func-
tions

N N Y Y Y N Y Y

Notes

1 SysTick is optional in Cortex-M1
2 Stack limit checking only in Secure builds in Cortex-M23

8.2. Architecture-related Guides 1473

Zephyr Project Documentation, Release 2.7.0-rc2

OS features

Threads

Thread stack alignment Each Zephyr thread is defined with its own stack mem-
ory. By default, Cortex-M enforces a double word thread stack alignment, see :kcon-
fig:`CONFIG_STACK_ALIGN_DOUBLE_WORD`. If MPU-based HW-assisted stack overflow detection
(:kconfig:`CONFIG_MPU_STACK_GUARD`) is enabled, thread stacks need to be aligned with a larger
value, reflected by :kconfig:`CONFIG_ARM_MPU_REGION_MIN_ALIGN_AND_SIZE`. In Arm v6-M
and Arm v7-M architecture variants, thread stacks are additionally required to be align with a value
equal to their size, in applications that need to support user mode (:kconfig:`CONFIG_USERSPACE`).
The thread stack sizes in that case need to be a power of two. This is all reflected by :kcon-
fig:`CONFIG_MPU_REQUIRES_POWER_OF_TWO_ALIGNMENT`, that is enforced in Arm v6-M and
Arm v7-M builds with user mode support.

Stack pointers While executing in thread mode the processor is using the Process Stack Pointer (PSP).
The processor uses the Main Stack Pointer (MSP) while executing in handler mode, that is, while servic-
ing exceptions and HW interrupts. Using PSP in thread mode facilitates thread stack pointer manipulation
during thread context switching, without affecting the current execution context flow in handler mode.

In Arm Cortex-M builds a single interrupt stack memory is shared among exceptions and interrupts.
The size of the interrupt stack needs to be selected taking into consideration nested interrupts, each
pushing an additional stack frame. Deverlopers can modify the interrupt stack size using :kcon-
fig:`CONFIG_ISR_STACK_SIZE`.

The interrupt stack is also used during early boot so the kernel can initialize the main thread’s stack
before switching to the main thread.

Thread context switching In Arm Cortex-M builds, the PendSV exception is used in order to trigger a
context switch to a different thread. PendSV exception is always present in Cortex-M implementations.
PendSV is configured with the lowest possible interrupt priority level, in all Cortex-M variants. The main
reasons for that design are

• to utilize the tail chaining feature of Cortex-M processors, and thus limit the number of context
switch operations that occur.

• to not impact the interrupt latency observed by HW interrupts.

As a result, context switch in Cortex-M is non-atomic, i.e. it may be preempted by HW interrupts, however,
a context-switch operation must be completed before a new thread context-switch may start.

Typically a thread context-switch will perform the following operations

• When switching-out the current thread, the processor stores

– the callee-saved registers (R4 - R11) in the thread’s container for callee-saved registers, which
is located in kernel memory

– the thread’s current operation mode

* user or privileged execution mode

* presense of an active floating point context

* the EXC_RETURN value of the current handler context (PendSV)

– the floating point callee-saved registers (S16 - S31) in the thread’s container for FP callee-
saved registers, if the current thread has an active FP context

– the PSP of the current thread which points to the beginning of the current thread’s excep-
tion stack frame. The latter contains the caller-saved context and the return address of the
switched-out thread.

1474 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

• When switching-in a new thread the processor

– restores the new thread’s callee-saved registers from the thread’s container for callee-saved
registers

– restores the new thread’s operation mode

– restores the FP callee-saved registers if the switched-in thread had an active FP context before
being switched-out

– re-programs the dynamic MPU regions to allow a user thread access its stack and applica-
tion memories, and/or programs a stack-overflow MPU guard at the bottom of the thread’s
privileged stack

– restores the PSP for the incoming thread and re-programs the stack pointer limit register (if
applicable, see :kconfig:`CONFIG_BUILTIN_STACK_GUARD`)

– optionally does a stack limit checking for the switched-in thread, if sentinel-based stack limit
checking is enabled (see :kconfig:`CONFIG_STACK_SENTINEL`).

PendSV exception return sequence restores the new thread’s caller-saved registers and the return address,
as part of unstacking the exception stack frame.

The implementation of the context-switch mechanism is present in arch/arm/core/aarch32/
swap_helper.S.

Stack limit checking (Arm v8-M) Armv8-M and Armv8.1-M variants support stack limit check-
ing using the MSPLIM and PSPLIM core registers. The feature is enabled when :kcon-
fig:`CONFIG_BUILTIN_STACK_GUARD` is set. When stack limit checking is enabled, both the thread’s
privileged or user stack, as well as the interrupt stack are guarded by PSPLIM and MSPLIM registers,
respectively. MSPLIM is configured once during kernel boot, while PSLIM is re-programmed during every
thread context-switch or during system calls, when the thread switches from using its default stack to
using its privileged stack, and vice versa. PSPLIM re-programming

• has a relatively low runtime overhead (programming is done with MSR instructions)

• does not impact interrupt latency

• does not require any memory areas to be reserved for stack guards

• does not make use of MPU regions

It is, therefore, considered as a lightweight but very efficient stack overflow detection mechanism in
Cortex-M applications.

Stack overflows trigger the dedicated UsageFault exception provided by Arm v8-M.

Interrupt handling features This section describes certain aspects around exception and interrupt
handling in Arm Cortex-M.

Interrupt priority levels The number of available (configurable) interrupt priority levels is determined
by the number of implemented interrupt priority bits in NVIC; this needs to be described for each Cortex-
M platform using DeviceTree:

&nvic {
arm,num-irq-priority-bits = <#priority-bits>;

};

8.2. Architecture-related Guides 1475

Zephyr Project Documentation, Release 2.7.0-rc2

Reserved priority levels A number of interrupt priority levels are reserved for the OS.

By design, system fault exceptions have the highest priority level. In Baseline Cortex-M, this is actually
enforced by hardware, as HardFault is the only available processor fault exception, and its priority is
higher than any configurable exception priority.

In Mainline Cortex-M, the available fault exceptions (e.g. MemManageFault, Us-
ageFault, etc.) are assigned the highest configurable priority level. (:kcon-
fig:`CONFIG_CPU_CORTEX_M_HAS_PROGRAMMABLE_FAULT_PRIOS` signifies explicitly that
the Cortex-M implementation supports configurable fault priorities.)

This priority level is never shared with HW interrupts (an exception to this rule is described below). As a
result, processor faults occurring in regular ISRs will be handled by the corresponding fault handler and
will not escalate to a HardFault, similar to processor faults occurring in thread mode.

SVC exception is normally configured with the highest conigurable priority level (an exception to this
rule will be described below). SVCs are used by the Zephyr kernel to dispatch system calls, trigger
runtime system errors (e.g. Kernel oops or panic), or implement IRQ offloading.

In Baseline Cortex-M the priority level of SVC may be shared with other exceptions or HW interrupts that
are also given the highest configurable priority level (As a result of this, kernel runtime errors during
interrupt handling will escalate to HardFault. Additional logic in the fault handling routines ensures that
such runtime errors are detected successfully).

In Mainline Cortex-M, however, the SVC priority level is reserved, thus normally it is only shared with the
fault exceptions of configurable priority. This simplifies the fault handling routines in Mainline Cortex-M
architecture, since runtime kernel errors are serviced by the SVC handler (i.e no HardFault escalation,
even if the kernel errors occur in ISR context).

HW interrupts in Mainline Cortex-M builds are allocated a priority level lower than the SVC.

One exception to the above rules is when Zephyr applications support Zero Latency Interrupts (ZLIs).
Such interrupts are designed to have a priority level higher than any HW or system interrupt. If the ZLI
feature is enabled in Mainline Cortex-M builds (see :kconfig:`CONFIG_ZERO_LATENCY_IRQS`), then

• ZLIs are assigned the highest configurable priority level

• SVCs are assigned the second highest configurable priority level

• Regular HW interrupts are assigned priority levels lower than SVC.

The priority level configuration in Cortex-M is implemented in include/arch/arm/aarch32/exc.h.

Locking and unlocking IRQs In Baseline Cortex-M locking interrupts is implemented using the PRI-
MASK register.

arch_irq_lock()

will set the PRIMASK register to 1, eventually, masking all IRQs with configurable priority. While this
fulfils the OS requirement of locking interrupts, the consequence is that kernel runtime errors (triggering
SVCs) will escalate to HardFault.

In Mainline Cortex-M locking interrupts is implemented using the BASEPRI register (Mainline Cortex-M
builds select :kconfig:`CONFIG_CPU_CORTEX_M_HAS_BASEPRI` to signify that BASEPRI register is
implemented.). By modifying BASEPRI (or BASEPRI_MAX) arch_irq_lock() masks all system and HW
interrupts with the exception of

• SVCs

• processor faults

• ZLIs

This allows zero latency interrupts to be triggered inside OS critical sections. Additionally, this allows
system (processor and kernel) faults to be handled by Zephyr in exactly the same way, regardless of

1476 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

whether IRQs have been locked or not when the error occurs. It also allows for system calls to be
dispatched while IRQs are locked.

Note: Mainline Cortex-M fault handling is designed and configured in a way that all processor and
kernel faults are handled by the corresponding exception handlers and never result in HardFault escala-
tion. In other words, a HardFault may only occur in Zephyr applications that have modified the default
fault handling configurations. The main reason for this design was to reserve the HardFault exception
for handling exceptional error conditions in safety critical applications.

Dynamic direct interrupts Cortex-M builds support the installation of direct interrupt service routines
during runtime. Direct interrupts are designed for performance-critical interrupt handling and do not go
through all of the common Zephyr interrupt handling code.

Direct dynamic interrupts are enabled via switching on :kcon-
fig:`CONFIG_DYNAMIC_DIRECT_INTERRUPTS`.

Note that enabling direct dynamic interrupts requires enabling support for dynamic interrupts in the
kernel, as well (see :kconfig:`CONFIG_DYNAMIC_INTERRUPTS`).

Zero Latency interrupts As described above, in Mainline Cortex-M applications, the Zephyr ker-
nel reserves the highest configurable interrupt priority level for its own use (SVC). SVCs will not be
masked by interrupt locking. Zero-latency interrupt can be used to set up an interrupt at the high-
est interrupt priority which will not be blocked by interrupt locking. To use the ZLI feature :kcon-
fig:`CONFIG_ZERO_LATENCY_IRQS` needs to be enabled.

Zero latency IRQs have minimal interrupt latency, as they will always preempt regular HW or system
interrupts.

Note, however, that since ZLI ISRs will run at a priority level higher than the kernel exceptions they can-
not use any kernel functionality. Additionally, since the ZLI interrupt priority level is equal to processor
fault priority level, faults occurring in ZLI ISRs will escalate to HardFault and will not be handled in the
same way as regular processor faults. Developers need to be aware of this limitation.

CPU Idling The Cortex-M architecture port implements both k_cpu_idle() and k_cpu_atomic_idle().
The implementation is present in arch/arm/core/aarch32/cpu_idle.S.

In both implementations, the processor will attempt to put the core to low power mode. In k_cpu_idle()
the processor ends up executing WFI (Wait For Interrupt) instruction, while in k_cpu_atomic_idle() the
processor will execute a WFE (Wait For Event) instruction.

When using the CPU idling API in Cortex-M it is important to note the following:

• Both k_cpu_idle() and k_cpu_atomic_idle() are assumed to be invoked with interrupts locked. This
is taken care of by the kernel if the APIs are called by the idle thread.

• After waking up from low power mode, both functions will restore interrupts unconditionally, that
is, regardless of the interrupt lock status before the CPU idle API was called.

The Zephyr CPU Idling mechanism is detailed in CPU Idling.

Memory protection features This section describes certain aspects around memory protection features
in Arm Cortex-M applications.

User mode system calls User mode is supported in Cortex-M platforms that implement the standard
(Arm) MPU or a similar core peripheral logic for memory access policy configuration and control, such
as the NXP MPU for Kinetis platforms. (Currently, :kconfig:`CONFIG_ARCH_HAS_USERSPACE` is se-
lected if :kconfig:`CONFIG_ARM_MPU` is enabled by the user in the board default Kconfig settings).

8.2. Architecture-related Guides 1477

Zephyr Project Documentation, Release 2.7.0-rc2

A thread performs a system call by triggering a (synchronous) SVC exception, where

• up to 5 arguments are placed on registers R1 - R5

• system call ID is placed on register R6.

The SVC Handler will branch to the system call preparation logic, which will perform the following
operations

• switch the thread’s PSP to point to the beginning of the thread’s privileged stack area, optionally
reprogramming the PSPLIM if stack limit checking is enabled

• modify CONTROL register to switch to privileged mode

• modify the return address in the SVC exception stack frame, so that after exception return the
system call dispatcher is executed (in thread privileged mode)

Once the system call execution is completed the system call dispatcher will restore the user’s original
PSP and PSPLIM and switch the CONTROL register back to unprivileged mode before returning back to
the caller of the system call.

System calls execute in thread mode and can be preempted by interrupts at any time. A thread may also
be context-switched-out while doing a system call; the system call will resume as soon as the thread is
switched-in again.

The system call dispatcher executes at SVC priority, therefore it cannot be preempted by HW interrupts
(with the exception of ZLIs), which may observe some additional interrupt latency if they occur during
a system call preparation.

MPU-assisted stack overflow detection Cortex-M platforms with MPU may enable :kcon-
fig:`CONFIG_MPU_STACK_GUARD` to enable the MPU-based stack overflow detection mechanism.
The following points need to be considered when enabling the MPU stack guards

• stack overflows are triggering processor faults as soon as they occur

• the mechanism is essential for detecting stack overflows in supervisor threads, or user threads in
privileged mode; stack overflows in threads in user mode will always be detected regardless of
:kconfig:`CONFIG_MPU_STACK_GUARD` being set.

• stack overflows are always detected, however, the mechanism does not guarantee that no memory
corruption occurs when supervisor threads overflow their stack memory

• :kconfig:`CONFIG_MPU_STACK_GUARD` will normally reserve one MPU region
for programming the stack guard (in certain Arm v8-M configurations with :kcon-
fig:`CONFIG_MPU_GAP_FILLING` enabled 2 MPU regions are required to implement the
guard feature)

• MPU guards are re-programmed at every context-switch, adding a small overhead to the thread
swap routine. Compared, however, to the :kconfig:`CONFIG_BUILTIN_STACK_GUARD` feature,
no re-programming occurs during system calls.

• When :kconfig:`CONFIG_HW_STACK_PROTECTION` is enabled on Arm v8-M platforms the
native stack limit checking mechanism is used by default instead of the MPU-based stack
overflow detection mechanism; users may override this setting by manually enabling :kcon-
fig:`CONFIG_MPU_STACK_GUARD` in these scenarios.

Memory map and MPU considerations

Fixed MPU regions By default, when :kconfig:`CONFIG_ARM_MPU` is enabled a set of fixed MPU
regions are programmed during system boot.

• One MPU region programs the entire flash area as read-execute. User can override this setting by
enabling :kconfig:`CONFIG_MPU_ALLOW_FLASH_WRITE`, which programs the flash with RWX

1478 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

permissions. If :kconfig:`CONFIG_USERSPACE` is enabled unprivileged access on the entire flash
area is allowed.

• One MPU region programs the entire SRAM area with privileged-only RW permissions. That is, an
MPU region is utilized to disallow execute permissions on SRAM. (An exception to this setting is
when :kconfig:`CONFIG_MPU_GAP_FILLING` is disabled (Arm v8-M only); in that case no SRAM
MPU programming is done so the access is determined by the default Arm memory map policies,
allowing for privileged-only RWX permissions on SRAM).

The above MPU regions are defined in soc/arm/common/arm_mpu_regions.
c. Alternative MPU configurations are allowed by enabling :kcon-
fig:`CONFIG_CPU_HAS_CUSTOM_FIXED_SOC_MPU_REGIONS`. When enabled, this option signifies
that the Cortex-M SoC will define and configure its own fixed MPU regions in the SoC definition.

Static MPU regions Additional static MPU regions may be programmed once during system boot.
These regions are required to enable certain features

• a RX region to allow execution from SRAM, when :kcon-
fig:`CONFIG_ARCH_HAS_RAMFUNC_SUPPORT` is enabled and users have defined functions to
execute from SRAM.

• a RX region for relocating text sections to SRAM, when :kcon-
fig:`CONFIG_CODE_DATA_RELOCATION_SRAM` is enabled

• a no-cache region to allow for a none-cacheable SRAM area, when :kcon-
fig:`CONFIG_NOCACHE_MEMORY` is enabled

• a possibly unprivileged RW region for GCOV code coverage accounting area, when :kcon-
fig:`CONFIG_COVERAGE_GCOV` is enabled

• a no-access region to implement null pointer dereference detection, when :kcon-
fig:`CONFIG_NULL_POINTER_EXCEPTION_DETECTION_MPU` is enabled

The boundaries of these static MPU regions are derived from symbols exposed by the linker, in include/
linker/linker-defs.h.

Dynamic MPU regions Certain thread-specific MPU regions may be re-programmed dynamically, at
each thread context switch:

• an unprivileged RW region for the current thread’s stack area (for user threads)

• a read-only region for the MPU stack guard

• unprivileged RW regions for the partitions of the currentl thread’s application memory domain.

Considerations The number of available MPU regions for a Cortex-M platform is a limited resource.
Most platforms have 8 MPU regions, while some Cortex-M33 or Cortex-M7 platforms may have up to
16 MPU regions. Therefore there is a relatively strict limitation on how many fixed, static and dynamic
MPU regions may be programmed simultaneously. For platforms with 8 available MPU regions it might
not be possible to enable all the aforementioned features that require MPU region programming. In most
practical applications, however, only a certain set of features is required and 8 MPU regions are, in many
cases, sufficient.

In Arm v8-M processors the MPU architecture does not allow programmed MPU regions to overlap.
:kconfig:`CONFIG_MPU_GAP_FILLING` controls whether the fixed MPU region covering the entire
SRAM is programmed. When it does, a full SRAM area partitioning is required, in order to pro-
gram the static and the dynamic MPU regions. This increases the total number of required MPU
regions. When :kconfig:`CONFIG_MPU_GAP_FILLING` is not enabled the fixed MPU region con-
vering the entire SRAM is not programmed, thus, the static and dynamic regions are simply pro-
grammed on top of the always-existing background region (full-SRAM partitioning is not required).

8.2. Architecture-related Guides 1479

Zephyr Project Documentation, Release 2.7.0-rc2

Note, however, that the background SRAM region allows execution from SRAM, so when :kcon-
fig:`CONFIG_MPU_GAP_FILLING` is not set Zephyr is not protected against attacks that attempt to
execute malicious code from SRAM.

Floating point Services Both unshared and shared FP registers mode are supported in Cortex-M (see
Floating Point Services for more details).

When FPU support is enabled in the build (:kconfig:`CONFIG_FPU` is enabled), the sharing FP registers
mode (:kconfig:`CONFIG_FPU_SHARING`) is enabled by default. This is done as some compiler con-
figurations may activate a floating point context by generating FP instructions for any thread, regardless
of whether floating point calculations are performed, and that context must be preserved when switching
such threads in and out.

The developers can still disable the FP sharing mode in their application projects, and switch to Unshared
FP registers mode, if it is guaranteed that the image code does not generate FP instructions outside the
single thread context that is allowed (and supposed) to do so.

Under FPU sharing mode, the callee-saved FPU registers are saved and restored in context-switch, if the
corresponding threads have an active FP context. This adds some runtime overhead on the swap routine.
In addition to the runtime overhead, the sharing FPU mode

• requires additional memory for each thread to save the callee-saved FP registers

• requires additional stack memory for each thread, to stack the caller-saved FP registers, upon
exception entry, if an FP context is active. Note, however, that since lazy stacking is enabled, there
is no runtime overhead of FP context stacking in regular interrupts (FP state preservation is only
activated in the swap routine in PendSV interrupt).

Misc

Chain-loadable images Cortex-M applications may either be standalone images or chain-loadable,
for instance, by a bootloader. Application images chain-loadable by bootloaders (or other ap-
plications) normally occupy a specific area in the flash denoted as their code partition. :kcon-
fig:`CONFIG_USE_DT_CODE_PARTITION` will ensure that a Zephyr chain-loadable image will be
linked into its code partition, specified in DeviceTree.

HW initialization at boot In order to boot properly, chain-loaded applications may require that the
core Arm hardware registers and peripherals are initialized in their reset values. Enabling :kcon-
fig:`CONFIG_INIT_ARCH_HW_AT_BOOT` Zephyr to force the initialization of the internal Cortex-M
architectural state during boot to the reset values as specified by the corresponding Arm architecture
manual.

Software vector relaying In Cortex-M platforms that implement the VTOR register (see :kcon-
fig:`CONFIG_CPU_CORTEX_M_HAS_VTOR`), chain-loadable images relocate the Cortex-M vector ta-
ble by updating the VTOR register with the offset of the image vector table.

Baseline Cortex-M platforms without VTOR register might not be able to relocate their vector table
which remains at a fixed location. Therefore, a chain-loadable image will require an alternative way to
route HW interrupts and system exeptions to its own vector table; this is achieved with software vector
relaying.

When a bootloader image enables :kconfig:`CONFIG_SW_VECTOR_RELAY` it is able to relay excep-
tions and interrupts based on a vector table pointer that is set by the chain-loadable application. The
latter sets the :kconfig:`CONFIG_SW_VECTOR_RELAY_CLIENT` option to instruct the boot sequence
to set the vector table pointer in SRAM so that the bootloader can forward the exceptions and interrupts
to the chain-loadable image’s software vector table.

While this feature is intended for processors without VTOR register, it may also be used in Mainline
Cortex-M platforms.

1480 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Code relocation Cortex-M support the code relocation feature. When :kcon-
fig:`CONFIG_CODE_DATA_RELOCATION_SRAM` is selected, Zephyr will relocate .text, data and
.bss sections from the specified files and place it in SRAM. It is possible to relocate only parts of the code
sections into SRAM, without relocating the whole image text and data sections. More details on the
code relocation feature can be found in Code And Data Relocation.

Linking Cortex-M applications

Most Cortex-M platforms make use of the default Cortex-M GCC linker script in include/arch/arm/
aarch32/cortex-m/scripts/linked.ld, although it is possible for platforms to use a custom linker
script as well.

CMSIS

Cortex-M CMSIS headers are hosted in a standalone module repository: zephyrproject-rtos/cmsis.

:kconfig:`CONFIG_CPU_CORTEX_M` selects :kconfig:`CONFIG_HAS_CMSIS_CORE` to signify that
CMSIS headers are available for all supported Cortex-M variants.

Testing

A list of unit tests for the Cortex-M porting and miscellaneous features is present in tests/arch/arm/.
The tests suites are continuously extended and new test suites are added, in an effort to increase the
coverage of the Cortex-M architecture support in Zephyr.

QEMU

We use QEMU to verify the implemented features of the Cortex-M architecture port in Zephyr. Adequate
coverage is achieved by defining and utilizing a list of QEMU targets, each with a specific architecture
variant and Arm peripheral support list.

The table below lists the QEMU platform targets defined in Zephyr along with the corresponding Cortex-
M implementation variant and the peripherals these targets emulate.

QEMU target
Architecture vari-
ant

Arm v6-M Arm v7-M Arm v8-M Arm v8.1-M

qemu_cortex_m0 qemu_cortex_m3 mps2_an385 mps2_an521 mps3_an547
Emulated fea-
tures
NVIC Y Y Y Y Y
BASEPRI N Y Y Y Y
SysTick N Y Y Y Y
MPU N N Y Y Y
FPU N N N Y N
SPLIM N N N Y Y
TrustZone-M N N N Y N

Maintainers & Collaborators

The status of the Arm Cortex-M architecture port in Zephyr is: maintained. The updated list of maintain-
ers and collaborators for Cortex-M can be found in MAINTAINERS.yml.

8.2. Architecture-related Guides 1481

https://github.com/zephyrproject-rtos/cmsis

Zephyr Project Documentation, Release 2.7.0-rc2

8.2.3 x86 Developer Guide

Overview

This page contains information on certain aspects when developing for x86-based platforms.

Virtual Memory

During very early boot, page tables are loaded so technically the kernel is executing in virtual ad-
dress space. By default, physical and virtual memory are identity mapped and thus giving the
appearance of execution taking place in physical address space. The physical address space is
marked by kconfig :kconfig:`CONFIG_SRAM_BASE_ADDRESS` and :kconfig:`CONFIG_SRAM_SIZE`
while the virtual address space is marked by :kconfig:`CONFIG_KERNEL_VM_BASE` and
:kconfig:`CONFIG_KERNEL_VM_SIZE`. Note that :kconfig:`CONFIG_SRAM_OFFSET` controls
where the Zephyr kernel is being placed in the memory, and its counterpart :kcon-
fig:`CONFIG_KERNEL_VM_OFFSET`.

Separate Virtual Address Space from Physical Address Space On 32-bit x86, it is possible to have
separate phyiscal and virtual address space. Code and data are linked in virtual address space, but are
still loaded in physical memory. However, during boot, code and data must be available and also address-
able in physical address space before vm_enter inside arch/x86/core/ia32/crt0.S. After vm_enter,
code execution is done via virtual addresses and data can be referred via their virtual addresses. This
is possible as the page table generation script (arch/x86/gen_mmu.py) identity maps the physical ad-
dresses at the page directory level, in addition to mapping virtual addresses to the physical memory.
Later in the boot process, the entries for identity mapping at the page directory level are cleared in
z_x86_mmu_init(), effectively removing the identity mapping of physical memory. This unmapping
must be done for userspace isolation or else they would be able to access restricted memory via physical
addresses. Since the identity mapping is done at the page directory level, there is no need to allocate
additional space for the page table. However, additional space may still be required for additional page
directory table.

There are restrictions on where virtual address space can be:

• Physical and virtual address spaces must be disjoint. This is required as the entries in page directory
table will be cleared. If they are not disjoint, it would clear the entries needed for virtual addresses.

– If :kconfig:`CONFIG_X86_PAE` is enabled (=y), each address space must reside in their own
1GB region, due to each entry of PDP (Page Directory Pointer) covers 1GB of memory. For
example:

* Assuming CONFIG_SRAM_OFFSET and CONFIG_KERNEL_VM_OFFSET are both 0x0.

* CONFIG_SRAM_BASE_ADDRESS == 0x00000000 and CONFIG_KERNEL_VM_BASE =
0x40000000 is valid, while

* CONFIG_SRAM_BASE_ADDRESS == 0x00000000 and CONFIG_KERNEL_VM_BASE =
0x20000000 is not.

– If :kconfig:`CONFIG_X86_PAE` is disabled (=n), each address space must reside in their own
4MB region, due to each entry of PD (Page Directory) covers 4MB of memory.

– Both CONFIG_SRAM_BASE_ADDRESS and CONFIG_KERNEL_VM_BASE must also align with the
starting addresses of targeted regions.

Specifying Additional Memory Mappings at Build Time

The page table generation script (arch/x86/gen_mmu.py) generates the necessary multi-level page tables
for code execution and data access using the kernel image produced by the first linker pass. Additional
command line arguments can be passed to the script to generate additional memory mappings. This is

1482 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

useful for static mappings and/or device MMIO access during very early boot. To pass extra command
line arguments to the script, populate a CMake list named X86_EXTRA_GEN_MMU_ARGUMENTS in the board
configuration file. Here is an example:

set(X86_EXTRA_GEN_MMU_ARGUMENTS
--map 0xA0000000,0x2000
--map 0x80000000,0x400000,LWUX,0xB0000000)

The argument --map takes the following value: <physical address>,<size>[,<flags:LUWX>[,
<virtual adderss>]], where:

• <physical address> is the physical address of the mapping. (Required)

• <size> is the size of the region to be mapped. (Required)

• <flags> is the flag associated with the mapping: (Optional)

– L: Large page at the page directory level.

– U: Allow userspace access.

– W: Read/write.

– X: Allow execution.

– D: Cache disabled.

* Default is small page (4KB), supervisor only, read only, and execution disabled.

• <virtual address is the virtual address of the mapping. (Optional)

Note that specifying additional memory mappings requires larger storage space for the pre-allocated page
tables (both kernel and per-domain tables). :kconfig:`CONFIG_X86_EXTRA_PAGE_TABLE_PAGES` is
needed to specify how many more memory pages to be reserved for the page tables. If the needed space
is not exactly the same as required space, the gen_mmu.py script will print out a message indicating what
needs to be the value for the kconfig.

8.3 Bluetooth

This section contains information regarding the Bluetooth stack of the Zephyr OS. You can use this infor-
mation to understand the principles behind the operation of the layers and how they were implemented.

Zephyr includes a complete Bluetooth Low Energy stack from application to radio hardware, as well as
portions of a Classical Bluetooth (BR/EDR) Host layer.

8.3.1 Overview

• Supported Features

Since its inception, Zephyr has had a strong focus on Bluetooth and, in particular, on Bluetooth Low
Energy (BLE). Through the contributions of several companies and individuals involved in existing open
source implementations of the Bluetooth specification (Linux’s BlueZ) as well as the design and develop-
ment of BLE radio hardware, the protocol stack in Zephyr has grown to be mature and feature-rich, as
can be seen in the section below.

Supported Features

Zephyr comes integrated with a feature-rich and highly configurable Bluetooth stack.

• Bluetooth 5.0 compliant (ESR10)

8.3. Bluetooth 1483

Zephyr Project Documentation, Release 2.7.0-rc2

– Highly configurable

* Features, buffer sizes/counts, stack sizes, etc.

– Portable to all architectures supported by Zephyr (including big and little endian, alignment
flavors and more)

– Support for all combinations of Host and Controller builds:

* Controller-only (HCI) over UART, SPI, and USB physical transports

* Host-only over UART, SPI, and IPM (shared memory)

* Combined (Host + Controller)

• Bluetooth-SIG qualified

– Controller on Nordic Semiconductor hardware

– Conformance tests run regularly on all layers

• Bluetooth Low Energy Controller support (LE Link Layer)

– Unlimited role and connection count, all roles supported

– Concurrent multi-protocol support ready

– Intelligent scheduling of roles to minimize overlap

– Portable design to any open BLE radio, currently supports Nordic Semiconductor nRF51 and
nRF52, as well as proprietary radios

– Supports little and big endian architectures, and abstracts the hard real-time specifics so that
they can be encapsulated in a hardware-specific module

– Support for Controller (HCI) builds over different physical transports

• Bluetooth Host support

– Generic Access Profile (GAP) with all possible LE roles

* Peripheral & Central

* Observer & Broadcaster

– GATT (Generic Attribute Profile)

* Server (to be a sensor)

* Client (to connect to sensors)

– Pairing support, including the Secure Connections feature from Bluetooth 4.2

– Non-volatile storage support for permanent storage of Bluetooth-specific settings and data

– Bluetooth mesh support

* Relay, Friend Node, Low-Power Node (LPN) and GATT Proxy features

* Both Provisioning bearers supported (PB-ADV & PB-GATT)

* Highly configurable, fits as small as 16k RAM devices

– IPSP/6LoWPAN for IPv6 connectivity over Bluetooth LE

* IPSP node sample application

– Basic Bluetooth BR/EDR (Classic) support

* Generic Access Profile (GAP)

* Logical Link Control and Adaptation Protocol (L2CAP)

* Serial Port emulation (RFCOMM protocol)

* Service Discovery Protocol (SDP)

1484 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

– Clean HCI driver abstraction

* 3-Wire (H:5) & 5-Wire (H:4) UART

* SPI

* Local controller support as a virtual HCI driver

– Verified with multiple popular controllers

8.3.2 Bluetooth Stack Architecture

Overview

This page describes the software architecture of Zephyr’s Bluetooth protocol stack.

Note: Zephyr supports mainly Bluetooth Low Energy (BLE), the low-power version of the Bluetooth
specification. Zephyr also has limited support for portions of the BR/EDR Host. Throughout this archi-
tecture document we use BLE interchangeably for Bluetooth except when noted.

BLE Layers There are 3 main layers that together constitute a full Bluetooth Low Energy protocol stack:

• Host: This layer sits right below the application, and is comprised of multiple (non real-time) net-
work and transport protocols enabling applications to communicate with peer devices in a standard
and interoperable way.

• Controller: The Controller implements the Link Layer (LE LL), the low-level, real-time protocol
which provides, in conjunction with the Radio Hardware, standard interoperable over the air com-
munication. The LL schedules packet reception and transmission, guarantees the delivery of data,
and handles all the LL control procedures.

• Radio Hardware: Hardware implements the required analog and digital baseband functional
blocks that permit the Link Layer firmware to send and receive in the 2.4GHz band of the spectrum.

Host Controller Interface The Bluetooth Specification describes the format in which a Host must
communicate with a Controller. This is called the Host Controller Interface (HCI) protocol. HCI can be
implemented over a range of different physical transports like UART, SPI, or USB. This protocol defines
the commands that a Host can send to a Controller and the events that it can expect in return, and also
the format for user and protocol data that needs to go over the air. The HCI ensures that different Host
and Controller implementations can communicate in a standard way making it possible to combine Hosts
and Controllers from different vendors.

Configurations The three separate layers of the protocol and the standardized interface make it possi-
ble to implement the Host and Controller on different platforms. The two following configurations are
commonly used:

• Single-chip configuration: In this configuration, a single microcontroller implements all three
layers and the application itself. This can also be called a system-on-chip (SoC) implementation.
In this case the BLE Host and the BLE Controller communicate directly through function calls
and queues in RAM. The Bluetooth specification does not specify how HCI is implemented in this
single-chip configuration and so how HCI commands, events, and data flows between the two can
be implementation-specific. This configuration is well suited for those applications and designs
that require a small footprint and the lowest possible power consumption, since everything runs
on a single IC.

• Dual-chip configuration: This configuration uses two separate ICs, one running the Application
and the Host, and a second one with the Controller and the Radio Hardware. This is sometimes

8.3. Bluetooth 1485

https://www.bluetooth.com/specifications/bluetooth-core-specification

Zephyr Project Documentation, Release 2.7.0-rc2

also called a connectivity-chip configuration. This configuration allows for a wider variety of com-
binations of Hosts when using the Zephyr OS as a Controller. Since HCI ensures interoperability
among Host and Controller implementations, including of course Zephyr’s very own BLE Host and
Controller, users of the Zephyr Controller can choose to use whatever Host running on any plat-
form they prefer. For example, the host can be the Linux BLE Host stack (BlueZ) running on any
processor capable of supporting Linux. The Host processor may of course also run Zephyr and
the Zephyr OS BLE Host. Conversely, combining an IC running the Zephyr Host with an external
Controller that does not run Zephyr is also supported.

Build Types The Zephyr software stack as an RTOS is highly configurable, and in particular, the BLE
subsystem can be configured in multiple ways during the build process to include only the features and
layers that are required to reduce RAM and ROM footprint as well as power consumption. Here’s a short
list of the different BLE-enabled builds that can be produced from the Zephyr project codebase:

• Controller-only build: When built as a BLE Controller, Zephyr includes the Link Layer and a
special application. This application is different depending on the physical transport chosen for
HCI:

– hci_uart

– hci_usb

– hci_spi

This application acts as a bridge between the UART, SPI or USB peripherals and the Controller
subsystem, listening for HCI commands, sending application data and responding with events and
received data. A build of this type sets the following Kconfig option values:

– :kconfig:`CONFIG_BT` =y

– :kconfig:`CONFIG_BT_HCI` =y

– :kconfig:`CONFIG_BT_HCI_RAW` =y

– :kconfig:`CONFIG_BT_CTLR` =y

– :kconfig:`CONFIG_BT_LL_SW_SPLIT` =y (if using the open source Link Layer)

• Host-only build: A Zephyr OS Host build will contain the Application and the BLE Host, along
with an HCI driver (UART or SPI) to interface with an external Controller chip. A build of this type
sets the following Kconfig option values:

– :kconfig:`CONFIG_BT` =y

– :kconfig:`CONFIG_BT_HCI` =y

– :kconfig:`CONFIG_BT_CTLR` =n

All of the samples located in samples/bluetooth except for the ones used for Controller-only
builds can be built as Host-only

• Combined build: This includes the Application, the Host and the Controller, and it is used exclu-
sively for single-chip (SoC) configurations. A build of this type sets the following Kconfig option
values:

– :kconfig:`CONFIG_BT` =y

– :kconfig:`CONFIG_BT_HCI` =y

– :kconfig:`CONFIG_BT_CTLR` =y

– :kconfig:`CONFIG_BT_LL_SW_SPLIT` =y (if using the open source Link Layer)

All of the samples located in samples/bluetooth except for the ones used for Controller-only
builds can be built as Combined

1486 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

The picture below shows the SoC or single-chip configuration when using a Zephyr combined build (a
build that includes both a BLE Host and a Controller in the same firmware image that is programmed
onto the chip):

Fig. 1: A Combined build on a Single-Chip configuration

When using connectivity or dual-chip configurations, several Host and Controller combinations are pos-
sible, some of which are depicted below:

When using a Zephyr Host (left side of image), two instances of Zephyr OS must be built with different
configurations, yielding two separate images that must be programmed into each of the chips respec-
tively. The Host build image contains the application, the BLE Host and the selected HCI driver (UART
or SPI), while the Controller build runs either the hci_uart, or the hci_spi app to provide an interface to
the BLE Controller.

This configuration is not limited to using a Zephyr OS Host, as the right side of the image shows. One
can indeed take one of the many existing GNU/Linux distributions, most of which include Linux’s own
BLE Host (BlueZ), to connect it via UART or USB to one or more instances of the Zephyr OS Controller
build. BlueZ as a Host supports multiple Controllers simultaneously for applications that require more
than one BLE radio operating at the same time but sharing the same Host stack.

Source tree layout

The stack is split up as follows in the source tree:

subsys/bluetooth/host The host stack. This is where the HCI command and event handling as well as
connection tracking happens. The implementation of the core protocols such as L2CAP, ATT, and
SMP is also here.

subsys/bluetooth/controller Bluetooth Controller implementation. Implements the controller-side
of HCI, the Link Layer as well as access to the radio transceiver.

include/bluetooth/ Public API header files. These are the header files applications need to include in
order to use Bluetooth functionality.

8.3. Bluetooth 1487

Zephyr Project Documentation, Release 2.7.0-rc2

Fig. 2: Host-only and Controller-only builds on dual-chip configurations

drivers/bluetooth/ HCI transport drivers. Every HCI transport needs its own driver. For example, the
two common types of UART transport protocols (3-Wire and 5-Wire) have their own drivers.

samples/bluetooth/ Sample Bluetooth code. This is a good reference to get started with Bluetooth
application development.

tests/bluetooth/ Test applications. These applications are used to verify the functionality of the Blue-
tooth stack, but are not necessary the best source for sample code (see samples/bluetooth in-
stead).

doc/guides/bluetooth/ Extra documentation, such as PICS documents.

Host

The Bluetooth Host implements all the higher-level protocols and profiles, and most importantly, provides
a high-level API for applications. The following diagram depicts the main protocol & profile layers of the
host.

Lowest down in the host stack sits a so-called HCI driver, which is responsible for abstracting away the
details of the HCI transport. It provides a basic API for delivering data from the controller to the host,
and vice-versa.

Perhaps the most important block above the HCI handling is the Generic Access Profile (GAP). GAP
simplifies Bluetooth LE access by defining four distinct roles of BLE usage:

• Connection-oriented roles

– Peripheral (e.g. a smart sensor, often with a limited user interface)

– Central (typically a mobile phone or a PC)

1488 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Fig. 3: Bluetooth Host protocol & profile layers.

• Connection-less roles

– Broadcaster (sending out BLE advertisements, e.g. a smart beacon)

– Observer (scanning for BLE advertisements)

Each role comes with its own build-time configuration option: :kconfig:`CONFIG_BT_PERIPHERAL`,
:kconfig:`CONFIG_BT_CENTRAL`, :kconfig:`CONFIG_BT_BROADCASTER` & :kcon-
fig:`CONFIG_BT_OBSERVER`. Of the connection-oriented roles central implicitly enables observer
role, and peripheral implicitly enables broadcaster role. Usually the first step when creating an
application is to decide which roles are needed and go from there. Bluetooth mesh is a slightly special
case, requiring at least the observer and broadcaster roles, and possibly also the Peripheral role. This
will be described in more detail in a later section.

Peripheral role Most Zephyr-based BLE devices will most likely be peripheral-role devices. This means
that they perform connectable advertising and expose one or more GATT services. After registering
services using the bt_gatt_service_register() API the application will typically start connectable
advertising using the bt_le_adv_start() API.

There are several peripheral sample applications available in the tree, such as sam-
ples/bluetooth/peripheral_hr.

Central role Central role may not be as common for Zephyr-based devices as peripheral role, but it is
still a plausible one and equally well supported in Zephyr. Rather than accepting connections from other
devices a central role device will scan for available peripheral device and choose one to connect to. Once
connected, a central will typically act as a GATT client, first performing discovery of available services
and then accessing one or more supported services.

To initially discover a device to connect to the application will likely use the bt_le_scan_start()
API, wait for an appropriate device to be found (using the scan callback), stop scanning using
bt_le_scan_stop() and then connect to the device using bt_conn_create_le(). If the central wants
to keep automatically reconnecting to the peripheral it should use the bt_le_set_auto_conn() API.

There are some sample applications for the central role available in the tree, such as sam-
ples/bluetooth/central_hr.

Observer role An observer role device will use the bt_le_scan_start() API to scan for device, but
it will not connect to any of them. Instead it will simply utilize the advertising data of found devices,
combining it optionally with the received signal strength (RSSI).

8.3. Bluetooth 1489

https://github.com/zephyrproject-rtos/zephyr/blob/main/samples/bluetooth/peripheral_hr
https://github.com/zephyrproject-rtos/zephyr/blob/main/samples/bluetooth/peripheral_hr
https://github.com/zephyrproject-rtos/zephyr/blob/main/samples/bluetooth/central_hr
https://github.com/zephyrproject-rtos/zephyr/blob/main/samples/bluetooth/central_hr

Zephyr Project Documentation, Release 2.7.0-rc2

Broadcaster role A broadcaster role device will use the bt_le_adv_start() API to advertise specific
advertising data, but the type of advertising will be non-connectable, i.e. other device will not be able to
connect to it.

Connections Connection handling and the related APIs can be found in the Connection Management
section.

Security To achieve a secure relationship between two Bluetooth devices a process called pairing is
used. This process can either be triggered implicitly through the security properties of GATT services, or
explicitly using the bt_conn_security() API on a connection object.

To achieve a higher security level, and protect against Man-In-The-Middle (MITM) attacks, it is rec-
ommended to use some out-of-band channel during the pairing. If the devices have a sufficient user
interface this “channel” is the user itself. The capabilities of the device are registered using the
bt_conn_auth_cb_register() API. The bt_conn_auth_cb struct that’s passed to this API has a set
of optional callbacks that can be used during the pairing - if the device lacks some feature the corre-
sponding callback may be set to NULL. For example, if the device does not have an input method but
does have a display, the passkey_entry and passkey_confirm callbacks would be set to NULL, but the
passkey_display would be set to a callback capable of displaying a passkey to the user.

Depending on the local and remote security requirements & capabilities, there are four possible security
levels that can be reached:

BT_SECURITY_L1 No encryption and no authentication.

BT_SECURITY_L2 Encryption but no authentication (no MITM protection).

BT_SECURITY_L3 Encryption and authentication using the legacy pairing method from Blue-
tooth 4.0 and 4.1.

BT_SECURITY_L4 Encryption and authentication using the LE Secure Connections feature
available since Bluetooth 4.2.

Note: Mesh has its own security solution through a process called provisioning. It follows a similar
procedure as pairing, but is done using separate mesh-specific APIs.

L2CAP L2CAP stands for the Logical Link Control and Adaptation Protocol. It is a common layer for all
communication over Bluetooth connections, however an application comes in direct contact with it only
when using it in the so-called Connection-oriented Channels (CoC) mode. More information on this can
be found in the L2CAP API section.

GATT The Generic Attribute Profile is the most common means of communication over LE connections.
A more detailed description of this layer and the API reference can be found in the GATT API reference
section.

Mesh Mesh is a little bit special when it comes to the needed GAP roles. By default, mesh requires
both observer and broadcaster role to be enabled. If the optional GATT Proxy feature is desired, then
peripheral role should also be enabled.

The API reference for mesh can be found in the Mesh API reference section.

Persistent storage The Bluetooth host stack uses the settings subsystem to implement persistent stor-
age to flash. This requires the presence of a flash driver and a designated “storage” partition on flash. A
typical set of configuration options needed will look something like the following:

1490 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

CONFIG_BT_SETTINGS=y
CONFIG_FLASH=y
CONFIG_FLASH_PAGE_LAYOUT=y
CONFIG_FLASH_MAP=y
CONFIG_NVS=y
CONFIG_SETTINGS=y

Once enabled, it is the responsibility of the application to call settings_load() after having initialized
Bluetooth (using the bt_enable() API).

BLE Controller

Standard

Split

8.3.3 Bluetooth Qualification

Qualification Listings

The Zephyr BLE stack has obtained qualification listings for both the Host and the Controller. See the
tables below for a list of qualification listings

Host qualifications
Zephyr version Link Qualifying Company
2.2.x QDID 151074 Demant A/S
1.14.x QDID 139258 The Linux Foundation
1.13 QDID 119517 Nordic Semiconductor

Mesh qualifications
Zephyr version Link Qualifying Company
1.14.x QDID 139259 The Linux Foundation

Controller qualifications

Zephyr version Link Qualifying Company Compatible Hardware
2.2.x QDID 150092 Nordic Semiconductor nRF52x
1.14.x QDID 135679 Nordic Semiconductor nRF52x
1.9 to 1.13 QDID 101395 Nordic Semiconductor nRF52x

ICS Features

The ICS features for each supported protocol & profile can be found in the following documents:

GAP ICS PTS version: 8.0.3

M - mandatory

O - optional

8.3. Bluetooth 1491

https://launchstudio.bluetooth.com/ListingDetails/109287
https://launchstudio.bluetooth.com/ListingDetails/95152
https://launchstudio.bluetooth.com/ListingDetails/70189
https://launchstudio.bluetooth.com/ListingDetails/95153
https://launchstudio.bluetooth.com/ListingDetails/108089
https://launchstudio.bluetooth.com/ListingDetails/90777
https://launchstudio.bluetooth.com/ListingDetails/25166

Zephyr Project Documentation, Release 2.7.0-rc2

Device Configuration
Parameter Name Selected Description
TSPC_GAP_0_1 False BR/EDR (C.1)
TSPC_GAP_0_2 True LE (C.2)
TSPC_GAP_0_3 False BR/EDR/LE (C.3)

Modes
Parameter Name Selected Description
TSPC_GAP_1_1 False Non-discoverable mode (C.1)
TSPC_GAP_1_2 False Limited-discoverable mode (O)
TSPC_GAP_1_3 False General-discoverable mode (O)
TSPC_GAP_1_4 False Non-connectable mode (O)
TSPC_GAP_1_5 False Connectable mode (M)
TSPC_GAP_1_6 False Non-bondable mode (O)
TSPC_GAP_1_7 False Bondable mode (C.2)
TSPC_GAP_1_8 False Non-Synchronizable Mode (C.3)
TSPC_GAP_1_9 False Synchronizable Mode (C.4)

Security Aspects
Parameter Name Selected Description
TSPC_GAP_2_1 False Authentication procedure (C.1)
TSPC_GAP_2_2 False Support of LMP-Authentication (M)
TSPC_GAP_2_3 False Initiate LMP-Authentication (C.5)
TSPC_GAP_2_4 False Security mode 1 (C.2)
TSPC_GAP_2_5 False Security mode 2 (O)
TSPC_GAP_2_6 False Security mode 3 (C.7)
TSPC_GAP_2_7 False Security mode 4 (M)
TSPC_GAP_2_7a False Security mode 4, level 4 (C.9)
TSPC_GAP_2_7b False Security mode 4, level 3 (C.9)
TSPC_GAP_2_7c False Security mode 4, level 2 (C.9)
TSPC_GAP_2_7d False Security mode 4, level 1 (C.9)
TSPC_GAP_2_8 False Support of Authenticated link key (C.6)
TSPC_GAP_2_9 False Support of Unauthenticated link key (C.6)
TSPC_GAP_2_10 False Security Optional (C.6)
TSPC_GAP_2_11 False Secure Connections Only Mode (C.8)
TSPC_GAP_2_12 False 56-bit minimum encryption key size (C.10)
TSPC_GAP_2_13 False 128-bit encryption key size capable (C.11)

Idle Mode Procedures
Parameter Name Selected Description
TSPC_GAP_3_1 False Initiation of general inquiry (C.1)
TSPC_GAP_3_2 False Initiation of limited inquiry (C.1)
TSPC_GAP_3_3 False Initiation of name discovery (O)
TSPC_GAP_3_4 False Initiation of device discovery (O)
TSPC_GAP_3_5 False Initiation of general bonding (O)
TSPC_GAP_3_6 False Initiation of dedicated bonding (O)

Establishment Procedures

1492 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Parameter Name Selected Description
TSPC_GAP_4_1 False Support link establishment as initiator (M)
TSPC_GAP_4_2 False Support link establishment as acceptor (M)
TSPC_GAP_4_3 False Support channel establishment as initiator (O)
TSPC_GAP_4_4 False Support channel establishment as acceptor (M)
TSPC_GAP_4_5 False Support connection establishment as initiator (O)
TSPC_GAP_4_6 False Support connection establishment as acceptor (O)
TSPC_GAP_4_7 False Support synchronization establishment as receiver (C.1)

LE Roles
Parameter Name Selected Description
TSPC_GAP_5_1 True Broadcaster (C.1)
TSPC_GAP_5_2 True Observer (C.1)
TSPC_GAP_5_3 True Peripheral (C.1)
TSPC_GAP_5_4 True Central (C.1)

Broadcaster Physical Layer
Parameter Name Selected Description
TSPC_GAP_6_1 True Transmitter (M)
TSPC_GAP_6_2 True Receiver (O)

Broadcaster Link Layer States
Parameter Name Selected Description
TSPC_GAP_7_1 True Standby (M)
TSPC_GAP_7_2 True Advertising (M)
TSPC_GAP_7_3 False Isochronous Broadcasting State (C.1)

Broadcaster Link Layer Advertising Event Types

Parameter Name Selected Description
TSPC_GAP_8_1 True Non-Connectable Undirected Event (M)
TSPC_GAP_8_2 True Scannable Undirected Event (O)
TSPC_GAP_8_3 True Non-Connectable and Non-Scannable Directed Event (C.1)
TSPC_GAP_8_4 True Scannable Directed Event (C.1)

Broadcaster Link Layer Advertising Data Types

8.3. Bluetooth 1493

Zephyr Project Documentation, Release 2.7.0-rc2

Parameter Name Selected Description
TSPC_GAP_8a_1 True AD Type – Service UUID (O)
TSPC_GAP_8a_2 True AD Type – Local Name (O)
TSPC_GAP_8a_3 True AD Type – Flags (O)
TSPC_GAP_8a_4 True AD Type – Manufacturer Specific Data (O)
TSPC_GAP_8a_5 True AD Type – TX Power Level (O)
TSPC_GAP_8a_6 False AD Type – Security Manager Out of Band (OOB) (C.1)
TSPC_GAP_8a_7 True AD Type – Security Manager TK Value (O)
TSPC_GAP_8a_8 True AD Type – Peripheral Connection Interval Range (O)
TSPC_GAP_8a_9 True AD Type - Service Solicitation (O)
TSPC_GAP_8a_10 True AD Type – Service Data (O)
TSPC_GAP_8a_11 True AD Type – Appearance (O)
TSPC_GAP_8a_12 True AD Type – Public Target Address (O)
TSPC_GAP_8a_13 True AD Type – Random Target Address (O)
TSPC_GAP_8a_14 True AD Type – Advertising Interval (O)
TSPC_GAP_8a_15 True AD Type – LE Bluetooth Device Address (O)
TSPC_GAP_8a_16 True AD Type – LE Role (O)
TSPC_GAP_8a_17 True AD Type - URI (O)

Broadcaster Connection Modes and Procedures

Parameter Name Selected Description
TSPC_GAP_9_1 True Non-Connectable Mode (M)

Broadcaster Broadcasting and Observing Features

Parameter Name Selected Description
TSPC_GAP_10_1 True Broadcast Mode (M)
TSPC_GAP_10_2 False Broadcast Isochronous Synchronizability mode (C.1)
TSPC_GAP_10_3 False Broadcast Isochronous Broadcasting mode (C.2)
TSPC_GAP_10_4 False Broadcast Isochronous Terminate procedure (C.1)
TSPC_GAP_10_5 False Broadcast Isochronous Channel Map Update Procedure (C.1)

Broadcaster Privacy Feature

Parameter Name Selected Description
TSPC_GAP_11_1 True Privacy Feature (O)
TSPC_GAP_11_2 True Resolvable Private Address Generation Procedure (C.1)
TSPC_GAP_11_3 True Non-Resolvable Private Address Generation Procedure (C.2)

Periodic Advertising Modes and Procedures

Parameter Name Selected Description
TSPC_GAP_11a_1 False Periodic Advertising Synchronizability mode (C.1)
TSPC_GAP_11a_2 False Periodic Advertising mode (C.2)

Broadcaster Security Aspects Features

Parameter Name Selected Description
TSPC_GAP_11b_1 False LE Security Mode 3 (C.1)
TSPC_GAP_11b_2 False LE Security Mode 3, Level 1 (C.2)
TSPC_GAP_11b_3 False LE Security Mode 3, Level 2 (C.2)
TSPC_GAP_11b_4 False LE Security Mode 3, Level 3 (C.2)

1494 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Observer Physical Layer
Parameter Name Selected Description
TSPC_GAP_12_1 True Receiver (M)
TSPC_GAP_12_2 True Transmitter (O)

Observer Link Layer States
Parameter Name Selected Description
TSPC_GAP_13_1 True Standby (M)
TSPC_GAP_13_2 True Scanning (M)

Observer Link Layer Scanning Types
Parameter Name Selected Description
TSPC_GAP_14_1 True Passive Scanning (M)
TSPC_GAP_14_2 True Active Scanning (O)

Observer Connection Modes and Procedures

Parameter Name Selected Description
TSPC_GAP_15_1 True Non-Connectable Modes (M)

Observer Broadcasting and Observing Features

Parameter Name Se-
lected

Description

TSPC_GAP_16_1 True Observation Procedure (M)
TSPC_GAP_16_2 False Broadcast Isochronous Synchronization Establishment procedure (C.1)
TSPC_GAP_16_3 False Broadcast Isochronous Termination procedure (C.2)
TSPC_GAP_16_4 False Broadcast Isochronous Channel Map Update Procedure (C.2)

Observer Privacy Feature

Parameter Name Selected Description
TSPC_GAP_17_1 True Privacy Feature (O)
TSPC_GAP_17_2 True Non-Resolvable Private Address Generation Procedure (C.1)
TSPC_GAP_17_3 True Resolvable Private Address Resolution Procedure (O)
TSPC_GAP_17_4 True Resolvable Private Address Generation Procedure (C.2)

Periodic Advertising Modes and Procedures

Parameter
Name

Se-
lected

Description

TSPC_GAP_17a_1False Periodic Advertising Synchronization Establishment procedure without listen-
ing for periodic advertising (C.1)

TSPC_GAP_17a_2False Periodic Advertising Synchronization Establishment procedure with listening
for periodic advertising (C.1)

Observer Security Aspects Features

8.3. Bluetooth 1495

Zephyr Project Documentation, Release 2.7.0-rc2

Parameter Name Selected Description
TSPC_GAP_17b_1 False LE Security Mode 3 (C.1)
TSPC_GAP_17b_2 False LE Security Mode 3, Level 1 (C.2)
TSPC_GAP_17b_3 False LE Security Mode 3, Level 2 (C.2)
TSPC_GAP_17b_4 False LE Security Mode 3, Level 3 (C.2)

Peripheral Physical Layer
Parameter Name Selected Description
TSPC_GAP_18_1 True Transmitter (M)
TSPC_GAP_18_2 True Receiver (M)

Peripheral Link Layer States
Parameter Name Selected Description
TSPC_GAP_19_1 True Standby (M)
TSPC_GAP_19_2 True Advertising (M)
TSPC_GAP_19_3 True Connection, Peripheral Role (M)

Peripheral Link Layer Advertising Event Types

Parameter Name Selected Description
TSPC_GAP_20_1 True Connectable and Scannable Undirected Event (M)
TSPC_GAP_20_2 True Connectable Directed Event (O)
TSPC_GAP_20_3 True Non-Connectable and Non-Scannable Undirected Event (O)
TSPC_GAP_20_4 True Scannable Undirected Event (O)
TSPC_GAP_20_5 True Connectable Undirected Event (C.1)
TSPC_GAP_20_6 True Non-Connectable and Non-Scannable Directed Event (C.1)
TSPC_GAP_20_7 True Scannable Directed Event (C.1)

Peripheral Link Layer Advertising Data Types

Parameter Name Selected Description
TSPC_GAP_20A_1 True AD Type – Service UUID (C.1)
TSPC_GAP_20A_2 True AD Type – Local Name (C.1)
TSPC_GAP_20A_3 True AD Type – Flags (C.2)
TSPC_GAP_20A_4 True AD Type – Manufacturer Specific Data (C.1)
TSPC_GAP_20A_5 True AD Type – TX Power Level (C.1)
TSPC_GAP_20A_6 False AD Type – Security Manager Out of Band (OOB) (C.3)
TSPC_GAP_20A_7 True AD Type – Security Manager TK Value (C.1)
TSPC_GAP_20A_8 True AD Type – Peripheral Connection Interval Range (C.1)
TSPC_GAP_20A_9 True AD Type – Service Solicitation (C.1)
TSPC_GAP_20A_10 True AD Type – Service Data (C.1)
TSPC_GAP_20A_11 True AD Type – Appearance (C.1)
TSPC_GAP_20A_12 True AD Type – Public Target Address (C.1)
TSPC_GAP_20A_13 True AD Type – Random Target Address (C.1)
TSPC_GAP_20A_14 True AD Type – Advertising Interval (C.1)
TSPC_GAP_20A_15 True AD Type – LE Bluetooth Device Address (C.1)
TSPC_GAP_20A_16 True AD Type – LE Role (C.1)
TSPC_GAP_20A_17 True AD Type – URI (O)

Peripheral Link Layer Control Procedures

1496 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Parameter Name Selected Description
TSPC_GAP_21_1 True Connection Update Procedure (M)
TSPC_GAP_21_2 True Channel Map Update Procedure (M)
TSPC_GAP_21_3 True Encryption Procedure (O)
TSPC_GAP_21_4 True Central Initiated Feature Exchange Procedure (M)
TSPC_GAP_21_5 True Version Exchange Procedure (M)
TSPC_GAP_21_6 True Termination Procedure (M)
TSPC_GAP_21_7 True LE Ping Procedure (O)
TSPC_GAP_21_8 True Peripheral Initiated Feature Exchange Procedure (C.1)
TSPC_GAP_21_9 True Connection Parameter Request Procedure (O)
TSPC_GAP_21_10 True Data Length Update Procedure (O)
TSPC_GAP_21_11 True PHY Update Procedure (C.2)
TSPC_GAP_21_12 False Minimum Number Of Used Channels Procedure (C.2)

Peripheral Discovery Modes and Procedures

Parameter Name Selected Description
TSPC_GAP_22_1 True Non-Discoverable Mode (M)
TSPC_GAP_22_2 True Limited Discoverable Mode (O)
TSPC_GAP_22_3 True General Discoverable Mode (C.1)
TSPC_GAP_22_4 True Name Discovery Procedure (O)

Peripheral Connection Modes and Procedures

Parameter Name Selected Description
TSPC_GAP_23_1 True Non-Connectable Mode (M)
TSPC_GAP_23_2 False Directed Connectable Mode (O)
TSPC_GAP_23_3 True Undirected Connectable Mode (M)
TSPC_GAP_23_4 True Connection Parameter Update Procedure (O)
TSPC_GAP_23_5 True Terminate Connection Procedure (M)
TSPC_GAP_23_6 False Connected Isochronous Stream Request procedure (C.1)
TSPC_GAP_23_7 False Connected Isochronous Stream Termination procedure (C.1)

Peripheral Bonding Modes and Procedures

Parameter Name Selected Description
TSPC_GAP_24_1 True Non-Bondable Mode (M)
TSPC_GAP_24_2 True Bondable Mode (O)
TSPC_GAP_24_3 True Bonding Procedure (O)
TSPC_GAP_24_4 True Multiple Bonds (C.1)

Peripheral Security Aspects Features

8.3. Bluetooth 1497

Zephyr Project Documentation, Release 2.7.0-rc2

Parameter
Name

Se-
lected

Description

TSPC_GAP_25_1True Security Mode 1 (O)
TSPC_GAP_25_2True Security Mode 2 (O)
TSPC_GAP_25_3True Authentication Procedure (O)
TSPC_GAP_25_4True Authorization Procedure (O)
TSPC_GAP_25_5True Connection Data Signing Procedure (O)
TSPC_GAP_25_6True Authenticate Signed Data Procedure (O)
TSPC_GAP_25_7True Authenticated Pairing (LE security mode 1 level 3) (C.1)
TSPC_GAP_25_8True Unauthenticated Pairing (LE security mode 1 level 2) (C.1)
TSPC_GAP_25_9True LE Security Mode 1 Level 4 (C.3)
TSPC_GAP_25_10True Secure Connections Only Mode (C.4)
TSPC_GAP_25_11False Unauthenticated Pairing (LE security mode 1 level 2) with LE Secure Con-

nections Pairing only (C.3)
TSPC_GAP_25_12False Authenticated Pairing (LE security mode 1 level 3) with LE Secure Connec-

tions Pairing only (C.3)
TSPC_GAP_25_13True Minimum 128 Bit entropy key (C.5)

Peripheral Privacy Feature

Parameter Name Selected Description
TSPC_GAP_26_1 True Privacy Feature (O)
TSPC_GAP_26_2 True Non-Resolvable Private Address Generation Procedure (O)
TSPC_GAP_26_3 True Resolvable Private Address Generation Procedure (C.1)
TSPC_GAP_26_4 True Resolvable Private Address Resolution Procedure (C.1)

Peripheral GAP Characteristics

Parameter Name Selected Description
TSPC_GAP_27_1 True Device Name (M)
TSPC_GAP_27_2 True Appearance (M)
TSPC_GAP_27_5 True Peripheral Preferred Connection Parameters (O)
TSPC_GAP_27_6 True Writeable Device Name (O)
TSPC_GAP_27_7 False Writeable Appearance (O)
TSPC_GAP_27_9 True Central Address Resolution (C.1)

Periodic Advertising Modes and Procedures

Parameter
Name

Se-
lected

Description

TSPC_GAP_27a_1False Periodic Advertising Synchronization Transfer procedure (C.1)
TSPC_GAP_27a_2False Periodic Advertising Synchronization Establishment procedure over an LE con-

nection without listening for periodic advertising (C.2)
TSPC_GAP_27a_3False Periodic Advertising Synchronization Establishment procedure over an LE con-

nection with listening for periodic advertising (C.3)

Central Physical Layer
Parameter Name Selected Description
TSPC_GAP_28_1 True Transmitter (M)
TSPC_GAP_28_2 True Receiver (M)

1498 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Central Link Layer States
Parameter Name Selected Description
TSPC_GAP_29_1 True Standby (M)
TSPC_GAP_29_2 True Scanning (M)
TSPC_GAP_29_3 True Initiating (M)
TSPC_GAP_29_4 True Connection, Central Role (M)

Central Link Layer Scanning Types
Parameter Name Selected Description
TSPC_GAP_30_1 True Passive Scanning (O)
TSPC_GAP_30_2 True Active Scanning (C.1)

Central Link Layer Control Procedures

Parameter Name Selected Description
TSPC_GAP_31_1 True Connection Update Procedure (M)
TSPC_GAP_31_2 True Channel Map Update Procedure (M)
TSPC_GAP_31_3 True Encryption Procedure (O)
TSPC_GAP_31_4 True Central Initiated Feature Exchange Procedure (M)
TSPC_GAP_31_5 True Version Exchange Procedure (M)
TSPC_GAP_31_6 True Termination Procedure (M)
TSPC_GAP_31_7 False LE Ping Procedure (O)
TSPC_GAP_31_8 True Peripheral Initiated Feature Exchange Procedure (C.1)
TSPC_GAP_31_9 True Connection Parameter Request Procedure (O)
TSPC_GAP_31_10 True Data Length Update Procedure (O)
TSPC_GAP_31_11 True PHY Update Procedure (C.2)
TSPC_GAP_31_12 False Minimum Number Of Used Channels Procedure (C.2)

Central Discovery Modes and Procedures

Parameter Name Selected Description
TSPC_GAP_32_1 True Limited Discovery Procedure (O)
TSPC_GAP_32_2 True General Discovery Procedure (M)
TSPC_GAP_32_3 True Name Discovery Procedure (O)

Central Connection Modes and Procedures

Parameter Name Selected Description
TSPC_GAP_33_1 True Auto Connection Establishment Procedure (O)
TSPC_GAP_33_2 True General Connection Establishment Procedure (O)
TSPC_GAP_33_3 False Selective Connection Establishment Procedure (O)
TSPC_GAP_33_4 True Selective Connection Establishment Procedure (M)
TSPC_GAP_33_5 True Connection Parameter Update Procedure (M)
TSPC_GAP_33_6 True Terminate Connection Procedure (M)
TSPC_GAP_33_7 False Connected Isochronous Stream Creation procedure (C.1)
TSPC_GAP_33_8 False Connected Isochronous Stream Termination procedure (C.1)

Central Bonding Modes and Procedures
Parameter Name Selected Description
TSPC_GAP_34_1 True Non-Bondable Mode (M)
TSPC_GAP_34_2 True Bondable Mode (O)
TSPC_GAP_34_3 True Bonding Procedure (O)

8.3. Bluetooth 1499

Zephyr Project Documentation, Release 2.7.0-rc2

Central Security Features

Parameter
Name

Se-
lected

Description

TSPC_GAP_35_1True Security Mode 1 (O)
TSPC_GAP_35_2True Security Mode 2 (O)
TSPC_GAP_35_3True Authentication Procedure (O)
TSPC_GAP_35_4False Authorization Procedure (O)
TSPC_GAP_35_5True Connection Data Signing Procedure (O)
TSPC_GAP_35_6True Authenticate Signed Data Procedure (O)
TSPC_GAP_35_7True Authenticated Pairing (LE security mode 1 level 3) (C.1)
TSPC_GAP_35_8True Unauthenticated Pairing (LE security mode1 level 2) (C.1)
TSPC_GAP_35_9True LE Security Mode 1 Level 4 (C.2)
TSPC_GAP_35_10True Secure Connections Only Mode (C.3)
TSPC_GAP_35_11False Unauthenticated Pairing (LE security mode 1 level 2) with LE Secure Con-

nections Pairing only (C.2)
TSPC_GAP_35_12False Authenticated Pairing (LE security mode 1 level 3) with LE Secure Connec-

tions Pairing only (C.2)
TSPC_GAP_35_13True Minimum 128 Bit entropy key (C.4)

Central Privacy Feature

Parameter Name Selected Description
TSPC_GAP_36_1 True Privacy Feature (O)
TSPC_GAP_36_2 True Non-Resolvable Private Address Generation Procedure (O)
TSPC_GAP_36_3 True Resolvable Private Address Resolution Procedure (C.1)
TSPC_GAP_36_5 True Resolvable Private Address Generation Procedure (C.1)

Central GAP Characteristics
Parameter Name Selected Description
TSPC_GAP_37_1 True Device Name (M)
TSPC_GAP_37_2 True Appearance (M)
TSPC_GAP_37_3 True Central Address Resolution (C.1)

Periodic Advertising Modes and Procedures

Parameter
Name

Se-
lected

Description

TSPC_GAP_37a_1False Periodic Advertising Synchronization Transfer procedure (C.1)
TSPC_GAP_37a_2False Periodic Advertising Synchronization Establishment procedure over an LE con-

nection without listening for periodic advertising (C.2)
TSPC_GAP_37a_3False Periodic Advertising Synchronization Establishment procedure over an LE con-

nection with listening for periodic advertising (C.3)

BR/EDR/LE Roles
Parameter Name Selected Description
TSPC_GAP_38_1 False Broadcaster (C.1)
TSPC_GAP_38_2 False Observer (C.1)
TSPC_GAP_38_3 False Peripheral (C.1)
TSPC_GAP_38_4 False Central (C.1)

Central BR/EDR/LE Security Aspects

1500 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Parameter Name Selected Description
TSPC_GAP_41_1 False Security Aspects (M)
TSPC_GAP_41_2a False Derivation of BR/EDR Link Key from LE LTK (C.1)
TSPC_GAP_41_2b False Derivation of LE LTK from BR/EDR Link Key (C.2)

Peripheral BR/EDR/LE Security Aspects

Parameter Name Selected Description
TSPC_GAP_43_1 False Security Aspects (M)
TSPC_GAP_43_2a False Derivation of BR/EDR Link Key from LE LTK (C.1)
TSPC_GAP_43_2b False Derivation of LE LTK from BR/EDR Link Key (C.2)

Central Simultaneous BR/EDR and LE Transports

Parameter
Name

Se-
lected

Description

TSPC_GAP_44_1 False Simultaneous BR/EDR and LE Transports – BR/EDR Peripheral to the same
device (O)

TSPC_GAP_44_2 False Simultaneous BR/EDR and LE Transports – BR/EDR Central to the same
device (O)

Peripheral Simultaneous BR/EDR and LE Transports

Parameter
Name

Se-
lected

Description

TSPC_GAP_45_1 False Simultaneous BR/EDR and LE Transports – BR/EDR Peripheral to the same
device (O)

TSPC_GAP_45_2 False Simultaneous BR/EDR and LE Transports – BR/EDR Central to the same
device (O)

GATT ICS PTS version: 8.0.3

M - mandatory

O - optional

Generic Attribute Profile Support

Parameter Name Selected Description
TSPC_GATT_1_1 True Generic Attribute Profile (GATT) Client (C.1)
TSPC_GATT_1_2 True Generic Attribute Profile (GATT) Server (C.2)

GATT role configuration
Parameter Name Selected Description
TSPC_GATT_1a_1 True GATT Client over LE (C.1)
TSPC_GATT_1a_2 False GATT Client over BR/EDR (C.2)
TSPC_GATT_1a_3 True GATT Server over LE (C.3)
TSPC_GATT_1a_4 False GATT Server over BR/EDR (C.4)

8.3. Bluetooth 1501

Zephyr Project Documentation, Release 2.7.0-rc2

Attribute Protocol Transport

Parameter
Name

Se-
lected

Description

TSPC_GATT_2_1 False Attribute Protocol Supported over BR/EDR (L2CAP fixed channel support)
(C.1)

TSPC_GATT_2_2 True Attribute Protocol Supported over LE (C.2)
TSPC_GATT_2_3 True Enhanced ATT bearer Attribute Protocol Supported (L2CAP fixed EATT

PSM supported) (C.3)
TSPC_GATT_2_3aTrue Enhanced ATT bearer supported over LE (C.4)
TSPC_GATT_2_3bFalse Enhanced ATT bearer supported over BR/EDR (C.5)

Generic Attribute Profile Feature Support, by Client
Parameter Name Selected Description
TSPC_GATT_3_1 True Exchange MTU (C.11)
TSPC_GATT_3_2 True Discover All Primary Services (O)
TSPC_GATT_3_3 True Discover Primary Services by Service UUID (O)
TSPC_GATT_3_4 True Find Included Services (O)
TSPC_GATT_3_5 True Discover All characteristics of a Service (O)
TSPC_GATT_3_6 True Discover Characteristics by UUID (O)
TSPC_GATT_3_7 True Discover All Characteristic Descriptors (O)
TSPC_GATT_3_8 True Read Characteristic Value (O)
TSPC_GATT_3_9 True Read Using Characteristic UUID (O)
TSPC_GATT_3_10 True Read Long Characteristic Values (O)
TSPC_GATT_3_11 True Read Multiple Characteristic Values (O)
TSPC_GATT_3_12 True Write without Response (O)
TSPC_GATT_3_13 True Signed Write Without Response (C.11)
TSPC_GATT_3_14 True Write Characteristic Value (O)
TSPC_GATT_3_15 True Write Long Characteristic Values (O)
TSPC_GATT_3_16 True Characteristic Value Reliable Writes (O)
TSPC_GATT_3_17 True Notifications (C.7)
TSPC_GATT_3_18 True Indications (M)
TSPC_GATT_3_19 True Read Characteristic Descriptors (O)
TSPC_GATT_3_20 True Read Long Characteristic Descriptors (O)
TSPC_GATT_3_21 True Write Characteristic Descriptors (O)
TSPC_GATT_3_22 True Write Long Characteristic Descriptors (O)
TSPC_GATT_3_23 True Service Changed Characteristic (M)
TSPC_GATT_3_24 False Configured Broadcast (C.2)
TSPC_GATT_3_25 True Client Supported Features Characteristic (C.4)
TSPC_GATT_3_26 True Database Hash Characteristic (C.4)
TSPC_GATT_3_27 False Read and Interpret Characteristic Presentation Format (O)
TSPC_GATT_3_28 False Read and Interpret Characteristic Aggregate Format (C.6)
TSPC_GATT_3_29 False Read Multiple Variable Length Characteristic Values (C.9)
TSPC_GATT_3_30 False Multiple Variable Length Notifications (C.10)

Generic Attribute Profile Feature Support, by Server
Parameter Name Selected Description
TSPC_GATT_4_1 True Exchange MTU (C.6)
TSPC_GATT_4_2 True Discover All Primary Services (M)
TSPC_GATT_4_3 True Discover Primary Services by Service UUID (M)
TSPC_GATT_4_4 True Find Included Services (M)

continues on next page

1502 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Table 2 – continued from previous page
Parameter Name Selected Description
TSPC_GATT_4_5 True Discover All characteristics of a Service (M)
TSPC_GATT_4_6 True Discover Characteristics by UUID (M)
TSPC_GATT_4_7 True Discover All Characteristic Descriptors (M)
TSPC_GATT_4_8 True Read Characteristic Value (M)
TSPC_GATT_4_9 True Read Using Characteristic UUID (M)
TSPC_GATT_4_10 True Read Long Characteristic Values (C.12)
TSPC_GATT_4_11 True Read Multiple Characteristic Values (O)
TSPC_GATT_4_12 True Write without Response (C.2)
TSPC_GATT_4_13 True Signed Write Without Response (C.6)
TSPC_GATT_4_14 True Write Characteristic Value (C.3)
TSPC_GATT_4_15 True Write Long Characteristic Values (C.12)
TSPC_GATT_4_16 True Characteristic Value ReliableWrites (O)
TSPC_GATT_4_17 True Notifications (O)
TSPC_GATT_4_18 True Indications (C.1)
TSPC_GATT_4_19 True Read Characteristic Descriptors (C.12)
TSPC_GATT_4_20 True Read Long Characteristic Descriptors (C.12)
TSPC_GATT_4_21 True Write Characteristic Descriptors (C.12)
TSPC_GATT_4_22 True Write Long Characteristic Descriptors (O)
TSPC_GATT_4_23 True Service Changed Characteristic (C.1)
TSPC_GATT_4_24 False Configured Broadcast (C.5)
TSPC_GATT_4_25 False Execute Write Request with empty queue (C.7)
TSPC_GATT_4_26 True Client Supported Features Characteristic (C.9)
TSPC_GATT_4_27 True Database Hash Characteristic (C.8)
TSPC_GATT_4_28 False Report Characteristic Value: Characteristic Presentation Format (O)
TSPC_GATT_4_29 False Report aggregate Characteristic Value: Characteristic Aggregate Format (C.10)
TSPC_GATT_4_30 False Read Multiple Variable Length Characteristic Values (C.13)
TSPC_GATT_4_31 False Multiple Variable Length Notifications (C.13)

SDP Interoperability

Parameter Name Selected Description
TSPC_GATT_6_2 False Discover GATT Services using Service Discovery Profile (C.1)
TSPC_GATT_6_3 False Publish SDP record for GATT services support via BR/EDR (C.2)

Attribute Protocol Transport Security

Parameter Name Selected Description
TSPC_GATT_7_1 False Security Mode 4 (C.1)
TSPC_GATT_7_2 True LE Security Mode 1 (C.5)
TSPC_GATT_7_3 True LE Security Mode 2 (C.6)
TSPC_GATT_7_4 True LE Authentication Procedure (C.4)
TSPC_GATT_7_5 True LE connection data signing procedure (C.2)
TSPC_GATT_7_6 True LE Authenticate signed data procedure (C.2)
TSPC_GATT_7_7 True LE Authorization Procedure (C.3)

Multiple Simultaneous ATT Bearers

8.3. Bluetooth 1503

Zephyr Project Documentation, Release 2.7.0-rc2

Parameter
Name

Se-
lected

Description

TSPC_GATT_8_1False Support for multiple simultaneous active ATT bearers from same device – ATT
over LE and ATT over BR/EDR (C.1)

TSPC_GATT_8_2True Support for multiple simultaneous active ATT bearers from same device – ATT
over LE and EATT over LE (C.2)

TSPC_GATT_8_3False Support for multiple simultaneous active ATT bearers from same device – ATT
over BR/EDR and EATT over BR/EDR (C.3)

TSPC_GATT_8_4False Support for multiple simultaneous active ATT bearers from same device – ATT
over LE and EATT over BR/EDR (C.4)

TSPC_GATT_8_5False Support for multiple simultaneous active ATT bearers from same device – ATT
over BR/EDR and EATT over LE (C.5)

TSPC_GATT_8_6False Support for multiple simultaneous active EATT bearers from same device – EATT
over BR/EDR and EATT over LE (C.6)

TSPC_GATT_8_7False Support for multiple simultaneous active EATT bearers from same device – EATT
over BR/EDR (C.7)

TSPC_GATT_8_8True Support for multiple simultaneous active EATT bearers from same device – EATT
over LE (C.7)

L2CAP ICS PTS version: 8.0.3

M - mandatory

O - optional

L2CAP Transport Configuration

Parameter
Name

Se-
lected

Description

TSPC_L2CAP_0_1False BR/EDR (includes possible support of GAP LE Broadcaster or LE Observer
roles) (C.1)

TSPC_L2CAP_0_2True LE (C.2)
TSPC_L2CAP_0_3False BR/EDR/LE (C.3)

Roles
Parameter Name Selected Description
TSPC_L2CAP_1_1 False Data Channel Initiator (C.3)
TSPC_L2CAP_1_2 False Data Channel Acceptor (C.1)
TSPC_L2CAP_1_3 True LE Master (C.2)
TSPC_L2CAP_1_4 True LE Slave (C.2)
TSPC_L2CAP_1_5 True LE Data Channel Initiator (C.4)
TSPC_L2CAP_1_6 True LE Data Channel Acceptor (C.5)

General Operation
Parameter Name Selected Description
TSPC_L2CAP_2_1 False Support of L2CAP signalling channel (C.16)
TSPC_L2CAP_2_2 False Support of configuration process (C.16)
TSPC_L2CAP_2_3 False Support of connection oriented data channel (C.16)
TSPC_L2CAP_2_4 False Support of command echo request (C.17)
TSPC_L2CAP_2_5 False Support of command echo response (C.16)
TSPC_L2CAP_2_6 False Support of command information request (C.17)

continues on next page

1504 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Table 3 – continued from previous page
Parameter Name Selected Description
TSPC_L2CAP_2_7 False Support of command information response (C.16)
TSPC_L2CAP_2_8 False Support of a channel group (C.17)
TSPC_L2CAP_2_9 False Support of packet for connectionless channel (C.17)
TSPC_L2CAP_2_10 False Support retransmission mode (C.17)
TSPC_L2CAP_2_11 False Support flow control mode (C.17)
TSPC_L2CAP_2_12 False Enhanced Retransmission Mode (C.11)
TSPC_L2CAP_2_13 False Streaming Mode (O)
TSPC_L2CAP_2_14 False FCS Option (C.1)
TSPC_L2CAP_2_15 False Generate Local Busy Condition (C.2)
TSPC_L2CAP_2_16 False Send Reject (C.2)
TSPC_L2CAP_2_17 False Send Selective Reject (C.2)
TSPC_L2CAP_2_18 False Mandatory use of ERTM (C.3)
TSPC_L2CAP_2_19 False Mandatory use of Streaming Mode (C.4)
TSPC_L2CAP_2_20 False Optional use of ERTM (C.3)
TSPC_L2CAP_2_21 False Optional use of Streaming Mode (C.4)
TSPC_L2CAP_2_22 False Send data using SAR in ERTM (C.5)
TSPC_L2CAP_2_23 False Send data using SAR in Streaming Mode (C.6)
TSPC_L2CAP_2_24 False Actively request Basic Mode for a PSM that supports the use of ERTM or Streaming Mode (C.7)
TSPC_L2CAP_2_25 False Supports performing L2CAP channel mode configuration fallback from SM to ERTM (C.8)
TSPC_L2CAP_2_26 False Supports sending more than one unacknowledged I-Frame when operating in ERTM (C.9)
TSPC_L2CAP_2_27 False Supports sending more than three unacknowledged I-Frame when operating in ERTM (C.9)
TSPC_L2CAP_2_28 False Supports configuring the peer TxWindow greater than 1. (C.10)
TSPC_L2CAP_2_29 False AMP Support (C.11)
TSPC_L2CAP_2_30 False Fixed Channel Support (C.11)
TSPC_L2CAP_2_31 False AMP Manager Support (C.11)
TSPC_L2CAP_2_32 False ERTM over AMP (C.11)
TSPC_L2CAP_2_33 False Streaming Mode Source over AMP Support (C.12)
TSPC_L2CAP_2_34 False Streaming Mode Sink over AMP Support (C.12)
TSPC_L2CAP_2_35 False Unicast Connectionless Data, Reception (O)
TSPC_L2CAP_2_36 False Ability to transmit an unencrypted packet over a unicast connectionless L2CAP channel (O)
TSPC_L2CAP_2_37 False Ability to transmit an encrypted packet over a unicast connectionless L2CAP channel. (O)
TSPC_L2CAP_2_38 False Extended Flow Specification for BR/EDR (C.7)
TSPC_L2CAP_2_39 False Extended Window Size (C.7)
TSPC_L2CAP_2_40 True Support of Low Energy signaling channel (C.13)
TSPC_L2CAP_2_41 True Support of command reject (C.13)
TSPC_L2CAP_2_42 True Send Connection Parameter Update Request (C.14)
TSPC_L2CAP_2_43 True Send Connection Parameter Update Response (C.15)
TSPC_L2CAP_2_44 False Extended Flow Specification for AMP (C.18)
TSPC_L2CAP_2_45 False Send Disconnect Request Command (C.21)
TSPC_L2CAP_2_45a True Send Disconnect Request Command – LE (C.22)
TSPC_L2CAP_2_46 True Support LE Credit Based Flow Control Mode (C.19)
TSPC_L2CAP_2_47 True Support for LE Data Channel (C.20)
TSPC_L2CAP_2_48 True Support Enhanced Credit Based Flow Control Mode (C.23)

Configurable Parameters

8.3. Bluetooth 1505

Zephyr Project Documentation, Release 2.7.0-rc2

Parameter Name Se-
lected

Description

TSPC_L2CAP_3_1 True Support of RTX timer (M)
TSPC_L2CAP_3_2 False Support of ERTX timer (C.4)
TSPC_L2CAP_3_3 False Support minimum MTU size 48 octets (C.4)
TSPC_L2CAP_3_4 False Support MTU size larger than 48 octets (C.5)
TSPC_L2CAP_3_5 False Support of flush timeout value for reliable channel (C.4)
TSPC_L2CAP_3_6 False Support of flush timeout value for unreliable channel (C.5)
TSPC_L2CAP_3_7 False Support of bi-directional quality of service (QoS) option field (C.1)
TSPC_L2CAP_3_8 False Negotiate QoS service type (C.5)
TSPC_L2CAP_3_9 False Negotiate and support service type ‘No Traffic’ (C.2)
TSPC_L2CAP_3_10False Negotiate and support service type ‘Best effort’ (C.3)
TSPC_L2CAP_3_11False Negotiate and support service type ‘Gauranteed’ (C.2)
TSPC_L2CAP_3_12True Support minimum MTU size 23 octets (C.6)
TSPC_L2CAP_3_13False Negotiate and support service type ‘No traffic’ for Extended Flow Specifi-

cation (C.7)
TSPC_L2CAP_3_14False Negotiate and support service type ‘Best Effort’ for Extended Flow Speci-

fication (C.8)
TSPC_L2CAP_3_15False Negotiate and support service type ‘Guaranteed’ for Extended Flow Spec-

ification. (C.9)
TSPC_L2CAP_3_16True Support Multiple Simultaneous LE Data Channels (C.10)

SM ICS PTS version: 8.0.3

M - mandatory

O - optional

Role
Parameter Name Selected Description
TSPC_SM_1_1 True Central Role (Initiator) (C.1)
TSPC_SM_1_2 True Peripheral Role (Responder) (C.2)

Security Properties
Parameter Name Selected Description
TSPC_SM_2_1 True Authenticated MITM protection (O)
TSPC_SM_2_2 True Unauthenticated no MITM protection (C.1)
TSPC_SM_2_3 True No security requirements (M)
TSPC_SM_2_4 True OOB supported (O)
TSPC_SM_2_5 True LE Secure Connections (O)

Encryption Key Size
Parameter Name Selected Description
TSPC_SM_3_1 True Encryption Key Size (M)

Pairing Method
Parameter Name Selected Description
TSPC_SM_4_1 True Just Works (O)
TSPC_SM_4_2 True Passkey Entry (C.1)
TSPC_SM_4_3 True Out of Band (C.1)

1506 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Security Initiation

Parameter Name Selected Description
TSPC_SM_5_1 True Encryption Setup using STK (C.3)
TSPC_SM_5_2 True Encryption Setup using LTK (O)
TSPC_SM_5_3 True Peripheral Initiated Security (C.1)
TSPC_SM_5_4 True Peripheral Initiated Security – Central response (C.2)
TSPC_SM_5_5 False Link Key Conversion Function h7 (C.4)
TSPC_SM_5_6 False Link Key Conversion Function h6 (C.5)

Signing Algorithm
Parameter Name Selected Description
TSPC_SM_6_1 True Signing Algorithm - Generation (O)
TSPC_SM_6_2 True Signing Algorithm - Resolving (O)

Key Distribution
Parameter Name Selected Description
TSPC_SM_7_1 True Encryption Key (C.1)
TSPC_SM_7_2 True Identity Key (C.2)
TSPC_SM_7_3 True Signing Key (C.3)

Cross-Transport Key Derivation

Parameter Name Selected Description
TSPC_SM_8_1 False Cross Transport Key Derivation Supported (C.1)
TSPC_SM_8_2 False Derivation of LE LTK from BR/EDR Link Key (C.2)
TSPC_SM_8_3 False Derivation of BR/EDR Link Key from LE LTK (C.2)

RFCOMM PICS PTS version: 6.4

• – different than PTS defaults

Protocol Version
Parameter Name Selected Description
TSPC_RFCOMM_0_1 False RFCOMM 1.1 with TS 07.10
TSPC_RFCOMM_0_2 True (*) RFCOMM 1.2 with TS 07.10

Supported Procedures

8.3. Bluetooth 1507

Zephyr Project Documentation, Release 2.7.0-rc2

Parameter Name Selected Description
TSPC_RFCOMM_1_1 True (*) Initialize RFCOMM Session
TSPC_RFCOMM_1_2 True (*) Respond to Initialization of an RFCOMM Session
TSPC_RFCOMM_1_3 True Shutdown RFCOMM Session
TSPC_RFCOMM_1_4 True Respond to a Shutdown of an RFCOMM Session
TSPC_RFCOMM_1_5 True (*) Establish DLC
TSPC_RFCOMM_1_6 True (*) Respond to Establishment of a DLC
TSPC_RFCOMM_1_7 True Disconnect DLC
TSPC_RFCOMM_1_8 True Respond to Disconnection of a DLC
TSPC_RFCOMM_1_9 True Respond to and send MSC Command
TSPC_RFCOMM_1_10 True Initiate Transfer Information
TSPC_RFCOMM_1_11 True Respond to Test Command
TSPC_RFCOMM_1_12 False Send Test Command
TSPC_RFCOMM_1_13 True React to Aggregate Flow Control
TSPC_RFCOMM_1_14 True Respond to RLS Command
TSPC_RFCOMM_1_15 False Send RLS Command
TSPC_RFCOMM_1_16 True Respond to PN Command
TSPC_RFCOMM_1_17 True (*) Send PN Command
TSPC_RFCOMM_1_18 True (*) Send Non-Supported Command (NSC) response
TSPC_RFCOMM_1_19 True Respond to RPN Command
TSPC_RFCOMM_1_20 False Send RPN Command
TSPC_RFCOMM_1_21 True (*) Closing Multiplexer by First Sending a DISC Command
TSPC_RFCOMM_1_22 True Support of Credit Based Flow Control

MESH ICS PTS version: 8.0.3

M - mandatory

O - optional

Major Profile Version (X.Y)
Parameter Name Selected Description
TSPC_MESH_0_1 True Mesh v1.0 (M)

Minor Profile Version (X.Y.Z)
Parameter Name Selected Description
TSPC_MESH_0a_1 True Erratum 10395 (C.1)
TSPC_MESH_0a_2 True Mesh v1.0.1 (C.2)
TSPC_MESH_0a_3 True Erratum 16350 (C.1)

Roles
Parameter Name Selected Description
TSPC_MESH_2_1 True Node (C.1)
TSPC_MESH_2_2 False Provisioner (C.1)

Node Capabilities - Bearers
Parameter Name Selected Description
TSPC_MESH_3_1 True Advertising Bearer (C.1)
TSPC_MESH_3_2 True GATT Bearer (C.1)

1508 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Node Capabilities - Provisioning

Parameter Name Selected Description
TSPC_MESH_4_1 True PB-ADV (C.1)
TSPC_MESH_4_2 True PB-GATT (C.2)
TSPC_MESH_4_3 True Device UUID (C.3)
TSPC_MESH_4_4 True Sending Unprovisioned Device Beacon (C.4)
TSPC_MESH_4_5 True Generic Provisioning Layer (C.3)
TSPC_MESH_4_6 True Provisioning Protocol (Provisioning Server) (C.3)
TSPC_MESH_4_7 False Provisioning: Public Key OOB (C.5)
TSPC_MESH_4_8 True Provisioning: Public Key No OOB (C.5)
TSPC_MESH_4_9 True Provisioning: Authentication Output OOB (C.6)
TSPC_MESH_4_10 False Provisioning: Authentication Input OOB (C.6)
TSPC_MESH_4_11 False Provisioning: Authentication Static OOB (C.6)
TSPC_MESH_4_12 True Provisioning: Authentication No OOB (C.3)

Node Capabilities – Network Layer

Parameter Name Selected Description
TSPC_MESH_5_1 True Transmitting and Receiving Secured Network Layer Messages (M)
TSPC_MESH_5_2 True Relay Feature (C.1)
TSPC_MESH_5_3 True Network Message Cache (C.2)
TSPC_MESH_5_4 False Multiple Subnet Support (O)

Node Capabilities – Lower Transport Layer

Parameter Name Selected Description
TSPC_MESH_6_1 True Transmitting and Receiving a Lower Transport PDU (M)
TSPC_MESH_6_2 True Segmentation and Reassembly Behavior (M)
TSPC_MESH_6_3 True Friend Cache (C.1)

Node Capabilities – Upper Transport Layer

Parameter Name Selected Description
TSPC_MESH_7_1 True Transmitting a Secured Access Payload (M)
TSPC_MESH_7_2 True Receiving a Secured Upper Transport PDU (M)
TSPC_MESH_7_3 True Friend Feature (C.1)
TSPC_MESH_7_4 True Low Power Feature (C.1)
TSPC_MESH_7_5 True Heartbeat (M)

Node Capabilities – Access Layer

Parameter Name Selected Description
TSPC_MESH_8_1 True Transmitting and Receiving an Access Layer Message (M)

Node Capabilities – Security
Parameter Name Selected Description
TSPC_MESH_9_1 True Message Replay Protection (M)

Node Capabilities – Mesh Management

8.3. Bluetooth 1509

Zephyr Project Documentation, Release 2.7.0-rc2

Parameter Name Selected Description
TSPC_MESH_10_1 True Secure Network Beacon (M)
TSPC_MESH_10_2 True Key Refresh Procedure (M)
TSPC_MESH_10_3 True IV Update Procedure (M)
TSPC_MESH_10_4 True IV Index Recovery Procedure (M)

Node Capabilities – Foundation Mesh Models

Parameter Name Selected Description
TSPC_MESH_11_1 True Configuration Server Model (M)
TSPC_MESH_11_2 True Health Server Model (M)
TSPC_MESH_11_3 False Configuration Client Model (O)
TSPC_MESH_11_4 False Health Client Model (O)

Node Capabilities – Proxy
Parameter Name Selected Description
TSPC_MESH_12_1 True Proxy Server (C.1)
TSPC_MESH_12_2 True GATT Server (C.2)
TSPC_MESH_12_3 True Advertising with Network ID (C.2)
TSPC_MESH_12_4 True Advertising with Node Identity (C.2)
TSPC_MESH_12_5 False Proxy Client (C.3)
TSPC_MESH_12_6 False GATT Client (C.4)

Mesh GATT Services
Parameter Name Selected Description
TSPC_MESH_13_1 True Mesh Provisioning Service (C.1)
TSPC_MESH_13_2 True Mesh Proxy Service (C.2)

GATT Server Requirements

Parameter Name Selected Description
TSPC_MESH_14_1 True Discover All Primary Services (M)
TSPC_MESH_14_2 True Discover Primary Services by Service UUID (M)
TSPC_MESH_14_3 True Write without Response (M)
TSPC_MESH_14_4 True Notifications (M)
TSPC_MESH_14_5 True Write Characteristic Descriptors (M)

GATT Client Requirements

Parameter Name Selected Description
TSPC_MESH_15_1 False Discover All Primary Services (C.1)
TSPC_MESH_15_2 False Discover Primary Services by Service UUID (C.1)
TSPC_MESH_15_3 False Write without Response (M)
TSPC_MESH_15_4 False Notifications (M)
TSPC_MESH_15_5 False Write Characteristic Descriptors (M)

1510 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

GAP Requirements
Parameter Name Selected Description
TSPC_MESH_16_1 True Broadcaster (C.1)
TSPC_MESH_16_2 True Observer (C.1)
TSPC_MESH_16_3 True Peripheral (C.2)
TSPC_MESH_16_4 True Peripheral – Security Mode 1 (C.2)
TSPC_MESH_16_5 False Central (C.3)
TSPC_MESH_16_6 False Central – Security Mode 1 (C.3)

Provisioner – Bearers
Parameter Name Selected Description
TSPC_MESH_17_1 False Advertising Bearer (C.1)
TSPC_MESH_17_2 False GATT Bearer (C.1)

Provisioner – Provisioning

Parameter Name Selected Description
TSPC_MESH_18_1 False Receiving Unprovisioned Device Beacon (C.1)
TSPC_MESH_18_2 False PB-ADV (C.1)
TSPC_MESH_18_3 False Generic Provisioning Layer (M)
TSPC_MESH_18_4 False Provisioning Protocol (Provisioning Client) (M)
TSPC_MESH_18_5 False PB-GATT (C.2)
TSPC_MESH_18_6 False GATT Client (C.2)
TSPC_MESH_18_7 False Provisioning: Public Key OOB (M)
TSPC_MESH_18_8 False Provisioning: Public Key No OOB (M)
TSPC_MESH_18_9 False Provisioning: Authentication Output OOB (M)
TSPC_MESH_18_10 False Provisioning: Authentication Input OOB (M)
TSPC_MESH_18_11 False Provisioning: Authentication Static or No OOB (M)

Provisioner – Mesh Management

Parameter Name Selected Description
TSPC_MESH_19_1 False Receiving Secure Network Beacon (M)

GATT Client Requirements

Parameter Name Selected Description
TSPC_MESH_20_1 False Discover All Primary Services (C.1)
TSPC_MESH_20_2 False Discover Primary Services by Service UUID (C.1)
TSPC_MESH_20_3 False Write without Response (M)
TSPC_MESH_20_4 False Notifications (M)
TSPC_MESH_20_5 False Write Characteristic Descriptors (M)

GAP Requirements
Parameter Name Selected Description
TSPC_MESH_21_1 False Broadcaster (C.1)
TSPC_MESH_21_2 False Observer (C.1)
TSPC_MESH_21_3 False Central (C.2)
TSPC_MESH_21_4 False Central - Security Mode 1 (C.2)

DIS ICS PTS version: 8.0.3

M - mandatory

8.3. Bluetooth 1511

Zephyr Project Documentation, Release 2.7.0-rc2

O - optional

Service Version
Parameter Name Selected Description
TSPC_DIS_0_1 True Device Information Service v1.1 (M)

Transport Requirements
Parameter Name Selected Description
TSPC_DIS_1_1 False Service supported over BR/EDR (C.1)
TSPC_DIS_1_2 True Service supported over LE (C.1)
TSPC_DIS_1_3 False Service supported over HS (C.1)

Service Requirements

Parameter Name Se-
lected

Description

TSPC_DIS_2_1 True Device Information Service (M)
TSPC_DIS_2_2 True Manufacturer Name String Characteristic (O)
TSPC_DIS_2_3 True Model Number String Characteristic (O)
TSPC_DIS_2_4 True Serial Number String Characteristic (O)
TSPC_DIS_2_5 True Hardware Revision String Characteristic (O)
TSPC_DIS_2_6 True Firmware Revision String Characteristic (O)
TSPC_DIS_2_7 True Software Revision String Characteristic (O)
TSPC_DIS_2_8 False System ID Characteristic (O)
TSPC_DIS_2_9 False IEEE 11073-20601 Regulatory Certification Data List Characteristic (O)
TSPC_DIS_2_10 False SDP Interoperability (C.1)
TSPC_DIS_2_11 True PnP ID (O)

8.3.4 Bluetooth tools

This page lists and describes tools that can be used to assist during Bluetooth stack or application devel-
opment in order to help, simplify and speed up the development process.

Mobile applications

It is often useful to make use of existing mobile applications to interact with hardware running Zephyr,
to test functionality without having to write any additional code or requiring extra hardware.

The recommended mobile applications for interacting with Zephyr are:

• Android:

– nRF Connect for Android

– nRF Mesh for Android

– LightBlue for Android

• iOS:

– nRF Connect for iOS

– nRF Mesh for iOS

– LightBlue for iOS

1512 Chapter 8. User and Developer Guides

https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp&hl=en
https://play.google.com/store/apps/details?id=no.nordicsemi.android.nrfmeshprovisioner&hl=en
https://play.google.com/store/apps/details?id=com.punchthrough.lightblueexplorer&hl=en_US
https://itunes.apple.com/us/app/nrf-connect/id1054362403
https://itunes.apple.com/us/app/nrf-mesh/id1380726771
https://itunes.apple.com/us/app/lightblue-explorer/id557428110

Zephyr Project Documentation, Release 2.7.0-rc2

Using BlueZ with Zephyr

The Linux Bluetooth Protocol Stack, BlueZ, comes with a very useful set of tools that can be used to
debug and interact with Zephyr’s BLE Host and Controller. In order to benefit from these tools you will
need to make sure that you are running a recent version of the Linux Kernel and BlueZ:

• Linux Kernel 4.10+

• BlueZ 4.45+

Additionally, some of the BlueZ tools might not be bundled by default by your Linux distribution. If you
need to build BlueZ from scratch to update to a recent version or to obtain all of its tools you can follow
the steps below:

git clone git://git.kernel.org/pub/scm/bluetooth/bluez.git
cd bluez
./bootstrap-configure --disable-android --disable-midi
make

You can then find btattach, btmgt and btproxy in the tools/ folder and btmon in the monitor/ folder.

You’ll need to enable BlueZ’s experimental features so you can access its most recent BLE functionality.
Do this by editing the file /lib/systemd/system/bluetooth.service and making sure to include the
-E option in the daemon’s execution start line:

ExecStart=/usr/libexec/bluetooth/bluetoothd -E

Finally, reload and restart the daemon:

sudo systemctl daemon-reload
sudo systemctl restart bluetooth

Running on QEMU and Native POSIX

It’s possible to run Bluetooth applications using either the QEMU emulator or Native POSIX. In either
case, a Bluetooth controller needs to be exported from the host OS (Linux) to the emulator. For this
purpose you will need some tools described in the Using BlueZ with Zephyr section.

Using the Host System Bluetooth Controller The host OS’s Bluetooth controller is connected in the
following manner:

• To the second QEMU serial line using a UNIX socket. This socket gets used with the help of the
QEMU option -serial unix:/tmp/bt-server-bredr. This option gets passed to QEMU through
QEMU_EXTRA_FLAGS automatically whenever an application has enabled Bluetooth support.

• To a serial port in Native POSIX through the use of a command-line option passed to the Native
POSIX executable: --bt-dev=hci0

On the host side, BlueZ allows you to export its Bluetooth controller through a so-called user channel for
QEMU and Native POSIX to use.

Note: You only need to run btproxy when using QEMU. Native POSIX handles the UNIX socket proxying
automatically

If you are using QEMU, in order to make the Controller available you will need one additional step using
btproxy:

1. Make sure that the Bluetooth controller is down

2. Use the btproxy tool to open the listening UNIX socket, type:

8.3. Bluetooth 1513

Zephyr Project Documentation, Release 2.7.0-rc2

sudo tools/btproxy -u -i 0
Listening on /tmp/bt-server-bredr

You might need to replace -i 0 with the index of the Controller you wish to proxy.

Once the hardware is connected and ready to use, you can then proceed to building and running a
sample:

• Choose one of the Bluetooth sample applications located in samples/bluetooth.

• To run a Bluetooth application in QEMU, type:

west build -b qemu_x86 samples/bluetooth/<sample>
west build -t run

Running QEMU now results in a connection with the second serial line to the bt-server-bredr
UNIX socket, letting the application access the Bluetooth controller.

• To run a Bluetooth application in Native POSIX, first build it:

west build -b native_posix samples/bluetooth/<sample>

And then run it with:

$ sudo ./build/zephyr/zephyr.exe --bt-dev=hci0

Using a Zephyr-based BLE Controller Depending on which hardware you have available, you can
choose between two transports when building a single-mode, Zephyr-based BLE Controller:

• UART: Use the hci_uart sample and follow the instructions in bluetooth-hci-uart-qemu-posix.

• USB: Use the hci_usb sample and then treat it as a Host System Bluetooth Controller (see previous
section)

HCI Tracing When running the Host on a computer connected to an external Controller, it is very useful
to be able to see the full log of exchanges between the two, in the format of a Host Controller Interface
log. In order to see those logs, you can use the built-in btmon tool from BlueZ:

$ btmon

Using Zephyr-based Controllers with BlueZ

If you want to test a Zephyr-powered BLE Controller using BlueZ’s Bluetooth Host, you will need a few
tools described in the Using BlueZ with Zephyr section. Once you have installed the tools you can then
use them to interact with your Zephyr-based controller:

sudo tools/btmgmt --index 0
[hci0]# auto-power
[hci0]# find -l

You might need to replace --index 0 with the index of the Controller you wish to manage. Additional
information about btmgmt can be found in its manual pages.

8.3.5 Developing Bluetooth Applications

Bluetooth applications are developed using the common infrastructure and approach that is described in
the Application Development section of the documentation.

1514 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Additional information that is only relevant to Bluetooth applications can be found in this page.

Hardware setup

This section describes the options you have when building and debugging Bluetooth applications with
Zephyr. Depending on the hardware that is available to you, the requirements you have and the type of
development you prefer you may pick one or another setup to match your needs.

There are 4 possible hardware setups to use with Zephyr and Bluetooth:

1. Embedded

2. QEMU with an external Controller

3. Native POSIX with an external Controller

4. Simulated nRF52 with BabbleSim

Embedded This setup relies on all software running directly on the embedded platform(s) that the
application is targeting. All the Configurations and Build Types are supported but you might need to build
Zephyr more than once if you are using a dual-chip configuration or if you have multiple cores in your
SoC each running a different build type (e.g., one running the Host, the other the Controller).

To start developing using this setup follow the Getting Started Guide, choose one (or more if you are
using a dual-chip solution) boards that support Bluetooth and then run the application).

Embedded HCI tracing When running both Host and Controller in actual Integrated Circuits, you will
only see normal log messages on the console by default, without any way of accessing the HCI traffic
between the Host and the Controller. However, there is a special Bluetooth logging mode that converts
the console to use a binary protocol that interleaves both normal log messages as well as the HCI traffic.
Set the following Kconfig options to enable this protocol before building your application:

CONFIG_BT_DEBUG_MONITOR_UART=y
CONFIG_UART_CONSOLE=n

Setting :kconfig:`CONFIG_BT_DEBUG_MONITOR_UART` to y replaces the :kcon-
fig:`CONFIG_BT_DEBUG_LOG` option, and setting :kconfig:`CONFIG_UART_CONSOLE` to n
disables the default printk/printf hooks.

To decode the binary protocol that will now be sent to the console UART you need to use the btmon tool
from BlueZ:

$ btmon --tty <console TTY> --tty-speed 115200

Host on Linux with an external Controller
Note: This is currently only available on GNU/Linux

This setup relies on a “dual-chip” configuration which is comprised of the following devices:

1. A Host-only application running in the QEMU emulator or the native_posix native port of Zephyr

2. A Controller, which can be one of two types:

• A commercially available Controller

• A Controller-only build of Zephyr

8.3. Bluetooth 1515

Zephyr Project Documentation, Release 2.7.0-rc2

Warning: Certain external Controllers are either unable to accept the Host to Controller flow control
parameters that Zephyr sets by default (Qualcomm), or do not transmit any data from the Controller
to the Host (Realtek). If you see a message similar to:
<wrn> bt_hci_core: opcode 0x0c33 status 0x12

when booting your sample of choice (make sure you have enabled :kcon-
fig:`CONFIG_BT_DEBUG_LOG` in your prj.conf before running the sample), or if there is
no data flowing from the Controller to the Host, then you need to disable Host to Controller flow
control. To do so, set CONFIG_BT_HCI_ACL_FLOW_CONTROL=n in your prj.conf.

QEMU You can run the Zephyr Host on the QEMU emulator and have it interact with a physical external
Bluetooth Controller. Refer to Running on QEMU and Native POSIX for full instructions on how to build
and run an application in this setup.

Native POSIX
Note: This is currently only available on GNU/Linux

The Native POSIX target builds your Zephyr application with the Zephyr kernel, and some minimal
HW emulation as a native Linux executable. This executable is a normal Linux program, which can be
debugged and instrumented like any other, and it communicates with a physical external Controller.

Refer to Running on QEMU and Native POSIX for full instructions on how to build and run an application
in this setup.

Simulated nRF52 with BabbleSim
Note: This is currently only available on GNU/Linux

The nrf52_bsim board, is a simulated target board which emulates the necessary peripherals of a nrf52
SOC to be able to develop and test BLE applications. This board, uses:

• BabbleSim to simulate the nrf52 modem and the radio environment.

• The POSIX arch to emulate the processor.

• Models of the nrf52 HW

Just like with the native_posix target, the build result is a normal Linux executable. You can find more
information on how to run simulations with one or several devices in this board’s documentation

Currently, only Combined builds are possible, as this board does not yet have any models of a UART, or
USB which could be used for an HCI interface towards another real or simulated device.

Initialization

The Bluetooth subsystem is initialized using the bt_enable() function. The caller should ensure that
function succeeds by checking the return code for errors. If a function pointer is passed to bt_enable() ,
the initialization happens asynchronously, and the completion is notified through the given function.

Bluetooth Application Example

A simple Bluetooth beacon application is shown below. The application initializes the Bluetooth Subsys-
tem and enables non-connectable advertising, effectively acting as a Bluetooth Low Energy broadcaster.

1516 Chapter 8. User and Developer Guides

https://babblesim.github.io/
https://github.com/BabbleSim/ext_NRF52_hw_models/

Zephyr Project Documentation, Release 2.7.0-rc2

1

2 /*
3 * Set Advertisement data. Based on the Eddystone specification:
4 * https://github.com/google/eddystone/blob/master/protocol-specification.md
5 * https://github.com/google/eddystone/tree/master/eddystone-url
6 */
7 static const struct bt_data ad[] = {
8 BT_DATA_BYTES(BT_DATA_FLAGS, BT_LE_AD_NO_BREDR),
9 BT_DATA_BYTES(BT_DATA_UUID16_ALL, 0xaa, 0xfe),

10 BT_DATA_BYTES(BT_DATA_SVC_DATA16,
11 0xaa, 0xfe, /* Eddystone UUID */
12 0x10, /* Eddystone-URL frame type */
13 0x00, /* Calibrated Tx power at 0m */
14 0x00, /* URL Scheme Prefix http://www. */
15 'z', 'e', 'p', 'h', 'y', 'r',
16 'p', 'r', 'o', 'j', 'e', 'c', 't',
17 0x08) /* .org */
18 };
19

20 /* Set Scan Response data */
21 static const struct bt_data sd[] = {
22 BT_DATA(BT_DATA_NAME_COMPLETE, DEVICE_NAME, DEVICE_NAME_LEN),
23 };
24

25 static void bt_ready(int err)
26 {
27 char addr_s[BT_ADDR_LE_STR_LEN];
28 bt_addr_le_t addr = {0};
29 size_t count = 1;
30

31 if (err) {
32 printk("Bluetooth init failed (err %d)\n", err);
33 return;
34 }
35

36 printk("Bluetooth initialized\n");
37

38 /* Start advertising */
39 err = bt_le_adv_start(BT_LE_ADV_NCONN_IDENTITY, ad, ARRAY_SIZE(ad),
40 sd, ARRAY_SIZE(sd));
41 if (err) {
42 printk("Advertising failed to start (err %d)\n", err);
43 return;
44 }
45

46

47 /* For connectable advertising you would use
48 * bt_le_oob_get_local(). For non-connectable non-identity
49 * advertising an non-resolvable private address is used;
50 * there is no API to retrieve that.
51 */
52

53 bt_id_get(&addr, &count);
54 bt_addr_le_to_str(&addr, addr_s, sizeof(addr_s));
55

56 printk("Beacon started, advertising as %s\n", addr_s);
57 }

(continues on next page)

8.3. Bluetooth 1517

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

58

59 void main(void)
60 {
61 int err;
62

63 printk("Starting Beacon Demo\n");
64

65 /* Initialize the Bluetooth Subsystem */
66 err = bt_enable(bt_ready);
67 if (err) {
68 printk("Bluetooth init failed (err %d)\n", err);
69 }
70 }

The key APIs employed by the beacon sample are bt_enable() that’s used to initialize Bluetooth and
then bt_le_adv_start() that’s used to start advertising a specific combination of advertising and scan
response data.

8.3.6 AutoPTS on Windows 10 with nRF52 board

Overview

This tutorial shows how to setup AutoPTS client and server to run both on Windows 10. We use WSL1
with Ubuntu only to build a Zephyr project to an elf file, because Zephyr SDK is not available on Windows
yet. Tutorial covers only nrf52840dk.

Update Windows and drivers

Update Windows in:

Start -> Settings -> Update & Security -> Windows Update

Update drivers, following the instructions from your hardware vendor.

Install Python 3

Download and install Python 3. Setup was tested with versions >=3.8. Let the installer add the Python
installation directory to the PATH and disable the path length limitation.

1518 Chapter 8. User and Developer Guides

https://www.python.org/downloads/

Zephyr Project Documentation, Release 2.7.0-rc2

Install Git

Download and install Git. During installation enable option: Enable experimental support for pseudo
consoles. We will use Git Bash as Windows terminal.

8.3. Bluetooth 1519

https://git-scm.com/downloads

Zephyr Project Documentation, Release 2.7.0-rc2

Install PTS 8

Install latest PTS from https://www.bluetooth.org. Remember to install drivers from installation direc-
tory “C:/Program Files (x86)/Bluetooth SIG/Bluetooth PTS/PTS Driver/win64/CSRBlueCoreUSB.inf”

Note: Starting with PTS 8.0.1 the Bluetooth Protocol Viewer is no longer included. So to capture
Bluetooth events, you have to download it separately.

Setup Zephyr project for Windows

Setup from Zephyr site https://docs.zephyrproject.org/latest/getting_started/index.html:

Open Git Bash and go to home:

cd ~

Install west:

pip3 install west

Get the Zephyr source code:

1520 Chapter 8. User and Developer Guides

https://www.bluetooth.org
https://docs.zephyrproject.org/latest/getting_started/index.html

Zephyr Project Documentation, Release 2.7.0-rc2

west init zephyrproject

Go into freshly created folder:

cd zephyrproject

Run:

west update

Export a Zephyr CMake package. This allows CMake to automatically load boilerplate code required for
building Zephyr applications:

west zephyr-export

Zephyr’s scripts/requirements.txt file declares additional Python dependencies. Install them with pip:

pip3 install -r ~\zephyrproject\zephyr\scripts\requirements.txt

Setup WSL1 with Ubuntu 20.4

Setup Install Ubuntu 20.4 on WSL1. Open PowerShell as Administrator and run:

dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /
→˓norestart

Restart Windows. After restart, open Microsoft Store and install Ubuntu 20.4 LTS.

Run Ubuntu. You will be asked to create a user account and password:

8.3. Bluetooth 1521

https://docs.microsoft.com/en-us/windows/wsl/install-win10

Zephyr Project Documentation, Release 2.7.0-rc2

When finished, run commands:

sudo apt update
sudo apt upgrade

Install python3:

sudo apt install python3

Install pip:

sudo apt install python3-pip

Install west:

pip3 install --user -U west

Export local bin to PATH:

echo 'export PATH=~/.local/bin:"$PATH"' >> ~/.bashrc

Reload PATH:

source ~/.bashrc

Install cmake:

sudo apt install cmake

Go to your zephyrproject:

cd /mnt/c/Users/Codecoup/zephyrproject

and then run:

west zephyr-export
pip3 install --user wheel
pip3 install --user -r /mnt/c/Users/codecoup/zephyrproject/zephyr/scripts/
→˓requirements.txt

Check if all modules have been installed:

pip3 list

If modules still will be missing, just install them with:

pip3 install <module_name>

Install Ninja:

pip3 install ninja

Go to home:

1522 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

cd ~

Download latest toolchain installer from https://github.com/zephyrproject-rtos/sdk-ng/releases. Move
it to ~

mv /mnt/c/Users/Codecoup/Downloads/zephyr-sdk-<your_version>-setup.run ~

Give permissions to the installer:

chmod +x zephyr-sdk-<your_version>-setup.run

and run the installer:

./zephyr-sdk-<your_version>-setup.run -- -d ~/zephyr-sdk-<your_version>

Copy rules:

sudo cp ~/zephyr-sdk-<your_version>/sysroots/x86_64-pokysdk-linux/usr/share/openocd/
→˓contrib/60-openocd.rules /etc/udev/rules.d

Restart the Ubuntu machine. You may want to shutdown all WSL consoles from Windows’s Git Bash:

wsl --shutdown

After Ubuntu restart, go to:

cd /mnt/c/Users/codecoup/zephyrproject

and test if west can build:

west build -p auto -b nrf52840dk_nrf52840 zephyr/tests/bluetooth/tester/

From now on, you can build projects by typing in Windows’s Git Bash:

wsl -d Ubuntu-20.04 -u codecoup -- bash -c -i "cd /mnt/c/Users/Codecoup/zephyrproject/
→˓ ; west build -p auto -b nrf52840dk_nrf52840 zephyr/tests/bluetooth/tester/"

Install nrftools

On Windows download latest nrftools (version >= 10.12.1) from site https://www.nordicsemi.com/
Software-and-tools/Development-Tools/nRF-Command-Line-Tools/Download and run default install.

8.3. Bluetooth 1523

https://github.com/zephyrproject-rtos/sdk-ng/releases
https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Command-Line-Tools/Download
https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Command-Line-Tools/Download

Zephyr Project Documentation, Release 2.7.0-rc2

Connect devices

1524 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Flash board

In Device Manager find COM port of your nrf board. In my case it is COM3.

8.3. Bluetooth 1525

Zephyr Project Documentation, Release 2.7.0-rc2

In Git Bash, go to zephyrproject

cd ~/zephyrproject

You can display flashing options with:

west flash --help

and flash board with built earlier elf file:

west flash --skip-rebuild --board-dir /dev/ttyS2 --elf-file ~/zephyrproject/build/
→˓zephyr/zephyr.elf

Note that west does not accept COMs, so use /dev/ttyS2 as the COM3 equivalent, /dev/ttyS2 as the
COM3 equivalent, etc.(/dev/ttyS + decremented COM number).

Setup auto-pts project

In Git Bash, clone project repo:

git clone https://github.com/intel/auto-pts.git

Go into the project folder:

cd auto-pts

Install required python modules:

pip3 install --user wheel
pip3 install --user -r autoptsserver_requirements.txt
pip3 install --user -r autoptsclient_requirements.txt

1526 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Install socat.exe

Download and extract socat.exe from https://sourceforge.net/projects/unix-utils/files/socat/1.7.3.2/
into folder ~/socat-1.7.3.2-1-x86_64/.

Add path to directory of socat.exe to PATH:

8.3. Bluetooth 1527

https://sourceforge.net/projects/unix-utils/files/socat/1.7.3.2/

Zephyr Project Documentation, Release 2.7.0-rc2

Running AutoPTS

Server and client by default will run on localhost address. Run server:

python ./autoptsserver.py -S 65000

Note: If the error “ImportError: No module named pywintypes” appeared after the fresh setup, uninstall
and install the pywin32 module:

pip install --upgrade --force-reinstall pywin32

Run client:

python ./autoptsclient-zephyr.py zephyr-master ~/zephyrproject/build/zephyr/zephyr.
→˓elf -t COM3 -b nrf52 -S 65000 -C 65001

At the first run, when Windows asks, enable connection through firewall:

1528 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Troubleshooting

• “When running actual hardware test mode, I have only BTP TIMEOUTs.”

This is a problem with connection between auto-pts client and board. There are many possible causes.
Try:

• Clean your auto-pts and zephyr repos with

Warning: This command will force the irreversible removal of all uncommitted files in the repo.

git clean -fdx

then build and flash tester elf again.

• If you have set up Windows on virtual machine, check if guest extensions are installed properly or
change USB compatibility mode in VM settings to USB 2.0.

• Check, if firewall in not blocking python.exe or socat.exe.

• Check if board sends ready event after restart (hex 00 00 80 ff 00 00). Open serial connection to
board with e.g. PuTTy with proper COM and baud rate. After board reset you should see some
strings in console.

• Check if socat.exe creates tunel to board. Run in console

socat.exe -x -v tcp-listen:65123 /dev/ttyS2,raw,b115200

where /dev/ttyS2 is the COM3 equivalent. Open PuTTY, set connection type to Raw, IP to 127.0.0.1,
port to 65123. After board reset you should see some strings in console.

8.3. Bluetooth 1529

Zephyr Project Documentation, Release 2.7.0-rc2

8.3.7 AutoPTS on Linux

Overview

This tutorial shows how to setup AutoPTS client on Linux with AutoPTS server running on Windows 10
virtual machine. Tested with Ubuntu 20.4 and Linux Mint 20.4.

Supported methods to test zephyr bluetooth host:

• Testing Zephyr Host Stack on QEMU

• Testing Zephyr Host Stack on native posix

• Testing Zephyr combined (controller + host) build on Real hardware (such as nRF52)

For running with QEMU or native posix, please visit: https://docs.zephyrproject.org/latest/guides/
bluetooth/bluetooth-tools.html?highlight=hci_uart#running-on-qemu-and-native-posix

Setup Linux

Setup Zephyr project Do the setup from Zephyr site https://docs.zephyrproject.org/latest/getting_
started/index.html, especially:

Update OS This guide covers Ubuntu version 18.04 LTS and later.

sudo apt update
sudo apt upgrade

Install dependencies

sudo apt install --no-install-recommends git cmake ninja-build gperf \
ccache dfu-util device-tree-compiler wget \
python3-dev python3-pip python3-setuptools python3-tk python3-wheel xz-utils file \
make gcc gcc-multilib g++-multilib libsdl2-dev

Get Zephyr and install Python dependencies Install west, and make sure ~/.local/bin is on your
PATH environment variable:

pip3 install --user -U west
echo 'export PATH=~/.local/bin:"$PATH"' >> ~/.bashrc
source ~/.bashrc

Get the Zephyr source code:

west init ~/zephyrproject
cd ~/zephyrproject
west update

Export a Zephyr CMake package. This allows CMake to automatically load boilerplate code required for
building Zephyr applications:

west zephyr-export

Zephyr’s scripts/requirements.txt file declares additional Python dependencies. Install them with pip3:

pip3 install --user -r ~/zephyrproject/zephyr/scripts/requirements.txt

1530 Chapter 8. User and Developer Guides

https://docs.zephyrproject.org/latest/guides/bluetooth/bluetooth-tools.html?highlight=hci_uart#running-on-qemu-and-native-posix
https://docs.zephyrproject.org/latest/guides/bluetooth/bluetooth-tools.html?highlight=hci_uart#running-on-qemu-and-native-posix
https://docs.zephyrproject.org/latest/getting_started/index.html
https://docs.zephyrproject.org/latest/getting_started/index.html

Zephyr Project Documentation, Release 2.7.0-rc2

Install a Toolchain A toolchain provides a compiler, assembler, linker, and other programs required to
build Zephyr applications.

Download the latest SDK installer from https://github.com/zephyrproject-rtos/sdk-ng/releases and run
the installer, installing the SDK in ~/zephyr-sdk-<your_version>, e.g.:

chmod +x zephyr-sdk-<your_version>-setup.run
./zephyr-sdk-<your_version>-setup.run -- -d ~/zephyr-sdk-<your_version>

Install udev rules, which allow you to flash most Zephyr boards as a regular user:

sudo cp ~/zephyr-sdk-<your_version>/sysroots/x86_64-pokysdk-linux/usr/share/openocd/
→˓contrib/60-openocd.rules /etc/udev/rules.d
sudo udevadm control --reload

Install nrftools (only required in the actual hardware test mode)

Download latest nrftools (version >= 10.12.1) from site https://www.nordicsemi.com/
Software-and-tools/Development-Tools/nRF-Command-Line-Tools/Download.

After you extract archive, you will see 2 .deb files, e.g.:

• JLink_Linux_V688a_x86_64.deb

• nRF-Command-Line-Tools_10_12_1_Linux-amd64.deb

and README.md. To install the tools, double click on each .deb file or fallow instructions from
README.md.

Setup Windows 10 virtual machine

Choose and install your hypervisor like VMWare Workstation(preferred) or VirtualBox. On VirtualBox
could be some issues, if your host has fewer than 6 CPU.

Create Windows virtual machine instance. Make sure it has at least 2 cores and installed guest extensions.

Setup tested with VirtualBox 6.1.18 and VMWare Workstation 16.1.1 Pro.

8.3. Bluetooth 1531

https://github.com/zephyrproject-rtos/sdk-ng/releases
https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Command-Line-Tools/Download
https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Command-Line-Tools/Download

Zephyr Project Documentation, Release 2.7.0-rc2

Update Windows Update Windows in:

Start -> Settings -> Update & Security -> Windows Update

Setup static IP

WMWare Works On Linux, open Virtual Network Editor app and create network:

Open virtual machine network settings. Add custom adapter:

1532 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

If you type ‘ifconfig’ in terminal, you should be able to find your host IP:

VirtualBox Go to:

File -> Host Network Manager

and create network:

8.3. Bluetooth 1533

Zephyr Project Documentation, Release 2.7.0-rc2

Open virtual machine network settings. On adapter 1 you will have created by default NAT. Add adapter
2:

Windows Setup static IP on Windows virtual machine. Go to

Settings -> Network & Internet -> Ethernet -> Unidentified network -> Edit

1534 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

and set:

Install Python 3 Download and install latest Python 3 on Windows. Let the installer add the Python
installation directory to the PATH and disable the path length limitation.

8.3. Bluetooth 1535

https://www.python.org/downloads/

Zephyr Project Documentation, Release 2.7.0-rc2

Install Git Download and install Git. During installation enable option: Enable experimental support
for pseudo consoles. We will use Git Bash as Windows terminal.

Install PTS 8 On Windows virtual machine, install latest PTS from https://www.bluetooth.org. Re-
member to install drivers from installation directory “C:/Program Files (x86)/Bluetooth SIG/Bluetooth
PTS/PTS Driver/win64/CSRBlueCoreUSB.inf”

1536 Chapter 8. User and Developer Guides

https://git-scm.com/downloads
https://www.bluetooth.org

Zephyr Project Documentation, Release 2.7.0-rc2

Note: Starting with PTS 8.0.1 the Bluetooth Protocol Viewer is no longer included. So to capture
Bluetooth events, you have to download it separately.

Connect PTS dongle With VirtualBox there should be no problem. Just find dongle in Devices -> USB
and connect.

With VMWare you might need to use some trick, if you cannot find dongle in VM -> Removable Devices.
Type in Linux terminal:

usb-devices

and find in output your PTS Bluetooth USB dongle

Note Vendor and ProdID number. Close VMWare Workstation and open .vmx of your virtual machine
(path similar to /home/codecoup/vmware/Windows 10/Windows 10.vmx) in text editor. Write any-
where in the file following line:

usb.autoConnect.device0 = "0x0a12:0x0001"

just replace 0x0a12 with Vendor number and 0x0001 with ProdID number you found earlier.

8.3. Bluetooth 1537

Zephyr Project Documentation, Release 2.7.0-rc2

Connect devices (only required in the actual hardware test mode)

1538 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Flash board (only required in the actual hardware test mode)

On Linux, go to ~/zephyrproject. There should be already ~/zephyrproject/build directory. Flash board:

west flash

Setup auto-pts project

AutoPTS client on Linux Clone auto-pts project:

8.3. Bluetooth 1539

Zephyr Project Documentation, Release 2.7.0-rc2

git clone https://github.com/intel/auto-pts.git

Install socat, that is used to transfer BTP data stream from UART’s tty file:

sudo apt-get install python-setuptools socat

Install required python modules:

cd auto-pts
pip3 install --user wheel
pip3 install --user -r autoptsclient_requirements.txt

Autopts server on Windows virtual machine In Git Bash, clone auto-pts project repo:

git clone https://github.com/intel/auto-pts.git

Install required python modules:

cd auto-pts
pip3 install --user wheel
pip3 install --user -r autoptsserver_requirements.txt

Restart virtual machine.

Running AutoPTS

Server and client by default will run on localhost address. Run server:

python ./autoptsserver.py

Testing Zephyr Host Stack on QEMU:

A Bluetooth controller needs to be mounted.
For running with HCI UART, please visit: https://docs.zephyrproject.org/latest/
→˓samples/bluetooth/hci_uart/README.html#bluetooth-hci-uart

python ./autoptsclient-zephyr.py "C:\Users\USER_NAME\Documents\Profile Tuning Suite\
→˓PTS_PROJECT\PTS_PROJECT.pqw6" \

~/zephyrproject/build/zephyr/zephyr.elf -i SERVER_IP -l LOCAL_IP

Testing Zephyr Host Stack on native posix:

A Bluetooth controller needs to be mounted.
For running with HCI UART, please visit: https://docs.zephyrproject.org/latest/
→˓samples/bluetooth/hci_uart/README.html#bluetooth-hci-uart

west build -b native_posix zephyr/tests/bluetooth/tester/ -DOVERLAY_CONFIG=overlay-
→˓native.conf

(continues on next page)

1540 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

sudo python ./autoptsclient-zephyr.py "C:\Users\USER_NAME\Documents\Profile Tuning␣
→˓Suite\PTS_PROJECT\PTS_PROJECT.pqw6" \

~/zephyrproject/build/zephyr/zephyr.exe -i SERVER_IP -l LOCAL_IP --hci 0

Testing Zephyr combined (controller + host) build on nRF52:

Note: If the error “ImportError: No module named pywintypes” appeared after the fresh setup, uninstall
and install the pywin32 module:

pip install --upgrade --force-reinstall pywin32

Run client:

python ./autoptsclient-zephyr.py zephyr-master ~/zephyrproject/build/zephyr/zephyr.
→˓elf -t /dev/ACM0 \

-b nrf52 -l 192.168.2.1 -i 192.168.2.2

At the first run, when Windows asks, enable connection through firewall:

8.3. Bluetooth 1541

Zephyr Project Documentation, Release 2.7.0-rc2

Troubleshooting

• “After running one test, I need to restart my Windows virtual machine to run another, because of
fail verdict from APICOM in PTS logs.”

It means your virtual machine has not enough processor cores or memory. Try to add more in settings.
Note that a host with 4 CPUs could be not enough with VirtualBox as hypervisor. In this case, choose
rather VMWare Workstation.

• “I cannot start autoptsserver-zephyr.py. I always got error:”

One or more of the fallowing steps should help:

• Close all PTS Windows.

• Replug PTS bluetooth dongle.

• Delete temporary workspace. You will find it in auto-pts-code/workspaces/zephyr/zephyr-master/
as temp_zephyr-master. Be careful, do not remove the original one zephyr-master.pqw6.

• Restart Windows virtual machine.

8.4 Documentation Generation

These instructions will walk you through generating the Zephyr Project’s documentation on your local
system using the same documentation sources as we use to create the online documentation found at
https://docs.zephyrproject.org

8.4.1 Documentation overview

Zephyr Project content is written using the reStructuredText markup language (.rst file extension) with
Sphinx extensions, and processed using Sphinx to create a formatted stand-alone website. Developers
can view this content either in its raw form as .rst markup files, or you can generate the HTML content
and view it with a web browser directly on your workstation. This same .rst content is also fed into the
Zephyr Project’s public website documentation area (with a different theme applied).

You can read details about reStructuredText, and Sphinx from their respective websites.

The project’s documentation contains the following items:

• ReStructuredText source files used to generate documentation found at the https://docs.
zephyrproject.org website. Most of the reStructuredText sources are found in the /doc directory,

1542 Chapter 8. User and Developer Guides

https://docs.zephyrproject.org
http://sphinx-doc.org/rest.html
http://sphinx-doc.org/
https://docs.zephyrproject.org
https://docs.zephyrproject.org

Zephyr Project Documentation, Release 2.7.0-rc2

but others are stored within the code source tree near their specific component (such as /samples
and /boards)

• Doxygen-generated material used to create all API-specific documents also found at https://docs.
zephyrproject.org

• Script-generated material for kernel configuration options based on Kconfig files found in the
source code tree

.png, .jpg
images

sphinx +
breathe,
docutils

restructuredText
files

conf.py
configuration

read-the-docs
theme

c header
comments doxygen XML

HTML
web site

Fig. 4: Schematic of the documentation build process

The reStructuredText files are processed by the Sphinx documentation system, and make use of the
breathe extension for including the doxygen-generated API material. Additional tools are required to
generate the documentation locally, as described in the following sections.

8.4.2 Installing the documentation processors

Our documentation processing has been tested to run with:

• Doxygen version 1.8.13

• Graphviz 2.43

• Latexmk version 4.56

• All Python dependencies listed in the repository file scripts/requirements-doc.txt

In order to install the documentation tools, first install Zephyr as described in Getting Started Guide.
Then install additional tools that are only required to generate the documentation, as described below:

Linux

On Ubuntu Linux:

sudo apt-get install --no-install-recommends doxygen graphviz librsvg2-bin \
texlive-latex-base texlive-latex-extra latexmk texlive-fonts-recommended

On Fedora Linux:

sudo dnf install doxygen graphviz texlive-latex latexmk \
texlive-collection-fontsrecommended librsvg2-tools

On Clear Linux:

8.4. Documentation Generation 1543

https://docs.zephyrproject.org
https://docs.zephyrproject.org

Zephyr Project Documentation, Release 2.7.0-rc2

sudo swupd bundle-add texlive graphviz

On Arch Linux:

sudo pacman -S graphviz doxygen librsvg texlive-core texlive-bin

macOS

Use brew and tlmgr to install the tools:

brew install doxygen graphviz mactex librsvg
tlmgr install latexmk
tlmgr install collection-fontsrecommended

Windows

Open a cmd.exe window as Administrator and run the following command:

choco install doxygen.install graphviz strawberryperl miktex rsvg-convert

Note: On Windows, the Sphinx executable sphinx-build.exe is placed in the Scripts folder of your
Python installation path. Dependending on how you have installed Python, you might need to add this
folder to your PATH environment variable. Follow the instructions in Windows Python Path to add those
if needed.

8.4.3 Documentation presentation theme

Sphinx supports easy customization of the generated documentation appearance through the use of
themes. Replace the theme files and do another make htmldocs and the output layout and style is
changed. The read-the-docs theme is installed as part of the Get Zephyr and install Python dependencies
step you took in the getting started guide.

8.4.4 Running the documentation processors

The /doc directory in your cloned copy of the Zephyr project git repo has all the .rst source files, extra
tools, and Makefile for generating a local copy of the Zephyr project’s technical documentation. Assuming
the local Zephyr project copy is in a folder zephyr in your home folder, here are the commands to
generate the html content locally:

On Linux/macOS
cd ~/zephyr/doc
On Windows
cd %userprofile%\zephyr\doc

Use cmake to configure a Ninja-based build system:
cmake -GNinja -B_build .

Enter the build directory
cd _build

To generate HTML output, run ninja on the generated build system:
ninja html
If you modify or add .rst files, run ninja again:
ninja html

(continues on next page)

1544 Chapter 8. User and Developer Guides

https://docs.python.org/3/using/windows.html#finding-the-python-executable

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

To generate PDF output, run ninja on the generated build system:
ninja pdf

Warning: The documentation build system creates copies in the build directory of every .rst file used
to generate the documentation, along with dependencies referenced by those .rst files.

This means that Sphinx warnings and errors refer to the copies, and not the version-controlled
original files in Zephyr. Be careful to make sure you don’t accidentally edit the copy of the file in an
error message, as these changes will not be saved.

Depending on your development system, it will take up to 15 minutes to collect and generate the HTML
content. When done, you can view the HTML output with your browser started at doc/_build/html/
index.html and if generated, the PDF file is available at doc/_build/pdf/zephyr.pdf.

If you want to build the documentation from scratch just delete the contents of the build folder and run
cmake and then ninja again.

Note: If you add or remove a file from the documentation, you need to re-run CMake.

On Unix platforms a convenience Makefile at the doc folder of the Zephyr repository can be used to build
the documentation directly from there:

cd ~/zephyr/doc

To generate HTML output
make html

To generate PDF output
make pdf

8.4.5 Filtering expected warnings

There are some known issues with Sphinx/Breathe that generate Sphinx warnings even though the input
is valid C code. While these issues are being considered for fixing we have created a Sphinx extension
that allows to filter them out based on a set of regular expressions. The extension is named zephyr.
warnings_filter and it is located at doc/_extensions/zephyr/warnings_filter.py. The warnings
to be filtered out can be added to the doc/known-warnings.txt file.

The most common warning reported by Sphinx/Breathe is related to duplicate C declarations. This
warning may be caused by different Sphinx/Breathe issues:

• Multiple declarations of the same object are not supported

• Different objects (e.g. a struct and a function) can not share the same name

• Nested elements (e.g. in a struct or union) can not share the same name

8.4.6 Developer-mode Document Building

When making and testing major changes to the documentation, we provide an option to temporarily
stub-out the auto-generated Devicetree bindings documentation so the doc build process runs faster.

To enable this mode, set the following option when invoking cmake:

8.4. Documentation Generation 1545

https://github.com/zephyrproject-rtos/zephyr/blob/main/Makefile

Zephyr Project Documentation, Release 2.7.0-rc2

-DDT_TURBO_MODE=1

or invoke make with the following target:

cd ~/zephyr

To generate HTML output without detailed Kconfig
make html-fast

8.5 Coccinelle

Coccinelle is a tool for pattern matching and text transformation that has many uses in kernel develop-
ment, including the application of complex, tree-wide patches and detection of problematic programming
patterns.

Note: Linux and macOS development environments are supported, but not Windows.

8.5.1 Getting Coccinelle

The semantic patches included in the kernel use features and options which are provided by Coccinelle
version 1.0.0-rc11 and above. Using earlier versions will fail as the option names used by the Coccinelle
files and coccicheck have been updated.

Coccinelle is available through the package manager of many distributions, e.g. :

• Debian

• Fedora

• Ubuntu

• OpenSUSE

• Arch Linux

• NetBSD

• FreeBSD

Some distribution packages are obsolete and it is recommended to use the latest version released from
the Coccinelle homepage at http://coccinelle.lip6.fr/

Or from Github at:

https://github.com/coccinelle/coccinelle

Once you have it, run the following commands:

./autogen

./configure
make

as a regular user, and install it with:

sudo make install

More detailed installation instructions to build from source can be found at:

https://github.com/coccinelle/coccinelle/blob/master/install.txt

1546 Chapter 8. User and Developer Guides

http://coccinelle.lip6.fr/
https://github.com/coccinelle/coccinelle
https://github.com/coccinelle/coccinelle/blob/master/install.txt

Zephyr Project Documentation, Release 2.7.0-rc2

8.5.2 Supplemental documentation

For Semantic Patch Language(SmPL) grammar documentation refer to:

http://coccinelle.lip6.fr/documentation.php

8.5.3 Using Coccinelle on Zephyr

coccicheck checker is the front-end to the Coccinelle infrastructure and has various modes:

Four basic modes are defined: patch, report, context, and org. The mode to use is specified by setting
--mode=<mode> or -m=<mode>.

• patch proposes a fix, when possible.

• report generates a list in the following format: file:line:column-column: message

• context highlights lines of interest and their context in a diff-like style.Lines of interest are indi-
cated with -.

• org generates a report in the Org mode format of Emacs.

Note that not all semantic patches implement all modes. For easy use of Coccinelle, the default mode is
report.

Two other modes provide some common combinations of these modes.

• chain tries the previous modes in the order above until one succeeds.

• rep+ctxt runs successively the report mode and the context mode. It should be used with the C
option (described later) which checks the code on a file basis.

8.5.4 Examples

To make a report for every semantic patch, run the following command:

./scripts/coccicheck --mode=report

To produce patches, run:

./scripts/coccicheck --mode=patch

The coccicheck target applies every semantic patch available in the sub-directories of scripts/
coccinelle to the entire source code tree.

For each semantic patch, a commit message is proposed. It gives a description of the problem being
checked by the semantic patch, and includes a reference to Coccinelle.

As any static code analyzer, Coccinelle produces false positives. Thus, reports must be carefully checked,
and patches reviewed.

To enable verbose messages set --verbose=1 option, for example:

./scripts/coccicheck --mode=report --verbose=1

8.5.5 Coccinelle parallelization

By default, coccicheck tries to run as parallel as possible. To change the parallelism, set the
--jobs=<number> option. For example, to run across 4 CPUs:

./scripts/coccicheck --mode=report --jobs=4

8.5. Coccinelle 1547

http://coccinelle.lip6.fr/documentation.php
file:line:column-column

Zephyr Project Documentation, Release 2.7.0-rc2

As of Coccinelle 1.0.2 Coccinelle uses Ocaml parmap for parallelization, if support for this is detected
you will benefit from parmap parallelization.

When parmap is enabled coccicheck will enable dynamic load balancing by using --chunksize 1 argu-
ment, this ensures we keep feeding threads with work one by one, so that we avoid the situation where
most work gets done by only a few threads. With dynamic load balancing, if a thread finishes early we
keep feeding it more work.

When parmap is enabled, if an error occurs in Coccinelle, this error value is propagated back, the return
value of the coccicheck command captures this return value.

8.5.6 Using Coccinelle with a single semantic patch

The option --cocci can be used to check a single semantic patch. In that case, the variable must be
initialized with the name of the semantic patch to apply.

For instance:

./scripts/coccicheck --mode=report --cocci=<example.cocci>

or:

./scripts/coccicheck --mode=report --cocci=./path/to/<example.cocci>

8.5.7 Controlling which files are processed by Coccinelle

By default the entire source tree is checked.

To apply Coccinelle to a specific directory, pass the path of specific directory as an argument.

For example, to check drivers/usb/ one may write:

./scripts/coccicheck --mode=patch drivers/usb/

The report mode is the default. You can select another one with the --mode=<mode> option explained
above.

8.5.8 Debugging Coccinelle SmPL patches

Using coccicheck is best as it provides in the spatch command line include options matching the options
used when we compile the kernel. You can learn what these options are by using verbose option, you
could then manually run Coccinelle with debug options added.

Alternatively you can debug running Coccinelle against SmPL patches by asking for stderr to be redi-
rected to stderr, by default stderr is redirected to /dev/null, if you’d like to capture stderr you can specify
the --debug=file.err option to coccicheck. For instance:

rm -f cocci.err
./scripts/coccicheck --mode=patch --debug=cocci.err
cat cocci.err

Debugging support is only supported when using Coccinelle >= 1.0.2.

8.5.9 Additional Flags

Additional flags can be passed to spatch through the SPFLAGS variable. This works as Coccinelle respects
the last flags given to it when options are in conflict.

1548 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

./scripts/coccicheck --sp-flag="--use-glimpse"

Coccinelle supports idutils as well but requires coccinelle >= 1.0.6. When no ID file is specified coccinelle
assumes your ID database file is in the file .id-utils.index on the top level of the kernel, coccinelle carries
a script scripts/idutils_index.sh which creates the database with:

mkid -i C --output .id-utils.index

If you have another database filename you can also just symlink with this name.

./scripts/coccicheck --sp-flag="--use-idutils"

Alternatively you can specify the database filename explicitly, for instance:

./scripts/coccicheck --sp-flag="--use-idutils /full-path/to/ID"

Sometimes coccinelle doesn’t recognize or parse complex macro variables due to insufficient defini-
tion. Therefore, to make it parsable we explicitly provide the prototype of the complex macro using the
---macro-file-builtins <headerfile.h> flag.

The <headerfile.h> should contain the complete prototype of the complex macro from which spatch
engine can extract the type information required during transformation.

For example:

Z_SYSCALL_HANDLER is not recognized by coccinelle. Therefore, we put its prototype in a header file, say
for example mymacros.h.

$ cat mymacros.h
#define Z_SYSCALL_HANDLER int xxx

Now we pass the header file mymacros.h during transformation:

./scripts/coccicheck --sp-flag="---macro-file-builtins mymacros.h"

See spatch --help to learn more about spatch options.

Note that the --use-glimpse and --use-idutils options require external tools for indexing the code.
None of them is thus active by default. However, by indexing the code with one of these tools, and
according to the cocci file used, spatch could proceed the entire code base more quickly.

8.5.10 SmPL patch specific options

SmPL patches can have their own requirements for options passed to Coccinelle. SmPL patch specific
options can be provided by providing them at the top of the SmPL patch, for instance:

// Options: --no-includes --include-headers

8.5.11 Proposing new semantic patches

New semantic patches can be proposed and submitted by kernel developers. For sake of clarity, they
should be organized in the sub-directories of scripts/coccinelle/.

The cocci script should have the following properties:

• The script must have report mode.

• The first few lines should state the purpose of the script using /// comments . Usually, this message
would be used as the commit log when proposing a patch based on the script.

8.5. Coccinelle 1549

Zephyr Project Documentation, Release 2.7.0-rc2

Example

/// Use ARRAY_SIZE instead of dividing sizeof array with sizeof an element

• A more detailed information about the script with exceptional cases or false positives (if any) can
be listed using //# comments.

Example

//# This makes an effort to find cases where ARRAY_SIZE can be used such as
//# where there is a division of sizeof the array by the sizeof its first
//# element or by any indexed element or the element type. It replaces the
//# division of the two sizeofs by ARRAY_SIZE.

• Confidence: It is a property defined to specify the accuracy level of the script. It can be either High,
Moderate or Low depending upon the number of false positives observed.

Example

// Confidence: High

• Virtual rules: These are required to support the various modes framed in the script. The virtual
rule specified in the script should have the corresponding mode handling rule.

Example

virtual context

@depends on context@
type T;
T[] E;
@@
(
* (sizeof(E)/sizeof(*E))
|
* (sizeof(E)/sizeof(E[...]))
|
* (sizeof(E)/sizeof(T))
)

8.5.12 Detailed description of the report mode

report generates a list in the following format:

file:line:column-column: message

Example

Running:

./scripts/coccicheck --mode=report --cocci=scripts/coccinelle/array_size.cocci

1550 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

will execute the following part of the SmPL script:

<smpl>

@r depends on (org || report)@
type T;
T[] E;
position p;
@@
(
(sizeof(E)@p /sizeof(*E))
|
(sizeof(E)@p /sizeof(E[...]))
|
(sizeof(E)@p /sizeof(T))
)

@script:python depends on report@
p << r.p;
@@

msg="WARNING: Use ARRAY_SIZE"
coccilib.report.print_report(p[0], msg)

</smpl>

This SmPL excerpt generates entries on the standard output, as illustrated below:

ext/hal/nxp/mcux/drivers/lpc/fsl_wwdt.c:66:49-50: WARNING: Use ARRAY_SIZE
ext/hal/nxp/mcux/drivers/lpc/fsl_ctimer.c:74:53-54: WARNING: Use ARRAY_SIZE
ext/hal/nxp/mcux/drivers/imx/fsl_dcp.c:944:45-46: WARNING: Use ARRAY_SIZE

8.5.13 Detailed description of the patch mode

When the patch mode is available, it proposes a fix for each problem identified.

Example

Running:

./scripts/coccicheck --mode=patch --cocci=scripts/coccinelle/misc/array_size.cocci

will execute the following part of the SmPL script:

<smpl>

@depends on patch@
type T;
T[] E;
@@
(
- (sizeof(E)/sizeof(*E))
+ ARRAY_SIZE(E)
|
- (sizeof(E)/sizeof(E[...]))
+ ARRAY_SIZE(E)

(continues on next page)

8.5. Coccinelle 1551

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

|
- (sizeof(E)/sizeof(T))
+ ARRAY_SIZE(E)
)

</smpl>

This SmPL excerpt generates patch hunks on the standard output, as illustrated below:

diff -u -p a/ext/lib/encoding/tinycbor/src/cborvalidation.c b/ext/lib/encoding/
→˓tinycbor/src/cborvalidation.c
--- a/ext/lib/encoding/tinycbor/src/cborvalidation.c
+++ b/ext/lib/encoding/tinycbor/src/cborvalidation.c
@@ -325,7 +325,7 @@ static inline CborError validate_number(
static inline CborError validate_tag(CborValue *it, CborTag tag, int flags, int␣
→˓recursionLeft)
{

CborType type = cbor_value_get_type(it);
- const size_t knownTagCount = sizeof(knownTagData) / sizeof(knownTagData[0]);
+ const size_t knownTagCount = ARRAY_SIZE(knownTagData);

const struct KnownTagData *tagData = knownTagData;
const struct KnownTagData * const knownTagDataEnd = knownTagData + knownTagCount;

8.5.14 Detailed description of the context mode

context highlights lines of interest and their context in a diff-like style.

Note: The diff-like output generated is NOT an applicable patch. The intent of the context mode is
to highlight the important lines (annotated with minus, -) and gives some surrounding context lines
around. This output can be used with the diff mode of Emacs to review the code.

Example

Running:

./scripts/coccicheck --mode=context --cocci=scripts/coccinelle/array_size.cocci

will execute the following part of the SmPL script:

<smpl>

@depends on context@
type T;
T[] E;
@@
(
* (sizeof(E)/sizeof(*E))
|
* (sizeof(E)/sizeof(E[...]))
|
* (sizeof(E)/sizeof(T))
)

(continues on next page)

1552 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

</smpl>

This SmPL excerpt generates diff hunks on the standard output, as illustrated below:

diff -u -p ext/lib/encoding/tinycbor/src/cborvalidation.c /tmp/nothing/ext/lib/
→˓encoding/tinycbor/src/cborvalidation.c
--- ext/lib/encoding/tinycbor/src/cborvalidation.c
+++ /tmp/nothing/ext/lib/encoding/tinycbor/src/cborvalidation.c
@@ -325,7 +325,6 @@ static inline CborError validate_number(
static inline CborError validate_tag(CborValue *it, CborTag tag, int flags, int␣
→˓recursionLeft)
{

CborType type = cbor_value_get_type(it);
- const size_t knownTagCount = sizeof(knownTagData) / sizeof(knownTagData[0]);

const struct KnownTagData *tagData = knownTagData;
const struct KnownTagData * const knownTagDataEnd = knownTagData + knownTagCount;

8.5.15 Detailed description of the org mode

org generates a report in the Org mode format of Emacs.

Example

Running:

./scripts/coccicheck --mode=org --cocci=scripts/coccinelle/misc/array_size.cocci

will execute the following part of the SmPL script:

<smpl>

@r depends on (org || report)@
type T;
T[] E;
position p;
@@
(
(sizeof(E)@p /sizeof(*E))
|
(sizeof(E)@p /sizeof(E[...]))
|
(sizeof(E)@p /sizeof(T))
)

@script:python depends on org@
p << r.p;
@@
coccilib.org.print_todo(p[0], "WARNING should use ARRAY_SIZE")

</smpl>

This SmPL excerpt generates Org entries on the standard output, as illustrated below:

8.5. Coccinelle 1553

Zephyr Project Documentation, Release 2.7.0-rc2

* TODO [[view:ext/lib/encoding/tinycbor/src/cborvalidation.c::face=ovl-
→˓face1::linb=328::colb=52::cole=53][WARNING should use ARRAY_SIZE]]

8.5.16 Coccinelle Mailing List

Subscribe to the coccinelle mailing list:

• https://systeme.lip6.fr/mailman/listinfo/cocci

Archives:

• https://lore.kernel.org/cocci/

• https://systeme.lip6.fr/pipermail/cocci/

8.6 Code And Data Relocation

8.6.1 Overview

This feature will allow relocating .text, .rodata, .data, and .bss sections from required files and place them
in the required memory region. The memory region and file are given to the scripts/gen_relocate_app.py
script in the form of a string. This script is always invoked from inside cmake.

This script provides a robust way to re-order the memory contents without actually having to modify the
code. In simple terms this script will do the job of __attribute__((section("name"))) for a bunch of
files together.

8.6.2 Details

The memory region and file are given to the scripts/gen_relocate_app.py script in the form of a string.

An example of such a string is: SRAM2:/home/xyz/zephyr/samples/hello_world/src/main.c,
SRAM1:/home/xyz/zephyr/samples/hello_world/src/main2.c

This script is invoked with the following parameters: python3 gen_relocate_app.py -i
input_string -o generated_linker -c generated_code

Kconfig :kconfig:`CONFIG_CODE_DATA_RELOCATION` option, when enabled in prj.conf, will invoke
the script and do the required relocation.

This script also trigger the generation of linker_relocate.ld and code_relocation.c files. The
linker_relocate.ld file creates appropriate sections and links the required functions or variables from
all the selected files.

Note: The text section is split into 2 parts in the main linker script. The first section will have some
info regarding vector tables and other debug related info. The second section will have the complete text
section. This is needed to force the required functions and data variables to the correct locations. This
is due to the behavior of the linker. The linker will only link once and hence this text section had to be
split to make room for the generated linker script.

The code_relocation.c file has code that is needed for initializing data sections, and a copy of the text
sections (if XIP). Also this contains code needed for bss zeroing and for data copy operations from ROM
to required memory type.

The procedure to invoke this feature is:

• Enable :kconfig:`CONFIG_CODE_DATA_RELOCATION` in the prj.conf file

1554 Chapter 8. User and Developer Guides

https://systeme.lip6.fr/mailman/listinfo/cocci
https://lore.kernel.org/cocci/
https://systeme.lip6.fr/pipermail/cocci/

Zephyr Project Documentation, Release 2.7.0-rc2

• Inside the CMakeLists.txt file in the project, mention all the files that need relocation.

zephyr_code_relocate(src/*.c SRAM2)

Where the first argument is the file/files and the second argument is the memory where it must be
placed.

Note: The file argument supports limited regular expressions. function zephyr_code_relocate()
can be called as many times as required. This step has to be performed before the inclusion of
boilerplate.cmake.

Additional Configurations

This section shows additional configuration options that can be set in CMakeLists.txt

• if the memory is SRAM1, SRAM2, CCD, or AON, then place the full object in the sections for
example:

zephyr_code_relocate(src/file1.c SRAM2)
zephyr_code_relocate(src/file2.c.c SRAM)

• if the memory type is appended with _DATA, _TEXT, _RODATA or _BSS, only the selected memory
is placed in the required memory region. for example:

zephyr_code_relocate(src/file1.c SRAM2_DATA)
zephyr_code_relocate(src/file2.c.c SRAM2_TEXT)

• Multiple regions can also be appended together such as: SRAM2_DATA_BSS. This will place data
and bss inside SRAM2.

Sample

A sample showcasing this feature is provided at $ZEPHYR_BASE/samples/application_development/
code_relocation/

This is an example of using the code relocation feature.

This example will place .text, .data, .bss from 3 files to various parts in the SRAM using a custom linker
file derived from include/arch/arm/aarch32/cortex_m/scripts/linker.ld

8.7 Cryptography

The crypto section contains information regarding the cryptographic primitives supported by the Zephyr
kernel. Use the information to understand the principles behind the operation of the different algorithms
and how they were implemented.

The following crypto libraries have been included:

8.7.1 TinyCrypt Cryptographic Library

Overview

The TinyCrypt Library provides an implementation for targeting constrained devices with a minimal set
of standard cryptography primitives, as listed below. To better serve applications targeting constrained
devices, TinyCrypt implementations differ from the standard specifications (see the Important Remarks

8.7. Cryptography 1555

Zephyr Project Documentation, Release 2.7.0-rc2

section for some important differences). Certain cryptographic primitives depend on other primitives, as
mentioned in the list below.

Aside from the Important Remarks section below, valuable information on the usage, security and tech-
nicalities of each cryptographic primitive are found in the corresponding header file.

• SHA-256:

– Type of primitive: Hash function.

– Standard Specification: NIST FIPS PUB 180-4.

– Requires: –

• HMAC-SHA256:

– Type of primitive: Message authentication code.

– Standard Specification: RFC 2104.

– Requires: SHA-256

• HMAC-PRNG:

– Type of primitive: Pseudo-random number generator.

– Standard Specification: NIST SP 800-90A.

– Requires: SHA-256 and HMAC-SHA256.

• AES-128:

– Type of primitive: Block cipher.

– Standard Specification: NIST FIPS PUB 197.

– Requires: –

• AES-CBC mode:

– Type of primitive: Encryption mode of operation.

– Standard Specification: NIST SP 800-38A.

– Requires: AES-128.

• AES-CTR mode:

– Type of primitive: Encryption mode of operation.

– Standard Specification: NIST SP 800-38A.

– Requires: AES-128.

• AES-CMAC mode:

– Type of primitive: Message authentication code.

– Standard Specification: NIST SP 800-38B.

– Requires: AES-128.

• AES-CCM mode:

– Type of primitive: Authenticated encryption.

– Standard Specification: NIST SP 800-38C.

– Requires: AES-128.

• ECC-DH:

– Type of primitive: Key exchange.

– Standard Specification: RFC 6090.

– Requires: ECC auxiliary functions (ecc.h/c).

1556 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

• ECC-DSA:

– Type of primitive: Digital signature.

– Standard Specification: RFC 6090.

– Requires: ECC auxiliary functions (ecc.h/c).

Design Goals

• Minimize the code size of each cryptographic primitive. This means minimize the size of a board-
independent implementation, as presented in TinyCrypt. Note that various applications may re-
quire further features, optimizations with respect to other metrics and countermeasures for partic-
ular threats. These peculiarities would increase the code size and thus are not considered here.

• Minimize the dependencies among the cryptographic primitives. This means that it is unneces-
sary to build and allocate object code for more primitives than the ones strictly required by the
intended application. In other words, one can select and compile only the primitives required by
the application.

Important Remarks

The cryptographic implementations in TinyCrypt library have some limitations. Some of these limitations
are inherent to the cryptographic primitives themselves, while others are specific to TinyCrypt. Some of
these limitations are discussed in-depth below.

General Remarks

• TinyCrypt does not intend to be fully side-channel resistant. Due to the variety of side-channel
attacks, many of them making certain boards vulnerable. In this sense, instead of penalizing all
library users with side-channel countermeasures such as increasing the overall code size, TinyCrypt
only implements certain generic timing-attack countermeasures.

Specific Remarks

• SHA-256:

– The number of bits_hashed in the state is not checked for overflow. Note however that this
will only be a problem if you intend to hash more than 2^64 bits, which is an extremely large
window.

• HMAC:

– The HMAC verification process is assumed to be performed by the application. This com-
pares the computed tag with some given tag. Note that conventional memory-comparison
methods (such as memcmp function) might be vulnerable to timing attacks; thus be sure to
use a constant-time memory comparison function (such as compare_constant_time function
provided in lib/utils.c).

• HMAC-PRNG:

– Before using HMAC-PRNG, you must find an entropy source to produce a seed. PRNGs only
stretch the seed into a seemingly random output of arbitrary length. The security of the output
is exactly equal to the unpredictability of the seed.

– NIST SP 800-90A requires three items as seed material in the initialization step: entropy seed,
personalization and a nonce (which is not implemented). TinyCrypt requires the personal-
ization byte array and automatically creates the entropy seed using a mandatory call to the
re-seed function.

8.7. Cryptography 1557

Zephyr Project Documentation, Release 2.7.0-rc2

• AES-128:

– The current implementation does not support other key-lengths (such as 256 bits). Note that
if you need AES-256, it doesn’t sound as though your application is running in a constrained
environment. AES-256 requires keys twice the size as for AES-128, and the key schedule is
40% larger.

• CTR mode:

– The AES-CTR mode limits the size of a data message they encrypt to 2^32 blocks. If you
need to encrypt larger data sets, your application would need to replace the key after 2^32
block encryptions.

• CBC mode:

– TinyCrypt CBC decryption assumes that the iv and the ciphertext are contiguous (as produced
by TinyCrypt CBC encryption). This allows for a very efficient decryption algorithm that would
not otherwise be possible.

• CMAC mode:

– AES128-CMAC mode of operation offers 64 bits of security against collision attacks. Note
however that an external attacker cannot generate the tags him/herself without knowing the
MAC key. In this sense, to attack the collision property of AES128-CMAC, an external attacker
would need the cooperation of the legal user to produce an exponentially high number of tags
(e.g. 2^64) to finally be able to look for collisions and benefit from them. As an extra pre-
caution, the current implementation allows to at most 2^48 calls to tc_cmac_update function
before re-calling tc_cmac_setup (allowing a new key to be set), as suggested in Appendix B of
SP 800-38B.

• CCM mode:

– There are a few tradeoffs for the selection of the parameters of CCM mode. In special, there
is a tradeoff between the maximum number of invocations of CCM under a given key and the
maximum payload length for those invocations. Both things are related to the parameter ‘q’
of CCM mode. The maximum number of invocations of CCM under a given key is determined
by the nonce size, which is: 15-q bytes. The maximum payload length for those invocations is
defined as 2^(8q) bytes.

To achieve minimal code size, TinyCrypt CCM implementation fixes q = 2, which is a quite
reasonable choice for constrained applications. The implications of this choice are:

The nonce size is: 13 bytes.

The maximum payload length is: 2^16 bytes = 65 KB.

The mac size parameter is an important parameter to estimate the security against collision
attacks (that aim at finding different messages that produce the same authentication tag).
TinyCrypt CCM implementation accepts any even integer between 4 and 16, as suggested in
SP 800-38C.

– TinyCrypt CCM implementation accepts associated data of any length between 0 and (2^16
- 2^8) = 65280 bytes.

– TinyCrypt CCM implementation accepts:

* Both non-empty payload and associated data (it encrypts and authenticates the payload
and only authenticates the associated data);

* Non-empty payload and empty associated data (it encrypts and authenticates the pay-
load);

* Non-empty associated data and empty payload (it degenerates to an authentication-only
mode on the associated data).

– RFC-3610, which also specifies CCM, presents a few relevant security suggestions, such as:
it is recommended for most applications to use a mac size greater than 8. Besides, it is

1558 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

emphasized that the usage of the same nonce for two different messages which are encrypted
with the same key obviously destroys the security properties of CCM mode.

• ECC-DH and ECC-DSA:

– TinyCrypt ECC implementation is based on nano-ecc (see https://github.com/iSECPartners/
nano-ecc) which in turn is based on micro-ecc (see https://github.com/kmackay/micro-ecc).
In the original nano and micro-ecc documentation, there is an important remark about the
way integers are represented:

“Integer representation: To reduce code size, all large integers are represented using little-
endian words - so the least significant word is first. You can use the ‘ecc_bytes2native()’ and
‘ecc_native2bytes()’ functions to convert between the native integer representation and the
standardized octet representation.”

Examples of Applications

It is possible to do useful cryptography with only the given small set of primitives. With this list of
primitives it becomes feasible to support a range of cryptography usages:

• Measurement of code, data structures, and other digital artifacts (SHA256);

• Generate commitments (SHA256);

• Construct keys (HMAC-SHA256);

• Extract entropy from strings containing some randomness (HMAC-SHA256);

• Construct random mappings (HMAC-SHA256);

• Construct nonces and challenges (HMAC-PRNG);

• Authenticate using a shared secret (HMAC-SHA256);

• Create an authenticated, replay-protected session (HMAC-SHA256 + HMAC-PRNG);

• Authenticated encryption (AES-128 + AES-CCM);

• Key-exchange (EC-DH);

• Digital signature (EC-DSA);

Test Vectors

The library provides a test program for each cryptographic primitive (see ‘test’ folder). Besides illustrating
how to use the primitives, these tests evaluate the correctness of the implementations by checking the
results against well-known publicly validated test vectors.

For the case of the HMAC-PRNG, due to the necessity of performing an extensive battery test to produce
meaningful conclusions, we suggest the user to evaluate the unpredictability of the implementation by
using the NIST Statistical Test Suite (see References).

For the case of the EC-DH and EC-DSA implementations, most of the test vectors were obtained from the
site of the NIST Cryptographic Algorithm Validation Program (CAVP), see References.

References

• NIST FIPS PUB 180-4 (SHA-256)

• NIST FIPS PUB 197 (AES-128)

• NIST SP800-90A (HMAC-PRNG)

• NIST SP 800-38A (AES-CBC and AES-CTR)

8.7. Cryptography 1559

https://github.com/iSECPartners/nano-ecc
https://github.com/iSECPartners/nano-ecc
https://github.com/kmackay/micro-ecc
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

Zephyr Project Documentation, Release 2.7.0-rc2

• NIST SP 800-38B (AES-CMAC)

• NIST SP 800-38C (AES-CCM)

• NIST Statistical Test Suite

• NIST Cryptographic Algorithm Validation Program (CAVP) site

• RFC 2104 (HMAC-SHA256)

• RFC 6090 (ECC-DH and ECC-DSA)

8.8 Flashing and Hardware Debugging

8.8.1 Flash & Debug Host Tools

This guide describes the software tools you can run on your host workstation to flash and debug Zephyr
applications.

Zephyr’s west tool has built-in support for all of these in its flash, debug, debugserver, and attach
commands, provided your board hardware supports them and your Zephyr board directory’s board.
cmake file declares that support properly. See Building, Flashing and Debugging for more information on
these commands.

SAM Boot Assistant (SAM-BA)

Atmel SAM Boot Assistant (Atmel SAM-BA) allows In-System Programming (ISP) from USB or UART host
without any external programming interface. Zephyr allows users to develop and program boards with
SAM-BA support using west. Zephyr supports devices with/without ROM bootloader and both extensions
from Arduino and Adafruit. Full support was introduced in Zephyr SDK 0.12.0.

The typical command to flash the board is:

west flash [-r bossac] [-p /dev/ttyX]

Flash configuration for devices:

With ROM bootloader

These devices don’t need any special configuration. After building your application, just run west flash
to flash the board.

Without ROM bootloader

For these devices, the user should:

1. Define flash partitions required to accommodate the bootloader and application image; see Flash
map for details.

2. Have board .defconfig file with the :kconfig:`CONFIG_USE_DT_CODE_PARTITION` Kconfig
option set to y to instruct the build system to use these partitions for code relocation. This option
can also be set in prj.conf or any other Kconfig fragment.

3. Build and flash the SAM-BA bootloader on the device.

With compatible SAM-BA bootloader

For these devices, the user should:

1. Define flash partitions required to accommodate the bootloader and application image; see Flash
map for details.

1560 Chapter 8. User and Developer Guides

http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
http://csrc.nist.gov/groups/STM/cavp/
https://www.ietf.org/rfc/rfc2104.txt
https://www.ietf.org/rfc/rfc6090.txt

Zephyr Project Documentation, Release 2.7.0-rc2

2. Have board .defconfig file with the :kconfig:`CONFIG_BOOTLOADER_BOSSA` Kconfig option
set to y. This will automatically select the :kconfig:`CONFIG_USE_DT_CODE_PARTITION`
Kconfig option which instruct the build system to use these partitions for code relocation. The
board .defconfig file should have :kconfig:`CONFIG_BOOTLOADER_BOSSA_ARDUINO`
, :kconfig:`CONFIG_BOOTLOADER_BOSSA_ADAFRUIT_UF2` or the :kcon-
fig:`CONFIG_BOOTLOADER_BOSSA_LEGACY` Kconfig option set to y to select the right
compatible SAM-BA bootloader mode. These options can also be set in prj.conf or any other
Kconfig fragment.

3. Build and flash the SAM-BA bootloader on the device.

Note: The :kconfig:`CONFIG_BOOTLOADER_BOSSA_LEGACY` Kconfig option should be used as last
resource. Try configure first with Devices without ROM bootloader.

Typical flash layout and configuration For bootloaders that reside on flash, the devicetree partition
layout is mandatory. For devices that have a ROM bootloader, they are mandatory when the application
uses a storage or other non-application partition. In this special case, the boot partition should be omitted
and code_partition should start from offset 0. It is necessary to define the partitions with sizes that avoid
overlaps, always.

A typical flash layout for devices without a ROM bootloader is:

/ {
chosen {

zephyr,code-partition = &code_partition;
};

};

&flash0 {
partitions {

compatible = "fixed-partitions";
#address-cells = <1>;
#size-cells = <1>;

boot_partition: partition@0 {
label = "sam-ba";
reg = <0x00000000 0x2000>;
read-only;

};

code_partition: partition@2000 {
label = "code";
reg = <0x2000 0x3a000>;
read-only;

};

/*
* The final 16 KiB is reserved for the application.
* Storage partition will be used by FCB/LittleFS/NVS
* if enabled.
*/
storage_partition: partition@3c000 {

label = "storage";
reg = <0x0003c000 0x00004000>;

};
};

};

8.8. Flashing and Hardware Debugging 1561

Zephyr Project Documentation, Release 2.7.0-rc2

A typical flash layout for devices with a ROM bootloader and storage partition is:

/ {
chosen {

zephyr,code-partition = &code_partition;
};

};

&flash0 {
partitions {

compatible = "fixed-partitions";
#address-cells = <1>;
#size-cells = <1>;

code_partition: partition@0 {
label = "code";
reg = <0x0 0xF0000>;
read-only;

};

/*
* The final 64 KiB is reserved for the application.
* Storage partition will be used by FCB/LittleFS/NVS
* if enabled.
*/
storage_partition: partition@F0000 {

label = "storage";
reg = <0x000F0000 0x00100000>;

};
};

};

Enabling SAM-BA runner In order to instruct Zephyr west tool to use the SAM-BA bootloader the
board.cmake file must have include(${ZEPHYR_BASE}/boards/common/bossac.board.cmake) entry.
Note that Zephyr tool accept more entries to define multiple runners. By default, the first one will be
selected when using west flash command. The remaining options are available passing the runner
option, for instance west flash -r bossac.

More implementation details can be found in the boards documentation. As a quick reference, see these
three board documentation pages:

• sam4e_xpro (ROM bootloader)

• adafruit_feather_m0_basic_proto (Adafruit UF2 bootloader)

• arduino_nano_33_iot (Arduino bootloader)

• arduino_nano_33_ble (Arduino legacy bootloader)

J-Link Debug Host Tools

Segger provides a suite of debug host tools for Linux, macOS, and Windows operating systems:

• J-Link GDB Server: GDB remote debugging

• J-Link Commander: Command-line control and flash programming

• RTT Viewer: RTT terminal input and output

• SystemView: Real-time event visualization and recording

1562 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

These debug host tools are compatible with the following debug probes:

• LPC-Link2 J-Link Onboard Debug Probe

• OpenSDA J-Link Onboard Debug Probe

• J-Link External Debug Probe

• ST-LINK/V2-1 Onboard Debug Probe

Check if your SoC is listed in J-Link Supported Devices.

Download and install the J-Link Software and Documentation Pack to get the J-Link GDB Server and
Commander, and to install the associated USB device drivers. RTT Viewer and SystemView can be
downloaded separately, but are not required.

Note that the J-Link GDB server does not yet support Zephyr RTOS-awareness.

OpenOCD Debug Host Tools

OpenOCD is a community open source project that provides GDB remote debugging and flash program-
ming support for a wide range of SoCs. A fork that adds Zephyr RTOS-awareness is included in the
Zephyr SDK; otherwise see Getting OpenOCD for options to download OpenOCD from official reposito-
ries.

These debug host tools are compatible with the following debug probes:

• OpenSDA DAPLink Onboard Debug Probe

• J-Link External Debug Probe

• ST-LINK/V2-1 Onboard Debug Probe

Check if your SoC is listed in OpenOCD Supported Devices.

Note: On Linux, openocd is available though the Zephyr SDK. Windows users should use the following
steps to install openocd:

• Download openocd for Windows from here: OpenOCD Windows

• Copy bin and share dirs to C:\Program Files\OpenOCD\

• Add C:\Program Files\OpenOCD\bin to ‘PATH’ environment variable

pyOCD Debug Host Tools

pyOCD is an open source project from Arm that provides GDB remote debugging and flash programming
support for Arm Cortex-M SoCs. It is distributed on PyPi and installed when you complete the Get Zephyr
and install Python dependencies step in the Getting Started Guide. pyOCD includes support for Zephyr
RTOS-awareness.

These debug host tools are compatible with the following debug probes:

• OpenSDA DAPLink Onboard Debug Probe

• ST-LINK/V2-1 Onboard Debug Probe

Check if your SoC is listed in pyOCD Supported Devices.

8.8. Flashing and Hardware Debugging 1563

https://www.segger.com/downloads/supported-devices.php
https://www.segger.com/downloads/jlink/#J-LinkSoftwareAndDocumentationPack
http://openocd.org/getting-openocd/
https://github.com/zephyrproject-rtos/openocd/tree/master/tcl/target
https://github.com/zephyrproject-rtos/sdk-ng/releases
http://gnutoolchains.com/arm-eabi/openocd/
https://github.com/mbedmicro/pyOCD/tree/master/pyocd/target/builtin

Zephyr Project Documentation, Release 2.7.0-rc2

8.8.2 Debug Probes

A debug probe is special hardware which allows you to control execution of a Zephyr application running
on a separate board. Debug probes usually allow reading and writing registers and memory, and support
breakpoint debugging of the Zephyr application on your host workstation using tools like GDB. They
may also support other debug software and more advanced features such as tracing program execution.
For details on the related host software supported by Zephyr, see Flash & Debug Host Tools.

Debug probes are usually connected to your host workstation via USB; they are sometimes also accessible
via an IP network or other means. They usually connect to the device running Zephyr using the JTAG or
SWD protocols. Debug probes are either separate hardware devices or circuitry integrated into the same
board which runs Zephyr.

Many supported boards in Zephyr include a second microcontroller that serves as an onboard debug
probe, usb-to-serial adapter, and sometimes a drag-and-drop flash programmer. This eliminates the need
to purchase an external debug probe and provides a variety of debug host tool options.

Several hardware vendors have their own branded onboard debug probe implementations: NXP LPC
boards have LPC-Link2, NXP Kinetis (former Freescale) boards have OpenSDA, and ST boards have
ST-LINK. Each onboard debug probe microcontroller can support one or more types of firmware that
communicate with their respective debug host tools. For example, an OpenSDA microcontroller can be
programmed with DAPLink firmware to communicate with pyOCD or OpenOCD debug host tools, or
with J-Link firmware to communicate with J-Link debug host tools.

Debug Probes & Host Tools
Compatibility Chart

Host Tools

J-Link Debug OpenOCD pyOCD

Debug Probes LPC-Link2 J-Link ✓
OpenSDA
DAPLink

✓ ✓

OpenSDA J-Link ✓
J-Link External ✓ ✓
ST-LINK/V2-1 ✓ ✓ some STM32

boards

Some supported boards in Zephyr do not include an onboard debug probe and therefore require an
external debug probe. In addition, boards that do include an onboard debug probe often also have an
SWD or JTAG header to enable the use of an external debug probe instead. One reason this may be useful
is that the onboard debug probe may have limitations, such as lack of support for advanced debuggers or
high-speed tracing. You may need to adjust jumpers to prevent the onboard debug probe from interfering
with the external debug probe.

LPC-Link2 J-Link Onboard Debug Probe

The LPC-Link2 J-Link is an onboard debug probe and usb-to-serial adapter supported on many NXP LPC
and i.MX RT development boards.

This debug probe is compatible with the following debug host tools:

• J-Link Debug Host Tools

This probe is realized by programming the LPC-Link2 microcontroller with J-Link LPC-Link2 firmware.
Download and install LPCScrypt to get the firmware and programming scripts.

Note: Verify the firmware supports your board by visiting Firmware for LPCXpresso

1. Put the LPC-Link2 microcontroller into DFU boot mode by attaching the DFU jumper, then power-
ing up the board.

1564 Chapter 8. User and Developer Guides

https://www.nxp.com/lpcscrypt
https://www.segger.com/products/debug-probes/j-link/models/other-j-links/lpcxpresso-on-board/

Zephyr Project Documentation, Release 2.7.0-rc2

2. Run the program_JLINK script.

3. Remove the DFU jumper and power cycle the board.

OpenSDA DAPLink Onboard Debug Probe

The OpenSDA DAPLink is an onboard debug probe and usb-to-serial adapter supported on many NXP
Kinetis and i.MX RT development boards. It also includes drag-and-drop flash programming support.

This debug probe is compatible with the following debug host tools:

• pyOCD Debug Host Tools

• OpenOCD Debug Host Tools

This probe is realized by programming the OpenSDA microcontroller with DAPLink OpenSDA firmware.
NXP provides OpenSDA DAPLink Board-Specific Firmwares.

Install the debug host tools before you program the firmware.

As with all OpenSDA debug probes, the steps for programming the firmware are:

1. Put the OpenSDA microcontroller into bootloader mode by holding the reset button while you
power on the board. Note that “bootloader mode” in this context applies to the OpenSDA micro-
controller itself, not the target microcontroller of your Zephyr application.

2. After you power on the board, release the reset button. A USB mass storage device called BOOT-
LOADER or MAINTENANCE will enumerate.

3. Copy the OpenSDA firmware binary to the USB mass storage device.

4. Power cycle the board, this time without holding the reset button. You should see three USB
devices enumerate: a CDC device (serial port), a HID device (debug port), and a mass storage
device (drag-and-drop flash programming).

OpenSDA J-Link Onboard Debug Probe

The OpenSDA J-Link is an onboard debug probe and usb-to-serial adapter supported on many NXP
Kinetis and i.MX RT development boards.

This debug probe is compatible with the following debug host tools:

• J-Link Debug Host Tools

This probe is realized by programming the OpenSDA microcontroller with J-Link OpenSDA firmware.
Segger provides OpenSDA J-Link Generic Firmwares and OpenSDA J-Link Board-Specific Firmwares,
where the latter is generally recommended when available. Board-specific firmwares are required for
i.MX RT boards to support their external flash memories, whereas generic firmwares are compatible with
all Kinetis boards.

Install the debug host tools before you program the firmware.

As with all OpenSDA debug probes, the steps for programming the firmware are:

1. Put the OpenSDA microcontroller into bootloader mode by holding the reset button while you
power on the board. Note that “bootloader mode” in this context applies to the OpenSDA micro-
controller itself, not the target microcontroller of your Zephyr application.

2. After you power on the board, release the reset button. A USB mass storage device called BOOT-
LOADER or MAINTENANCE will enumerate.

3. Copy the OpenSDA firmware binary to the USB mass storage device.

4. Power cycle the board, this time without holding the reset button. You should see two USB devices
enumerate: a CDC device (serial port) and a vendor-specific device (debug port).

8.8. Flashing and Hardware Debugging 1565

https://www.nxp.com/opensda
https://www.segger.com/downloads/jlink/#JLinkOpenSDAGenericFirmwares
https://www.segger.com/downloads/jlink/#JLinkOpenSDABoardSpecificFirmwares

Zephyr Project Documentation, Release 2.7.0-rc2

J-Link External Debug Probe

Segger J-Link is a family of external debug probes, including J-Link EDU, J-Link PLUS, J-Link ULTRA+,
and J-Link PRO, that support a large number of devices from different hardware architectures and ven-
dors.

This debug probe is compatible with the following debug host tools:

• J-Link Debug Host Tools

• OpenOCD Debug Host Tools

Install the debug host tools before you program the firmware.

ST-LINK/V2-1 Onboard Debug Probe

ST-LINK/V2-1 is a serial and debug adapter built into all Nucleo and Discovery boards. It provides a
bridge between your computer (or other USB host) and the embedded target processor, which can be
used for debugging, flash programming, and serial communication, all over a simple USB cable.

It is compatible with the following host debug tools:

• OpenOCD Debug Host Tools

• J-Link Debug Host Tools

For some STM32 based boards, it is also compatible with:

• pyOCD Debug Host Tools

While it works out of the box with OpenOCD, it requires some flashing to work with J-Link. To do this,
SEGGER offers a firmware upgrading the ST-LINK/V2-1 on board on the Nucleo and Discovery boards.
This firmware makes the ST-LINK/V2-1 compatible with J-LinkOB, allowing users to take advantage of
most J-Link features like the ultra fast flash download and debugging speed or the free-to-use GDBServer.

More informations about upgrading ST-LINK/V2-1 to JLink or restore ST-Link/V2-1 firmware please visit:
Segger over ST-Link

Flash and debug with ST-Link Using OpenOCD

OpenOCD is available by default on ST-Link and configured as the default flash and debug tool. Flash
and debug can be done as follows:

From the root of the zephyr repository
west build -b None samples/hello_world
west flash

From the root of the zephyr repository
west build -b None samples/hello_world
west debug

Using Segger J-Link

Once STLink is flashed with SEGGER FW and J-Link GDB server is installed on your host computer, you
can flash and debug as follows:

Use CMake with -DBOARD_FLASH_RUNNER=jlink to change the default OpenOCD runner to J-Link. Al-
ternatively, you might add the following line to your application CMakeList.txt file.

set(BOARD_FLASH_RUNNER jlink)

If you use West (Zephyr’s meta-tool) you can modify the default runner using the --runner (or -r)
option.

1566 Chapter 8. User and Developer Guides

https://www.segger.com/products/debug-probes/j-link/
https://www.segger.com/products/debug-probes/j-link/models/other-j-links/st-link-on-board/

Zephyr Project Documentation, Release 2.7.0-rc2

west flash --runner jlink

To attach a debugger to your board and open up a debug console with jlink.

west debug --runner jlink

For more information about West and available options, see West (Zephyr’s meta-tool).

If you configured your Zephyr application to use Segger RTT console instead, open telnet:

$ telnet localhost 19021
Trying ::1...
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
SEGGER J-Link V6.30f - Real time terminal output
J-Link STLink V21 compiled Jun 26 2017 10:35:16 V1.0, SN=773895351
Process: JLinkGDBServerCLExe
Zephyr Shell, Zephyr version: 1.12.99
Type 'help' for a list of available commands
shell>

If you get no RTT output you might need to disable other consoles which conflict with the RTT one
if they are enabled by default in the particular sample or application you are running, such as disable
UART_CONSOLE in menucon

Updating or restoring ST-Link firmware ST-Link firmware can be updated using
STM32CubeProgrammer Tool. It is usually useful when facing flashing issues, for instance when
using twister’s device-testing option.

Once installed, you can update attached board ST-Link firmware with the following command

s java -jar ~/STMicroelectronics/STM32Cube/STM32CubeProgrammer/Drivers/
→˓FirmwareUpgrade/STLinkUpgrade.jar -sn <board_uid>

Where board_uid can be obtained using twister’s generate-hardware-map option. For more information
about twister and available options, see Test Runner (Twister).

8.9 Debugging and Tracing

8.9.1 Thread analyzer

The thread analyzer module enables all the Zephyr options required to track the thread information, e.g.
thread stack size usage and other runtime thread runtime statistics.

The analysis is performed on demand when the application calls thread_analyzer_run() or
thread_analyzer_print() .

For example, to build the synchronization sample with Thread Analyser enabled, do the following:

west build -b qemu_x86 samples/synchronization/ -- -DCONFIG_QEMU_ICOUNT=n -
→˓DCONFIG_THREAD_ANALYZER=y \
-DCONFIG_THREAD_ANALYZER_USE_PRINTK=y -DCONFIG_THREAD_ANALYZER_AUTO=y \
-DCONFIG_THREAD_ANALYZER_AUTO_INTERVAL=5

When you run the generated application in Qemu, you will get the additional information from Thread
Analyzer:

8.9. Debugging and Tracing 1567

https://www.segger.com/jlink-rtt.html
https://www.st.com/en/development-tools/stm32cubeprog.html

Zephyr Project Documentation, Release 2.7.0-rc2

thread_a: Hello World from cpu 0 on qemu_x86!
Thread analyze:
thread_b : STACK: unused 740 usage 284 / 1024 (27 %); CPU: 0 %
thread_analyzer : STACK: unused 8 usage 504 / 512 (98 %); CPU: 0 %
thread_a : STACK: unused 648 usage 376 / 1024 (36 %); CPU: 98 %
idle 00 : STACK: unused 204 usage 116 / 320 (36 %); CPU: 0 %

thread_b: Hello World from cpu 0 on qemu_x86!
thread_a: Hello World from cpu 0 on qemu_x86!
thread_b: Hello World from cpu 0 on qemu_x86!
thread_a: Hello World from cpu 0 on qemu_x86!
thread_b: Hello World from cpu 0 on qemu_x86!
thread_a: Hello World from cpu 0 on qemu_x86!
thread_b: Hello World from cpu 0 on qemu_x86!
thread_a: Hello World from cpu 0 on qemu_x86!
Thread analyze:
thread_b : STACK: unused 648 usage 376 / 1024 (36 %); CPU: 7 %
thread_analyzer : STACK: unused 8 usage 504 / 512 (98 %); CPU: 0 %
thread_a : STACK: unused 648 usage 376 / 1024 (36 %); CPU: 9 %
idle 00 : STACK: unused 204 usage 116 / 320 (36 %); CPU: 82 %

thread_b: Hello World from cpu 0 on qemu_x86!
thread_a: Hello World from cpu 0 on qemu_x86!
thread_b: Hello World from cpu 0 on qemu_x86!
thread_a: Hello World from cpu 0 on qemu_x86!
thread_b: Hello World from cpu 0 on qemu_x86!
thread_a: Hello World from cpu 0 on qemu_x86!
thread_b: Hello World from cpu 0 on qemu_x86!
thread_a: Hello World from cpu 0 on qemu_x86!
Thread analyze:
thread_b : STACK: unused 648 usage 376 / 1024 (36 %); CPU: 7 %
thread_analyzer : STACK: unused 8 usage 504 / 512 (98 %); CPU: 0 %
thread_a : STACK: unused 648 usage 376 / 1024 (36 %); CPU: 8 %
idle 00 : STACK: unused 204 usage 116 / 320 (36 %); CPU: 83 %

thread_b: Hello World from cpu 0 on qemu_x86!
thread_a: Hello World from cpu 0 on qemu_x86!
thread_b: Hello World from cpu 0 on qemu_x86!

Configuration

Configure this module using the following options.

• THREAD_ANALYZER: enable the module.

• THREAD_ANALYZER_USE_PRINTK: use printk for thread statistics.

• THREAD_ANALYZER_USE_LOG: use the logger for thread statistics.

• THREAD_ANALYZER_AUTO: run the thread analyzer automatically. You do not need to add any code
to the application when using this option.

• THREAD_ANALYZER_AUTO_INTERVAL: the time for which the module sleeps between consecutive
printing of thread analysis in automatic mode.

• THREAD_ANALYZER_AUTO_STACK_SIZE: the stack for thread analyzer automatic thread.

• THREAD_NAME: enable this option in the kernel to print the name of the thread instead of its ID.

• THREAD_RUNTIME_STATS: enable this option to print thread runtime data such as utilization (This
options is automatically selected by THREAD_ANALYZER).

1568 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

API documentation

group thread_analyzer

Module for analyzing threads.

This module implements functions and the configuration that simplifies thread analysis.

Typedefs

typedef void (*thread_analyzer_cb)(struct thread_analyzer_info *info)

Thread analyzer stack size callback function.

Callback function with thread analysis information.

Param info Thread analysis information.

Functions

void thread_analyzer_run(thread_analyzer_cb cb)

Run the thread analyzer and provide information to the callback.

This function analyzes the current state for all threads and calls a given callback on every
thread found.

Parameters

• cb – The callback function handler

void thread_analyzer_print(void)

Run the thread analyzer and print stack size statistics.

This function runs the thread analyzer and prints the output in standard form.

struct thread_analyzer_info

#include <thread_analyzer.h>

Public Members

const char *name

The name of the thread or stringified address of the thread handle if name is not set.

size_t stack_size

The total size of the stack

size_t stack_used

Stack size in used

8.9.2 Core Dump

The core dump module enables dumping the CPU registers and memory content for offline debugging.
This module is called when fatal error is encountered, and the data is printed or stored according to
which backends are enabled.

8.9. Debugging and Tracing 1569

Zephyr Project Documentation, Release 2.7.0-rc2

Configuration

Configure this module using the following options.

• DEBUG_COREDUMP: enable the module.

Here are the options to enable output backends for core dump:

• DEBUG_COREDUMP_BACKEND_LOGGING: use log module for core dump output.

• DEBUG_COREDUMP_BACKEND_NULL: fallback core dump backend if other backends cannot be enabled.
All output is sent to null.

Here are the choices regarding memory dump:

• DEBUG_COREDUMP_MEMORY_DUMP_MIN: only dumps the stack of the exception thread, its thread
struct, and some other bare minimal data to support walking the stack in debugger. Use this
only if absolute minimum of data dump is desired.

Usage

When the core dump module is enabled, during fatal error, CPU registers and memory content are being
printed or stored according to which backends are enabled. This core dump data can fed into a custom
made GDB server as a remote target for GDB (and other GDB compatible debuggers). CPU registers,
memory content and stack can be examined in the debugger.

This usually involves the following steps:

1. Get the core dump log from the device depending on enabled backends. For example, if the log
module backend is used, get the log output from the log module backend.

2. Convert the core dump log into a binary format that can be parsed by the GDB server. For example,
scripts/coredump/coredump_serial_log_parser.py can be used to convert the serial console log into
a binary file.

3. Start the custom GDB server using the script scripts/coredump/coredump_gdbserver.py with the
core dump binary log file, and the Zephyr ELF file as parameters.

4. Start the debugger corresponding to the target architecture.

Example This example uses the log module backend tied to serial console. This was done on qemu_x86
where a null pointer was dereferenced.

This is the core dump log from the serial console, and is stored in coredump.log:

Booting from ROM..*** Booting Zephyr OS build zephyr-v2.3.0-1840-g7bba91944a63 ***
Hello World! qemu_x86
E: Page fault at address 0x0 (error code 0x2)
E: Linear address not present in page tables
E: PDE: 0x0000000000115827 Writable, User, Execute Enabled
E: PTE: Non-present
E: EAX: 0x00000000, EBX: 0x00000000, ECX: 0x00119d74, EDX: 0x000003f8
E: ESI: 0x00000000, EDI: 0x00101aa7, EBP: 0x00119d10, ESP: 0x00119d00
E: EFLAGS: 0x00000206 CS: 0x0008 CR3: 0x00119000
E: call trace:
E: EIP: 0x00100459
E: 0x00100477 (0x0)
E: 0x00100492 (0x0)
E: 0x001004c8 (0x0)
E: 0x00105465 (0x105465)
E: 0x00101abe (0x0)
E: >>> ZEPHYR FATAL ERROR 0: CPU exception on CPU 0

(continues on next page)

1570 Chapter 8. User and Developer Guides

https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/coredump/coredump_serial_log_parser.py
https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/coredump/coredump_gdbserver.py

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

E: Current thread: 0x00119080 (unknown)
E: #CD:BEGIN#
E: #CD:5a4501000100050000000000
E: #CD:4101003800
E: #CD:0e0000000200000000000000749d1100f803000000000000009d1100109d1100
E: #CD:00000000a71a100059041000060200000800000000901100
E: #CD:4d010080901100e0901100
E: #CD:0100000000000000000000000180000000000000000000000000000000000000
E: #CD:00000000000000000000000000000000e364100000000000000000004c9c1100
E: #CD:000000000000000000000000b49911000004000000000000fc03000000000000
E: #CD:4d0100b4991100b49d1100
E: #CD:f8030000020000000200000002000000f8030000fd03000a02000000dc9e1100
E: #CD:149a1160fd03000002000000dc9e1100249a110087201000049f11000a000000
E: #CD:349a11000a4f1000049f11000a9e1100449a11000a8b10000200000002000000
E: #CD:449a1100388b1000049f11000a000000549a1100ad201000049f11000a000000
E: #CD:749a11000a201000049f11000a000000649a11000a201000049f11000a000000
E: #CD:749a1100e8201000049f11000a000000949a1100890b10000a0000000a000000
E: #CD:a49a1100890b10000a0000000a000000f8030000189b11000200000002000000
E: #CD:f49a1100289b11000a000000189b1100049b11009b0710000a000000289b1100
E: #CD:f49a110087201000049f110045000000f49a1100509011000a00000020901100
E: #CD:f49a110060901100049f1100ffffffff0000000000000000049f1100ffffffff
E: #CD:0000000000000000630b1000189b1100349b1100af0b1000630b1000289b1100
E: #CD:55891000789b11000000000020901100549b1100480000004a891000609b1100
E: #CD:649b1100d00b10004a891000709b110000000000609b11000a00000000000000
E: #CD:849b1100709b11004a89100000000000949b1100794a10000000000058901100
E: #CD:20901100c34a10000a00001734020000d001000000000000d49b110038000000
E: #CD:c49b110078481000b49911000004000000000000000000000c9c11000c9c1100
E: #CD:149c110000000000d49b110038000000f49b1100da481000b499110000040000
E: #CD:0e0000000200000000000000744d0100b4991100b49d1100009d1100109d1100
E: #CD:149c110099471000b4991100000400000800000000901100ad861000409c1100
E: #CD:349c1100e94710008090110000000000349c1100b64710008086100045000000
E: #CD:849c11002d53100000000000d09c11008090110020861000f5ffffff8c9c1100
E: #CD:000000000000000000000000a71a1000a49c1100020200008090110000000000
E: #CD:a49c1100020200000800000000000000a49c11001937100000000000d09c1100
E: #CD:0c9d0000bc9c0000b49d1100b4991100c49c1100ae37100000000000d09c1100
E: #CD:0800000000000000c888100000000000109d11005d031000d09c1100009d1100
E: #CD:109d11000000000000000000a71a1000f803000000000000749d110002000000
E: #CD:5904100008000000060200000e0000000202000002020000000000002c9d1100
E: #CD:7704100000000000d00b1000c9881000549d110000000000489d110092041000
E: #CD:00000000689d1100549d11000000000000000000689d1100c804100000000000
E: #CD:c0881000000000007c9d110000000000749d11007c9d11006554100065541000
E: #CD:00000000000000009c9d1100be1a100000000000000000000000000038041000
E: #CD:08000000020200000000000000000000f4531000000000000000000000000000
E: #CD:END#
E: Halting system

1. Run the core dump serial log converter:

./scripts/coredump/coredump_serial_log_parser.py coredump.log coredump.bin

2. Start the custom GDB server:

./scripts/coredump/coredump_gdbserver.py build/zephyr/zephyr.elf coredump.bin

3. Start GDB:

<path to SDK>/x86_64-zephyr-elf/bin/x86_64-zephyr-elf-gdb build/zephyr/zephyr.elf

8.9. Debugging and Tracing 1571

Zephyr Project Documentation, Release 2.7.0-rc2

4. Inside GDB, connect to the GDB server via port 1234:

(gdb) target remote localhost:1234

5. Examine the CPU registers:

(gdb) info registers

Output from GDB:

eax 0x0 0
ecx 0x119d74 1154420
edx 0x3f8 1016
ebx 0x0 0
esp 0x119d00 0x119d00 <z_main_stack+844>
ebp 0x119d10 0x119d10 <z_main_stack+860>
esi 0x0 0
edi 0x101aa7 1055399
eip 0x100459 0x100459 <func_3+16>
eflags 0x206 [PF IF]
cs 0x8 8
ss <unavailable>
ds <unavailable>
es <unavailable>
fs <unavailable>
gs <unavailable>

6. Examine the backtrace:

(gdb) bt

Output from GDB:

#0 0x00100459 in func_3 (addr=0x0) at zephyr/rtos/zephyr/samples/hello_world/
→˓src/main.c:14
#1 0x00100477 in func_2 (addr=0x0) at zephyr/rtos/zephyr/samples/hello_world/
→˓src/main.c:21
#2 0x00100492 in func_1 (addr=0x0) at zephyr/rtos/zephyr/samples/hello_world/
→˓src/main.c:28
#3 0x001004c8 in main () at zephyr/rtos/zephyr/samples/hello_world/src/main.c:42

File Format

The core dump binary file consists of one file header, one architecture-specific block, and multiple mem-
ory blocks. All numbers in the headers below are little endian.

File Header The file header consists of the following fields:

1572 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Table 4: Core dump binary file header
Field Data

Type
Description

ID char[2] Z, E as identifier of file.
Header version uint16_t Identify the version of the header. This needs to be incremented when-

ever the header struct is modified. This allows parser to reject older
header versions so it will not incorrectly parse the header.

Target code uint16_t Indicate which target (e.g. architecture or SoC) so the parser can in-
stantiate the correct register block parser.

Pointer size ‘uint8_t’ Size of uintptr_t in power of 2. (e.g. 5 for 32-bit, 6 for 64-bit).
This is needed to accommodate 32-bit and 64-bit target in parsing the
memory block addresses.

Flags uint8_t
Fatal error reason unsigned

int
Reason for the fatal error, as the same in enum
k_fatal_error_reason defined in include/fatal.h

Architecture-specific Block The architecture-specific block contains the byte stream of data specific to
the target architecture (e.g. CPU registers)

Table 5: Architecture-specific Block
Field Data

Type
Description

ID char A to indiciate this is a architecture-specific block.
Header version uint16_t Identify the version of this block. To be interpreted by the target ar-

chitecture specific block parser.
Number of bytes uint16_t Number of bytes following the header which contains the byte stream

for target data. The format of the byte stream is specific to the target
and is only being parsed by the target parser.

Register byte
stream

uint8_t[]Contains target architecture specific data.

Memory Block The memory block contains the start and end addresses and the data within the memory
region.

Table 6: Memory Block
Field Data

Type
Description

ID char M to indiciate this is a memory block.
Header version uint16_t Identify the version of the header. This needs to be incremented when-

ever the header struct is modified. This allows parser to reject older
header versions so it will not incorrectly parse the header.

Start address uintptr_tThe start address of the memory region.
End address uintptr_tThe end address of the memory region.
Memory byte
stream

uint8_t[]Contains the memory content between the start and end addresses.

Adding New Target

The architecture-specific block is target specific and requires new dumping routine and parser for new
targets. To add a new target, the following needs to be done:

1. Add a new target code to the enum coredump_tgt_code in include/debug/coredump.h.

8.9. Debugging and Tracing 1573

https://github.com/zephyrproject-rtos/zephyr/blob/main/include/fatal.h
https://github.com/zephyrproject-rtos/zephyr/blob/main/include/debug/coredump.h

Zephyr Project Documentation, Release 2.7.0-rc2

2. Implement arch_coredump_tgt_code_get() simply to return the newly introducted target code.

3. Implement arch_coredump_info_dump() to construct a target architecture block and call
coredump_buffer_output() to output the block to core dump backend.

4. Add a parser to the core dump GDB stub scripts under scripts/coredump/gdbstubs/

1. Extends the gdbstubs.gdbstub.GdbStub class.

2. During __init__, store the GDB signal corresponding to the exception reason in self.
gdb_signal.

3. Parse the architecture-specific block from self.logfile.get_arch_data(). This needs to
match the format as implemented in step 3 (inside arch_coredump_info_dump()).

4. Implement the abstract method handle_register_group_read_packet where it returns the
register group as GDB expected. Refer to GDB’s code and documentation on what it is expect-
ing for the new target.

5. Optionally implement handle_register_single_read_packet for registers not covered in
the g packet.

5. Extend get_gdbstub() in scripts/coredump/gdbstubs/__init__.py to return the newly imple-
mented GDB stub.

API documentation

group coredump_apis

Coredump APIs.

Functions

void coredump(unsigned int reason, const z_arch_esf_t *esf, struct k_thread *thread)
Perform coredump.

Normally, this is called inside z_fatal_error() to generate coredump when a fatal error is
encountered. This can also be called on demand whenever a coredump is desired.

Parameters

• reason – Reason for the fatal error

• esf – Exception context

• thread – Thread information to dump

void coredump_memory_dump(uintptr_t start_addr, uintptr_t end_addr)
Dump memory region.

Parameters

• start_addr – Start address of memory region to be dumped

• end_addr – End address of memory region to be dumped

void coredump_buffer_output(uint8_t *buf, size_t buflen)
Output the buffer via coredump.

This outputs the buffer of byte array to the coredump backend. For example, this can be called
to output the coredump section containing registers, or a section for memory dump.

Parameters

• buf – Buffer to be send to coredump output

• buflen – Buffer length

1574 Chapter 8. User and Developer Guides

https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/coredump/gdbstubs/__init__.py

Zephyr Project Documentation, Release 2.7.0-rc2

int coredump_query(enum coredump_query_id query_id, void *arg)

Perform query on coredump subsystem.

Query the coredump subsystem for information, for example, if there is an error.

Parameters

• query_id – [in] Query ID

• arg – [inout] Pointer to argument for exchanging information

Returns Depends on the query

int coredump_cmd(enum coredump_cmd_id query_id, void *arg)

Perform command on coredump subsystem.

Perform certain on coredump subsystem, for example, output the stored coredump via log-
ging.

Parameters

• cmd_id – [in] Command ID

• arg – [inout] Pointer to argument for exchanging information

Returns Depends on the command

group arch-coredump

Functions

void arch_coredump_info_dump(const z_arch_esf_t *esf)

Architecture-specific handling during coredump.

This dumps architecture-specific information during coredump.

Parameters

• esf – Exception Stack Frame (arch-specific)

uint16_t arch_coredump_tgt_code_get(void)

Get the target code specified by the architecture.

8.9.3 GDB stub

Overview

The gdbstub feature provides an implementation of the GDB Remote Serial Protocol (RSP) that allows
you to remotely debug Zephyr using GDB.

The protocol supports different connection types: serial, UDP/IP and TCP/IP. Zephyr currently supports
only serial device communication.

The GDB program acts as the client while Zephyr acts as the server. When this feature is enabled, Zephyr
stops its execution after gdb_init() starts gdbstub service and waits for a GDB connection. Once a
connection is established it is possible to synchronously interact with Zephyr. Note that currently it is not
possible to asynchronously send commands to the target.

Enable this feature with the :kconfig:`CONFIG_GDBSTUB` option.

8.9. Debugging and Tracing 1575

Zephyr Project Documentation, Release 2.7.0-rc2

Features

The following features are supported:

• Add and remove breakpoints

• Continue and step the target

• Print backtrace

• Read or write general registers

• Read or write the memory

8.9.4 Tracing

Overview

The tracing feature provides hooks that permits you to collect data from your application and allows
tools running on a host to visualize the inner-working of the kernel and various subsystems.

Every system has application-specific events to trace out. Historically, that has implied:

1. Determining the application-specific payload,

2. Choosing suitable serialization-format,

3. Writing the on-target serialization code,

4. Deciding on and writing the I/O transport mechanics,

5. Writing the PC-side deserializer/parser,

6. Writing custom ad-hoc tools for filtering and presentation.

An application can use one of the existing formats or define a custom format by overriding the macros
declared in include/tracing/tracing.h.

Different formats, transports and host tools are avialable and supported in Zephyr.

In fact, I/O varies greatly from system to system. Therefore, it is instructive to create a taxonomy for
I/O types when we must ensure the interface between payload/format (Top Layer) and the transport
mechanics (bottom Layer) is generic and efficient enough to model these. See the I/O taxonomy section
below.

Serialization Formats

Common Trace Format (CTF) Support Common Trace Format, CTF, is an open format and language
to describe trace formats. This enables tool reuse, of which line-textual (babeltrace) and graphical
(TraceCompass) variants already exist.

CTF should look familiar to C programmers but adds stronger typing. See CTF - A Flexible, High-
performance Binary Trace Format.

CTF allows us to formally describe application specific payload and the serialization format, which en-
ables common infrastructure for host tools and parsers and tools for filtering and presentation.

A Generic Interface In CTF, an event is serialized to a packet containing one or more fields. As seen
from I/O taxonomy section below, a bottom layer may:

• perform actions at transaction-start (e.g. mutex-lock),

• process each field in some way (e.g. sync-push emit, concat, enqueue to thread-bound FIFO),

• perform actions at transaction-stop (e.g. mutex-release, emit of concat buffer).

1576 Chapter 8. User and Developer Guides

https://github.com/zephyrproject-rtos/zephyr/blob/main/include/tracing/tracing.h
http://diamon.org/ctf/
http://diamon.org/ctf/

Zephyr Project Documentation, Release 2.7.0-rc2

CTF Top-Layer Example The CTF_EVENT macro will serialize each argument to a field:

/* Example for illustration */
static inline void ctf_top_foo(uint32_t thread_id, ctf_bounded_string_t name)
{

CTF_EVENT(
CTF_LITERAL(uint8_t, 42),
thread_id,
name,
"hello, I was emitted from function: ",
__func__ /* __func__ is standard since C99 */

);
}

How to serialize and emit fields as well as handling alignment, can be done internally and statically at
compile-time in the bottom-layer.

The CTF top layer is enabled using the configuration option :kconfig:`CONFIG_TRACING_CTF` and
can be used with the different transport backends both in synchronous and asynchronous modes.

SEGGER SystemView Support Zephyr provides built-in support for SEGGER SystemView that can be
enabled in any application for platforms that have the required hardware support.

The payload and format used with SystemView is custom to the application and relies on RTT as a
transport. Newer versions of SystemView support other transports, for example UART or using snapshot
mode (both still not supported in Zephyr).

To enable tracing support with SEGGER SystemView add the configuration option :kcon-
fig:`CONFIG_SEGGER_SYSTEMVIEW` to your project configuration file and set it to y. For
example, this can be added to the synchronization_sample to visualize fast switching between
threads. SystemView can also be used for post-mortem tracing, which can be enabled with
CONFIG_SEGGER_SYSVIEW_POST_MORTEM_MODE. In this mode, a debugger can be attached after the system
has crashed using west attach after which the latest data from the internal RAM buffer can be loaded
into SystemView:

CONFIG_STDOUT_CONSOLE=y
enable to use thread names
CONFIG_THREAD_NAME=y
CONFIG_SEGGER_SYSTEMVIEW=y
CONFIG_USE_SEGGER_RTT=y
CONFIG_TRACING=y
enable for post-mortem tracing
CONFIG_SEGGER_SYSVIEW_POST_MORTEM_MODE=n

Recent versions of SEGGER SystemView come with an API translation table for Zephyr which is incom-
plete and does not match the current level of support available in Zephyr. To use the latest Zephyr API
description table, copy the file available in the tree to your local configuration directory to override the
builtin table:

On Linux and MacOS
cp ZEPHYR_BASE/subsys/tracing/sysview/SYSVIEW_Zephyr.txt ~/.config/SEGGER/

User-Defined Tracing This tracing format allows the user to define functions to perform any work
desired when a task is switched in or out, when an interrupt is entered or exited, and when the cpu is
idle.

Examples include: - simple toggling of GPIO for external scope tracing while minimizing extra cpu load
- generating/outputting trace data in a non-standard or proprietary format that can not be supported by
the other tracing systems

8.9. Debugging and Tracing 1577

https://www.segger.com/products/development-tools/systemview/
https://www.segger.com/products/development-tools/systemview/
https://www.segger.com/products/development-tools/systemview/

Zephyr Project Documentation, Release 2.7.0-rc2

The following functions can be defined by the user: - void
sys_trace_thread_switched_in_user(struct k_thread *thread) - void
sys_trace_thread_switched_out_user(struct k_thread *thread) - void
sys_trace_isr_enter_user() - void sys_trace_isr_exit_user() - void sys_trace_idle_user()

Enable this format with the :kconfig:`CONFIG_TRACING_USER` option.

Transport Backends

The following backends are currently supported:

• UART

• USB

• File (Using native posix port)

• RTT (With SystemView)

• RAM (buffer to be retrieved by a debugger)

Using Tracing

The sample samples/subsys/tracing demonstrates tracing with different formats and backends.

To get started, the simplest way is to use the CTF format with the native_posix port, build the sample
as follows:

Using west:

west build -b native_posix samples/subsys/tracing -- -DCONF_FILE=prj_native_posix_ctf.
→˓conf

Using CMake and ninja:

Use cmake to configure a Ninja-based buildsystem:
cmake -B build -GNinja -DBOARD=native_posix -DCONF_FILE=prj_native_posix_ctf.conf␣
→˓samples/subsys/tracing

(continues on next page)

1578 Chapter 8. User and Developer Guides

https://github.com/zephyrproject-rtos/zephyr/blob/main/samples/subsys/tracing

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

Now run ninja on the generated build system:
ninja -C build

You can then run the resulting binary with the option -trace-file to generate the tracing data:

mkdir data
cp $ZEPHYR_BASE/subsys/tracing/ctf/tsdl/metadata data/
./build/zephyr/zephyr.exe -trace-file=data/channel0_0

The resulting CTF output can be visualized using babeltrace or TraceCompass by pointing the tool to the
data directory with the metadata and trace files.

Using RAM backend For devices that do not have available I/O for tracing such as USB or UART
but have enough RAM to collect trace datas, the ram backend can be enabled with configuration
CONFIG_TRACING_BACKEND_RAM. Adjust CONFIG_RAM_TRACING_BUFFER_SIZE to be able to record enough
traces for your needs. Then thanks to a runtime debugger such as gdb this buffer can be fetched from
the target to an host computer:

(gdb) dump binary memory data/channel0_0 <ram_tracing_start> <ram_tracing_end>

The resulting channel0_0 file have to be placed in a directory with the metadata file like the other
backend.

Visualisation Tools

TraceCompass TraceCompass is an open source tool that visualizes CTF events such as thread schedul-
ing and interrupts, and is helpful to find unintended interactions and resource conflicts on complex
systems.

See also the presentation by Ericsson, Advanced Trouble-shooting Of Real-time Systems.

Future LTTng Inspiration

Currently, the top-layer provided here is quite simple and bare-bones, and needlessly copied from
Zephyr’s Segger SystemView debug module.

For an OS like Zephyr, it would make sense to draw inspiration from Linux’s LTTng and change the
top-layer to serialize to the same format. Doing this would enable direct reuse of TraceCompass’ canned
analyses for Linux. Alternatively, LTTng-analyses in TraceCompass could be customized to Zephyr. It is
ongoing work to enable TraceCompass visibility of Zephyr in a target-agnostic and open source way.

I/O Taxonomy

• Atomic Push/Produce/Write/Enqueue:

– synchronous: means data-transmission has completed with the return of the call.

– asynchronous: means data-transmission is pending or ongoing with the return of the call.
Usually, interrupts/callbacks/signals or polling is used to determine completion.

– buffered: means data-transmissions are copied and grouped together to form a larger ones.
Usually for amortizing overhead (burst dequeue) or jitter-mitigation (steady dequeue).

Examples:

– sync unbuffered E.g. PIO via GPIOs having steady stream, no extra FIFO memory
needed. Low jitter but may be less efficient (cant amortize the overhead of writing).

8.9. Debugging and Tracing 1579

https://wiki.eclipse.org/images/0/0e/TechTalkOnlineDemoFeb2017_v1.pdf

Zephyr Project Documentation, Release 2.7.0-rc2

– sync buffered E.g. fwrite() or enqueuing into FIFO. Blockingly burst the FIFO when
its buffer-waterlevel exceeds threshold. Jitter due to bursts may lead to missed dead-
lines.

– async unbuffered E.g. DMA, or zero-copying in shared memory. Be careful of data
hazards, race conditions, etc!

– async buffered E.g. enqueuing into FIFO.

• Atomic Pull/Consume/Read/Dequeue:

– synchronous: means data-reception has completed with the return of the call.

– asynchronous: means data-reception is pending or ongoing with the return of the call. Usu-
ally, interrupts/callbacks/signals or polling is used to determine completion.

– buffered: means data is copied-in in larger chunks than request-size. Usually for amortizing
wait-time.

Examples:

– sync unbuffered E.g. Blocking read-call, fread() or SPI-read, zero-copying in shared
memory.

– sync buffered E.g. Blocking read-call with caching applied. Makes sense if read pattern
exhibits spatial locality.

– async unbuffered E.g. zero-copying in shared memory. Be careful of data hazards, race
conditions, etc!

– async buffered E.g. aio_read() or DMA.

Unfortunately, I/O may not be atomic and may, therefore, require locking. Locking may not be needed if
multiple independent channels are available.

• The system has non-atomic write and one shared channel E.g. UART. Locking required.

lock(); emit(a); emit(b); emit(c); release();

• The system has non-atomic write but many channels E.g. Multi-UART. Lock-free if the bottom-
layer maps each Zephyr thread+ISR to its own channel, thus alleviating races as each thread
is sequentially consistent with itself.

emit(a,thread_id); emit(b,thread_id); emit(c,thread_id);

• The system has atomic write but one shared channel E.g. native_posix or board with DMA.
May or may not need locking.

emit(a ## b ## c); /* Concat to buffer */

lock(); emit(a); emit(b); emit(c); release(); /* No extra mem */

• The system has atomic write and many channels E.g. native_posix or board with multi-channel
DMA. Lock-free.

emit(a ## b ## c, thread_id);

API

Common

group tracing_apis

Tracing APIs.

1580 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Functions

void sys_trace_isr_enter(void)

Called when entering an ISR.

void sys_trace_isr_exit(void)

Called when exiting an ISR.

void sys_trace_isr_exit_to_scheduler(void)

Called when exiting an ISR and switching to scheduler.

void sys_trace_idle(void)

Called when the cpu enters the idle state.

Threads

group thread_tracing_apis

Thread Tracing APIs.

Defines

sys_port_trace_k_thread_foreach_enter()

Called when entering a k_thread_foreach call.

sys_port_trace_k_thread_foreach_exit()

Called when exiting a k_thread_foreach call.

sys_port_trace_k_thread_foreach_unlocked_enter()

Called when entering a k_thread_foreach_unlocked.

sys_port_trace_k_thread_foreach_unlocked_exit()

Called when exiting a k_thread_foreach_unlocked.

sys_port_trace_k_thread_create(new_thread)

Trace creating a Thread.

Parameters

• new_thread – Thread object

sys_port_trace_k_thread_user_mode_enter()

Trace Thread entering user mode.

sys_port_trace_k_thread_join_enter(thread, timeout)

Called when entering a k_thread_join.

Parameters

• thread – Thread object

• timeout – Timeout period

sys_port_trace_k_thread_join_blocking(thread, timeout)

Called when k_thread_join blocks.

Parameters

• thread – Thread object

• timeout – Timeout period

8.9. Debugging and Tracing 1581

Zephyr Project Documentation, Release 2.7.0-rc2

sys_port_trace_k_thread_join_exit(thread, timeout, ret)

Called when exiting k_thread_join.

Parameters

• thread – Thread object

• timeout – Timeout period

• ret – Return value

sys_port_trace_k_thread_sleep_enter(timeout)

Called when entering k_thread_sleep.

Parameters

• timeout – Timeout period

sys_port_trace_k_thread_sleep_exit(timeout, ret)

Called when exiting k_thread_sleep.

Parameters

• timeout – Timeout period

• ret – Return value

sys_port_trace_k_thread_msleep_enter(ms)

Called when entering k_thread_msleep.

Parameters

• ms – Duration in milliseconds

sys_port_trace_k_thread_msleep_exit(ms, ret)

Called when exiting k_thread_msleep.

Parameters

• ms – Duration in milliseconds

• ret – Return value

sys_port_trace_k_thread_usleep_enter(us)

Called when entering k_thread_usleep.

Parameters

• us – Duration in microseconds

sys_port_trace_k_thread_usleep_exit(us, ret)

Called when exiting k_thread_usleep.

Parameters

• us – Duration in microseconds

• ret – Return value

sys_port_trace_k_thread_busy_wait_enter(usec_to_wait)

Called when entering k_thread_busy_wait.

Parameters

• usec_to_wait – Duration in microseconds

sys_port_trace_k_thread_busy_wait_exit(usec_to_wait)

Called when exiting k_thread_busy_wait.

Parameters

1582 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

• usec_to_wait – Duration in microseconds

sys_port_trace_k_thread_yield()

Called when a thread yields.

sys_port_trace_k_thread_wakeup(thread)

Called when a thread wakes up.

Parameters

• thread – Thread object

sys_port_trace_k_thread_start(thread)

Called when a thread is started.

Parameters

• thread – Thread object

sys_port_trace_k_thread_abort(thread)

Called when a thread is being aborted.

Parameters

• thread – Thread object

sys_port_trace_k_thread_priority_set(thread)

Called when setting priority of a thread.

Parameters

• thread – Thread object

sys_port_trace_k_thread_suspend_enter(thread)

Called when a thread enters the k_thread_suspend function.

Parameters

• thread – Thread object

sys_port_trace_k_thread_suspend_exit(thread)

Called when a thread exits the k_thread_suspend function.

Parameters

• thread – Thread object

sys_port_trace_k_thread_resume_enter(thread)

Called when a thread enters the resume from suspension function.

Parameters

• thread – Thread object

sys_port_trace_k_thread_resume_exit(thread)

Called when a thread exits the resumed from suspension function.

Parameters

• thread – Thread object

sys_port_trace_k_thread_sched_lock()

Called when the thread scheduler is locked.

sys_port_trace_k_thread_sched_unlock()

Called when the thread sceduler is unlocked.

8.9. Debugging and Tracing 1583

Zephyr Project Documentation, Release 2.7.0-rc2

sys_port_trace_k_thread_name_set(thread, ret)

Called when a thread name is set.

Parameters

• thread – Thread object

• ret – Return value

sys_port_trace_k_thread_switched_out()

Called before a thread has been selected to run.

sys_port_trace_k_thread_switched_in()

Called after a thread has been selected to run.

sys_port_trace_k_thread_ready(thread)

Called when a thread is ready to run.

Parameters

• thread – Thread object

sys_port_trace_k_thread_pend(thread)

Called when a thread is pending.

Parameters

• thread – Thread object

sys_port_trace_k_thread_info(thread)

Provide information about specific thread.

Parameters

• thread – Thread object

sys_port_trace_k_thread_sched_wakeup(thread)

Trace implicit thread wakup invocation by the scheduler.

Parameters

• thread – Thread object

sys_port_trace_k_thread_sched_abort(thread)

Trace implicit thread abort invocation by the scheduler.

Parameters

• thread – Thread object

sys_port_trace_k_thread_sched_priority_set(thread, prio)

Trace implicit thread set priority invocation by the scheduler.

Parameters

• thread – Thread object

• prio – Thread priority

sys_port_trace_k_thread_sched_ready(thread)

Trace implicit thread ready invocation by the scheduler.

Parameters

• thread – Thread object

1584 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

sys_port_trace_k_thread_sched_pend(thread)

Trace implicit thread pend invocation by the scheduler.

Parameters

• thread – Thread object

sys_port_trace_k_thread_sched_resume(thread)

Trace implicit thread resume invocation by the scheduler.

Parameters

• thread – Thread object

sys_port_trace_k_thread_sched_suspend(thread)

Trace implicit thread suspend invocation by the scheduler.

Parameters

• thread – Thread object

Work Queues

group work_tracing_apis

Work Tracing APIs.

Defines

sys_port_trace_k_work_init(work)

Trace initialisation of a Work structure.

Parameters

• work – Work structure

sys_port_trace_k_work_submit_to_queue_enter(queue, work)

Trace submit work to work queue call entry.

Parameters

• queue – Work queue structure

• work – Work structure

sys_port_trace_k_work_submit_to_queue_exit(queue, work, ret)

Trace submit work to work queue call exit.

Parameters

• queue – Work queue structure

• work – Work structure

• ret – Return value

sys_port_trace_k_work_submit_enter(work)

Trace submit work to system work queue call entry.

Parameters

• work – Work structure

8.9. Debugging and Tracing 1585

Zephyr Project Documentation, Release 2.7.0-rc2

sys_port_trace_k_work_submit_exit(work, ret)

Trace submit work to system work queue call exit.

Parameters

• work – Work structure

• ret – Return value

sys_port_trace_k_work_flush_enter(work)

Trace flush work call entry.

Parameters

• work – Work structure

sys_port_trace_k_work_flush_blocking(work, timeout)

Trace flush work call blocking.

Parameters

• work – Work structure

• timeout – Timeout period

sys_port_trace_k_work_flush_exit(work, ret)

Trace flush work call exit.

Parameters

• work – Work structure

• ret – Return value

sys_port_trace_k_work_cancel_enter(work)

Trace cancel work call entry.

Parameters

• work – Work structure

sys_port_trace_k_work_cancel_exit(work, ret)

Trace cancel work call exit.

Parameters

• work – Work structure

• ret – Return value

sys_port_trace_k_work_cancel_sync_enter(work, sync)

Trace cancel sync work call entry.

Parameters

• work – Work structure

• sync – Sync object

sys_port_trace_k_work_cancel_sync_blocking(work, sync)

Trace cancel sync work call blocking.

Parameters

• work – Work structure

• sync – Sync object

1586 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

sys_port_trace_k_work_cancel_sync_exit(work, sync, ret)

Trace cancel sync work call exit.

Parameters

• work – Work structure

• sync – Sync object

• ret – Return value

Poll

group poll_tracing_apis

Poll Tracing APIs.

Defines

sys_port_trace_k_poll_api_event_init(event)

Trace initialisation of a Poll Event.

Parameters

• event – Poll Event

sys_port_trace_k_poll_api_poll_enter(events)

Trace Polling call start.

Parameters

• events – Poll Events

sys_port_trace_k_poll_api_poll_exit(events, ret)

Trace Polling call outcome.

Parameters

• events – Poll Events

• ret – Return value

sys_port_trace_k_poll_api_signal_init(signal)

Trace initialisation of a Poll Signal.

Parameters

• signal – Poll Signal

sys_port_trace_k_poll_api_signal_reset(signal)

Trace resetting of Poll Signal.

Parameters

• signal – Poll Signal

sys_port_trace_k_poll_api_signal_check(signal)

Trace checking of Poll Signal.

Parameters

• signal – Poll Signal

8.9. Debugging and Tracing 1587

Zephyr Project Documentation, Release 2.7.0-rc2

sys_port_trace_k_poll_api_signal_raise(signal, ret)

Trace raising of Poll Signal.

Parameters

• signal – Poll Signal

• ret – Return value

Semaphore

group sem_tracing_apis

Semaphore Tracing APIs.

Defines

sys_port_trace_k_sem_init(sem, ret)

Trace initialisation of a Semaphore.

Parameters

• sem – Semaphore object

• ret – Return value

sys_port_trace_k_sem_give_enter(sem)

Trace giving a Semaphore entry.

Parameters

• sem – Semaphore object

sys_port_trace_k_sem_give_exit(sem)

Trace giving a Semaphore exit.

Parameters

• sem – Semaphore object

sys_port_trace_k_sem_take_enter(sem, timeout)

Trace taking a Semaphore attempt start.

Parameters

• sem – Semaphore object

• timeout – Timeout period

sys_port_trace_k_sem_take_blocking(sem, timeout)

Trace taking a Semaphore attempt blocking.

Parameters

• sem – Semaphore object

• timeout – Timeout period

sys_port_trace_k_sem_take_exit(sem, timeout, ret)

Trace taking a Semaphore attempt outcome.

Parameters

• sem – Semaphore object

• timeout – Timeout period

• ret – Return value

1588 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

sys_port_trace_k_sem_reset(sem)
Trace resetting a Semaphore.

Parameters

• sem – Semaphore object

Mutex

group mutex_tracing_apis

Mutex Tracing APIs.

Defines

sys_port_trace_k_mutex_init(mutex, ret)
Trace initialization of Mutex.

Parameters

• mutex – Mutex object

• ret – Return value

sys_port_trace_k_mutex_lock_enter(mutex, timeout)
Trace Mutex lock attempt start.

Parameters

• mutex – Mutex object

• timeout – Timeout period

sys_port_trace_k_mutex_lock_blocking(mutex, timeout)
Trace Mutex lock attempt blocking.

Parameters

• mutex – Mutex object

• timeout – Timeout period

sys_port_trace_k_mutex_lock_exit(mutex, timeout, ret)
Trace Mutex lock attempt outcome.

Parameters

• mutex – Mutex object

• timeout – Timeout period

• ret – Return value

sys_port_trace_k_mutex_unlock_enter(mutex)
Trace Mutex unlock entry.

Parameters

• mutex – Mutex object

sys_port_trace_k_mutex_unlock_exit(mutex, ret)
Trace Mutex unlock exit.

Condition Variables

group condvar_tracing_apis

Conditional Variable Tracing APIs.

8.9. Debugging and Tracing 1589

Zephyr Project Documentation, Release 2.7.0-rc2

Defines

sys_port_trace_k_condvar_init(condvar, ret)

Trace initialization of Conditional Variable.

Parameters

• condvar – Conditional Variable object

• ret – Return value

sys_port_trace_k_condvar_signal_enter(condvar)

Trace Conditional Variable signaling start.

Parameters

• condvar – Conditional Variable object

sys_port_trace_k_condvar_signal_blocking(condvar, timeout)

Trace Conditional Variable signaling blocking.

Parameters

• condvar – Conditional Variable object

• timeout – Timeout period

sys_port_trace_k_condvar_signal_exit(condvar, ret)

Trace Conditional Variable signaling outcome.

Parameters

• condvar – Conditional Variable object

• ret – Return value

sys_port_trace_k_condvar_broadcast_enter(condvar)

Trace Conditional Variable broadcast enter.

Parameters

• condvar – Conditional Variable object

sys_port_trace_k_condvar_broadcast_exit(condvar, ret)

Trace Conditional Variable broadcast exit.

Parameters

• condvar – Conditional Variable object

• ret – Return value

sys_port_trace_k_condvar_wait_enter(condvar)

Trace Conditional Variable wait enter.

Parameters

• condvar – Conditional Variable object

sys_port_trace_k_condvar_wait_exit(condvar, ret)

Trace Conditional Variable wait exit.

Parameters

• condvar – Conditional Variable object

• ret – Return value

1590 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Queues

group queue_tracing_apis

Queue Tracing APIs.

Defines

sys_port_trace_k_queue_init(queue)

Trace initialization of Queue.

Parameters

• queue – Queue object

sys_port_trace_k_queue_cancel_wait(queue)

Trace Queue cancel wait.

Parameters

• queue – Queue object

sys_port_trace_k_queue_queue_insert_enter(queue, alloc)

Trace Queue insert attempt entry.

Parameters

• queue – Queue object

• alloc – Allocation flag

sys_port_trace_k_queue_queue_insert_blocking(queue, alloc, timeout)

Trace Queue insert attempt blocking.

Parameters

• queue – Queue object

• alloc – Allocation flag

• timeout – Timeout period

sys_port_trace_k_queue_queue_insert_exit(queue, alloc, ret)

Trace Queue insert attempt outcome.

Parameters

• queue – Queue object

• alloc – Allocation flag

• ret – Return value

sys_port_trace_k_queue_append_enter(queue)

Trace Queue append enter.

Parameters

• queue – Queue object

sys_port_trace_k_queue_append_exit(queue)

Trace Queue append exit.

Parameters

• queue – Queue object

8.9. Debugging and Tracing 1591

Zephyr Project Documentation, Release 2.7.0-rc2

sys_port_trace_k_queue_alloc_append_enter(queue)

Trace Queue alloc append enter.

Parameters

• queue – Queue object

sys_port_trace_k_queue_alloc_append_exit(queue, ret)

Trace Queue alloc append exit.

Parameters

• queue – Queue object

• ret – Return value

sys_port_trace_k_queue_prepend_enter(queue)

Trace Queue prepend enter.

Parameters

• queue – Queue object

sys_port_trace_k_queue_prepend_exit(queue)

Trace Queue prepend exit.

Parameters

• queue – Queue object

sys_port_trace_k_queue_alloc_prepend_enter(queue)

Trace Queue alloc prepend enter.

Parameters

• queue – Queue object

sys_port_trace_k_queue_alloc_prepend_exit(queue, ret)

Trace Queue alloc prepend exit.

Parameters

• queue – Queue object

• ret – Return value

sys_port_trace_k_queue_insert_enter(queue)

Trace Queue insert attempt entry.

Parameters

• queue – Queue object

sys_port_trace_k_queue_insert_blocking(queue, timeout)

Trace Queue insert attempt blocking.

Parameters

• queue – Queue object

• timeout – Timeout period

sys_port_trace_k_queue_insert_exit(queue)

Trace Queue insert attempt exit.

Parameters

• queue – Queue object

1592 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

sys_port_trace_k_queue_append_list_enter(queue)

Trace Queue append list enter.

Parameters

• queue – Queue object

sys_port_trace_k_queue_append_list_exit(queue, ret)

Trace Queue append list exit.

Parameters

• queue – Queue object

• ret – Return value

sys_port_trace_k_queue_merge_slist_enter(queue)

Trace Queue merge slist enter.

Parameters

• queue – Queue object

sys_port_trace_k_queue_merge_slist_exit(queue, ret)

Trace Queue merge slist exit.

Parameters

• queue – Queue object

• ret – Return value

sys_port_trace_k_queue_get_enter(queue, timeout)

Trace Queue get attempt enter.

Parameters

• queue – Queue object

• timeout – Timeout period

sys_port_trace_k_queue_get_blocking(queue, timeout)

Trace Queue get attempt blockings.

Parameters

• queue – Queue object

• timeout – Timeout period

sys_port_trace_k_queue_get_exit(queue, timeout, ret)

Trace Queue get attempt outcome.

Parameters

• queue – Queue object

• timeout – Timeout period

• ret – Return value

sys_port_trace_k_queue_remove_enter(queue)

Trace Queue remove enter.

Parameters

• queue – Queue object

8.9. Debugging and Tracing 1593

Zephyr Project Documentation, Release 2.7.0-rc2

sys_port_trace_k_queue_remove_exit(queue, ret)

Trace Queue remove exit.

Parameters

• queue – Queue object

• ret – Return value

sys_port_trace_k_queue_unique_append_enter(queue)

Trace Queue unique append enter.

Parameters

• queue – Queue object

sys_port_trace_k_queue_unique_append_exit(queue, ret)

Trace Queue unique append exit.

Parameters

• queue – Queue object

• ret – Return value

sys_port_trace_k_queue_peek_head(queue, ret)

Trace Queue peek head.

Parameters

• queue – Queue object

• ret – Return value

sys_port_trace_k_queue_peek_tail(queue, ret)

Trace Queue peek tail.

Parameters

• queue – Queue object

• ret – Return value

FIFO

group fifo_tracing_apis

FIFO Tracing APIs.

Defines

sys_port_trace_k_fifo_init_enter(fifo)

Trace initialization of FIFO Queue entry.

Parameters

• fifo – FIFO object

sys_port_trace_k_fifo_init_exit(fifo)

Trace initialization of FIFO Queue exit.

Parameters

• fifo – FIFO object

1594 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

sys_port_trace_k_fifo_cancel_wait_enter(fifo)

Trace FIFO Queue cancel wait entry.

Parameters

• fifo – FIFO object

sys_port_trace_k_fifo_cancel_wait_exit(fifo)

Trace FIFO Queue cancel wait exit.

Parameters

• fifo – FIFO object

sys_port_trace_k_fifo_put_enter(fifo, data)

Trace FIFO Queue put entry.

Parameters

• fifo – FIFO object

• data – Data item

sys_port_trace_k_fifo_put_exit(fifo, data)

Trace FIFO Queue put exit.

Parameters

• fifo – FIFO object

• data – Data item

sys_port_trace_k_fifo_alloc_put_enter(fifo, data)

Trace FIFO Queue alloc put entry.

Parameters

• fifo – FIFO object

• data – Data item

sys_port_trace_k_fifo_alloc_put_exit(fifo, data, ret)

Trace FIFO Queue alloc put exit.

Parameters

• fifo – FIFO object

• data – Data item

• ret – Return value

sys_port_trace_k_fifo_alloc_put_list_enter(fifo, head, tail)

Trace FIFO Queue put list entry.

Parameters

• fifo – FIFO object

• head – First ll-node

• tail – Last ll-node

sys_port_trace_k_fifo_alloc_put_list_exit(fifo, head, tail)

Trace FIFO Queue put list exit.

Parameters

• fifo – FIFO object

• head – First ll-node

8.9. Debugging and Tracing 1595

Zephyr Project Documentation, Release 2.7.0-rc2

• tail – Last ll-node

sys_port_trace_k_fifo_alloc_put_slist_enter(fifo, list)

Trace FIFO Queue put slist entry.

Parameters

• fifo – FIFO object

• list – Syslist object

sys_port_trace_k_fifo_alloc_put_slist_exit(fifo, list)

Trace FIFO Queue put slist exit.

Parameters

• fifo – FIFO object

• list – Syslist object

sys_port_trace_k_fifo_get_enter(fifo, timeout)

Trace FIFO Queue get entry.

Parameters

• fifo – FIFO object

• timeout – Timeout period

sys_port_trace_k_fifo_get_exit(fifo, timeout, ret)

Trace FIFO Queue get exit.

Parameters

• fifo – FIFO object

• timeout – Timeout period

• ret – Return value

sys_port_trace_k_fifo_peek_head_entry(fifo)

Trace FIFO Queue peek head entry.

Parameters

• fifo – FIFO object

sys_port_trace_k_fifo_peek_head_exit(fifo, ret)

Trace FIFO Queue peek head exit.

Parameters

• fifo – FIFO object

• ret – Return value

sys_port_trace_k_fifo_peek_tail_entry(fifo)

Trace FIFO Queue peek tail entry.

Parameters

• fifo – FIFO object

sys_port_trace_k_fifo_peek_tail_exit(fifo, ret)

Trace FIFO Queue peek tail exit.

Parameters

• fifo – FIFO object

• ret – Return value

1596 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

LIFO

group lifo_tracing_apis

LIFO Tracing APIs.

Defines

sys_port_trace_k_lifo_init_enter(lifo)

Trace initialization of LIFO Queue entry.

Parameters

• lifo – LIFO object

sys_port_trace_k_lifo_init_exit(lifo)

Trace initialization of LIFO Queue exit.

Parameters

• lifo – LIFO object

sys_port_trace_k_lifo_put_enter(lifo, data)

Trace LIFO Queue put entry.

Parameters

• lifo – LIFO object

• data – Data item

sys_port_trace_k_lifo_put_exit(lifo, data)

Trace LIFO Queue put exit.

Parameters

• lifo – LIFO object

• data – Data item

sys_port_trace_k_lifo_alloc_put_enter(lifo, data)

Trace LIFO Queue alloc put entry.

Parameters

• lifo – LIFO object

• data – Data item

sys_port_trace_k_lifo_alloc_put_exit(lifo, data, ret)

Trace LIFO Queue alloc put exit.

Parameters

• lifo – LIFO object

• data – Data item

• ret – Return value

sys_port_trace_k_lifo_get_enter(lifo, timeout)

Trace LIFO Queue get entry.

Parameters

• lifo – LIFO object

• timeout – Timeout period

8.9. Debugging and Tracing 1597

Zephyr Project Documentation, Release 2.7.0-rc2

sys_port_trace_k_lifo_get_exit(lifo, timeout, ret)

Trace LIFO Queue get exit.

Parameters

• lifo – LIFO object

• timeout – Timeout period

• ret – Return value

Stacks

group stack_tracing_apis

Stack Tracing APIs.

Defines

sys_port_trace_k_stack_init(stack)

Trace initialization of Stack.

Parameters

• stack – Stack object

sys_port_trace_k_stack_alloc_init_enter(stack)

Trace Stack alloc init attempt entry.

Parameters

• stack – Stack object

sys_port_trace_k_stack_alloc_init_exit(stack, ret)

Trace Stack alloc init outcome.

Parameters

• stack – Stack object

• ret – Return value

sys_port_trace_k_stack_cleanup_enter(stack)

Trace Stack cleanup attempt entry.

Parameters

• stack – Stack object

sys_port_trace_k_stack_cleanup_exit(stack, ret)

Trace Stack cleanup outcome.

Parameters

• stack – Stack object

• ret – Return value

sys_port_trace_k_stack_push_enter(stack)

Trace Stack push attempt entry.

Parameters

• stack – Stack object

1598 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

sys_port_trace_k_stack_push_exit(stack, ret)

Trace Stack push attempt outcome.

Parameters

• stack – Stack object

• ret – Return value

sys_port_trace_k_stack_pop_enter(stack, timeout)

Trace Stack pop attempt entry.

Parameters

• stack – Stack object

• timeout – Timeout period

sys_port_trace_k_stack_pop_blocking(stack, timeout)

Trace Stack pop attempt blocking.

Parameters

• stack – Stack object

• timeout – Timeout period

sys_port_trace_k_stack_pop_exit(stack, timeout, ret)

Trace Stack pop attempt outcome.

Parameters

• stack – Stack object

• timeout – Timeout period

• ret – Return value

Message Queues

group msgq_tracing_apis

Message Queue Tracing APIs.

Defines

sys_port_trace_k_msgq_init(msgq)

Trace initialization of Message Queue.

Parameters

• msgq – Message Queue object

sys_port_trace_k_msgq_alloc_init_enter(msgq)

Trace Message Queue alloc init attempt entry.

Parameters

• msgq – Message Queue object

sys_port_trace_k_msgq_alloc_init_exit(msgq, ret)

Trace Message Queue alloc init attempt outcome.

Parameters

• msgq – Message Queue object

• ret – Return value

8.9. Debugging and Tracing 1599

Zephyr Project Documentation, Release 2.7.0-rc2

sys_port_trace_k_msgq_cleanup_enter(msgq)

Trace Message Queue cleanup attempt entry.

Parameters

• msgq – Message Queue object

sys_port_trace_k_msgq_cleanup_exit(msgq, ret)

Trace Message Queue cleanup attempt outcome.

Parameters

• msgq – Message Queue object

• ret – Return value

sys_port_trace_k_msgq_put_enter(msgq, timeout)

Trace Message Queue put attempt entry.

Parameters

• msgq – Message Queue object

• timeout – Timeout period

sys_port_trace_k_msgq_put_blocking(msgq, timeout)

Trace Message Queue put attempt blocking.

Parameters

• msgq – Message Queue object

• timeout – Timeout period

sys_port_trace_k_msgq_put_exit(msgq, timeout, ret)

Trace Message Queue put attempt outcome.

Parameters

• msgq – Message Queue object

• timeout – Timeout period

• ret – Return value

sys_port_trace_k_msgq_get_enter(msgq, timeout)

Trace Message Queue get attempt entry.

Parameters

• msgq – Message Queue object

• timeout – Timeout period

sys_port_trace_k_msgq_get_blocking(msgq, timeout)

Trace Message Queue get attempt blockings.

Parameters

• msgq – Message Queue object

• timeout – Timeout period

sys_port_trace_k_msgq_get_exit(msgq, timeout, ret)

Trace Message Queue get attempt outcome.

Parameters

• msgq – Message Queue object

• timeout – Timeout period

1600 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

• ret – Return value

sys_port_trace_k_msgq_peek(msgq, ret)

Trace Message Queue peek.

Parameters

• msgq – Message Queue object

• ret – Return value

sys_port_trace_k_msgq_purge(msgq)

Trace Message Queue purge.

Parameters

• msgq – Message Queue object

Mailbox

group mbox_tracing_apis

Mailbox Tracing APIs.

Defines

sys_port_trace_k_mbox_init(mbox)

Trace initialization of Mailbox.

Parameters

• mbox – Mailbox object

sys_port_trace_k_mbox_message_put_enter(mbox, timeout)

Trace Mailbox message put attempt entry.

Parameters

• mbox – Mailbox object

• timeout – Timeout period

sys_port_trace_k_mbox_message_put_blocking(mbox, timeout)

Trace Mailbox message put attempt blocking.

Parameters

• mbox – Mailbox object

• timeout – Timeout period

sys_port_trace_k_mbox_message_put_exit(mbox, timeout, ret)

Trace Mailbox message put attempt outcome.

Parameters

• mbox – Mailbox object

• timeout – Timeout period

• ret – Return value

sys_port_trace_k_mbox_put_enter(mbox, timeout)

Trace Mailbox put attempt entry.

Parameters

• mbox – Mailbox object

8.9. Debugging and Tracing 1601

Zephyr Project Documentation, Release 2.7.0-rc2

• timeout – Timeout period

sys_port_trace_k_mbox_put_exit(mbox, timeout, ret)

Trace Mailbox put attempt blocking.

Parameters

• mbox – Mailbox object

• timeout – Timeout period

• ret – Return value

sys_port_trace_k_mbox_async_put_enter(mbox, sem)

Trace Mailbox async put entry.

Parameters

• mbox – Mailbox object

• sem – Semaphore object

sys_port_trace_k_mbox_async_put_exit(mbox, sem)

Trace Mailbox async put exit.

Parameters

• mbox – Mailbox object

• sem – Semaphore object

sys_port_trace_k_mbox_get_enter(mbox, timeout)

Trace Mailbox get attempt entry.

Parameters

• mbox – Mailbox entry

• timeout – Timeout period

sys_port_trace_k_mbox_get_blocking(mbox, timeout)

Trace Mailbox get attempt blocking.

Parameters

• mbox – Mailbox entry

• timeout – Timeout period

sys_port_trace_k_mbox_get_exit(mbox, timeout, ret)

Trace Mailbox get attempt outcome.

Parameters

• mbox – Mailbox entry

• timeout – Timeout period

• ret – Return value

sys_port_trace_k_mbox_data_get(rx_msg)

Trace Mailbox data get.

rx_msg Receive Message object

Pipes

group pipe_tracing_apis

Pipe Tracing APIs.

1602 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Defines

sys_port_trace_k_pipe_init(pipe)

Trace initialization of Pipe.

Parameters

• pipe – Pipe object

sys_port_trace_k_pipe_cleanup_enter(pipe)

Trace Pipe cleanup entry.

Parameters

• pipe – Pipe object

sys_port_trace_k_pipe_cleanup_exit(pipe, ret)

Trace Pipe cleanup exit.

Parameters

• pipe – Pipe object

• ret – Return value

sys_port_trace_k_pipe_alloc_init_enter(pipe)

Trace Pipe alloc init entry.

Parameters

• pipe – Pipe object

sys_port_trace_k_pipe_alloc_init_exit(pipe, ret)

Trace Pipe alloc init exit.

Parameters

• pipe – Pipe object

• ret – Return value

sys_port_trace_k_pipe_put_enter(pipe, timeout)

Trace Pipe put attempt entry.

Parameters

• pipe – Pipe object

• timeout – Timeout period

sys_port_trace_k_pipe_put_blocking(pipe, timeout)

Trace Pipe put attempt blocking.

Parameters

• pipe – Pipe object

• timeout – Timeout period

sys_port_trace_k_pipe_put_exit(pipe, timeout, ret)

Trace Pipe put attempt outcome.

Parameters

• pipe – Pipe object

• timeout – Timeout period

• ret – Return value

8.9. Debugging and Tracing 1603

Zephyr Project Documentation, Release 2.7.0-rc2

sys_port_trace_k_pipe_get_enter(pipe, timeout)

Trace Pipe get attempt entry.

Parameters

• pipe – Pipe object

• timeout – Timeout period

sys_port_trace_k_pipe_get_blocking(pipe, timeout)

Trace Pipe get attempt blocking.

Parameters

• pipe – Pipe object

• timeout – Timeout period

sys_port_trace_k_pipe_get_exit(pipe, timeout, ret)

Trace Pipe get attempt outcome.

Parameters

• pipe – Pipe object

• timeout – Timeout period

• ret – Return value

sys_port_trace_k_pipe_block_put_enter(pipe, sem)

Trace Pipe block put enter.

Parameters

• pipe – Pipe object

• sem – Semaphore object

sys_port_trace_k_pipe_block_put_exit(pipe, sem)

Trace Pipe block put exit.

Parameters

• pipe – Pipe object

• sem – Semaphore object

Heaps

group heap_tracing_apis

Heap Tracing APIs.

Defines

sys_port_trace_k_heap_init(h)

Trace initialization of Heap.

Parameters

• h – Heap object

sys_port_trace_k_heap_aligned_alloc_enter(h, timeout)

Trace Heap aligned alloc attempt entry.

Parameters

• h – Heap object

1604 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

• timeout – Timeout period

sys_port_trace_k_heap_aligned_alloc_blocking(h, timeout)

Trace Heap align alloc attempt blocking.

Parameters

• h – Heap object

• timeout – Timeout period

sys_port_trace_k_heap_aligned_alloc_exit(h, timeout, ret)

Trace Heap align alloc attempt outcome.

Parameters

• h – Heap object

• timeout – Timeout period

• ret – Return value

sys_port_trace_k_heap_alloc_enter(h, timeout)

Trace Heap alloc enter.

Parameters

• h – Heap object

• timeout – Timeout period

sys_port_trace_k_heap_alloc_exit(h, timeout, ret)

Trace Heap alloc exit.

Parameters

• h – Heap object

• timeout – Timeout period

• ret – Return value

sys_port_trace_k_heap_free(h)

Trace Heap free.

Parameters

• h – Heap object

sys_port_trace_k_heap_sys_k_aligned_alloc_enter(heap)

Trace System Heap aligned alloc enter.

Parameters

• heap – Heap object

sys_port_trace_k_heap_sys_k_aligned_alloc_exit(heap, ret)

Trace System Heap aligned alloc exit.

Parameters

• heap – Heap object

• ret – Return value

sys_port_trace_k_heap_sys_k_malloc_enter(heap)

Trace System Heap aligned alloc enter.

Parameters

• heap – Heap object

8.9. Debugging and Tracing 1605

Zephyr Project Documentation, Release 2.7.0-rc2

sys_port_trace_k_heap_sys_k_malloc_exit(heap, ret)

Trace System Heap aligned alloc exit.

Parameters

• heap – Heap object

• ret – Return value

sys_port_trace_k_heap_sys_k_free_enter(heap)

Trace System Heap free entry.

Parameters

• heap – Heap object

sys_port_trace_k_heap_sys_k_free_exit(heap)

Trace System Heap free exit.

Parameters

• heap – Heap object

sys_port_trace_k_heap_sys_k_calloc_enter(heap)

Trace System heap calloc enter.

Parameters

• heap –

sys_port_trace_k_heap_sys_k_calloc_exit(heap, ret)

Trace System heap calloc exit.

Parameters

• heap – Heap object

• ret – Return value

Memory Slabs

group mslab_tracing_apis

Memory Slab Tracing APIs.

Defines

sys_port_trace_k_mem_slab_init(slab, rc)

Trace initialization of Memory Slab.

Parameters

• slab – Memory Slab object

• rc – Return value

sys_port_trace_k_mem_slab_alloc_enter(slab, timeout)

Trace Memory Slab alloc attempt entry.

Parameters

• slab – Memory Slab object

• timeout – Timeout period

1606 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

sys_port_trace_k_mem_slab_alloc_blocking(slab, timeout)

Trace Memory Slab alloc attempt blocking.

Parameters

• slab – Memory Slab object

• timeout – Timeout period

sys_port_trace_k_mem_slab_alloc_exit(slab, timeout, ret)

Trace Memory Slab alloc attempt outcome.

Parameters

• slab – Memory Slab object

• timeout – Timeout period

• ret – Return value

sys_port_trace_k_mem_slab_free_enter(slab)

Trace Memory Slab free entry.

Parameters

• slab – Memory Slab object

sys_port_trace_k_mem_slab_free_exit(slab)

Trace Memory Slab free exit.

Parameters

• slab – Memory Slab object

Timers

group timer_tracing_apis

Timer Tracing APIs.

Defines

sys_port_trace_k_timer_init(timer)

Trace initialization of Timer.

Parameters

• timer – Timer object

sys_port_trace_k_timer_start(timer)

Trace Timer start.

Parameters

• timer – Timer object

sys_port_trace_k_timer_stop(timer)

Trace Timer stop.

Parameters

• timer – Timer object

8.9. Debugging and Tracing 1607

Zephyr Project Documentation, Release 2.7.0-rc2

sys_port_trace_k_timer_status_sync_enter(timer)

Trace Timer status sync entry.

Parameters

• timer – Timer object

sys_port_trace_k_timer_status_sync_blocking(timer, timeout)

Trace Timer Status sync blocking.

Parameters

• timer – Timer object

• timeout – Timeout period

sys_port_trace_k_timer_status_sync_exit(timer, result)

Trace Time Status sync outcome.

Parameters

• timer – Timer object

• result – Return value

8.10 Device Management

8.10.1 MCUmgr

Overview

The management subsystem allows remote management of Zephyr-enabled devices. The following man-
agement operations are available:

• Image management

• File System management

• Log management (currently disabled)

• OS management

• Shell management

over the following transports:

• BLE (Bluetooth Low Energy)

• Serial (UART)

• UDP over IP

The management subsystem is based on the Simple Management Protocol (SMP) provided by MCUmgr,
an open source project that provides a management subsystem that is portable across multiple real-time
operating systems.

The management subsystem is split in two different locations in the Zephyr tree:

• zephyrproject-rtos/mcumgr repo contains a clean import of the MCUmgr project

• subsys/mgmt/ contains the Zephyr-specific bindings to MCUmgr

Additionally there is a sample that provides management functionality over BLE and serial.

1608 Chapter 8. User and Developer Guides

https://github.com/apache/mynewt-mcumgr
https://github.com/zephyrproject-rtos/mcumgr
https://github.com/zephyrproject-rtos/zephyr/blob/main/subsys/mgmt/

Zephyr Project Documentation, Release 2.7.0-rc2

Command-line Tool

MCUmgr provides a command-line tool, mcumgr, for managing remote devices. The tool is written in the
Go programming language.

To install the tool:

go get github.com/apache/mynewt-mcumgr-cli/mcumgr

Configuring the transport

There are two command-line options that are responsible for setting and configuring the transport layer
to use when communicating with managed device:

• --conntype is used to choose the transport used, and

• --connstring is used to pass a comma separated list of options in the key=value format, where
each valid key depends on the particular conntype.

Valid transports for --conntype are serial, ble and udp. Each transport expects a different set of
key/value options:

serial

--connstring accepts the following key values:

dev the device name for the OS mcumgr is running on (eg, /dev/ttyUSB0, /dev/tty.
usbserial, COM1, etc).

baud the communication speed; must match the baudrate of the server.
mtu aka Maximum Transmission Unit, the maximum protocol packet size.

ble

--connstring accepts the following key values:

ctlr_name an OS specific string for the controller name.
own_addr_typecan be one of public, random, rpa_pub, rpa_rnd, where random is the default.
peer_name the name the peer BLE device advertises, this should match the configuration specified

with :kconfig:`CONFIG_BT_DEVICE_NAME`.
peer_id the peer BLE device address or UUID. Only required when peer_name was not given.

The format depends on the OS where mcumgr is run, it is a 6 bytes hexadecimal string
separated by colons on Linux, or a 128-bit UUID on macOS.

conn_timeout a float number representing the connection timeout in seconds.

udp

--connstring takes the form [addr]:port where:

addr can be a DNS name (if it can be resolved to the device IP), IPv4 addr (app must be
built with :kconfig:`CONFIG_MCUMGR_SMP_UDP_IPV4`), or IPv6 addr (app must
be built with :kconfig:`CONFIG_MCUMGR_SMP_UDP_IPV6`)

port any valid UDP port.

Saving the connection config

The transport configuration can be managed with the conn sub-command and later used with --conn (or
-c) parameter to skip typing both --conntype and --connstring. For example a new config for a se-
rial device that would require typing mcumgr --conntype serial --connstring dev=/dev/ttyACM0,
baud=115200,mtu=512 can be saved with:

8.10. Device Management 1609

Zephyr Project Documentation, Release 2.7.0-rc2

mcumgr conn add acm0 type="serial" connstring="dev=/dev/ttyACM0,baud=115200,mtu=512"

Accessing this port can now be done with:

mcumgr -c acm0

General options

Some options work for every mcumgr command and might be helpful to debug and fix issues with the
communication, among them the following deserve special mention:

-l
<log-level>

Configures the log level, which can be one of critical, error, warn, info or debug,
from less to most verbose. When there are communication issues, -lDEBUG might be
useful to dump the packets for later inspection.

-t
<timeout>

Changes the timeout waiting for a response from the default of 10s to a given value.
Some commands might take a long time of processing, eg, the erase before an image
upload, and might need incrementing the timeout to a larger value.

-r
<tries>

Changes the number of retries on timeout from the default of 1 to a given value.

List of Commands

Not all commands defined by mcumgr (and SMP protocol) are currently supported on Zephyr. The ones
that are supported are described in the following table:

Tip: Running mcumgr with no parameters, or -h will display the list of commands.

Command Description
echo Send data to a device and display the echoed back data. This com-

mand is part of the OS group, which must be enabled by setting :kcon-
fig:`CONFIG_MCUMGR_CMD_OS_MGMT`. The echo command itself can
be enabled by setting :kconfig:`CONFIG_OS_MGMT_ECHO`.

fs Access files on a device. More info in Filesystem Management.
image Manage images on a device. More info in Image Management.
reset Perform a soft reset of a device. This command is part

of the OS group, which must be enabled by setting :kcon-
fig:`CONFIG_MCUMGR_CMD_OS_MGMT`. The reset command
itself is always enabled and the time taken for a reset to happen can be set
with :kconfig:`CONFIG_OS_MGMT_RESET_MS` (in ms).

shell Execute a command in the remote shell. This option
is disabled by default and can be enabled with :kcon-
fig:`CONFIG_MCUMGR_CMD_SHELL_MGMT` = y. To know more
about the shell in Zephyr check Shell.

stat Read statistics from a device. More info in Statistics Management.
taskstat Read task statistics from a device. This command is part

of the OS group, which must be enabled by setting :kcon-
fig:`CONFIG_MCUMGR_CMD_OS_MGMT`. The taskstat command it-
self can be enabled by setting :kconfig:`CONFIG_OS_MGMT_TASKSTAT`.
:kconfig:`CONFIG_THREAD_MONITOR` also needs to be enabled other-
wise a -8 (MGMT_ERR_ENOTSUP) will be returned.

Tip: taskstat has a few options that might require tweaking. The :kcon-

1610 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

fig:`CONFIG_THREAD_NAME` must be set to display the task names, otherwise the priority
is displayed. Since the taskstat packets are large, they might need increasing the :kcon-
fig:`CONFIG_MCUMGR_BUF_SIZE` option.

Warning: To display the correct stack size in the taskstat command, the :kcon-
fig:`CONFIG_THREAD_STACK_INFO` option must be set. To display the correct stack us-
age in the taskstat command, both :kconfig:`CONFIG_THREAD_STACK_INFO` and :kcon-
fig:`CONFIG_INIT_STACKS` options must be set.

Image Management

The image management provided by mcumgr is based on the image format defined by MCUboot. For
more details on the internals see MCUboot design and Signing Binaries.

To list available images in a device:

mcumgr <connection-options> image list

This should result in an output similar to this:

$ mcumgr -c acm0 image list
Images:

image=0 slot=0
version: 1.0.0
bootable: true
flags: active confirmed
hash: 86dca73a3439112b310b5e033d811ec2df728d2264265f2046fced5a9ed00cc7

Split status: N/A (0)

Where image is the number of the image pair in a multi-image system, and slot is the number of the slot
where the image is stored, 0 for primary and 1 for secondary. This image being active and confirmed
means it will run again on next reset. Also relevant is the hash, which is used by other commands to
refer to this specific image when performing operations.

An image can be manually erased using:

mcumgr <connection-options> image erase

The behavior of erase is defined by the server (mcumgr in the device). The current implementation is
limited to erasing the image in the secondary partition.

To upload a new image:

mcumgr <connection-options> image upload [-n] [-e] [-u] <signed-bin>

• -n: This option allows uploading a new image to a specific set of images in a multi-image sys-
tem, and is currently only supported by MCUboot when the CONFIG_MCUBOOT_SERIAL option is
enabled.

• -e: This option avoids performing a full erase of the partition before starting a new upload.

Tip: The -e option should always be passed in because the upload command already checks if an erase
is required, respecting the :kconfig:`CONFIG_IMG_ERASE_PROGRESSIVELY` setting.

8.10. Device Management 1611

https://github.com/mcu-tools/mcuboot/blob/main/docs/design.md

Zephyr Project Documentation, Release 2.7.0-rc2

Tip: If the upload command times out while waiting for a response from the device, -t might be used
to increase the wait time to something larger than the default of 10s. See general_options.

Warning: mcumgr does not understand .hex files, when uploading a new image always use the .bin
file.

• -u: upgrade only to newer image version.

After an image upload is finished, a new image list would now have an output like this:

$ mcumgr -c acm0 image upload -e build/zephyr/zephyr.signed.bin
35.69 KiB / 92.92 KiB [==========>---------------] 38.41% 2.97 KiB/s 00m19

Now listing the images again:

$ mcumgr -c acm0 image list
Images:
image=0 slot=0
version: 1.0.0
bootable: true
flags: active confirmed
hash: 86dca73a3439112b310b5e033d811ec2df728d2264265f2046fced5a9ed00cc7

image=0 slot=1
version: 1.1.0
bootable: true
flags:
hash: e8cf0dcef3ec8addee07e8c4d5dc89e64ba3fae46a2c5267fc4efbea4ca0e9f4

Split status: N/A (0)

To test a new upgrade image the test command is used:

mcumgr <connection-options> image test <hash>

This command should mark a test upgrade, which means that after the next reboot the bootloader will
execute the upgrade and jump into the new image. If no other image operations are executed on the
newly running image, it will revert back to the image that was previously running on the device on the
subsequent reset. When a test is requested, flags will be updated with pending to inform that a new
image will be run after a reset:

$ mcumgr -c acm0 image test␣
→˓e8cf0dcef3ec8addee07e8c4d5dc89e64ba3fae46a2c5267fc4efbea4ca0e9f4
Images:
image=0 slot=0
version: 1.0.0
bootable: true
flags: active confirmed
hash: 86dca73a3439112b310b5e033d811ec2df728d2264265f2046fced5a9ed00cc7

image=0 slot=1
version: 1.1.0
bootable: true
flags: pending
hash: e8cf0dcef3ec8addee07e8c4d5dc89e64ba3fae46a2c5267fc4efbea4ca0e9f4

Split status: N/A (0)

After a reset the output with change to:

1612 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

$ mcumgr -c acm0 image list
Images:
image=0 slot=0
version: 1.1.0
bootable: true
flags: active
hash: e8cf0dcef3ec8addee07e8c4d5dc89e64ba3fae46a2c5267fc4efbea4ca0e9f4

image=0 slot=1
version: 1.0.0
bootable: true
flags: confirmed
hash: 86dca73a3439112b310b5e033d811ec2df728d2264265f2046fced5a9ed00cc7

Split status: N/A (0)

Tip: It’s important to mention that an upgrade only ever happens if the image is valid. The first thing
MCUboot does when an upgrade is requested is to validate the image, using the SHA-256 and/or the sig-
nature (depending on the configuration). So before uploading an image, one way to be sure it is valid is
to run imgtool verify -k <your-signature-key> <your-image>, where -k <your-signature-key
can be skipped if no signature validation was enabled.

The confirmed flag in the secondary slot tells that after the next reset a revert upgrade will be perfomed
to switch back to the original layout.

The command used to confirm that an image is OK and no revert should happen (no hash required) is:

mcumgr <connection-options> image confirm [hash]

The confirm command can also be run passing in a hash so that instead of doing a test/revert proce-
dure, the image in the secondary partition is directly upgraded to.

Tip: The whole test/revert cycle does not need to be done using only the mcumgr command-line
tool. A better alternative is to perform a test and allow the new running image to self-confirm after any
checks by calling boot_write_img_confirmed().

Tip: The maximum size of a chunk communicated between the client and server is set with :kcon-
fig:`CONFIG_IMG_MGMT_UL_CHUNK_SIZE`. The default is 512 but can be decreased for systems
with low amount of RAM downto 128. When this value is changed, the mtu of the port must be smaller
than or equal to this value.

Tip: Building with :kconfig:`CONFIG_IMG_MGMT_VERBOSE_ERR` enables better error messages
when failures happen (but increases the application size).

Statistics Management

Statistics are used for troubleshooting, maintenance, and usage monitoring; it consists basically of user-
defined counters which are tightly connected to mcumgr and can be used to track any information for
easy retrieval. The available sub-commands are:

mcumgr <connection-options> stat list
mcumgr <connection-options> stat <section-name>

8.10. Device Management 1613

Zephyr Project Documentation, Release 2.7.0-rc2

Statistics are organized in sections (also called groups), and each section can be individually queried.
Defining new statistics sections is done by using macros available under <stats/stats.h>. Each section
consists of multiple variables (or counters), all with the same size (16, 32 or 64 bits).

To create a new section my_stats:

STATS_SECT_START(my_stats)
STATS_SECT_ENTRY(my_stat_counter1)
STATS_SECT_ENTRY(my_stat_counter2)
STATS_SECT_ENTRY(my_stat_counter3)

STATS_SECT_END;

STATS_SECT_DECL(my_stats) my_stats;

Each entry can be declared with STATS_SECT_ENTRY (or the equivalent STATS_SECT_ENTRY32),
STATS_SECT_ENTRY16 or STATS_SECT_ENTRY64. All statistics in a section must be declared with the
same size.

The statistics counters can either have names or not, depending on the setting of the :kcon-
fig:`CONFIG_STATS_NAMES` option. Using names requires an extra declaration step:

STATS_NAME_START(my_stats)
STATS_NAME(my_stats, my_stat_counter1)
STATS_NAME(my_stats, my_stat_counter2)
STATS_NAME(my_stats, my_stat_counter3)

STATS_NAME_END(my_stats);

Tip: Disabling :kconfig:`CONFIG_STATS_NAMES` will free resources. When this option is disabled
the STATS_NAME* macros output nothing, so adding them in the code does not increase the binary size.

Tip: :kconfig:`CONFIG_STAT_MGMT_MAX_NAME_LEN` sets the maximum length of a section name
that can can be accepted as parameter for showing the section data, and might require tweaking for long
section names.

The final steps to use a statistics section is to initialize and register it:

rc = STATS_INIT_AND_REG(my_stats, STATS_SIZE_32, "my_stats");
assert (rc == 0);

In the running code a statistics counter can be incremented by 1 using STATS_INC, by N using STATS_INCN
or reset with STATS_CLEAR.

Let’s suppose we want to increment those counters by 1, 2 and 3 every second. To get a list of stats:

$ mcumgr --conn acm0 stat list
stat groups:

my_stats

To get the current value of the counters in my_stats:

$ mcumgr --conn acm0 stat my_stats
stat group: my_stats

13 my_stat_counter1
26 my_stat_counter2
39 my_stat_counter3

$ mcumgr --conn acm0 stat my_stats
(continues on next page)

1614 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

stat group: my_stats
16 my_stat_counter1
32 my_stat_counter2
48 my_stat_counter3

When :kconfig:`CONFIG_STATS_NAMES` is disabled the output will look like this:

$ mcumgr --conn acm0 stat my_stats
stat group: my_stats

8 s0
16 s1
24 s2

Filesystem Management

The filesystem module is disabled by default due to security concerns: because of a lack of ac-
cess control every file in the FS will be accessible, including secrets, etc. To enable it :kcon-
fig:`CONFIG_MCUMGR_CMD_FS_MGMT` must be set (y). Once enabled the following sub-commands
can be used:

mcumgr <connection-options> fs download <remote-file> <local-file>
mcumgr <connection-options> fs upload <local-file> <remote-file>

Using the fs command, requires :kconfig:`CONFIG_FILE_SYSTEM` to be enabled, and that some par-
ticular filesystem is enabled and properly mounted by the running application, eg for littefs this would
mean enabling :kconfig:`CONFIG_FILE_SYSTEM_LITTLEFS`, defining a storage partition Flash map
and mounting the filesystem in the startup (fs_mount()).

Uploading a new file to a littlefs storage, mounted under /lfs, can be done with:

$ mcumgr -c acm0 fs upload foo.txt /lfs/foo.txt
25
Done

Where 25 is the size of the file.

For downloading a file, let’s first use the fs command (:kconfig:`CONFIG_FILE_SYSTEM_SHELL` must
be enabled) in a remote shell to create a new file:

uart:~$ fs write /lfs/bar.txt 41 42 43 44 31 32 33 34 0a
uart:~$ fs read /lfs/bar.txt
File size: 9
00000000 41 42 43 44 31 32 33 34 0A ABCD1234.

Now it can be downloaded using:

$ mcumgr -c acm0 fs download /lfs/bar.txt bar.txt
0
9
Done
$ cat bar.txt
ABCD1234

Where 0 is the return code, and 9 is the size of the file.

8.10. Device Management 1615

Zephyr Project Documentation, Release 2.7.0-rc2

Warning: The commands might exhaust the system workqueue, if its size is not large enough, so
increasing :kconfig:`CONFIG_SYSTEM_WORKQUEUE_STACK_SIZE` might be required for correct
behavior.

The size of the stack allocated buffer used to store the blocks, while transffering a file can be adjusted
with :kconfig:`CONFIG_FS_MGMT_DL_CHUNK_SIZE`; this allows saving RAM resources.

Tip: :kconfig:`CONFIG_FS_MGMT_PATH_SIZE` sets the maximum PATH accepted for a file name. It
might require tweaking for longer file names.

Bootloader integration

The Device Firmware Upgrade subsystem integrates the management subsystem with the bootloader,
providing the ability to send and upgrade a Zephyr image to a device.

Currently only the MCUboot bootloader is supported. See MCUboot for more information.

8.10.2 Device Firmware Upgrade

Overview

The Device Firmware Upgrade subsystem provides the necessary frameworks to upgrade the image of a
Zephyr-based application at run time. It currently consists of two different modules:

• subsys/dfu/boot/: Interface code to bootloaders

• subsys/dfu/img_util/: Image management code

The DFU subsystem deals with image management, but not with the transport or management protocols
themselves required to send the image to the target device. For information on these protocols and
frameworks please refer to the Device Management section.

Bootloaders

MCUboot Zephyr is directly compatible with the open source, cross-RTOS MCUboot boot loader. It
interfaces with MCUboot and is aware of the image format required by it, so that Device Firmware
Upgrade is available when MCUboot is the boot loader used with Zephyr. The source code itself is hosted
in the MCUboot GitHub Project page.

In order to use MCUboot with Zephyr you need to take the following into account:

1. You will need to define the flash partitions required by MCUboot; see Flash map for details.

2. Your application’s .conf file needs to enable the :kconfig:`CONFIG_BOOTLOADER_MCUBOOT`
Kconfig option in order for Zephyr to be built in an MCUboot-compatible manner

3. You need to build and flash MCUboot itself on your device

4. You might need to take precautions to avoid mass erasing the flash and also to flash the Zephyr
application image at the correct offset (right after the bootloader)

More detailed information regarding the use of MCUboot with Zephyr can be found in the MCUboot with
Zephyr documentation page on the MCUboot website.

1616 Chapter 8. User and Developer Guides

https://github.com/zephyrproject-rtos/zephyr/blob/main/subsys/dfu/boot/
https://github.com/zephyrproject-rtos/zephyr/blob/main/subsys/dfu/img_util/
https://mcuboot.com/
https://github.com/runtimeco/mcuboot
https://mcuboot.com/documentation/readme-zephyr/
https://mcuboot.com/documentation/readme-zephyr/

Zephyr Project Documentation, Release 2.7.0-rc2

8.11 Devicetree Guide

This is a high-level guide to devicetree as it is used for Zephyr development. See Devicetree for reference
material.

8.11.1 Introduction to devicetree

Tip: This is a conceptual overview of devicetree and how Zephyr uses it. For step-by-step guides and
examples, see Devicetree HOWTOs.

A devicetree is a hierarchical data structure that describes hardware. The Devicetree specification defines
its source and binary representations. Zephyr uses devicetree to describe the hardware available on its
boards, as well as that hardware’s initial configuration.

There are two types of devicetree input files: devicetree sources and devicetree bindings. The sources
contain the devicetree itself. The bindings describe its contents, including data types. The build system
uses devicetree sources and bindings to produce a generated C header. The generated header’s contents
are abstracted by the devicetree.h API, which you can use to get information from your devicetree.

Here is a simplified view of the process:

Fig. 5: Devicetree build flow

All Zephyr and application source code files can include and use devicetree.h. This includes device
drivers, applications, tests, the kernel, etc.

The API itself is based on C macros. The macro names all start with DT_. In general, if you see a macro
that starts with DT_ in a Zephyr source file, it’s probably a devicetree.h macro. The generated C header
contains macros that start with DT_ as well; you might see those in compiler error messages. You always
can tell a generated- from a non-generated macro: generated macros have some lowercased letters,
while the devicetree.h macro names have all capital letters.

Some information defined in devicetree is available via CONFIG_ macros generated from Kconfig. This
is often done for backwards compatibility, since Zephyr has used Kconfig for longer than devicetree,
and is still in the process of converting some information from Kconfig to devicetree. It is also done to
allow Kconfig overrides of default values taken from devicetree. Devicetree information is referenced
from Kconfig via Kconfig functions. See Devicetree versus Kconfig for some additional comparisons with
Kconfig.

Syntax and structure

As the name indicates, a devicetree is a tree. The human-readable text format for this tree is called DTS
(for devicetree source), and is defined in the Devicetree specification.

Here is an example DTS file:

8.11. Devicetree Guide 1617

https://www.devicetree.org/
https://www.devicetree.org/

Zephyr Project Documentation, Release 2.7.0-rc2

/dts-v1/ ;

/ {
a-node {

subnode_label: a-sub-node {
foo = <3>;

};
};

};

The /dts-v1/; line means the file’s contents are in version 1 of the DTS syntax, which has replaced a
now-obsolete “version 0”.

The tree has three nodes:

1. A root node: /

2. A node named a-node, which is a child of the root node

3. A node named a-sub-node, which is a child of a-node

Nodes can be given labels, which are unique shorthands that can be used to refer to the labeled node
elsewhere in the devicetree. Above, a-sub-node has label subnode_label. A node can have zero, one,
or multiple node labels.

Devicetree nodes have paths identifying their locations in the tree. Like Unix file system paths, devicetree
paths are strings separated by slashes (/), and the root node’s path is a single slash: /. Otherwise, each
node’s path is formed by concatenating the node’s ancestors’ names with the node’s own name, separated
by slashes. For example, the full path to a-sub-node is /a-node/a-sub-node.

Devicetree nodes can also have properties. Properties are name/value pairs. Property values can be any
sequence of bytes. In some cases, the values are an array of what are called cells. A cell is just a 32-bit
unsigned integer.

Node a-sub-node has a property named foo, whose value is a cell with value 3. The size and type of
foo‘s value are implied by the enclosing angle brackets (< and >) in the DTS. See Writing property values
below for more example property values.

In practice, devicetree nodes usually correspond to some hardware, and the node hierarchy reflects the
hardware’s physical layout. For example, let’s consider a board with three I2C peripherals connected to
an I2C bus controller on an SoC, like this:

1618 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Nodes corresponding to the I2C bus controller and each I2C peripheral would be present in the device-
tree. Reflecting the hardware layout, the I2C peripheral nodes would be children of the bus controller
node. Similar conventions exist for representing other types of hardware.

The DTS would look something like this:

/dts-v1/ ;

/ {
soc {

i2c-bus-controller {
i2c-peripheral-1 {
};
i2c-peripheral-2 {
};
i2c-peripheral-3 {
};

};
};

};

Properties are used in practice to describe or configure the hardware the node represents. For example,
an I2C peripheral’s node has a property whose value is the peripheral’s address on the bus.

Here’s a tree representing the same example, but with real-world node names and properties you might
see when working with I2C devices.

Fig. 6: I2C devicetree example with real-world names and properties. Node names are at the top of each
node with a gray background. Properties are shown as “name=value” lines.

This is the corresponding DTS:

/dts-v1/ ;

(continues on next page)

8.11. Devicetree Guide 1619

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

/ {
soc {

i2c@40003000 {
compatible = "nordic,nrf-twim";
label = "I2C_0";
reg = <0x40003000 0x1000>;

apds9960@39 {
compatible = "avago,apds9960";
label = "APDS9960";
reg = <0x39>;

};
ti_hdc@43 {

compatible = "ti,hdc", "ti,hdc1010";
label = "HDC1010";
reg = <0x43>;

};
mma8652fc@1d {

compatible = "nxp,fxos8700", "nxp,mma8652fc";
label = "MMA8652FC";
reg = <0x1d>;

};
};

};
};

In addition to showing more realistic names and properties, the above example introduces a new de-
vicetree concept: unit addresses. Unit addresses are the parts of node names after an “at” sign (@), like
40003000 in i2c@40003000, or 39 in apds9960@39. Unit addresses are optional: the soc node does not
have one.

Some more details about unit addresses and important properties follow.

Unit address examples

In devicetree, unit addresses give a node’s address in the address space of its parent node. Here are some
example unit addresses for different types of hardware.

Memory-mapped peripherals The peripheral’s register map base address. For example, the node
named i2c@40003000 represents an I2C controller whose register map base address is 0x40003000.

I2C peripherals The peripheral’s address on the I2C bus. For example, the child node apds9960@39 of
the I2C controller in the previous section has I2C address 0x39.

SPI peripherals An index representing the peripheral’s chip select line number. (If there is no chip select
line, 0 is used.)

Memory The physical start address. For example, a node named memory@2000000 represents RAM
starting at physical address 0x2000000.

Memory-mapped flash Like RAM, the physical start address. For example, a node named
flash@8000000 represents a flash device whose physical start address is 0x8000000.

Fixed flash partitions This applies when the devicetree is used to store a flash partition table. The unit
address is the partition’s start offset within the flash memory. For example, take this flash device
and its partitions:

flash@8000000 {
/* ... */

(continues on next page)

1620 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

partitions {
partition@0 { /* ... */ };
partition@20000 { /* ... */ };
/* ... */

};
};

The node named partition@0 has offset 0 from the start of its flash device, so its base address is
0x8000000. Similarly, the base address of the node named partition@20000 is 0x8020000.

Important properties

Some important properties are:

compatible The name of the hardware device the node represents.

The recommended format is "vendor,device", like "avago,apds9960", or a sequence of these,
like "ti,hdc", "ti,hdc1010". The vendor part is an abbreviated name of the vendor. The file
dts/bindings/vendor-prefixes.txt contains a list of commonly accepted vendor names. The device
part is usually taken from the datasheet.

It is also sometimes a value like gpio-keys, mmio-sram, or fixed-clock when the hardware’s
behavior is generic.

The build system uses the compatible property to find the right bindings for the node. Device drivers
use devicetree.h to find nodes with relevant compatibles, in order to determine the available
hardware to manage.

The compatible property can have multiple values. Additional values are useful when the device
is a specific instance of a more general family, to allow the system to match from most- to least-
specific device drivers.

Within Zephyr’s bindings syntax, this property has type string-array.

label The device’s name according to Zephyr’s Device Driver Model. The value can be passed to
device_get_binding() to retrieve the corresponding driver-level struct device*. This pointer can
then be passed to the correct driver API by application code to interact with the device. For ex-
ample, calling device_get_binding("I2C_0") would return a pointer to a device structure which
could be passed to I2C API functions like i2c_transfer() . The generated C header will also
contain a macro which expands to this string.

reg Information used to address the device. The value is specific to the device (i.e. is different depending
on the compatible property).

The reg property is a sequence of (address, length) pairs. Each pair is called a “register block”.
Here are some common patterns:

• Devices accessed via memory-mapped I/O registers (like i2c@40003000): address is usually
the base address of the I/O register space, and length is the number of bytes occupied by the
registers.

• I2C devices (like apds9960@39 and its siblings): address is a slave address on the I2C bus.
There is no length value.

• SPI devices: address is a chip select line number; there is no length.

You may notice some similarities between the reg property and common unit addresses described
above. This is not a coincidence. The reg property can be seen as a more detailed view of the
addressable resources within a device than its unit address.

status A string which describes whether the node is enabled.

8.11. Devicetree Guide 1621

https://github.com/zephyrproject-rtos/zephyr/blob/main/dts/bindings/vendor-prefixes.txt

Zephyr Project Documentation, Release 2.7.0-rc2

The devicetree specification allows this property to have values "okay", "disabled", "reserved",
"fail", and "fail-sss". Only the values "okay" and "disabled" are currently relevant to
Zephyr; use of other values currently results in undefined behavior.

A node is considered enabled if its status property is either "okay" or not defined (i.e. does not ex-
ist in the devicetree source). Nodes with status "disabled" are explicitly disabled. (For backwards
compatibility, the value "ok" is treated the same as "okay", but this usage is deprecated.) Device-
tree nodes which correspond to physical devices must be enabled for the corresponding struct
device in the Zephyr driver model to be allocated and initialized.

interrupts Information about interrupts generated by the device, encoded as an array of one or more
interrupt specifiers. Each interrupt specifier has some number of cells. See section 2.4, Interrupts
and Interrupt Mapping, in the Devicetree Specification release v0.3 for more details.

Zephyr’s devicetree bindings language lets you give a name to each cell in an interrupt specifier.

Writing property values

This section describes how to write property values in DTS format. The property types in the table below
are described in detail in Devicetree bindings.

Some specifics are skipped in the interest of keeping things simple; if you’re curious about details, see
the devicetree specification.

Property
type

How to write Example

string Double quoted a-string = "hello, world!";
int between angle brackets (< and >) an-int = <1>;
boolean for true, with no value (for false, use /

delete-property/)
my-true-boolean;

array between angle brackets (< and >), sepa-
rated by spaces

foo = <0xdeadbeef 1234 0>;

uint8-
array

in hexadecimal without leading 0x, be-
tween square brackets ([and]).

a-byte-array = [00 01 ab];

string-
array

separated by commas a-string-array = "string one",
"string two", "string three";

phandle between angle brackets (< and >) a-phandle = <&mynode>;
phan-
dles

between angle brackets (< and >), sepa-
rated by spaces

some-phandles = <&mynode0 &mynode1
&mynode2>;

phandle-
array

between angle brackets (< and >), sepa-
rated by spaces

a-phandle-array = <&mynode0 1 2
&mynode1 3 4>;

Additional notes on the above:

• Boolean properties are true if present. They should not have a value. A boolean property is only
false if it is completely missing in the DTS.

• The foo property value above has three cells with values 0xdeadbeef, 1234, and 0, in that order.
Note that hexadecimal and decimal numbers are allowed and can be intermixed. Since Zephyr
transforms DTS to C sources, it is not necessary to specify the endianness of an individual cell here.

• 64-bit integers are written as two 32-bit cells in big-endian order. The value 0xaaaa0000bbbb1111
would be written <0xaaaa0000 0xbbbb1111>.

• The a-byte-array property value is the three bytes 0x00, 0x01, and 0xab, in that order.

• Parentheses, arithmetic operators, and bitwise operators are allowed. The bar property contains a
single cell with value 64:

bar = <(2 * (1 << 5))>;

1622 Chapter 8. User and Developer Guides

https://www.devicetree.org/specifications/

Zephyr Project Documentation, Release 2.7.0-rc2

Note that the entire expression must be parenthesized.

• Property values refer to other nodes in the devicetree by their phandles. You can write a phandle
using &foo, where foo is a node label. Here is an example devicetree fragment:

foo: device@0 { };
device@1 {

sibling = <&foo 1 2>;
};

The sibling property of node device@1 contains three cells, in this order:

1. The device@0 node’s phandle, which is written here as &foo since the device@0 node has a
node label foo

2. The value 1

3. The value 2

In the devicetree, a phandle value is a cell – which again is just a 32-bit unsigned int. However,
the Zephyr devicetree API generally exposes these values as node identifiers. Node identifiers are
covered in more detail in Devicetree access from C/C++.

• Array and similar type property values can be split into several <> blocks, like this:

foo = <1 2>, <3 4>; // Okay for 'type: array'
foo = <&label1 &label2>, <&label3 &label4>; // Okay for 'type: phandles'
foo = <&label1 1 2>, <&label2 3 4>; // Okay for 'type: phandle-array'

This is recommended for readability when possible if the value can be logically grouped into blocks
of sub-values.

Aliases and chosen nodes

There are two additional ways beyond node labels to refer to a particular node without specifying its
entire path: by alias, or by chosen node.

Here is an example devicetree which uses both:

/dts-v1/ ;

/ {
chosen {

zephyr,console = &uart0;
};

aliases {
my-uart = &uart0;

};

soc {
uart0: serial@12340000 {

...
};

};
};

The /aliases and /chosen nodes do not refer to an actual hardware device. Their purpose is to specify
other nodes in the devicetree.

Above, my-uart is an alias for the node with path /soc/serial@12340000. Using its node label uart0,
the same node is set as the value of the chosen zephyr,console node.

8.11. Devicetree Guide 1623

Zephyr Project Documentation, Release 2.7.0-rc2

Zephyr sample applications sometimes use aliases to allow overriding the particular hardware device
used by the application in a generic way. For example, blinky-sample uses this to abstract the LED to
blink via the led0 alias.

The /chosen node’s properties are used to configure system- or subsystem-wide values. See Chosen nodes
for more information.

Input and output files

This section describes the input and output files shown in the figure at the top of this introduction in more
detail.

FILE_1.overlay...Set...

In...
<BOARD>.dts

BINDING_1.yaml...In z...

Devicetree scri...

Intermediate output in bu...

Fina... Generated C header

<BOARD>.dts.pre.tmp

zephyr.dts
Final merged devicetree i...

dtc compiler, just t...

Viewer does not support full SVG 1.1

Fig. 7: Devicetree input (green) and output (yellow) files

Input files There are four types of devicetree input files:

• sources (.dts)

• includes (.dtsi)

• overlays (.overlay)

• bindings (.yaml)

The devicetree files inside the zephyr directory look like this:

1624 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

boards/<ARCH>/<BOARD>/<BOARD>.dts
dts/common/skeleton.dtsi
dts/<ARCH>/.../<SOC>.dtsi
dts/bindings/.../binding.yaml

Generally speaking, every supported board has a BOARD.dts file describing its hardware. For example,
the reel_board has boards/arm/reel_board/reel_board.dts.

BOARD.dts includes one or more .dtsi files. These .dtsi files describe the CPU or system-on-chip
Zephyr runs on, perhaps by including other .dtsi files. They can also describe other common hardware
features shared by multiple boards. In addition to these includes, BOARD.dts also describes the board’s
specific hardware.

The dts/common directory contains skeleton.dtsi, a minimal include file for defining a complete de-
vicetree. Architecture-specific subdirectories (dts/<ARCH>) contain .dtsi files for CPUs or SoCs which
extend skeleton.dtsi.

The C preprocessor is run on all devicetree files to expand macro references, and includes are generally
done with #include <filename> directives, even though DTS has a /include/ "<filename>" syntax.

BOARD.dts can be extended or modified using overlays. Overlays are also DTS files; the .overlay ex-
tension is just a convention which makes their purpose clear. Overlays adapt the base devicetree for
different purposes:

• Zephyr applications can use overlays to enable a peripheral that is disabled by default, select a
sensor on the board for an application specific purpose, etc. Along with Configuration System
(Kconfig), this makes it possible to reconfigure the kernel and device drivers without modifying
source code.

• Overlays are also used when defining Shields.

The build system automatically picks up .overlay files stored in certain locations. It is also possible
to explicitly list the overlays to include, via the DTC_OVERLAY_FILE CMake variable. See Set devicetree
overlays for details.

The build system combines BOARD.dts and any .overlay files by concatenating them, with the overlays
put last. This relies on DTS syntax which allows merging overlapping definitions of nodes in the device-
tree. See Example: FRDM-K64F and Hexiwear K64 for an example of how this works (in the context of
.dtsi files, but the principle is the same for overlays). Putting the contents of the .overlay files last
allows them to override BOARD.dts.

Devicetree bindings (which are YAML files) are essentially glue. They describe the contents of devicetree
sources, includes, and overlays in a way that allows the build system to generate C macros usable by
device drivers and applications. The dts/bindings directory contains bindings.

Zephyr currently uses dts_fixup.h files to rename macros in devicetree_unfixed.h to names that are
currently in use by C code. The build system looks for fixup files in the zephyr/boards/ and zephyr/
soc/ directories by default. Fixup files exist for historical reasons. New code should generally avoid
them.

Scripts and tools The following libraries and scripts, located in scripts/dts/, create output files from
input files. Their sources have extensive documentation.

dtlib.py A low-level DTS parsing library.

edtlib.py A library layered on top of dtlib that uses bindings to interpret properties and give a higher-
level view of the devicetree. Uses dtlib to do the DTS parsing.

gen_defines.py A script that uses edtlib to generate C preprocessor macros from the devicetree and
bindings.

In addition to these, the standard dtc (devicetree compiler) tool is run on the final devicetree if it is
installed on your system. This is just to catch errors or warnings. The output is unused. Boards may

8.11. Devicetree Guide 1625

https://github.com/zephyrproject-rtos/zephyr/blob/main/boards/arm/reel_board/reel_board.dts
https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/dts/
https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/dts/dtlib.py
https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/dts/edtlib.py
https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/dts/gen_defines.py

Zephyr Project Documentation, Release 2.7.0-rc2

need to pass dtc additional flags, e.g. for warning suppression. Board directories can contain a file
named pre_dt_board.cmake which configures these extra flags, like this:

list(APPEND EXTRA_DTC_FLAGS "-Wno-simple_bus_reg")

Output files These are created in your application’s build directory.

Warning: Don’t include the header files directly. Devicetree access from C/C++ explains what to do
instead.

<build>/zephyr/include/generated/devicetree_unfixed.h The generated macros and additional
comments describing the devicetree. Included by devicetree.h.

<build>/zephyr/include/generated/devicetree_fixups.h The concatenated contents of any
dts_fixup.h files. Included by devicetree.h.

<build>/zephyr/zephyr.dts The final merged devicetree. This file is output by gen_defines.py as a
debugging aid, and is unused otherwise.

<build>/zephyr/<BOARD>.dts.pre.tmp The preprocessed and concatenated DTS sources and overlays.
This is an intermediate output file, which is used to create zephyr.dts and devicetree_unfixed.
h.

8.11.2 Design goals

Zephyr’s use of devicetree has evolved significantly over time, and further changes are expected. The
following are the general design goals, along with specific examples about how they impact Zephyr’s
source code, and areas where more work remains to be done.

Single source for all hardware information

Zephyr shall obtain its hardware descriptions exclusively from devicetree.

Examples

• New device drivers shall use devicetree APIs to determine which devices to create if possible.

• In-tree sample applications shall use aliases to determine which of multiple possible generic devices
of a given type will be used in the current build. For example, the blinky-sample uses this to
determine the LED to blink.

• Boot-time pin muxing and pin control can be accomplished via devicetree.

Example remaining work

• Zephyr’s Test Runner (Twister) currently use board.yaml files to determine the hardware supported
by a board. This should be obtained from devicetree instead.

• Various device drivers currently use Kconfig to determine which instances of a particular compatible
are enabled. This can and should be done with devicetree overlays instead.

• Board-level documentation still contains tables of hardware support which are generated and main-
tained by hand. This can and should be obtained from the board level devicetree instead.

• Runtime determination of struct device relationships should be done using information obtained
from devicetree, e.g. for device power management.

1626 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Source compatibility with other operating systems

Zephyr’s devicetree tooling is based on a generic layer which is interoperable with other devicetree users,
such as the Linux kernel.

Zephyr’s binding language semantics can support Zephyr-specific attributes, but shall not express Zephyr-
specific relationships.

Examples

• Zephyr’s devicetree source parser, dtlib.py, is source-compatible with other tools like dtc in both
directions: dtlib.py can parse dtc output, and dtc can parse dtlib.py output.

• Zephyr’s “extended dtlib” library, edtlib.py, shall not include Zephyr-specific features. Its purpose
is to provide a higher-level view of the devicetree for common elements like interrupts and buses.

Only the high-level gen_defines.py script, which is built on top of edtlib.py, contains Zephyr-
specific knowledge and features.

Example remaining work

• Zephyr has a custom Devicetree bindings language syntax. While Linux’s dtschema does not yet
meet Zephyr’s needs, we should try to follow what it is capable of representing in Zephyr’s own
bindings.

• Due to inflexibility in the bindings language, Zephyr cannot support the full set of bindings sup-
ported by Linux.

• Devicetree source sharing between Zephyr and Linux is not done.

8.11.3 Devicetree bindings

A devicetree on its own is only half the story for describing hardware, as it is a relatively unstructured
format. Devicetree bindings provide the other half.

A devicetree binding declares requirements on the contents of nodes, and provides semantic information
about the contents of valid nodes. Zephyr devicetree bindings are YAML files in a custom format (Zephyr
does not use the dt-schema tools used by the Linux kernel).

This page introduces bindings, describes what they do, notes where they are found, and explains their
data format.

Note: See the Bindings index for reference information on bindings built in to Zephyr.

• Introduction

– A simple example

– What the build system does with bindings

– Other ways nodes are matched to bindings

– Where bindings are located

• Bindings file syntax

– Description

– Compatible

– Properties

8.11. Devicetree Guide 1627

https://git.kernel.org/pub/scm/utils/dtc/dtc.git/about/

Zephyr Project Documentation, Release 2.7.0-rc2

– Child-binding

– Bus

– On-bus

– Specifier cell names (*-cells)

– Include

• Inferred bindings

Introduction

Devicetree nodes are matched to bindings using their compatible properties.

During the Configuration Phase, the build system tries to match each node in the devicetree to a binding
file. When this succeeds, the build system uses the information in the binding file both when validating
the node’s contents and when generating macros for the node.

A simple example Here is an example devicetree node:

/* Node in a DTS file */
bar-device {

compatible = "foo-company,bar-device";
num-foos = <3>;

};

Here is a minimal binding file which matches the node:

A YAML binding matching the node

compatible: "foo-company,bar-device"

properties:
num-foos:

type: int
required: true

The build system matches the bar-device node to its YAML binding because the node’s compatible
property matches the binding’s compatible: line.

What the build system does with bindings The build system uses bindings both to validate devicetree
nodes and to convert the devicetree’s contents into the generated devicetree_unfixed.h header file.

For example, the build system would use the above binding to check that the required num-foos property
is present in the bar-device node, and that its value, <3>, has the correct type.

The build system will then generate a macro for the bar-device node’s num-foos property, which will
expand to the integer literal 3. This macro lets you get the value of the property in C code using the API
which is discussed later in this guide in Devicetree access from C/C++.

For another example, the following node would cause a build error, because it has no num-foos property,
and this property is marked required in the binding:

bad-node {
compatible = "foo-company,bar-device";

};

1628 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Other ways nodes are matched to bindings If a node has more than one string in its compatible
property, the build system looks for compatible bindings in the listed order and uses the first match.

Take this node as an example:

baz-device {
compatible = "foo-company,baz-device", "generic-baz-device";

};

The baz-device node would get matched to a binding with a compatible: "generic-baz-device"
line if the build system can’t find a binding with a compatible: "foo-company,baz-device" line.

Nodes without compatible properties can be matched to bindings associated with their parent nodes.
These are called “child bindings”. If a node describes hardware on a bus, like I2C or SPI, then the bus
type is also taken into account when matching nodes to bindings. (The Bindings file syntax section below
describes how to write child bindings and bus-specific bindings.)

Some special nodes without compatible properties are matched to Inferred bindings. For these nodes,
the build system generates macros based on the properties in the final devicetree.

Where bindings are located Binding file names usually match their compatible: lines. For example,
the above example binding would be named foo-company,bar-device.yaml by convention.

The build system looks for bindings in dts/bindings subdirectories of the following places:

• the zephyr repository

• your application source directory

• your board directory

• any directories in the DTS_ROOT CMake variable

• any module that defines a dts_root in its Build settings

The build system will consider any YAML file in any of these, including in any subdirectories, when
matching nodes to bindings. A file is considered YAML if its name ends with .yaml or .yml.

Warning: The binding files must be located somewhere inside the dts/bindings subdirectory of the
above places.

For example, if my-app is your application directory, then you must place application-specific bindings
inside my-app/dts/bindings. So my-app/dts/bindings/serial/my-company,my-serial-port.
yaml would be found, but my-app/my-company,my-serial-port.yaml would be ignored.

Bindings file syntax

Zephyr bindings files are YAML files. The top-level value in the file is a mapping. A simple example is
given above.

The top-level keys in the mapping look like this:

A high level description of the device the binding applies to:
description: |

This is the Vendomatic company's foo-device.

Descriptions which span multiple lines (like this) are OK,
and are encouraged for complex bindings.

See https://yaml-multiline.info/ for formatting help.

(continues on next page)

8.11. Devicetree Guide 1629

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

You can include definitions from other bindings using this syntax:
include: other.yaml

Used to match nodes to this binding as discussed above:
compatible: "manufacturer,foo-device"

properties:
Requirements for and descriptions of the properties that this
binding's nodes need to satisfy go here.

child-binding:
You can constrain the children of the nodes matching this binding
using this key.

If the node describes bus hardware, like an SPI bus controller
on an SoC, use 'bus:' to say which one, like this:
bus: spi

If the node instead appears as a device on a bus, like an external
SPI memory chip, use 'on-bus:' to say what type of bus, like this.
Like 'compatible', this key also influences the way nodes match
bindings.
on-bus: spi

foo-cells:
"Specifier" cell names for the 'foo' domain go here; example 'foo'
values are 'gpio', 'pwm', and 'dma'. See below for more information.

The following sections describe these keys in more detail:

• Description

• Compatible

• Properties

• Child-binding

• Bus

• On-bus

• Specifier cell names (*-cells)

• Include

The include: key usually appears early in the binding file, but it is documented last here because you
need to know how the other keys work before understanding include:.

Description A free-form description of node hardware goes here. You can put links to datasheets or
example nodes or properties as well.

Compatible This key is used to match nodes to this binding as described above. It should look like this
in a binding file:

Note the comma-separated vendor prefix and device name
compatible: "manufacturer,device"

This devicetree node would match the above binding:

1630 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

device {
compatible = "manufacturer,device";

};

Assuming no binding has compatible: "manufacturer,device-v2", it would also match this node:

device-2 {
compatible = "manufacturer,device-v2", "manufacturer,device";

};

Each node’s compatible property is tried in order. The first matching binding is used. The on-bus: key
can be used to refine the search.

If more than one binding for a compatible is found, an error is raised.

The manufacturer prefix identifies the device vendor. See dts/bindings/vendor-prefixes.txt for a list of
accepted vendor prefixes. The device part is usually from the datasheet.

Some bindings apply to a generic class of devices which do not have a specific vendor. In these cases,
there is no vendor prefix. One example is the gpio-leds compatible which is commonly used to describe
board LEDs connected to GPIOs.

If more than one binding for a compatible is found, an error is raised.

Properties The properties: key describes the properties that nodes which match the binding can
contain.

For example, a binding for a UART peripheral might look something like this:

compatible: "manufacturer,serial"

properties:
reg:

type: array
description: UART peripheral MMIO register space
required: true

current-speed:
type: int
description: current baud rate
required: true

label:
type: string
description: human-readable name
required: false

The properties in the following node would be validated by the above binding:

my-serial@deadbeef {
compatible = "manufacturer,serial";
reg = <0xdeadbeef 0x1000>;
current-speed = <115200>;
label = "UART_0";

};

This is used to check that required properties appear, and to control the format of output generated for
them.

Except for some special properties, like reg, whose meaning is defined by the devicetree specification
itself, only properties listed in the properties: key will have generated macros.

8.11. Devicetree Guide 1631

https://github.com/zephyrproject-rtos/zephyr/blob/main/dts/bindings/vendor-prefixes.txt

Zephyr Project Documentation, Release 2.7.0-rc2

Example property definitions Here are some more examples.

properties:
Describes a property like 'current-speed = <115200>;'. We pretend that
it's obligatory for the example node and set 'required: true'.
current-speed:

type: int
required: true
description: Initial baud rate for bar-device

Describes an optional property like 'keys = "foo", "bar";'
keys:

type: string-array
required: false
description: Keys for bar-device

Describes an optional property like 'maximum-speed = "full-speed";'
the enum specifies known values that the string property may take
maximum-speed:

type: string
required: false
description: Configures USB controllers to work up to a specific speed.
enum:

- "low-speed"
- "full-speed"
- "high-speed"
- "super-speed"

Describes an optional property like 'resolution = <16>;'
the enum specifies known values that the int property may take
resolution:

type: int
required: false
enum:
- 8
- 16
- 24
- 32

Describes a required property '#address-cells = <1>'; the const
specifies that the value for the property is expected to be the value 1
"#address-cells":

type: int
required: true
const: 1

int-with-default:
type: int
required: false
default: 123
description: Value for int register, default is power-up configuration.

array-with-default:
type: array
required: false
default: [1, 2, 3] # Same as 'array-with-default = <1 2 3>'

string-with-default:
(continues on next page)

1632 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

type: string
required: false
default: "foo"

string-array-with-default:
type: string-array
required: false
default: ["foo", "bar"] # Same as 'string-array-with-default = "foo", "bar"'

uint8-array-with-default:
type: uint8-array
required: false
default: [0x12, 0x34] # Same as 'uint8-array-with-default = [12 34]'

Property entry syntax As shown by the above examples, each property entry in a binding looks like
this:

<property name>:
required: <true | false>
type: <string | int | boolean | array | uint8-array | string-array |

phandle | phandles | phandle-array | path | compound>
deprecated: <true | false>
default: <default>
description: <description of the property>
enum:

- <item1>
- <item2>
...
- <itemN>

const: <string | int>

Required properties If a node matches a binding but is missing any property which the binding defines
with required: true, the build fails.

Property types The type of a property constrains its values. The following types are available. See
Writing property values for more details about writing values of each type in a DTS file.

8.11. Devicetree Guide 1633

Zephyr Project Documentation, Release 2.7.0-rc2

Type Description Example in DTS
string exactly one string label = "UART_0";
int exactly one 32-bit value (cell) current-speed = <115200>;
boolean flags that don’t take a value when true, and are

absent if false
hw-flow-control;

array zero or more 32-bit values (cells) offsets = <0x100 0x200
0x300>;

uint8-array zero or more bytes, in hex (‘bytestring’ in the De-
vicetree specification)

local-mac-address = [de ad
be ef 12 34];

string-array zero or more strings dma-names = "tx", "rx";
phandle exactly one phandle interrupt-parent = <&gic>;
phandles zero or more phandles pinctrl-0 =

<&usart2_tx_pd5
&usart2_rx_pd6>;

phandle-array a list of phandles and 32-bit cells (usually speci-
fiers)

dmas = <&dma0 2>, <&dma0
3>;

path a path to a node as a phandle path reference or
path string

zephyr,bt-c2h-uart =
&uart0; or foo = "/path/
to/some/node";

compound a catch-all for more complex types (no macros
will be generated)

foo = <&label>, [01 02];

Deprecated properties A property with deprecated: true indicates to both the user and the tooling
that the property is meant to be phased out.

The tooling will report a warning if the devicetree includes the property that is flagged as deprecated.
(This warning is upgraded to an error in the Test Runner (Twister) for upstream pull requests.)

Default values for properties The optional default: setting gives a value that will be used if the
property is missing from the devicetree node.

For example, with this binding fragment:

properties:
foo:

type: int
default: 3

If property foo is missing in a matching node, then the output will be as if foo = <3>; had appeared in
the DTS (except YAML data types are used for the default value).

Note that it only makes sense to combine default: with required: false. Combining it with
required: true will raise an error.

There is a risk in using default: when the value in the binding may be incorrect for a particular board or
hardware configuration. For example, defaulting the capacity of the connected power cell in a charging
IC binding is likely to be incorrect. For such properties it’s better to make the property required: true,
forcing the devicetree maintainer into an explicit and witting choice.

Driver developers should use their best judgment as to whether a value can be safely defaulted. Candi-
dates for default values include:

• delays that would be different only under unusual conditions (such as intervening hardware)

• configuration for devices that have a standard initial configuration (such as a USB audio headset)

• defaults which match the vendor-specified power-on reset value (as long as they are independent
from other properties)

1634 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Power-on reset values may be used for defaults as long as they’re independent. If changing one property
would require changing another to create a consistent configuration, then those properties should be
made required.

In any case where default: is used, the property documentation should explain why the value was
selected and any conditions that would make it necessary to provide a different value. (This is mandatory
for built-in bindings.)

See Example property definitions for examples. Putting default: on any property type besides those
used in the examples will raise an error.

Enum values The enum: line is followed by a list of values the property may contain. If a property
value in DTS is not in the enum: list in the binding, an error is raised. See Example property definitions
for examples.

Const This specifies a constant value the property must take. It is mainly useful for constraining the
values of common properties for a particular piece of hardware.

Child-binding child-binding can be used when a node has children that all share the same properties.
Each child gets the contents of child-binding as its binding, though an explicit compatible = ... on
the child node takes precedence, if a binding is found for it.

Consider a binding for a PWM LED node like this one, where the child nodes are required to have a pwms
property:

pwmleds {
compatible = "pwm-leds";

red_pwm_led {
pwms = <&pwm3 4 15625000>;

};
green_pwm_led {

pwms = <&pwm3 0 15625000>;
};
/* ... */

};

The binding would look like this:

compatible: "pwm-leds"

child-binding:
description: LED that uses PWM

properties:
pwms:

type: phandle-array
required: true

child-binding also works recursively. For example, this binding:

compatible: foo

child-binding:
child-binding:

properties:
my-property:

(continues on next page)

8.11. Devicetree Guide 1635

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

type: int
required: true

will apply to the grandchild node in this DTS:

parent {
compatible = "foo";
child {

grandchild {
my-property = <123>;

};
};

};

Bus If the node is a bus controller, use bus: in the binding to say what type of bus. For example, a
binding for a SPI peripheral on an SoC would look like this:

compatible: "manufacturer,spi-peripheral"
bus: spi
...

The presence of this key in the binding informs the build system that the children of any node matching
this binding appear on this type of bus.

This in turn influences the way on-bus: is used to match bindings for the child nodes.

On-bus If the node appears as a device on a bus, use on-bus: in the binding to say what type of bus.

For example, a binding for an external SPI memory chip should include this line:

on-bus: spi

And a binding for an I2C based temperature sensor should include this line:

on-bus: i2c

When looking for a binding for a node, the build system checks if the binding for the parent node
contains bus: <bus type>. If it does, then only bindings with a matching on-bus: <bus type> and
bindings without an explicit on-bus are considered. Bindings with an explicit on-bus: <bus type> are
searched for first, before bindings without an explicit on-bus. The search repeats for each item in the
node’s compatible property, in order.

This feature allows the same device to have different bindings depending on what bus it appears on. For
example, consider a sensor device with compatible manufacturer,sensor which can be used via either
I2C or SPI.

The sensor node may therefore appear in the devicetree as a child node of either an SPI or an I2C
controller, like this:

spi-bus@0 {
/* ... some compatible with 'bus: spi', etc. ... */

sensor@0 {
compatible = "manufacturer,sensor";
reg = <0>;
/* ... */

};
(continues on next page)

1636 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

};

i2c-bus@0 {
/* ... some compatible with 'bus: i2c', etc. ... */

sensor@79 {
compatible = "manufacturer,sensor";
reg = <79>;
/* ... */

};
};

You can write two separate binding files which match these individual sensor nodes, even though they
have the same compatible:

manufacturer,sensor-spi.yaml, which matches sensor@0 on the SPI bus:
compatible: "manufacturer,sensor"
on-bus: spi

manufacturer,sensor-i2c.yaml, which matches sensor@79 on the I2C bus:
compatible: "manufacturer,sensor"
properties:

uses-clock-stretching:
type: boolean
required: false

on-bus: i2c

Only sensor@79 can have a use-clock-stretching property. The bus-sensitive logic ignores
manufacturer,sensor-i2c.yaml when searching for a binding for sensor@0.

Specifier cell names (*-cells) Specifier cells are usually used with phandle-array type properties
briefly introduced above.

To understand the purpose of *-cells, assume that some node has the following pwms property with
type phandle-array:

my-device {
pwms = <&pwm0 1 2>, <&pwm3 4>;

};

The tooling strips the final s from the property name of such properties, resulting in pwm. Then the value
of the #pwm-cells property is looked up in each of the PWM controller nodes pwm0 and pwm3, like so:

pwm0: pwm@0 {
compatible = "foo,pwm";
#pwm-cells = <2>;

};

pwm3: pwm@3 {
compatible = "bar,pwm";
#pwm-cells = <1>;

};

The &pwm0 1 2 part of the property value has two cells, 1 and 2, which matches #pwm-cells = <2>;, so
these cells are considered the specifier associated with pwm0 in the phandle array.

Similarly, the cell 4 is the specifier associated with pwm3.

8.11. Devicetree Guide 1637

Zephyr Project Documentation, Release 2.7.0-rc2

The number of PWM cells in the specifiers in pwms must match the #pwm-cells values, as shown above.
If there is a mismatch, an error is raised. For example, this node would result in an error:

my-bad-device {
/* wrong: 2 cells given in the specifier, but #pwm-cells is 1 in pwm3. */
pwms = <&pwm3 5 6>;

};

The binding for each PWM controller must also have a *-cells key, in this case pwm-cells, giving names
to the cells in each specifier:

foo,pwm.yaml
compatible: "foo,pwm"
...
pwm-cells:

- channel
- period

bar,pwm.yaml
compatible: "bar,pwm"
...
pwm-cells:

- period

A *-names (e.g. pwm-names) property can appear on the node as well, giving a name to each entry.

This allows the cells in the specifiers to be accessed by name, e.g. using APIs like
DT_PWMS_CHANNEL_BY_NAME .

Because other property names are derived from the name of the property by removing the final s, the
property name must end in s. An error is raised if it doesn’t.

*-gpios properties are special-cased so that e.g. foo-gpios resolves to #gpio-cells rather than
#foo-gpio-cells.

If the specifier is empty (e.g. #clock-cells = <0>), then *-cells can either be omitted (recommended)
or set to an empty array. Note that an empty array is specified as e.g. clock-cells: [] in YAML.

All phandle-array type properties support mapping through *-map properties, e.g. gpio-map, as defined
by the Devicetree specification.

Include Bindings can include other files, which can be used to share common property definitions
between bindings. Use the include: key for this. Its value is either a string or a list.

In the simplest case, you can include another file by giving its name as a string, like this:

include: foo.yaml

If any file named foo.yaml is found (see Where bindings are located for the search process), it will be
included into this binding.

Included files are merged into bindings with a simple recursive dictionary merge. The build system will
check that the resulting merged binding is well-formed.

It is an error if a key appears with a different value in a binding and in a file it includes, with one ex-
ception: a binding can have required: true for a property definition for which the included file has
required: false. The required: true takes precedence, allowing bindings to strengthen require-
ments from included files.

Note that weakening requirements by having required: false where the included file has required:
true is an error. This is meant to keep the organization clean.

1638 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

The file base.yaml contains definitions for many common properties. When writing a new binding, it
is a good idea to check if base.yaml already defines some of the needed properties, and include it if it
does.

Note that you can make a property defined in base.yaml obligatory like this, taking reg as an example:

reg:
required: true

This relies on the dictionary merge to fill in the other keys for reg, like type.

To include multiple files, you can use a list of strings:

include:
- foo.yaml
- bar.yaml

This includes the files foo.yaml and bar.yaml. (You can write this list in a single line of YAML as
include: [foo.yaml, bar.yaml].)

When including multiple files, any overlapping required keys on properties in the included files are
ORed together. This makes sure that a required: true is always respected.

In some cases, you may want to include some property definitions from a file, but not all of them. In this
case, include: should be a list, and you can filter out just the definitions you want by putting a mapping
in the list, like this:

include:
- name: foo.yaml

property-allowlist:
- i-want-this-one
- and-this-one

- name: bar.yaml
property-blocklist:

- do-not-include-this-one
- or-this-one

Each map element must have a name key which is the filename to include, and may have
property-allowlist and property-blocklist keys that filter which properties are included.

You cannot have a single map element with both property-allowlist and property-blocklist keys. A
map element with neither property-allowlist nor property-blocklist is valid; no additional filtering
is done.

You can freely intermix strings and mappings in a single include: list:

include:
- foo.yaml
- name: bar.yaml

property-blocklist:
- do-not-include-this-one
- or-this-one

Finally, you can filter from a child binding like this:

include:
- name: bar.yaml

child-binding:
property-allowlist:

- child-prop-to-allow

8.11. Devicetree Guide 1639

https://github.com/zephyrproject-rtos/zephyr/blob/main/dts/bindings/base/base.yaml

Zephyr Project Documentation, Release 2.7.0-rc2

Inferred bindings

Zephyr’s devicetree scripts can “infer” a binding for the special /zephyr,user node based on the values
observed in its properties.

This node matches a binding which is dynamically created by the build system based on the values of its
properties in the final devicetree. It does not have a compatible property.

This node is meant for sample code and applications. The devicetree API provides it as a convenient
container when only a few simple properties are needed, such as storing a hardware-dependent value,
phandle(s), or GPIO pin.

For example, with this DTS fragment:

#include <dt-bindings/gpio/gpio.h>

/ {
zephyr,user {

boolean;
bytes = [81 82 83];
number = <23>;
numbers = <1>, <2>, <3>;
string = "text";
strings = "a", "b", "c";

handle = <&gpio0>;
handles = <&gpio0>, <&gpio1>;
signal-gpios = <&gpio0 1 GPIO_ACTIVE_HIGH>;

};
};

You can get the simple values like this:

define ZEPHYR_USER_NODE DT_PATH(zephyr_user)

DT_PROP(ZEPHYR_USER_NODE, boolean) // 1
DT_PROP(ZEPHYR_USER_NODE, bytes) // {0x81, 0x82, 0x83}
DT_PROP(ZEPHYR_USER_NODE, number) // 23
DT_PROP(ZEPHYR_USER_NODE, numbers) // {1, 2, 3}
DT_PROP(ZEPHYR_USER_NODE, string) // "text"
DT_PROP(ZEPHYR_USER_NODE, strings) // {"a", "b", "c"}

You can convert the phandles in the handle and handles properties to device pointers like this:

/*
* Same thing as:
*
* ... my_dev = DEVICE_DT_GET(DT_NODELABEL(gpio0));
*/

const struct device *my_device =
DEVICE_DT_GET(DT_PROP(ZEPHYR_USER_NODE, handle));

define PHANDLE_TO_DEVICE(node_id, prop, idx) \
DEVICE_DT_GET(DT_PHANDLE_BY_IDX(node_id, prop, idx)),

/*
* Same thing as:
*
* ... *my_devices[] = {
* DEVICE_DT_GET(DT_NODELABEL(gpio0)),

(continues on next page)

1640 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

* DEVICE_DT_GET(DT_NODELABEL(gpio1)),
* };
*/

const struct device *my_devices[] = {
DT_FOREACH_PROP_ELEM(ZEPHYR_USER_NODE, handles, PHANDLE_TO_DEVICE)

};

And you can convert the pin defined in signal-gpios to a struct gpio_dt_spec, then use it like this:

include <drivers/gpio.h>

define ZEPHYR_USER_NODE DT_PATH(zephyr_user)

const struct gpio_dt_spec signal =
GPIO_DT_SPEC_GET(ZEPHYR_USER_NODE, signal_gpios);

/* Configure the pin */
gpio_pin_configure_dt(&signal, GPIO_OUTPUT_INACTIVE);

/* Set the pin to its active level */
gpio_pin_set(signal.port, signal.pin, 1);

(See gpio_dt_spec , GPIO_DT_SPEC_GET , and gpio_pin_configure_dt() for details on these APIs.)

8.11.4 Devicetree access from C/C++

This guide describes Zephyr’s <devicetree.h> API for reading the devicetree from C source files. It
assumes you’re familiar with the concepts in Introduction to devicetree and Devicetree bindings. See De-
vicetree for reference material.

A note for Linux developers

Linux developers familiar with devicetree should be warned that the API described here differs signifi-
cantly from how devicetree is used on Linux.

Instead of generating a C header with all the devicetree data which is then abstracted behind a macro
API, the Linux kernel would instead read the devicetree data structure in its binary form. The binary
representation is parsed at runtime, for example to load and initialize device drivers.

Zephyr does not work this way because the size of the devicetree binary and associated handling code
would be too large to fit comfortably on the relatively constrained devices Zephyr supports.

Node identifiers

To get information about a particular devicetree node, you need a node identifier for it. This is a just a C
macro that refers to the node.

These are the main ways to get a node identifier:

By path Use DT_PATH() along with the node’s full path in the devicetree, starting from the root node.
This is mostly useful if you happen to know the exact node you’re looking for.

By node label Use DT_NODELABEL() to get a node identifier from a node label. Node labels are often
provided by SoC .dtsi to give nodes names that match the SoC datasheet, like i2c1, spi2, etc.

8.11. Devicetree Guide 1641

Zephyr Project Documentation, Release 2.7.0-rc2

By alias Use DT_ALIAS() to get a node identifier for a property of the special /aliases node. This is
sometmes done by applications (like blinky, which uses the led0 alias) that need to refer to some
device of a particular type (“the board’s user LED”) but don’t care which one is used.

By instance number This is done primarily by device drivers, as instance numbers are a way to refer to
individual nodes based on a matching compatible. Get these with DT_INST() , but be careful doing
so. See below.

By chosen node Use DT_CHOSEN() to get a node identifier for /chosen node properties.

By parent/child Use DT_PARENT() and DT_CHILD() to get a node identifier for a parent or child node,
starting from a node identifier you already have.

Two node identifiers which refer to the same node are identical and can be used interchangeably.

Here’s a DTS fragment for some imaginary hardware we’ll return to throughout this file for examples:

/dts-v1/ ;

/ {

aliases {
sensor-controller = &i2c1;

};

soc {
i2c1: i2c@40002000 {

compatible = "vnd,soc-i2c";
label = "I2C_1";
reg = <0x40002000 0x1000>;
status = "okay";
clock-frequency = < 100000 >;

};
};

};

Here are a few ways to get node identifiers for the i2c@40002000 node:

• DT_PATH(soc, i2c_40002000)

• DT_NODELABEL(i2c1)

• DT_ALIAS(sensor_controller)

• DT_INST(x, vnd_soc_i2c) for some unknown number x. See the DT_INST() documentation for
details.

Important: Non-alphanumeric characters like dash (-) and the at sign (@) in devicetree names are
converted to underscores (_). The names in a DTS are also converted to lowercase.

Node identifiers are not values

There is no way to store one in a variable. You cannot write:

/* These will give you compiler errors: */

void *i2c_0 = DT_INST(0, vnd_soc_i2c);
unsigned int i2c_1 = DT_INST(1, vnd_soc_i2c);
long my_i2c = DT_NODELABEL(i2c1);

If you want something short to save typing, use C macros:

1642 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

/* Use something like this instead: */

define MY_I2C DT_NODELABEL(i2c1)

define INST(i) DT_INST(i, vnd_soc_i2c)
define I2C_0 INST(0)
define I2C_1 INST(1)

Property access

The right API to use to read property values depends on the node and property.

• Checking properties and values

• Simple properties

• reg properties

• interrupts properties

• phandle properties

Checking properties and values You can use DT_NODE_HAS_PROP() to check if a node has a property.
For the example devicetree above:

DT_NODE_HAS_PROP(DT_NODELABEL(i2c1), clock_frequency) /* expands to 1 */
DT_NODE_HAS_PROP(DT_NODELABEL(i2c1), not_a_property) /* expands to 0 */

Simple properties Use DT_PROP(node_id, property) to read basic integer, boolean, string, numeric
array, and string array properties.

For example, to read the clock-frequency property’s value in the above example:

DT_PROP(DT_PATH(soc, i2c_40002000), clock_frequency) /* This is 100000, */
DT_PROP(DT_NODELABEL(i2c1), clock_frequency) /* and so is this, */
DT_PROP(DT_ALIAS(sensor_controller), clock_frequency) /* and this. */

Important: The DTS property clock-frequency is spelled clock_frequency in C. That is, properties
also need special characters converted to underscores. Their names are also forced to lowercase.

Properties with string and boolean types work the exact same way. The DT_PROP() macro expands to
a string literal in the case of strings, and the number 0 or 1 in the case of booleans. For example:

define I2C1 DT_NODELABEL(i2c1)

DT_PROP(I2C1, status) /* expands to the string literal "okay" */

Note: Don’t use DT_NODE_HAS_PROP() for boolean properties. Use DT_PROP() instead as shown
above. It will expand to either 0 or 1 depending on if the property is present or absent.

Properties with type array, uint8-array, and string-array work similarly, except DT_PROP() expands
to an array initializer in these cases. Here is an example devicetree fragment:

8.11. Devicetree Guide 1643

Zephyr Project Documentation, Release 2.7.0-rc2

foo: foo@1234 {
a = <1000 2000 3000>; /* array */
b = [aa bb cc dd]; /* uint8-array */
c = "bar", "baz"; /* string-array */

};

Its properties can be accessed like this:

define FOO DT_NODELABEL(foo)

int a[] = DT_PROP(FOO, a); /* {1000, 2000, 3000} */
unsigned char b[] = DT_PROP(FOO, b); /* {0xaa, 0xbb, 0xcc, 0xdd} */
char* c[] = DT_PROP(FOO, c); /* {"foo", "bar"} */

You can use DT_PROP_LEN() to get logical array lengths in number of elements.

size_t a_len = DT_PROP_LEN(FOO, a); /* 3 */
size_t b_len = DT_PROP_LEN(FOO, b); /* 4 */
size_t c_len = DT_PROP_LEN(FOO, c); /* 2 */

DT_PROP_LEN() cannot be used with the special reg or interrupts properties. These have alternative
macros which are described next.

reg properties See Important properties for an introduction to reg.

Given a node identifier node_id, DT_NUM_REGS(node_id) is the total number of register blocks in the
node’s reg property.

You cannot read register block addresses and lengths with DT_PROP(node, reg). Instead, if a node only
has one register block, use DT_REG_ADDR() or DT_REG_SIZE() :

• DT_REG_ADDR(node_id): the given node’s register block address

• DT_REG_SIZE(node_id): its size

Use DT_REG_ADDR_BY_IDX() or DT_REG_SIZE_BY_IDX() instead if the node has multiple register blocks:

• DT_REG_ADDR_BY_IDX(node_id, idx): address of register block at index idx

• DT_REG_SIZE_BY_IDX(node_id, idx): size of block at index idx

The idx argument to these must be an integer literal or a macro that expands to one without requiring
any arithmetic. In particular, idx cannot be a variable. This won’t work:

/* This will cause a compiler error. */

for (size_t i = 0; i < DT_NUM_REGS(node_id); i++) {
size_t addr = DT_REG_ADDR_BY_IDX(node_id, i);

}

interrupts properties See Important properties for a brief introduction to interrupts.

Given a node identifier node_id, DT_NUM_IRQS(node_id) is the total number of interrupt specifiers in
the node’s interrupts property.

The most general purpose API macro for accessing these is DT_IRQ_BY_IDX() :

DT_IRQ_BY_IDX(node_id, idx, val)

Here, idx is the logical index into the interrupts array, i.e. it is the index of an individual interrupt
specifier in the property. The val argument is the name of a cell within the interrupt specifier. To use
this macro, check the bindings file for the node you are interested in to find the val names.

1644 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Most Zephyr devicetree bindings have a cell named irq, which is the interrupt number. You can use
DT_IRQN() as a convenient way to get a processed view of this value.

Warning: Here, “processed” reflects Zephyr’s devicetree Scripts and tools, which change the irq
number in zephyr.dts to handle hardware constraints on some SoCs and in accordance with Zephyr’s
multilevel interrupt numbering.

This is currently not very well documented, and you’ll need to read the scripts’ source code and
existing drivers for more details if you are writing a device driver.

phandle properties Property values can refer to other nodes using the &another-node phandle syntax
introduced in Writing property values. Properties which contain phandles have type phandle, phandles,
or phandle-array in their bindings. We’ll call these “phandle properties” for short.

You can convert a phandle to a node identifier using DT_PHANDLE() , DT_PHANDLE_BY_IDX() , or
DT_PHANDLE_BY_NAME() , depending on the type of property you are working with.

One common use case for phandle properties is referring to other hardware in the tree. In this case,
you usually want to convert the devicetree-level phandle to a Zephyr driver-level struct device. See Get a
struct device from a devicetree node for ways to do that.

Another common use case is accessing specifier values in a phandle array. The general pur-
pose APIs for this are DT_PHA_BY_IDX() and DT_PHA() . There are also hardware-specific short-
hands like DT_GPIO_CTLR_BY_IDX() , DT_GPIO_CTLR() , DT_GPIO_LABEL_BY_IDX() , DT_GPIO_LABEL() ,
DT_GPIO_PIN_BY_IDX() , DT_GPIO_PIN() , DT_GPIO_FLAGS_BY_IDX() , and DT_GPIO_FLAGS() .

See DT_PHA_HAS_CELL_AT_IDX() and DT_PROP_HAS_IDX() for ways to check if a specifier value is
present in a phandle property.

Other APIs

Here are pointers to some other available APIs.

• DT_CHOSEN() , DT_HAS_CHOSEN() : for properties of the special /chosen node

• DT_HAS_COMPAT_STATUS_OKAY() , DT_NODE_HAS_COMPAT() : global- and node-specific tests related
to the compatible property

• DT_BUS() : get a node’s bus controller, if there is one

• DT_ENUM_IDX() : for properties whose values are among a fixed list of choices

• Fixed flash partitions: APIs for managing fixed flash partitions. Also see Flash map, which wraps
this in a more user-friendly API.

Device driver conveniences

Special purpose macros are available for writing device drivers, which usually rely on instance identifiers.

To use these, you must define DT_DRV_COMPAT to the compat value your driver implements support for.
This compat value is what you would pass to DT_INST() .

If you do that, you can access the properties of individual instances of your compatible with less typing,
like this:

include <devicetree.h>

define DT_DRV_COMPAT my_driver_compat

(continues on next page)

8.11. Devicetree Guide 1645

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

/* This is same thing as DT_INST(0, my_driver_compat): */
DT_DRV_INST(0)

/*
* This is the same thing as
* DT_PROP(DT_INST(0, my_driver_compat), clock_frequency)
*/

DT_INST_PROP(0, clock_frequency)

See Instance-based APIs for a generic API reference.

Hardware specific APIs

Convenience macros built on top of the above APIs are also defined to help readability for hardware
specific code. See Hardware specific APIs for details.

Generated macros

While the devicetree.h API is not generated, it does rely on a generated C header which is put into
every application build directory: devicetree_unfixed.h. This file contains macros with devicetree data.

These macros have tricky naming conventions which the Devicetree API API abstracts away. They should
be considered an implementation detail, but it’s useful to understand them since they will frequently be
seen in compiler error messages.

This section contains an Augmented Backus-Naur Form grammar for these generated macros, with exam-
ples and more details in comments. See RFC 7405 (which extends RFC 5234) for a syntax specification.

; An RFC 7405 ABNF grammar for devicetree macros.
;
; This does *not* cover macros pulled out of DT via Kconfig,
; like CONFIG_SRAM_BASE_ADDRESS, etc. It only describes the
; ones that start with DT_ and are directly generated, not
; defined in a dts_fixup.h file.

; --
; dt-macro: the top level nonterminal for a devicetree macro
;
; A dt-macro starts with uppercase "DT_", and is one of:
;
; - a <node-macro>, generated for a particular node
; - some <other-macro>, a catch-all for other types of macros
dt-macro = node-macro / other-macro

; --
; node-macro: a macro related to a node

; A macro about a property value
node-macro = property-macro
; A macro about the pinctrl properties in a node.
node-macro =/ pinctrl-macro
; EXISTS macro: node exists in the devicetree
node-macro =/ %s"DT_N" path-id %s"_EXISTS"
; Bus macros: the plain BUS is a way to access a node's bus controller.
; The additional dt-name suffix is added to match that node's bus type;
; the dt-name in this case is something like "spi" or "i2c".

(continues on next page)

1646 Chapter 8. User and Developer Guides

https://tools.ietf.org/html/rfc7405
https://tools.ietf.org/html/rfc5234

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

node-macro =/ %s"DT_N" path-id %s"_BUS" ["_" dt-name]
; The reg property is special and has its own macros.
node-macro =/ %s"DT_N" path-id %s"_REG_NUM"
node-macro =/ %s"DT_N" path-id %s"_REG_IDX_" DIGIT "_EXISTS"
node-macro =/ %s"DT_N" path-id %s"_REG_IDX_" DIGIT

%s"_VAL_" (%s"ADDRESS" / %s"SIZE")
node-macro =/ %s"DT_N" path-id %s"_REG_NAME_" dt-name

%s"_VAL_" (%s"ADDRESS" / %s"SIZE")
; The interrupts property is also special.
node-macro =/ %s"DT_N" path-id %s"_IRQ_NUM"
node-macro =/ %s"DT_N" path-id %s"_IRQ_IDX_" DIGIT "_EXISTS"
node-macro =/ %s"DT_N" path-id %s"_IRQ_IDX_" DIGIT

%s"_VAL_" dt-name [%s"_EXISTS"]
node-macro =/ %s"DT_N" path-id %s"_IRQ_NAME_" dt-name

%s"_VAL_" dt-name [%s"_EXISTS"]
; Subnodes of the fixed-partitions compatible get macros which contain
; a unique ordinal value for each partition
node-macro =/ %s"DT_N" path-id %s"_PARTITION_ID" DIGIT
; Macros are generated for each of a node's compatibles;
; dt-name in this case is something like "vnd_device".
node-macro =/ %s"DT_N" path-id %s"_COMPAT_MATCHES_" dt-name
; Every non-root node gets one of these macros, which expands to the node
; identifier for that node's parent in the devicetree.
node-macro =/ %s"DT_N" path-id %s"_PARENT"
; These are used internally by DT_FOREACH_CHILD, which iterates over
; each child node.
node-macro =/ %s"DT_N" path-id %s"_FOREACH_CHILD"
node-macro =/ %s"DT_N" path-id %s"_FOREACH_CHILD_VARGS"
; These are used internally by DT_FOREACH_CHILD_STATUS_OKAY, which iterates
; over each child node with status "okay".
node-macro =/ %s"DT_N" path-id %s"_FOREACH_CHILD_STATUS_OKAY"
node-macro =/ %s"DT_N" path-id %s"_FOREACH_CHILD_STATUS_OKAY_VARGS"
; The node's status macro; dt-name in this case is something like "okay"
; or "disabled".
node-macro =/ %s"DT_N" path-id %s"_STATUS_" dt-name
; The node's dependency ordinal. This is a non-negative integer
; value that is used to represent dependency information.
node-macro =/ %s"DT_N" path-id %s"_ORD"
; The node's path, as a string literal
node-macro =/ %s"DT_N" path-id %s"_PATH"
; The node's name@unit-addr, as a string literal
node-macro =/ %s"DT_N" path-id %s"_FULL_NAME"
; The dependency ordinals of a node's requirements (direct dependencies).
node-macro =/ %s"DT_N" path-id %s"_REQUIRES_ORDS"
; The dependency ordinals of a node supports (reverse direct dependencies).
node-macro =/ %s"DT_N" path-id %s"_SUPPORTS_ORDS"

; --
; pinctrl-macro: a macro related to the pinctrl properties in a node
;
; These are a bit of a special case because they kind of form an array,
; but the array indexes correspond to pinctrl-DIGIT properties in a node.
;
; So they're related to a node, but not just one property within the node.
;
; The following examples assume something like this:

(continues on next page)

8.11. Devicetree Guide 1647

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

;
; foo {
; pinctrl-0 = <&bar>;
; pinctrl-1 = <&baz>;
; pinctrl-names = "default", "sleep";
; };

; Total number of pinctrl-DIGIT properties in the node. May be zero.
;
; #define DT_N_<node path>_PINCTRL_NUM 2
pinctrl-macro = %s"DT_N" path-id %s"_PINCTRL_NUM"
; A given pinctrl-DIGIT property exists.
;
; #define DT_N_<node path>_PINCTRL_IDX_0_EXISTS 1
; #define DT_N_<node path>_PINCTRL_IDX_1_EXISTS 1
pinctrl-macro =/ %s"DT_N" path-id %s"_PINCTRL_IDX_" DIGIT %s"_EXISTS"
; A given pinctrl property name exists.
;
; #define DT_N_<node path>_PINCTRL_NAME_default_EXISTS 1
; #define DT_N_<node path>_PINCTRL_NAME_sleep_EXISTS 1
pinctrl-macro =/ %s"DT_N" path-id %s"_PINCTRL_NAME_" dt-name %s"_EXISTS"
; The corresponding index number of a named pinctrl property.
;
; #define DT_N_<node path>_PINCTRL_NAME_default_IDX 0
; #define DT_N_<node path>_PINCTRL_NAME_sleep_IDX 1
pinctrl-macro =/ %s"DT_N" path-id %s"_PINCTRL_NAME_" dt-name %s"_IDX"
; The node identifier for the phandle in a named pinctrl property.
;
; #define DT_N_<node path>_PINCTRL_NAME_default_IDX_0_PH <node id for 'bar'>
;
; There's no need for a separate macro for access by index: that's
; covered by property-macro. We only need this because the map from
; names to properties is implicit in the structure of the DT.
pinctrl-macro =/ %s"DT_N" path-id %s"_PINCTRL_NAME_" dt-name %s"_IDX_" DIGIT %s"_PH"

; --
; property-macro: a macro related to a node property
;
; These combine a node identifier with a "lowercase-and-underscores form"
; property name. The value expands to something related to the property's
; value.
;
; The optional prop-suf suffix is when there's some specialized
; subvalue that deserves its own macro, like the macros for an array
; property's individual elements
;
; The "plain vanilla" macro for a property's value, with no prop-suf,
; looks like this:
;
; DT_N_<node path>_P_<property name>
;
; Components:
;
; - path-id: node's devicetree path converted to a C token
; - prop-id: node's property name converted to a C token
; - prop-suf: an optional property-specific suffix

(continues on next page)

1648 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

property-macro = %s"DT_N" path-id %s"_P_" prop-id [prop-suf]

; --
; path-id: a node's path-based macro identifier
;
; This in "lowercase-and-underscores" form. I.e. it is
; the node's devicetree path converted to a C token by changing:
;
; - each slash (/) to _S_
; - all letters to lowercase
; - non-alphanumerics characters to underscores
;
; For example, the leaf node "bar-BAZ" in this devicetree:
;
; / {
; foo@123 {
; bar-BAZ {};
; };
; };
;
; has path-id "_S_foo_123_S_bar_baz".
path-id = 1*(%s"_S_" dt-name)

; --
; prop-id: a property identifier
;
; A property name converted to a C token by changing:
;
; - all letters to lowercase
; - non-alphanumeric characters to underscores
;
; Example node:
;
; chosen {
; zephyr,console = &uart1;
; WHY,AM_I_SHOUTING = "unclear";
; };
;
; The 'zephyr,console' property has prop-id 'zephyr_console'.
; 'WHY,AM_I_SHOUTING' has prop-id 'why_am_i_shouting'.
prop-id = dt-name

; --
; prop-suf: a property-specific macro suffix
;
; Extra macros are generated for properties:
;
; - that are special to the specification ("reg", "interrupts", etc.)
; - with array types (uint8-array, phandle-array, etc.)
; - with "enum:" in their bindings
; - that have zephyr device API specific macros for phandle-arrays
; - related to phandle specifier names ("foo-names")
;
; Here are some examples:
;
; - _EXISTS: property, index or name existence flag

(continues on next page)

8.11. Devicetree Guide 1649

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

; - _SIZE: logical property length
; - _IDX_<i>: values of individual array elements
; - _IDX_<DIGIT>_VAL_<dt-name>: values of individual specifier
; cells within a phandle array
; - _ADDR_<i>: for reg properties, the i-th register block address
; - _LEN_<i>: for reg properties, the i-th register block length
;
; The different cases are not exhaustively documented here to avoid
; this file going stale. Please see devicetree.h if you need to know
; the details.
prop-suf = 1*("_" gen-name ["_" dt-name])

; --
; other-macro: grab bag for everything that isn't a node-macro.

; See examples below.
other-macro = %s"DT_N_" alternate-id
; Total count of enabled instances of a compatible.
other-macro =/ %s"DT_N_INST_" dt-name %s"_NUM_OKAY"
; These are used internally by DT_FOREACH_STATUS_OKAY,
; which iterates over each enabled node of a compatible.
other-macro =/ %s"DT_FOREACH_OKAY_" dt-name
other-macro =/ %s"DT_FOREACH_OKAY_VARGS_" dt-name
; These are used internally by DT_INST_FOREACH_STATUS_OKAY,
; which iterates over each enabled instance of a compatible.
other-macro =/ %s"DT_FOREACH_OKAY_INST_" dt-name
other-macro =/ %s"DT_FOREACH_OKAY_INST_VARGS_" dt-name
; E.g.: #define DT_CHOSEN_zephyr_flash
other-macro =/ %s"DT_CHOSEN_" dt-name
; Declares that a compatible has at least one node on a bus.
; Example:
;
; #define DT_COMPAT_vnd_dev_BUS_spi 1
other-macro =/ %s"DT_COMPAT_" dt-name %s"_BUS_" dt-name
; Declares that a compatible has at least one status "okay" node.
; Example:
;
; #define DT_COMPAT_HAS_OKAY_vnd_dev 1
other-macro =/ %s"DT_COMPAT_HAS_OKAY_" dt-name
; Currently used to allow mapping a lowercase-and-underscores "label"
; property to a fixed-partitions node. See the flash map API docs
; for an example.
other-macro =/ %s"DT_COMPAT_" dt-name %s"_LABEL_" dt-name

; --
; alternate-id: another way to specify a node besides a path-id
;
; Example devicetree:
;
; / {
; aliases {
; dev = &dev_1;
; };
;
; soc {
; dev_1: device@123 {

(continues on next page)

1650 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

; compatible = "vnd,device";
; };
; };
; };
;
; Node device@123 has these alternate-id values:
;
; - ALIAS_dev
; - NODELABEL_dev_1
; - INST_0_vnd_device
;
; The full alternate-id macros are:
;
; #define DT_N_INST_0_vnd_device DT_N_S_soc_S_device_123
; #define DT_N_ALIAS_dev DT_N_S_soc_S_device_123
; #define DT_N_NODELABEL_dev_1 DT_N_S_soc_S_device_123
;
; These mainly exist to allow pasting an alternate-id macro onto a
; "_P_<prop-id>" to access node properties given a node's alias, etc.
;
; Notice that "inst"-type IDs have a leading instance identifier,
; which is generated by the devicetree scripts. The other types of
; alternate-id begin immediately with names taken from the devicetree.
alternate-id = (%s"ALIAS" / %s"NODELABEL") dt-name
alternate-id =/ %s"INST_" 1*DIGIT "_" dt-name

; --
; miscellaneous helper definitions

; A dt-name is one or more:
; - lowercase ASCII letters (a-z)
; - numbers (0-9)
; - underscores ("_")
;
; They are the result of converting names or combinations of names
; from devicetree to a valid component of a C identifier by
; lowercasing letters (in practice, this is a no-op) and converting
; non-alphanumeric characters to underscores.
;
; You'll see these referred to as "lowercase-and-underscores" forms of
; various devicetree identifiers throughout the documentation.
dt-name = 1*(lower / DIGIT / "_")

; gen-name is used as a stand-in for a component of a generated macro
; name which does not come from devicetree (dt-name covers that case).
;
; - uppercase ASCII letters (a-z)
; - numbers (0-9)
; - underscores ("_")
gen-name = upper 1*(upper / DIGIT / "_")

; "lowercase ASCII letter" turns out to be pretty annoying to specify
; in RFC-7405 syntax.
;
; This is just ASCII letters a (0x61) through z (0x7a).
lower = %x61-7A

(continues on next page)

8.11. Devicetree Guide 1651

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

; "uppercase ASCII letter" in RFC-7405 syntax
upper = %x41-5A

8.11.5 Devicetree HOWTOs

This page has step-by-step advice for getting things done with devicetree.

Tip: See Troubleshooting devicetree for troubleshooting advice.

Get your devicetree and generated header

A board’s devicetree (BOARD.dts) pulls in common node definitions via #include preprocessor directives.
This at least includes the SoC’s .dtsi. One way to figure out the devicetree’s contents is by opening these
files, e.g. by looking in dts/<ARCH>/<vendor>/<soc>.dtsi, but this can be time consuming.

If you just want to see the “final” devicetree for your board, build an application and open the zephyr.
dts file in the build directory.

Tip: You can build hello_world to see the “base” devicetree for your board without any additional
changes from overlay files.

For example, using the qemu_cortex_m3 board to build hello_world:

--cmake-only here just forces CMake to run, skipping the
build process to save time.
west build -b qemu_cortex_m3 -s samples/hello_world --cmake-only

You can change qemu_cortex_m3 to match your board.

CMake prints the input and output file locations like this:

-- Found BOARD.dts: .../zephyr/boards/arm/qemu_cortex_m3/qemu_cortex_m3.dts
-- Generated zephyr.dts: .../zephyr/build/zephyr/zephyr.dts
-- Generated devicetree_unfixed.h: .../zephyr/build/zephyr/include/generated/
→˓devicetree_unfixed.h

The zephyr.dts file is the final devicetree in DTS format.

The devicetree_unfixed.h file is the corresponding generated header.

See Input and output files for details about these files.

Get a struct device from a devicetree node

When writing Zephyr applications, you’ll often want to get a driver-level struct device corresponding to a
devicetree node.

For example, with this devicetree fragment, you might want the struct device for serial@40002000:

/ {
soc {

serial0: serial@40002000 {
(continues on next page)

1652 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

status = "okay";
current-speed = <115200>;
/* ... */

};
};

aliases {
my-serial = &serial0;

};

chosen {
zephyr,console = &serial0;

};
};

Start by making a node identifier for the device you are interested in. There are different ways to do this;
pick whichever one works best for your requirements. Here are some examples:

/* Option 1: by node label */
define MY_SERIAL DT_NODELABEL(serial0)

/* Option 2: by alias */
define MY_SERIAL DT_ALIAS(my_serial)

/* Option 3: by chosen node */
define MY_SERIAL DT_CHOSEN(zephyr_console)

/* Option 4: by path */
define MY_SERIAL DT_PATH(soc, serial_40002000)

Once you have a node identifier there are two ways to proceed. The classic way is to get the struct
device by combining DT_LABEL() with device_get_binding() :

const struct device *uart_dev = device_get_binding(DT_LABEL(MY_SERIAL));

You can then use uart_dev with UART API functions like uart_configure() . Similar code will work for
other device types; just make sure you use the correct API for the device.

There’s no need to override the label property to something else: just make a node identifier and pass
it to DT_LABEL to get the right string to pass to device_get_binding().

The second way to get a device is to use DEVICE_DT_GET() :

const struct device *uart_dev = DEVICE_DT_GET(MY_SERIAL);

if (!device_is_ready(uart_dev)) {
/* Not ready, do not use */
return -ENODEV;

}

This idiom fetches the device pointer at build-time, which is useful when you want to store the device
pointer as configuration data. But because the device may not be initialized, or may have failed to
initialize, you must verify that the device is ready to be used before passing it to any API functions. (This
check is done for you by device_get_binding() .)

If you’re having trouble, see Troubleshooting devicetree. The first thing to check is that the node has
status = "okay", like this:

8.11. Devicetree Guide 1653

Zephyr Project Documentation, Release 2.7.0-rc2

define MY_SERIAL DT_NODELABEL(my_serial)

if DT_NODE_HAS_STATUS(MY_SERIAL, okay)
const struct device *uart_dev = device_get_binding(DT_LABEL(MY_SERIAL));
else
error "Node is disabled"
endif

If you see the #error output, make sure to enable the node in your devicetree. If you don’t see the
#error but uart_dev is NULL, then there’s likely either a Kconfig issue preventing the device driver from
creating the device, or the device’s initialization function failed.

Find a devicetree binding

Devicetree bindings are YAML files which declare what you can do with the nodes they describe, so it’s
critical to be able to find them for the nodes you are using.

If you don’t have them already, Get your devicetree and generated header. To find a node’s binding, open
the generated header file, which starts with a list of nodes in a block comment:

/*
* [...]
* Nodes in dependency order (ordinal and path):
* 0 /
* 1 /aliases
* 2 /chosen
* 3 /flash@0
* 4 /memory@20000000
* (etc.)
* [...]
*/

Make note of the path to the node you want to find, like /flash@0. Search for the node’s output in the
file, which starts with something like this if the node has a matching binding:

/*
* Devicetree node:
* /flash@0
*
* Binding (compatible = soc-nv-flash):
* $ZEPHYR_BASE/dts/bindings/mtd/soc-nv-flash.yaml
* [...]
*/

See Check for missing bindings for troubleshooting.

Set devicetree overlays

Devicetree overlays are explained in Introduction to devicetree. The CMake variable DTC_OVERLAY_FILE
contains a space- or semicolon-separated list of overlays. If DTC_OVERLAY_FILE specifies multiple files,
they are included in that order by the C preprocessor.

Here are some ways to set it:

1. on the cmake build command line (-DDTC_OVERLAY_FILE="file1.overlay;file2.overlay")

2. with the CMake set() command in the application CMakeLists.txt, before including zephyr’s
boilerplate.cmake file

1654 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

3. using a DTC_OVERLAY_FILE environment variable (deprecated)

4. create a boards/<BOARD>_<revision>.overlay file in the application folder for the current board
revision. This requires that the board supports multiple revisions, see Multiple board revisions. The
boards/<BOARD>_<revision>.overlay file will be merged with boards/<BOARD>.overlay if this
file also exists.

5. create a boards/<BOARD>.overlay file in the application folder, for the current board

6. create a <BOARD>.overlay file in the application folder

7. create an app.overlay file in the application folder

Here is an example using west build. However you set the value, it is saved in the CMake cache between
builds.

The build system prints all the devicetree overlays it finds in the configuration phase, like this:

-- Found devicetree overlay: .../some/file.overlay

Use devicetree overlays

See Set devicetree overlays for how to add an overlay to the build.

Overlays can override node property values in multiple ways. For example, if your BOARD.dts contains
this node:

/ {
soc {

serial0: serial@40002000 {
status = "okay";
current-speed = <115200>;
/* ... */

};
};

};

These are equivalent ways to override the current-speed value in an overlay:

/* Option 1 */
&serial0 {

current-speed = <9600>;
};

/* Option 2 */
&{/soc/serial@40002000} {

current-speed = <9600>;
};

We’ll use the &serial0 style for the rest of these examples.

You can add aliases to your devicetree using overlays: an alias is just a property of the /aliases node.
For example:

/ {
aliases {

my-serial = &serial0;
};

};

Chosen nodes work the same way. For example:

8.11. Devicetree Guide 1655

Zephyr Project Documentation, Release 2.7.0-rc2

/ {
chosen {

zephyr,console = &serial0;
};

};

To delete a property (in addition to deleting properties in general, this is how to set a boolean property
to false if it’s true in BOARD.dts):

&serial0 {
/delete-property/ some-unwanted-property;

};

You can add subnodes using overlays. For example, to configure a SPI or I2C child device on an existing
bus node, do something like this:

/* SPI device example */
&spi1 {

my_spi_device: temp-sensor@0 {
compatible = "...";
label = "TEMP_SENSOR_0";
/* reg is the chip select number, if needed;
* If present, it must match the node's unit address. */

reg = <0>;

/* Configure other SPI device properties as needed.
* Find your device's DT binding for details. */

spi-max-frequency = <4000000>;
};

};

/* I2C device example */
&i2c2 {

my_i2c_device: touchscreen@76 {
compatible = "...";
label = "TOUCHSCREEN";
/* reg is the I2C device address.
* It must match the node's unit address. */

reg = <76>;

/* Configure other I2C device properties as needed.
* Find your device's DT binding for details. */

};
};

Other bus devices can be configured similarly:

• create the device as a subnode of the parent bus

• set its properties according to its binding

Assuming you have a suitable device driver associated with the my_spi_device and my_i2c_device
compatibles, you should now be able to enable the driver via Kconfig and get the struct device for your
newly added bus node, then use it with that driver API.

Write device drivers using devicetree APIs

“Devicetree-aware” device drivers should create a struct device for each status = "okay" devicetree
node with a particular compatible (or related set of compatibles) supported by the driver.

1656 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Note: Historically, Zephyr has used Kconfig options like :kconfig:`CONFIG_I2C_0` and :kcon-
fig:`CONFIG_I2C_1` to enable driver support for individual devices of some type. For example, if
CONFIG_I2C_1=y, the SoC’s I2C peripheral driver would create a struct device for “I2C bus controller
number 1”.

This style predates support for devicetree in Zephyr and its use is now discouraged. Existing device
drivers may be made “devicetree-aware” in future releases.

Writing a devicetree-aware driver begins by defining a devicetree binding for the devices supported by
the driver. Use existing bindings from similar drivers as a starting point. A skeletal binding to get started
needs nothing more than this:

description: <Human-readable description of your binding>
compatible: "foo-company,bar-device"
include: base.yaml

See Find a devicetree binding for more advice on locating existing bindings.

After writing your binding, your driver C file can then use the devicetree API to find status = "okay"
nodes with the desired compatible, and instantiate a struct device for each one. There are two options
for instantiating each struct device: using instance numbers, and using node labels.

In either case:

• Each struct device‘s name should be set to its devicetree node’s label property. This allows the
driver’s users to Get a struct device from a devicetree node in the usual way.

• Each device’s initial configuration should use values from devicetree properties whenever practical.
This allows users to configure the driver using devicetree overlays.

Examples for how to do this follow. They assume you’ve already implemented the device-specific config-
uration and data structures and API functions, like this:

/* my_driver.c */
include <drivers/some_api.h>

/* Define data (RAM) and configuration (ROM) structures: */
struct my_dev_data {

/* per-device values to store in RAM */
};
struct my_dev_cfg {

uint32_t freq; /* Just an example: initial clock frequency in Hz */
/* other configuration to store in ROM */

};

/* Implement driver API functions (drivers/some_api.h callbacks): */
static int my_driver_api_func1(const struct device *dev, uint32_t *foo) { /* ... */ }
static int my_driver_api_func2(const struct device *dev, uint64_t bar) { /* ... */ }
static struct some_api my_api_funcs = {

.func1 = my_driver_api_func1,

.func2 = my_driver_api_func2,
};

Option 1: create devices using instance numbers Use this option, which uses Instance-based APIs, if
possible. However, they only work when devicetree nodes for your driver’s compatible are all equivalent,
and you do not need to be able to distinguish between them.

To use instance-based APIs, begin by defining DT_DRV_COMPAT to the lowercase-and-underscores version

8.11. Devicetree Guide 1657

Zephyr Project Documentation, Release 2.7.0-rc2

of the compatible that the device driver supports. For example, if your driver’s compatible is "vnd,
my-device" in devicetree, you would define DT_DRV_COMPAT to vnd_my_device in your driver C file:

/*
* Put this near the top of the file. After the includes is a good place.
* (Note that you can therefore run "git grep DT_DRV_COMPAT drivers" in
* the zephyr Git repository to look for example drivers using this style).
*/

define DT_DRV_COMPAT vnd_my_device

Important: As shown, the DT_DRV_COMPAT macro should have neither quotes nor special characters.
Remove quotes and convert special characters to underscores when creating DT_DRV_COMPAT from the
compatible property.

Finally, define an instantiation macro, which creates each struct device using instance numbers. Do
this after defining my_api_funcs.

/*
* This instantiation macro is named "CREATE_MY_DEVICE".
* Its "inst" argument is an arbitrary instance number.
*
* Put this near the end of the file, e.g. after defining "my_api_funcs".
*/

define CREATE_MY_DEVICE(inst) \
static struct my_dev_data my_data_##inst = { \

/* initialize RAM values as needed, e.g.: */ \
.freq = DT_INST_PROP(inst, clock_frequency), \

}; \
static const struct my_dev_cfg my_cfg_##inst = { \

/* initialize ROM values as needed. */ \
}; \
DEVICE_DT_INST_DEFINE(inst, \

my_dev_init_function, \
NULL, \
&my_data_##inst, \
&my_cfg_##inst, \
MY_DEV_INIT_LEVEL, MY_DEV_INIT_PRIORITY, \
&my_api_funcs);

Notice the use of APIs like DT_INST_PROP() and DEVICE_DT_INST_DEFINE() to access devicetree node
data. These APIs retrieve data from the devicetree for instance number inst of the node with compatible
determined by DT_DRV_COMPAT.

Finally, pass the instantiation macro to DT_INST_FOREACH_STATUS_OKAY() :

/* Call the device creation macro for each instance: */
DT_INST_FOREACH_STATUS_OKAY(CREATE_MY_DEVICE)

DT_INST_FOREACH_STATUS_OKAY expands to code which calls CREATE_MY_DEVICE once for each enabled
node with the compatible determined by DT_DRV_COMPAT. It does not append a semicolon to the end
of the expansion of CREATE_MY_DEVICE, so the macro’s expansion must end in a semicolon or function
definition to support multiple devices.

Option 2: create devices using node labels Some device drivers cannot use instance numbers. One
example is an SoC peripheral driver which relies on vendor HAL APIs specialized for individual IP blocks
to implement Zephyr driver callbacks. Cases like this should use DT_NODELABEL() to refer to individual

1658 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

nodes in the devicetree representing the supported peripherals on the SoC. The devicetree.h Generic APIs
can then be used to access node data.

For this to work, your SoC’s dtsi file must define node labels like mydevice0, mydevice1, etc. appro-
priately for the IP blocks your driver supports. The resulting devicetree usually looks something like
this:

/ {
soc {

mydevice0: dev@0 {
compatible = "vnd,my-device";

};
mydevice1: dev@1 {

compatible = "vnd,my-device";
};

};
};

The driver can use the mydevice0 and mydevice1 node labels in the devicetree to operate on specific
device nodes:

/*
* This is a convenience macro for creating a node identifier for
* the relevant devices. An example use is MYDEV(0) to refer to
* the node with label "mydevice0".
*/

define MYDEV(idx) DT_NODELABEL(mydevice ## idx)

/*
* Define your instantiation macro; "idx" is a number like 0 for mydevice0
* or 1 for mydevice1. It uses MYDEV() to create the node label from the
* index.
*/

define CREATE_MY_DEVICE(idx) \
static struct my_dev_data my_data_##idx = { \

/* initialize RAM values as needed, e.g.: */ \
.freq = DT_PROP(MYDEV(idx), clock_frequency), \

}; \
static const struct my_dev_cfg my_cfg_##idx = { /* ... */ }; \
DEVICE_DT_DEFINE(MYDEV(idx), \

my_dev_init_function, \
NULL, \
&my_data_##idx, \
&my_cfg_##idx, \
MY_DEV_INIT_LEVEL, MY_DEV_INIT_PRIORITY, \
&my_api_funcs)

Notice the use of APIs like DT_PROP() and DEVICE_DT_DEFINE() to access devicetree node data.

Finally, manually detect each enabled devicetree node and use CREATE_MY_DEVICE to instantiate each
struct device:

if DT_NODE_HAS_STATUS(DT_NODELABEL(mydevice0), okay)
CREATE_MY_DEVICE(0)
endif

if DT_NODE_HAS_STATUS(DT_NODELABEL(mydevice1), okay)
CREATE_MY_DEVICE(1)
endif

8.11. Devicetree Guide 1659

Zephyr Project Documentation, Release 2.7.0-rc2

Since this style does not use DT_INST_FOREACH_STATUS_OKAY(), the driver author is responsible for call-
ing CREATE_MY_DEVICE() for every possible node, e.g. using knowledge about the peripherals available
on supported SoCs.

Device drivers that depend on other devices

At times, one struct device depends on another struct device and requires a pointer to it. For
example, a sensor device might need a pointer to its SPI bus controller device. Some advice:

• Write your devicetree binding in a way that permits use of Hardware specific APIs from devicetree.h
if possible.

• In particular, for bus devices, your driver’s binding should include a file like dts/bindings/spi/spi-
device.yaml which provides common definitions for devices addressable via a specific bus. This
enables use of APIs like DT_BUS() to obtain a node identifier for the bus node. You can then Get a
struct device from a devicetree node for the bus in the usual way.

Search existing bindings and device drivers for examples.

Applications that depend on board-specific devices

One way to allow application code to run unmodified on multiple boards is by supporting a devicetree
alias to specify the hardware specific portions, as is done in the blinky-sample. The application can then
be configured in BOARD.dts files or via devicetree overlays.

8.11.6 Troubleshooting devicetree

Here are some tips for fixing misbehaving devicetree related code.

See Devicetree HOWTOs for other “HOWTO” style information.

Try again with a pristine build directory

Important: Try this first, before doing anything else.

See Pristine Builds for examples, or just delete the build directory completely and retry.

This is general advice which is especially applicable to debugging devicetree issues, because the outputs
are created during the CMake configuration phase, and are not always regenerated when one of their
inputs changes.

Make sure <devicetree.h> is included

Unlike Kconfig symbols, the devicetree.h header must be included explicitly.

Many Zephyr header files rely on information from devicetree, so including some other API may transi-
tively include devicetree.h, but that’s not guaranteed.

Make sure you’re using the right names

Remember that:

• In C/C++, devicetree names must be lowercased and special characters must be converted to
underscores. Zephyr’s generated devicetree header has DTS names converted in this way into the
C tokens used by the preprocessor-based <devicetree.h> API.

1660 Chapter 8. User and Developer Guides

https://github.com/zephyrproject-rtos/zephyr/blob/main/dts/bindings/spi/spi-device.yaml
https://github.com/zephyrproject-rtos/zephyr/blob/main/dts/bindings/spi/spi-device.yaml

Zephyr Project Documentation, Release 2.7.0-rc2

• In overlays, use devicetree node and property names the same way they would appear in any DTS
file. Zephyr overlays are just DTS fragments.

For example, if you’re trying to get the clock-frequency property of a node with path /soc/
i2c@12340000 in a C/C++ file:

/*
* foo.c: lowercase-and-underscores names
*/

/* Don't do this: */
define MY_CLOCK_FREQ DT_PROP(DT_PATH(soc, i2c@1234000), clock-frequency)
/* ^ ^
* @ should be _ - should be _ */

/* Do this instead: */
define MY_CLOCK_FREQ DT_PROP(DT_PATH(soc, i2c_1234000), clock_frequency)
/* ^ ^ */

And if you’re trying to set that property in a devicetree overlay:

/*
* foo.overlay: DTS names with special characters, etc.
*/

/* Don't do this; you'll get devicetree errors. */
&{/soc/i2c_12340000/} {

clock_frequency = <115200>;
};

/* Do this instead. Overlays are just DTS fragments. */
&{/soc/i2c@12340000/} {

clock-frequency = <115200>;
};

Look at the preprocessor output

To save preprocessor output when using GCC-based toolchains, add -save-temps=obj to the
EXTRA_CFLAGS CMake variable. For example, to build hello_world with west with this option set, use:

west build -b BOARD samples/hello_world -- -DEXTRA_CFLAGS=-save-temps=obj

This will create a preprocessor output file named foo.c.i in the build directory for each source file
foo.c.

You can then search for the file in the build directory to see what your devicetree macros expanded to.
For example, on macOS and Linux, using find to find main.c.i:

$ find build -name main.c.i
build/CMakeFiles/app.dir/src/main.c.i

It’s usually easiest to run a style formatter on the results before opening them. For example, to use
clang-format to reformat the file in place:

clang-format -i build/CMakeFiles/app.dir/src/main.c.i

You can then open the file in your favorite editor to view the final C results after preprocessing.

8.11. Devicetree Guide 1661

Zephyr Project Documentation, Release 2.7.0-rc2

Validate properties

If you’re getting a compile error reading a node property, check your node identifier and property. For
example, if you get a build error on a line that looks like this:

int baud_rate = DT_PROP(DT_NODELABEL(my_serial), current_speed);

Try checking the node by adding this to the file and recompiling:

if !DT_NODE_EXISTS(DT_NODELABEL(my_serial))
error "whoops"
endif

If you see the “whoops” error message when you rebuild, the node identifier isn’t referring to a valid
node. Get your devicetree and generated header and debug from there.

Some hints for what to check next if you don’t see the “whoops” error message:

• did you Make sure you’re using the right names?

• does the property exist?

• does the node have a matching binding?

• does the binding define the property?

Check for missing bindings

See Devicetree bindings for information about bindings, and Bindings index for information on bindings
built into Zephyr.

If the build fails to Find a devicetree binding for a node, then either the node’s compatible property is
not defined, or its value has no matching binding. If the property is set, check for typos in its name. In
a devicetree source file, compatible should look like "vnd,some-device" – Make sure you’re using the
right names.

If your binding file is not under zephyr/dts, you may need to set DTS_ROOT; see Where bindings are
located.

Errors with DT_INST_() APIs

If you’re using an API like DT_INST_PROP() , you must define DT_DRV_COMPAT to the lowercase-and-
underscores version of the compatible you are interested in. See Option 1: create devices using instance
numbers.

8.11.7 Devicetree versus Kconfig

Along with devicetree, Zephyr also uses the Kconfig language to configure the source code. Whether to
use devicetree or Kconfig for a particular purpose can sometimes be confusing. This section should help
you decide which one to use.

In short:

• Use devicetree to describe hardware and its boot-time configuration. Examples include periph-
erals on a board, boot-time clock frequencies, interrupt lines, etc.

• Use Kconfig to configure software support to build into the final image. Examples include whether
to add networking support, which drivers are needed by the application, etc.

In other words, devicetree mainly deals with hardware, and Kconfig with software.

For example, consider a board containing a SoC with 2 UART, or serial port, instances.

1662 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

• The fact that the board has this UART hardware is described with two UART nodes in the device-
tree. These provide the UART type (via the compatible property) and certain settings such as the
address range of the hardware peripheral registers in memory (via the reg property).

• Additionally, the UART boot-time configuration is also described with devicetree. This could
include configuration such as the RX IRQ line’s priority and the UART baud rate. These may be
modifiable at runtime, but their boot-time configuration is described in devicetree.

• Whether or not to include software support for UART in the build is controlled via Kconfig. Ap-
plications which do not need to use the UARTs can remove the driver source code from the build
using Kconfig, even though the board’s devicetree still includes UART nodes.

As another example, consider a device with a 2.4GHz, multi-protocol radio supporting both the Bluetooth
Low Energy and 802.15.4 wireless technologies.

• Devicetree should be used to describe the presence of the radio hardware, what driver or drivers
it’s compatible with, etc.

• Boot-time configuration for the radio, such as TX power in dBm, should also be specified using
devicetree.

• Kconfig should determine which software features should be built for the radio, such as selecting
a BLE or 802.15.4 protocol stack.

As another example, Kconfig options that formerly enabled a particular instance of a driver (that is itself
enabled by Kconfig) have been removed. The devices are selected individually using devicetree’s status
keyword on the corresponding hardware instance.

There are exceptions to these rules:

• Because Kconfig is unable to flexibly control some instance-specific driver configuration parame-
ters, such as the size of an internal buffer, these options may be defined in devicetree. However,
to make clear that they are specific to Zephyr drivers and not hardware description or configura-
tion these properties should be prefixed with zephyr,, e.g. zephyr,random-mac-address in the
common Ethernet devicetree properties.

• Devicetree’s chosen keyword, which allows the user to select a specific instance of a hardware
device to be used for a particular purpose. An example of this is selecting a particular UART for
use as the system’s console.

8.12 Peripheral and Hardware Emulators

8.12.1 Overview

Zephyr supports a simple emulator framework to support testing of drivers without requiring real hard-
ware.

Emulators are used to emulate hardware devices, to support testing of various subsystems. For example,
it is possible to write an emulator for an I2C compass such that it appears on the I2C bus and can be
used just like a real hardware device.

Emulators often implement special features for testing. For example a compass may support returning
bogus data if the I2C bus speed is too high, or may return invalid measurements if calibration has not yet
been completed. This allows for testing that high-level code can handle these situations correctly. Test
coverage can therefore approach 100% if all failure conditions are emulated.

8.12.2 Concept

The diagram below shows application code / high-level tests at the top. This is the ultimate application
we want to run.

8.12. Peripheral and Hardware Emulators 1663

Zephyr Project Documentation, Release 2.7.0-rc2

1664 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Below that are peripheral drivers, such as the AT24 EEPROM driver. We can test peripheral drivers using
an emulation driver connected via a native_posix I2C controller/emulator which passes I2C traffic from
the AT24 driver to the AT24 simulator.

Separately we can test the STM32 and NXP I2C drivers on real hardware using API tests. These require
some sort of device attached to the bus, but with this, we can validate much of the driver functionality.

Putting the two together, we can test the application and peripheral code entirely on native_posix. Since
we know that the I2C driver on the real hardware works, we should expect the application and peripheral
drivers to work on the real hardware also.

Using the above framework we can test an entire application (e.g. Embedded Controller) on native_posix
using emulators for all non-chip drivers:

The ‘real’ code is shown in green. The Zephyr emulation-framework code is shown in yellow. The blue
boxes are the extra code we have to write to emulate the peripherals.

With this approach we can:

• Write individual tests for each driver (green), covering all failure modes, error conditions, etc.

• Ensure 100% test coverage for drivers (green)

• Write tests for combinations of drivers, such as GPIOs provided by an I2C GPIO expander driver
talking over an I2C bus, with the GPIOs controlling a charger. All of this can work in the emulated
environment or on real hardware.

• Write a complex application that ties together all of these pieces and runs on native_posix. We can
develop on a host, use source-level debugging, etc.

• Transfer the application to any board which provides the required features (e.g. I2C, enough
GPIOs), by adding Kconfig and devicetree fragments.

8.12.3 Available emulators

Zephyr includes the following emulators:

8.12. Peripheral and Hardware Emulators 1665

Zephyr Project Documentation, Release 2.7.0-rc2

• EEPROM, which uses a file as the EEPROM contents

• I2C emulator driver, allowing drivers to be connected to an emulator so that tests can be performed
without access to the real hardware

• SPI emulator driver, which does the same for SPI

• eSPI emulator driver, which does the same for eSPI. The emulator is being developed to support
more functionalities.

A GPIO emulator is planned but is not yet complete.

8.12.4 Samples

Here are some examples present in Zephyr:

1. Bosche BMI160 sensor driver connected via both I2C and SPI to an emulator:

west build -b native_posix tests/drivers/sensor/accel/

2. Simple test of the EEPROM emulator:

west build -b native_posix tests/drivers/eeprom

3. The same test has a second EEPROM which is an Atmel AT24 EEPROM driver connected via I2C an
emulator:

west build -b native_posix tests/drivers/eeprom

8.13 Modules (External projects)

Zephyr relies on the source code of several externally maintained projects in order to avoid reinventing
the wheel and to reuse as much well-established, mature code as possible when it makes sense. In the
context of Zephyr’s build system those are called modules. These modules must be integrated with the
Zephyr build system, as described in more detail in other sections on this page.

To be classified as a candidate for being included in the default list of modules, an external project is
required to have its own life-cycle outside the Zephyr Project, that is, reside in its own repository, and
have its own contribution and maintenance workfow and release process. Zephyr modules should not
contain code that is written exclusively for Zephyr. Instead, such code should be contributed to the main
zephyr tree.

Modules to be included in the default manifest of the Zephyr project need to provide functionality or
features endorsed and approved by the project Technical Steering Committee and should comply with
the module licensing requirements and contribution guidelines. They should also have a Zephyr developer
that is committed to maintain the module codebase.

Zephyr depends on several categories of modules, including but not limited to:

• Debugger integration

• Silicon vendor Hardware Abstraction Layers (HALs)

• Cryptography libraries

• File Systems

• Inter-Process Communication (IPC) libraries

This page summarizes a list of policies and best practices which aim at better organizing the workflow in
Zephyr modules.

1666 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

8.13.1 Module Repositories

• All modules included in the default manifest shall be hosted in repositories under the zephyrproject-
rtos GitHub organization.

• The module repository codebase shall include a module.yml file in a zephyr/ folder at the root of
the repository.

• Module repository names should follow the convention of using lowercase letters and dashes in-
stead of underscores. This rule will apply to all new module repositories, except for repositories
that are directly tracking external projects (hosted in Git repositories); such modules may be named
as their external project counterparts.

Note: Existing module repositories that do not conform to the above convention do not need to
be renamed to comply with the above convention.

• Modules should use “zephyr” as the default name for the repository main branch. Branches for
specific purposes, for example, a module branch for an LTS Zephyr version, shall have names
starting with the ‘zephyr_’ prefix.

• If the module has an external (upstream) project repository, the module repository should preserve
the upstream repository folder structure.

Note: It is not required in module repositories to maintain a ‘master’ branch mirroring the master
branch of the external repository. It is not recommended as this may generate confusion around
the module’s main branch, which should be ‘zephyr’.

Synchronizing with upstream

It is preferred to synchronize a module respository with the latest stable release of the corresponding
external project. It is permitted, however, to update a Zephyr module repository with the latest develop-
ment branch tip, if this is required to get important updates in the module codebase. When synchronizing
a module with upstream it is mandatory to document the rationale for performing the particular update.

Requirements for allowed practices Changes to the main branch of a module repository, including
synchronization with upstream code base, may only be applied via pull requests. These pull requests shall
be verifiable by Zephyr CI and mergeable (e.g. with the Rebase and merge, or Create a merge commit option
using Github UI). This ensures that the incoming changes are always reviewable, and the downstream
module repository history is incremental (that is, existing commits, tags, etc. are always preserved). This
policy also allows to run Zephyr CI, git lint, identity, and license checks directly on the set of changes
that are to be brought into the module repository.

Note: Force-pushing to a module’s main branch is not allowed.

Allowed practices The following practices conform to the above requirements and should be followed
in all modules repositories. It is up to the module code owner to select the preferred synchronization
practice, however, it is required that the selected practice is consistently followed in the respective mod-
ule repository.

Updating modules with a diff from upstream: Upstream changes brought as a single snapshot commit
(manual diff) in a pull request against the module’s main branch, which may be merged using the Rebase
& merge operation. This approach is simple and should be applicable to all modules with the downside
of supressing the upstream history in the module repository.

8.13. Modules (External projects) 1667

Zephyr Project Documentation, Release 2.7.0-rc2

Note: The above practice is the only allowed practice in modules where the external project
is not hosted in an upstream Git repository.

The commit message is expected to identify the upstream project URL, the version to which the module
is updated (upstream version, tag, commit SHA, if applicable, etc.), and the reason for the doing the
update.

Updating modules by merging the upstream branch: Upstream changes brought in by performing a
Git merge of the intended upstream branch (e.g. main branch, latest release branch, etc.) submitting the
result in pull request against the module main branch, and merging the pull request using the Create a
merge commit operation. This approach is applicable to modules with an upstream project Git repository.
The main advantages of this approach is that the upstream repository history (that is, the original commit
SHAs) is preserved in the module repository. The downside of this approach is that two additional merge
commits are generated in the downstream main branch.

8.13.2 Contributing to Zephyr modules

Individual Roles & Responsibilities

To facilitate management of Zephyr module repositories, the following individual roles are defined.

Administrator: Each Zephyr module shall have an administrator who is responsible for managing access
to the module repository, for example, for adding individuals as Collaborators in the repository at the
request of the module owner. Module administrators are members of the Administrators team, that is a
group of project members with admin rights to module GitHub repositories.

Module owner: Each module shall have a module code owner. Module owners will have the overall
responsibility of the contents of a Zephyr module repository. In particular, a module owner will:

• coordinate code reviewing in the module repository

• be the default assignee in pull-requests against the repository’s main branch

• request additional collaborators to be added to the repository, as they see fit

• regularly synchronize the module repository with its upstream counterpart following the policies
described in Synchronizing with upstream

• be aware of security vulnerability issues in the external project and update the module repository
to include security fixes, as soon as the fixes are available in the upstream code base

• list any known security vulnerability issues, present in the module codebase, in Zephyr release
notes.

Note: Module owners are not required to be Zephyr Maintainers.

Merger: The Zephyr Release Engineering team has the right and the responsibility to merge approved
pull requests in the main branch of a module repository.

Maintaining the module codebase

Updates in the zephyr main tree, for example, in public Zephyr APIs, may require patching a module’s
codebase. The responsibility for keeping the module codebase up to date is shared between the contrib-
utor of such updates in Zephyr and the module owner. In particular:

• the contributor of the original changes in Zephyr is required to submit the corresponding changes
that are required in module repositories, to ensure that Zephyr CI on the pull request with the
original changes, as well as the module integration testing are successful.

1668 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

• the module owner has the overall responsibility for synchronizing and testing the module codebase
with the zephyr main tree. This includes occasional advanced testing of the module’s codebase in
addition to the testing performed by Zephyr’s CI. The module owner is required to fix issues in the
module’s codebase that have not been caught by Zephyr pull request CI runs.

Contributing changes to modules

Submitting and merging changes directly to a module’s codebase, that is, before they have been merged
in the corresponding external project repository, should be limited to:

• changes required due to updates in the zephyr main tree

• urgent changes that should not wait to be merged in the external project first, such as fixes to
security vulnerabilities.

Non-trivial changes to a module’s codebase, including changes in the module design or functionality
should be discouraged, if the module has an upstream project repository. In that case, such changes shall
be submitted to the upstream project, directly.

Submitting changes to modules describes in detail the process of contributing changes to module reposi-
tories.

Contribution guidelines Contributing to Zephyr modules shall follow the generic project Contribution
guidelines.

Pull Requests: may be merged with minimum of 2 approvals, including an approval by the PR assignee.
In addition to this, pull requests in module repositories may only be merged if the introduced changes
are verified with Zephyr CI tools, as described in more detail in other sections on this page.

The merging of pull requests in the main branch of a module repository must be coupled with the
corresponding manifest file update in the zephyr main tree.

Issue Reporting: GitHub issues are intentionally disabled in module repositories, in favor of a central-
ized policy for issue reporting. Tickets concerning, for example, bugs or enhancements in modules shall
be opened in the main zephyr repository. Issues should be appropriately labeled using GitHub labels
corresponding to each module, where applicable.

Note: It is allowed to file bug reports for zephyr modules to track the corresponding up-
stream project bugs in Zephyr. These bug reports shall not affect the Release Quality Criteria.

8.13.3 Licensing requirements and policies

All source files in a module’s codebase shall include a license header, unless the module repository has
main license file that covers source files that do not include license headers.

Main license files shall be added in the module’s codebase by Zephyr developers, only if they exist as part
of the external project, and they contain a permissive OSI-compliant license. Main license files should
preferably contain the full license text instead of including an SPDX license identifier. If multiple main
license files are present it shall be made clear which license applies to each source file in a module’s
codebase.

Individual license headers in module source files supersede the main license.

Any new content to be added in a module repository will require to have license coverage.

Note: Zephyr recommends conveying module licensing via individual license headers and
main license files. This not a hard requirement; should an external project have its own
practice of conveying how licensing applies in the module’s codebase (for example, by having

8.13. Modules (External projects) 1669

Zephyr Project Documentation, Release 2.7.0-rc2

a single or multiple main license files), this practice may be accepted by and be referred to
in the Zephyr module, as long as licensing requirements, for example OSI compliance, are
satisfied.

License policies

When creating a module repository a developer shall:

• import the main license files, if they exist in the external project, and

• document (for example in the module README or .yml file) the default license that covers the
module’s codebase.

License checks License checks (via CI tools) shall be enabled on every pull request that adds new
content in module repositories.

8.13.4 Documentation requirements

All Zephyr module repositories shall include an .rst file documenting:

• the scope and the purpose of the module

• how the module integrates with Zephyr

• the owner of the module repository

• synchronization information with the external project (commit, SHA, version etc.)

• licensing information as described in Licensing requirements and policies.

The file shall be required for the inclusion of the module and the contained information should be kept
up to date.

8.13.5 Testing requirements

All Zephyr modules should provide some level of integration testing, ensuring that the integration with
Zephyr works correctly. Integration tests:

• may be in the form of a minimal set of samples and tests that reside in the zephyr main tree

• should verify basic usage of the module (configuration, functional APIs, etc.) that is integrated
with Zephyr.

• shall be built and executed (for example in QEMU) as part of twister runs in pull requests that
introduce changes in module repositories.

Note: New modules, that are candidates for being included in the Zephyr default manifest, shall
provide some level of integration testing.

Note: Vendor HALs are implicitly tested via Zephyr tests built or executed on target platforms, so
they do not need to provide integration tests.

The purpose of integration testing is not to provide functional verification of the module; this should be
part of the testing framework of the external project.

1670 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Certain external projects provide test suites that reside in the upstream testing infrastructure but are
written explicitly for Zephyr. These tests may (but are not required to) be part of the Zephyr test frame-
work.

8.13.6 Deprecating and removing modules

Modules may be deprecated for reasons including, but not limited to:

• Lack of maintainership in the module

• Licensing changes in the external project

• Codebase becoming obsolete

The module information shall indicate whether a module is deprecated and the build system shall issue
a warning when trying to build Zephyr using a deprecated module.

Deprecated modules may be removed from the Zephyr default manifest after 2 Zephyr releases.

Note: Repositories of removed modules shall remain accessible via their original URL, as
they are required by older Zephyr versions.

8.13.7 Integrate modules in Zephyr build system

The build system variable ZEPHYR_MODULES is a CMake list of absolute paths to the directories containing
Zephyr modules. These modules contain CMakeLists.txt and Kconfig files describing how to build
and configure them, respectively. Module CMakeLists.txt files are added to the build using CMake’s
add_subdirectory() command, and the Kconfig files are included in the build’s Kconfig menu tree.

If you have west installed, you don’t need to worry about how this variable is defined unless you are
adding a new module. The build system knows how to use west to set ZEPHYR_MODULES. You can add
additional modules to this list by setting the ZEPHYR_EXTRA_MODULES CMake variable or by adding a
ZEPHYR_EXTRA_MODULES line to .zephyrrc (See the section on Setting Variables for more details). This
can be useful if you want to keep the list of modules found with west and also add your own.

Note: If the module FOO is provided by west but also given with -DZEPHYR_EXTRA_MODULES=/<path>/
foo then the module given by the command line variable ZEPHYR_EXTRA_MODULES will take precedence.
This allows you to use a custom version of FOO when building and still use other Zephyr modules provided
by west. This can for example be useful for special test purposes.

See Basics for more on west workspaces.

Finally, you can also specify the list of modules yourself in various ways, or not use modules at all if your
application doesn’t need them.

8.13.8 Module yaml file description

A module can be described using a file named zephyr/module.yml. The format of zephyr/module.yml
is described in the following:

Module name

Each Zephyr module is given a name by which it can be referred to in the build system.

The name may be specified in the zephyr/module.yml file:

8.13. Modules (External projects) 1671

https://cmake.org/cmake/help/latest/manual/cmake-language.7.html#lists
https://cmake.org/cmake/help/latest/command/add_subdirectory.html

Zephyr Project Documentation, Release 2.7.0-rc2

name: <name>

In CMake the location of the Zephyr module can then be referred to using the CMake variable
ZEPHYR_<MODULE_NAME>_MODULE_DIR and the variable ZEPHYR_<MODULE_NAME>_CMAKE_DIR holds the lo-
cation of the directory containing the module’s CMakeLists.txt file.

Note: When used for CMake and Kconfig variables, all letters in module names are converted to up-
percase and all non-alphanumeric characters are converted to underscores (_). As example, the module
foo-bar must be referred to as ZEPHYR_FOO_BAR_MODULE_DIR in CMake and Kconfig.

Here is an example for the Zephyr module foo:

name: foo

Note: If the name field is not specified then the Zephyr module name will be set to the name of the
module folder. As example, the Zephyr module located in <workspace>/modules/bar will use bar as its
module name if nothing is specified in zephyr/module.yml.

Module integration files (in-module)

Inclusion of build files, CMakeLists.txt and Kconfig, can be described as:

build:
cmake: <cmake-directory>
kconfig: <directory>/Kconfig

The cmake: <cmake-directory> part specifies that <cmake-directory> contains the CMakeLists.txt
to use. The kconfig: <directory>/Kconfig part specifies the Kconfig file to use. Neither is required:
cmake defaults to zephyr, and kconfig defaults to zephyr/Kconfig.

Here is an example module.yml file referring to CMakeLists.txt and Kconfig files in the root directory
of the module:

build:
cmake: .
kconfig: Kconfig

Build system integration

When a module has a module.yml file, it will automatically be included into the Zephyr build system.
The path to the module is then accessible through Kconfig and CMake variables.

In both Kconfig and CMake, the variable ZEPHYR_<MODULE_NAME>_MODULE_DIR contains the absolute path
to the module.

In CMake, ZEPHYR_<MODULE_NAME>_CMAKE_DIR contains the absolute path to the directory containing
the CMakeLists.txt file that is included into CMake build system. This variable’s value is empty if the
module.yml file does not specify a CMakeLists.txt.

To read these variables for a Zephyr module named foo:

• In CMake: use ${ZEPHYR_FOO_MODULE_DIR} for the module’s top level directory, and
${ZEPHYR_FOO_CMAKE_DIR} for the directory containing its CMakeLists.txt

• In Kconfig: use $(ZEPHYR_FOO_MODULE_DIR) for the module’s top level directory

1672 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Notice how a lowercase module name foo is capitalized to FOO in both CMake and Kconfig.

These variables can also be used to test whether a given module exists. For example, to verify that foo
is the name of a Zephyr module:

if(ZEPHYR_FOO_MODULE_DIR)
Do something if FOO exists.

endif()

In Kconfig, the variable may be used to find additional files to include. For example, to include the file
some/Kconfig in module foo:

source "$(ZEPHYR_FOO_MODULE_DIR)/some/Kconfig"

During CMake processing of each Zephyr module, the following two variables are also available:

• the current module’s top level directory: ${ZEPHYR_CURRENT_MODULE_DIR}

• the current module’s CMakeLists.txt directory: ${ZEPHYR_CURRENT_CMAKE_DIR}

This removes the need for a Zephyr module to know its own name during CMake processing. The module
can source additional CMake files using these CURRENT variables. For example:

include(${ZEPHYR_CURRENT_MODULE_DIR}/cmake/code.cmake)

It is possible to append values to a Zephyr CMake list variable from the module’s first CMakeLists.txt file.
To do so, append the value to the list and then set the list in the PARENT_SCOPE of the CMakeLists.txt
file. For example, to append bar to the FOO_LIST variable in the Zephyr CMakeLists.txt scope:

list(APPEND FOO_LIST bar)
set(FOO_LIST ${FOO_LIST} PARENT_SCOPE)

An example of a Zephyr list where this is useful is when adding additional directories to the
SYSCALL_INCLUDE_DIRS list.

Zephyr module dependencies

A Zephyr module may be dependent on other Zephyr modules to be present in order to function correctly.
Or it might be that a given Zephyr module must be processed after another Zephyr module, due to
dependencies of certain CMake targets.

Such a dependency can be described using the depends field.

build:
depends:

- <module>

Here is an example for the Zephyr module foo that is dependent on the Zephyr module bar to be present
in the build system:

name: foo
build:

depends:
- bar

This example will ensure that bar is present when foo is included into the build system, and it will also
ensure that bar is processed before foo.

8.13. Modules (External projects) 1673

Zephyr Project Documentation, Release 2.7.0-rc2

Module integration files (external)

Module integration files can be located externally to the Zephyr module itself. The MODULE_EXT_ROOT
variable holds a list of roots containing integration files located externally to Zephyr modules.

Module integration files in Zephyr The Zephyr repository contain CMakeLists.txt and Kconfig
build files for certain known Zephyr modules.

Those files are located under

<ZEPHYR_BASE>
modules

<module_name>
CMakeLists.txt
Kconfig

Module integration files in a custom location You can create a similar MODULE_EXT_ROOT for addi-
tional modules, and make those modules known to Zephyr build system.

Create a MODULE_EXT_ROOT with the following structure

<MODULE_EXT_ROOT>
modules

modules.cmake
<module_name>

CMakeLists.txt
Kconfig

and then build your application by specifying -DMODULE_EXT_ROOT parameter to the CMake build system.
The MODULE_EXT_ROOT accepts a CMake list of roots as argument.

A Zephyr module can automatically be added to the MODULE_EXT_ROOT list using the module description
file zephyr/module.yml, see Build settings.

Note: ZEPHYR_BASE is always added as a MODULE_EXT_ROOT with the lowest priority. This allows you
to overrule any integration files under <ZEPHYR_BASE>/modules/<module_name> with your own imple-
mentation your own MODULE_EXT_ROOT.

The modules.cmake file must contain the logic that specifies the integration files for Zephyr modules via
specifically named CMake variables.

To include a module’s CMake file, set the variable ZEPHYR_<MODULE_NAME>_CMAKE_DIR to the path con-
taining the CMake file.

To include a module’s Kconfig file, set the variable ZEPHYR_<MODULE_NAME>_KCONFIG to the path to the
Kconfig file.

The following is an example on how to add support the the FOO module.

Create the following structure

<MODULE_EXT_ROOT>
modules

modules.cmake
foo

CMakeLists.txt
Kconfig

and inside the modules.cmake file, add the following content

1674 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

set(ZEPHYR_FOO_CMAKE_DIR ${CMAKE_CURRENT_LIST_DIR}/foo)
set(ZEPHYR_FOO_KCONFIG ${CMAKE_CURRENT_LIST_DIR}/foo/Kconfig)

Module integration files (zephyr/module.yml) The module description file zephyr/module.yml can
be used to specify that the build files, CMakeLists.txt and Kconfig, are located in a Module integration
files (external).

Build files located in a MODULE_EXT_ROOT can be described as:

build:
cmake-ext: True
kconfig-ext: True

This allows control of the build inclusion to be described externally to the Zephyr module.

The Zephyr repository itself is always added as a Zephyr module ext root.

Build settings

It is possible to specify additional build settings that must be used when including the module into the
build system.

All root settings are relative to the root of the module.

Build settings supported in the module.yml file are:

• board_root: Contains additional boards that are available to the build system. Additional boards
must be located in a <board_root>/boards folder.

• dts_root: Contains additional dts files related to the architecture/soc families. Additional dts files
must be located in a <dts_root>/dts folder.

• soc_root: Contains additional SoCs that are available to the build system. Additional SoCs must
be located in a <soc_root>/soc folder.

• arch_root: Contains additional architectures that are available to the build system. Additional
architectures must be located in a <arch_root>/arch folder.

• module_ext_root: Contains CMakeLists.txt and Kconfig files for Zephyr modules, see also Mod-
ule integration files (external).

Example of a module.yaml file containing additional roots, and the corresponding file system layout.

build:
settings:

board_root: .
dts_root: .
soc_root: .
arch_root: .
module_ext_root: .

requires the following folder structure:

<zephyr-module-root>
arch
boards
dts
modules
soc

8.13. Modules (External projects) 1675

Zephyr Project Documentation, Release 2.7.0-rc2

Twister (Test Runner)

To execute both tests and samples available in modules, the Zephyr test runner (twister) should be
pointed to the directories containing those samples and tests. This can be done by specifying the path
to both samples and tests in the zephyr/module.yml file. Additionally, if a module defines out of tree
boards, the module file can point twister to the path where those files are maintained in the module. For
example:

build:
cmake: .

samples:
- samples

tests:
- tests

boards:
- boards

Module Inclusion

Using West If west is installed and ZEPHYR_MODULES is not already set, the build system finds all the
modules in your west installation and uses those. It does this by running west list to get the paths of
all the projects in the installation, then filters the results to just those projects which have the necessary
module metadata files.

Each project in the west list output is tested like this:

• If the project contains a file named zephyr/module.yml, then the content of that file will be used
to determine which files should be added to the build, as described in the previous section.

• Otherwise (i.e. if the project has no zephyr/module.yml), the build system looks for zephyr/
CMakeLists.txt and zephyr/Kconfig files in the project. If both are present, the project is con-
sidered a module, and those files will be added to the build.

• If neither of those checks succeed, the project is not considered a module, and is not added to
ZEPHYR_MODULES.

Without West If you don’t have west installed or don’t want the build system to use it to find Zephyr
modules, you can set ZEPHYR_MODULES yourself using one of the following options. Each of the directo-
ries in the list must contain either a zephyr/module.yml file or the files zephyr/CMakeLists.txt and
Kconfig, as described in the previous section.

1. At the CMake command line, like this:

cmake -DZEPHYR_MODULES=<path-to-module1>[;<path-to-module2>[...]] ...

2. At the top of your application’s top level CMakeLists.txt, like this:

set(ZEPHYR_MODULES <path-to-module1> <path-to-module2> [...])
find_package(Zephyr REQUIRED HINTS $ENV{ZEPHYR_BASE})

If you choose this option, make sure to set the variable before calling find_package(Zephyr ...),
as shown above.

3. In a separate CMake script which is pre-loaded to populate the CMake cache, like this:

Put this in a file with a name like "zephyr-modules.cmake"
set(ZEPHYR_MODULES <path-to-module1> <path-to-module2>

CACHE STRING "pre-cached modules")

1676 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

You can tell the build system to use this file by adding -C zephyr-modules.cmake to your CMake
command line.

Not using modules If you don’t have west installed and don’t specify ZEPHYR_MODULES yourself, then
no additional modules are added to the build. You will still be able to build any applications that don’t
require code or Kconfig options defined in an external repository.

8.13.9 Submitting changes to modules

When submitting new or making changes to existing modules the main repository Zephyr needs a ref-
erence to the changes to be able to verify the changes. In the main tree this is done using revisions.
For code that is already merged and part of the tree we use the commit hash, a tag, or a branch name.
For pull requests however, we require specifying the pull request number in the revision field to allow
building the zephyr main tree with the changes submitted to the module.

To avoid merging changes to master with pull request information, the pull request should be marked as
DNM (Do Not Merge) or preferably a draft pull request to make sure it is not merged by mistake and to
allow for the module to be merged first and be assigned a permanent commit hash. Once the module is
merged, the revision will need to be changed either by the submitter or by the maintainer to the commit
hash of the module which reflects the changes.

Note that multiple and dependent changes to different modules can be submitted using exactly the same
process. In this case you will change multiple entries of all modules that have a pull request against
them.

Process for submitting a new module

Please follow the process in Submission and review process and obtain the TSC approval to integrate the
external source code as a module

If the request is approved, a new repository will created by the project team and initialized with basic
information that would allow submitting code to the module project following the project contribution
guidelines.

If a module is maintained as a fork of another project on Github, the Zephyr module related files and
changes in relation to upstream need to be maintained in a special branch named zephyr.

Maintainers from the Zephyr project will create the repository and initialize it. You will be added as a
collaborator in the new repository. Submit the module content (code) to the new repository following
the guidelines described here, and then add a new entry to the west.yml with the following information:

- name: <name of repository>
path: <path to where the repository should be cloned>
revision: <ref pointer to module pull request>

For example, to add my_module to the manifest:

- name: my_module
path: modules/lib/my_module
revision: pull/23/head

Where 23 in the example above indicated the pull request number submitted to the my_module reposi-
tory. Once the module changes are reviewed and merged, the revision needs to be changed to the commit
hash from the module repository.

8.13. Modules (External projects) 1677

https://github.com/zephyrproject-rtos/zephyr/blob/main/west.yml

Zephyr Project Documentation, Release 2.7.0-rc2

Process for submitting changes to existing modules

1. Submit the changes using a pull request to an existing repository following the contribution guide-
lines.

2. Submit a pull request changing the entry referencing the module into the west.yml of the main
Zephyr tree with the following information:

- name: <name of repository>
path: <path to where the repository should be cloned>
revision: <ref pointer to module pull request>

For example, to add my_module to the manifest:

- name: my_module
path: modules/lib/my_module
revision: pull/23/head

Where 23 in the example above indicated the pull request number submitted to the my_module reposi-
tory. Once the module changes are reviewed and merged, the revision needs to be changed to the commit
hash from the module repository.

8.14 Networking

The networking section contains information regarding the network stack of the Zephyr kernel. Use
the information to understand the principles behind the operation of the stacks and how they were
implemented.

8.14.1 Overview

• Supported Features

• Source Tree Layout

Supported Features

The networking IP stack is modular and highly configurable via build-time configuration options. You
can minimize system memory consumption by enabling only those network features required by your
application. Almost all features can be disabled if not needed.

• IPv6 The support for IPv6 is enabled by default. Various IPv6 sub-options can be enabled or
disabled depending on networking needs.

– Developer can set the number of unicast and multicast IPv6 addresses that are active at the
same time.

– The IPv6 address for the device can be set either statically or dynamically using SLAAC (State-
less Address Auto Configuration) (RFC 4862).

– The system also supports multiple IPv6 prefixes and the maximum IPv6 prefix count can be
configured at build time.

– The IPv6 neighbor cache can be disabled if not needed, and its size can be configured at build
time.

– The IPv6 neighbor discovery support (RFC 4861) is enabled by default.

1678 Chapter 8. User and Developer Guides

https://github.com/zephyrproject-rtos/zephyr/blob/main/west.yml
https://tools.ietf.org/html/rfc4862
https://tools.ietf.org/html/rfc4861

Zephyr Project Documentation, Release 2.7.0-rc2

– Multicast Listener Discovery v2 support (RFC 3810) is enabled by default.

– IPv6 header compression (6lo) is available for IPv6 connectivity for Bluetooth IPSP (RFC
7668) and IEEE 802.15.4 networks (RFC 4944).

• IPv4 The legacy IPv4 is supported by the networking stack. It cannot be used by IEEE 802.15.4
or Bluetooth IPSP as those network technologies support only IPv6. IPv4 can be used in Ethernet
based networks. By default IPv4 support is disabled.

– DHCP (Dynamic Host Configuration Protocol) client is supported (RFC 2131).

– The IPv4 address can also be configured manually. Static IPv4 addresses are supported by
default.

• Dual stack support. The networking stack allows a developer to configure the system to use both
IPv6 and IPv4 at the same time.

• UDP User Datagram Protocol (RFC 768) is supported. The developer can send UDP datagrams
(client side support) or create a listener to receive UDP packets destined to certain port (server
side support).

• TCP Transmission Control Protocol (RFC 793) is supported. Both server and client roles can be
used the the application. The amount of TCP sockets that are available to applications can be
configured at build time.

• BSD Sockets API Support for a subset of a BSD sockets compatible API is implemented. Both
blocking and non-blocking datagram (UDP) and stream (TCP) sockets are supported.

• Secure Sockets API Experimental support for TLS/DTLS secure protocols and configuration op-
tions for sockets API. Secure functions for the implementation are provided by mbedTLS library.

• MQTT Message Queue Telemetry Transport (ISO/IEC PRF 20922) is supported. A sample mqtt-
publisher-sample client application for MQTT v3.1.1 is implemented.

• CoAP Constrained Application Protocol (RFC 7252) is supported. Both coap-client-sample and
coap-server-sample sample applications are implemented.

• LWM2M OMA Lightweight Machine-to-Machine Protocol (LwM2M specification 1.0.2) is supported
via the “Bootstrap”, “Client Registration”, “Device Management & Service Enablement” and “Infor-
mation Reporting” interfaces. The required core LwM2M objects are implemented as well as several
IPSO Smart Objects. lwm2m-client-sample implements the library as an example.

• DNS Domain Name Service (RFC 1035) client functionality is supported. Applications can use the
DNS API to query domain name information or IP addresses from the DNS server. Both IPv4 (A)
and IPv6 (AAAA) records can be queried. Both multicast DNS (mDNS) (RFC 6762) and link-local
multicast name resolution (LLMNR) (RFC 4795) are supported.

• Network Management API. Applications can use network management API to listen management
events generated by core stack when for example IP address is added to the device, or network
interface is coming up etc.

• Multiple Network Technologies. The Zephyr OS can be configured to support multiple network
technologies at the same time simply by enabling them in Kconfig: for example, Ethernet and
802.15.4 support. Note that no automatic IP routing functionality is provided between these tech-
nologies. Applications can send data according to their needs to desired network interface.

• Minimal Copy Network Buffer Management. It is possible to have minimal copy network data
path. This means that the system tries to avoid copying application data when it is sent to the
network.

• Virtual LAN support. Virtual LANs (VLANs) allow partitioning of physical ethernet networks into
logical networks. See VLAN support for more details.

• Network traffic classification. The sent and received network packets can be prioritized depend-
ing on application needs. See traffic classification for more details.

• Time Sensitive Networking. The gPTP (generalized Precision Time Protocol) is supported. See
gPTP support for more details.

8.14. Networking 1679

https://tools.ietf.org/html/rfc3810
https://tools.ietf.org/html/rfc7668
https://tools.ietf.org/html/rfc7668
https://tools.ietf.org/html/rfc4944
https://tools.ietf.org/html/rfc2131
https://tools.ietf.org/html/rfc768
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc7252
http://openmobilealliance.org/release/LightweightM2M/V1_0_2-20180209-A/OMA-TS-LightweightM2M-V1_0_2-20180209-A.pdf
https://tools.ietf.org/html/rfc1035
https://tools.ietf.org/html/rfc6762
https://tools.ietf.org/html/rfc4795

Zephyr Project Documentation, Release 2.7.0-rc2

• Network shell. The network shell provides helpers for figuring out network status, en-
abling/disabling features, and issuing commands like ping or DNS resolving. The net-shell is useful
when developing network software. See network shell for more details.

Additionally these network technologies (link layers) are supported in Zephyr OS v1.7 and later:

• IEEE 802.15.4

• Bluetooth

• Ethernet

• SLIP (IP over serial line). Used for testing with QEMU. It provides ethernet interface to host system
(like Linux) and test applications can be run in Linux host and send network data to Zephyr OS
device.

Source Tree Layout

The networking stack source code tree is organized as follows:

subsys/net/ip/ This is where the IP stack code is located.

subsys/net/l2/ This is where the IP stack layer 2 code is located. This includes generic support for
Bluetooth IPSP adaptation, Ethernet, IEEE 802.15.4 and Wi-Fi.

subsys/net/lib/ Application-level protocols (DNS, MQTT, etc.) and additional stack components (BSD
Sockets, etc.).

include/net/ Public API header files. These are the header files applications need to include to use IP
networking functionality.

samples/net/ Sample networking code. This is a good reference to get started with network application
development.

tests/net/ Test applications. These applications are used to verify the functionality of the IP stack, but
are not the best source for sample code (see samples/net instead).

8.14.2 Network Stack Architecture

Network Packet Processing Statistics

This page describes how to get information about network packet processing statistics inside network
stack.

Network stack contains infrastructure to figure out how long the network packet processing takes either
in sending or receiving path. There are two Kconfig options that control this. For transmit (TX) path the
option is called :kconfig:`CONFIG_NET_PKT_TXTIME_STATS` and for receive (RX) path the options
is called :kconfig:`CONFIG_NET_PKT_RXTIME_STATS`. Note that for TX, all kind of network packet
statistics is collected. For RX, only UDP, TCP or raw packet type network packet statistics is collected.

After enabling these options, the net stats network shell command will show this information:

Avg TX net_pkt (11484) time 67 us
Avg RX net_pkt (11474) time 43 us

Note: The values above and below are from emulated qemu_x86 board and UDP traffic

The TX time tells how long it took for network packet from its creation to when it was sent to the network.
The RX time tells the time from its creation to when it was passed to the application. The values are
in microseconds. The statistics will be collected per traffic class if there are more than one transmit or

1680 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

receive queues defined in the system. These are controlled by :kconfig:`CONFIG_NET_TC_TX_COUNT`
and :kconfig:`CONFIG_NET_TC_RX_COUNT` options.

If you enable :kconfig:`CONFIG_NET_PKT_TXTIME_STATS_DETAIL` or :kcon-
fig:`CONFIG_NET_PKT_RXTIME_STATS_DETAIL` options, then additional information for TX or
RX network packets are collected when the network packet traverses the IP stack.

After enabling these options, the net stats will show this information:

Avg TX net_pkt (18902) time 63 us [0->22->15->23=60 us]
Avg RX net_pkt (18892) time 42 us [0->9->6->11->13=39 us]

The numbers inside the brackets contain information how many microseconds it took for a network
packet to go from previous state to next.

In the TX example above, the values are averages over 18902 packets and contain this information:

• Packet was created by application so the time is 0.

• Packet is about to be placed to transmit queue. The time it took from network packet creation to
this state, is 22 microseconds in this example.

• The correct TX thread is invoked, and the packet is read from the transmit queue. It took 15
microseconds from previous state.

• The network packet was just sent and the network stack is about to free the network packet. It
took 23 microseconds from previous state.

• In total it took on average 60 microseconds to get the network packet sent. The value 63 tells also
the same information, but is calculated differently so there is slight difference because of rounding
errors.

In the RX example above, the values are averages over 18892 packets and contain this information:

• Packet was created network device driver so the time is 0.

• Packet is about to be placed to receive queue. The time it took from network packet creation to
this state, is 9 microseconds in this example.

• The correct RX thread is invoked, and the packet is read from the receive queue. It took 6 mi-
croseconds from previous state.

• The network packet is then processed and placed to correct socket queue. It took 11 microseconds
from previous state.

• The last value tells how long it took from there to the application. Here the value is 13 microsec-
onds.

• In total it took on average 39 microseconds to get the network packet sent. The value 42 tells also
the same information, but is calculated differently so there is slight difference because of rounding
errors.

The Zephyr network stack is a native network stack specifically designed for Zephyr OS. It consists of
layers, each meant to provide certain services to other layers. Network stack functionality is highly
configurable via Kconfig options.

• High level overview of the network stack

• Network data flow

– Data receiving (RX)

– Data sending (TX)

• Network packet processing statistics

8.14. Networking 1681

Zephyr Project Documentation, Release 2.7.0-rc2

High level overview of the network stack

The network stack is layered and consists of the following parts:

• Network Application. The network application can either use the provided application-level pro-
tocol libraries or access the BSD socket API directly to create a network connection, send or receive
data, and close a connection. The application can also use the network management API to con-
figure the network and set related parameters such as network link options, starting a scan (when
applicable), listen network configuration events, etc. The network interface API can be used to set
IP address to a network interface, taking the network interface down, etc.

• Network Protocols. This provides implementations for various protocols such as

– Application-level network protocols like CoAP, LWM2M, and MQTT. See application protocols
chapter for information about them.

– Core network protocols like IPv6, IPv4, UDP, TCP, ICMPv4, and ICMPv6. You access these
protocols by using the BSD socket API.

• Network Interface Abstraction. This provides functionality that is common in all the network
interfaces, such as setting network interface down, etc. There can be multiple network interfaces
in the system. See network interface overview for more details.

• L2 Network Technologies. This provides a common API for sending and receiving data to and
from an actual network device. See L2 overview for more details. These network technologies
include Ethernet, IEEE 802.15.4, Bluetooth, CANBUS, etc. Some of these technologies support IPv6
header compression (6Lo), see RFC 6282 for details. For example ARP for IPv4 is done by the
Ethernet component.

• Network Device Drivers. The actual low-level device drivers handle the physical sending or re-
ceiving of network packets.

Network data flow

An application typically consists of one or more threads that execute the application logic. When using
the BSD socket API, the following things will happen.

Data receiving (RX)

1. A network data packet is received by a device driver.

2. The device driver allocates enough network buffers to store the received data. The network packet
is placed in the proper RX queue (implemented by k_fifo). By default there is only one receive
queue in the system, but it is possible to have up to 8 receive queues. These queues will process
incoming packets with different priority. See Traffic Classification for more details. The receive
queues also act as a way to separate the data processing pipeline (bottom-half) as the device driver
is running in an interrupt context and it must do its processing as fast as possible.

3. The network packet is then passed to the correct L2 driver. The L2 driver can check if the packet is
proper and modify it if needed, e.g. strip L2 header and frame check sequence, etc.

4. The packet is processed by a network interface. The network statistics are collected if enabled by
:kconfig:`CONFIG_NET_STATISTICS`.

5. The packet is then passed to L3 processing. If the packet is IP based, then the L3 layer checks if the
packet is a proper IPv6 or IPv4 packet.

6. A socket handler then finds an active socket to which the network packet belongs and puts it in a
queue for that socket, in order to separate the networking code from the application. Typically the
application is run in userspace context and the network stack is run in kernel context.

7. The application will then receive the data and can process it as needed. The application should
have used the BSD socket API to create a socket that will receive the data.

1682 Chapter 8. User and Developer Guides

https://tools.ietf.org/html/rfc6282
https://tools.ietf.org/html/rfc826

Zephyr Project Documentation, Release 2.7.0-rc2

Socket API

Network Interface Abstraction

N
o

n
-I

P
 s

o
ck

et
s

N
et

w
o

rk
 M

an
ag

em
en

t
A

P
I

Application Protocols

LWM2MCoAP

MQTT ...

Network Protocols

IPv6

ICMPv4

IPv4

ICMPv6

UDP TCP

Ethernet 802.15.4 Bluetooth

L2 Network Technologies

CAN

Network Device Drivers

IPv6 Header Compression

Network Application

Ethernet
drivers

802.15.4
drivers

Other drivers

Fig. 8: Network stack overview

8.14. Networking 1683

Zephyr Project Documentation, Release 2.7.0-rc2

Socket API

Network Interface Abstraction

N
o

n
-I

P
 s

o
ck

et
s

N
et

w
o

rk
 M

an
ag

em
en

t
A

P
I

Application Protocols

LWM2MCoAP

MQTT ...

Network Protocols

IPv6

ICMPv4

IPv4

ICMPv6

UDP TCP

Ethernet 802.15.4 Bluetooth

L2 Network Technologies

CAN

Network Device Drivers

Ethernet
drivers

802.15.4
drivers

Other drivers

Packet received from the
network

Allocate buffers and
put packet to RX queue

Network packet passed
to correct L2 driver, Ethernet

headers stripped and packet
checked

IPv4 headers parsed and
stripped

UDP headers parsed and
stripped. Packet added to

socket queue

Packet retrieved from
socket queue.Data copied

into application buffers.

Recv returns

IPv6 Header Compression
U

se
r

sp
ac

e
K

er
n

el
 s

p
ac

e

FI
FO

R
X

qu
eu

e

FIFO

Socket queue

Receiving UDP
packet Network Application

“B
o

tt
o

m
 H

al
f”

C
o

re
 s

ta
ck

1

2

3

4

5

6

7

8

Passed to Network Interface
for further processing

Fig. 9: Network RX data flow

1684 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Socket API

Network Interface Abstraction

N
o

n
-I

P
 s

o
ck

et
s

N
et

w
o

rk
 M

an
ag

em
en

t
A

P
I

Application Protocols

LWM2MCoAP

MQTT ...

Network Protocols

IPv6

ICMPv4

IPv4

ICMPv6

UDP TCP

Ethernet 802.15.4 Bluetooth

L2 Network Technologies

CAN

Network Device Drivers

Ethernet
drivers

802.15.4
drivers

Other drivers

Device driver retreives packet
from the FIFO and sends it to

the network.

The network packet is
classified and placed to proper

transmit queue. Packet checked and
L2 headers for the network packet are

added.

IPv4 headers added in front

UDP protocol header is
added in front of the data

Net_packet structue created,
user data copied to it. Packet

marshalled to kernel space

Application calls send() from socket
API

IPv6 Header Compression
U

se
r

sp
ac

e
K

er
n

el
 s

p
ac

e

FIFO

TX queue

Sending UDP
packet Network Application

“B
o

tt
o

m
 H

al
f”

C
o

re
 s

ta
ck

8

7

6

5

4

3

2

1

The network stack checks if
interface is set up and enabled

and sends the data

Data physically sent

Fig. 10: Network TX data flow

8.14. Networking 1685

Zephyr Project Documentation, Release 2.7.0-rc2

Data sending (TX)

1. The application should use the BSD socket API when sending the data.

2. The application data is prepared for sending to kernel space and then copied to internal net_buf
structures.

3. Depending on the socket type, a protocol header is added in front of the data. For example, if the
socket is a UDP socket, then a UDP header is constructed and placed in front of the data.

4. An IP header is added to the network packet for a UDP or TCP packet.

5. The network stack will check that the network interface is properly set for the network packet, and
also will make sure that the network interface is enabled before the data is queued to be sent.

6. The network packet is then classified and placed to the proper transmit queue (implemented by
k_fifo). By default there is only one transmit queue in the system, but it is possible to have up to
8 transmit queues. These queues will process the sent packets with different priority. See Traffic
Classification for more details. After the transmit packet classification, the packet is checked by
the correct L2 layer module. The L2 module will do additional checks for the data and it will also
create any L2 headers for the network packet. If everything is ok, the data is given to the network
device driver to be sent out.

7. The device driver will send the packet to the network.

Note that in both the TX and RX data paths, the queues (k_fifo’s) form separation points where data is
passed from one thread to another. These threads might run in different contexts (kernel vs. userspace)
and with different priorities.

Network packet processing statistics

See information about network processing statistics here.

8.14.3 Network Connectivity API

Applications should use the BSD socket API defined in include/net/socket.h to create a connection, send
or receive data, and close a connection. The same API can be used when working with UDP or TCP data.
See BSD socket API for more details.

See sockets-echo-server-sample and sockets-echo-client-sample applications how to create a simple
server or client BSD socket based application.

The legacy connectivity API in include/net/net_context.h should not be used by applications.

8.14.4 Networking with the host system

Networking with native_posix board

• Prerequisites

• Basic Setup

– Step 1 - Create Ethernet interface

– Step 2 - Start app in native_posix board

– Step 3 - Connect to console (optional)

1686 Chapter 8. User and Developer Guides

https://github.com/zephyrproject-rtos/zephyr/blob/main/include/net/socket.h
https://github.com/zephyrproject-rtos/zephyr/blob/main/include/net/net_context.h

Zephyr Project Documentation, Release 2.7.0-rc2

This page describes how to set up a virtual network between a (Linux) host and a Zephyr application
running in a native_posix board.

In this example, the sockets-echo-server-sample sample application from the Zephyr source distribution
is run in native_posix board. The Zephyr native_posix board instance is connected to a Linux host using
a tuntap device which is modeled in Linux as an Ethernet network interface.

Prerequisites On the Linux Host, fetch the Zephyr net-tools project, which is located in a separate
Git repository:

git clone https://github.com/zephyrproject-rtos/net-tools

Basic Setup For the steps below, you will need three terminal windows:

• Terminal #1 is terminal window with net-tools being the current directory (cd net-tools)

• Terminal #2 is your usual Zephyr development terminal, with the Zephyr environment initialized.

• Terminal #3 is the console to the running Zephyr native_posix instance (optional).

Step 1 - Create Ethernet interface Before starting native_posix with network emulation, a network
interface should be created.

In terminal #1, type:

./net-setup.sh

You can tweak the behavior of the net-setup.sh script. See various options by running net-setup.sh like
this:

./net-setup.sh --help

Step 2 - Start app in native_posix board Build and start the echo_server sample application.

In terminal #2, type:

west build -b native_posix samples/net/sockets/echo_server
west build -t run

Step 3 - Connect to console (optional) The console window should be launched automatically when
the Zephyr instance is started but if it does not show up, you can manually connect to the console. The
native_posix board will print a string like this when it starts:

UART connected to pseudotty: /dev/pts/5

You can manually connect to it like this:

screen /dev/pts/5

Networking with QEMU Ethernet

• Prerequisites

• Basic Setup

8.14. Networking 1687

Zephyr Project Documentation, Release 2.7.0-rc2

– Step 1 - Create Ethernet interface

– Step 2 - Start app in QEMU board

This page describes how to set up a virtual network between a (Linux) host and a Zephyr application
running in QEMU.

In this example, the sockets-echo-server-sample sample application from the Zephyr source distribution
is run in QEMU. The Zephyr instance is connected to a Linux host using a tuntap device which is modeled
in Linux as an Ethernet network interface.

Prerequisites On the Linux Host, fetch the Zephyr net-tools project, which is located in a separate
Git repository:

git clone https://github.com/zephyrproject-rtos/net-tools

Basic Setup For the steps below, you will need two terminal windows:

• Terminal #1 is terminal window with net-tools being the current directory (cd net-tools)

• Terminal #2 is your usual Zephyr development terminal, with the Zephyr environment initialized.

When configuring the Zephyr instance, you must select the correct Ethernet driver for QEMU connectiv-
ity:

• For qemu_x86, select Intel(R) PRO/1000 Gigabit Ethernet driver Ethernet driver. Driver is
called e1000 in Zephyr source tree.

• For qemu_cortex_m3, select TI Stellaris MCU family ethernet driver Ethernet driver. Driver
is called stellaris in Zephyr source tree.

• For mps2_an385, select SMSC911x/9220 Ethernet driver Ethernet driver. Driver is called
smsc911x in Zephyr source tree.

Step 1 - Create Ethernet interface Before starting QEMU with network connectivity, a network inter-
face should be created in the host system.

In terminal #1, type:

./net-setup.sh

You can tweak the behavior of the net-setup.sh script. See various options by running net-setup.sh
like this:

./net-setup.sh --help

Step 2 - Start app in QEMU board Build and start the sockets-echo-server-sample sample application.
In this example, the qemu_x86 board is used.

In terminal #2, type:

west build -b qemu_x86 samples/net/sockets/echo_server -- -DOVERLAY_CONFIG=overlay-
→˓e1000.conf
west build -t run

Exit QEMU by pressing CTRL+A x.

1688 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Networking with QEMU

• Prerequisites

• Basic Setup

– Step 1 - Create helper socket

– Step 2 - Start TAP device routing daemon

– Step 3 - Start app in QEMU

– Step 4 - Run apps on host

– Step 5 - Stop supporting daemons

• Setting up Zephyr and NAT/masquerading on host to access Internet

• Network connection between two QEMU VMs

– Terminal #1:

– Terminal #2:

• Running multiple QEMU VMs of the same sample

– Terminal #1:

– Terminal #2:

This page describes how to set up a virtual network between a (Linux) host and a Zephyr application
running in a QEMU virtual machine (built for Zephyr targets such as qemu_x86 and qemu_cortex_m3).

In this example, the sockets-echo-server-sample sample application from the Zephyr source distribution
is run in QEMU. The QEMU instance is connected to a Linux host using a serial port, and SLIP is used to
transfer data between the Zephyr application and Linux (over a chain of virtual connections).

Prerequisites On the Linux Host, fetch the Zephyr net-tools project, which is located in a separate
Git repository:

git clone https://github.com/zephyrproject-rtos/net-tools
cd net-tools
make

Note: If you get an error about AX_CHECK_COMPILE_FLAG, install package autoconf-archive pack-
age on Debian/Ubuntu.

Basic Setup For the steps below, you will need at least 4 terminal windows:

• Terminal #1 is your usual Zephyr development terminal, with the Zephyr environment initialized.

• Terminals #2, #3, and #4 are terminal windows with net-tools being the current directory (cd
net-tools)

Step 1 - Create helper socket Before starting QEMU with network emulation, a Unix socket for the
emulation should be created.

In terminal #2, type:

./loop-socat.sh

8.14. Networking 1689

Zephyr Project Documentation, Release 2.7.0-rc2

Step 2 - Start TAP device routing daemon In terminal #3, type:

sudo ./loop-slip-tap.sh

For applications requiring DNS, you may need to restart the host’s DNS server at this point, as described
in Setting up Zephyr and NAT/masquerading on host to access Internet.

Step 3 - Start app in QEMU Build and start the echo_server sample application.

In terminal #1, type:

west build -b qemu_x86 samples/net/sockets/echo_server
west build -t run

If you see an error from QEMU about unix:/tmp/slip.sock, it means you missed Step 1 above.

Step 4 - Run apps on host Now in terminal #4, you can run various tools to communicate with the
application running in QEMU.

You can start with pings:

ping 192.0.2.1
ping6 2001:db8::1

You can use the netcat (“nc”) utility, connecting using UDP:

echo foobar | nc -6 -u 2001:db8::1 4242
foobar

echo foobar | nc -u 192.0.2.1 4242
foobar

If echo_server is compiled with TCP support (now enabled by default for the echo_server sample, CON-
FIG_NET_TCP=y):

echo foobar | nc -6 -q2 2001:db8::1 4242
foobar

Note: Use Ctrl+C to exit.

You can also use the telnet command to achieve the above.

Step 5 - Stop supporting daemons When you are finished with network testing using QEMU, you
should stop any daemons or helpers started in the initial steps, to avoid possible networking or routing
problems such as address conflicts in local network interfaces. For example, stop them if you switch from
testing networking with QEMU to using real hardware, or to return your host laptop to normal Wi-Fi use.

To stop the daemons, press Ctrl+C in the corresponding terminal windows (you need to stop both
loop-slip-tap.sh and loop-socat.sh).

Exit QEMU by pressing CTRL+A x.

Setting up Zephyr and NAT/masquerading on host to access Internet To access the internet from a
Zephyr application, some additional setup on the host may be required. This setup is common for both
application running in QEMU and on real hardware, assuming that a development board is connected to
the development host. If a board is connected to a dedicated router, it should not be needed.

1690 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

To access the internet from a Zephyr application using IPv4, a gateway should be set
via DHCP or configured manually. For applications using the “Settings” facility (with
the config option :kconfig:`CONFIG_NET_CONFIG_SETTINGS` enabled), set the :kcon-
fig:`CONFIG_NET_CONFIG_MY_IPV4_GW` option to the IP address of the gateway. For apps
not using the “Settings” facility, set up the gateway by calling the net_if_ipv4_set_gw() at runtime.

To access the internet from a custom application running in QEMU, NAT (masquerading) should be set
up for QEMU’s source address. Assuming 192.0.2.1 is used, the following command should be run as
root:

iptables -t nat -A POSTROUTING -j MASQUERADE -s 192.0.2.1

Additionally, IPv4 forwarding should be enabled on the host, and you may need to check that other
firewall (iptables) rules don’t interfere with masquerading. To enable IPv4 forwarding the following
command should be run as root:

sysctl -w net.ipv4.ip_forward=1

Some applications may also require a DNS server. A number of Zephyr-provided samples assume by
default that the DNS server is available on the host (IP 192.0.2.2), which, in modern Linux distributions,
usually runs at least a DNS proxy. When running with QEMU, it may be required to restart the host’s
DNS, so it can serve requests on the newly created TAP interface. For example, on Debian-based systems:

service dnsmasq restart

An alternative to relying on the host’s DNS server is to use one in the network. For example, 8.8.8.8 is a
publicly available DNS server. You can configure it using :kconfig:`CONFIG_DNS_SERVER1` option.

Network connection between two QEMU VMs Unlike the VM-to-Host setup described above, VM-to-
VM setup is automatic. For sample applications that support this mode (such as the echo_server and
echo_client samples), you will need two terminal windows, set up for Zephyr development.

Terminal #1:

west build -b qemu_x86 samples/net/sockets/echo_server

This will start QEMU, waiting for a connection from a client QEMU.

Terminal #2:

west build -b qemu_x86 samples/net/sockets/echo_client

This will start a second QEMU instance, where you should see logging of data sent and received in both.

Running multiple QEMU VMs of the same sample If you find yourself wanting to run multiple
instances of the same Zephyr sample application, which do not need to talk to each other, use the
QEMU_INSTANCE argument.

Start socat and tunslip6 manually (instead of using the loop-xxx.sh scripts) for as many instances as
you want. Use the following as a guide, replacing MAIN or OTHER.

Terminal #1:

socat PTY,link=/tmp/slip.devMAIN UNIX-LISTEN:/tmp/slip.sockMAIN
$ZEPHYR_BASE/../net-tools/tunslip6 -t tapMAIN -T -s /tmp/slip.devMAIN \

2001:db8::1/64
Now run Zephyr
make -Cbuild run QEMU_INSTANCE=MAIN

8.14. Networking 1691

Zephyr Project Documentation, Release 2.7.0-rc2

Terminal #2:

socat PTY,link=/tmp/slip.devOTHER UNIX-LISTEN:/tmp/slip.sockOTHER
$ZEPHYR_BASE/../net-tools/tunslip6 -t tapOTHER -T -s /tmp/slip.devOTHER \

2001:db8::1/64
make -Cbuild run QEMU_INSTANCE=OTHER

USB Device Networking

• Basic Setup

– Choosing IP addresses

– Setting IPv4 address and routing

– Setting IPv6 address and routing

• Testing connection

This page describes how to set up networking between a Linux host and a Zephyr application running
on USB supported devices.

The board is connected to Linux host using USB cable and provides an Ethernet interface to the host. The
sockets-echo-server-sample application from the Zephyr source distribution is run on supported board.
The board is connected to a Linux host using a USB cable providing an Ethernet interface to the host.

Basic Setup To communicate with the Zephyr application over a newly created Ethernet interface, we
need to assign IP addresses and set up a routing table for the Linux host. After plugging a USB cable
from the board to the Linux host, the cdc_ether driver registers a new Ethernet device with a provided
MAC address.

You can check that network device is created and MAC address assigned by running dmesg from the
Linux host.

cdc_ether 1-2.7:1.0 eth0: register 'cdc_ether' at usb-0000:00:01.2-2.7, CDC Ethernet␣
→˓Device, 00:00:5e:00:53:01

We need to set it up and assign IP addresses as explained in the following section.

Choosing IP addresses To establish network connection to the board we need to choose IP address for
the interface on the Linux host.

It make sense to choose addresses in the same subnet we have in Zephyr application. IP addresses usually
set in the project configuration files and may be checked also from the shell with following commands.
Connect a serial console program (such as puTTY) to the board, and enter this command to the Zephyr
shell:

shell> net iface

Interface 0xa800e580 (Ethernet)
===============================
Link addr : 00:00:5E:00:53:00
MTU : 1500
IPv6 unicast addresses (max 2):

fe80::200:5eff:fe00:5300 autoconf preferred infinite
2001:db8::1 manual preferred infinite

...
(continues on next page)

1692 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

IPv4 unicast addresses (max 1):
192.0.2.1 manual preferred infinite

This command shows that one IPv4 address and two IPv6 addresses have been assigned to the board.
We can use either IPv4 or IPv6 for network connection depending on the board network configuration.

Next step is to assign IP addresses to the new Linux host interface, in the following steps
enx00005e005301 is the name of the interface on my Linux system.

Setting IPv4 address and routing

ip address add dev enx00005e005301 192.0.2.2
ip link set enx00005e005301 up
ip route add 192.0.2.0/24 dev enx00005e005301

Setting IPv6 address and routing

ip address add dev enx00005e005301 2001:db8::2
ip link set enx00005e005301 up
ip -6 route add 2001:db8::/64 dev enx00005e005301

Testing connection From the host we can test the connection by pinging Zephyr IP address of the
board with:

$ ping 192.0.2.1
PING 192.0.2.1 (192.0.2.1) 56(84) bytes of data.
64 bytes from 192.0.2.1: icmp_seq=1 ttl=64 time=2.30 ms
64 bytes from 192.0.2.1: icmp_seq=2 ttl=64 time=1.43 ms
64 bytes from 192.0.2.1: icmp_seq=3 ttl=64 time=2.45 ms
...

Networking with QEMU User

• Introduction

• Using SLIRP with Zephyr

• Limitations

This page is intended to serve as a starting point for anyone interested in using QEMU SLIRP with Zephyr.

Introduction SLIRP is a network backend which provides the complete TCP/IP stack within QEMU and
uses that stack to implement a virtual NAT’d network. As there are no dependencies on the host, SLIRP
is simple to setup.

By default, QEMU uses the 10.0.2.X/24 network and runs a gateway at 10.0.2.2. All traffic intended
for the host network has to travel through this gateway, which will filter out packets based on the QEMU
command line parameters. This gateway also functions as a DHCP server for all GOS, allowing them to
be automatically assigned with an IP address starting from 10.0.2.15.

More details about User Networking can be obtained from here: https://wiki.qemu.org/Documentation/
Networking#User_Networking_.28SLIRP.29

8.14. Networking 1693

https://wiki.qemu.org/Documentation/Networking#User_Networking_.28SLIRP.29
https://wiki.qemu.org/Documentation/Networking#User_Networking_.28SLIRP.29

Zephyr Project Documentation, Release 2.7.0-rc2

Using SLIRP with Zephyr In order to use SLIRP with Zephyr, the user has to set the Kconfig option to
enable User Networking.

CONFIG_NET_QEMU_USER=y

Once this configuration option is enabled, all QEMU launches will use SLIRP. In the default configuration,
Zephyr only enables User Networking, and does not pass any arguments to it. This means that the Guest
will only be able to communicate to the QEMU gateway, and any data intended for the host machine will
be dropped by QEMU.

In general, QEMU User Networking can take in a lot of arguments including,

• Information about host/guest port forwarding. This must be provided to create a communication
channel between the guest and host.

• Information about network to use. This may be valuable if the user does not want to use the default
10.0.2.X network.

• Tell QEMU to start DHCP server at user-defined IP address.

• ID and other information.

As this information varies with every use case, it is difficult to come up with good defaults that work
for all. Therefore, Zephyr Implementation offloads this to the user, and expects that they will provide
arguments based on requirements. For this, there is a Kconfig string which can be populated by the user.

CONFIG_NET_QEMU_USER_EXTRA_ARGS="net=192.168.0.0/24,hostfwd=tcp::8080-:8080"

This option is appended as-is to the QEMU command line. Therefore, any problems with this command
line will be reported by QEMU only. Here’s what this particular example will do,

• Make QEMU use the 192.168.0.0/24 network instead of the default.

• Enable forwarding of any TCP data received from port 8080 of host to port 8080 of guest, and vice
versa.

Limitations If the user does not have any specific networking requirements other than the ability to
access a web page from the guest, user networking (slirp) is a good choice. However, it has several
limitations

• There is a lot of overhead so the performance is poor.

• The guest is not directly accessible from the host or the external network.

• In general, ICMP traffic does not work (so you cannot use ping within a guest).

• As port mappings need to be defined before launching qemu, clients which use dynamically gener-
ated ports cannot communicate with external network.

• There is a bug in the SLIRP implementation which filters out all IPv6 packets from the guest. See
https://bugs.launchpad.net/qemu/+bug/1724590 for details. Therefore, IPv6 will not work with
User Networking.

Networking with multiple Zephyr instances

• Prerequisites

• Basic Setup

– Step 1 - Create configuration files

– Step 2 - Create Ethernet interfaces

– Step 3 - Setup network bridging

1694 Chapter 8. User and Developer Guides

https://bugs.launchpad.net/qemu/+bug/1724590

Zephyr Project Documentation, Release 2.7.0-rc2

– Step 4 - Start Zephyr instances

This page describes how to set up a virtual network between multiple Zephyr instances. The Zephyr
instances could be running inside QEMU or could be native_posix board processes. The Linux host can
be used to route network traffic between these systems.

Prerequisites On the Linux Host, fetch the Zephyr net-tools project, which is located in a separate
Git repository:

git clone https://github.com/zephyrproject-rtos/net-tools

Basic Setup For the steps below, you will need five terminal windows:

• Terminal #1 and #2 are terminal windows with net-tools being the current directory (cd
net-tools)

• Terminal #3, where you setup bridging in Linux host

• Terminal #4 and #5 are your usual Zephyr development terminal, with the Zephyr environment
initialized.

As there are multiple ways to setup the Zephyr network, the example below uses qemu_x86 board with
e1000 Ethernet controller and native_posix board to simplify the setup instructions. You can use other
QEMU boards and drivers if needed, see Networking with QEMU Ethernet for details. You can also use
two or more native_posix board Zephyr instances and connect them together.

Step 1 - Create configuration files Before starting QEMU with network connectivity, a network in-
terfaces for each Zephyr instance should be created in the host system. The default setup for creating
network interface cannot be used here as that is for connecting one Zephyr instance to Linux host.

For Zephyr instance #1, create file called zephyr1.conf to net-tools project, or to some other suitable
directory.

Configuration file for setting IP addresses for a network interface.
INTERFACE="$1"
HWADDR="00:00:5e:00:53:11"
IPV6_ADDR_1="2001:db8:100::2"
IPV6_ROUTE_1="2001:db8:100::/64"
IPV4_ADDR_1="198.51.100.2/24"
IPV4_ROUTE_1="198.51.100.0/24"
ip link set dev $INTERFACE up
ip link set dev $INTERFACE address $HWADDR
ip -6 address add $IPV6_ADDR_1 dev $INTERFACE nodad
ip -6 route add $IPV6_ROUTE_1 dev $INTERFACE
ip address add $IPV4_ADDR_1 dev $INTERFACE
ip route add $IPV4_ROUTE_1 dev $INTERFACE > /dev/null 2>&1

For Zephyr instance #2, create file called zephyr2.conf to net-tools project, or to some other suitable
directory.

Configuration file for setting IP addresses for a network interface.
INTERFACE="$1"
HWADDR="00:00:5e:00:53:22"
IPV6_ADDR_1="2001:db8:200::2"
IPV6_ROUTE_1="2001:db8:200::/64"
IPV4_ADDR_1="203.0.113.2/24"
IPV4_ROUTE_1="203.0.113.0/24"

(continues on next page)

8.14. Networking 1695

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

ip link set dev $INTERFACE up
ip link set dev $INTERFACE address $HWADDR
ip -6 address add $IPV6_ADDR_1 dev $INTERFACE nodad
ip -6 route add $IPV6_ROUTE_1 dev $INTERFACE
ip address add $IPV4_ADDR_1 dev $INTERFACE
ip route add $IPV4_ROUTE_1 dev $INTERFACE > /dev/null 2>&1

Step 2 - Create Ethernet interfaces The following net-setup.sh commands should be typed in net-
tools directory (cd net-tools).

In terminal #1, type:

./net-setup.sh -c zephyr1.conf -i zeth.1

In terminal #2, type:

./net-setup.sh -c zephyr2.conf -i zeth.2

Step 3 - Setup network bridging In terminal #3, type:

sudo brctl addbr zeth-br
sudo brctl addif zeth-br zeth.1
sudo brctl addif zeth-br zeth.2
sudo ifconfig zeth-br up

Step 4 - Start Zephyr instances In this example we start sockets-echo-server-sample and sockets-echo-
client-sample applications. You can use other applications too as needed.

In terminal #4, if you are using QEMU, type this:

west build -d build/server -b qemu_x86 -t run \
samples/net/sockets/echo_server -- \
-DOVERLAY_CONFIG=overlay-e1000.conf \
-DCONFIG_NET_CONFIG_MY_IPV4_ADDR=\"198.51.100.1\" \
-DCONFIG_NET_CONFIG_PEER_IPV4_ADDR=\"203.0.113.1\" \
-DCONFIG_NET_CONFIG_MY_IPV6_ADDR=\"2001:db8:100::1\" \
-DCONFIG_NET_CONFIG_PEER_IPV6_ADDR=\"2001:db8:200::1\" \
-DCONFIG_NET_CONFIG_MY_IPV4_GW=\"203.0.113.1\" \
-DCONFIG_ETH_QEMU_IFACE_NAME=\"zeth.1\" \
-DCONFIG_ETH_QEMU_EXTRA_ARGS=\"mac=00:00:5e:00:53:01\"

or if you want to use native_posix board, type this:

west build -d build/server -b native_posix -t run \
samples/net/sockets/echo_server -- \
-DCONFIG_NET_CONFIG_MY_IPV4_ADDR=\"198.51.100.1\" \
-DCONFIG_NET_CONFIG_PEER_IPV4_ADDR=\"203.0.113.1\" \
-DCONFIG_NET_CONFIG_MY_IPV6_ADDR=\"2001:db8:100::1\" \
-DCONFIG_NET_CONFIG_PEER_IPV6_ADDR=\"2001:db8:200::1\" \
-DCONFIG_NET_CONFIG_MY_IPV4_GW=\"203.0.113.1\" \
-DCONFIG_ETH_NATIVE_POSIX_DRV_NAME=\"zeth.1\" \
-DCONFIG_ETH_NATIVE_POSIX_MAC_ADDR=\"00:00:5e:00:53:01\" \
-DCONFIG_ETH_NATIVE_POSIX_RANDOM_MAC=n

In terminal #5, if you are using QEMU, type this:

1696 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

west build -d build/client -b qemu_x86 -t run \
samples/net/sockets/echo_client -- \
-DOVERLAY_CONFIG=overlay-e1000.conf \
-DCONFIG_NET_CONFIG_MY_IPV4_ADDR=\"203.0.113.1\" \
-DCONFIG_NET_CONFIG_PEER_IPV4_ADDR=\"198.51.100.1\" \
-DCONFIG_NET_CONFIG_MY_IPV6_ADDR=\"2001:db8:200::1\" \
-DCONFIG_NET_CONFIG_PEER_IPV6_ADDR=\"2001:db8:100::1\" \
-DCONFIG_NET_CONFIG_MY_IPV4_GW=\"198.51.100.1\" \
-DCONFIG_ETH_QEMU_IFACE_NAME=\"zeth.2\" \
-DCONFIG_ETH_QEMU_EXTRA_ARGS=\"mac=00:00:5e:00:53:02\"

or if you want to use native_posix board, type this:

west build -d build/client -b native_posix -t run \
samples/net/sockets/echo_client -- \
-DCONFIG_NET_CONFIG_MY_IPV4_ADDR=\"203.0.113.1\" \
-DCONFIG_NET_CONFIG_PEER_IPV4_ADDR=\"198.51.100.1\" \
-DCONFIG_NET_CONFIG_MY_IPV6_ADDR=\"2001:db8:200::1\" \
-DCONFIG_NET_CONFIG_PEER_IPV6_ADDR=\"2001:db8:100::1\" \
-DCONFIG_NET_CONFIG_MY_IPV4_GW=\"198.51.100.1\" \
-DCONFIG_ETH_NATIVE_POSIX_DRV_NAME=\"zeth.2\" \
-DCONFIG_ETH_NATIVE_POSIX_MAC_ADDR=\"00:00:5e:00:53:02\" \
-DCONFIG_ETH_NATIVE_POSIX_RANDOM_MAC=n

Also if you have firewall enabled in your host, you need to allow traffic between zeth.1, zeth.2 and
zeth-br interfaces.

Networking with QEMU and IEEE 802.15.4

• Basic Setup

– Step 1 - Compile and start echo-server

– Step 2 - Compile and start echo-client

This page describes how to set up a virtual network between two QEMUs that are connected together via
UART and are running IEEE 802.15.4 link layer between them. Note that this only works in Linux host.

Basic Setup For the steps below, you will need two terminal windows:

• Terminal #1 is terminal window with echo-server Zephyr sample application.

• Terminal #2 is terminal window with echo-client Zephyr sample application.

If you want to capture the transferred network data, you must compile the monitor_15_4 program in
net-tools directory.

Open a terminal window and type:

cd $ZEPHYR_BASE/../net-tools
make monitor_15_4

Step 1 - Compile and start echo-server In terminal #1, type:

west build -b qemu_x86 -d build/server samples/net/sockets/echo_server -- -DOVERLAY_
→˓CONFIG=overlay-qemu_802154.conf
west build -t server -d build/server

8.14. Networking 1697

Zephyr Project Documentation, Release 2.7.0-rc2

If you want to capture the network traffic between the two QEMUs, type:

west build -b qemu_x86 -d build/server samples/net/sockets/echo_server -- -G'Unix␣
→˓Makefiles' -DOVERLAY_CONFIG=overlay-qemu_802154.conf -DPCAP=capture.pcap
west build -t server -d build/server

Note that the make must be used for server target if packet capture option is set in command line. The
build/server/capture.pcap file will contain the transferred data.

Step 2 - Compile and start echo-client In terminal #2, type:

west build -b qemu_x86 -d build/client samples/net/sockets/echo_client -- -DOVERLAY_
→˓CONFIG=overlay-qemu_802154.conf
west build -t client -d build/client

You should see data passed between the two QEMUs. Exit QEMU by pressing CTRL+A x.

While developing networking software, it is usually necessary to connect and exchange data with the
host system like a Linux desktop computer. Depending on what board is used for development, the
following options are possible:

• QEMU using SLIP (Serial Line Internet Protocol).

– Here IP packets are exchanged between Zephyr and the host system via serial port. This is
the legacy way of transferring data. It is also quite slow so use it only when necessary. See
Networking with QEMU for details.

• QEMU using built-in Ethernet driver.

– Here IP packets are exchanged between Zephyr and the host system via QEMU’s built-in Eth-
ernet driver. Not all QEMU boards support built-in Ethernet so in some cases, you might need
to use the SLIP method for host connectivity. See Networking with QEMU Ethernet for details.

• QEMU using SLIRP (Qemu User Networking).

– QEMU User Networking is implemented using “slirp”, which provides a full TCP/IP stack
within QEMU and uses that stack to implement a virtual NAT’d network. As this support is
built into QEMU, it can be used with any model and requires no admin privileges on the host
machine, unlike TAP. However, it has several limitations including performance which makes
it less valuable for practical purposes. See Networking with QEMU User for details.

• native_posix board.

– The Zephyr instance can be executed as a user space process in the host system. This is the
most convenient way to debug the Zephyr system as one can attach host debugger directly to
the running Zephyr instance. This requires that there is an adaptation driver in Zephyr for
interfacing with the host system. An Ethernet driver exists in Zephyr for this purpose. See
Networking with native_posix board for details.

• USB device networking.

– Here, the Zephyr instance is run on a real board and the connectivity to the host system is
done via USB. See USB Device Networking for details.

• Connecting multiple Zephyr instances together.

– If you have multiple Zephyr instances, either QEMU or native_posix ones, and want to create
a connection between them, see Networking with multiple Zephyr instances for details.

• Simulating IEEE 802.15.4 network between two QEMUs.

– Here, two Zephyr instances are running and there is IEEE 802.15.4 link layer run over an
UART between them. See Networking with QEMU and IEEE 802.15.4 for details.

1698 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

8.14.5 Monitor Network Traffic

• Host Configuration

• Zephyr Configuration

• Wireshark Configuration

It is useful to be able to monitor the network traffic especially when debugging a connectivity issues or
when developing new protocol support in Zephyr. This page describes how to set up a way to capture
network traffic so that user is able to use Wireshark or similar tool in remote host to see the network
packets sent or received by a Zephyr device.

See also the net-capture-sample sample application from the Zephyr source distribution for configuration
options that need to be enabled.

Host Configuration

The instructions here describe how to setup a Linux host to capture Zephyr network RX and TX traffic.
Similar instructions should work also in other operating systems. On the Linux Host, fetch the Zephyr
net-tools project, which is located in a separate Git repository:

git clone https://github.com/zephyrproject-rtos/net-tools

The net-tools project provides a configure file to setup IP-to-IP tunnel interface so that we can transfer
monitoring data from Zephyr to host.

In terminal #1, type:

./net-setup.sh -c zeth-tunnel.conf

This script will create following IPIP tunnel interfaces:

Interface name Description
zeth-ip6ip IPv6-over-IPv4 tunnel
zeth-ipip IPv4-over-IPv4 tunnel
zeth-ipip6 IPv4-over-IPv6 tunnel
zeth-ip6ip6 IPv6-over-IPv6 tunnel

Zephyr will send captured network packets to one of these interfaces. The actual interface will depend
on how the capturing is configured. You can then use Wireshark to monitor the proper network interface.

After the tunneling interfaces have been created, you can use for example net-capture.py script from
net-tools project to print or save the captured network packets. The net-capture.py provides an UDP
listener, it can print the captured data to screen and optionally can also save the data to a pcap file.

$./net-capture.py -i zeth-ip6ip -w capture.pcap
[20210408Z14:33:08.959589] Ether / IP / ICMP 192.0.2.1 > 192.0.2.2 echo-request 0 /␣
→˓Raw
[20210408Z14:33:08.976178] Ether / IP / ICMP 192.0.2.2 > 192.0.2.1 echo-reply 0 / Raw
[20210408Z14:33:16.176303] Ether / IPv6 / ICMPv6 Echo Request (id: 0x9feb seq: 0x0)
[20210408Z14:33:16.195326] Ether / IPv6 / ICMPv6 Echo Reply (id: 0x9feb seq: 0x0)
[20210408Z14:33:21.194979] Ether / IPv6 / ICMPv6ND_NS / ICMPv6 Neighbor Discovery␣
→˓Option - Source Link-Layer Address 02:00:5e:00:53:3b
[20210408Z14:33:21.217528] Ether / IPv6 / ICMPv6ND_NA / ICMPv6 Neighbor Discovery␣
→˓Option - Destination Link-Layer Address 00:00:5e:00:53:ff

(continues on next page)

8.14. Networking 1699

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

[20210408Z14:34:10.245408] Ether / IPv6 / UDP 2001:db8::2:47319 > 2001:db8::1:4242 /␣
→˓Raw
[20210408Z14:34:10.266542] Ether / IPv6 / UDP 2001:db8::1:4242 > 2001:db8::2:47319 /␣
→˓Raw

The net-capture.py has following command line options:

Listen captured network data from Zephyr and save it optionally to pcap file.
./net-capture.py \

-i | --interface <network interface>
Listen this inferface for the data

[-p | --port <UDP port>]
UDP port (default is 4242) where the capture data is received

[-q | --quiet]
Do not print packet information

[-t | --type <L2 type of the data>]
Scapy L2 type name of the UDP payload, default is Ether

[-w | --write <pcap file name>]
Write the received data to file in PCAP format

Instead of the net-capture.py script, you can for example use netcat to provide an UDP listener so
that the host will not send port unreachable message to Zephyr:

nc -l -u 2001:db8:200::2 4242 > /dev/null

The IP address above is the inner tunnel endpoint, and can be changed and it depends on how the Zephyr
is configured. Zephyr will send UDP packets containing the captured network packets to the configured
IP tunnel, so we need to terminate the network connection like this.

Zephyr Configuration

In this example, we use native_posix board. You can also use any other board that supports networking.

In terminal #3, type:

west build -b native_posix samples/net/capture -- -DCONFIG_NATIVE_UART_AUTOATTACH_
→˓DEFAULT_CMD=\""gnome-terminal -- screen %s"\"

To see the Zephyr console and shell, start Zephyr instance like this:

build/zephyr/zephyr.exe -attach_uart

Any other application can be used too, just make sure that suitable configuration options are enabled
(see samples/net/capture/prj.conf file for examples).

The network capture can be configured automatically if needed, but currently the capture sample ap-
plication does not do that. User has to use net-shell to setup and enable the monitoring.

The network packet monitoring needs to be setup first. The net-shell has net capture setup com-
mand for doing that. The command syntax is

net capture setup <remote-ip-addr> <local-ip-addr> <peer-ip-addr>
<remote> is the (outer) endpoint IP address
<local> is the (inner) local IP address
<peer> is the (inner) peer IP address
Local and Peer IP addresses can have UDP port number in them (optional)
like 198.0.51.2:9000 or [2001:db8:100::2]:4242

In Zephyr console, type:

1700 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

net capture setup 192.0.2.2 2001:db8:200::1 2001:db8:200::2

This command will create the tunneling interface. The 192.0.2.2 is the remote host where the tunnel
is terminated. The address is used to select the local network interface where the tunneling interface is
attached to. The 2001:db8:200::1 tells the local IP address for the tunnel, the 2001:db8:200::2 is the
peer IP address where the captured network packets are sent. The port numbers for UDP packet can be
given in the setup command like this for IPv6-over-IPv4 tunnel

net capture setup 192.0.2.2 [2001:db8:200::1]:9999 [2001:db8:200::2]:9998

and like this for IPv4-over-IPv4 tunnel

net capture setup 192.0.2.2 198.51.100.1:9999 198.51.100.2:9998

If the port number is omitted, then 4242 UDP port is used as a default.

The current monitoring configuration can be checked like this:

uart:~$ net capture
Network packet capture disabled

Capture Tunnel
Device iface iface Local Peer
NET_CAPTURE0 - 1 [2001:db8:200::1]:4242 [2001:db8:200::2]:4242

which will print the current configuration. As we have not yet enabled monitoring, the Capture iface
is not set.

Then we need to enable the network packet monitoring like this:

net capture enable 2

The 2 tells the network interface which traffic we want to capture. In this example, the 2 is the
native_posix board Ethernet interface. Note that we send the network traffic to the same interface
that we are monitoring in this example. The monitoring system avoids to capture already captured net-
work traffic as that would lead to recursion. You can use net iface command to see what network
interfaces are available. Note that you cannot capture traffic from the tunnel interface as that would
cause recursion loop. The captured network traffic can be sent to some other network interface if con-
figured so. Just set the <remote-ip-addr> option properly in net capture setup so that the IP tunnel
is attached to desired network interface. The capture status can be checked again like this:

uart:~$ net capture
Network packet capture enabled

Capture Tunnel
Device iface iface Local Peer
NET_CAPTURE0 2 1 [2001:db8:200::1]:4242 [2001:db8:200::2]:4242

After enabling the monitoring, the system will send captured (either received or sent) network packets
to the tunnel interface for further processing.

The monitoring can be disabled like this:

net capture disable

which will turn currently running monitoring off. The monitoring setup can be cleared like this:

net capture cleanup

It is not necessary to use net-shell for configuring the monitoring. The network capture API functions
can be called by the application if needed.

8.14. Networking 1701

Zephyr Project Documentation, Release 2.7.0-rc2

Wireshark Configuration

The Wireshark tool can be used to monitor the captured network traffic in a useful way.

You can monitor either the tunnel interfaces or the zeth interface. In order to see the actual captured
data inside an UDP packet, see Wireshark decapsulate UDP document for instructions.

8.15 Using with PlatformIO

• What is PlatformIO?

• Installation

• Configuration

• Tutorials

• Project Examples

• Next Steps

8.15.1 What is PlatformIO?

PlatformIO is a cross-platform embedded development environment with Zephyr support maintained by
its developers.

Since Zephyr support within PlatformIO is not maintained by the Zephyr Project, please report any issues
with PlatformIO directly to its developers in the official PlatformIO repositories.

A detailed overview of the PlatformIO ecosystem and its philosophy can be found in the official Plat-
formIO documentation.

8.15.2 Installation

• PlatformIO IDE is a toolset for embedded C/C++ development available on Windows, macOS and
Linux platforms

• PlatformIO Core (CLI) is a command-line tool that consists of multi-platform build system, platform
and library managers and other integration components. It can be used with a variety of code
development environments and allows integration with cloud platforms and web services

8.15.3 Configuration

Please go through the official PlatformIO configuration guide for Zephyr project.

1702 Chapter 8. User and Developer Guides

https://www.wireshark.org/
https://osqa-ask.wireshark.org/questions/28138/decoding-ethernet-encapsulated-in-tcp-or-udp/
https://platformio.org/?utm_source=docs.zephyrproject.org
https://platformio.org/?utm_source=docs.zephyrproject.org
https://github.com/platformio
https://docs.platformio.org/en/latest/what-is-platformio.html?utm_source=docs.zephyrproject.org
https://docs.platformio.org/en/latest/what-is-platformio.html?utm_source=docs.zephyrproject.org
https://platformio.org/platformio-ide?utm_source=docs.zephyrproject.org
https://docs.platformio.org/en/latest/core/index.html?utm_source=docs.zephyrproject.org
https://docs.platformio.org/en/latest/frameworks/zephyr.html?utm_source=docs.zephyrproject.org#configuration

Zephyr Project Documentation, Release 2.7.0-rc2

8.15.4 Tutorials

• Zephyr and Nordic nRF52-DK: debugging, unit testing, project analysis

• Developing Zephyr RTOS embedded applications on PlatformIO and simulating on Antmicro Ren-
ode

8.15.5 Project Examples

Please check the official examples for various development platforms

8.15.6 Next Steps

Here are some useful links for exploring the PlatformIO ecosystem:

• Try other platforms that support Zephyr project

• Learn more about integrations with other IDEs/Text Editors

• Get help from PlatformIO community

8.16 OS Abstraction

OS abstraction layers (OSAL) provide wrapper function APIs that encapsulate common system functions
offered by any operating system. These APIs make it easier and quicker to develop for, and port code to
multiple software and hardware platforms.

These sections describe the software and hardware abstraction layers supported by the Zephyr RTOS.

8.16.1 POSIX Support

The Portable Operating System Interface (POSIX) is a family of standards specified by the IEEE Computer
Society for maintaining compatibility between operating systems. Zephyr implements a subset of the
embedded profiles PSE51 and PSE52, and BSD Sockets API.

With the POSIX support available in Zephyr, an existing POSIX compliant application can be ported
to run on the Zephyr kernel, and therefore leverage Zephyr features and functionality. Additionally, a
library designed for use with POSIX threading compatible operating systems can be ported to Zephyr
kernel based applications with minimal or no changes.

The POSIX API subset is an increasingly popular OSAL (operating system abstraction layer) for IoT and
embedded applications, as can be seen in Zephyr, AWS:FreeRTOS, TI-RTOS, and NuttX.

Benefits of POSIX support in Zephyr include:

• Offering a familiar API to non-embedded programmers, especially from Linux

• Enabling reuse (portability) of existing libraries based on POSIX APIs

• Providing an efficient API subset appropriate for small (MCU) embedded systems

System Overview

Units of Functionality The system profile is defined in terms of component profiles that specify Units
of Functionality that can be combined to realize the application platform. A Unit of Functionality is
a defined set of services which can be implemented. If implemented, the standard prescribes that all
services in the Unit must be implemented.

8.16. OS Abstraction 1703

https://docs.platformio.org/en/latest/tutorials/nordicnrf52/zephyr_debugging_unit_testing_inspect.html?utm_source=docs.zephyrproject.org
https://www.zephyrproject.org/developing-zephyr-rtos-embedded-applications-on-platformio-and-simulating-on-antmicro-renode/
https://www.zephyrproject.org/developing-zephyr-rtos-embedded-applications-on-platformio-and-simulating-on-antmicro-renode/
https://docs.platformio.org/en/latest/frameworks/zephyr.html?utm_source=docs.zephyrproject.org#examples
https://docs.platformio.org/en/latest/frameworks/zephyr.html?utm_source=docs.zephyrproject.org#platforms
https://docs.platformio.org/en/latest/integration/ide/index.html?utm_source=docs.zephyrproject.org
https://community.platformio.org/?utm_source=docs.zephyrproject.org

Zephyr Project Documentation, Release 2.7.0-rc2

Hardware

BSP

Zephyr Kernel

POSIX PSE51

File System

<div>POSIX PSE52</div>

Networking

<div>BSD Sockets
</div>
Middleware

Application

Fig. 11: POSIX support in Zephyr

A Minimal Realtime System Profile implementation must support the following Units of Functionality as
defined in IEEE Std. 1003.1 (also referred to as POSIX.1-2017).

Table 7: Units of Functionality
Requirements Sup-

ported
Remarks

POSIX_C_LANG_JUMP
POSIX_C_LANG_SUPPORT •

POSIX_DEVICE_IO
POSIX_FILE_LOCKING
POSIX_SIGNALS
POSIX_SINGLE_PROCESS
POSIX_THREADS_BASE •

XSI_THREAD_MUTEX_EXT •

XSI_THREADS_EXT •

Option Requirements An implementation supporting the Minimal Realtime System Profile must sup-
port the POSIX.1 Option Requirements which are defined in the standard. Options Requirements are
used for further sub-profiling within the units of functionality: they further define the functional be-
havior of the system service (normally adding extra functionality). Depending on the profile to which
the POSIX implementation complies,parameters and/or the precise functionality of certain services may
differ.

The following list shows the option requirements that are implemented in Zephyr.

1704 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Table 8: Option Requirements
Requirements Supported
_POSIX_CLOCK_SELECTION
_POSIX_FSYNC
_POSIX_MEMLOCK
_POSIX_MEMLOCK_RANGE
_POSIX_MONOTONIC_CLOCK
_POSIX_NO_TRUNC
_POSIX_REALTIME_SIGNALS
_POSIX_SEMAPHORES •

_POSIX_SHARED_MEMORY_OBJECTS
_POSIX_SYNCHRONIZED_IO
_POSIX_THREAD_ATTR_STACKADDR
_POSIX_THREAD_ATTR_STACKSIZE
_POSIX_THREAD_CPUTIME
_POSIX_THREAD_PRIO_INHERIT •

_POSIX_THREAD_PRIO_PROTECT
_POSIX_THREAD_PRIORITY_SCHEDULING •

_POSIX_THREAD_SPORADIC_SERVER
_POSIX_TIMEOUTS
_POSIX_TIMERS
_POSIX2_C_DEV
_POSIX2_SW_DEV

Units of Functionality

This section describes the Units of Functionality (fixed sets of interfaces) which are implemented (par-
tially or completely) in Zephyr. Please refer to the standard for a full description of each listed interface.

POSIX_THREADS_BASE The basic assumption in this profile is that the system consists of a single
(implicit) process with multiple threads. Therefore, the standard requires all basic thread services, except
those related to multiple processes.

Table 9: POSIX_THREADS_BASE
API Supported
pthread_atfork()
pthread_attr_destroy()

•

pthread_attr_getdetachstate()
•

pthread_attr_getschedparam()
•

pthread_attr_init()
•

continues on next page

8.16. OS Abstraction 1705

Zephyr Project Documentation, Release 2.7.0-rc2

Table 9 – continued from previous page
API Supported
pthread_attr_setdetachstate()

•

pthread_attr_setschedparam()
•

pthread_cancel()
•

pthread_cleanup_pop()
pthread_cleanup_push()
pthread_cond_broadcast()

•

pthread_cond_destroy()
pthread_cond_init()

•

pthread_cond_signal()
•

pthread_cond_timedwait()
•

pthread_cond_wait()
•

pthread_condattr_destroy()
pthread_condattr_init()
pthread_create()

•

pthread_detach()
•

pthread_equal()
pthread_exit()

•

pthread_getspecific()
•

pthread_join()
•

pthread_key_create()
•

pthread_key_delete()
•

pthread_kill()
continues on next page

1706 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Table 9 – continued from previous page
API Supported
pthread_mutex_destroy()

•

pthread_mutex_init()
•

pthread_mutex_lock()
•

pthread_mutex_trylock()
•

pthread_mutex_unlock()
•

pthread_mutexattr_destroy()
pthread_mutexattr_init()
pthread_once()

•

pthread_self()
•

pthread_setcalcelstate()
pthread_setcanceltype()
pthread_setspecific()

•

pthread_sigmask()
pthread_testcancel()

XSI_THREAD_EXT The XSI_THREADS_EXT Unit of Functionality is required because it provides func-
tions to control a thread’s stack. This is considered useful for any real-time application.

This table lists service support status in Zephyr:

Table 10: XSI_THREAD_EXT
API Supported
pthread_attr_getguardsize()
pthread_attr_getstack() •

pthread_attr_setguardsize()
pthread_attr_setstack() •

pthread_getconcurrency()
pthread_setconcurrency()

XSI_THREAD_MUTEX_EXT The XSI_THREAD_MUTEX_EXT Unit of Functionality is required because
it has options for controlling the behavior of mutexes under erroneous application use.

This table lists service support status in Zephyr:

8.16. OS Abstraction 1707

Zephyr Project Documentation, Release 2.7.0-rc2

Table 11: XSI_THREAD_MUTEX_EXT
API Supported
pthread_mutexattr_gettype() •

pthread_mutexattr_settype() •

POSIX_C_LANG_SUPPORT The POSIX_C_LANG_SUPPORT Unit of Functionality contains the general
ISO C Library.

This is implemented as part of the minimal C library available in Zephyr.

Table 12: POSIX_C_LANG_SUPPORT
API Supported
abs()

•

asctime()
asctime_r()
atof()
atoi()

•

atol()
atoll()
bsearch()

•

calloc()
•

ctime()
ctime_r()
difftime()
div()
feclearexcept()
fegetenv()
fegetexceptflag()
fegetround()
feholdexcept()
feraiseexcept()
fesetenv()
fesetexceptflag()
fesetround()
fetestexcept()
feupdateenv()
free()

•

gmtime()
•

continues on next page

1708 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Table 12 – continued from previous page
API Supported
gmtime_r()

•

imaxabs()
imaxdiv()
isalnum()

•

isalpha()
•

isblank()
iscntrl()
isdigit()

•

isgraph()
•

islower()
isprint()

•

ispunct()
isspace()

•

isupper()
•

isxdigit()
•

labs()
•

ldiv()
llabs()

•

lldiv()
localeconv()
localtime()

•

localtime_r()
malloc()

•

memchr()
•

continues on next page

8.16. OS Abstraction 1709

Zephyr Project Documentation, Release 2.7.0-rc2

Table 12 – continued from previous page
API Supported
memcmp()

•

memcpy()
•

memmove()
•

memset()
•

mktime()
•

qsort()
rand()

•

rand_r()
realloc()

•

setlocale()
snprintf()

•

sprintf()
•

srand()
•

sscanf()
strcat()

•

strchr()
•

strcmp()
•

strcoll()
strcpy()

•

strcspn()
strerror()
strerror_r()
strftime()
strlen()

•

continues on next page

1710 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Table 12 – continued from previous page
API Supported
strncat()

•

strncmp()
•

strncpy()
•

strpbrk()
strrchr()

•

strspn()
strstr()

•

strtod()
strtof()
strtoimax()
strtok()
strtok_r()

•

strtol()
•

strtold()
strtoll()
strtoul()

•

strtoull()
strtoumax()
strxfrm()
time()

•

tolower()
•

toupper()
•

tzname()
tzset()
va_arg()
va_copy()
va_end()
va_start()
vsnprintf()

•

continues on next page

8.16. OS Abstraction 1711

Zephyr Project Documentation, Release 2.7.0-rc2

Table 12 – continued from previous page
API Supported
vsprintf()

•

vsscanf()

POSIX_SINGLE_PROCESS The POSIX_SINGLE_PROCESS Unit of Functionality contains services for
single process applications.

Table 13: POSIX_SINGLE_PROCESS
API Supported
confstr()
environ
errno
getenv()
setenv()
sysconf()
uname()
unsetenv()

POSIX_SIGNALS Signal services are a basic mechanism within POSIX-based systems and are required
for error and event handling.

Table 14: POSIX_SIGNALS
API Supported
abort() •

alarm()
kill()
pause()
raise()
sigaction()
igaddset()
sigdelset()
sigemptyset()
sigfillset()
igismember()
signal()
sigpending()
sigprocmask()
igsuspend()
sigwait()

POSIX_DEVICE_IO
Table 15: POSIX_DEVICE_IO

API Supported
flockfile()
ftrylockfile()
funlockfile()

continues on next page

1712 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Table 15 – continued from previous page
API Supported
getc_unlocked()
getchar_unlocked()
putc_unlocked()
putchar_unlocked()
clearerr()
close()
fclose()
fdopen()
feof()
ferror()
fflush()
fgetc()
fgets()
fileno()
fopen()
fprintf()

•

fputc()
•

fputs()
•

fread()
freopen()
fscanf()
fwrite()

•

getc()
getchar()
gets()
open()

•

perror()
printf()

•

putc()
•

putchar()
puts()

•

read()
•

scanf()
setbuf()
etvbuf()
stderr

continues on next page

8.16. OS Abstraction 1713

Zephyr Project Documentation, Release 2.7.0-rc2

Table 15 – continued from previous page
API Supported
stdin
stdout
ungetc()
vfprintf()

•

vfscanf()
vprintf()

•

vscanf()
write()

8.16.2 CMSIS RTOS v1

Cortex-M Software Interface Standard (CMSIS) RTOS is a vendor-independent hardware abstraction
layer for the ARM Cortex-M processor series and defines generic tool interfaces. Though it was originally
defined for ARM Cortex-M microcontrollers alone, it could be easily extended to other microcontrollers
making it generic. For more information on CMSIS RTOS v1, please refer http://www.keil.com/pack/
doc/CMSIS/RTOS/html/index.html

8.16.3 CMSIS RTOS v2

Cortex-M Software Interface Standard (CMSIS) RTOS is a vendor-independent hardware abstraction
layer for the ARM Cortex-M processor series and defines generic tool interfaces. Though it was originally
defined for ARM Cortex-M microcontrollers alone, it could be easily extended to other microcontrollers
making it generic. For more information on CMSIS RTOS v2, please refer to the CMSIS-RTOS2 Docu-
mentation.

Features not supported in Zephyr implementation

Kernel osKernelGetState, osKernelSuspend, osKernelResume, osKernelInitialize and
osKernelStart are not supported.

Mutex osMutexPrioInherit is supported by default and is not configurable, you cannot select/unselect
this attribute.

osMutexRecursive is also supported by default. If this attribute is not set, an error is thrown when
the same thread tries to acquire it the second time.

osMutexRobust is not supported in Zephyr.

Return values not supported in the Zephyr implementation

osKernelUnlock, osKernelLock, osKernelRestoreLock osError (Unspecified error) is not supported.

osSemaphoreDelete osErrorResource (the semaphore specified by parameter semaphore_id is in an
invalid semaphore state) is not supported.

osMutexDelete osErrorResource (mutex specified by parameter mutex_id is in an invalid mutex state)
is not supported.

osTimerDelete osErrorResource (the timer specified by parameter timer_id is in an invalid timer state)
is not supported.

1714 Chapter 8. User and Developer Guides

http://www.keil.com/pack/doc/CMSIS/RTOS/html/index.html
http://www.keil.com/pack/doc/CMSIS/RTOS/html/index.html
http://www.keil.com/pack/doc/CMSIS/RTOS2/html/index.html
http://www.keil.com/pack/doc/CMSIS/RTOS2/html/index.html

Zephyr Project Documentation, Release 2.7.0-rc2

osMessageQueueReset osErrorResource (the message queue specified by parameter msgq_id is in an
invalid message queue state) is not supported.

osMessageQueueDelete osErrorResource (the message queue specified by parameter msgq_id is in an
invalid message queue state) is not supported.

osMemoryPoolFree osErrorResource (the memory pool specified by parameter mp_id is in an invalid
memory pool state) is not supported.

osMemoryPoolDelete osErrorResource (the memory pool specified by parameter mp_id is in an invalid
memory pool state) is not supported.

osEventFlagsSet, osEventFlagsClear osFlagsErrorUnknown (Unspecified error) and osFlagsErrorRe-
source (Event flags object specified by parameter ef_id is not ready to be used) are not supported.

osEventFlagsDelete osErrorParameter (the value of the parameter ef_id is incorrect) is not sup-
ported.

osThreadFlagsSet osFlagsErrorUnknown (Unspecified error) and osFlagsErrorResource (Thread
specified by parameter thread_id is not active to receive flags) are not supported.

osThreadFlagsClear osFlagsErrorResource (Running thread is not active to receive flags) is not sup-
ported.

osDelayUntil osParameter (the time cannot be handled) is not supported.

8.17 Porting

These pages document how to port Zephyr to new hardware.

8.17.1 Architecture Porting Guide

An architecture port is needed to enable Zephyr to run on an ISA (instruction set architecture) or an ABI
(Application Binary Interface) that is not currently supported.

The following are examples of ISAs and ABIs that Zephyr supports:

• x86_32 ISA with System V ABI

• ARMv7-M ISA with Thumb2 instruction set and ARM Embedded ABI (aeabi)

• ARCv2 ISA

For information on Kconfig configuration, see Setting Kconfig configuration values. Architectures use a
Kconfig configuration scheme similar to boards.

An architecture port can be divided in several parts; most are required and some are optional:

• The early boot sequence: each architecture has different steps it must take when the CPU comes
out of reset (required).

• Interrupt and exception handling: each architecture handles asynchronous and unrequested
events in a specific manner (required).

• Thread context switching: the Zephyr context switch is dependent on the ABI and each ISA has a
different set of registers to save (required).

• Thread creation and termination: A thread’s initial stack frame is ABI and architecture-
dependent, and thread abortion possibly as well (required).

• Device drivers: most often, the system clock timer and the interrupt controller are tied to the
architecture (some required, some optional).

• Utility libraries: some common kernel APIs rely on a architecture-specific implementation for
performance reasons (required).

8.17. Porting 1715

Zephyr Project Documentation, Release 2.7.0-rc2

• CPU idling/power management: most architectures implement instructions for putting the CPU
to sleep (partly optional, most likely very desired).

• Fault management: for implementing architecture-specific debug help and handling of fatal error
in threads (partly optional).

• Linker scripts and toolchains: architecture-specific details will most likely be needed in the build
system and when linking the image (required).

Early Boot Sequence

The goal of the early boot sequence is to take the system from the state it is after reset to a state where
is can run C code and thus the common kernel initialization sequence. Most of the time, very few steps
are needed, while some architectures require a bit more work to be performed.

Common steps for all architectures:

• Setup an initial stack.

• If running an XIP (eXecute-In-Place) kernel, copy initialized data

• from ROM to RAM.

• If not using an ELF loader, zero the BSS section.

• Jump to _Cstart(), the early kernel initialization

– _Cstart() is responsible for context switching out of the fake context running at startup into
the main thread.

Some examples of architecture-specific steps that have to be taken:

• If given control in real mode on x86_32, switch to 32-bit protected mode.

• Setup the segment registers on x86_32 to handle boot loaders that leave them in an unknown or
broken state.

• Initialize a board-specific watchdog on Cortex-M3/4.

• Switch stacks from MSP to PSP on Cortex-M.

• Use a different approach than calling into _Swap() on Cortex-M to prevent race conditions.

• Setup FIRQ and regular IRQ handling on ARCv2.

Interrupt and Exception Handling

Each architecture defines interrupt and exception handling differently.

When a device wants to signal the processor that there is some work to be done on its behalf, it raises an
interrupt. When a thread does an operation that is not handled by the serial flow of the software itself,
it raises an exception. Both, interrupts and exceptions, pass control to a handler. The handler is known
as an ISR (Interrupt Service Routine) in the case of interrupts. The handler performs the work required
by the exception or the interrupt. For interrupts, that work is device-specific. For exceptions, it depends
on the exception, but most often the core kernel itself is responsible for providing the handler.

The kernel has to perform some work in addition to the work the handler itself performs. For example:

• Prior to handing control to the handler:

– Save the currently executing context.

– Possibly getting out of power saving mode, which includes waking up devices.

– Updating the kernel uptime if getting out of tickless idle mode.

• After getting control back from the handler:

1716 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

– Decide whether to perform a context switch.

– When performing a context switch, restore the context being context switched in.

This work is conceptually the same across architectures, but the details are completely different:

• The registers to save and restore.

• The processor instructions to perform the work.

• The numbering of the exceptions.

• etc.

It thus needs an architecture-specific implementation, called the interrupt/exception stub.

Another issue is that the kernel defines the signature of ISRs as:

void (*isr)(void *parameter)

Architectures do not have a consistent or native way of handling parameters to an ISR. As such there are
two commonly used methods for handling the parameter.

• Using some architecture defined mechanism, the parameter value is forced in the stub. This is
commonly found in X86-based architectures.

• The parameters to the ISR are inserted and tracked via a separate table requiring the architecture to
discover at runtime which interrupt is executing. A common interrupt handler demuxer is installed
for all entries of the real interrupt vector table, which then fetches the device’s ISR and parameter
from the separate table. This approach is commonly used in the ARC and ARM architectures via
the :kconfig:`CONFIG_GEN_ISR_TABLES` implementation. You can find examples of the stubs
by looking at _interrupt_enter() in x86, _IntExit() in ARM, _isr_wrapper() in ARM, or the
full implementation description for ARC in arch/arc/core/isr_wrapper.S.

Each architecture also has to implement primitives for interrupt control:

• locking interrupts: irq_lock() , irq_unlock() .

• registering interrupts: IRQ_CONNECT() .

• programming the priority if possible irq_priority_set().

• enabling/disabling interrupts: irq_enable() , irq_disable() .

Note: IRQ_CONNECT is a macro that uses assembler and/or linker script tricks to connect interrupts at
build time, saving boot time and text size.

The vector table should contain a handler for each interrupt and exception that can possibly occur. The
handler can be as simple as a spinning loop. However, we strongly suggest that handlers at least print
some debug information. The information helps figuring out what went wrong when hitting an exception
that is a fault, like divide-by-zero or invalid memory access, or an interrupt that is not expected (spurious
interrupt). See the ARM implementation in arch/arm/core/aarch32/cortex_m/fault.c for an example.

Thread Context Switching

Multi-threading is the basic purpose to have a kernel at all. Zephyr supports two types of threads:
preemptible and cooperative.

Two crucial concepts when writing an architecture port are the following:

• Cooperative threads run at a higher priority than preemptible ones, and always preempt them.

• After handling an interrupt, if a cooperative thread was interrupted, the kernel always goes back
to running that thread, since it is not preemptible.

A context switch can happen in several circumstances:

8.17. Porting 1717

https://github.com/zephyrproject-rtos/zephyr/blob/main/arch/arc/core/isr_wrapper.S
https://github.com/zephyrproject-rtos/zephyr/blob/main/arch/arm/core/aarch32/cortex_m/fault.c

Zephyr Project Documentation, Release 2.7.0-rc2

• When a thread executes a blocking operation, such as taking a semaphore that is currently unavail-
able.

• When a preemptible thread unblocks a thread of higher priority by releasing the object on which it
was blocked.

• When an interrupt unblocks a thread of higher priority than the one currently executing, if the
currently executing thread is preemptible.

• When a thread runs to completion.

• When a thread causes a fatal exception and is removed from the running threads. For example,
referencing invalid memory,

Therefore, the context switching must thus be able to handle all these cases.

The kernel keeps the next thread to run in a “cache”, and thus the context switching code only has to
fetch from that cache to select which thread to run.

There are two types of context switches: cooperative and preemptive.

• A cooperative context switch happens when a thread willfully gives the control to another thread.
There are two cases where this happens

– When a thread explicitly yields.

– When a thread tries to take an object that is currently unavailable and is willing to wait until
the object becomes available.

• A preemptive context switch happens either because an ISR or a thread causes an operation that
schedules a thread of higher priority than the one currently running, if the currently running thread
is preemptible. An example of such an operation is releasing an object on which the thread of
higher priority was waiting.

Note: Control is never taken from cooperative thread when one of them is the running thread.

A cooperative context switch is always done by having a thread call the _Swap() kernel internal symbol.
When _Swap is called, the kernel logic knows that a context switch has to happen: _Swap does not
check to see if a context switch must happen. Rather, _Swap decides what thread to context switch in.
_Swap is called by the kernel logic when an object being operated on is unavailable, and some thread
yielding/sleeping primitives.

Note: On x86 and Nios2, _Swap is generic enough and the architecture flexible enough that _Swap can
be called when exiting an interrupt to provoke the context switch. This should not be taken as a rule,
since neither the ARM Cortex-M or ARCv2 port do this.

Since _Swap is cooperative, the caller-saved registers from the ABI are already on the stack. There is no
need to save them in the k_thread structure.

A context switch can also be performed preemptively. This happens upon exiting an ISR, in the kernel
interrupt exit stub:

• _interrupt_enter on x86 after the handler is called.

• _IntExit on ARM.

• _firq_exit and _rirq_exit on ARCv2.

In this case, the context switch must only be invoked when the interrupted thread was preemptible, not
when it was a cooperative one, and only when the current interrupt is not nested.

The kernel also has the concept of “locking the scheduler”. This is a concept similar to locking the
interrupts, but lighter-weight since interrupts can still occur. If a thread has locked the scheduler, is it
temporarily non-preemptible.

1718 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

So, the decision logic to invoke the context switch when exiting an interrupt is simple:

• If the interrupted thread is not preemptible, do not invoke it.

• Else, fetch the cached thread from the ready queue, and:

– If the cached thread is not the current thread, invoke the context switch.

– Else, do not invoke it.

This is simple, but crucial: if this is not implemented correctly, the kernel will not function as intended
and will experience bizarre crashes, mostly due to stack corruption.

Note: If running a coop-only system, i.e. if :kconfig:`CONFIG_NUM_PREEMPT_PRIORITIES` is 0, no
preemptive context switch ever happens. The interrupt code can be optimized to not take any scheduling
decision when this is the case.

Thread Creation and Termination

To start a new thread, a stack frame must be constructed so that the context switch can pop it the same
way it would pop one from a thread that had been context switched out. This is to be implemented in
an architecture-specific _new_thread internal routine.

The thread entry point is also not to be called directly, i.e. it should not be set as the PC (program
counter) for the new thread. Rather it must be wrapped in _thread_entry. This means that the PC in
the stack frame shall be set to _thread_entry, and the thread entry point shall be passed as the first
parameter to _thread_entry. The specifics of this depend on the ABI.

The need for an architecture-specific thread termination implementation depends on the architecture.
There is a generic implementation, but it might not work for a given architecture.

One reason that has been encountered for having an architecture-specific implementation of thread
termination is that aborting a thread might be different if aborting because of a graceful exit or because
of an exception. This is the case for ARM Cortex-M, where the CPU has to be taken out of handler mode
if the thread triggered a fatal exception, but not if the thread gracefully exits its entry point function.

This means implementing an architecture-specific version of k_thread_abort() , and setting the Kcon-
fig option :kconfig:`CONFIG_ARCH_HAS_THREAD_ABORT` as needed for the architecture (e.g. see
arch/arm/core/aarch32/cortex_m/Kconfig).

Thread Local Storage

To enable thread local storage on a new architecture:

1. Implement arch_tls_stack_setup() to setup the TLS storage area in stack. Refer to the toolchain
documentation on how the storage area needs to be structured. Some helper functions can be used:

• Function z_tls_data_size() returns the size needed for thread local variables (excluding
any extra data required by toolchain and architecture).

• Function z_tls_copy() prepares the TLS storage area for thread local variables. This only
copies the variable themselves and does not do architecture and/or toolchain specific data.

2. In the context switching, grab the tls field inside the new thread’s struct k_thread and put it
into an appropriate register (or some other variable) for access to the TLS storage area. Refer to
toolchain and architecture documentation on which registers to use.

3. In kconfig, add select CONFIG_ARCH_HAS_THREAD_LOCAL_STORAGE to kconfig related to the new
architecture.

4. Run the tests/kernel/threads/tls to make sure the new code works.

8.17. Porting 1719

https://github.com/zephyrproject-rtos/zephyr/blob/main/arch/arm/core/aarch32/cortex_m/Kconfig

Zephyr Project Documentation, Release 2.7.0-rc2

Device Drivers

The kernel requires very few hardware devices to function. In theory, the only required device is the
interrupt controller, since the kernel can run without a system clock. In practice, to get access to most, if
not all, of the sanity check test suite, a system clock is needed as well. Since these two are usually tied
to the architecture, they are part of the architecture port.

Interrupt Controllers There can be significant differences between the interrupt controllers and the
interrupt concepts across architectures.

For example, x86 has the concept of an IDT and different interrupt controllers. The position of an
interrupt in the IDT determines its priority.

On the other hand, the ARM Cortex-M has the NVIC (Nested Vectored Interrupt Controller) as part of
the architecture definition. There is no need for an IDT-like table that is separate from the NVIC vector
table. The position in the table has nothing to do with priority of an IRQ: priorities are programmable
per-entry.

The ARCv2 has its interrupt unit as part of the architecture definition, which is somewhat similar to
the NVIC. However, where ARC defines interrupts as having a one-to-one mapping between exception
and interrupt numbers (i.e. exception 1 is IRQ1, and device IRQs start at 16), ARM has IRQ0 being
equivalent to exception 16 (and weirdly enough, exception 1 can be seen as IRQ-15).

All these differences mean that very little, if anything, can be shared between architectures with regards
to interrupt controllers.

System Clock x86 has APIC timers and the HPET as part of its architecture definition. ARM Cortex-M
has the SYSTICK exception. Finally, ARCv2 has the timer0/1 device.

Kernel timeouts are handled in the context of the system clock timer driver’s interrupt handler.

Console Over Serial Line There is one other device that is almost a requirement for an architecture
port, since it is so useful for debugging. It is a simple polling, output-only, serial port driver on which to
send the console (printk, printf) output.

It is not required, and a RAM console (:kconfig:`CONFIG_RAM_CONSOLE`) can be used to send all
output to a circular buffer that can be read by a debugger instead.

Utility Libraries

The kernel depends on a few functions that can be implemented with very few instructions or in a lock-
less manner in modern processors. Those are thus expected to be implemented as part of an architecture
port.

• Atomic operators.

– If instructions do exist for a given architecture, the implementation is configured using the
:kconfig:`CONFIG_ATOMIC_OPERATIONS_ARCH` Kconfig option.

– If instructions do not exist for a given architecture, a generic version that wraps irq_lock()
or irq_unlock() around non-atomic operations exists. It is configured using the :kcon-
fig:`CONFIG_ATOMIC_OPERATIONS_C` Kconfig option.

• Find-least-significant-bit-set and find-most-significant-bit-set.

– If instructions do not exist for a given architecture, it is always possible to implement these
functions as generic C functions.

It is possible to use compiler built-ins to implement these, but be careful they use the required compiler
barriers.

1720 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

CPU Idling/Power Management

The kernel provides support for CPU power management with two functions: arch_cpu_idle() and
arch_cpu_atomic_idle() .

arch_cpu_idle() can be as simple as calling the power saving instruction for the architecture with
interrupts unlocked, for example hlt on x86, wfi or wfe on ARM, sleep on ARC. This function can be
called in a loop within a context that does not care if it get interrupted or not by an interrupt before
going to sleep. There are basically two scenarios when it is correct to use this function:

• In a single-threaded system, in the only thread when the thread is not used for doing real work
after initialization, i.e. it is sitting in a loop doing nothing for the duration of the application.

• In the idle thread.

arch_cpu_atomic_idle() , on the other hand, must be able to atomically re-enable interrupts and in-
voke the power saving instruction. It can thus be used in real application code, again in single-threaded
systems.

Normally, idling the CPU should be left to the idle thread, but in some very special scenarios, these APIs
can be used by applications.

Both functions must exist for a given architecture. However, the implementation can be simply the
following steps, if desired:

1. unlock interrupts

2. NOP

However, a real implementation is strongly recommended.

Fault Management

In the event of an unhandled CPU exception, the architecture code must call into z_fatal_error(). This
function dumps out architecture-agnostic information and makes a policy decision on what to do next
by invoking k_sys_fatal_error(). This function can be overridden to implement application-specific
policies that could include locking interrupts and spinning forever (the default implementation) or even
powering off the system (if supported).

Toolchain and Linking

Toolchain support has to be added to the build system.

Some architecture-specific definitions are needed in include/toolchain/gcc.h. See what exists in that file
for currently supported architectures.

Each architecture also needs its own linker script, even if most sections can be derived from the linker
scripts of other architectures. Some sections might be specific to the new architecture, for example the
SCB section on ARM and the IDT section on x86.

Memory Management

If the target platform enables paging and requires drivers to memory-map their I/O regions, :kcon-
fig:`CONFIG_MMU` needs to be enabled and the arch_mem_map() API implemented.

Stack Objects

The presence of memory protection hardware affects how stack objects are created. All architecture
ports must specify the required alignment of the stack pointer, which is some combination of CPU and

8.17. Porting 1721

https://github.com/zephyrproject-rtos/zephyr/blob/main/include/toolchain/gcc.h

Zephyr Project Documentation, Release 2.7.0-rc2

ABI requirements. This is defined in architecture headers with ARCH_STACK_PTR_ALIGN and is typically
something small like 4, 8, or 16 bytes.

Two types of thread stacks exist:

• “kernel” stacks defined with K_KERNEL_STACK_DEFINE() and related APIs, which can host kernel
threads running in supervisor mode or used as the stack for interrupt/exception handling. These
have significantly relaxed alignment requirements and use less reserved data. No memory is re-
served for prvilege elevation stacks.

• “thread” stacks which typically use more memory, but are capable of hosting thread running in user
mode, as well as any use-cases for kernel stacks.

If :c:kconfig:`CONFIG_USERSPACE` is not enabled, “thread” and “kernel” stacks are equivalent.

Additional macros may be defined in the architecture layer to specify the alignment of the base of stack
objects, any reserved data inside the stack object not used for the thread’s stack buffer, and how to round
up stack sizes to support user mode threads. In the absence of definitions some defaults are assumed:

• ARCH_KERNEL_STACK_RESERVED: default no reserved space

• ARCH_THREAD_STACK_RESERVED: default no reserved space

• ARCH_KERNEL_STACK_OBJ_ALIGN: default align to ARCH_STACK_PTR_ALIGN

• ARCH_THREAD_STACK_OBJ_ALIGN: default align to ARCH_STACK_PTR_ALIGN

• ARCH_THREAD_STACK_SIZE_ALIGN: default round up to ARCH_STACK_PTR_ALIGN

All stack creation macros are defined in terms of these.

Stack objects all have the following layout, with some regions potentially zero-sized depending on con-
figuration. There are always two main parts: reserved memory at the beginning, and then the stack
buffer itself. The bounds of some areas can only be determined at runtime in the context of its associated
thread object. Other areas are entirely computable at build time.

Some architectures may need to carve-out reserved memory at runtime from the stack buffer, instead
of unconditionally reserving it at build time, or to supplement an existing reserved area (as is the case
with the ARM FPU). Such carve-outs will always be tracked in thread.stack_info.start. The region
specified by thread.stack_info.start and thread.stack_info.size is always fully accessible by a
user mode thread. thread.stack_info.delta denotes an offset which can be used to compute the
initial stack pointer from the very end of the stack object, taking into account storage for TLS and ASLR
random offsets.

+---------------------+ <- thread.stack_obj
| Reserved Memory | } K_(THREAD|KERNEL)_STACK_RESERVED
+---------------------+
| Carved-out memory |
|.....................| <- thread.stack_info.start
| Unused stack buffer |
| |
|.....................| <- thread's current stack pointer
| Used stack buffer |
| |
|.....................| <- Initial stack pointer. Computable
| ASLR Random offset | with thread.stack_info.delta
+---------------------| <- thread.userspace_local_data
| Thread-local data |
+---------------------+ <- thread.stack_info.start +

thread.stack_info.size

At present, Zephyr does not support stacks that grow upward.

No Memory Protection If no memory protection is in use, then the defaults are sufficient.

1722 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

HW-based stack overflow detection This option uses hardware features to generate a fatal error if
a thread in supervisor mode overflows its stack. This is useful for debugging, although for a couple
reasons, you can’t reliably make any assertions about the state of the system after this happens:

• The kernel could have been inside a critical section when the overflow occurs, leaving important
global data structures in a corrupted state.

• For systems that implement stack protection using a guard memory region, it’s possible to overshoot
the guard and corrupt adjacent data structures before the hardware detects this situation.

To enable the :kconfig:`CONFIG_HW_STACK_PROTECTION` feature, the system must
provide some kind of hardware-based stack overflow protection, and enable the :kcon-
fig:`CONFIG_ARCH_HAS_STACK_PROTECTION` option.

Two forms of HW-based stack overflow detection are supported: dedicated CPU features for this purpose,
or special read-only guard regions immediately preceding stack buffers.

:kconfig:`CONFIG_HW_STACK_PROTECTION` only catches stack overflows for supervisor threads.
This is not required to catch stack overflow from user threads; :kconfig:`CONFIG_USERSPACE` is or-
thogonal.

This feature only detects supervisor mode stack overflows, including stack overflows when handling sys-
tem calls. It doesn’t guarantee that the kernel has not been corrupted. Any stack overflow in supervisor
mode should be treated as a fatal error, with no assertions about the integrity of the overall system
possible.

Stack overflows in user mode are recoverable (from the kernel’s perspective) and require no special
configuration; :kconfig:`CONFIG_HW_STACK_PROTECTION` only applies to catching overflows when
the CPU is in sueprvisor mode.

CPU-based stack overflow detection If we are detecting stack overflows in supervisor mode via special
CPU registers (like ARM’s SPLIM), then the defaults are sufficient.

Guard-based stack overflow detection We are detecting supervisor mode stack overflows via special
memory protection region located immediately before the stack buffer that generates an exception on
write. Reserved memory will be used for the guard region.

ARCH_KERNEL_STACK_RESERVED should be defined to the minimum size of a memory protection region.
On most ARM CPUs this is 32 bytes. ARCH_KERNEL_STACK_OBJ_ALIGN should also be set to the required
alignment for this region.

MMU-based systems should not reserve RAM for the guard region and instead simply leave an non-
present virtual page below every stack when it is mapped into the address space. The stack object will
still need to be properly aligned and sized to page granularity.

+-----------------------------+ <- thread.stack_obj
| Guard reserved memory | } K_KERNEL_STACK_RESERVED
+-----------------------------+
| Guard carve-out |
|.............................| <- thread.stack_info.start
| Stack buffer |
. .

Guard carve-outs for kernel stacks are uncommon and should be avoided if possible. They tend to be
needed for two situations:

• The same stack may be re-purposed to host a user thread, in which case the guard is unnecessary
and shouldn’t be unconditionally reserved. This is the case when privilege elevation stacks are not
inside the stack object.

• The required guard size is variable and depends on context. For example, some ARM CPUs have
lazy floating point stacking during exceptions and may decrement the stack pointer by a large

8.17. Porting 1723

Zephyr Project Documentation, Release 2.7.0-rc2

value without writing anything, completely overshooting a minimally-sized guard and corrupting
adjacent memory. Rather than unconditionally reserving a larger guard, the extra memory is carved
out if the thread uses floating point.

User mode enabled Enabling user mode activates two new requirements:

• A separate fixed-sized privilege mode stack, specified by :kcon-
fig:`CONFIG_PRIVILEGED_STACK_SIZE`, must be allocated that the user thread cannot
access. It is used as the stack by the kernel when handling system calls. If stack guards are
implemented, a stack guard region must be able to be placed before it, with support for carve-outs
if necessary.

• The memory protection hardware must be able to program a region that exactly
covers the thread’s stack buffer, tracked in thread.stack_info. This implies that
ARCH_THREAD_STACK_SIZE_ADJUST() will need to round up the requested stack size so that a re-
gion may cover it, and that ARCH_THREAD_STACK_OBJ_ALIGN() is also specified per the granularity
of the memory protection hardware.

This becomes more complicated if the memory protection hardware requires that all memory regions be
sized to a power of two, and aligned to their own size. This is common on older MPUs and is known
with :kconfig:`CONFIG_MPU_REQUIRES_POWER_OF_TWO_ALIGNMENT`.

thread.stack_info always tracks the user-accessible part of the stack object, it must always be correct
to program a memory protection region with user access using the range stored within.

Non power-of-two memory region requirements On systems without power-of-two region require-
ments, the reserved memory area for threads stacks defined by K_THREAD_STACK_RESERVED may be used
to contain the privilege mode stack. The layout could be something like:

+------------------------------+ <- thread.stack_obj
| Other platform data |
+------------------------------+
| Guard region (if enabled) |
+------------------------------+
| Guard carve-out (if needed) |
|..............................|
| Privilege elevation stack |
+------------------------------| <- thread.stack_obj +
| Stack buffer | K_THREAD_STACK_RESERVED =
. . thread.stack_info.start

The guard region, and any carve-out (if needed) would be configured as a read-only region when the
thread is created.

• If the thread is a supervisor thread, the privilege elevation region is just extra stack memory. An
overflow will eventually crash into the guard region.

• If the thread is running in user mode, a memory protection region will be configured to allow user
threads access to the stack buffer, but nothing before or after it. An overflow in user mode will
crash into the privilege elevation stack, which the user thread has no access to. An overflow when
handling a system call will crash into the guard region.

On an MMU system there should be no physical guards; the privilege mode stack will be mapped into
kernel memory, and the stack buffer in the user part of memory, each with non-present virtual guard
pages below them to catch runtime stack overflows.

Other platform data may be stored before the guard region, but this is highly discouraged if such data
could be stored in thread.arch somewhere.

ARCH_THREAD_STACK_RESERVED will need to be defined to capture the size of the reserved region con-
taining platform data, privilege elevation stacks, and guards. It must be appropriately sized such that an

1724 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

MPU region to grant user mode access to the stack buffer can be placed immediately after it.

Power-of-two memory region requirements Thread stack objects must be sized and aligned to the
same power of two, without any reserved memory to allow efficient packing in memory. Thus, any
guards in the thread stack must be completely carved out, and the privilege elevation stack must be
allocated elsewhere.

ARCH_THREAD_STACK_SIZE_ADJUST() and ARCH_THREAD_STACK_OBJ_ALIGN() should both be defined to
Z_POW2_CEIL(). K_THREAD_STACK_RESERVED must be 0.

For the privilege stacks, the :kconfig:`CONFIG_GEN_PRIV_STACKS` must be, enabled. For every thread
stack found in the system, a corresponding fixed- size kernel stack used for handling system calls is
generated. The address of the privilege stacks can be looked up quickly at runtime based on the thread
stack address using z_priv_stack_find(). These stacks are laid out the same way as other kernel-only
stacks.

+-----------------------------+ <- z_priv_stack_find(thread.stack_obj)
| Reserved memory | } K_KERNEL_STACK_RESERVED
+-----------------------------+
| Guard carve-out (if needed) |
|.............................|
| Privilege elevation stack |
| |
+-----------------------------+ <- z_priv_stack_find(thread.stack_obj) +

K_KERNEL_STACK_RESERVED +
CONFIG_PRIVILEGED_STACK_SIZE

+-----------------------------+ <- thread.stack_obj
| MPU guard carve-out |
| (supervisor mode only) |
|.............................| <- thread.stack_info.start
| Stack buffer |
. .

The guard carve-out in the thread stack object is only used if the thread is running in supervisor mode.
If the thread drops to user mode, there is no guard and the entire object is used as the stack buffer, with
full access to the associated user mode thread and thread.stack_info updated appropriately.

User Mode Threads

To support user mode threads, several kernel-to-arch APIs need to be implemented, and the system must
enable the :kconfig:`CONFIG_ARCH_HAS_USERSPACE` option. Please see the documentation for each
of these functions for more details:

• arch_buffer_validate() to test whether the current thread has access permissions to a particular
memory region

• arch_user_mode_enter() which will irreversibly drop a supervisor thread to user mode privileges.
The stack must be wiped.

• arch_syscall_oops() which generates a kernel oops when system call parameters can’t be vali-
dated, in such a way that the oops appears to be generated from where the system call was invoked
in the user thread

• arch_syscall_invoke0() through arch_syscall_invoke6() invoke a system call with the ap-
propriate number of arguments which must all be passed in during the privilege elevation via
registers.

• arch_is_user_context() return nonzero if the CPU is currently running in user mode

8.17. Porting 1725

Zephyr Project Documentation, Release 2.7.0-rc2

• arch_mem_domain_max_partitions_get() which indicates the max number of regions for a mem-
ory domain. MMU systems have an unlimited amount, MPU systems have constraints on this.

Some architectures may need to update software memory management structures or modify
hardware registers on another CPU when memory domain APIs are invoked. If so, :kcon-
fig:`CONFIG_ARCH_MEM_DOMAIN_SYNCHRONOUS_API` must be selected by the architecture and
some additional APIs must be implemented. This is common on MMU systems and uncommon on MPU
systems:

• arch_mem_domain_thread_add()

• arch_mem_domain_thread_remove()

• arch_mem_domain_partition_add()

• arch_mem_domain_partition_remove()

Please see the doxygen documentation of these APIs for details.

In addition to implementing these APIs, there are some other tasks as well:

• _new_thread() needs to spawn threads with K_USER in user mode

• On context switch, the outgoing thread’s stack memory should be marked inaccessible to user
mode by making the appropriate configuration changes in the memory management hardware..
The incoming thread’s stack memory should likewise be marked as accessible. This ensures that
threads can’t mess with other thread stacks.

• On context switch, the system needs to switch between memory domains for the incoming and
outgoing threads.

• Thread stack areas must include a kernel stack region. This should be inaccessible to user threads
at all times. This stack will be used when system calls are made. This should be fixed size for all
threads, and must be large enough to handle any system call.

• A software interrupt or some kind of privilege elevation mechanism needs to be established. This
is closely tied to how the _arch_syscall_invoke macros are implemented. On system call, the ap-
propriate handler function needs to be looked up in _k_syscall_table. Bad system call IDs should
jump to the K_SYSCALL_BAD handler. Upon completion of the system call, care must be taken not
to leak any register state back to user mode.

API Reference

Timing

group arch-timing

Unnamed Group

void arch_timing_init(void)

Initialize the timing subsystem.

Perform the necessary steps to initialize the timing subsystem.

See also:

timing_init()

void arch_timing_start(void)

Signal the start of the timing information gathering.

Signal to the timing subsystem that timing information will be gathered from this point for-
ward.

1726 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

See also:

timing_start()

void arch_timing_stop(void)

Signal the end of the timing information gathering.

Signal to the timing subsystem that timing information is no longer being gathered from this
point forward.

See also:

timing_stop()

timing_t arch_timing_counter_get(void)

Return timing counter.

See also:

timing_counter_get()

Returns Timing counter.

uint64_t arch_timing_cycles_get(volatile timing_t *const start, volatile timing_t *const end)

Get number of cycles between start and end.

For some architectures or SoCs, the raw numbers from counter need to be scaled to obtain
actual number of cycles.

See also:

timing_cycles_get()

Parameters

• start – Pointer to counter at start of a measured execution.

• end – Pointer to counter at stop of a measured execution.

Returns Number of cycles between start and end.

uint64_t arch_timing_freq_get(void)

Get frequency of counter used (in Hz).

See also:

timing_freq_get()

Returns Frequency of counter used for timing in Hz.

uint64_t arch_timing_cycles_to_ns(uint64_t cycles)

Convert number of cycles into nanoseconds.

See also:

timing_cycles_to_ns()

8.17. Porting 1727

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• cycles – Number of cycles

Returns Converted time value

uint64_t arch_timing_cycles_to_ns_avg(uint64_t cycles, uint32_t count)

Convert number of cycles into nanoseconds with averaging.

See also:

timing_cycles_to_ns_avg()

Parameters

• cycles – Number of cycles

• count – Times of accumulated cycles to average over

Returns Converted time value

uint32_t arch_timing_freq_get_mhz(void)

Get frequency of counter used (in MHz).

See also:

timing_freq_get_mhz()

Returns Frequency of counter used for timing in MHz.

Functions

void arch_busy_wait(uint32_t usec_to_wait)

Architecture-specific implementation of busy-waiting

Parameters

• usec_to_wait – Wait period, in microseconds

static inline uint32_t arch_k_cycle_get_32(void)

Obtain the current cycle count, in units that are hardware-specific

See also:

k_cycle_get_32()

Threads

group arch-threads

Functions

1728 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

void arch_new_thread(struct k_thread *thread, k_thread_stack_t *stack, char *stack_ptr,
k_thread_entry_t entry, void *p1, void *p2, void *p3)

Handle arch-specific logic for setting up new threads

The stack and arch-specific thread state variables must be set up such that a later attempt to
switch to this thread will succeed and we will enter z_thread_entry with the requested thread
and arguments as its parameters.

At some point in this function’s implementation, z_setup_new_thread() must be called with
the true bounds of the available stack buffer within the thread’s stack object.

The provided stack pointer is guaranteed to be properly aligned with respect to the CPU and
ABI requirements. There may be space reserved between the stack pointer and the bounds of
the stack buffer for initial stack pointer randomization and thread-local storage.

Fields in thread->base will be initialized when this is called.

Parameters

• thread – Pointer to uninitialized struct k_thread

• stack – Pointer to the stack object

• stack_ptr – Aligned initial stack pointer

• entry – Thread entry function

• p1 – 1st entry point parameter

• p2 – 2nd entry point parameter

• p3 – 3rd entry point parameter

static inline void arch_switch(void *switch_to, void **switched_from)

Cooperative context switch primitive

The action of arch_switch() should be to switch to a new context passed in the first argument,
and save a pointer to the current context into the address passed in the second argument.

The actual type and interpretation of the switch handle is specified by the architec-
ture. It is the same data structure stored in the “switch_handle” field of a newly-created
thread in arch_new_thread(), and passed to the kernel as the “interrupted” argument to
z_get_next_switch_handle().

Note that on SMP systems, the kernel uses the store through the second pointer as a synchro-
nization point to detect when a thread context is completely saved (so another CPU can know
when it is safe to switch). This store must be done AFTER all relevant state is saved, and must
include whatever memory barriers or cache management code is required to be sure another
CPU will see the result correctly.

The simplest implementation of arch_switch() is generally to push state onto the thread stack
and use the resulting stack pointer as the switch handle. Some architectures may instead
decide to use a pointer into the thread struct as the “switch handle” type. These can legally
assume that the second argument to arch_switch() is the address of the switch_handle field of
struct thread_base and can use an offset on this value to find other parts of the thread struct.
For example a (C pseudocode) implementation of arch_switch() might look like:

void arch_switch(void *switch_to, void **switched_from) { struct k_thread *new = switch_to;
struct k_thread *old = CONTAINER_OF(switched_from, struct k_thread,switch_handle);

// save old context. . . *switched_from = old; // restore new context. . . }

Note that the kernel manages the switch_handle field for synchronization as described above.
So it is not legal for architecture code to assume that it has any particular value at any other
time. In particular it is not legal to read the field from the address passed in the second
argument.

Parameters

8.17. Porting 1729

Zephyr Project Documentation, Release 2.7.0-rc2

• switch_to – Incoming thread’s switch handle

• switched_from – Pointer to outgoing thread’s switch handle storage location,
which must be updated.

void arch_switch_to_main_thread(struct k_thread *main_thread, char *stack_ptr,
k_thread_entry_t _main)

Custom logic for entering main thread context at early boot

Used by architectures where the typical trick of setting up a dummy thread in early boot
context to “switch out” of isn’t workable.

Parameters

• main_thread – main thread object

• stack_ptr – Initial stack pointer

• _main – Entry point for application main function.

int arch_float_disable(struct k_thread *thread)

Disable floating point context preservation.

The function is used to disable the preservation of floating point context information for a
particular thread.

Note: For ARM architecture, disabling floating point preservation may only be requested for
the current thread and cannot be requested in ISRs.

Return values

• 0 – On success.

• -EINVAL – If the floating point disabling could not be performed.

• -ENOTSUP – If the operation is not supported

int arch_float_enable(struct k_thread *thread, unsigned int options)

Enable floating point context preservation.

The function is used to enable the preservation of floating point context information for a
particular thread. This API depends on each architecture implimentation. If the architecture
does not support enabling, this API will always be failed.

The options parameter indicates which floating point register sets will be used by the specified
thread. Currently it is used by x86 only.

Parameters

• thread – ID of thread.

• options – architecture dependent options

Return values

• 0 – On success.

• -EINVAL – If the floating point enabling could not be performed.

• -ENOTSUP – If the operation is not supported

group arch-tls

1730 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Functions

size_t arch_tls_stack_setup(struct k_thread *new_thread, char *stack_ptr)

Setup Architecture-specific TLS area in stack.

This sets up the stack area for thread local storage. The structure inside in area is architecture
specific.

Parameters

• new_thread – New thread object

• stack_ptr – Stack pointer

Returns Number of bytes taken by the TLS area

Power Management

group arch-pm

Functions

FUNC_NORETURN void arch_system_halt(unsigned int reason)

Halt the system, optionally propagating a reason code

void arch_cpu_idle(void)

Power save idle routine.

This function will be called by the kernel idle loop or possibly within an implementation of
z_pm_save_idle in the kernel when the ‘_pm_save_flag’ variable is non-zero.

Architectures that do not implement power management instructions may immediately re-
turn, otherwise a power-saving instruction should be issued to wait for an interrupt.

See also:

k_cpu_idle()

Note: The function is expected to return after the interrupt that has caused the CPU to exit
power-saving mode has been serviced, although this is not a firm requirement.

void arch_cpu_atomic_idle(unsigned int key)

Atomically re-enable interrupts and enter low power mode.

The requirements for arch_cpu_atomic_idle() are as follows:

a. Enabling interrupts and entering a low-power mode needs to be atomic, i.e. there should
be no period of time where interrupts are enabled before the processor enters a low-power
mode. See the comments in k_lifo_get(), for example, of the race condition that occurs if
this requirement is not met.

b. After waking up from the low-power mode, the interrupt lockout state must be restored
as indicated in the ‘key’ input parameter.

See also:

k_cpu_atomic_idle()

8.17. Porting 1731

Zephyr Project Documentation, Release 2.7.0-rc2

Parameters

• key – Lockout key returned by previous invocation of arch_irq_lock()

Symmetric Multi-Processing

group arch-smp

Typedefs

typedef FUNC_NORETURN void (*arch_cpustart_t)(void *data)

Per-cpu entry function

Param data context parameter, implementation specific

Functions

void arch_start_cpu(int cpu_num, k_thread_stack_t *stack, int sz, arch_cpustart_t fn, void *arg)

Start a numbered CPU on a MP-capable system.

This starts and initializes a specific CPU. The main thread on startup is running on CPU zero,
other processors are numbered sequentially. On return from this function, the CPU is known
to have begun operating and will enter the provided function. Its interrupts will be initialized
but disabled such that irq_unlock() with the provided key will work to enable them.

Normally, in SMP mode this function will be called by the kernel initialization and should
not be used as a user API. But it is defined here for special-purpose apps which want Zephyr
running on one core and to use others for design-specific processing.

Parameters

• cpu_num – Integer number of the CPU

• stack – Stack memory for the CPU

• sz – Stack buffer size, in bytes

• fn – Function to begin running on the CPU.

• arg – Untyped argument to be passed to “fn”

bool arch_cpu_active(int cpu_num)

Return CPU power status.

Parameters

• cpu_num – Integer number of the CPU

static inline struct _cpu *arch_curr_cpu(void)

Return the CPU struct for the currently executing CPU

void arch_sched_ipi(void)

Broadcast an interrupt to all CPUs

This will invoke z_sched_ipi() on other CPUs in the system.

Interrupts

group arch-irq

1732 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Functions

static inline bool arch_is_in_isr(void)

Test if the current context is in interrupt context

XXX: This is inconsistently handled among arches wrt exception context See: #17656

Returns true if we are in interrupt context

static inline unsigned int arch_irq_lock(void)

Lock interrupts on the current CPU

See also:

irq_lock()

static inline void arch_irq_unlock(unsigned int key)

Unlock interrupts on the current CPU

See also:

irq_unlock()

static inline bool arch_irq_unlocked(unsigned int key)

Test if calling arch_irq_unlock() with this key would unlock irqs

Parameters

• key – value returned by arch_irq_lock()

Returns true if interrupts were unlocked prior to the arch_irq_lock() call that pro-
duced the key argument.

void arch_irq_disable(unsigned int irq)

Disable the specified interrupt line

See also:

irq_disable()

Note: : The behavior of interrupts that arrive after this call returns and before the corre-
sponding call to arch_irq_enable() is undefined. The hardware is not required to latch and
deliver such an interrupt, though on some architectures that may work. Other architectures
will simply lose such an interrupt and never deliver it. Many drivers and subsystems are not
tolerant of such dropped interrupts and it is the job of the application layer to ensure that
behavior remains correct.

void arch_irq_enable(unsigned int irq)

Enable the specified interrupt line

See also:

irq_enable()

8.17. Porting 1733

Zephyr Project Documentation, Release 2.7.0-rc2

int arch_irq_is_enabled(unsigned int irq)

Test if an interrupt line is enabled

See also:

irq_is_enabled()

int arch_irq_connect_dynamic(unsigned int irq, unsigned int priority, void (*routine)(const
void *parameter), const void *parameter, uint32_t flags)

Arch-specific hook to install a dynamic interrupt.

Parameters

• irq – IRQ line number

• priority – Interrupt priority

• routine – Interrupt service routine

• parameter – ISR parameter

• flags – Arch-specific IRQ configuration flag

Returns The vector assigned to this interrupt

Userspace

group arch-userspace

Functions

static inline uintptr_t arch_syscall_invoke0(uintptr_t call_id)

Invoke a system call with 0 arguments.

No general-purpose register state other than return value may be preserved when transition-
ing from supervisor mode back down to user mode for security reasons.

It is required that all arguments be stored in registers when elevating privileges from user to
supervisor mode.

Processing of the syscall takes place on a separate kernel stack. Interrupts should be enabled
when invoking the system call marshallers from the dispatch table. Thread preemption may
occur when handling system calls.

Call ids are untrusted and must be bounds-checked, as the value is used to index the system
call dispatch table, containing function pointers to the specific system call code.

Parameters

• call_id – System call ID

Returns Return value of the system call. Void system calls return 0 here.

static inline uintptr_t arch_syscall_invoke1(uintptr_t arg1, uintptr_t call_id)

Invoke a system call with 1 argument.

See also:

arch_syscall_invoke0()

Parameters

• arg1 – First argument to the system call.

1734 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

• call_id – System call ID, will be bounds-checked and used to reference kernel-
side dispatch table

Returns Return value of the system call. Void system calls return 0 here.

static inline uintptr_t arch_syscall_invoke2(uintptr_t arg1, uintptr_t arg2, uintptr_t call_id)

Invoke a system call with 2 arguments.

See also:

arch_syscall_invoke0()

Parameters

• arg1 – First argument to the system call.

• arg2 – Second argument to the system call.

• call_id – System call ID, will be bounds-checked and used to reference kernel-
side dispatch table

Returns Return value of the system call. Void system calls return 0 here.

static inline uintptr_t arch_syscall_invoke3(uintptr_t arg1, uintptr_t arg2, uintptr_t arg3,
uintptr_t call_id)

Invoke a system call with 3 arguments.

See also:

arch_syscall_invoke0()

Parameters

• arg1 – First argument to the system call.

• arg2 – Second argument to the system call.

• arg3 – Third argument to the system call.

• call_id – System call ID, will be bounds-checked and used to reference kernel-
side dispatch table

Returns Return value of the system call. Void system calls return 0 here.

static inline uintptr_t arch_syscall_invoke4(uintptr_t arg1, uintptr_t arg2, uintptr_t arg3,
uintptr_t arg4, uintptr_t call_id)

Invoke a system call with 4 arguments.

See also:

arch_syscall_invoke0()

Parameters

• arg1 – First argument to the system call.

• arg2 – Second argument to the system call.

• arg3 – Third argument to the system call.

• arg4 – Fourth argument to the system call.

8.17. Porting 1735

Zephyr Project Documentation, Release 2.7.0-rc2

• call_id – System call ID, will be bounds-checked and used to reference kernel-
side dispatch table

Returns Return value of the system call. Void system calls return 0 here.

static inline uintptr_t arch_syscall_invoke5(uintptr_t arg1, uintptr_t arg2, uintptr_t arg3,
uintptr_t arg4, uintptr_t arg5, uintptr_t call_id)

Invoke a system call with 5 arguments.

See also:

arch_syscall_invoke0()

Parameters

• arg1 – First argument to the system call.

• arg2 – Second argument to the system call.

• arg3 – Third argument to the system call.

• arg4 – Fourth argument to the system call.

• arg5 – Fifth argument to the system call.

• call_id – System call ID, will be bounds-checked and used to reference kernel-
side dispatch table

Returns Return value of the system call. Void system calls return 0 here.

static inline uintptr_t arch_syscall_invoke6(uintptr_t arg1, uintptr_t arg2, uintptr_t arg3,
uintptr_t arg4, uintptr_t arg5, uintptr_t arg6,
uintptr_t call_id)

Invoke a system call with 6 arguments.

See also:

arch_syscall_invoke0()

Parameters

• arg1 – First argument to the system call.

• arg2 – Second argument to the system call.

• arg3 – Third argument to the system call.

• arg4 – Fourth argument to the system call.

• arg5 – Fifth argument to the system call.

• arg6 – Sixth argument to the system call.

• call_id – System call ID, will be bounds-checked and used to reference kernel-
side dispatch table

Returns Return value of the system call. Void system calls return 0 here.

static inline bool arch_is_user_context(void)

Indicate whether we are currently running in user mode

Returns true if the CPU is currently running with user permissions

1736 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

int arch_mem_domain_max_partitions_get(void)

Get the maximum number of partitions for a memory domain.

Returns Max number of partitions, or -1 if there is no limit

int arch_buffer_validate(void *addr, size_t size, int write)

Check memory region permissions.

Given a memory region, return whether the current memory management hardware configu-
ration would allow a user thread to read/write that region. Used by system calls to validate
buffers coming in from userspace.

Notes: The function is guaranteed to never return validation success, if the entire buffer area
is not user accessible.

The function is guaranteed to correctly validate the permissions of the supplied buffer, if
the user access permissions of the entire buffer are enforced by a single, enabled memory
management region.

In some architectures the validation will always return failure if the supplied memory buffer
spans multiple enabled memory management regions (even if all such regions permit user
access).

Warning: 0 size buffer has undefined behavior.

Parameters

• addr – start address of the buffer

• size – the size of the buffer

• write – If nonzero, additionally check if the area is writable. Otherwise, just
check if the memory can be read.

Returns nonzero if the permissions don’t match.

FUNC_NORETURN void arch_user_mode_enter(k_thread_entry_t user_entry, void *p1, void
*p2, void *p3)

Perform a one-way transition from supervisor to kernel mode.

Implementations of this function must do the following:

• Reset the thread’s stack pointer to a suitable initial value. We do not need any prior
context since this is a one-way operation.

• Set up any kernel stack region for the CPU to use during privilege elevation

• Put the CPU in whatever its equivalent of user mode is

• Transfer execution to arch_new_thread() passing along all the supplied arguments, in user
mode.

Parameters

• user_entry – Entry point to start executing as a user thread

• p1 – 1st parameter to user thread

• p2 – 2nd parameter to user thread

• p3 – 3rd parameter to user thread

8.17. Porting 1737

Zephyr Project Documentation, Release 2.7.0-rc2

FUNC_NORETURN void arch_syscall_oops(void *ssf)

Induce a kernel oops that appears to come from a specific location.

Normally, k_oops() generates an exception that appears to come from the call site of the
k_oops() itself.

However, when validating arguments to a system call, if there are problems we want the
oops to appear to come from where the system call was invoked and not inside the validation
function.

Parameters

• ssf – System call stack frame pointer. This gets passed as an argument to
_k_syscall_handler_t functions and its contents are completely architecture
specific.

size_t arch_user_string_nlen(const char *s, size_t maxsize, int *err)

Safely take the length of a potentially bad string.

This must not fault, instead the err parameter must have -1 written to it. This function other-
wise should work exactly like libc strnlen(). On success *err should be set to 0.

Parameters

• s – String to measure

• maxsize – Max length of the string

• err – Error value to write

Returns Length of the string, not counting NULL byte, up to maxsize

static inline bool arch_mem_coherent(void *ptr)

Detect memory coherence type.

Required when ARCH_HAS_COHERENCE is true. This function returns true if the byte
pointed to lies within an architecture-defined “coherence region” (typically implemented with
uncached memory) and can safely be used in multiprocessor code without explicit flush or
invalidate operations.

Note: The result is for only the single byte at the specified address, this API is not required to
check region boundaries or to expect aligned pointers. The expectation is that the code above
will have queried the appropriate address(es).

static inline void arch_cohere_stacks(struct k_thread *old_thread, void *old_switch_handle,
struct k_thread *new_thread)

Ensure cache coherence prior to context switch.

Required when ARCH_HAS_COHERENCE is true. On cache-incoherent multiprocessor archi-
tectures, thread stacks are cached by default for performance reasons. They must therefore
be flushed appropriately on context switch. The rules are:

a. The region containing live data in the old stack (generally the bytes between the current
stack pointer and the top of the stack memory) must be flushed to underlying storage so
a new CPU that runs the same thread sees the correct data. This must happen before the
assignment of the switch_handle field in the thread struct which signals the completion
of context switch.

b. Any data areas to be read from the new stack (generally the same as the live region when
it was saved) should be invalidated (and NOT flushed!) in the data cache. This is because
another CPU may have run or re-initialized the thread since this CPU suspended it, and
any data present in cache will be stale.

1738 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

• old_thread The old thread to be flushed before being allowed to run on other CPUs.

• old_switch_handle The switch handle to be stored into old_thread (it will not be valid
until the cache is flushed so is not present yet). This will be NULL if inside z_swap()
(because the arch_switch() has not saved it yet).

• new_thread The new thread to be invalidated before it runs locally.

Note: The kernel will call this function during interrupt exit when a new thread has been
chosen to run, and also immediately before entering arch_switch() to effect a code-driven
context switch. In the latter case, it is very likely that more data will be written to the
old_thread stack region after this function returns but before the completion of the switch.
Simply flushing naively here is not sufficient on many architectures and coordination with the
arch_switch() implementation is likely required.

Memory Management

group arch-mmu

Functions

void arch_mem_map(void *virt, uintptr_t phys, size_t size, uint32_t flags)

Map physical memory into the virtual address space

This is a low-level interface to mapping pages into the address space. Behavior when pro-
viding unaligned addresses/sizes is undefined, these are assumed to be aligned to CON-
FIG_MMU_PAGE_SIZE.

The core kernel handles all management of the virtual address space; by the time we invoke
this function, we know exactly where this mapping will be established. If the page tables
already had mappings installed for the virtual memory region, these will be overwritten.

If the target architecture supports multiple page sizes, currently only the smallest page size
will be used.

The memory range itself is never accessed by this operation.

This API must be safe to call in ISRs or exception handlers. Calls to this API are assumed
to be serialized, and indeed all usage will originate from kernel/mm.c which handles virtual
memory management.

Architectures are expected to pre-allocate page tables for the entire address space, as de-
fined by CONFIG_KERNEL_VM_BASE and CONFIG_KERNEL_VM_SIZE. This operation should
never require any kind of allocation for paging structures.

Validation of arguments should be done via assertions.

This API is part of infrastructure still under development and may change.

Parameters

• virt – Page-aligned Destination virtual address to map

• phys – Page-aligned Source physical address to map

• size – Page-aligned size of the mapped memory region in bytes

• flags – Caching, access and control flags, see K_MAP_* macros

8.17. Porting 1739

Zephyr Project Documentation, Release 2.7.0-rc2

void arch_mem_unmap(void *addr, size_t size)

Remove mappings for a provided virtual address range

This is a low-level interface for un-mapping pages from the address space. When this com-
pletes, the relevant page table entries will be updated as if no mapping was ever made for
that memory range. No previous context needs to be preserved. This function must update
mappings in all active page tables.

Behavior when providing unaligned addresses/sizes is undefined, these are assumed to be
aligned to CONFIG_MMU_PAGE_SIZE.

Behavior when providing an address range that is not already mapped is undefined.

This function should never require memory allocations for paging structures, and it is not
necessary to free any paging structures. Empty page tables due to all contained entries being
un-mapped may remain in place.

Implementations must invalidate TLBs as necessary.

This API is part of infrastructure still under development and may change.

Parameters

• addr – Page-aligned base virtual address to un-map

• size – Page-aligned region size

int arch_page_phys_get(void *virt, uintptr_t *phys)

Get the mapped physical memory address from virtual address.

The function only needs to query the current set of page tables as the information it reports
must be common to all of them if multiple page tables are in use. If multiple page tables are
active it is unnecessary to iterate over all of them.

Unless otherwise specified, virtual pages have the same mappings across all page tables. Call-
ing this function on data pages that are exceptions to this rule (such as the scratch page) is
undefined behavior. Just check the currently installed page tables and return the information
in that.

Parameters

• virt – Page-aligned virtual address

• phys – [out] Mapped physical address (can be NULL if only checking if virtual
address is mapped)

Return values

• 0 – if mapping is found and valid

• -EFAULT – if virtual address is not mapped

Miscellaneous Architecture APIs

group arch-misc

Functions

int arch_printk_char_out(int c)

Early boot console output hook

Definition of this function is optional. If implemented, any invocation of printk() (or logging
calls with CONFIG_LOG_MINIMAL which are backed by printk) will default to sending char-
acters to this function. It is useful for early boot debugging before main serial or console
drivers come up.

1740 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

This can be overridden at runtime with __printk_hook_install().

The default __weak implementation of this does nothing.

Parameters

• c – Character to print

Returns The character printed

static inline void arch_kernel_init(void)

Architecture-specific kernel initialization hook

This function is invoked near the top of _Cstart, for additional architecture-specific setup
before the rest of the kernel is brought up.

TODO: Deprecate, most arches are using a prep_c() function to do the same thing in a simpler
way

static inline void arch_nop(void)

Do nothing and return. Yawn.

8.17.2 Board Porting Guide

To add Zephyr support for a new board, you at least need a board directory with various files in it. Files
in the board directory inherit support for at least one SoC and all of its features. Therefore, Zephyr must
support your SoC as well.

Boards, SoCs, etc.

Zephyr’s hardware support hierarchy has these layers, from most to least specific:

• Board: a particular CPU instance and its peripherals in a concrete hardware specification

• SoC: the exact system on a chip the board’s CPU is part of

• SoC series: a smaller group of tightly related SoCs

• SoC family: a wider group of SoCs with similar characteristics

• CPU core: a particular CPU in an architecture

• Architecture: an instruction set architecture

You can visualize the hierarchy like this:

Here are some examples. Notice how the SoC series and family levels are not always used.

Board SoC SoC series SoC family CPU core Architec-
ture

nrf52dk_nrf52832 nRF52832 nRF52 Nordic nRF5 Arm Cortex-
M4

Arm

frdm_k64f MK64F12 Kinetis
K6x

NXP Kinetis Arm Cortex-
M4

Arm

stm32h747i_disco STM32H747XI STM32H7 STMicro
STM32

Arm Cortex-
M7

Arm

rv32m1_vega_ri5cy RV32M1 (Not used) (Not used) RI5CY RISC-V

Make sure your SoC is supported

Start by making sure your SoC is supported by Zephyr. If it is, it’s time to Create your board directory. If
you don’t know, try:

8.17. Porting 1741

Zephyr Project Documentation, Release 2.7.0-rc2

Fig. 12: Configuration Hierarchy

• checking boards for names that look relevant, and reading individual board documentation to find
out for sure.

• asking your SoC vendor

If you need to add SoC, CPU core, or even architecture support, this is the wrong page, but here is some
general advice.

Architecture See Architecture Porting Guide.

CPU Core CPU core support files go in core subdirectories under arch, e.g. arch/x86/core.

See Set Up a Toolchain for information about toolchains (compiler, linker, etc.) supported by Zephyr. If
you need to support a new toolchain, Build and Configuration Systems is a good place to start learning
about the build system. Please reach out to the community if you are looking for advice or want to
collaborate on toolchain support.

SoC Zephyr SoC support files are in architecture-specific subdirectories of soc. They are generally
grouped by SoC family.

When adding a new SoC family or series for a vendor that already has SoC support within Zephyr, please
try to extract common functionality into shared files to avoid duplication. If there is no support for
your vendor yet, you can add it in a new directory zephyr/soc/<YOUR-ARCH>/<YOUR-SOC>; please use
self-explanatory directory names.

Create your board directory

Once you’ve found an existing board that uses your SoC, you can usually start by copy/pasting its board
directory and changing its contents for your hardware.

1742 Chapter 8. User and Developer Guides

https://github.com/zephyrproject-rtos/zephyr/blob/main/arch
https://github.com/zephyrproject-rtos/zephyr/blob/main/arch/x86/core
https://github.com/zephyrproject-rtos/zephyr/blob/main/soc

Zephyr Project Documentation, Release 2.7.0-rc2

You need to give your board a unique name. Run west boards for a list of names that are already taken,
and pick something new. Let’s say your board is called plank (please don’t actually use that name).

Start by creating the board directory zephyr/boards/<ARCH>/plank, where <ARCH> is your SoC’s ar-
chitecture subdirectory. (You don’t have to put your board directory in the zephyr repository, but it’s
the easiest way to get started. See Custom Board, Devicetree and SOC Definitions for documentation on
moving your board directory to a separate repository once it’s working.)

Your board directory should look like this:

boards/<ARCH>/plank
board.cmake
CMakeLists.txt
doc

plank.png
index.rst

Kconfig.board
Kconfig.defconfig
plank_defconfig
plank.dts
plank.yaml

Replace plank with your board’s name, of course.

The mandatory files are:

1. plank.dts: a hardware description in devicetree format. This declares your SoC, connectors, and
any other hardware components such as LEDs, buttons, sensors, or communication peripherals
(USB, BLE controller, etc).

2. Kconfig.board, Kconfig.defconfig, plank_defconfig: software configuration in Configuration
System (Kconfig) formats. This provides default settings for software features and peripheral
drivers.

The optional files are:

• board.cmake: used for Flash and debug support

• CMakeLists.txt: if you need to add additional source files to your build.

One common use for this file is to add a pinmux.c file in your board directory to the build, which
configures pin controllers at boot time. In that case, CMakeLists.txt usually looks like this:

if(CONFIG_PINMUX)
zephyr_library()
zephyr_library_sources(pinmux.c)

endif()

• doc/index.rst, doc/plank.png: documentation for and a picture of your board. You only need
this if you’re Contributing your board to Zephyr.

• plank.yaml: a YAML file with miscellaneous metadata used by the Test Runner (Twister).

Write your devicetree

The devicetree file boards/<ARCH>/plank/plank.dts describes your board hardware in the Devicetree
Source (DTS) format (as usual, change plank to your board’s name). If you’re new to devicetree, see
Introduction to devicetree.

In general, plank.dts should look like this:

8.17. Porting 1743

Zephyr Project Documentation, Release 2.7.0-rc2

/dts-v1/ ;
#include <your_soc_vendor/your_soc.dtsi>

/ {
model = "A human readable name";
compatible = "yourcompany,plank";

chosen {
zephyr,console = &your_uart_console;
zephyr,sram = &your_memory_node;
/* other chosen settings for your hardware */

};

/*
* Your board-specific hardware: buttons, LEDs, sensors, etc.
*/

leds {
compatible = "gpio-leds";
led0: led_0 {

gpios = < /* GPIO your LED is hooked up to */ >;
label = "LED 0";

};
/* ... other LEDs ... */

};

buttons {
compatible = "gpio-keys";
/* ... your button definitions ... */

};

/* These aliases are provided for compatibility with samples */
aliases {

led0 = &led0; /* now you support the blinky sample! */
/* other aliases go here */

};
};

&some_peripheral_you_want_to_enable { /* like a GPIO or SPI controller */
status = "okay";

};

&another_peripheral_you_want {
status = "okay";

};

If you’re in a hurry, simple hardware can usually be supported by copy/paste followed by trial and error.
If you want to understand details, you will need to read the rest of the devicetree documentation and
the devicetree specification.

Example: FRDM-K64F and Hexiwear K64 This section contains concrete examples related to writing
your board’s devicetree.

The FRDM-K64F and Hexiwear K64 board devicetrees are defined in frdm_k64fs.dts and hexi-
wear_k64.dts respectively. Both boards have NXP SoCs from the same Kinetis SoC family, the K6X.

Common devicetree definitions for K6X are stored in nxp_k6x.dtsi, which is included by both board .dts
files. nxp_k6x.dtsi in turn includes armv7-m.dtsi, which has common definitions for Arm v7-M cores.

1744 Chapter 8. User and Developer Guides

https://github.com/zephyrproject-rtos/zephyr/blob/main/boards/arm/frdm_k64f/frdm_k64f.dts
https://github.com/zephyrproject-rtos/zephyr/blob/main/boards/arm/hexiwear_k64/hexiwear_k64.dts
https://github.com/zephyrproject-rtos/zephyr/blob/main/boards/arm/hexiwear_k64/hexiwear_k64.dts
https://github.com/zephyrproject-rtos/zephyr/blob/main/dts/arm/nxp/nxp_k6x.dtsi
https://github.com/zephyrproject-rtos/zephyr/blob/main/dts/arm/nxp/nxp_k6x.dtsi
https://github.com/zephyrproject-rtos/zephyr/blob/main/dts/arm/armv7-m.dtsi

Zephyr Project Documentation, Release 2.7.0-rc2

Since nxp_k6x.dtsi is meant to be generic across K6X-based boards, it leaves many devices disabled
by default using status properties. For example, there is a CAN controller defined as follows (with
unimportant parts skipped):

can0: can@40024000 {
...
status = "disabled";
...

};

It is up to the board .dts or application overlay files to enable these devices as desired, by setting status
= "okay". The board .dts files are also responsible for any board-specific configuration of the device,
such as adding nodes for on-board sensors, LEDs, buttons, etc.

For example, FRDM-K64 (but not Hexiwear K64) .dts enables the CAN controller and sets the bus speed:

&can0 {
status = "okay";
bus-speed = <125000>;

};

The &can0 { ... }; syntax adds/overrides properties on the node with label can0, i.e. the can@4002400
node defined in the .dtsi file.

Other examples of board-specific customization is pointing properties in aliases and chosen to the right
nodes (see Aliases and chosen nodes), and making GPIO/pinmux assignments.

Write Kconfig files

Zephyr uses the Kconfig language to configure software features. Your board needs to provide some
Kconfig settings before you can compile a Zephyr application for it.

Setting Kconfig configuration values is documented in detail in Setting Kconfig configuration values.

There are three mandatory Kconfig files in the board directory for a board named plank:

boards/<ARCH>/plank
Kconfig.board
Kconfig.defconfig
plank_defconfig

Kconfig.board Included by boards/Kconfig to include your board in the list of options.

This should at least contain a definition for a BOARD_PLANK option, which looks something like this:

config BOARD_PLANK
bool "Plank board"
depends on SOC_SERIES_YOUR_SOC_SERIES_HERE
select SOC_PART_NUMBER_ABCDEFGH

Kconfig.defconfig Board-specific default values for Kconfig options.

The entire file should be inside an if BOARD_PLANK / endif pair of lines, like this:

if BOARD_PLANK

Always set CONFIG_BOARD here. This isn't meant to be customized,
but is set as a "default" due to Kconfig language restrictions.
config BOARD

default "plank"

(continues on next page)

8.17. Porting 1745

https://github.com/zephyrproject-rtos/zephyr/blob/main/dts/arm/nxp/nxp_k6x.dtsi
https://github.com/zephyrproject-rtos/zephyr/blob/main/boards/Kconfig

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

Other options you want enabled by default go next. Examples:

config FOO
default y

if NETWORKING
config SOC_ETHERNET_DRIVER

default y
endif # NETWORKING

endif # BOARD_PLANK

plank_defconfig A Kconfig fragment that is merged as-is into the final build directory .config when-
ever an application is compiled for your board.

You should at least select your board’s SOC and do any mandatory settings for your system clock,
console, etc. The results are architecture-specific, but typically look something like this:

CONFIG_SOC_${VENDOR_XYZ3000}=y /* select your SoC */
CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC=120000000 /* set up your clock, etc */
CONFIG_SERIAL=y

plank_x_y_z.conf A Kconfig fragment that is merged as-is into the final build directory .config when-
ever an application is compiled for your board revision x.y.z.

Build, test, and fix

Now it’s time to build and test the application(s) you want to run on your board until you’re satisfied.

For example:

west build -b plank samples/hello_world
west flash

For west flash to work, see Flash and debug support below. You can also just flash build/zephyr/
zephyr.elf, zephyr.hex, or zephyr.bin with any other tools you prefer.

General recommendations

For consistency and to make it easier for users to build generic applications that are not board specific
for your board, please follow these guidelines while porting.

• Unless explicitly recommended otherwise by this section, leave peripherals and their drivers dis-
abled by default.

• Configure and enable a system clock, along with a tick source.

• Provide pin and driver configuration that matches the board’s valuable components such as sensors,
buttons or LEDs, and communication interfaces such as USB, Ethernet connector, or Bluetooth/Wi-
Fi chip.

• If your board uses a well-known connector standard (like Arduino, Mikrobus, Grove, or 96Boards
connectors), add connector nodes to your DTS and configure pin muxes accordingly.

• Configure components that enable the use of these pins, such as configuring an SPI instance to use
the usual Arduino SPI pins.

• If available, configure and enable a serial output for the console using the zephyr,console chosen
node in the devicetree.

1746 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

• If your board supports networking, configure a default interface.

• Enable all GPIO ports connected to peripherals or expansion connectors.

• If available, enable pinmux and interrupt controller drivers.

• It is recommended to enable the MPU by default, if there is support for it in hardware. For boards
with limited memory resources it is acceptable to disable it. When the MPU is enabled, it is recom-
mended to also enable hardware stack protection (CONFIG_HW_STACK_PROTECTION=y) and,
thus, allow the kernel to detect stack overflows when the system is running in privileged mode.

Flash and debug support

Zephyr supports Building, Flashing and Debugging via west extension commands.

To add west flash and west debug support for your board, you need to create a board.cmake file in
your board directory. This file’s job is to configure a “runner” for your board. (There’s nothing special
you need to do to get west build support for your board.)

“Runners” are Zephyr-specific Python classes that wrap flash and debug host tools and integrate with
west and the zephyr build system to support west flash and related commands. Each runner supports
flashing, debugging, or both. You need to configure the arguments to these Python scripts in your board.
cmake to support those commands like this example board.cmake:

board_runner_args(jlink "--device=nrf52" "--speed=4000")
board_runner_args(pyocd "--target=nrf52" "--frequency=4000000")

include(${ZEPHYR_BASE}/boards/common/nrfjprog.board.cmake)
include(${ZEPHYR_BASE}/boards/common/jlink.board.cmake)
include(${ZEPHYR_BASE}/boards/common/pyocd.board.cmake)

This example configures the nrfjprog, jlink, and pyocd runners.

Warning: Runners usually have names which match the tools they wrap, so the jlink runner wraps
Segger’s J-Link tools, and so on. But the runner command line options like --speed etc. are specific
to the Python scripts.

For more details:

• Run west flash --context to see a list of available runners which support flashing, and west
flash --context -r <RUNNER> to view the specific options available for an individual runner.

• Run west debug --context and west debug --context <RUNNER> to get the same output for
runners which support debugging.

• Run west flash --help and west debug --help for top-level options for flashing and debugging.

• See Flash and debug runners for Python APIs.

• Look for board.cmake files for other boards similar to your own for more examples.

To see what a west flash or west debug command is doing exactly, run it in verbose mode:

west --verbose flash
west --verbose debug

Verbose mode prints any host tool commands the runner uses.

The order of the include() calls in your board.cmake matters. The first include sets the default runner
if it’s not already set. For example, including nrfjprog.board.cmake first means that nrjfprog is the
default flash runner for this board. Since nrfjprog does not support debugging, jlink is the default
debug runner.

8.17. Porting 1747

Zephyr Project Documentation, Release 2.7.0-rc2

Multiple board revisions

See Building for a board revision for basics on this feature from the user perspective.

To create a new board revision for the plank board, create these additional files in the board folder:

boards/<ARCH>/plank
plank_<revision>.conf # optional
plank_<revision>.overlay # optional
revision.cmake

When the user builds for board plank@<revision>:

• The optional Kconfig settings specified in the file plank_<revision>.conf will be merged into the
board’s default Kconfig configuration.

• The optional devicetree overlay plank_<revision>.overlay will be added to the common plank.
dts devicetree file

• The revision.cmake file controls how the Zephyr build system matches the <board>@<revision>
string specified by the user when building an application for the board.

Currently, <revision> can be either a numeric MAJOR.MINOR.PATCH style revision like 1.5.0, or single
letter like A, B, etc. Zephyr provides a CMake board extension function, board_check_revision(), to
make it easy to match either style from revision.cmake.

Valid board revisions may be specified as arguments to the board_check_revision() function, like:

board_check_revision(FORMAT MAJOR.MINOR.PATCH
VALID_REVISIONS 0.1.0 0.3.0 ...

)

Note: VALID_REVISIONS can be omitted if all valid revisions have specific Kconfig fragments, such as
<board>_0_1_0.conf, <board>_0_3_0.conf. This allows you to just place Kconfig revision fragments in
the board folder and not have to keep the corresponding VALID_REVISIONS in sync.

The following sections describe how to support these styles of revision numbers.

Numeric revisions Let’s say you want to add support for revisions 0.5.0, 1.0.0, and 1.5.0 of
the plank board with both Kconfig fragments and devicetree overlays. Create revision.cmake with
board_check_revision(FORMAT MAJOR.MINOR.PATCH), and create the following additional files in the
board directory:

boards/<ARCH>/plank
plank_0_5_0.conf
plank_0_5_0.overlay
plank_1_0_0.conf
plank_1_0_0.overlay
plank_1_5_0.conf
plank_1_5_0.overlay
revision.cmake

Notice how the board files have changed periods (“.”) in the revision number to underscores (“_”).

Fuzzy numeric revision matching To support “fuzzy” MAJOR.MINOR.PATCH revision matching for the
plank board, use the following code in revision.cmake:

board_check_revision(FORMAT MAJOR.MINOR.PATCH)

1748 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

If the user selects a revision between those available, the closest revision number that is not larger than
the user’s choice is used. For example, if the user builds for plank@0.7.0, the build system will target
revision 0.5.0.

The build system will print this at CMake configuration time:

-- Board: plank, Revision: 0.7.0 (Active: 0.5.0)

This allows you to only create revision configuration files for board revision numbers that introduce
incompatible changes.

Any revision less than the minimum defined will be treated as an error.

You may use 0.0.0 as a minimum revision to build for by creating the file plank_0_0_0.conf in the
board directory. This will be used for any revision lower than 0.5.0, for example if the user builds for
plank@0.1.0.

Exact numeric revision matching Alternatively, the EXACT keyword can be given to
board_check_revision() in revision.cmake to allow exact matches only, like this:

board_check_revision(FORMAT MAJOR.MINOR.PATCH EXACT)

With this revision.cmake, building for plank@0.7.0 in the above example will result in the following
error message:

Board revision `0.7.0` not found. Please specify a valid board revision.

Letter revision matching Let’s say instead that you need to support revisions A, B, and C of the plank
board. Create the following additional files in the board directory:

boards/<ARCH>/plank
plank_A.conf
plank_A.overlay
plank_B.conf
plank_B.overlay
plank_C.conf
plank_C.overlay
revision.cmake

And add the following to revision.cmake:

board_check_revision(FORMAT LETTER)

board_check_revision() details

board_check_revision(FORMAT <LETTER | MAJOR.MINOR.PATCH>
[EXACT]
[DEFAULT_REVISION <revision>]
[HIGHEST_REVISION <revision>]
[VALID_REVISIONS <revision> [<revision> ...]]

)

This function supports the following arguments:

• FORMAT LETTER: matches single letter revisions from A to Z only

• FORMAT MAJOR.MINOR.PATCH: matches exactly three digits. The command line allows for
loose typing, that is -DBOARD=<board>@1 and -DBOARD=<board>@1.0 will be handled as
-DBOARD=<board>@1.0.0. Kconfig fragment and devicetree overlay files must use full numbering
to avoid ambiguity, so only <board>_1_0_0.conf and <board>_1_0_0.overlay are allowed.

8.17. Porting 1749

Zephyr Project Documentation, Release 2.7.0-rc2

• EXACT: if given, the revision is required to be an exact match. Otherwise, the closest matching
revision not greater than the user’s choice will be selected.

• DEFAULT_REVISION <revision>: if given, <revision> is the default revision to use when user has
not selected a revision number. If not given, the build system prints an error when the user does
not specify a board revision.

• HIGHEST_REVISION: if given, specifies the highest valid revision for a board. This can be used
to ensure that a newer board cannot be used with an older Zephyr. For example, if the current
board directory supports revisions 0.x.0-0.99.99 and 1.0.0-1.99.99, and it is expected that the
implementation will not work with board revision 2.0.0, then giving HIGHEST_REVISION 1.99.99
causes an error if the user builds using <board>@2.0.0.

• VALID_REVISIONS: if given, specifies a list of revisions that are valid for this board. If this argument
is not given, then each Kconfig fragment of the form <board>_<revision>.conf in the board folder
will be used as a valid revision for the board.

Custom revision.cmake files

Some boards may not use board revisions supported by board_check_revision(). To support revi-
sions of any type, the file revision.cmake can implement custom revision matching without calling
board_check_revision().

To signal to the build system that it should use a different revision than the one specified by the user,
revision.cmake can set the variable ACTIVE_BOARD_REVISION to the revision to use instead. The cor-
responding Kconfig files and devicetree overlays must be named <board>_<ACTIVE_BOARD_REVISION>.
conf and <board>_<ACTIVE_BOARD_REVISION>.overlay.

For example, if the user builds for plank@zero, revision.cmake can set ACTIVE_BOARD_REVISION to one
to use the files plank_one.conf and plank_one.overlay.

Contributing your board

If you want to contribute your board to Zephyr, first – thanks!

There are some extra things you’ll need to do:

1. Make sure you’ve followed all the General recommendations. They are requirements for boards
included with Zephyr.

2. Add documentation for your board using the template file doc/templates/board.tmpl. See Docu-
mentation Generation for information on how to build your documentation before submitting your
pull request.

3. Prepare a pull request adding your board which follows the Contribution Guidelines.

8.17.3 Shields

Shields, also known as “add-on” or “daughter boards”, attach to a board to extend its features and
services for easier and modularized prototyping. In Zephyr, the shield feature provides Zephyr-formatted
shield descriptions for easier compatibility with applications.

Shield porting and configuration

Shield configuration files are available in the board directory under /boards/shields:

1750 Chapter 8. User and Developer Guides

https://github.com/zephyrproject-rtos/zephyr/blob/main/doc/templates/board.tmpl
https://github.com/zephyrproject-rtos/zephyr/blob/main//boards/shields

Zephyr Project Documentation, Release 2.7.0-rc2

boards/shields/<shield>
<shield>.overlay
Kconfig.shield
Kconfig.defconfig

These files provides shield configuration as follows:

• <shield>.overlay: This file provides a shield description in devicetree format that is merged with
the board’s devicetree before compilation.

• Kconfig.shield: This file defines shield Kconfig symbols that will be used for default shield config-
uration. To ease use with applications, the default shield configuration here should be consistent
with those in the Write your devicetree.

• Kconfig.defconfig: This file defines the default shield configuration. It is made to be consistent
with the Write your devicetree. Hence, shield configuration should be done by keeping in mind that
features activation is application responsibility.

Board compatibility

Hardware shield-to-board compatibility depends on the use of well-known connectors used on popular
boards (such as Arduino and 96boards). For software compatibility, boards must also provide a configu-
ration matching their supported connectors.

This should be done at two different level:

• Pinmux: Connector pins should be correctly configured to match shield pins

• Devicetree: A board devicetree file, BOARD.dts should define a node alias for each connector inter-
face. For example, for Arduino I2C:

#define arduino_i2c i2c1

aliases {
arduino,i2c = &i2c1;

};

Note: With support of dtc v1.4.2, above will be replaced with the recently introduced overriding node
element:

arduino_i2c:i2c1{};

Board specific shield configuration If modifications are needed to fit a shield to a particular board
or board revision, you can override a shield description for a specific board by adding board or board
revision overriding files to a shield, as follows:

boards/shields/<shield>
boards

<board>_<revision>.overlay
<board>.overlay
<board>.defconfig
<board>_<revision>.conf
<board>.conf

Shield activation

Activate support for one or more shields by adding the matching -DSHIELD arg to CMake command

8.17. Porting 1751

Zephyr Project Documentation, Release 2.7.0-rc2

From the root of the zephyr repository
west build -b None your_app -- -DSHIELD="x_nucleo_idb05a1 x_nucleo_iks01a1"

Alternatively, it could be set by default in a project’s CMakeLists.txt:

set(SHIELD x_nucleo_iks01a1)

Shield variants

Some shields may support several variants or revisions. In that case, it is possible to provide multiple
version of the shields description:

boards/shields/<shield>
<shield_v1>.overlay
<shield_v1>.defconfig
<shield_v2>.overlay
<shield_v2>.defconfig

In this case, a shield-particular revision name can be used:

From the root of the zephyr repository
west build -b None your_app -- -DSHIELD=shield_v2

You can also provide a board-specific configuration to a specific shield revision:

boards/shields/<shield>
<shield_v1>.overlay
<shield_v1>.defconfig
<shield_v2>.overlay
<shield_v2>.defconfig
boards

<shield_v2>
<board>.overlay
<board>.defconfig

GPIO nexus nodes

GPIOs accessed by the shield peripherals must be identified using the shield GPIO abstraction, for exam-
ple from the arduino-header-r3 compatible. Boards that provide the header must map the header pins
to SOC-specific pins. This is accomplished by including a nexus node that looks like the following into
the board devicetree file:

arduino_header: connector {
compatible = "arduino-header-r3";
#gpio-cells = <2>;
gpio-map-mask = <0xffffffff 0xffffffc0>;
gpio-map-pass-thru = <0 0x3f>;
gpio-map = <0 0 &gpioa 0 0>, /* A0 */

<1 0 &gpioa 1 0>, /* A1 */
<2 0 &gpioa 4 0>, /* A2 */
<3 0 &gpiob 0 0>, /* A3 */
<4 0 &gpioc 1 0>, /* A4 */
<5 0 &gpioc 0 0>, /* A5 */
<6 0 &gpioa 3 0>, /* D0 */
<7 0 &gpioa 2 0>, /* D1 */

(continues on next page)

1752 Chapter 8. User and Developer Guides

https://github.com/devicetree-org/devicetree-specification/blob/4b1dac80eaca45b4babf5299452a951008a5d864/source/devicetree-basics.rst#nexus-nodes-and-specifier-mapping

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

<8 0 &gpioa 10 0>, /* D2 */
<9 0 &gpiob 3 0>, /* D3 */
<10 0 &gpiob 5 0>, /* D4 */
<11 0 &gpiob 4 0>, /* D5 */
<12 0 &gpiob 10 0>, /* D6 */
<13 0 &gpioa 8 0>, /* D7 */
<14 0 &gpioa 9 0>, /* D8 */
<15 0 &gpioc 7 0>, /* D9 */
<16 0 &gpiob 6 0>, /* D10 */
<17 0 &gpioa 7 0>, /* D11 */
<18 0 &gpioa 6 0>, /* D12 */
<19 0 &gpioa 5 0>, /* D13 */
<20 0 &gpiob 9 0>, /* D14 */
<21 0 &gpiob 8 0>; /* D15 */

};

This specifies how Arduino pin references like <&arduino_header 11 0> are converted to SOC gpio pin
references like <&gpiob 4 0>.

In Zephyr GPIO specifiers generally have two parameters (indicated by #gpio-cells = <2>): the pin
number and a set of flags. The low 6 bits of the flags correspond to features that can be configured in
devicetree. In some cases it’s necessary to use a non-zero flag value to tell the driver how a particular
pin behaves, as with:

drdy-gpios = <&arduino_header 11 GPIO_ACTIVE_LOW>;

After preprocessing this becomes <&arduino_header 11 1>. Normally the presence of such a flag
would cause the map lookup to fail, because there is no map entry with a non-zero flags value. The
gpio-map-mask property specifies that, for lookup, all bits of the pin and all but the low 6 bits of the
flags are used to identify the specifier. Then the gpio-map-pass-thru specifies that the low 6 bits of the
flags are copied over, so the SOC GPIO reference becomes <&gpiob 4 1> as intended.

See nexus node for more information about this capability.

8.18 Testing

8.18.1 Test Framework

The Zephyr Test Framework (Ztest) provides a simple testing framework intended to be used during
development. It provides basic assertion macros and a generic test structure.

The framework can be used in two ways, either as a generic framework for integration testing, or for
unit testing specific modules.

Quick start - Integration testing

A simple working base is located at samples/subsys/testsuite/integration. Just copy the files to tests/
and edit them for your needs. The test will then be automatically built and run by the twister script. If
you are testing the bar component of foo, you should copy the sample folder to tests/foo/bar. It can
then be tested with:

./scripts/twister -s tests/foo/bar/test-identifier

In the example above tests/foo/bar signifies the path to the test and the test-identifier references
a test defined in the testcase.yaml file.

To run all tests defined in a test project, run:

8.18. Testing 1753

https://github.com/devicetree-org/devicetree-specification/blob/4b1dac80eaca45b4babf5299452a951008a5d864/source/devicetree-basics.rst#nexus-nodes-and-specifier-mapping
https://github.com/zephyrproject-rtos/zephyr/blob/main/samples/subsys/testsuite/integration

Zephyr Project Documentation, Release 2.7.0-rc2

./scripts/twister -T tests/foo/bar/

The sample contains the following files:

CMakeLists.txt

1 # SPDX-License-Identifier: Apache-2.0
2

3 cmake_minimum_required(VERSION 3.20.0)
4 find_package(Zephyr REQUIRED HINTS $ENV{ZEPHYR_BASE})
5 project(integration)
6

7 FILE(GLOB app_sources src/*.c)
8 target_sources(app PRIVATE ${app_sources})

testcase.yaml

1 tests:
2 # section.subsection
3 testing.ztest:
4 build_only: true
5 platform_allow: native_posix
6 tags: testing

prj.conf

1 CONFIG_ZTEST=y

src/main.c (see best practices)

1 /*
2 * Copyright (c) 2016 Intel Corporation
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6

7 # include <ztest.h>
8

9 /**
10 * @brief Test Asserts
11 *
12 * This test verifies various assert macros provided by ztest.
13 *
14 */
15 static void test_assert(void)
16 {
17 zassert_true(1, "1 was false");
18 zassert_false(0, "0 was true");
19 zassert_is_null(NULL, "NULL was not NULL");
20 zassert_not_null("foo", "\"foo\" was NULL");
21 zassert_equal(1, 1, "1 was not equal to 1");
22 zassert_equal_ptr(NULL, NULL, "NULL was not equal to NULL");
23 }
24

25 void test_main(void)
26 {
27 ztest_test_suite(framework_tests,
28 ztest_unit_test(test_assert)

(continues on next page)

1754 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

29);
30

31 ztest_run_test_suite(framework_tests);
32 }

• Listing Tests

• Skipping Tests

A test case project may consist of multiple sub-tests or smaller tests that either can be testing functionality
or APIs. Functions implementing a test should follow the guidelines below:

• Test cases function names should be prefix with test_

• Test cases should be documented using doxygen

• Test function names should be unique within the section or component being tested

An example can be seen below:

/**
* @brief Test Asserts
*
* This test verifies the zassert_true macro.
*/

static void test_assert(void)
{

zassert_true(1, "1 was false");
}

The above test is then enabled as part of the testsuite using:

ztest_unit_test(test_assert)

Listing Tests Tests (test projects) in the Zephyr tree consist of many testcases that run as part of a
project and test similar functionality, for example an API or a feature. The twister script can parse the
testcases in all test projects or a subset of them, and can generate reports on a granular level, i.e. if cases
have passed or failed or if they were blocked or skipped.

Twister parses the source files looking for test case names, so you can list all kernel test cases, for
example, by entering:

twister --list-tests -T tests/kernel

Skipping Tests Special- or architecture-specific tests cannot run on all platforms and architectures,
however we still want to count those and report them as being skipped. Because the test inventory
and the list of tests is extracted from the code, adding conditionals inside the test suite is sub-optimal.
Tests that need to be skipped for a certain platform or feature need to explicitly report a skip using
ztest_test_skip() . If the test runs, it needs to report either a pass or fail. For example:

#ifdef CONFIG_TEST1
void test_test1(void)
{

zassert_true(1, "true");
}
#else

(continues on next page)

8.18. Testing 1755

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

void test_test1(void)
{

ztest_test_skip();
}
#endif

void test_main(void)
{

ztest_test_suite(common,
ztest_unit_test(test_test1),
ztest_unit_test(test_test2)
);

ztest_run_test_suite(common);
}

Quick start - Unit testing

Ztest can be used for unit testing. This means that rather than including the entire Zephyr OS for testing
a single function, you can focus the testing efforts into the specific module in question. This will speed
up testing since only the module will have to be compiled in, and the tested functions will be called
directly.

Since you won’t be including basic kernel data structures that most code depends on, you have to provide
function stubs in the test. Ztest provides some helpers for mocking functions, as demonstrated below.

In a unit test, mock objects can simulate the behavior of complex real objects and are used to decide
whether a test failed or passed by verifying whether an interaction with an object occurred, and if
required, to assert the order of that interaction.

Best practices for declaring the test suite twister and other validation tools need to obtain the list of
subcases that a Zephyr ztest test image will expose.

Rationale

This all is for the purpose of traceability. It’s not enough to have only a semaphore test project. We also
need to show that we have testpoints for all APIs and functionality, and we trace back to documentation
of the API, and functional requirements.

The idea is that test reports show results for every sub-testcase as passed, failed, blocked, or skipped.
Reporting on only the high-level test project level, particularly when tests do too many things, is too
vague.

Here is a generic template for a test showing the expected use of ztest_test_suite():

include <ztest.h>

extern void test_sometest1(void);
extern void test_sometest2(void);
ifndef CONFIG_WHATEVER /* Conditionally skip test_sometest3 */
void test_sometest3(void)
{

ztest_test_skip();
}
else

(continues on next page)

1756 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

extern void test_sometest3(void);
endif
extern void test_sometest4(void);
...

void test_main(void)
{

ztest_test_suite(common,
ztest_unit_test(test_sometest1),
ztest_unit_test(test_sometest2),
ztest_unit_test(test_sometest3),
ztest_unit_test(test_sometest4)

);
ztest_run_test_suite(common);

}

For twister to parse source files and create a list of subcases, the declarations of ztest_test_suite()
must follow a few rules:

• one declaration per line

• conditional execution by using ztest_test_skip()

What to avoid:

• packing multiple testcases in one source file

void test_main(void)
{
ifdef TEST_feature1

ztest_test_suite(feature1,
ztest_unit_test(test_1a),
ztest_unit_test(test_1b),
ztest_unit_test(test_1c)
);

ztest_run_test_suite(feature1);
endif

ifdef TEST_feature2
ztest_test_suite(feature2,

ztest_unit_test(test_2a),
ztest_unit_test(test_2b)
);

ztest_run_test_suite(feature2);
endif
}

• Do not use #if

ztest_test_suite(common,
ztest_unit_test(test_sometest1),
ztest_unit_test(test_sometest2),

ifdef CONFIG_WHATEVER
ztest_unit_test(test_sometest3),

endif
ztest_unit_test(test_sometest4),

...

• Do not add comments on lines with a call to ztest_unit_test():

8.18. Testing 1757

Zephyr Project Documentation, Release 2.7.0-rc2

ztest_test_suite(common,
ztest_unit_test(test_sometest1),
ztest_unit_test(test_sometest2) /* will fail */ ,

/* will fail! */ ztest_unit_test(test_sometest3),
ztest_unit_test(test_sometest4),

...

• Do not define multiple definitions of unit / user unit test case per line

ztest_test_suite(common,
ztest_unit_test(test_sometest1), ztest_unit_test(test_

→˓sometest2),
ztest_unit_test(test_sometest3),
ztest_unit_test(test_sometest4),

...

Other questions:

• Why not pre-scan with CPP and then parse? or post scan the ELF file?

If C pre-processing or building fails because of any issue, then we won’t be able to tell the subcases.

• Why not declare them in the YAML testcase description?

A separate testcase description file would be harder to maintain than just keeping the information
in the test source files themselves – only one file to update when changes are made eliminates
duplication.

API reference

Running tests

group ztest_test

This module eases the testing process by providing helpful macros and other testing structures.

Defines

ztest_unit_test_setup_teardown(fn, setup, teardown)
Define a test with setup and teardown functions.

This should be called as an argument to ztest_test_suite. The test will be run in the following
order: setup, fn, teardown.

Parameters

• fn – Main test function

• setup – Setup function

• teardown – Teardown function

ztest_user_unit_test_setup_teardown(fn, setup, teardown)
Define a user mode test with setup and teardown functions.

This should be called as an argument to ztest_test_suite. The test will be run in the following
order: setup, fn, teardown. ALL test functions will be run in user mode, and only if CON-
FIG_USERSPACE is enabled, otherwise this is the same as ztest_unit_test_setup_teardown().

Parameters

• fn – Main test function

• setup – Setup function

1758 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

• teardown – Teardown function

ztest_unit_test(fn)

Define a test function.

This should be called as an argument to ztest_test_suite.

Parameters

• fn – Test function

ztest_user_unit_test(fn)

Define a test function that should run as a user thread.

This should be called as an argument to ztest_test_suite. If CONFIG_USERSPACE is not en-
abled, this is functionally identical to ztest_unit_test().

Parameters

• fn – Test function

ztest_1cpu_unit_test(fn)

Define a SMP-unsafe test function.

As ztest_unit_test(), but ensures all test code runs on only one CPU when in SMP.

Parameters

• fn – Test function

ztest_1cpu_user_unit_test(fn)

Define a SMP-unsafe test function that should run as a user thread.

As ztest_user_unit_test(), but ensures all test code runs on only one CPU when in SMP.

Parameters

• fn – Test function

ZTEST_DMEM

ZTEST_BMEM

ZTEST_SECTION

ztest_test_suite(suite, ...)

Define a test suite.

This function should be called in the following fashion:

ztest_test_suite(test_suite_name,
ztest_unit_test(test_function),
ztest_unit_test(test_other_function)

);

ztest_run_test_suite(test_suite_name);

Parameters

• suite – Name of the testing suite

8.18. Testing 1759

Zephyr Project Documentation, Release 2.7.0-rc2

ztest_run_test_suite(suite)

Run the specified test suite.

Parameters

• suite – Test suite to run.

Functions

void ztest_test_fail(void)

Fail the currently running test.

This is the function called from failed assertions and the like. You probably don’t need to call
it yourself.

void ztest_test_pass(void)

Pass the currently running test.

Normally a test passes just by returning without an assertion failure. However, if
the success case for your test involves a fatal fault, you can call this function from
k_sys_fatal_error_handler to indicate that the test passed before aborting the thread.

void ztest_test_skip(void)

Skip the current test.

static inline void unit_test_noop(void)

Do nothing, successfully.

Unit test / setup function / teardown function that does nothing, successfully. Can be used as
a parameter to ztest_unit_test_setup_teardown().

Variables

struct k_mem_partition ztest_mem_partition

Assertions These macros will instantly fail the test if the related assertion fails. When an assertion
fails, it will print the current file, line and function, alongside a reason for the failure and an optional
message. If the config option:CONFIG_ZTEST_ASSERT_VERBOSE is 0, the assertions will only print the file
and line numbers, reducing the binary size of the test.

Example output for a failed macro from zassert_equal(buf->ref, 2, "Invalid refcount"):

Assertion failed at main.c:62: test_get_single_buffer: Invalid refcount (buf->ref not␣
→˓equal to 2)
Aborted at unit test function

group ztest_assert

This module provides assertions when using Ztest.

Defines

zassert(cond, default_msg, msg, ...)

Fail the test, if cond is false.

You probably don’t need to call this macro directly. You should instead use zassert_{condition}
macros below.

1760 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Note that when CONFIG_MULTITHREADING=n macro returns from the function. It is then
expected that in that case ztest asserts will be used only in the context of the test function.

Parameters

• cond – Condition to check

• msg – Optional, can be NULL. Message to print if cond is false.

• default_msg – Message to print if cond is false

zassert_unreachable(msg, ...)

Assert that this function call won’t be reached.

Parameters

• msg – Optional message to print if the assertion fails

zassert_true(cond, msg, ...)

Assert that cond is true.

Parameters

• cond – Condition to check

• msg – Optional message to print if the assertion fails

zassert_false(cond, msg, ...)

Assert that cond is false.

Parameters

• cond – Condition to check

• msg – Optional message to print if the assertion fails

zassert_ok(cond, msg, ...)

Assert that cond is 0 (success)

Parameters

• cond – Condition to check

• msg – Optional message to print if the assertion fails

zassert_is_null(ptr, msg, ...)

Assert that ptr is NULL.

Parameters

• ptr – Pointer to compare

• msg – Optional message to print if the assertion fails

zassert_not_null(ptr, msg, ...)

Assert that ptr is not NULL.

Parameters

• ptr – Pointer to compare

• msg – Optional message to print if the assertion fails

zassert_equal(a, b, msg, ...)

Assert that a equals b.

a and b won’t be converted and will be compared directly.

Parameters

• a – Value to compare

8.18. Testing 1761

Zephyr Project Documentation, Release 2.7.0-rc2

• b – Value to compare

• msg – Optional message to print if the assertion fails

zassert_not_equal(a, b, msg, ...)

Assert that a does not equal b.

a and b won’t be converted and will be compared directly.

Parameters

• a – Value to compare

• b – Value to compare

• msg – Optional message to print if the assertion fails

zassert_equal_ptr(a, b, msg, ...)

Assert that a equals b.

a and b will be converted to void * before comparing.

Parameters

• a – Value to compare

• b – Value to compare

• msg – Optional message to print if the assertion fails

zassert_within(a, b, d, msg, ...)

Assert that a is within b with delta d.

Parameters

• a – Value to compare

• b – Value to compare

• d – Delta

• msg – Optional message to print if the assertion fails

zassert_mem_equal(...)

Assert that 2 memory buffers have the same contents.

This macro calls the final memory comparison assertion macro. Using double expansion al-
lows providing some arguments by macros that would expand to more than one values (ANSI-
C99 defines that all the macro arguments have to be expanded before macro call).

Parameters

• ... – Arguments, see zassert_mem_equal__ for real arguments accepted.

zassert_mem_equal__(buf, exp, size, msg, ...)

Internal assert that 2 memory buffers have the same contents.

Note: This is internal macro, to be used as a second expansion. See zassert_mem_equal.

Parameters

• buf – Buffer to compare

• exp – Buffer with expected contents

• size – Size of buffers

• msg – Optional message to print if the assertion fails

1762 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Mocking These functions allow abstracting callbacks and related functions and controlling them from
specific tests. You can enable the mocking framework by setting :kconfig:`CONFIG_ZTEST_MOCKING`
to “y” in the configuration file of the test. The amount of concurrent return values and expected param-
eters is limited by :kconfig:`CONFIG_ZTEST_PARAMETER_COUNT`.

Here is an example for configuring the function expect_two_parameters to expect the values a=2 and
b=3, and telling returns_int to return 5:

1 # include <ztest.h>
2

3 static void expect_two_parameters(int a, int b)
4 {
5 ztest_check_expected_value(a);
6 ztest_check_expected_value(b);
7 }
8

9 static void parameter_tests(void)
10 {
11 ztest_expect_value(expect_two_parameters, a, 2);
12 ztest_expect_value(expect_two_parameters, b, 3);
13 expect_two_parameters(2, 3);
14 }
15

16 static int returns_int(void)
17 {
18 return ztest_get_return_value();
19 }
20

21 static void return_value_tests(void)
22 {
23 ztest_returns_value(returns_int, 5);
24 zassert_equal(returns_int(), 5, NULL);
25 }
26

27 void test_main(void)
28 {
29 ztest_test_suite(mock_framework_tests,
30 ztest_unit_test(parameter_test),
31 ztest_unit_test(return_value_test)
32);
33

34 ztest_run_test_suite(mock_framework_tests);
35 }

group ztest_mock

This module provides simple mocking functions for unit testing. These need CON-
FIG_ZTEST_MOCKING=y.

Defines

ztest_expect_value(func, param, value)

Tell function func to expect the value value for param.

When using ztest_check_expected_value(), tell that the value of param should be value. The
value will internally be stored as an uintptr_t.

Parameters

8.18. Testing 1763

Zephyr Project Documentation, Release 2.7.0-rc2

• func – Function in question

• param – Parameter for which the value should be set

• value – Value for param

ztest_check_expected_value(param)

If param doesn’t match the value set by ztest_expect_value(), fail the test.

This will first check that does param have a value to be expected, and then checks whether
the value of the parameter is equal to the expected value. If either of these checks fail, the
current test will fail. This must be called from the called function.

Parameters

• param – Parameter to check

ztest_expect_data(func, param, data)

Tell function func to expect the data data for param.

When using ztest_check_expected_data(), the data pointed to by param should be same data
in this function. Only data pointer is stored by this function, so it must still be valid when
ztest_check_expected_data is called.

Parameters

• func – Function in question

• param – Parameter for which the data should be set

• data – pointer for the data for parameter param

ztest_check_expected_data(param, length)

If data pointed by param don’t match the data set by ztest_expect_data(), fail the test.

This will first check that param is expected to be null or non-null and then check whether the
data pointed by parameter is equal to expected data. If either of these checks fail, the current
test will fail. This must be called from the called function.

Parameters

• param – Parameter to check

• length – Length of the data to compare

ztest_return_data(func, param, data)

Tell function func to return the data data for param.

When using ztest_return_data(), the data pointed to by param should be same data in
this function. Only data pointer is stored by this function, so it must still be valid when
ztest_copy_return_data is called.

Parameters

• func – Function in question

• param – Parameter for which the data should be set

• data – pointer for the data for parameter param

ztest_copy_return_data(param, length)

Copy the data set by ztest_return_data to the memory pointed by param.

This will first check that param is not null and then copy the data. This must be called from
the called function.

Parameters

• param – Parameter to return data for

• length – Length of the data to return

1764 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

ztest_returns_value(func, value)

Tell func that it should return value.

Parameters

• func – Function that should return value

• value – Value to return from func

ztest_get_return_value()

Get the return value for current function.

The return value must have been set previously with ztest_returns_value(). If no return value
exists, the current test will fail.

Returns The value the current function should return

ztest_get_return_value_ptr()

Get the return value as a pointer for current function.

The return value must have been set previously with ztest_returns_value(). If no return value
exists, the current test will fail.

Returns The value the current function should return as a void *

Customizing Test Output

The way output is presented when running tests can be customized. An example can be found in
tests/ztest/custom_output.

Customization is enabled by setting :kconfig:`CONFIG_ZTEST_TC_UTIL_USER_OVERRIDE` to “y” and
adding a file tc_util_user_override.h with your overrides.

Add the line zephyr_include_directories(my_folder) to your project’s CMakeLists.txt to let Zephyr
find your header file during builds.

See the file subsys/testsuite/include/tc_util.h to see which macros and/or defines can be overridden.
These will be surrounded by blocks such as:

#ifndef SOMETHING
#define SOMETHING <default implementation>
#endif /* SOMETHING */

8.18.2 Test Runner (Twister)

This script scans for the set of unit test applications in the git repository and attempts to execute them.
By default, it tries to build each test case on boards marked as default in the board definition file.

The default options will build the majority of the tests on a defined set of boards and will run in an
emulated environment if available for the architecture or configuration being tested.

In normal use, twister runs a limited set of kernel tests (inside an emulator). Because of its limited test
execution coverage, twister cannot guarantee local changes will succeed in the full build environment,
but it does sufficient testing by building samples and tests for different boards and different configura-
tions to help keep the complete code tree buildable.

When using (at least) one -v option, twister’s console output shows for every test how the test is run
(qemu, native_posix, etc.) or whether the binary was just built. There are a few reasons why twister
only builds a test and doesn’t run it:

• The test is marked as build_only: true in its .yaml configuration file.

• The test configuration has defined a harness but you don’t have it or haven’t set it up.

8.18. Testing 1765

https://github.com/zephyrproject-rtos/zephyr/blob/main/tests/ztest/custom_output
https://github.com/zephyrproject-rtos/zephyr/blob/main/subsys/testsuite/include/tc_util.h

Zephyr Project Documentation, Release 2.7.0-rc2

• The target device is not connected and not available for flashing

• You or some higher level automation invoked twister with --build-only.

These also affect the outputs of --testcase-report and --detailed-report, see their respective
--help sections.

To run the script in the local tree, follow the steps below:

$ source zephyr-env.sh
$./scripts/twister

If you have a system with a large number of cores, you can build and run all possible tests using the
following options:

$./scripts/twister --all --enable-slow

This will build for all available boards and run all applicable tests in a simulated (for example QEMU)
environment.

The list of command line options supported by twister can be viewed using:

$./scripts/twister --help

Board Configuration

To build tests for a specific board and to execute some of the tests on real hardware or in an emulation
environment such as QEMU a board configuration file is required which is generic enough to be used for
other tasks that require a board inventory with details about the board and its configuration that is only
available during build time otherwise.

The board metadata file is located in the board directory and is structured using the YAML markup
language. The example below shows a board with a data required for best test coverage for this specific
board:

identifier: frdm_k64f
name: NXP FRDM-K64F
type: mcu
arch: arm
toolchain:

- zephyr
- gnuarmemb
- xtools

supported:
- arduino_gpio
- arduino_i2c
- netif:eth
- adc
- i2c
- nvs
- spi
- gpio
- usb_device
- watchdog
- can
- pwm

testing:
default: true

identifier: A string that matches how the board is defined in the build system. This same string is used
when building, for example when calling west build or cmake:

1766 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

with west
west build -b reel_board
with cmake
cmake -DBOARD=reel_board ..

name: The actual name of the board as it appears in marketing material.

type: Type of the board or configuration, currently we support 2 types: mcu, qemu

arch: Architecture of the board

toolchain: The list of supported toolchains that can build this board. This should match one of the
values used for ‘ZEPHYR_TOOLCHAIN_VARIANT’ when building on the command line

ram: Available RAM on the board (specified in KB). This is used to match testcase requirements. If not
specified we default to 128KB.

flash: Available FLASH on the board (specified in KB). This is used to match testcase requirements. If
not specified we default to 512KB.

supported: A list of features this board supports. This can be specified as a single word feature or as a
variant of a feature class. For example:

supported:
- pci

This indicates the board does support PCI. You can make a testcase build or run only on such
boards, or:

supported:
- netif:eth
- sensor:bmi16

A testcase can both depend on ‘eth’ to only test ethernet or on ‘netif’ to run on any board with a
networking interface.

testing: testing relating keywords to provide best coverage for the features of this board.

default: [True|False]: This is a default board, it will tested with the highest priority and is covered
when invoking the simplified twister without any additional arguments.

ignore_tags: Do not attempt to build (and therefore run) tests marked with this list of tags.

only_tags: Only execute tests with this list of tags on a specific platform.

Test Cases

Test cases are detected by the presence of a ‘testcase.yaml’ or a ‘sample.yaml’ files in the application’s
project directory. This file may contain one or more entries in the test section each identifying a test
scenario.

The name of each testcase needs to be unique in the context of the overall testsuite and has to follow
basic rules:

1. The format of the test identifier shall be a string without any spaces or special characters (allowed
characters: alphanumric and [_=]) consisting of multiple sections delimited with a dot (.).

2. Each test identifier shall start with a section followed by a subsection separated by a dot. For
example, a test that covers semaphores in the kernel shall start with kernel.sempahore.

3. All test identifiers within a testcase.yaml file need to be unique. For example a testcase.yaml file
covering semaphores in the kernel can have:

• kernel.semaphore: For general semaphore tests

8.18. Testing 1767

Zephyr Project Documentation, Release 2.7.0-rc2

• kernel.semaphore.stress: Stress testng semaphores in the kernel.

4. Depending on the nature of the test, an identifier can consist of at least two sections:

• Ztest tests: The individual testcases in the ztest testsuite will be concatenated to identifier in
the testcase.yaml file generating unique identifiers for every testcase in the suite.

• Standalone tests and samples: This type of test should at least have 3 sections in the test
identifier in the testcase.yaml (or sample.yaml) file. The last section of the name shall signify
the test itself.

Test cases are written using the YAML syntax and share the same structure as samples. The following is
an example test with a few options that are explained in this document.

tests:
bluetooth.gatt:

build_only: true
platform_allow: qemu_cortex_m3 qemu_x86
tags: bluetooth

bluetooth.gatt.br:
build_only: true
extra_args: CONF_FILE="prj_br.conf"
filter: not CONFIG_DEBUG
platform_exclude: up_squared
platform_allow: qemu_cortex_m3 qemu_x86
tags: bluetooth

A sample with tests will have the same structure with additional information related to the sample and
what is being demonstrated:

sample:
name: hello world
description: Hello World sample, the simplest Zephyr application

tests:
sample.basic.hello_world:

build_only: true
tags: tests
min_ram: 16

sample.basic.hello_world.singlethread:
build_only: true
extra_args: CONF_FILE=prj_single.conf
filter: not CONFIG_BT
tags: tests
min_ram: 16

The full canonical name for each test case is:

<path to test case>/<test entry>

Each test block in the testcase meta data can define the following key/value pairs:

tags: <list of tags> (required) A set of string tags for the testcase. Usually pertains to functional
domains but can be anything. Command line invocations of this script can filter the set of tests to
run based on tag.

skip: <True|False> (default False) skip testcase unconditionally. This can be used for broken tests.

slow: <True|False> (default False) Don’t run this test case unless –enable-slow was passed in on the
command line. Intended for time-consuming test cases that are only run under certain circum-
stances, like daily builds. These test cases are still compiled.

extra_args: <list of extra arguments> Extra arguments to pass to Make when building or running the
test case.

1768 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

extra_configs: <list of extra configurations> Extra configuration options to be merged with a master
prj.conf when building or running the test case. For example:

common:
tags: drivers adc

tests:
test:

depends_on: adc
test_async:

extra_configs:
- CONFIG_ADC_ASYNC=y

build_only: <True|False> (default False) If true, don’t try to run the test even if the selected platform
supports it.

build_on_all: <True|False> (default False) If true, attempt to build test on all available platforms.

depends_on: <list of features> A board or platform can announce what features it supports, this op-
tion will enable the test only those platforms that provide this feature.

min_ram: <integer> minimum amount of RAM in KB needed for this test to build and run. This is
compared with information provided by the board metadata.

min_flash: <integer> minimum amount of ROM in KB needed for this test to build and run. This is
compared with information provided by the board metadata.

timeout: <number of seconds> Length of time to run test in QEMU before automatically killing it.
Default to 60 seconds.

arch_allow: <list of arches, such as x86, arm, arc> Set of architectures that this test case should
only be run for.

arch_exclude: <list of arches, such as x86, arm, arc> Set of architectures that this test case should
not run on.

platform_allow: <list of platforms> Set of platforms that this test case should only be run for. Do not
use this option to limit testing or building in CI due to time or resource constraints, this option
should only be used if the test or sample can only be run on the allowed platform and nothing else.

integration_platforms: <YML list of platforms/boards> This option limits the scope to the listed
platforms when twister is invoked with the –integration option. Use this instead of platform_allow
if the goal is to limit scope due to timing or resource constraints.

platform_exclude: <list of platforms> Set of platforms that this test case should not run on.

extra_sections: <list of extra binary sections> When computing sizes, twister will report errors if it
finds extra, unexpected sections in the Zephyr binary unless they are named here. They will not be
included in the size calculation.

harness: <string> A harness string needed to run the tests successfully. This can be as simple as a
loopback wiring or a complete hardware test setup for sensor and IO testing. Usually pertains to
external dependency domains but can be anything such as console, sensor, net, keyboard, Bluetooth
or pytest.

harness_config: <harness configuration options> Extra harness configuration options to be used to
select a board and/or for handling generic Console with regex matching. Config can announce
what features it supports. This option will enable the test to run on only those platforms that fulfill
this external dependency.

The following options are currently supported:

type: <one_line|multi_line> (required) Depends on the regex string to be matched

record: <recording options>

regex: <expression> (required) Any string that the particular test case prints to
record test results.

8.18. Testing 1769

Zephyr Project Documentation, Release 2.7.0-rc2

regex: <expression> (required) Any string that the particular test case prints to confirm test
runs as expected.

ordered: <True|False> (default False) Check the regular expression strings in orderly or ran-
domly fashion

repeat: <integer> Number of times to validate the repeated regex expression

fixture: <expression> Specify a test case dependency on an external device(e.g., sensor), and
identify setups that fulfill this dependency. It depends on specific test setup and board selec-
tion logic to pick the particular board(s) out of multiple boards that fulfill the dependency in
an automation setup based on “fixture” keyword. Some sample fixture names are i2c_hts221,
i2c_bme280, i2c_FRAM, ble_fw and gpio_loop.

Only one fixture can be defined per testcase.

pytest_root: <pytest dirctory> (default pytest) Specify a pytest directory which need to excute
when test case begin to running, default pytest directory name is pytest, after pytest finished,
twister will check if this case pass or fail according the pytest report.

The following is an example yaml file with a few harness_config options.

sample:
name: HTS221 Temperature and Humidity Monitor

common:
tags: sensor
harness: console
harness_config:

type: multi_line
ordered: false
regex:

- "Temperature:(.*)C"
- "Relative Humidity:(.*)%"

fixture: i2c_hts221
tests:

test:
tags: sensors
depends_on: i2c

The following is an example yaml file with pytest harness_config options, default pytest_root
name “pytest” will be used if pytest_root not specified. please refer the example in sam-
ples/subsys/testsuite/pytest/.

tests:
pytest.example:

harness: pytest
harness_config:

pytest_root: [pytest directory name]

filter: <expression> Filter whether the testcase should be run by evaluating an expression against an
environment containing the following values:

{ ARCH : <architecture>,
PLATFORM : <platform>,
<all CONFIG_* key/value pairs in the test's generated defconfig>,
*<env>: any environment variable available

}

The grammar for the expression language is as follows:

expression ::= expression “and” expression

expression “or” expression

1770 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

“not” expression
“(” expression “)”
symbol “==” constant
symbol “!=” constant
symbol “<” number
symbol “>” number
symbol “>=” number
symbol “<=” number
symbol “in” list
symbol “:” string
symbol

list ::= “[” list_contents “]”

list_contents ::= constant

list_contents “,” constant

constant ::= number

string

For the case where expression ::= symbol, it evaluates to true if the symbol is defined to a non-
empty string.

Operator precedence, starting from lowest to highest:

or (left associative) and (left associative) not (right associative) all comparison operators
(non-associative)

arch_allow, arch_exclude, platform_allow, platform_exclude are all syntactic sugar for these ex-
pressions. For instance

arch_exclude = x86 arc

Is the same as:

filter = not ARCH in [“x86”, “arc”]

The ‘:’ operator compiles the string argument as a regular expression, and then returns a
true value only if the symbol’s value in the environment matches. For example, if CON-
FIG_SOC=”stm32f107xc” then

filter = CONFIG_SOC : “stm.*”

Would match it.

The set of test cases that actually run depends on directives in the testcase filed and options passed
in on the command line. If there is any confusion, running with -v or examining the discard report
(twister_discard.csv) can help show why particular test cases were skipped.

Metrics (such as pass/fail state and binary size) for the last code release are stored in
scripts/release/twister_last_release.csv. To update this, pass the –all –release options.

To load arguments from a file, write ‘+’ before the file name, e.g., +file_name. File content must be one
or more valid arguments separated by line break instead of white spaces.

Most everyday users will run with no arguments.

Running in Integration Mode

This mode is used in continuous integration (CI) and other automated environments used to give de-
velopers fast feedback on changes. The mode can be activated using the –integration option of twister
and narrows down the scope of builds and tests if applicable to platforms defined under the integration
keyword in the testcase definition file (testcase.yaml and sample.yaml).

8.18. Testing 1771

Zephyr Project Documentation, Release 2.7.0-rc2

Running Tests on Hardware

Beside being able to run tests in QEMU and other simulated environments, twister supports running
most of the tests on real devices and produces reports for each run with detailed FAIL/PASS results.

Executing tests on a single device To use this feature on a single connected device, run twister with
the following new options:

scripts/twister --device-testing --device-serial /dev/ttyACM0 -p \
frdm_k64f -T tests/kernel

The --device-serial option denotes the serial device the board is connected to. This needs to be
accessible by the user running twister. You can run this on only one board at a time, specified using the
--platform option.

Executing tests on multiple devices To build and execute tests on multiple devices connected to the
host PC, a hardware map needs to be created with all connected devices and their details such as the
serial device and their IDs if available. Run the following command to produce the hardware map:

./scripts/twister --generate-hardware-map map.yml

The generated hardware map file (map.yml) will have the list of connected devices, for example:

- connected: true
id: OSHW000032254e4500128002ab98002784d1000097969900
platform: unknown
product: DAPLink CMSIS-DAP
runner: pyocd
serial: /dev/cu.usbmodem146114202

- connected: true
id: 000683759358
platform: unknown
product: J-Link
runner: unknown
serial: /dev/cu.usbmodem0006837593581

Any options marked as ‘unknown’ need to be changed and set with the correct values, in the above exam-
ple both the platform names and the runners need to be replaced with the correct values corresponding
to the connected hardware. In this example we are using a reel_board and an nrf52840dk_nrf52840:

- connected: true
id: OSHW000032254e4500128002ab98002784d1000097969900
platform: reel_board
product: DAPLink CMSIS-DAP
runner: pyocd
serial: /dev/cu.usbmodem146114202

- connected: true
id: 000683759358
platform: nrf52840dk_nrf52840
product: J-Link
runner: nrfjprog
serial: /dev/cu.usbmodem0006837593581

If the map file already exists, then new entries are added and existing entries will be updated. This way
you can use one single master hardware map and update it for every run to get the correct serial devices
and status of the devices.

With the hardware map ready, you can run any tests by pointing to the map file:

1772 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

./scripts/twister --device-testing --hardware-map map.yml -T samples/hello_world/

The above command will result in twister building tests for the platforms defined in the hardware map
and subsequently flashing and running the tests on those platforms.

Note: Currently only boards with support for both pyocd and nrfjprog are supported with the hardware
map features. Boards that require other runners to flash the Zephyr binary are still work in progress.

Fixtures Some tests require additional setup or special wiring specific to the test. Running the tests
without this setup or test fixture may fail. A testcase can specify the fixture it needs which can then be
matched with hardware capability of a board and the fixtures it supports via the command line or using
the hardware map file.

Fixtures are defined in the hardware map file as a list:

- connected: true
fixtures:

- gpio_loopback
id: 0240000026334e450015400f5e0e000b4eb1000097969900
platform: frdm_k64f
product: DAPLink CMSIS-DAP
runner: pyocd
serial: /dev/ttyACM9

When running Test Runner (Twister) with --device-testing, the configured fixture in the hardware
map file will be matched to testcases requesting the same fixtures and these tests will be executed on the
boards that provide this fixture.

Notes It may be useful to annotate board descriptions in the hardware map file with additional infor-
mation. Use the “notes” keyword to do this. For example:

- connected: false
fixtures:

- gpio_loopback
id: 000683290670
notes: An nrf5340dk_nrf5340 is detected as an nrf52840dk_nrf52840 with no serial

port, and three serial ports with an unknown platform. The board id of the serial
ports is not the same as the board id of the the development kit. If you␣

→˓regenerate
this file you will need to update serial to reference the third port, and platform
to nrf5340dk_nrf5340_cpuapp or another supported board target.

platform: nrf52840dk_nrf52840
product: J-Link
runner: jlink
serial: null

Overriding Board Identifier When (re-)generated the hardware map file will contain an “id” keyword
that serves as the argument to --board-id when flashing. In some cases the detected ID is not the
correct one to use, for example when using an external J-Link probe. The “probe_id” keyword overrides
the “id” keyword for this purpose. For example:

- connected: false
id: 0229000005d9ebc600000000000000000000000097969905
platform: mimxrt1060_evk

(continues on next page)

8.18. Testing 1773

Zephyr Project Documentation, Release 2.7.0-rc2

Board

sensor XYZ

Testcase

harness: console...

Hardware Map...

Viewer does not support full SVG 1.1

1774 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

probe_id: 000609301751
product: DAPLink CMSIS-DAP
runner: jlink
serial: null

Quarantine Twister allows using user-defined yaml files defining the list of tests to be put under quar-
antine. Such tests will be skipped and marked accordingly in the output reports. This feature is especially
useful when running larger test suits, where a failure of one test can affect the execution of other tests
(e.g. putting the physical board in a corrupted state).

To use the quarantine feature one has to add the argument --quarantine-list
<PATH_TO_QUARANTINE_YAML> to a twister call. The current status of tests on the quarantine list
can also be verified by adding --quarantine-verify to the above argument. This will make twister
skip all tests which are not on the given list.

A quarantine yaml has to be a sequence of dictionaries. Each dictionary has to have “scenarios” and
“platforms” entries listing combinations of scenarios and platforms to put under quarantine. In addition,
an optional entry “comment” can be used, where some more details can be given (e.g. link to a reported
issue). These comments will also be added to the output reports.

An example of entries in a quarantine yaml:

- scenarios:
- sample.basic.helloworld

platforms:
- all

comment: "Link to the issue: https://github.com/zephyrproject-rtos/zephyr/pull/33287
→˓"

- scenarios:
- kernel.common
- kernel.common.misra
- kernel.common.nano64

platforms:
- qemu_cortex_m3
- native_posix

8.18.3 Generating coverage reports

With Zephyr, you can generate code coverage reports to analyze which parts of the code are covered by
a given test or application.

You can do this in two ways:

• In a real embedded target or QEMU, using Zephyr’s gcov integration

• Directly in your host computer, by compiling your application targeting the POSIX architecture

Test coverage reports in embedded devices or QEMU

Overview GCC GCOV is a test coverage program used together with the GCC compiler to analyze and
create test coverage reports for your programs, helping you create more efficient, faster running code
and discovering untested code paths

In Zephyr, gcov collects coverage profiling data in RAM (and not to a file system) while your application
is running. Support for gcov collection and reporting is limited by available RAM size and so is currently
enabled only for QEMU emulation of embedded targets.

8.18. Testing 1775

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

Zephyr Project Documentation, Release 2.7.0-rc2

Details There are 2 parts to enable this feature. The first is to enable the coverage for the device and the
second to enable in the test application. As explained earlier the code coverage with gcov is a function
of RAM available. Therefore ensure that the device has enough RAM when enabling the coverage for it.
For example a small device like frdm_k64f can run a simple test application but the more complex test
cases which consume more RAM will crash when coverage is enabled.

To enable the device for coverage, select :kconfig:`CONFIG_HAS_COVERAGE_SUPPORT` in the Kcon-
fig.board file.

To report the coverage for the particular test application set :kconfig:`CONFIG_COVERAGE`.

Steps to generate code coverage reports These steps will produce an HTML coverage report for a
single application.

1. Build the code with CONFIG_COVERAGE=y.

west build -b mps2_an385 -- -DCONFIG_COVERAGE=y

2. Capture the emulator output into a log file. You may need to terminate the emulator with Ctrl-A
X for this to complete after the coverage dump has been printed:

ninja -Cbuild run | tee log.log

or

ninja -Cbuild run | tee log.log

3. Generate the gcov .gcda and .gcno files from the log file that was saved:

$ python3 scripts/gen_gcov_files.py -i log.log

4. Find the gcov binary placed in the SDK. You will need to pass the path to the gcov binary for the
appropriate architecture when you later invoke gcovr:

$ find $ZEPHYR_SDK_INSTALL_DIR -iregex ".*gcov"

5. Create an output directory for the reports:

$ mkdir -p gcov_report

6. Run gcovr to get the reports:

$ gcovr -r $ZEPHYR_BASE . --html -o gcov_report/coverage.html --html-details --
→˓gcov-executable <gcov_path_in_SDK>

Coverage reports using the POSIX architecture

When compiling for the POSIX architecture, you utilize your host native tooling to build a native exe-
cutable which contains your application, the Zephyr OS, and some basic HW emulation.

That means you can use the same tools you would while developing any other desktop application.

To build your application with gcc’s gcov, simply set :kconfig:`CONFIG_COVERAGE` before compiling
it. When you run your application, gcov coverage data will be dumped into the respective gcda and gcno
files. You may postprocess these with your preferred tools. For example:

west build -b native_posix samples/hello_world -- -DCONFIG_COVERAGE=y

1776 Chapter 8. User and Developer Guides

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

Zephyr Project Documentation, Release 2.7.0-rc2

$./build/zephyr/zephyr.exe
Press Ctrl+C to exit
lcov --capture --directory ./ --output-file lcov.info -q --rc lcov_branch_coverage=1
genhtml lcov.info --output-directory lcov_html -q --ignore-errors source --branch-
→˓coverage --highlight --legend

Note: You need a recent version of lcov (at least 1.14) with support for intermediate text format. Such
packages exist in recent Linux distributions.

Alternatively, you can use gcovr (at least version 4.2).

Coverage reports using Twister

Zephyr’s twister script can automatically generate a coverage report from the tests which were executed.
You just need to invoke it with the --coverage command line option.

For example, you may invoke:

$ twister --coverage -p qemu_x86 -T tests/kernel

or:

$ twister --coverage -p native_posix -T tests/bluetooth

which will produce twister-out/coverage/index.html with the report.

The process differs for unit tests, which are built with the host toolchain and require a different board:

$ twister --coverage -p unit_testing -T tests/unit

which produces a report in the same location as non-unit testing.

8.19 Trusted Firmware-M

8.19.1 Trusted Firmware-M Overview

Trusted Firmware-M (TF-M) is a reference implementation of the Platform Security Architecture (PSA)
IoT Security Framework. It defines and implements an architecture and a set of software components
that aim to address some of the main security concerns in IoT products.

Zephyr RTOS has been PSA Certified since Zephyr 2.0.0 with TF-M 1.0, and is currently integrated with
TF-M 1.3.0.

What Does TF-M Offer?

Through a set of secure services and by design, TF-M provides:

• Isolation of secure and non-secure resources

• Embedded-appropriate crypto

• Management of device secrets (keys, etc.)

• Firmware verification (and encryption)

• Protected off-chip data storage and retrieval

• Proof of device identity (device attestation)

8.19. Trusted Firmware-M 1777

https://tf-m-user-guide.trustedfirmware.org/
https://www.psacertified.org/what-is-psa-certified/

Zephyr Project Documentation, Release 2.7.0-rc2

• Audit logging

Build System Integration

When using TF-M with a supported platform, TF-M will be automatically built and link in the background
as part of the standard Zephyr build process. This build process makes a number of assumptions about
how TF-M is being used, and has certain implications about what the Zephyr application image can and
can not do:

• The secure processing environment (secure boot and TF-M) starts first

• Resource allocation for Zephyr relies on choices made in the secure image.

Architecture Overview

A TF-M application will, generally, have the following three parts, from most to least trusted, left-to-right,
with code execution happening in the same order (secure boot > secure image > ns image).

While the secure bootloader is optional, it is enabled by default, and secure boot is an important part of
providing a secure solution:

+-------------------------------------+ +--------------+
Secure Processing Environment (SPE)		NSPE						
+----------++---------------------+		+----------+						
	bl2.bin		tfm_s_signed.bin				zephyr.bin	
					<- PSA ->			
	Secure		Trusted Firmware-M		APIs		Zephyr	
	Boot		(Secure Image)				(NS Image)	
+----------++---------------------+		+----------+						
+-------------------------------------+ +--------------+

Communication between the (Zephyr) Non-Secure Processing Environment (NSPE) and the (TF-M) Se-
cure Processing Environment image happens based on a set of PSA APIs, and normally makes use
of an IPC mechanism that is included as part of the TF-M build, and implemented in Zephyr (see
modules/trusted-firmware-m/interface).

Root of Trust (RoT) Architecture TF-M is based upon a Root of Trust (RoT) architecture. This allows
for hierarchies of trust from most, to less, to least trusted, providing a sound foundation upon which to
build or access trusted services and resources.

The benefit of this approach is that less trusted components are prevented from accessing or compro-
mising more critical parts of the system, and error conditions in less trusted environments won’t corrupt
more trusted, isolated resources.

The following RoT hierarchy is defined for TF-M, from most to least trusted:

• PSA Root of Trust (PRoT), which consists of:

– PSA Immutable Root of Trust: secure boot

– PSA Updateable Root of Trust: most trusted secure services

• Application Root of Trust (ARoT): isolated secure services

The PSA Immutable Root of Trust is the most trusted piece of code in the system, to which subsequent
Roots of Trust are anchored. In TF-M, this is the secure boot image, which verifies that the secure and
non-secure images are valid, have not been tampered with, and come from a reliable source. The secure
bootloader also verifies new images during the firmware update process, thanks to the public signing
key(s) built into it. As the name implies, this image is immutable.

1778 Chapter 8. User and Developer Guides

https://github.com/zephyrproject-rtos/zephyr/blob/main/modules/trusted-firmware-m/interface

Zephyr Project Documentation, Release 2.7.0-rc2

The PSA Updateable Root of Trust implements the most trusted secure services and components in
TF-M, such as the Secure Partition Manager (SPM), and shared secure services like PSA Crypto, Internal
Trusted Storage (ITS), etc. Services in the PSA Updateable Root of Trust have access to other resources
in the same Root of Trust.

The Application Root of Trust is a reduced-privilege area in the secure processing environment which,
depending on the isolation level chosen when building TF-M, has limited access to the PRoT, or even
other ARoT services at the highest isolation levels. Some standard services exist in the ARoT, such as
Protected Storage (PS), and generally custom secure services that you implement should be placed in
the ARoT, unless a compelling reason is present to place them in the PRoT.

These divisions are distinct from the untrusted code, which runs in the non-secure environment, and
has the least privilege in the system. This is the Zephyr application image in this case.

Isolation Levels At present, there are three distinct isolation levels defined in TF-M, with increasingly
rigid boundaries between regions. The isolation level used will depend on your security requirements,
and the system resources available to you.

• Isolation Level 1 is the lowest isolation level, and the only major boundary is between the secure
and non-secure processing environment, usually by means of Arm TrustZone on Armv8-M pro-
cessors. There is no distinction here between the PSA Updateable Root of Trust (PRoT) and the
Application Root of Trust (ARoT). They execute at the same privilege level. This isolation level will
lead to the smallest combined application images.

• Isolation Level 2 builds upon level one by introducing a distinction between the PSA Updateable
Root of Trust and the Application Root of Trust, where ARoT services have limited access to PRoT
services, and can only communicate with them through public APIs exposed by the PRoT services.
ARoT services, however, are not strictly isolated from one another.

• Isolation Level 3 is the highest isolation level, and builds upon level 2 by isolating ARoT services
from each other, so that each ARoT is essentially silo’ed from other services. This provides the
highest level of isolation, but also comes at the cost of additional overhead and code duplication
between services.

The current isolation level can be checked via :kconfig:`CONFIG_TFM_ISOLATION_LEVEL`.

Secure Boot The default secure bootloader in TF-M is based on MCUBoot, and is referred to as BL2
in TF-M (for the second-stage bootloader, potentially after a HW-based bootloader on the secure MCU,
etc.).

All images in TF-M are hashed and signed, with the hash and signature verified by MCUBoot during the
firmware update process.

Some key features of MCUBooot as used in TF-M are:

• Public signing key(s) are baked into the bootloader

• S and NS images can be signed using different keys

• Firmware images can optionally be encyrpted

• Client software is responsible for writing a new image to the secondary slot

• By default, uses static flash layout of two identically-sized memory regions

• Optional security counter for rollback protection

When dealing with (optionally) encrypted images:

• Only the payload is encrypted (header, TLVs are plain text)

• Hashing and signing are applied over the un-encrypted data

• Uses AES-CTR-128 or AES-CTR-256 for encryption

• Encryption key randomized every encryption cycle (via imgtool)

8.19. Trusted Firmware-M 1779

https://www.mcuboot.com/

Zephyr Project Documentation, Release 2.7.0-rc2

• The AES-CTR key is included in the image and can be encrypted using:

– RSA-OAEP

– AES-KW (128 or 256 bits depending on the AES-CTR key length)

– ECIES-P256

– ECIES-X25519

Key config properties to control secure boot in Zephyr are:

• :kconfig:`CONFIG_TFM_BL2` toggles the bootloader (default = y).

• :kconfig:`CONFIG_TFM_KEY_FILE_S` overrides the secure signing key.

• :kconfig:`CONFIG_TFM_KEY_FILE_NS` overrides the non-secure signing key.

Secure Processing Environment Once the secure bootloader has finished executing, a TF-M based
secure image will begin execution in the secure processing environment. This is where our device will
be initially configured, and any secure services will be initialised.

Note that the starting state of our device is controlled by the secure firmware, meaning that when the
non-secure Zephyr application starts, peripherals may not be in the HW-default reset state. In case of
doubts, be sure to consult the board support packages in TF-M, available in the platform/ext/target/
folder of the TF-M module (which is in modules/tee/tfm/trusted-firmware-m/ within a default Zephyr
west workspace.)

Secure Services As of TF-M 1.3.0, the following secure services are available:

• Audit Logging (Audit)

• Crypto (Crypto)

• Firmware Update (FWU)

• Initial Attestation (IAS)

• Secure Storage, which has two parts:

– Internal Trusted Storage (ITS)

– Protected Storage (PS)

A template also exists for creating your own custom services.

For full details on these services, and their exposed APIs, please consult the TF-M Documentation.

Key Management and Derivation Key and secret management is a critical part of any secure device.
You need to ensure that key material is available to regions that require it, but not to anything else, and
that it is stored securely in a way that makes it difficult to tamper with or maliciously access.

The Internal Trusted Storage service in TF-M is used by the PSA Crypto service (which itself makes use
of mbedtls) to store keys, and ensure that private keys are only ever accessible to the secure processing
environment. Crypto operations that make use of key material, such as when signing payloads or when
decrypting sensitive data, all take place via key handles. At no point should the key material ever be
exposed to the NS environment.

One exception is that private keys can be provisioned into the secure processing environment as a one-
way operation, such as during a factory provisioning process, but even this should be avoided where
possible, and a request should be made to the SPE (via the PSA Crypto service) to generate a new private
key itself, and the public key for that can be requested during provisioning and logged in the factory.
This ensures the private key material is never exposed, or even known during the provisioning phase.

TF-M also makes extensive use of the Hardware Unique Key (HUK), which every TF-M device must
provide. This device-unique key is used by the Protected Storage service, for example, to encrypt

1780 Chapter 8. User and Developer Guides

https://tf-m-user-guide.trustedfirmware.org/

Zephyr Project Documentation, Release 2.7.0-rc2

information stored in external memory. For example, this ensures that the contents of flash memory
can’t be decrypted if they are removed and placed on a new device, since each device has its own unique
HUK used while encrypting the memory contents the first time.

HUKs provide an additional advantage for developers, in that they can be used to derive new keys, and
the derived keys don’t need to be stored since they can be regenerated from the HUK at startup, using an
additional salt/seed value (depending on the key derivation algorithm used). This removes the storage
issue and a frequent attack vector. The HUK itself it usually highly protected in secure devices, and
inaccessible directly by users.

TFM_CRYPTO_ALG_HUK_DERIVATION identifies the default key derivation algorithm used if a software im-
plementation is used. The current default algorithm is HKDF (RFC 5869) with a SHA-256 hash. Other
hardware implementations may be available on some platforms.

Non-Secure Processing Environment Zephyr is used for the NSPE, using a board that is supported by
TF-M where the :kconfig:`CONFIG_BUILD_WITH_TFM` flag has been enabled.

Generally, you simply need to select the *_ns variant of a valid target (for example mps2_an521_ns),
which will configure your Zephyr application to run in the NSPE, correctly build and link it with the
TF-M secure images, sign the secure and non-secure images, and merge the three binaries into a single
tfm_merged.hex file. The west flash command will flash tfm_merged.hex by default in this configura-
tion.

At present, Zephyr can not be configured to be used as the secure processing environment.

8.19.2 TF-M Requirements

The following are some of the boards that can be used with TF-M:

Board NSPE board name
mps2_an521_board mps2_an521_ns (qemu supported)
bl5340_dvk bl5340_dvk_cpuapp_ns
lpcxpresso55s69 lpcxpresso55s69_ns
nrf9160dk_nrf9160 nrf9160dk_nrf9160_ns
nrf5340dk_nrf5340 nrf5340dk_nrf5340_cpuapp_ns
nucleo_l552ze_q_board nucleo_l552ze_q_ns
stm32l562e_dk_board stm32l562e_dk_ns
v2m_musca_b1_board v2m_musca_b1_ns
v2m_musca_s1_board v2m_musca_s1_ns

You can run west boards -n _ns$ to search for non-secure variants of different board tar-
gets. To make sure TF-M is supported for a board in its output, check that :kcon-
fig:`CONFIG_TRUSTED_EXECUTION_NONSECURE` is set to y in that board’s default configuration.

Software Requirements

The following Python modules are required when building TF-M binaries:

• cryptography

• pyasn1

• pyyaml

• cbor>=1.0.0

• imgtool>=1.6.0

• jinja2

8.19. Trusted Firmware-M 1781

Zephyr Project Documentation, Release 2.7.0-rc2

• click

You can install them via:

$ pip3 install --user cryptography pyasn1 pyyaml cbor>=1.0.0 imgtool>=1.6.0␣
→˓jinja2 click

They are used by TF-M’s signing utility to prepare firmware images for validation by the bootloader.

Part of the process of generating binaries for QEMU and merging signed secure and non-secure binaries
on certain platforms also requires the use of the srec_cat utility.

This can be installed on Linux via:

$ sudo apt-get install srecord

And on OS X via:

$ brew install srecord

For Windows-based systems, please make sure you have a copy of the utility available on your system
path. See, for example: SRecord for Windows

8.19.3 TF-M Build System

When building a valid _ns board target, TF-M will be built in the background, and linked with the Zephyr
non-secure application. No knowledge of TF-M’s build system is required in most cases, and the following
will build a TF-M and Zephyr image pair, and run it in qemu with no additional steps required:

$ west build -p auto -t mps2_an521_ns samples/tfm_integration/psa_crypto/ -
→˓t run

The outputs and certain key steps in this build process are described here, however, since you will need
to understand and interact with the outputs, and deal with signing the secure and non-secure images
before deploying them.

Images Created by the TF-M Build

The TF-M build system creates the following executable files:

• tfm_s - the secure firmware

• tfm_ns - a nonsecure app which is discarded in favor of the Zephyr app

• bl2 - mcuboot, if enabled

For each of these, it creates .bin, .hex, .elf, and .axf files.

The TF-M build system also creates signed variants of tfm_s and tfm_ns, and a file which combines them:

• tfm_s_signed

• tfm_ns_signed

• tfm_s_ns_signed

For each of these, only .bin files are created.

The Zephyr build system usually signs both tfm_s and the Zephyr ns app itself. See below for details.

The ‘tfm’ target contains properties for all these paths. For example, the following will resolve to <path>/
tfm_s.hex:

1782 Chapter 8. User and Developer Guides

http://srecord.sourceforge.net/windows.html

Zephyr Project Documentation, Release 2.7.0-rc2

$<TARGET_PROPERTY:tfm,TFM_S_HEX_FILE>

See the top level CMakeLists.txt file in the tfm module for an overview of all the properties.

Signing Images

When :kconfig:`CONFIG_TFM_BL2` is set to y, TF-M uses a secure bootloader (BL2) and firmware
images must be signed with a private key. The firmware image is validated by the bootloader during
updates using the corresponding public key, which is stored inside the secure bootloader firmware image.

By default, tfm/bl2/ext/mcuboot/root-rsa-3072.pem is used to sign secure images, and tfm/
bl2/ext/mcuboot/root-rsa-3072_1.pem is used to sign non-secure images. Theses default .pem
keys can (and should) be overridden using the :kconfig:`CONFIG_TFM_KEY_FILE_S` and :kcon-
fig:`CONFIG_TFM_KEY_FILE_NS` config flags.

To satisfy PSA Certified Level 1 requirements, You MUST replace the default .pem file with a new key
pair!

To generate a new public/private key pair, run the following commands:

$ imgtool keygen -k root-rsa-3072_s.pem -t rsa-3072
$ imgtool keygen -k root-rsa-3072_ns.pem -t rsa-3072

You can then place the new .pem files in an alternate location, such as your Zephyr application folder,
and reference them in the prj.conf file via the :kconfig:`CONFIG_TFM_KEY_FILE_S` and :kcon-
fig:`CONFIG_TFM_KEY_FILE_NS` config flags.

Warning: Be sure to keep your private key file in a safe, reliable location! If you lose this
key file, you will be unable to sign any future firmware images, and it will no longer be
possible to update your devices in the field!

After the built-in signing script has run, it creates a tfm_merged.hex file that contains all three binaries:
bl2, tfm_s, and the zephyr app. This hex file can then be flashed to your development board or run in
QEMU.

Custom CMake arguments When building a Zephyr application with TF-M it might be necessary to
control the CMake arguments passed to the TF-M build.

Zephyr TF-M build offers several Kconfig options for controlling the build, but doesn’t cover every CMake
argument supported by the TF-M build system.

The TFM_CMAKE_OPTIONS property on the zephyr_property_target can be used to pass custom CMake
arguments to the TF-M build system.

To pass the CMake argument -DFOO=bar to the TF-M build system, place the following CMake snippet in
your CMakeLists.txt file.

set_property(TARGET zephyr_property_target
APPEND PROPERTY TFM_CMAKE_OPTIONS
-DFOO=bar

)

Note: The TFM_CMAKE_OPTIONS is a list so it is possible to append multiple options. Also CMake
generator expressions are supported, such as $<1:-DFOO=bar>

8.19. Trusted Firmware-M 1783

https://www.psacertified.org/security-certification/psa-certified-level-1/

Zephyr Project Documentation, Release 2.7.0-rc2

8.19.4 Trusted Firmware-M Integration

The Trusted Firmware-M (TF-M) section contains information about the integration between TF-M and
Zephyr RTOS. Use this information to help understand how to integrate TF-M with Zephyr for Cortex-M
platforms and make use of its secure run-time services in Zephyr applications.

Board Definitions

TF-M will be built for the secure processing environment along with Zephyr if the :kcon-
fig:`CONFIG_BUILD_WITH_TFM` flag is set to y.

Generally, this value should never be set at the application level, however, and all config flags required
for TF-M should be set in a board variant with the _ns suffix.

This board variant must define an appropriate flash, SRAM and peripheral configuration that
takes into account the initialisation process in the secure processing environment. :kcon-
fig:`CONFIG_TFM_BOARD` must also be set via modules/trusted-firmware-m/Kconfig.tfm to the board
name that TF-M expects for this target, so that it knows which target to build for the secure processing
environment.

Example: mps2_an521_ns The mps2_an521 target is a dual-core Arm Cortex-M33 evaluation board
that, when using the default board variant, would generate a secure Zephyr binary.

The optional mps2_an521_ns target, however, sets these additional kconfig flags that indicate that Zephyr
should be built as a non-secure image, linked with TF-M as an external project, and optionally the secure
bootloader:

• :kconfig:`CONFIG_TRUSTED_EXECUTION_NONSECURE` y

• :kconfig:`CONFIG_ARM_TRUSTZONE_M` y

Comparing the mps2_an521.dts and mps2_an521_ns.dts files, we can see that the _ns version defines
offsets in flash and SRAM memory, which leave the required space for TF-M and the secure bootloader:

reserved-memory {
#address-cells = <1>;
#size-cells = <1>;
ranges;

/* The memory regions defined below must match what the TF-M
* project has defined for that board - a single image boot is
* assumed. Please see the memory layout in:
* https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/

→˓platform/ext/target/mps2/an521/partition/flash_layout.h
*/

code: memory@100000 {
reg = <0x00100000 DT_SIZE_K(512)>;

};

ram: memory@28100000 {
reg = <0x28100000 DT_SIZE_M(1)>;

};
};

This reserves 1 MB of code memory and 1 MB of RAM for secure boot and TF-M, such that our non-
secure Zephyr application code will start at 0x10000, with RAM at 0x28100000. 512 KB code memory
is available for the NS zephyr image, along with 1 MB of RAM.

This matches the flash memory layout we see in flash_layout.h in TF-M:

1784 Chapter 8. User and Developer Guides

https://github.com/zephyrproject-rtos/zephyr/blob/main/modules/trusted-firmware-m/Kconfig.tfm

Zephyr Project Documentation, Release 2.7.0-rc2

* 0x0000_0000 BL2 - MCUBoot (0.5 MB)
* 0x0008_0000 Secure image primary slot (0.5 MB)
* 0x0010_0000 Non-secure image primary slot (0.5 MB)
* 0x0018_0000 Secure image secondary slot (0.5 MB)
* 0x0020_0000 Non-secure image secondary slot (0.5 MB)
* 0x0028_0000 Scratch area (0.5 MB)
* 0x0030_0000 Protected Storage Area (20 KB)
* 0x0030_5000 Internal Trusted Storage Area (16 KB)
* 0x0030_9000 NV counters area (4 KB)
* 0x0030_A000 Unused (984 KB)

mps2/an521 will be passed in to Tf-M as the board target, specified via :kcon-
fig:`CONFIG_TFM_BOARD`.

8.20 West (Zephyr’s meta-tool)

The Zephyr project includes a swiss-army knife command line tool named west1. West is developed in
its own repository.

West’s built-in commands provide a multiple repository management system with features inspired by
Google’s Repo tool and Git submodules. West is also “pluggable”: you can write your own west extension
commands which add additional features to west. Zephyr uses this to provide conveniences for building
applications, flashing and debugging them, and more.

Like git and docker, the top-level west command takes some common options, a sub-command to run,
and then options and arguments for that sub-command:

west [common-opts] <command> [opts] <args>

Since west v0.8, you can also run west like this:

python3 -m west [common-opts] <command> [opts] <args>

You can run west --help (or west -h for short) to get top-level help for available west commands, and
west <command> -h for detailed help on each command.

The following pages document west’s v0.11.x releases, and provide additional context about the tool.

8.20.1 Installing west

West is written in Python 3 and distributed through PyPI. Use pip3 to install or upgrade west:

On Linux:

pip3 install --user -U west

On Windows and macOS:

pip3 install -U west

Note: See Python and pip for additional clarification on using the --user switch.

Afterwards, you can run pip3 show -f west for information on where the west binary and related files
were installed.

Once west is installed, you can use it to clone the Zephyr repositories.
1 Zephyr is an English name for the Latin Zephyrus, the ancient Greek god of the west wind.

8.20. West (Zephyr’s meta-tool) 1785

https://github.com/zephyrproject-rtos/west
https://pypi.org/project/west/
https://en.wiktionary.org/wiki/Zephyrus

Zephyr Project Documentation, Release 2.7.0-rc2

Structure

West’s code is distributed via PyPI in a Python package named west. This distribution includes a launcher
executable, which is also named west (or west.exe on Windows).

When west is installed, the launcher is placed by pip3 somewhere in the user’s filesystem (exactly where
depends on the operating system, but should be on the PATH environment variable). This launcher is
the command-line entry point to running both built-in commmands like west init, west update, along
with any extensions discovered in the workspace.

In addition to its command-line interface, you can also use west’s Python APIs directly. See west-apis for
details.

Enabling shell completion

West currently supports shell completion in the following combinations of platform and shell:

• Linux: bash

• macOS: bash

• Windows: not available

In order to enable shell completion, you will need to obtain the corresponding completion script and
have it sourced every time you enter a new shell session.

To obtain the completion script you can use the west completion command:

cd /path/to/zephyr/
west completion bash > ~/west-completion.bash

Note: Remember to update your local copy of the completion script using west completion when you
update Zephyr.

Next, you need to import west-completion.bash into your bash shell.

On Linux, you have the following options:

• Copy west-completion.bash to /etc/bash_completion.d/.

• Copy west-completion.bash to /usr/share/bash-completion/completions/.

• Copy west-completion.bash to a local folder and source it from your ~/.bashrc.

On macOS, you have the following options:

• Copy west-completion.bash to a local folder and source it from your ~/.bash_profile

• Install the bash-completion package with brew:

brew install bash-completion

then source the main bash completion script in your ~/.bash_profile:

source /usr/local/etc/profile.d/bash_completion.sh

and finally copy west-completion.bash to /usr/local/etc/bash_completion.d/.

8.20.2 West Release Notes

1786 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

v0.11.1

New features:

• west status now only prints output for projects which have a nonempty status.

Bug fixes:

• The manifest file parser was incorrectly allowing project names which contain the path separator
characters / and \. These invalid characters are now rejected.

Note: if you need to place a project within a subdirectory of the workspace topdir, use the
path: key. If you need to customize a project’s fetch URL relative to its remote url-base:, use
repo-path:. See Projects for examples.

• The changes made in west v0.10.1 to the west init --manifest-rev option which selected the
default branch name were leaving the manifest repository in a detached HEAD state. This has
been fixed by using git clone internally instead of git init and git fetch. See issue #522 for
details.

• The WEST_CONFIG_LOCAL environment variable now correctly overrides the default location,
<workspace topdir>/.west/config.

• west update --fetch=smart (smart is the default) now correctly skips fetches for project revi-
sions which are lightweight tags (it already worked correctly for annotated tags; only lightweight
tags were unnecessarily fetched).

Other changes:

• The fix for issue #522 mentioned above introduces a new restriction. The west init
--manifest-rev option value, if given, must now be either a branch or a tag. In particular,
“pseudo-branches” like GitHub’s pull/1234/head references which could previously be used to
fetch a pull request can no longer be passed to --manifest-rev. Users must now fetch and check
out such revisions manually after running west init.

API changes:

• west.manifest.Manifest.get_projects() avoids incorrect results in some edge cases described
in issue #523.

• west.manifest.Project.sha() now works correctly for tag revisions. (This applies to both
lightweight and annotated tags.)

v0.11.0

New features:

• west update now supports --narrow, --name-cache, and --path-cache options. These can be
influenced by the update.narrow, update.name-cache, and update.path-cache Configuration
options. These can be used to optimize the speed of the update.

• west update now supports a --fetch-opt option that will be passed to the git fetch command
used to fetch remote revisions when updating each project.

Bug fixes:

• west update now synchronizes Git submodules in projects by default. This avoids issues if the
URL changes in the manifest file from when the submodule was first initialized. This behavior can
be disabled by setting the update.sync-submodules configuration option to false.

Other changes:

• the west-apis-manifest module has fixed docstrings for the Project class

8.20. West (Zephyr’s meta-tool) 1787

https://github.com/zephyrproject-rtos/west/issues/522
https://git-scm.com/book/en/v2/Git-Basics-Tagging
https://github.com/zephyrproject-rtos/west/issues/523

Zephyr Project Documentation, Release 2.7.0-rc2

v0.10.1

New features:

• The west init command’s --manifest-rev (--mr) option no longer defaults to master. Instead, the
command will query the repository for its default branch name and use that instead. This allows
users to move from master to main without breaking scripts that do not provide this option.

v0.10.0

New features:

• The name key in a project’s submodules list is now optional.

Bug fixes:

• West now checks that the manifest schema version is one of the explicitly allowed vlaues docu-
mented in Version. The old behavior was just to check that the schema version was newer than
the west version where the manifest: version: key was introduced. This incorrectly allowed
invalid schema versions, like 0.8.2.

Other changes:

• A manifest file’s group-filter is now propagated through an import. This is a change from how
west v0.9.x handled this. In west v0.9.x, only the top level manifest file’s group-filter had any
effect; the group filter lists from any imported manifests were ignored.

Starting with west v0.10.0, the group filter lists from imported manifests are also imported. For
details, see Group Filters and Imports.

The new behavior will take effect if manifest: version: is not given or is at least 0.10. The old
behavior is still available in the top level manifest file only with an explicit manifest: version:
0.9. See Version for more information on schema versions.

See west pull request #482 for the motivation for this change and additional context.

v0.9.1

Bug fixes:

• Commands like west manifest --resolve now correctly include group and group filter informa-
tion.

Other changes:

• West now warns if you combine import with group-filter. Semantics for this combination have
changed starting with v0.10.x. See the v0.10.0 release notes above for more information.

v0.9.0

Warning: The west config fix described below comes at a cost: any comments or other manual
edits in configuration files will be removed when setting a configuration option via that command or
the west.configuration API.

Warning: Combining the group-filter feature introduced in this release with manifest imports is
discouraged. The resulting behavior has changed in west v0.10.

New features:

1788 Chapter 8. User and Developer Guides

https://github.com/zephyrproject-rtos/west/pull/482

Zephyr Project Documentation, Release 2.7.0-rc2

• West manifests now support Git Submodules in Projects. This allows you to clone Git submodules
into a west project repository in addition to the project repository itself.

• West manifests now support Project Groups and Active Projects. Project groups can be enabled and
disabled to determine what projects are “active”, and therefore will be acted upon by the following
commands: west update, west list, west diff, west status, west forall.

• west update no longer updates inactive projects by default. It now supports a --group-filter
option which allows for one-time modifications to the set of enabled and disabled project groups.

• Running west list, west diff, west status, or west forall with no arguments does not print
information for inactive projects by default. If the user specifies a list of projects explicitly at the
command line, output for them is included regardless of whether they are active.

These commands also now support --all arguments to include all projects, even inactive ones.

• west list now supports a {groups} format string key in its --format argument.

Bug fixes:

• The west config command and west.configuration API did not correctly store some configura-
tion values, such as strings which contain commas. This has been fixed; see commit 36f3f91e for
details.

• A manifest file with an empty manifest: self: path: value is invalid, but west used to let it
pass silently. West now rejects such manifests.

• A bug affecting the behavior of the west init -l . command was fixed; see issue #435.

API changes:

• added west.manifest.Manifest.is_active()

• added west.manifest.Manifest.group_filter

• added submodules attribute to west.manifest.Project, which has newly added type west.
manifest.Submodule

Other changes:

• The Manifest Imports feature now supports the terms allowlist and blocklist instead of
whitelist and blacklist, respectively.

The old terms are still supported for compatibility, but the documentation has been updated to use
the new ones exclusively.

v0.8.0

This is a feature release which changes the manifest schema by adding support for a path-prefix: key
in an import: mapping, along with some other features and fixes.

• Manifest import mappings now support a path-prefix: key, which places the project and its im-
ported repositories in a subdirectory of the workspace. See Example 3.4: Import into a subdirectory
for an example.

• The west command line application can now also be run using python3 -m west. This makes it
easier to run west under a particular Python interpreter without modifying the PATH environment
variable.

• west manifest –path prints the absolute path to west.yml

• west init now supports an --mf foo.yml option, which initializes the workspace using foo.yml
instead of west.yml.

• west list now prints the manifest repository’s path using the manifest.path configuration option,
which may differ from the self: path: value in the manifest data. The old behavior is still
available, but requires passing a new --manifest-path-from-yaml option.

8.20. West (Zephyr’s meta-tool) 1789

https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://github.com/zephyrproject-rtos/west/commit/36f3f91e270782fb05f6da13800f433a9c48f130
https://github.com/zephyrproject-rtos/west/issues/435

Zephyr Project Documentation, Release 2.7.0-rc2

• Various Python API changes; see west-apis for details.

v0.7.3

This is a bugfix release.

• Fix an error where a failed import could leave the workspace in an unusable state (see [PR
#415](https://github.com/zephyrproject-rtos/west/pull/415) for details)

v0.7.2

This is a bugfix and minor feature release.

• Filter out duplicate extension commands brought in by manifest imports

• Fix west.Manifest.get_projects() when finding the manifest repository by path

v0.7.1

This is a bugfix and minor feature release.

• west update --stats now prints timing for operations which invoke a subprocess, time spent in
west’s Python process for each project, and total time updating each project.

• west topdir always prints a POSIX style path

• minor console output changes

v0.7.0

The main user-visible feature in west 0.7 is the Manifest Imports feature. This allows users to load west
manifest data from multiple different files, resolving the results into a single logical manifest.

Additional user-visible changes:

• The idea of a “west installation” has been renamed to “west workspace” in this documentation and
in the west API documentation. The new term seems to be easier for most people to work with
than the old one.

• West manifests now support a schema version.

• The “west config” command can now be run outside of a workspace, e.g. to run west config
--global section.key value to set a configuration option’s value globally.

• There is a new west topdir command, which prints the root directory of the current west workspace.

• The west -vv init command now prints the git operations being performed, and their results.

• The restriction that no project can be named “manifest” is now enforced; the name “manifest” is
reserved for the manifest repository, and is usable as such in commands like west list manifest,
instead of west list path-to-manifest-repository being the only way to say that

• It’s no longer an error if there is no project named “zephyr”. This is part of an effort to make west
generally usable for non-Zephyr use cases.

• Various bug fixes.

The developer-visible changes to the west-apis are:

• west.build and west.cmake: deprecated; this is Zephyr-specific functionality and should never
have been part of west. Since Zephyr v1.14 LTS relies on it, it will continue to be included in the
distribution, but will be removed when that version of Zephyr is obsoleted.

1790 Chapter 8. User and Developer Guides

https://github.com/zephyrproject-rtos/west/pull/415

Zephyr Project Documentation, Release 2.7.0-rc2

• west.commands:

– WestCommand.requires_installation: deprecated; use requires_workspace instead

– WestCommand.requires_workspace: new

– WestCommand.has_manifest: new

– WestCommand.manifest: this is now settable

• west.configuration: callers can now identify the workspace directory when reading and writing
configuration files

• west.log:

– msg(): new

• west.manifest:

– The module now uses the standard logging module instead of west.log

– QUAL_REFS_WEST: new

– SCHEMA_VERSION: new

– Defaults: removed

– Manifest.as_dict(): new

– Manifest.as_frozen_yaml(): new

– Manifest.as_yaml(): new

– Manifest.from_file() and from_data(): these factory methods are more flexible to use and less
reliant on global state

– Manifest.validate(): new

– ManifestImportFailed: new

– ManifestProject: semi-deprecated and will likely be removed later.

– Project: the constructor now takes a topdir argument

– Project.format() and its callers are removed. Use f-strings instead.

– Project.name_and_path: new

– Project.remote_name: new

– Project.sha() now captures stderr

– Remote: removed

West now requires Python 3.6 or later. Additionally, some features may rely on Python dictionaries being
insertion-ordered; this is only an implementation detail in CPython 3.6, but is is part of the language
specification as of Python 3.7.

v0.6.3

This point release fixes an error in the behavior of the deprecated west.cmake module.

v0.6.2

This point release fixes an error in the behavior of west update --fetch=smart, introduced in v0.6.1.

All v0.6.1 users must upgrade.

8.20. West (Zephyr’s meta-tool) 1791

Zephyr Project Documentation, Release 2.7.0-rc2

v0.6.1

Warning: Do not use this point release. Make sure to use v0.6.2 instead.

The user-visible features in this point release are:

• The west update command has a new --fetch command line flag and update.fetch configuration
option. The default value, “smart”, skips fetching SHAs and tags which are available locally.

• Better and more consistent error-handling in the west diff, west status, west forall, and west
update commands. Each of these commands can operate on multiple projects; if a subprocess
related to one project fails, these commands now continue to operate on the rest of the projects.
All of them also now report a nonzero error code from the west process if any of these subprocesses
fails (this was previously not true of west forall in particular).

• The west manifest command also handles errors better.

• The west list command now works even when the projects are not cloned, as long as its format
string only requires information which can be read from the manifest file. It still fails if the format
string requires data stored in the project repository, e.g. if it includes the {sha} format string key.

• Commands and options which operate on git revisions now accept abbreviated SHAs. For example,
west init --mr SHA_PREFIX now works. Previously, the --mr argument needed to be the entire
40 character SHA if it wasn’t a branch or a tag.

The developer-visible changes to the west-apis are:

• west.log.banner(): new

• west.log.small_banner(): new

• west.manifest.Manifest.get_projects(): new

• west.manifest.Project.is_cloned(): new

• west.commands.WestCommand instances can now access the parsed Manifest object via a new
self.manifest property during the do_run() call. If read, it returns the Manifest object or aborts the
command if it could not be parsed.

• west.manifest.Project.git() now has a capture_stderr kwarg

v0.6.0

• No separate bootstrapper

In west v0.5.x, the program was split into two components, a bootstrapper and a per-installation
clone. See Multiple Repository Management in the v1.14 documentation for more details.

This is similar to how Google’s Repo tool works, and lets west iterate quickly at first. It caused
confusion, however, and west is now stable enough to be distributed entirely as one piece via PyPI.

From v0.6.x onwards, all of the core west commands and helper classes are part of the west package
distributed via PyPI. This eliminates complexity and makes it possible to import west modules from
anywhere in the system, not just extension commands.

• The selfupdate command still exists for backwards compatibility, but now simply exits after print-
ing an error message.

• Manifest syntax changes

– A west manifest file’s projects elements can now specify their fetch URLs directly, like so:

1792 Chapter 8. User and Developer Guides

https://docs.zephyrproject.org/1.14.0/guides/west/repo-tool.html

Zephyr Project Documentation, Release 2.7.0-rc2

manifest:
projects:

- name: example-project-name
url: https://github.com/example/example-project

Project elements with url attributes set in this way may not also have remote attributes.

– Project names must be unique: this restriction is needed to support future work, but was not
possible in west v0.5.x because distinct projects may have URLs with the same final pathname
component, like so:

manifest:
remotes:

- name: remote-1
url-base: https://github.com/remote-1

- name: remote-2
url-base: https://github.com/remote-2

projects:
- name: project

remote: remote-1
path: remote-1-project

- name: project
remote: remote-2
path: remote-2-project

These manifests can now be written with projects that use url instead of remote, like so:

manifest:
projects:

- name: remote-1-project
url: https://github.com/remote-1/project

- name: remote-2-project
url: https://github.com/remote-2/project

• The west list command now supports a {sha} format string key

• The default format string for west list was changed to "{name:12} {path:28} {revision:40}
{url}".

• The command west manifest --validate can now be run to load and validate the current man-
ifest file, among other error-handling fixes related to manifest parsing.

• Incompatible API changes were made to west’s APIs. Further changes are expected until API sta-
bility is declared in west v1.0.

– The west.manifest.Project constructor’s remote and defaults positional arguments are
now kwargs. A new url kwarg was also added; if given, the Project URL is set to that value,
and the remote kwarg is ignored.

– west.manifest.MANIFEST_SECTIONS was removed. There is only one section now, namely
manifest. The sections kwargs in the west.manifest.Manifest factory methods and con-
structor were also removed.

– The west.manifest.SpecialProject class was removed. Use west.manifest.
ManifestProject instead.

v0.5.x

West v0.5.x is the first version used widely by the Zephyr Project as part of its v1.14 Long-Term Support
(LTS) release. The west v0.5.x documentation is available as part of the Zephyr’s v1.14 documentation.

8.20. West (Zephyr’s meta-tool) 1793

https://docs.zephyrproject.org/1.14.0/guides/west/index.html

Zephyr Project Documentation, Release 2.7.0-rc2

West’s main features in v0.5.x are:

• Multiple repository management using Git repositories, including self-update of west itself

• Hierarchical configuration files

• Extension commands

Versions Before v0.5.x

Tags in the west repository before v0.5.x are prototypes which are of historical interest only.

8.20.3 Troubleshooting West

This page covers common issues with west and how to solve them.

west update fetching failures

One good way to troubleshoot fetching issues is to run west update in verbose mode, like this:

west -v update

The output includes Git commands run by west and their outputs. Look for something like this:

=== updating your_project (path/to/your/project):
west.manifest: your_project: checking if cloned
[...other west.manifest logs...]
--- your_project: fetching, need revision SOME_SHA
west.manifest: running 'git fetch ... https://github.com/your-username/your_project ..
→˓.' in /some/directory

The git fetch command example in the last line above is what needs to succeed.

One strategy is to go to /some/directory, copy/paste and run the entire git fetch command, then
debug from there using the documentation for your credential storage helper.

If you’re behind a corporate firewall and may have proxy or other issues, curl -v FETCH_URL (for HTTPS
URLs) or ssh -v FETCH_URL (for SSH URLs) may be helpful.

If you can get the git fetch command to run successfully without prompting for a password when you
run it directly, you will be able to run west update without entering your password in that same shell.

“‘west’ is not recognized as an internal or external command, operable program or batch file.’

On Windows, this means that either west is not installed, or your PATH environment variable does not
contain the directory where pip installed west.exe.

First, make sure you’ve installed west; see Installing west. Then try running west from a new cmd.exe
window. If that still doesn’t work, keep reading.

You need to find the directory containing west.exe, then add it to your PATH. (This PATH change should
have been done for you when you installed Python and pip, so ordinarily you should not need to follow
these steps.)

Run this command in cmd.exe:

pip3 show west

Then:

1794 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

1. Look for a line in the output that looks like Location: C:\foo\python\python38\lib\
site-packages. The exact location will be different on your computer.

2. Look for a file named west.exe in the scripts directory C:\foo\python\python38\scripts.

Important: Notice how lib\site-packages in the pip3 show output was changed to scripts!

3. If you see west.exe in the scripts directory, add the full path to scripts to your PATH using a
command like this:

setx PATH "%PATH%;C:\foo\python\python38\scripts"

Do not just copy/paste this command. The scripts directory location will be different on your
system.

4. Close your cmd.exe window and open a new one. You should be able to run west.

“Error: unexpected keyword argument ‘requires_workspace’”

This error occurs on some Linux distributions after upgrading to west 0.7.0 or later from 0.6.x. For
example:

$ west update
[... stack trace ...]
TypeError: __init__() got an unexpected keyword argument 'requires_workspace'

This appears to be a problem with the distribution’s pip; see this comment in west issue 373 for details.
Some versions of Ubuntu and Linux Mint are known to have this problem. Some users report issues on
Fedora as well.

Neither macOS nor Windows users have reported this issue. There have been no reports of this issue on
other Linux distributions, like Arch Linux, either.

Workaround 1: remove the old version, then upgrade:

$ pip3 show west | grep Location: | cut -f 2 -d ' '
/home/foo/.local/lib/python3.6/site-packages
$ rm -r /home/foo/.local/lib/python3.6/site-packages/west
$ pip3 install --user west==0.7.0

Workaround 2: install west in a Python virtual environment

One option is to use the venv module that’s part of the Python 3 standard library. Some distributions
remove this module from their base Python 3 packages, so you may need to do some additional work to
get it installed on your system.

“invalid choice: ‘build’” (or ‘flash’, etc.)

If you see an unexpected error like this when trying to run a Zephyr extension command (like west flash,
west build, etc.):

$ west build [...]
west: error: argument <command>: invalid choice: 'build' (choose from 'init', [...])

$ west flash [...]
west: error: argument <command>: invalid choice: 'flash' (choose from 'init', [...])

8.20. West (Zephyr’s meta-tool) 1795

https://github.com/zephyrproject-rtos/west/issues/373#issuecomment-583489272
https://docs.python.org/3/library/venv.html

Zephyr Project Documentation, Release 2.7.0-rc2

The most likely cause is that you’re running the command outside of a west workspace. West needs to
know where your workspace is to find Extensions.

To fix this, you have two choices:

1. Run the command from inside a workspace (e.g. the zephyrproject directory you created when
you got started).

For example, create your build directory inside the workspace, or run west flash --build-dir
YOUR_BUILD_DIR from inside the workspace.

2. Set the ZEPHYR_BASE environment variable and re-run the west extension command. If set, west
will use ZEPHYR_BASE to find your workspace.

If you’re unsure whether a command is built-in or an extension, run west help from inside your
workspace. The output prints extension commands separately, and looks like this for mainline Zephyr:

$ west help

built-in commands for managing git repositories:
init: create a west workspace
[...]

other built-in commands:
help: get help for west or a command
[...]

extension commands from project manifest (path: zephyr):
build: compile a Zephyr application
flash: flash and run a binary on a board
[...]

“invalid choice: ‘post-init’”

If you see this error when running west init:

west: error: argument <command>: invalid choice: 'post-init'
(choose from 'init', 'update', 'list', 'manifest', 'diff',
'status', 'forall', 'config', 'selfupdate', 'help')

Then you have an old version of west installed, and are trying to use it in a workspace that requires a
more recent version.

The easiest way to resolve this issue is to upgrade west and retry as follows:

1. Install the latest west with the -U option for pip3 install as shown in Installing west.

2. Back up any contents of zephyrproject/.west/config that you want to save. (If you don’t have
any configuration options set, it’s safe to skip this step.)

3. Completely remove the zephyrproject/.west directory (if you don’t, you will get the “already in
a workspace” error message discussed next).

4. Run west init again.

“already in an installation”

You may see this error when running west init with west 0.6:

FATAL ERROR: already in an installation (<some directory>), aborting

1796 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

If this is unexpected and you’re really trying to create a new west workspace, then it’s likely that west is
using the ZEPHYR_BASE environment variable to locate a workspace elsewhere on your system.

This is intentional; it allows you to put your Zephyr applications in any directory and still use west to
build, flash, and debug them, for example.

To resolve this issue, unset ZEPHYR_BASE and try again.

8.20.4 Basics

This page introduces west’s basic concepts and provides references to further reading.

West’s built-in commands allow you to work with projects (Git repositories) under a common workspace
directory.

Example workspace

If you’ve followed the upstream Zephyr getting started guide, your workspace looks like this:

zephyrproject/ # west topdir
.west/ # marks the location of the topdir

config # per-workspace local configuration file

The manifest repository, never modified by west after creation:
zephyr/ # .git/ repo

west.yml # manifest file
[... other files ...]

Projects managed by west:
modules/

lib/
tinycbor/ # .git/ project

net-tools/ # .git/ project
[... other projects ...]

Workspace concepts

Here are the basic concepts you should understand about this structure. Additional details are in
Workspaces.

topdir Above, zephyrproject is the name of the workspace’s top level directory, or topdir. (The name
zephyrproject is just an example – it could be anything, like z, my-zephyr-workspace, etc.)

You’ll typically create the topdir and a few other files and directories using west init.

.west directory The topdir contains the .west directory. When west needs to find the topdir, it searches
for .west, and uses its parent directory. The search starts from the current working directory (and
starts again from the location in the ZEPHYR_BASE environment variable as a fallback if that fails).

configuration file The file .west/config is the workspace’s local configuration file.

manifest repository Every west workspace contains exactly one manifest repository, which is a Git
repository containing a manifest file. The location of the manifest repository is given by the mani-
fest.path configuration option in the local configuration file.

For upstream Zephyr, zephyr is the manifest repository, but you can configure west to use any Git
repository in the workspace as the manifest repository. The only requirement is that it contains a
valid manifest file. See Topologies supported for information on other options, and West Manifests
for details on the manifest file format.

8.20. West (Zephyr’s meta-tool) 1797

Zephyr Project Documentation, Release 2.7.0-rc2

manifest file The manifest file is a YAML file that defines projects, which are the additional Git reposito-
ries in the workspace managed by west. The manifest file is named west.yml by default; this can
be overridden using the manifest.file local configuration option.

You use the west update command to update the workspace’s projects based on the contents of the
manifest file.

projects Projects are Git repositories managed by west. Projects are defined in the manifest file and
can be located anywhere inside the workspace. In the above example workspace, tinycbor and
net-tools are projects.

By default, the Zephyr build system uses west to get the locations of all the projects in the
workspace, so any code they contain can be used as Modules (External projects).

extensions Any repository known to west (either the manifest repository or any project repository) can
define Extensions. Extensions are extra west commands you can run when using that workspace.

The zephyr repository uses this feature to provide Zephyr-specific commands like west build. Defin-
ing these as extensions keeps west’s core agnostic to the specifics of any workspace’s Zephyr version,
etc.

ignored files A workspace can contain additional Git repositories or other files and directories not man-
aged by west. West basically ignores anything in the workspace except .west, the manifest reposi-
tory, and the projects specified in the manifest file.

west init and west update

The two most important workspace-related commands are west init and west update.

west init basics This command creates a west workspace.

Important: West doesn’t change your manifest repository contents after west init is run. Use ordinary
Git commands to pull new versions, etc.

You will typically run it once, like this:

west init -m https://github.com/zephyrproject-rtos/zephyr --mr v2.5.0 zephyrproject

This will:

1. Create the topdir, zephyrproject, along with .west and .west/config inside it

2. Clone the manifest repository from https://github.com/zephyrproject-rtos/zephyr, placing it into
zephyrproject/zephyr

3. Check out the v2.5.0 git tag in your local zephyr clone

4. Set manifest.path to zephyr in .west/config

5. Set manifest.file to west.yml

Your workspace is now almost ready to use; you just need to run west update to clone the rest of the
projects into the workspace to finish.

For more details, see west init.

west update basics This command makes sure your workspace contains Git repositories matching the
projects in the manifest file.

1798 Chapter 8. User and Developer Guides

https://github.com/zephyrproject-rtos/zephyr

Zephyr Project Documentation, Release 2.7.0-rc2

Important: Whenever you check out a different revision in your manifest repository, you should run
west update to make sure your workspace contains the project repositories the new revision expects.

The west update command reads the manifest file’s contents by:

1. Finding the topdir. In the west init example above, that means finding zephyrproject.

2. Loading .west/config in the topdir to read the manifest.path (e.g. zephyr) and manifest.file
(e.g. west.yml) options.

3. Loading the manifest file given by these options (e.g. zephyrproject/zephyr/west.yml).

It then uses the manifest file to decide where missing projects should be placed within the workspace,
what URLs to clone them from, and what Git revisions should be checked out locally. Project repositories
which already exist are updated in place by fetching and checking out their respective Git revisions in
the manifest file.

For more details, see west update.

Other built-in commands

See Built-in commands.

Zephyr Extensions

See the following pages for information on Zephyr’s extension commands:

• Building, Flashing and Debugging

• Signing Binaries

• Additional Zephyr extension commands

• Enabling shell completion

Troubleshooting

See Troubleshooting West.

8.20.5 Built-in commands

This page describes west’s built-in commands, some of which were introduced in Basics, in more detail.

Some commands are related to Git commands with the same name, but operate on the entire workspace.
For example, west diff shows local changes in multiple Git repositories in the workspace.

Some commands take projects as arguments. These arguments can be project names as specified in
the manifest file, or (as a fallback) paths to them on the local file system. Omitting project arguments
to commands which accept them (such as west list, west forall, etc.) usually defaults to using all
projects in the manifest file plus the manifest repository itself.

For additional help, run west <command> -h (e.g. west init -h).

8.20. West (Zephyr’s meta-tool) 1799

Zephyr Project Documentation, Release 2.7.0-rc2

west init

This command creates a west workspace. It can be used in two ways:

1. Cloning a new manifest repository from a remote URL

2. Creating a workspace around an existing local manifest repository

Option 1: to clone a new manifest repository from a remote URL, use:

west init [-m URL] [--mr REVISION] [--mf FILE] [directory]

The new workspace is created in the given directory, creating a new .west inside this directory. You
can give the manifest URL using the -m switch, the initial revision to check out using --mr, and the
location of the manifest file within the repository using --mf.

For example, running:

west init -m https://github.com/zephyrproject-rtos/zephyr --mr v1.14.0 zp

would clone the upstream official zephyr repository into zp/zephyr, and check out the v1.14.0 release.
This command creates zp/.west, and set the manifest.path configuration option to zephyr to record
the location of the manifest repository in the workspace. The default manifest file location is used.

The -m option defaults to https://github.com/zephyrproject-rtos/zephyr. The --mf option defaults
to west.yml. Since west v0.10.1, west will use the default branch in the manifest repository unless the
--mr option is used to override it. (In prior versions, --mr defaulted to master.)

If no directory is given, the current working directory is used.

Option 2: to create a workspace around an existing local manifest repository, use:

west init -l [--mf FILE] directory

This creates .west next to directory in the file system, and sets manifest.path to directory.

As above, --mf defaults to west.yml.

Reconfiguring the workspace:

If you change your mind later, you are free to change manifest.path and manifest.file using west
config after running west init. Just be sure to run west update afterwards to update your workspace
to match the new manifest file.

west update

west update [-f {always,smart}] [-k] [-r]
[--group-filter FILTER] [--stats] [PROJECT ...]

Which projects are updated:

By default, this command parses the manifest file, usually west.yml, and updates each project specified
there. If your manifest uses project groups, then only the active projects are updated.

To operate on a subset of projects only, give PROJECT argument(s). Each PROJECT is either a project name
as given in the manifest file, or a path that points to the project within the workspace. If you specify
projects explicitly, they are updated regardless of whether they are active.

Project update procedure:

For each project that is updated, this command:

1. Initializes a local Git repository for the project in the workspace, if it does not already exist

2. Inspects the project’s revision field in the manifest, and fetches it from the remote if it is not
already available locally

1800 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

3. Sets the project’s manifest-rev branch to the commit specified by the revision in the previous step

4. Checks out manifest-rev in the local working copy as a detached HEAD

5. If the manifest file specifies a submodules key for the project, recursively updates the project’s
submodules as described below.

To avoid unnecessary fetches, west update will not fetch project revision values which are Git SHAs or
tags that are already available locally. This is the behavior when the -f (--fetch) option has its default
value, smart. To force this command to fetch from project remotes even if the revisions appear to be
available locally, either use -f always or set the update.fetch configuration option to always. SHAs
may be given as unique prefixes as long as they are acceptable to Git1.

If the project revision is a Git ref that is neither a tag nor a SHA (i.e. if the project is tracking a branch),
west update always fetches, regardless of -f and update.fetch.

Some branch names might look like short SHAs, like deadbeef. West treats these like SHAs. You can dis-
ambiguate by prefixing the revision value with refs/heads/, e.g. revision: refs/heads/deadbeef.

For safety, west update uses git checkout --detach to check out a detached HEAD at the manifest
revision for each updated project, leaving behind any branches which were already checked out. This is
typically a safe operation that will not modify any of your local branches.

However, if you had added some local commits onto a previously detached HEAD checked out by west,
then git will warn you that you’ve left behind some commits which are no longer referred to by any
branch. These may be garbage-collected and lost at some point in the future. To avoid this if you
have local commits in the project, make sure you have a local branch checked out before running west
update.

If you would rather rebase any locally checked out branches instead, use the -r (--rebase) option.

If you would like west update to keep local branches checked out as long as they point to commits that
are descendants of the new manifest-rev, use the -k (--keep-descendants) option.

Note: west update --rebase will fail in projects that have git conflicts between your branch and new
commits brought in by the manifest. You should immediately resolve these conflicts as you usually do
with git, or you can use git -C <project_path> rebase --abort to ignore incoming changes for the
moment.

With a clean working tree, a plain west update never fails because it does not try to hold on to your
commits and simply leaves them aside.

west update --keep-descendants offers an intermediate option that never fails either but does not
treat all projects the same:

• in projects where your branch diverged from the incoming commits, it does not even try to rebase
and leaves your branches behind just like a plain west update does;

• in all other projects where no rebase or merge is needed it keeps your branches in place.

One-time project group manipulation:

The --group-filter option can be used to change which project groups are enabled or disabled for the
duration of a single west update command. See Project Groups and Active Projects for details on the
project group feature.

The west update command behaves as if the --group-filter option’s value were appended to the
manifest.group-filter configuration option.

For example, running west update --group-filter=+foo,-bar would behave the same way as if you
had temporarily appended the string "+foo,-bar" to the value of manifest.group-filter, run west
update, then restored manifest.group-filter to its original value.

1 West may fetch all refs from the Git server when given a SHA as a revision. This is because some Git servers have historically
not allowed fetching SHAs directly.

8.20. West (Zephyr’s meta-tool) 1801

https://git-scm.com/docs/git-checkout#_detached_head

Zephyr Project Documentation, Release 2.7.0-rc2

Note that using the syntax --group-filter=VALUE instead of --group-filter VALUE avoids issues pars-
ing command line options if you just want to disable a single group, e.g. --group-filter=-bar.

Submodule update procedure:

If a project in the manifest has a submodules key, the submodules are updated as follows, depending on
the value of the submodules key.

If the project has submodules: true, west first synchronizes the project’s submodules with:

git submodule sync --recursive

West then runs one of the following in the project repository, depending on whether you run west
update with the --rebase option or without it:

without --rebase, e.g. "west update":
git submodule update --init --checkout --recursive

with --rebase, e.g. "west update --rebase":
git submodule update --init --rebase --recursive

Otherwise, the project has submodules: <list-of-submodules>. In this case, west synchronizes the
project’s submodules with:

git submodule sync --recursive -- <submodule-path>

Then it updates each submodule in the list as follows, depending on whether you run west update with
the --rebase option or without it:

without --rebase, e.g. "west update":
git submodule update --init --checkout --recursive <submodule-path>

with --rebase, e.g. "west update --rebase":
git submodule update --init --rebase --recursive <submodule-path>

The git submodule sync commands are skipped if the update.sync-submodules Configuration option
is false.

Other project commands

West has a few more commands for managing the projects in the workspace, which are summarized
here. Run west <command> -h for detailed help.

• west list: print a line of information about each project in the manifest, according to a format
string

• west manifest: manage the manifest file. See Manifest Command.

• west diff: run git diff in local project repositories

• west status: run git status in local project repositories

• west forall: run an arbitrary command in local project repositories

Other built-in commands

Finally, here is a summary of other built-in commands.

• west config: get or set configuration options

• west topdir: print the top level directory of the west workspace

1802 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

• west help: get help about a command, or print information about all commands in the workspace,
including Extensions

8.20.6 Workspaces

This page describes the west workspace concept introduced in Basics in more detail.

The manifest-rev branch

West creates and controls a Git branch named manifest-rev in each project. This branch points to
the revision that the manifest file specified for the project at the time west update was last run. Other
workspace management commands may use manifest-rev as a reference point for the upstream revision
as of this latest update. Among other purposes, the manifest-rev branch allows the manifest file to use
SHAs as project revisions.

Although manifest-rev is a normal Git branch, west will recreate and/or reset it on the next update. For
this reason, it is dangerous to check it out or otherwise modify it yourself. For instance, any commits you
manually add to this branch may be lost the next time you run west update. Instead, check out a local
branch with another name, and either rebase it on top of a new manifest-rev, or merge manifest-rev
into it.

Note: West does not create a manifest-rev branch in the manifest repository, since west does not
manage the manifest repository’s branches or revisions.

The refs/west/* Git refs

West also reserves all Git refs that begin with refs/west/ (such as refs/west/foo) for itself in local
project repositories. Unlike manifest-rev, these refs are not regular branches. West’s behavior here is
an implementation detail; users should not rely on these refs’ existence or behavior.

Private repositories

You can use west to fetch from private repositories. There is nothing west-specific about this.

The west update command essentially runs git fetch YOUR_PROJECT_URL when a project’s
manifest-rev branch must be updated to a newly fetched commit. It’s up to your environment to
make sure the fetch succeeds.

You can either enter the password manually or use any of the credential helpers built in to Git. Since Git
has credential storage built in, there is no need for a west-specific feature.

The following sections cover common cases for running west update without having to enter your
password, as well as how to troubleshoot issues.

Fetching via HTTPS On Windows when fetching from GitHub, recent versions of Git prompt you for
your GitHub password in a graphical window once, then store it for future use (in a default installation).
Passwordless fetching from GitHub should therefore work “out of the box” on Windows after you have
done it once.

In general, you can store your credentials on disk using the “store” git credential helper. See the git-
credential-store manual page for details.

To use this helper for all the repositories in your workspace, run:

8.20. West (Zephyr’s meta-tool) 1803

https://git-scm.com/docs/gitcredentials
https://git-scm.com/docs/git-credential-store#_examples
https://git-scm.com/docs/git-credential-store#_examples

Zephyr Project Documentation, Release 2.7.0-rc2

west forall -c "git config credential.helper store"

To use this helper on just the projects foo and bar, run:

west forall -c "git config credential.helper store" foo bar

To use this helper by default on your computer, run:

git config --global credential.helper store

On GitHub, you can set up a personal access token to use in place of your account password. (This may
be required if your account has two-factor authentication enabled, and may be preferable to storing your
account password in plain text even if two-factor authentication is disabed.)

If you don’t want to store any credentials on the file system, you can store them in memory temporarily
using git-credential-cache instead.

Fetching via SSH If your SSH key has no password, fetching should just work. If it does have a
password, you can avoid entering it manually every time using ssh-agent.

On GitHub, see Connecting to GitHub with SSH for details on configuration and key creation.

Project locations

Projects can be located anywhere inside the workspace, but they may not “escape” it.

In other words, project repositories need not be located in subdirectories of the manifest repository or as
immediate subdirectories of the topdir. However, projects must have paths inside the workspace.

You may replace a project’s repository directory within the workspace with a symbolic link to elsewhere
on your computer, but west will not do this for you.

Topologies supported

The following are example source code topologies supported by west.

• T1: star topology, zephyr is the manifest repository

• T2: star topology, a Zephyr application is the manifest repository

• T3: forest topology, freestanding manifest repository

T1: Star topology, zephyr is the manifest repository

• The zephyr repository acts as the central repository and specifies its Modules (External projects) in
its west.yml

• Analogy with existing mechanisms: Git submodules with zephyr as the super-project

This is the default. See Workspace concepts for how mainline Zephyr is an example of this topology.

T2: Star topology, application is the manifest repository

• Useful for those focused on a single application

• A repository containing a Zephyr application acts as the central repository and names other projects
required to build it in its west.yml. This includes the zephyr repository and any modules.

• Analogy with existing mechanisms: Git submodules with the application as the super-project,
zephyr and other projects as submodules

1804 Chapter 8. User and Developer Guides

https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-token
https://git-scm.com/docs/git-credential-cache
https://www.ssh.com/ssh/agent
https://docs.github.com/en/github/authenticating-to-github/connecting-to-github-with-ssh

Zephyr Project Documentation, Release 2.7.0-rc2

A workspace using this topology looks like this:

west-workspace/

application/ # .git/
CMakeLists.txt
prj.conf never modified by west
src/

main.c
west.yml # main manifest with optional import(s) and override(s)

modules/
lib/

tinycbor/ # .git/ project from either the main manifest or some import.

zephyr/ # .git/ project
west.yml # This can be partially imported with lower precedence or␣

→˓ignored.
Only the 'manifest-rev' version can be imported.

Here is an example application/west.yml which uses Manifest Imports, available since west 0.7, to
import Zephyr v2.5.0 and its modules into the application manifest file:

Example T2 west.yml, using manifest imports.
manifest:

remotes:
- name: zephyrproject-rtos

url-base: https://github.com/zephyrproject-rtos
projects:

- name: zephyr
remote: zephyrproject-rtos
revision: v2.5.0
import: true

self:
path: application

You can still selectively “override” individual Zephyr modules if you use import: in this way; see Example
1.3: Downstream of a Zephyr release, with module fork for an example.

Another way to do the same thing is to copy/paste zephyr/west.yml to application/west.yml, adding
an entry for the zephyr project itself, like this:

Equivalent to the above, but with manually maintained Zephyr modules.
manifest:

remotes:
- name: zephyrproject-rtos

url-base: https://github.com/zephyrproject-rtos
defaults:

remote: zephyrproject-rtos
projects:

- name: zephyr
revision: v2.5.0
west-commands: scripts/west-commands.yml

- name: net-tools
revision: some-sha-goes-here
path: tools/net-tools

... other Zephyr modules go here ...
self:

path: application

8.20. West (Zephyr’s meta-tool) 1805

Zephyr Project Documentation, Release 2.7.0-rc2

(The west-commands is there for Building, Flashing and Debugging and other Zephyr-specific Extensions.
It’s not necessary when using import.)

The main advantage to using import is not having to track the revisions of imported projects separately.
In the above example, using import means Zephyr’s module versions are automatically determined from
the zephyr/west.yml revision, instead of having to be copy/pasted (and maintained) on their own.

T3: Forest topology

• Useful for those supporting multiple independent applications or downstream distributions with
no “central” repository

• A dedicated manifest repository which contains no Zephyr source code, and specifies a list of
projects all at the same “level”

• Analogy with existing mechanisms: Google repo-based source distribution

A workspace using this topology looks like this:

west-workspace/
app1/ # .git/ project

CMakeLists.txt
prj.conf
src/

main.c
app2/ # .git/ project

CMakeLists.txt
prj.conf
src/

main.c
manifest-repo/ # .git/ never modified by west

west.yml # main manifest with optional import(s) and override(s)
modules/

lib/
tinycbor/ # .git/ project from either the main manifest or

from some import

zephyr/ # .git/ project
west.yml # This can be partially imported with lower precedence or␣

→˓ignored.
Only the 'manifest-rev' version can be imported.

Here is an example T3 manifest-repo/west.yml which uses Manifest Imports, available since west 0.7,
to import Zephyr v2.5.0 and its modules, then add the app1 and app2 projects:

manifest:
remotes:

- name: zephyrproject-rtos
url-base: https://github.com/zephyrproject-rtos

- name: your-git-server
url-base: https://git.example.com/your-company

defaults:
remote: your-git-server

projects:
- name: zephyr

remote: zephyrproject-rtos
revision: v2.5.0
import: true

- name: app1
revision: SOME_SHA_OR_BRANCH_OR_TAG

(continues on next page)

1806 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

- name: app2
revision: ANOTHER_SHA_OR_BRANCH_OR_TAG

self:
path: manifest-repo

You can also do this “by hand” by copy/pasting zephyr/west.yml as shown above for the T2 topology,
with the same caveats.

8.20.7 West Manifests

This page contains detailed information about west’s multiple repository model, manifest files, and
the west manifest command. For API documentation on the west.manifest module, see west-apis-
manifest. For a more general introduction and command overview, see Basics.

Multiple Repository Model

West’s view of the repositories in a west workspace, and their history, looks like the following figure
(though some parts of this example are specific to upstream Zephyr’s use of west):

Fig. 13: West multi-repo history

The history of the manifest repository is the line of Git commits which is “floating” on top of the gray
plane. Parent commits point to child commits using solid arrows. The plane below contains the Git
commit history of the repositories in the workspace, with each project repository boxed in by a rectangle.
Parent/child commit relationships in each repository are also shown with solid arrows.

The commits in the manifest repository (again, for upstream Zephyr this is the zephyr repository itself)
each have a manifest file. The manifest file in each commit specifies the corresponding commits which
it expects in each of the project repositories. This relationship is shown using dotted line arrows in the
diagram. Each dotted line arrow points from a commit in the manifest repository to a corresponding
commit in a project repository.

Notice the following important details:

8.20. West (Zephyr’s meta-tool) 1807

Zephyr Project Documentation, Release 2.7.0-rc2

• Projects can be added (like P1 between manifest repository commits D and E) and removed (P2
between the same manifest repository commits)

• Project and manifest repository histories don’t have to move forwards or backwards together:

– P2 stays the same from A → B, as do P1 and P3 from F → G.

– P3 moves forward from A → B.

– P3 moves backward from C → D.

One use for moving backward in project history is to “revert” a regression by going back to a
revision before it was introduced.

• Project repository commits can be “skipped”: P3 moves forward multiple commits in its history
from B → C.

• In the above diagram, no project repository has two revisions “at the same time”: every manifest
file refers to exactly one commit in the projects it cares about. This can be relaxed by using a
branch name as a manifest revision, at the cost of being able to bisect manifest repository history.

Manifest Files

West manifests are YAML files. Manifests have a top-level manifest section with some subsections, like
this:

manifest:
remotes:

short names for project URLs
projects:

a list of projects managed by west
defaults:

default project attributes
self:

configuration related to the manifest repository itself,
i.e. the repository containing west.yml

version: "<schema-version>"
group-filter:

a list of project groups to enable or disable

In YAML terms, the manifest file contains a mapping, with a manifest key. Any other keys and their
contents are ignored (west v0.5 also required a west key, but this is ignored starting with v0.6).

The manifest contains subsections, like defaults, remotes, projects, and self. In YAML terms, the
value of the manifest key is also a mapping, with these “subsections” as keys. As of west v0.10, all of
these “subsection” keys are optional.

The projects value is a list of repositories managed by west and associated metadata. We’ll discuss it
soon, but first we will describe the remotes section, which can be used to save typing in the projects
list.

Remotes The remotes subsection contains a sequence which specifies the base URLs where projects
can be fetched from.

Each remotes element has a name and a “URL base”. These are used to form the complete Git fetch URL
for each project. A project’s fetch URL can be set by appending a project-specific path onto a remote URL
base. (As we’ll see below, projects can also specify their complete fetch URLs.)

For example:

1808 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

manifest:
...
remotes:

- name: remote1
url-base: https://git.example.com/base1

- name: remote2
url-base: https://git.example.com/base2

The remotes keys and their usage are in the following table.

Table 16: remotes keys
Key Description
name Mandatory; a unique name for the remote.
url-base A prefix that is prepended to the fetch URL for each project with this remote.

Above, two remotes are given, with names remote1 and remote2. Their URL bases are respectively
https://git.example.com/base1 and https://git.example.com/base2. You can use SSH URL bases
as well; for example, you might use git@example.com:base1 if remote1 supported Git over SSH as well.
Anything acceptable to Git will work.

Projects The projects subsection contains a sequence describing the project repositories in the west
workspace. Every project has a unique name. You can specify what Git remote URLs to use when cloning
and fetching the projects, what revisions to track, and where the project should be stored on the local
file system.

Here is an example. We’ll assume the remotes given above.

manifest:
[... same remotes as above...]
projects:

- name: proj1
remote: remote1
path: extra/project-1

- name: proj2
repo-path: my-path
remote: remote2
revision: v1.3

- name: proj3
url: https://github.com/user/project-three
revision: abcde413a111

In this manifest:

• proj1 has remote remote1, so its Git fetch URL is https://git.example.com/base1/proj1. The
remote url-base is appended with a / and the project name to form the URL.

Locally, this project will be cloned at path extra/project-1 relative to the west workspace’s root
directory, since it has an explicit path attribute with this value.

Since the project has no revision specified, master is used by default. The current tip of this
branch will be fetched and checked out as a detached HEAD when west next updates this project.

• proj2 has a remote and a repo-path, so its fetch URL is https://git.example.com/base2/
my-path. The repo-path attribute, if present, overrides the default name when forming the fetch
URL.

Since the project has no path attribute, its name is used by default. It will be cloned into a directory
named proj2. The commit pointed to by the v1.3 tag will be checked out when west updates the
project.

8.20. West (Zephyr’s meta-tool) 1809

Zephyr Project Documentation, Release 2.7.0-rc2

• proj3 has an explicit url, so it will be fetched from https://github.com/user/project-three.

Its local path defaults to its name, proj3. Commit abcde413a111 will be checked out when it is
next updated.

The available project keys and their usage are in the following table. Sometimes we’ll refer to the
defaults subsection; it will be described next.

Table 17: projects elements keys
Key(s) Description
name Mandatory; a unique name for the project. The name cannot be one of the reserved

values “west” or “manifest”. The name must be unique in the manifest file.
remote, url Mandatory (one of the two, but not both).

If the project has a remote, that remote’s url-base will be combined with the
project’s name (or repo-path, if it has one) to form the fetch URL instead.
If the project has a url, that’s the complete fetch URL for the remote Git repository.
If the project has neither, the defaults section must specify a remote, which will be
used as the the project’s remote. Otherwise, the manifest is invalid.

repo-path Optional. If given, this is concatenated on to the remote’s url-base instead of the
project’s name to form its fetch URL. Projects may not have both url and repo-path
attributes.

revision Optional. The Git revision that west update should check out. This will be checked
out as a detached HEAD by default, to avoid conflicting with local branch names. If
not given, the revision value from the defaults subsection will be used if present.
A project revision can be a branch, tag, or SHA.
The default revision is master if not otherwise specified.

path Optional. Relative path specifying where to clone the repository locally, relative to
the top directory in the west workspace. If missing, the project’s name is used as a
directory name.

clone-depth Optional. If given, a positive integer which creates a shallow history in the cloned
repository limited to the given number of commits. This can only be used if the
revision is a branch or tag.

west-commands Optional. If given, a relative path to a YAML file within the project which de-
scribes additional west commands provided by that project. This file is named
west-commands.yml by convention. See Extensions for details.

import Optional. If true, imports projects from manifest files in the given repository into
the current manifest. See Manifest Imports for details.

groups Optional, a list of groups the project belongs to. See Project Groups and Active Projects
for details.

submodules Optional. You can use this to make west update also update Git submodules defined
by the project. See Git Submodules in Projects for details.

Defaults The defaults subsection can provide default values for project attributes. In particular, the
default remote name and revision can be specified here. Another way to write the same manifest we
have been describing so far using defaults is:

manifest:
defaults:

remote: remote1
revision: v1.3

remotes:
- name: remote1

url-base: https://git.example.com/base1
- name: remote2

url-base: https://git.example.com/base2

(continues on next page)

1810 Chapter 8. User and Developer Guides

https://git-scm.com/book/en/v2/Git-Tools-Submodules

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

projects:
- name: proj1

path: extra/project-1
revision: master

- name: proj2
repo-path: my-path
remote: remote2

- name: proj3
url: https://github.com/user/project-three
revision: abcde413a111

The available defaults keys and their usage are in the following table.

Table 18: defaults keys
Key Description
remote Optional. This will be used for a project’s remote if it does not have a url or remote

key set.
revision Optional. This will be used for a project’s revision if it does not have one set. If not

given, the default is master.

Self The self subsection can be used to control the manifest repository itself.

As an example, let’s consider this snippet from the zephyr repository’s west.yml:

manifest:
...
self:

path: zephyr
west-commands: scripts/west-commands.yml

This ensures that the zephyr repository is cloned into path zephyr, though as explained above
that would have happened anyway if cloning from the default manifest URL, https://github.com/
zephyrproject-rtos/zephyr. Since the zephyr repository does contain extension commands, its self
entry declares the location of the corresponding west-commands.yml relative to the repository root.

The available self keys and their usage are in the following table.

Table 19: self keys
Key Description
path Optional. The path west init should clone the manifest repository into, relative to

the west workspace topdir.
If not given, the basename of the path component in the manifest repository
URL will be used by default. For example, if the URL is https://git.example.
com/project-repo, the manifest repository would be cloned to the directory
project-repo.

west-commands Optional. This is analogous to the same key in a project sequence element.
import Optional. This is also analogous to the projects key, but allows importing projects

from other files in the manifest repository. See Manifest Imports.

Version The version subsection can be used to mark the lowest version of the manifest file schema
that can parse this file’s data:

manifest:
version: "0.10"

(continues on next page)

8.20. West (Zephyr’s meta-tool) 1811

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

marks that this file uses version 0.10 of the west manifest
file format.

The pykwalify schema manifest-schema.yml in the west source code repository is used to validate the
manifest section. The current manifest version is 0.10, which is supported by west version v0.10.x.

The version value may be "0.7", "0.8", "0.9", or "0.10". West v0.10.x can load manifests with any
of these version values, while west v0.9.x can only load versions up to "0.9", and so on.

West halts with an error if you ask it to load a manifest file written in a version it cannot handle.

Quoting the version value as shown above forces the YAML parser to treat it as a string. Without quotes,
0.10 in YAML is just the floating point value 0.1. You can omit the quotes if the value is the same when
cast to string, but it’s best to include them. Always use quotes if you’re not sure.

Group-filter See Project Groups and Active Projects.

Project Groups and Active Projects

You can use the groups and group-filter keys briefly described above to place projects into groups,
and filter which groups are enabled. These keys appear in the manifest like this:

manifest:
projects:

- name: some-project
groups: ...

group-filter: ...

You can enable or disable project groups using group-filter. Projects whose groups are all disabled are
inactive; west essentially ignores inactive projects unless explicitly requested not to.

The next section introduces project groups; the following sections describe Enabled and Disabled Project
Groups and Active and Inactive Projects. There are some basic examples in Project Group Examples.

Finally, Group Filters and Imports provides a simplified overview of how group-filter interacts with the
Manifest Imports feature.

Project Groups Inside manifest: projects:, you can add a project to one or more groups. The
groups key is a list of group names. Group names are strings.

For example, in this manifest fragment:

manifest:
projects:

- name: project-1
groups:

- groupA
- name: project-2

groups:
- groupB
- groupC

- name: project-3

The projects are in these groups:

• project-1: one group, named groupA

• project-2: two groups, named groupB and groupC

1812 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

• project-3: no groups

Project group names must not contain commas (,), colons (:), or whitespace.

Group names must not begin with a dash (-) or the plus sign (+), but they may contain these characters
elsewhere in their names. For example, foo-bar and foo+bar are valid groups, but -foobar and +foobar
are not.

Group names are otherwise arbitrary strings. Group names are case sensitive.

As a restriction, no project may use both import: and groups:. (This avoids some edge cases whose
semantics are difficult to specify.)

Enabled and Disabled Project Groups All project groups are enabled by default. You can enable or
disable groups in both your manifest file and Configuration.

Within a manifest file, manifest: group-filter: is a YAML list of groups to enable and disable.

To enable a group, prefix its name with a plus sign (+). For example, groupA is enabled in this manifest
fragment:

manifest:
group-filter: [+groupA]

Although this is redundant for groups that are already enabled by default, it can be used to override
settings in an imported manifest file. See Group Filters and Imports for more information.

To disable a group, prefix its name with a dash (-). For example, groupA and groupB are disabled in this
manifest fragment:

manifest:
group-filter: [-groupA,-groupB]

Note: Since group-filter is a YAML list, you could have written this fragment as follows:

manifest:
group-filter:

- -groupA
- -groupB

However, this syntax is harder to read and therefore discouraged.

In addition to the manifest file, you can control which groups are enabled and disabled using the
manifest.group-filter configuration option. This option is a comma-separated list of groups to enable
and/or disable.

To enable a group, add its name to the list prefixed with +. To disable a group, add its name prefixed
with -. For example, setting manifest.group-filter to +groupA,-groupB enables groupA, and disables
groupB.

The value of the configuration option overrides any data in the manifest file. You can think of this as if
the manifest.group-filter configuration option is appended to the manifest: group-filter: list
from YAML, with “last entry wins” semantics.

Active and Inactive Projects All projects are active by default. Projects with no groups are always
active. A project is inactive if all of its groups are disabled. This is the only way to make a project
inactive.

Most west commands that operate on projects will ignore inactive projects by default. For example, west
update when run without arguments will not update inactive projects. As another example, running west
list without arguments will not print information for inactive projects.

8.20. West (Zephyr’s meta-tool) 1813

Zephyr Project Documentation, Release 2.7.0-rc2

Project Group Examples This section contains example situations involving project groups and active
projects. The examples use both manifest: group-filter: YAML lists and manifest.group-filter
configuration lists, to show how they work together.

Note that the defaults and remotes data in the following manifests isn’t relevant except to make the
examples complete and self-contained.

Example 1: no disabled groups The entire manifest file is:

manifest:
projects:

- name: foo
groups:

- groupA
- name: bar

groups:
- groupA
- groupB

- name: baz

defaults:
remote: example-remote

remotes:
- name: example-remote

url-base: https://git.example.com

The manifest.group-filter configuration option is not set (you can ensure this by running west
config -D manifest.group-filter).

No groups are disabled, because all groups are enabled by default. Therefore, all three projects (foo,
bar, and baz) are active. Note that there is no way to make project baz inactive, since it has no groups.

Example 2: Disabling one group via manifest The entire manifest file is:

manifest:
projects:

- name: foo
groups:

- groupA
- name: bar

groups:
- groupA
- groupB

group-filter: [-groupA]

defaults:
remote: example-remote

remotes:
- name: example-remote

url-base: https://git.example.com

The manifest.group-filter configuration option is not set (you can ensure this by running west
config -D manifest.group-filter).

Since groupA is disabled, project foo is inactive. Project bar is active, because groupB is enabled.

Example 3: Disabling multiple groups via manifest The entire manifest file is:

1814 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

manifest:
projects:

- name: foo
groups:

- groupA
- name: bar

groups:
- groupA
- groupB

group-filter: [-groupA,-groupB]

defaults:
remote: example-remote

remotes:
- name: example-remote

url-base: https://git.example.com

The manifest.group-filter configuration option is not set (you can ensure this by running west
config -D manifest.group-filter).

Both foo and bar are inactive, because all of their groups are disabled.

Example 4: Disabling a group via configuration The entire manifest file is:

manifest:
projects:

- name: foo
groups:

- groupA
- name: bar

groups:
- groupA
- groupB

defaults:
remote: example-remote

remotes:
- name: example-remote

url-base: https://git.example.com

The manifest.group-filter configuration option is set to -groupA (you can ensure this by running
west config manifest.group-filter -- -groupA; the extra -- is required so the argument parser
does not treat -groupA as a command line option -g with value roupA).

Project foo is inactive because groupA has been disabled by the manifest.group-filter configuration
option. Project bar is active because groupB is enabled.

Example 5: Overriding a disabled group via configuration The entire manifest file is:

manifest:
projects:

- name: foo
- name: bar

groups:
- groupA

- name: baz
(continues on next page)

8.20. West (Zephyr’s meta-tool) 1815

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

groups:
- groupA
- groupB

group-filter: [-groupA]

defaults:
remote: example-remote

remotes:
- name: example-remote

url-base: https://git.example.com

The manifest.group-filter configuration option is set to +groupA (you can ensure this by running
west config manifest.group-filter +groupA).

In this case, groupA is enabled: the manifest.group-filter configuration option has higher precedence
than the manifest: group-filter: [-groupA] content in the manifest file.

Therefore, projects foo and bar are both active.

Example 6: Overriding multiple disabled groups via configuration The entire manifest file is:

manifest:
projects:

- name: foo
- name: bar

groups:
- groupA

- name: baz
groups:

- groupA
- groupB

group-filter: [-groupA,-groupB]

defaults:
remote: example-remote

remotes:
- name: example-remote

url-base: https://git.example.com

The manifest.group-filter configuration option is set to +groupA,+groupB (you can ensure this by
running west config manifest.group-filter "+groupA,+groupB").

In this case, both groupA and groupB are enabled, because the configuration value overrides the manifest
file for both groups.

Therefore, projects foo and bar are both active.

Example 7: Disabling multiple groups via configuration The entire manifest file is:

manifest:
projects:

- name: foo
- name: bar

groups:
- groupA

(continues on next page)

1816 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

- name: baz
groups:

- groupA
- groupB

defaults:
remote: example-remote

remotes:
- name: example-remote

url-base: https://git.example.com

The manifest.group-filter configuration option is set to -groupA,-groupB (you can ensure this by
running west config manifest.group-filter -- "-groupA,-groupB").

In this case, both groupA and groupB are disabled.

Therefore, projects foo and bar are both inactive.

Group Filters and Imports This section provides a simplified description of how the manifest:
group-filter: value behaves when combined with Manifest Imports. For complete details, see Man-
ifest Import Details.

Warning: The below semantics apply to west v0.10.0 and later. West v0.9.x semantics are different,
and combining group-filter with import in west v0.9.x is discouraged.

In short:

• if you only import one manifest, any groups it disables in its group-filter are also disabled in
your manifest

• you can override this in your manifest file’s manifest: group-filter: value, your workspace’s
manifest.group-filter configuration option, or both

Here are some examples.

Example 1: no overrides You are using this parent/west.yml manifest:

parent/west.yml:
manifest:

projects:
- name: child

url: https://git.example.com/child
import: true

- name: project-1
url: https://git.example.com/project-1
groups:

- unstable

And child/west.yml contains:

child/west.yml:
manifest:

group-filter: [-unstable]
projects:

- name: project-2
url: https://git.example.com/project-2

(continues on next page)

8.20. West (Zephyr’s meta-tool) 1817

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

- name: project-3
url: https://git.example.com/project-3
groups:

- unstable

Only child and project-2 are active in the resolved manifest.

The unstable group is disabled in child/west.yml, and that is not overridden in parent/west.yml.
Therefore, the final group-filter for the resolved manifest is [-unstable].

Since project-1 and project-3 are in the unstable group and are not in any other group, they are
inactive.

Example 2: overriding an imported group-filter via manifest You are using this parent/west.yml
manifest:

parent/west.yml:
manifest:

group-filter: [+unstable,-optional]
projects:

- name: child
url: https://git.example.com/child
import: true

- name: project-1
url: https://git.example.com/project-1
groups:

- unstable

And child/west.yml contains:

child/west.yml:
manifest:

group-filter: [-unstable]
projects:

- name: project-2
url: https://git.example.com/project-2
groups:

- optional
- name: project-3

url: https://git.example.com/project-3
groups:

- unstable

Only the child, project-1, and project-3 projects are active.

The [-unstable] group filter in child/west.yml is overridden in parent/west.yml, so the unstable
group is enabled. Since project-1 and project-3 are in the unstable group, they are active.

The same parent/west.yml file disables the optional group, so project-2 is inactive.

The final group filter specified by parent/west.yml is [+unstable,-optional].

Example 3: overriding an imported group-filter via configuration You are using this parent/
west.yml manifest:

parent/west.yml:
manifest:

projects:
(continues on next page)

1818 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

- name: child
url: https://git.example.com/child
import: true

- name: project-1
url: https://git.example.com/project-1
groups:

- unstable

And child/west.yml contains:

child/west.yml:
manifest:

group-filter: [-unstable]
projects:

- name: project-2
url: https://git.example.com/project-2
groups:

- optional
- name: project-3

url: https://git.example.com/project-3
groups:

- unstable

If you run:

west config manifest.group-filter +unstable,-optional

Then only the child, project-1, and project-3 projects are active.

The -unstable group filter in child/west.yml is overridden in the manifest.group-filter configu-
ration option, so the unstable group is enabled. Since project-1 and project-3 are in the unstable
group, they are active.

The same configuration option disables the optional group, so project-2 is inactive.

The final group filter specified by parent/west.yml and the manifest.group-filter configuration op-
tion is [+unstable,-optional].

Git Submodules in Projects

You can use the submodules keys briefly described above to force west update to also handle any Git
submodules configured in project’s git repository. The submodules key can appear inside projects, like
this:

manifest:
projects:

- name: some-project
submodules: ...

The submodules key can be a boolean or a list of mappings. We’ll describe these in order.

Option 1: Boolean This is the easiest way to use submodules.

If submodules is true as a projects attribute, west update will recursively update the project’s Git
submodules whenever it updates the project itself. If it’s false or missing, it has no effect.

For example, let’s say you have a source code repository foo, which has some submodules, and you
want west update to keep all of them them in sync, along with another project named bar in the same
workspace.

8.20. West (Zephyr’s meta-tool) 1819

https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://git-scm.com/book/en/v2/Git-Tools-Submodules

Zephyr Project Documentation, Release 2.7.0-rc2

You can do that with this manifest file:

manifest:
projects:

- name: foo
submodules: true

- name: bar

Here, west update will initialize and update all submodules in foo. If bar has any submodules, they are
ignored, because bar does not have a submodules value.

Option 2: List of mappings The submodules key may be a list of mappings, one list element for each
desired submodule. Each submodule listed is updated recursively. You can still track and update unlisted
submodules with git commands manually; present or not they will be completely ignored by west.

The path key must match exactly the path of one submodule relative to its parent west project, as shown
in the output of git submodule status. The name key is optional and not used by west for now; it’s not
passed to git submodule commands either. The name key was briefly mandatory in west version 0.9.0,
but was made optional in 0.9.1.

For example, let’s say you have a source code repository foo, which has many submodules, and you
want west update to keep some but not all of them in sync, along with another project named bar in
the same workspace.

You can do that with this manifest file:

manifest:
projects:

- name: foo
submodules:

- path: path/to/foo-first-sub
- name: foo-second-sub

path: path/to/foo-second-sub
- name: bar

Here, west update will recursively initialize and update just the submodules in foo with paths path/
to/foo-first-sub and path/to/foo-second-sub. Any submodules in bar are still ignored.

Manifest Imports

You can use the import key briefly described above to include projects from other manifest files in your
west.yml. This key can be either a project or self section attribute:

manifest:
projects:

- name: some-project
import: ...

self:
import: ...

You can use a “self: import:” to load additional files from the repository containing your west.yml. You
can use a “project: . . . import:” to load additional files defined in that project’s Git history.

West resolves the final manifest from individual manifest files in this order:

1. imported files in self

2. your west.yml file

3. imported files in projects

1820 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

During resolution, west ignores projects which have already been defined in other files. For example, a
project named foo in your west.yml makes west ignore other projects named foo imported from your
projects list.

The import key can be a boolean, path, mapping, or sequence. We’ll describe these in order, using
examples:

• Boolean

– Example 1.1: Downstream of a Zephyr release

– Example 1.2: “Rolling release” Zephyr downstream

– Example 1.3: Downstream of a Zephyr release, with module fork

• Relative path

– Example 2.1: Downstream of a Zephyr release with explicit path

– Example 2.2: Downstream with directory of manifest files

– Example 2.3: Continuous Integration overrides

• Mapping with additional configuration

– Example 3.1: Downstream with name allowlist

– Example 3.2: Downstream with path allowlist

– Example 3.3: Downstream with path blocklist

– Example 3.4: Import into a subdirectory

• Sequence of paths and mappings

– Example 4.1: Downstream with sequence of manifest files

– Example 4.2: Import order illustration

A more formal description of how this works is last, after the examples.

Troubleshooting Note If you’re using this feature and find west’s behavior confusing, try resolving your
manifest to see the final results after imports are done.

Option 1: Boolean This is the easiest way to use import.

If import is true as a projects attribute, west imports projects from the west.yml file in that project’s
root directory. If it’s false or missing, it has no effect. For example, this manifest would import west.yml
from the p1 git repository at revision v1.0:

manifest:
...
projects:

- name: p1
revision: v1.0
import: true # Import west.yml from p1's v1.0 git tag

- name: p2
import: false # Nothing is imported from p2.

- name: p3 # Nothing is imported from p3 either.

It’s an error to set import to either true or false inside self, like this:

manifest:
...
self:

import: true # Error

8.20. West (Zephyr’s meta-tool) 1821

Zephyr Project Documentation, Release 2.7.0-rc2

Example 1.1: Downstream of a Zephyr release You have a source code repository you want to use
with Zephyr v1.14.1 LTS. You want to maintain the whole thing using west. You don’t want to modify
any of the mainline repositories.

In other words, the west workspace you want looks like this:

my-downstream/
.west/ # west directory
zephyr/ # mainline zephyr repository

west.yml # the v1.14.1 version of this file is imported
modules/ # modules from mainline zephyr

hal/
[...other directories..]

[... other projects ...] # other mainline repositories
my-repo/ # your downstream repository

west.yml # main manifest importing zephyr/west.yml v1.14.1
[...other files..]

You can do this with the following my-repo/west.yml:

my-repo/west.yml:
manifest:

remotes:
- name: zephyrproject-rtos

url-base: https://github.com/zephyrproject-rtos
projects:

- name: zephyr
remote: zephyrproject-rtos
revision: v1.14.1
import: true

You can then create the workspace on your computer like this, assuming my-repo is hosted at https://
git.example.com/my-repo:

west init -m https://git.example.com/my-repo my-downstream
cd my-downstream
west update

After west init, my-downstream/my-repo will be cloned.

After west update, all of the projects defined in the zephyr repository’s west.yml at revision v1.14.1
will be cloned into my-downstream as well.

You can add and commit any code to my-repo you please at this point, including your own Zephyr
applications, drivers, etc. See Application Development.

Example 1.2: “Rolling release” Zephyr downstream This is similar to Example 1.1: Downstream of a
Zephyr release, except we’ll use revision: main for the zephyr repository:

my-repo/west.yml:
manifest:

remotes:
- name: zephyrproject-rtos

url-base: https://github.com/zephyrproject-rtos
projects:

- name: zephyr
remote: zephyrproject-rtos
revision: main
import: true

1822 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

You can create the workspace in the same way:

west init -m https://git.example.com/my-repo my-downstream
cd my-downstream
west update

This time, whenever you run west update, the special manifest-rev branch in the zephyr reposi-
tory will be updated to point at a newly fetched main branch tip from the URL https://github.com/
zephyrproject-rtos/zephyr.

The contents of zephyr/west.yml at the new manifest-rev will then be used to import projects from
Zephyr. This lets you stay up to date with the latest changes in the Zephyr project. The cost is that
running west update will not produce reproducible results, since the remote main branch can change
every time you run it.

It’s also important to understand that west ignores your working tree’s zephyr/west.yml entirely when
resolving imports. West always uses the contents of imported manifests as they were committed to the
latest manifest-rev when importing from a project.

You can only import manifest from the file system if they are in your manifest repository’s working tree.
See Example 2.2: Downstream with directory of manifest files for an example.

Example 1.3: Downstream of a Zephyr release, with module fork This manifest is similar to the
one in Example 1.1: Downstream of a Zephyr release, except it:

• is a downstream of Zephyr 2.0

• includes a downstream fork of the modules/hal/nordic module which was included in that release

my-repo/west.yml:
manifest:

remotes:
- name: zephyrproject-rtos

url-base: https://github.com/zephyrproject-rtos
- name: my-remote

url-base: https://git.example.com
projects:

- name: hal_nordic # higher precedence
remote: my-remote
revision: my-sha
path: modules/hal/nordic

- name: zephyr
remote: zephyrproject-rtos
revision: v2.0.0
import: true # imported projects have lower precedence

subset of zephyr/west.yml contents at v2.0.0:
manifest:

defaults:
remote: zephyrproject-rtos

remotes:
- name: zephyrproject-rtos

url-base: https://github.com/zephyrproject-rtos
projects:
...
- name: hal_nordic # lower precedence, values ignored

path: modules/hal/nordic
revision: another-sha

With this manifest file, the project named hal_nordic:

8.20. West (Zephyr’s meta-tool) 1823

https://github.com/zephyrproject-rtos/zephyr
https://github.com/zephyrproject-rtos/zephyr

Zephyr Project Documentation, Release 2.7.0-rc2

• is cloned from https://git.example.com/hal_nordic instead of https://github.com/
zephyrproject-rtos/hal_nordic.

• is updated to commit my-sha by west update, instead of the mainline commit another-sha

In other words, when your top-level manifest defines a project, like hal_nordic, west will ignore any
other definition it finds later on while resolving imports.

This does mean you have to copy the path: modules/hal/nordic value into my-repo/west.yml when
defining hal_nordic there. The value from zephyr/west.yml is ignored entirely. See Resolving Manifests
for troubleshooting advice if this gets confusing in practice.

When you run west update, west will:

• update zephyr’s manifest-rev to point at the v2.0.0 tag

• import zephyr/west.yml at that manifest-rev

• locally check out the v2.0.0 revisions for all zephyr projects except hal_nordic

• update hal_nordic to my-sha instead of another-sha

Option 2: Relative path The import value can also be a relative path to a manifest file or a directory
containing manifest files. The path is relative to the root directory of the projects or self repository
the import key appears in.

Here is an example:

manifest:
projects:

- name: project-1
revision: v1.0
import: west.yml

- name: project-2
revision: main
import: p2-manifests

self:
import: submanifests

This will import the following:

• the contents of project-1/west.yml at manifest-rev, which points at tag v1.0 after running
west update

• any YAML files in the directory tree project-2/p2-manifests at the latest commit in the main
branch, as fetched by west update, sorted by file name

• YAML files in submanifests in your manifest repository, as they appear on your file system, sorted
by file name

Notice how projects imports get data from Git using manifest-rev, while self imports get data from
your file system. This is because as usual, west leaves version control for your manifest repository up to
you.

Example 2.1: Downstream of a Zephyr release with explicit path This is an explicit way to write an
equivalent manifest to the one in Example 1.1: Downstream of a Zephyr release.

manifest:
remotes:

- name: zephyrproject-rtos
url-base: https://github.com/zephyrproject-rtos

projects:
- name: zephyr

(continues on next page)

1824 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

remote: zephyrproject-rtos
revision: v1.14.1
import: west.yml

The setting import: west.yml means to use the file west.yml inside the zephyr project. This example
is contrived, but shows the idea.

This can be useful in practice when the name of the manifest file you want to import is not west.yml.

Example 2.2: Downstream with directory of manifest files Your Zephyr downstream has a lot of
additional repositories. So many, in fact, that you want to split them up into multiple manifest files, but
keep track of them all in a single manifest repository, like this:

my-repo/
submanifests

01-libraries.yml
02-vendor-hals.yml
03-applications.yml

west.yml

You want to add all the files in my-repo/submanifests to the main manifest file, my-repo/west.yml, in
addition to projects in zephyr/west.yml. You want to track the latest development code in the Zephyr
repository’s main branch instead of using a fixed revision.

Here’s how:

my-repo/west.yml:
manifest:

remotes:
- name: zephyrproject-rtos

url-base: https://github.com/zephyrproject-rtos
projects:

- name: zephyr
remote: zephyrproject-rtos
revision: main
import: true

self:
import: submanifests

Manifest files are imported in this order during resolution:

1. my-repo/submanifests/01-libraries.yml

2. my-repo/submanifests/02-vendor-hals.yml

3. my-repo/submanifests/03-applications.yml

4. my-repo/west.yml

5. zephyr/west.yml

Note: The .yml file names are prefixed with numbers in this example to make sure they are imported
in the specified order.

You can pick arbitrary names. West sorts files in a directory by name before importing.

Notice how the manifests in submanifests are imported before my-repo/west.yml and zephyr/west.
yml. In general, an import in the self section is processed before the manifest files in projects and the
main manifest file.

8.20. West (Zephyr’s meta-tool) 1825

Zephyr Project Documentation, Release 2.7.0-rc2

This means projects defined in my-repo/submanifests take highest precedence. For example, if
01-libraries.yml defines hal_nordic, the project by the same name in zephyr/west.yml is simply
ignored. As usual, see Resolving Manifests for troubleshooting advice.

This may seem strange, but it allows you to redefine projects “after the fact”, as we’ll see in the next
example.

Example 2.3: Continuous Integration overrides Your continuous integration system needs to fetch
and test multiple repositories in your west workspace from a developer’s forks instead of your mainline
development trees, to see if the changes all work well together.

Starting with Example 2.2: Downstream with directory of manifest files, the CI scripts add a file 00-ci.yml
in my-repo/submanifests, with these contents:

my-repo/submanifests/00-ci.yml:
manifest:

projects:
- name: a-vendor-hal

url: https://github.com/a-developer/hal
revision: a-pull-request-branch

- name: an-application
url: https://github.com/a-developer/application
revision: another-pull-request-branch

The CI scripts run west update after generating this file in my-repo/submanifests. The projects defined
in 00-ci.yml have higher precedence than other definitions in my-repo/submanifests, because the
name 00-ci.yml comes before the other file names.

Thus, west update always checks out the developer’s branches in the projects named a-vendor-hal and
an-application, even if those same projects are also defined elsewhere.

Option 3: Mapping The import key can also contain a mapping with the following keys:

• file: Optional. The name of the manifest file or directory to import. This defaults to west.yml if
not present.

• name-allowlist: Optional. If present, a name or sequence of project names to include.

• path-allowlist: Optional. If present, a path or sequence of project paths to match against. This
is a shell-style globbing pattern, currently implemented with pathlib. Note that this means case
sensitivity is platform specific.

• name-blocklist: Optional. Like name-allowlist, but contains project names to exclude rather
than include.

• path-blocklist: Optional. Like path-allowlist, but contains project paths to exclude rather
than include.

• path-prefix: Optional (new in v0.8.0). If given, this will be prepended to the project’s path in the
workspace, as well as the paths of any imported projects. This can be used to place these projects
in a subdirectory of the workspace.

Allowlists override blocklists if both are given. For example, if a project is blocked by path, then allowed
by name, it will still be imported.

Example 3.1: Downstream with name allowlist Here is a pair of manifest files, representing a main-
line and a downstream. The downstream doesn’t want to use all the mainline projects, however. We’ll
assume the mainline west.yml is hosted at https://git.example.com/mainline/manifest.

1826 Chapter 8. User and Developer Guides

https://docs.python.org/3/library/pathlib.html#pathlib.PurePath.match

Zephyr Project Documentation, Release 2.7.0-rc2

mainline west.yml:
manifest:

projects:
- name: mainline-app # included

path: examples/app
url: https://git.example.com/mainline/app

- name: lib
path: libraries/lib
url: https://git.example.com/mainline/lib

- name: lib2 # included
path: libraries/lib2
url: https://git.example.com/mainline/lib2

downstream west.yml:
manifest:

projects:
- name: mainline

url: https://git.example.com/mainline/manifest
import:

name-allowlist:
- mainline-app
- lib2

- name: downstream-app
url: https://git.example.com/downstream/app

- name: lib3
path: libraries/lib3
url: https://git.example.com/downstream/lib3

An equivalent manifest in a single file would be:

manifest:
projects:

- name: mainline
url: https://git.example.com/mainline/manifest

- name: downstream-app
url: https://git.example.com/downstream/app

- name: lib3
path: libraries/lib3
url: https://git.example.com/downstream/lib3

- name: mainline-app # imported
path: examples/app
url: https://git.example.com/mainline/app

- name: lib2 # imported
path: libraries/lib2
url: https://git.example.com/mainline/lib2

If an allowlist had not been used, the lib project from the mainline manifest would have been imported.

Example 3.2: Downstream with path allowlist Here is an example showing how to allowlist main-
line’s libraries only, using path-allowlist.

mainline west.yml:
manifest:

projects:
- name: app

path: examples/app
url: https://git.example.com/mainline/app

(continues on next page)

8.20. West (Zephyr’s meta-tool) 1827

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

- name: lib
path: libraries/lib # included
url: https://git.example.com/mainline/lib

- name: lib2
path: libraries/lib2 # included
url: https://git.example.com/mainline/lib2

downstream west.yml:
manifest:

projects:
- name: mainline

url: https://git.example.com/mainline/manifest
import:

path-allowlist: libraries/*
- name: app

url: https://git.example.com/downstream/app
- name: lib3

path: libraries/lib3
url: https://git.example.com/downstream/lib3

An equivalent manifest in a single file would be:

manifest:
projects:

- name: lib # imported
path: libraries/lib
url: https://git.example.com/mainline/lib

- name: lib2 # imported
path: libraries/lib2
url: https://git.example.com/mainline/lib2

- name: mainline
url: https://git.example.com/mainline/manifest

- name: app
url: https://git.example.com/downstream/app

- name: lib3
path: libraries/lib3
url: https://git.example.com/downstream/lib3

Example 3.3: Downstream with path blocklist Here’s an example showing how to block all vendor
HALs from mainline by common path prefix in the workspace, add your own version for the chip you’re
targeting, and keep everything else.

mainline west.yml:
manifest:

defaults:
remote: mainline

remotes:
- name: mainline

url-base: https://git.example.com/mainline
projects:

- name: app
- name: lib

path: libraries/lib
- name: lib2

path: libraries/lib2
(continues on next page)

1828 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

- name: hal_foo
path: modules/hals/foo # excluded

- name: hal_bar
path: modules/hals/bar # excluded

- name: hal_baz
path: modules/hals/baz # excluded

downstream west.yml:
manifest:

projects:
- name: mainline

url: https://git.example.com/mainline/manifest
import:

path-blocklist: modules/hals/*
- name: hal_foo

path: modules/hals/foo
url: https://git.example.com/downstream/hal_foo

An equivalent manifest in a single file would be:

manifest:
defaults:

remote: mainline
remotes:

- name: mainline
url-base: https://git.example.com/mainline

projects:
- name: app # imported
- name: lib # imported

path: libraries/lib
- name: lib2 # imported

path: libraries/lib2
- name: mainline

repo-path: https://git.example.com/mainline/manifest
- name: hal_foo

path: modules/hals/foo
url: https://git.example.com/downstream/hal_foo

Example 3.4: Import into a subdirectory You want to import a manifest and its projects, placing
everything into a subdirectory of your west workspace.

For example, suppose you want to import this manifest from project foo, adding this project and its
projects bar and baz to your workspace:

foo/west.yml:
manifest:

defaults:
remote: example

remotes:
- name: example

url-base: https://git.example.com
projects:

- name: bar
- name: baz

Instead of importing these into the top level workspace, you want to place all three project repositories
in an external-code subdirectory, like this:

8.20. West (Zephyr’s meta-tool) 1829

Zephyr Project Documentation, Release 2.7.0-rc2

workspace/
external-code/

foo/
bar/
baz/

You can do this using this manifest:

manifest:
projects:

- name: foo
url: https://git.example.com/foo
import:

path-prefix: external-code

An equivalent manifest in a single file would be:

foo/west.yml:
manifest:

defaults:
remote: example

remotes:
- name: example

url-base: https://git.example.com
projects:

- name: foo
path: external-code/foo

- name: bar
path: external-code/bar

- name: baz
path: external-code/baz

Option 4: Sequence The import key can also contain a sequence of files, directories, and mappings.

Example 4.1: Downstream with sequence of manifest files This example manifest is equivalent to
the manifest in Example 2.2: Downstream with directory of manifest files, with a sequence of explicitly
named files.

my-repo/west.yml:
manifest:

projects:
- name: zephyr

url: https://github.com/zephyrproject-rtos/zephyr
import: west.yml

self:
import:

- submanifests/01-libraries.yml
- submanifests/02-vendor-hals.yml
- submanifests/03-applications.yml

Example 4.2: Import order illustration This more complicated example shows the order that west
imports manifest files:

1830 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

my-repo/west.yml
manifest:

...
projects:

- name: my-library
- name: my-app
- name: zephyr

import: true
- name: another-manifest-repo

import: submanifests
self:

import:
- submanifests/libraries.yml
- submanifests/vendor-hals.yml
- submanifests/applications.yml

defaults:
remote: my-remote

For this example, west resolves imports in this order:

1. the listed files in my-repo/submanifests are first, in the order they occur (e.g. libraries.yml
comes before applications.yml, since this is a sequence of files), since the self: import: is
always imported first

2. my-repo/west.yml is next (with projects my-library etc. as long as they weren’t already defined
somewhere in submanifests)

3. zephyr/west.yml is after that, since that’s the first import key in the projects list in my-repo/
west.yml

4. files in another-manifest-repo/submanifests are last (sorted by file name), since that’s the final
project import

Manifest Import Details This section describes how west resolves a manifest file that uses import a
bit more formally.

Overview The import key can appear in a west manifest’s projects and self sections. The general
case looks like this:

Top-level manifest file.
manifest:

projects:
- name: foo

import: import-1
- name: bar

import: import-2
...
- name: baz

import: import-N
self:

import: self-import

Import keys are optional. If any of import-1, ..., import-N are missing, west will not import addi-
tional manifest data from that project. If self-import is missing, no additional files in the manifest
repository (beyond the top-level file) are imported.

The ultimate outcomes of resolving manifest imports are:

8.20. West (Zephyr’s meta-tool) 1831

Zephyr Project Documentation, Release 2.7.0-rc2

• a projects list, which is produced by combining the projects defined in the top-level file with
those defined in imported files

• a set of extension commands, which are drawn from the the west-commands keys in in the top-level
file and any imported files

• a group-filter list, which is produced by combining the top-level and any imported filters

Importing is done in this order:

1. Manifests from self-import are imported first.

2. The top-level manifest file’s definitions are handled next.

3. Manifests from import-1, . . . , import-N, are imported in that order.

When an individual import key refers to multiple manifest files, they are processed in this order:

• If the value is a relative path naming a directory (or a map whose file is a directory), the manifest
files it contains are processed in lexicographic order – i.e., sorted by file name.

• If the value is a sequence, its elements are recursively imported in the order they appear.

This process recurses if necessary. E.g., if import-1 produces a manifest file that contains an import key,
it is resolved recursively using the same rules before its contents are processed further.

Projects This section describes how the final projects list is created.

Projects are identified by name. If the same name occurs in multiple manifests, the first definition is
used, and subsequent definitions are ignored. For example, if import-1 contains a project named bar,
that is ignored, because the top-level west.yml has already defined a project by that name.

The contents of files named by import-1 through import-N are imported from Git at the latest
manifest-rev revisions in their projects. These revisions can be updated to the values rev-1 through
rev-N by running west update. If any manifest-rev reference is missing or out of date, west update
also fetches project data from the remote fetch URL and updates the reference.

Also note that all imported manifests, from the root manifest to the repository which defines a project P,
must be up to date in order for west to update P itself. For example, this means west update P would up-
date manifest-rev in the baz project if baz/west.yml defines P, as well as updating the manifest-rev
branch in the local git clone of P. Confusingly, updating baz may result in the removal of P from baz/
west.yml, which “should” cause west update P to fail with an unrecognized project!

For this reason, it’s not possible to run west update P if P is defined in an imported manifest; you must
update this project along with all the others with a plain west update.

By default, west won’t fetch any project data over the network if a project’s revision is a SHA or tag which
is already available locally, so updating the extra projects shouldn’t take too much time unless it’s really
needed. See the documentation for the update.fetch configuration option for more information.

Extensions All extension commands defined using west-commands keys discovered while handling
imports are available in the resolved manifest.

If an imported manifest file has a west-commands: definition in its self: section, the extension com-
mands defined there are added to the set of available extensions at the time the manifest is imported.
They will thus take precedence over any extension commands with the same names added later on.

Group filters The resolved manifest has a group-filter value which is the result of concatenating the
group-filter values in the top-level manifest and any imported manifests.

Manifest files which appear earlier in the import order have higher precedence and are therefore con-
catenated later into the final group-filter.

In other words, let:

1832 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

• the submanifest resolved from self-import have group filter self-filter

• the top-level manifest file have group filter top-filter

• the submanifests resolved from import-1 through import-N have group filters filter-1 through
filter-N respectively

The final resolved group-filter value is then filter1 + filter-2 + ... + filter-N + top-filter
+ self-filter, where + here refers to list concatenation.

Important: The order that filters appear in the above list matters.

The last filter element in the final concatenated list “wins” and determines if the group is enabled or
disabled.

For example, in [-foo] + [+foo], group foo is enabled. However, in [+foo] + [-foo], group foo is
disabled.

For simplicity, west and this documentation may elide concatenated group filter elements which are
redundant using these rules. For example, [+foo] + [-foo] could be written more simply as [-foo],
for the reasons given above. As another example, [-foo] + [+foo] could be written as the empty list
[], since all groups are enabled by default.

Manifest Command

The west manifest command can be used to manipulate manifest files. It takes an action, and action-
specific arguments.

The following sections describe each action and provides a basic signature for simple uses. Run west
manifest --help for full details on all options.

Resolving Manifests The --resolve action outputs a single manifest file equivalent to your current
manifest and all its imported manifests:

west manifest --resolve [-o outfile]

The main use for this action is to see the “final” manifest contents after performing any imports.

To print detailed information about each imported manifest file and how projects are handled during
manifest resolution, set the maximum verbosity level using -v:

west -v manifest --resolve

Freezing Manifests The --freeze action outputs a frozen manifest:

west manifest --freeze [-o outfile]

A “frozen” manifest is a manifest file where every project’s revision is a SHA. You can use --freeze to
produce a frozen manifest that’s equivalent to your current manifest file. The -o option specifies an
output file; if not given, standard output is used.

Validating Manifests The --validate action either succeeds if the current manifest file is valid, or
fails with an error:

west manifest --validate

The error message can help diagnose errors.

8.20. West (Zephyr’s meta-tool) 1833

Zephyr Project Documentation, Release 2.7.0-rc2

Get the manifest path The --path action prints the path to the top level manifest file:

west manifest --path

The output is something like /path/to/workspace/west.yml. The path format depends on your oper-
ating system.

8.20.8 Configuration

This page documents west’s configuration file system, the west config command, and configuration
options used by built-in commands. For API documentation on the west.configuration module, see
west-apis-configuration.

West Configuration Files

West’s configuration file syntax is INI-like; here is an example file:

[manifest]
path = zephyr

[zephyr]
base = zephyr

Above, the manifest section has option path set to zephyr. Another way to say the same thing is that
manifest.path is zephyr in this file.

There are three types of configuration file:

1. System: Settings in this file affect west’s behavior for every user logged in to the computer. Its
location depends on the platform:

• Linux: /etc/westconfig

• macOS: /usr/local/etc/westconfig

• Windows: %PROGRAMDATA%\west\config

2. Global (per user): Settings in this file affect how west behaves when run by a particular user on
the computer.

• All platforms: the default is .westconfig in the user’s home directory.

• Linux note: if the environment variable XDG_CONFIG_HOME is set, then $XDG_CONFIG_HOME/
west/config is used.

• Windows note: the following environment variables are tested to find the home directory:
%HOME%, then %USERPROFILE%, then a combination of %HOMEDRIVE% and %HOMEPATH%.

3. Local: Settings in this file affect west’s behavior for the current west workspace. The file is .west/
config, relative to the workspace’s root directory.

A setting in a file which appears lower down on this list overrides an earlier setting. For example, if
color.ui is true in the system’s configuration file, but false in the workspace’s, then the final value is
false. Similarly, settings in the user configuration file override system settings, and so on.

west config

The built-in config command can be used to get and set configuration values. You can pass west config
the options --system, --global, or --local to specify which configuration file to use. Only one of these
can be used at a time. If none is given, then writes default to --local, and reads show the final value
after applying overrides.

1834 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Some examples for common uses follow; run west config -h for detailed help, and see Built-in Config-
uration Options for more details on built-in options.

To set manifest.path to some-other-manifest:

west config manifest.path some-other-manifest

Doing the above means that commands like west update will look for the west manifest inside the
some-other-manifest directory (relative to the workspace root directory) instead of the directory given
to west init, so be careful!

To read zephyr.base, the value which will be used as ZEPHYR_BASE if it is unset in the calling environ-
ment (also relative to the workspace root):

west config zephyr.base

You can switch to another zephyr repository without changing manifest.path – and thus the behavior
of commands like west update – using:

west config zephyr.base some-other-zephyr

This can be useful if you use commands like git worktree to create your own zephyr directories, and
want commands like west build to use them instead of the zephyr repository specified in the manifest.
(You can go back to using the directory in the upstream manifest by running west config zephyr.base
zephyr.)

To set color.ui to false in the global (user-wide) configuration file, so that west will no longer print
colored output for that user when run in any workspace:

west config --global color.ui false

To undo the above change:

west config --global color.ui true

Built-in Configuration Options

The following table documents configuration options supported by west’s built-in commands. Configu-
ration options supported by Zephyr’s extension commands are documented in the pages for those com-
mands.

8.20. West (Zephyr’s meta-tool) 1835

Zephyr Project Documentation, Release 2.7.0-rc2

Option Description
color.ui Boolean. If true (the default), then west output is colorized when stdout is

a terminal.
commands.
allow_extensions

Boolean, default true, disables Extensions if false

manifest.file String, default west.yml. Relative path from the manifest repository root
directory to the manifest file used by west init and other commands which
parse the manifest.

manifest.
group-filter

String, default empty. A comma-separated list of project groups to enable
and disable within the workspace. Prefix enabled groups with + and dis-
abled groups with -. For example, the value "+foo,-bar" enables group
foo and disables bar. See Project Groups and Active Projects.

manifest.path String, relative path from the west workspace root directory to the mani-
fest repository used by west update and other commands which parse the
manifest. Set locally by west init.

update.fetch String, one of "smart" (the default behavior starting in v0.6.1) or "always"
(the previous behavior). If set to "smart", the west update command will
skip fetching from project remotes when those projects’ revisions in the
manifest file are SHAs or tags which are already available locally. The
"always" behavior is to unconditionally fetch from the remote.

update.name-cache String. If non-empty, west update will use its value as the --name-cache
option’s value if not given on the command line.

update.narrow Boolean. If true, west update behaves as if --narrow was given on the
command line. The default is false.

update.path-cache String. If non-empty, west update will use its value as the --path-cache
option’s value if not given on the command line.

update.
sync-submodules

Boolean. If true (the default), west update will synchronize Git submodules
before updating them.

zephyr.base String, default value to set for the ZEPHYR_BASE environment variable while
the west command is running. By default, this is set to the path to the mani-
fest project with path zephyr (if there is one) during west init. If the vari-
able is already set, then this setting is ignored unless zephyr.base-prefer
is "configfile".

zephyr.base-prefer String, one the values "env" and "configfile". If set to "env" (the de-
fault), setting ZEPHYR_BASE in the calling environment overrides the value
of the zephyr.base configuration option. If set to "configfile", the con-
figuration option wins instead.

8.20.9 Extensions

West is “pluggable”: you can add your own commands to west without editing its source code. These are
called west extension commands, or just “extensions” for short. Extensions show up in the west --help
output in a special section for the project which defines them. This page provides general information
on west extension commands, and has a tutorial for writing your own.

Some commands you can run when using west with Zephyr, like the ones used to build, flash, and debug
and the ones described here , are extensions. That’s why help for them shows up like this in west --help:

commands from project at "zephyr":
completion: display shell completion scripts
boards: display information about supported boards
build: compile a Zephyr application
sign: sign a Zephyr binary for bootloader chain-loading
flash: flash and run a binary on a board
debug: flash and interactively debug a Zephyr application

(continues on next page)

1836 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

debugserver: connect to board and launch a debug server
attach: interactively debug a board

See zephyr/scripts/west-commands.yml and the zephyr/scripts/west_commands directory for the
implementation details.

Disabling Extension Commands

To disable support for extension commands, set the commands.allow_extensions configuration option
to false. To set this globally for whenever you run west, use:

west config --global commands.allow_extensions false

If you want to, you can then re-enable them in a particular west workspace with:

west config --local commands.allow_extensions true

Note that the files containing extension commands are not imported by west unless the commands are
explicitly run. See below for details.

Adding a West Extension

There are three steps to adding your own extension:

1. Write the code implementing the command.

2. Add information about it to a west-commands.yml file.

3. Make sure the west-commands.yml file is referenced in the west manifest.

Note that west ignores extension commands whose names are the same as a built-in command.

Step 1: Implement Your Command Create a Python file to contain your command implementation
(see the “Meta > Requires” information on the west PyPI page for details on the currently supported
versions of Python). You can put it in anywhere in any project tracked by your west manifest, or the
manifest repository itself. This file must contain a subclass of the west.commands.WestCommand class;
this class will be instantiated and used when your extension is run.

Here is a basic skeleton you can use to get started. It contains a subclass of WestCommand, with imple-
mentations for all the abstract methods. For more details on the west APIs you can use, see west-apis.

'''my_west_extension.py

Basic example of a west extension.'''

from textwrap import dedent # just for nicer code indentation

from west.commands import WestCommand # your extension must subclass this
from west import log # use this for user output

class MyCommand(WestCommand):

def __init__(self):
super().__init__(

'my-command-name', # gets stored as self.name
'one-line help for what my-command-name does', # self.help
self.description:

(continues on next page)

8.20. West (Zephyr’s meta-tool) 1837

https://pypi.org/project/west/

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

dedent('''
A multi-line description of my-command.

You can split this up into multiple paragraphs and they'll get
reflowed for you. You can also pass
formatter_class=argparse.RawDescriptionHelpFormatter when calling
parser_adder.add_parser() below if you want to keep your line
endings.'''))

def do_add_parser(self, parser_adder):
This is a bit of boilerplate, which allows you full control over the
type of argparse handling you want. The "parser_adder" argument is
the return value of an argparse.ArgumentParser.add_subparsers() call.
parser = parser_adder.add_parser(self.name,

help=self.help,
description=self.description)

Add some example options using the standard argparse module API.
parser.add_argument('-o', '--optional', help='an optional argument')
parser.add_argument('required', help='a required argument')

return parser # gets stored as self.parser

def do_run(self, args, unknown_args):
This gets called when the user runs the command, e.g.:
#
$ west my-command-name -o FOO BAR
--optional is FOO
required is BAR
log.inf('--optional is', args.optional)
log.inf('required is', args.required)

You can ignore the second argument to do_run() (unknown_args above), as WestCommand will reject
unknown arguments by default. If you want to be passed a list of unknown arguments instead, add
accepts_unknown_args=True to the super().__init__() arguments.

Step 2: Add or Update Your west-commands.yml You now need to add a west-commands.yml file to
your project which describes your extension to west.

Here is an example for the above class definition, assuming it’s in my_west_extension.py at the project
root directory:

west-commands:
- file: my_west_extension.py

commands:
- name: my-command-name

class: MyCommand
help: one-line help for what my-command-name does

The top level of this YAML file is a map with a west-commands key. The key’s value is a sequence
of “command descriptors”. Each command descriptor gives the location of a file implementing west
extensions, along with the names of those extensions, and optionally the names of the classes which
define them (if not given, the class value defaults to the same thing as name).

Some information in this file is redundant with definitions in the Python code. This is because west won’t
import my_west_extension.py until the user runs west my-command-name, since:

• It allows users to run west update with a manifest from an untrusted source, then use other west

1838 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

commands without your code being imported along the way. Since importing a Python module is
shell-equivalent, this provides some peace of mind.

• It’s a small optimization, since your code will only be imported if it is needed.

So, unless your command is explicitly run, west will just load the west-commands.yml file to get the basic
information it needs to display information about your extension to the user in west --help output, etc.

If you have multiple extensions, or want to split your extensions across multiple files, your
west-commands.yml will look something like this:

west-commands:
- file: my_west_extension.py

commands:
- name: my-command-name

class: MyCommand
help: one-line help for what my-command-name does

- file: another_file.py
commands:

- name: command2
help: another cool west extension

- name: a-third-command
class: ThirdCommand
help: a third command in the same file as command2

Above:

• my_west_extension.py defines extension my-command-name with class MyCommand

• another_file.py defines two extensions:

1. command2 with class command2

2. a-third-command with class ThirdCommand

See the file west-commands-schema.yml in the west repository for a schema describing the contents of
a west-comands.yml.

Step 3: Update Your Manifest Finally, you need to specify the location of the west-commands.yml you
just edited in your west manifest. If your extension is in a project, add it like this:

manifest:
[... other contents ...]

projects:
- name: your-project

west-commands: path/to/west-commands.yml
[... other projects ...]

Where path/to/west-commands.yml is relative to the root of the project. Note that the name
west-commands.yml, while encouraged, is just a convention; you can name the file something else if
you need to.

Alternatively, if your extension is in the manifest repository, just do the same thing in the manifest’s self
section, like this:

manifest:
[... other contents ...]

self:
west-commands: path/to/west-commands.yml

8.20. West (Zephyr’s meta-tool) 1839

https://github.com/zephyrproject-rtos/west/

Zephyr Project Documentation, Release 2.7.0-rc2

That’s it; you can now run west my-command-name. Your command’s name, help, and the project which
contains its code will now also show up in the west --help output. If you share the updated repositories
with others, they’ll be able to use it, too.

8.20.10 Building, Flashing and Debugging

Zephyr provides several west extension commands for building, flashing, and interacting with Zephyr
programs running on a board: build, flash, debug, debugserver and attach.

For information on adding board support for the flashing and debugging commands, see Flash and debug
support in the board porting guide.

Building: west build

Tip: Run west build -h for a quick overview.

The build command helps you build Zephyr applications from source. You can use west config to config-
ure its behavior.

Its default behavior tries to “do what you mean”:

• If there is a Zephyr build directory named build in your current working directory, it is incremen-
tally re-compiled. The same is true if you run west build from a Zephyr build directory.

• Otherwise, if you run west build from a Zephyr application’s source directory and no build direc-
tory is found, a new one is created and the application is compiled in it.

Basics The easiest way to use west build is to go to an application’s root directory (i.e. the folder
containing the application’s CMakeLists.txt) and then run:

west build -b <BOARD>

Where <BOARD> is the name of the board you want to build for. This is exactly the same name you would
supply to CMake if you were to invoke it with: cmake -DBOARD=<BOARD>.

Tip: You can use the west boards command to list all supported boards.

A build directory named build will be created, and the application will be compiled there after west
build runs CMake to create a build system in that directory. If west build finds an existing build
directory, the application is incrementally re-compiled there without re-running CMake. You can force
CMake to run again with --cmake.

You don’t need to use the --board option if you’ve already got an existing build directory; west build
can figure out the board from the CMake cache. For new builds, the --board option, BOARD environment
variable, or build.board configuration option are checked (in that order).

Examples Here are some west build usage examples, grouped by area.

Forcing CMake to Run Again To force a CMake re-run, use the --cmake (or --c) option:

west build -c

1840 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

Setting a Default Board To configure west build to build for the reel_board by default:

west config build.board reel_board

(You can use any other board supported by Zephyr here; it doesn’t have to be reel_board.)

Setting Source and Build Directories To set the application source directory explicitly, give its path as
a positional argument:

west build -b <BOARD> path/to/source/directory

To set the build directory explicitly, use --build-dir (or -d):

west build -b <BOARD> --build-dir path/to/build/directory

To change the default build directory from build, use the build.dir-fmt configuration option. This lets
you name build directories using format strings, like this:

west config build.dir-fmt "build/{board} /{app} "

With the above, running west build -b reel_board samples/hello_world will use build directory
build/reel_board/hello_world. See Configuration Options for more details on this option.

Setting the Build System Target To specify the build system target to run, use --target (or -t).

For example, on host platforms with QEMU, you can use the run target to build and run the hello_world
sample for the emulated qemu_x86 board in one command:

west build -b qemu_x86 -t run samples/hello_world

As another example, to use -t to list all build system targets:

west build -t help

As a final example, to use -t to run the pristine target, which deletes all the files in the build directory:

west build -t pristine

Pristine Builds A pristine build directory is essentially a new build directory. All byproducts from
previous builds have been removed.

To force west build make the build directory pristine before re-running CMake to generate a build
system, use the --pristine=always (or -p=always) option.

Giving --pristine or -p without a value has the same effect as giving it the value always. For example,
these commands are equivalent:

west build -p -b reel_board samples/hello_world
west build -p=always -b reel_board samples/hello_world

By default, west build applies a heuristic to detect if the build directory needs to be made pristine. This
is the same as using --pristine=auto.

Tip: You can run west config build.pristine always to always do a pristine build, or west config
build.pristine never to disable the heuristic. See the west build Configuration Options for details.

8.20. West (Zephyr’s meta-tool) 1841

Zephyr Project Documentation, Release 2.7.0-rc2

Verbose Builds To print the CMake and compiler commands run by west build, use the global west
verbosity option, -v:

west -v build -b reel_board samples/hello_world

One-Time CMake Arguments To pass additional arguments to the CMake invocation performed by
west build, pass them after a -- at the end of the command line.

Important: Passing additional CMake arguments like this forces west build to re-run CMake, even if
a build system has already been generated.

After using -- once to generate the build directory, use west build -d <build-dir> on subsequent
runs to do incremental builds.

For example, to use the Unix Makefiles CMake generator instead of Ninja (which west build uses by
default), run:

west build -b reel_board -- -G'Unix Makefiles'

To use Unix Makefiles and set CMAKE_VERBOSE_MAKEFILE to ON:

west build -b reel_board -- -G'Unix Makefiles' -DCMAKE_VERBOSE_MAKEFILE=ON

Notice how the -- only appears once, even though multiple CMake arguments are given. All command-
line arguments to west build after a -- are passed to CMake.

To set DTC_OVERLAY_FILE to enable-modem.overlay, using that file as a devicetree overlay:

west build -b reel_board -- -DDTC_OVERLAY_FILE=enable-modem.overlay

To merge the file.conf Kconfig fragment into your build’s .config:

west build -- -DOVERLAY_CONFIG=file.conf

Permanent CMake Arguments The previous section describes how to add CMake arguments for a
single west build command. If you want to save CMake arguments for west build to use every time
it generates a new build system instead, you should use the build.cmake-args configuration option.
Whenever west build runs CMake to generate a build system, it splits this option’s value according to
shell rules and includes the results in the cmake command line.

Remember that, by default, west build tries to avoid generating a new build system if one is present
in your build directory. Therefore, you need to either delete any existing build directories or do a pristine
build after setting build.cmake-args to make sure it will take effect.

For example, to always enable CMAKE_EXPORT_COMPILE_COMMANDS, you can run:

west config build.cmake-args -- -DCMAKE_EXPORT_COMPILE_COMMANDS=ON

(The extra -- is used to force the rest of the command to be treated as a positional argument. Without
it, west config would treat the -DVAR=VAL syntax as a use of its -D option.)

To enable CMAKE_VERBOSE_MAKEFILE, so CMake always produces a verbose build system:

west config build.cmake-args -- -DCMAKE_VERBOSE_MAKEFILE=ON

To save more than one argument in build.cmake-args, use a single string whose value can be split into
distinct arguments (west build uses the Python function shlex.split() internally to split the value).

For example, to enable both CMAKE_EXPORT_COMPILE_COMMANDS and CMAKE_VERBOSE_MAKEFILE:

1842 Chapter 8. User and Developer Guides

https://cmake.org/cmake/help/latest/variable/CMAKE_VERBOSE_MAKEFILE.html
https://docs.python.org/3/library/shlex.html#shlex.split

Zephyr Project Documentation, Release 2.7.0-rc2

west config build.cmake-args -- "-DCMAKE_EXPORT_COMPILE_COMMANDS=ON -DCMAKE_VERBOSE_
→˓MAKEFILE=ON"

If you want to save your CMake arguments in a separate file instead, you can combine CMake’s -C
<initial-cache> option with build.cmake-args. For instance, another way to set the options used in
the previous example is to create a file named ~/my-cache.cmake with the following contents:

set(CMAKE_EXPORT_COMPILE_COMMANDS ON CACHE BOOL "")
set(CMAKE_VERBOSE_MAKEFILE ON CACHE BOOL "")

Then run:

west config build.cmake-args "-C ~/my-cache.cmake"

See the cmake(1) manual page and the set() command documentation for more details.

Build tool arguments Use -o to pass options to the underlying build tool.

This works with both ninja (the default) and make based build systems.

For example, to pass -dexplain to ninja:

west build -o=-dexplain

As another example, to pass --keep-going to make:

west build -o=--keep-going

Note that using -o=--foo instead of -o --foo is required to prevent --foo from being treated as a west
build option.

Build parallelism By default, ninja uses all of your cores to build, while make uses only one. You can
control this explicitly with the -j option supported by both tools.

For example, to build with 4 cores:

west build -o=-j4

The -o option is described further in the previous section.

Configuration Options You can configure west build using these options.

8.20. West (Zephyr’s meta-tool) 1843

https://cmake.org/cmake/help/latest/manual/cmake.1.html
https://cmake.org/cmake/help/latest/command/set.html

Zephyr Project Documentation, Release 2.7.0-rc2

Option Description
build.board String. If given, this the board used by west build when --board is not given

and BOARD is unset in the environment.
build.board_warn Boolean, default true. If false, disables warnings when west build can’t

figure out the target board.
build.cmake-args String. If present, the value will be split according to shell rules and passed

to CMake whenever a new build system is generated. See Permanent CMake
Arguments.

build.dir-fmt String, default build. The build folder format string, used by west when-
ever it needs to create or locate a build folder. The currently available
arguments are:

• board: The board name
• source_dir: The relative path from the current working directory to

the source directory. If the current working directory is inside the
source directory this will be set to an empty string.

• app: The name of the source directory.

build.generator String, default Ninja. The CMake Generator to use to create a build system.
(To set a generator for a single build, see the above example)

build.guess-dir String, instructs west whether to try to guess what build folder to use when
build.dir-fmt is in use and not enough information is available to resolve
the build folder name. Can take these values:

• never (default): Never try to guess, bail out instead and require the
user to provide a build folder with -d.

• runners: Try to guess the folder when using any of the ‘runner’ com-
mands. These are typically all commands that invoke an external tool,
such as flash and debug.

build.pristine String. Controls the way in which west build may clean the build folder
before building. Can take the following values:

• never (default): Never automatically make the build folder pristine.
• auto: west build will automatically make the build folder pristine

before building, if a build system is present and the build would fail
otherwise (e.g. the user has specified a different board or application
from the one previously used to make the build directory).

• always: Always make the build folder pristine before building, if a
build system is present.

Flashing: west flash

Tip: Run west flash -h for additional help.

Basics From a Zephyr build directory, re-build the binary and flash it to your board:

west flash

Without options, the behavior is the same as ninja flash (or make flash, etc.).

To specify the build directory, use --build-dir (or -d):

west flash --build-dir path/to/build/directory

1844 Chapter 8. User and Developer Guides

https://cmake.org/cmake/help/latest/manual/cmake-generators.7.html

Zephyr Project Documentation, Release 2.7.0-rc2

If you don’t specify the build directory, west flash searches for one in build, then the current working
directory. If you set the build.dir-fmt configuration option (see Setting Source and Build Directories),
west flash searches there instead of build.

Choosing a Runner If your board’s Zephyr integration supports flashing with multiple programs, you
can specify which one to use using the --runner (or -r) option. For example, if West flashes your board
with nrfjprog by default, but it also supports JLink, you can override the default with:

west flash --runner jlink

You can override the default flash runner at build time by using the BOARD_FLASH_RUNNER CMake vari-
able, and the debug runner with BOARD_DEBUG_RUNNER.

For example:

Set the default runner to "jlink", overriding the board's
usual default.
west build [...] -- -DBOARD_FLASH_RUNNER=jlink

See One-Time CMake Arguments and Permanent CMake Arguments for more information on setting CMake
arguments.

See Flash and debug runners below for more information on the runner library used by West. The list
of runners which support flashing can be obtained with west flash -H; if run from a build directory or
with --build-dir, this will print additional information on available runners for your board.

Configuration Overrides The CMake cache contains default values West uses while flashing, such as
where the board directory is on the file system, the path to the zephyr binaries to flash in several formats,
and more. You can override any of this configuration at runtime with additional options.

For example, to override the HEX file containing the Zephyr image to flash (assuming your runner expects
a HEX file), but keep other flash configuration at default values:

west flash --hex-file path/to/some/other.hex

The west flash -h output includes a complete list of overrides supported by all runners.

Runner-Specific Overrides Each runner may support additional options related to flashing. For exam-
ple, some runners support an --erase flag, which mass-erases the flash storage on your board before
flashing the Zephyr image.

To view all of the available options for the runners your board supports, as well as their usage informa-
tion, use --context (or -H):

west flash --context

Important: Note the capital H in the short option name. This re-runs the build in order to ensure the
information displayed is up to date!

When running West outside of a build directory, west flash -H just prints a list of runners. You can use
west flash -H -r <runner-name> to print usage information for options supported by that runner.

For example, to print usage information about the jlink runner:

west flash -H -r jlink

8.20. West (Zephyr’s meta-tool) 1845

Zephyr Project Documentation, Release 2.7.0-rc2

Debugging: west debug, west debugserver

Tip: Run west debug -h or west debugserver -h for additional help.

Basics From a Zephyr build directory, to attach a debugger to your board and open up a debug console
(e.g. a GDB session):

west debug

To attach a debugger to your board and open up a local network port you can connect a debugger to
(e.g. an IDE debugger):

west debugserver

Without options, the behavior is the same as ninja debug and ninja debugserver (or make debug,
etc.).

To specify the build directory, use --build-dir (or -d):

west debug --build-dir path/to/build/directory
west debugserver --build-dir path/to/build/directory

If you don’t specify the build directory, these commands search for one in build, then the current working
directory. If you set the build.dir-fmt configuration option (see Setting Source and Build Directories),
west debug searches there instead of build.

Choosing a Runner If your board’s Zephyr integration supports debugging with multiple programs,
you can specify which one to use using the --runner (or -r) option. For example, if West debugs your
board with pyocd-gdbserver by default, but it also supports JLink, you can override the default with:

west debug --runner jlink
west debugserver --runner jlink

See Flash and debug runners below for more information on the runner library used by West. The list of
runners which support debugging can be obtained with west debug -H; if run from a build directory or
with --build-dir, this will print additional information on available runners for your board.

Configuration Overrides The CMake cache contains default values West uses for debugging, such as
where the board directory is on the file system, the path to the zephyr binaries containing symbol tables,
and more. You can override any of this configuration at runtime with additional options.

For example, to override the ELF file containing the Zephyr binary and symbol tables (assuming your
runner expects an ELF file), but keep other debug configuration at default values:

west debug --elf-file path/to/some/other.elf
west debugserver --elf-file path/to/some/other.elf

The west debug -h output includes a complete list of overrides supported by all runners.

Runner-Specific Overrides Each runner may support additional options related to debugging. For
example, some runners support flags which allow you to set the network ports used by debug servers.

To view all of the available options for the runners your board supports, as well as their usage informa-
tion, use --context (or -H):

1846 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

west debug --context

(The command west debugserver --context will print the same output.)

Important: Note the capital H in the short option name. This re-runs the build in order to ensure the
information displayed is up to date!

When running West outside of a build directory, west debug -H just prints a list of runners. You can use
west debug -H -r <runner-name> to print usage information for options supported by that runner.

For example, to print usage information about the jlink runner:

west debug -H -r jlink

Flash and debug runners

The flash and debug commands use Python wrappers around various Flash & Debug Host Tools. These
wrappers are all defined in a Python library at scripts/west_commands/runners. Each wrapper is called
a runner. Runners can flash and/or debug Zephyr programs.

The central abstraction within this library is ZephyrBinaryRunner, an abstract class which represents
runners. The set of available runners is determined by the imported subclasses of ZephyrBinaryRunner.
ZephyrBinaryRunner is available in the runners.core module; individual runner implementations are
in other submodules, such as runners.nrfjprog, runners.openocd, etc.

Hacking

This section documents the runners.core module used by the flash and debug commands. This is the
core abstraction used to implement support for these features.

Warning: These APIs are provided for reference, but they are more “shared code” used to implement
multiple extension commands than a stable API.

Developers can add support for new ways to flash and debug Zephyr programs by implementing addi-
tional runners. To get this support into upstream Zephyr, the runner should be added into a new or
existing runners module, and imported from runners/__init__.py.

Note: The test cases in scripts/west_commands/tests add unit test coverage for the runners package
and individual runner classes.

Please try to add tests when adding new runners. Note that if your changes break existing test cases, CI
testing on upstream pull requests will fail.

Zephyr binary runner core interfaces

This provides the core ZephyrBinaryRunner class meant for public use, as well as some other helpers for
concrete runner classes.

class runners.core.BuildConfiguration(build_dir: str)
This helper class provides access to build-time configuration.

Configuration options can be read as if the object were a dict, either object[‘CONFIG_FOO’] or
object.get(‘CONFIG_FOO’).

Kconfig configuration values are available (parsed from .config).

8.20. West (Zephyr’s meta-tool) 1847

https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/west_commands/runners
https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/west_commands/tests

Zephyr Project Documentation, Release 2.7.0-rc2

getboolean(option)
If a boolean option is explicitly set to y or n, returns its value. Otherwise, falls back to False.

exception runners.core.MissingProgram(program)

FileNotFoundError subclass for missing program dependencies.

No significant changes from the parent FileNotFoundError; this is useful for explicitly signaling that
the file in question is a program that some class requires to proceed.

The filename attribute contains the missing program.

class runners.core.NetworkPortHelper

Helper class for dealing with local IP network ports.

get_unused_ports(starting_from)

Find unused network ports, starting at given values.

starting_from is an iterable of ports the caller would like to use.

The return value is an iterable of ports, in the same order, using the given values if they were
unused, or the next sequentially available unused port otherwise.

Ports may be bound between this call’s check and actual usage, so callers still need to handle
errors involving returned ports.

class runners.core.RunnerCaps(commands: Set[str] = {'attach', 'debug', 'debugserver', 'flash'},
flash_addr: bool = False, erase: bool = False)

This class represents a runner class’s capabilities.

Each capability is represented as an attribute with the same name. Flag attributes are True or False.

Available capabilities:

• commands: set of supported commands; default is {‘flash’, ‘debug’, ‘debugserver’, ‘attach’}.

• flash_addr: whether the runner supports flashing to an arbitrary address. Default is False. If
true, the runner must honor the –dt-flash option.

• erase: whether the runner supports an –erase option, which does a mass-erase of the entire
addressable flash on the target before flashing. On multi-core SoCs, this may only erase
portions of flash specific the actual target core. (This option can be useful for things like
clearing out old settings values or other subsystem state that may affect the behavior of the
zephyr image. It is also sometimes needed by SoCs which have flash-like areas that can’t be
sector erased by the underlying tool before flashing; UICR on nRF SoCs is one example.)

class runners.core.RunnerConfig(build_dir: str, board_dir: str, elf_file: Optional[str], hex_file:
Optional[str], bin_file: Optional[str], gdb: Optional[str] = None,
openocd: Optional[str] = None, openocd_search: List[str] = [])

Runner execution-time configuration.

This is a common object shared by all runners. Individual runners can register specific configuration
options using their do_add_parser() hooks.

bin_file: Optional[str]

Alias for field number 4

board_dir: str

Alias for field number 1

build_dir: str

Alias for field number 0

elf_file: Optional[str]

Alias for field number 2

1848 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

gdb: Optional[str]

Alias for field number 5

hex_file: Optional[str]

Alias for field number 3

openocd: Optional[str]

Alias for field number 6

openocd_search: List[str]

Alias for field number 7

class runners.core.ZephyrBinaryRunner(cfg: runners.core.RunnerConfig)

Abstract superclass for binary runners (flashers, debuggers).

Note: this class’s API has changed relatively rarely since it as added, but it is not considered a
stable Zephyr API, and may change without notice.

With some exceptions, boards supported by Zephyr must provide generic means to be flashed (have
a Zephyr firmware binary permanently installed on the device for running) and debugged (have a
breakpoint debugger and program loader on a host workstation attached to a running target).

This is supported by four top-level commands managed by the Zephyr build system:

• ‘flash’: flash a previously configured binary to the board, start execution on the target, then
return.

• ‘debug’: connect to the board via a debugging protocol, program the flash, then drop the user
into a debugger interface with symbol tables loaded from the current binary, and block until
it exits.

• ‘debugserver’: connect via a board-specific debugging protocol, then reset and halt the target.
Ensure the user is now able to connect to a debug server with symbol tables loaded from the
binary.

• ‘attach’: connect to the board via a debugging protocol, then drop the user into a debugger
interface with symbol tables loaded from the current binary, and block until it exits. Unlike
‘debug’, this command does not program the flash.

This class provides an API for these commands. Every subclass is called a ‘runner’ for short. Each
runner has a name (like ‘pyocd’), and declares commands it can handle (like ‘flash’). Boards (like
‘nrf52dk_nrf52832’) declare which runner(s) are compatible with them to the Zephyr build system,
along with information on how to configure the runner to work with the board.

The build system will then place enough information in the build directory to create and use
runners with this class’s create() method, which provides a command line argument parsing API.
You can also create runners by instantiating subclasses directly.

In order to define your own runner, you need to:

1. Define a ZephyrBinaryRunner subclass, and implement its abstract methods. You may need to
override capabilities().

2. Make sure the Python module defining your runner class is imported, e.g. by editing this
package’s __init__.py (otherwise, get_runners() won’t work).

3. Give your runner’s name to the Zephyr build system in your board’s board.cmake.

Additional advice:

• If you need to import any non-standard-library modules, make sure to catch ImportError and
defer complaints about it to a RuntimeError if one is missing. This avoids affecting users that
don’t require your runner, while still making it clear what went wrong to users that do require
it that don’t have the necessary modules installed.

8.20. West (Zephyr’s meta-tool) 1849

Zephyr Project Documentation, Release 2.7.0-rc2

• If you need to ask the user something (e.g. using input()), do it in your create() classmethod,
not do_run(). That ensures your __init__() really has everything it needs to call do_run(),
and also avoids calling input() when not instantiating within a command line application.

• Use self.logger to log messages using the standard library’s logging API; your logger is named
“runner.<your-runner-name()>”

For command-line invocation from the Zephyr build system, runners define their own argparse-
based interface through the common add_parser() (and runner-specific do_add_parser() it dele-
gates to), and provide a way to create instances of themselves from a RunnerConfig and parsed
runner-specific arguments via create().

Runners use a variety of host tools and configuration values, the user interface to which is ab-
stracted by this class. Each runner subclass should take any values it needs to execute one of these
commands in its constructor. The actual command execution is handled in the run() method.

classmethod add_parser(parser)
Adds a sub-command parser for this runner.

The given object, parser, is a sub-command parser from the argparse module. For more details,
refer to the documentation for argparse.ArgumentParser.add_subparsers().

The lone common optional argument is:

• –dt-flash (if the runner capabilities includes flash_addr)

Runner-specific options are added through the do_add_parser() hook.

property build_conf: runners.core.BuildConfiguration

Get a BuildConfiguration for the build directory.

call(cmd: List[str], **kwargs) → int

Subclass subprocess.call() wrapper.

Subclasses should use this method to run command in a subprocess and get its return code,
rather than using subprocess directly, to keep accurate debug logs.

classmethod capabilities() → runners.core.RunnerCaps
Returns a RunnerCaps representing this runner’s capabilities.

This implementation returns the default capabilities.

Subclasses should override appropriately if needed.

cfg

RunnerConfig for this instance.

check_call(cmd: List[str], **kwargs)
Subclass subprocess.check_call() wrapper.

Subclasses should use this method to run command in a subprocess and check that it executed
correctly, rather than using subprocess directly, to keep accurate debug logs.

check_output(cmd: List[str], **kwargs) → bytes

Subclass subprocess.check_output() wrapper.

Subclasses should use this method to run command in a subprocess and check that it executed
correctly, rather than using subprocess directly, to keep accurate debug logs.

classmethod create(cfg: runners.core.RunnerConfig, args: argparse.Namespace) →
runners.core.ZephyrBinaryRunner

Create an instance from command-line arguments.

• cfg: runner configuration (pass to superclass __init__)

• args: arguments parsed from execution environment, as specified by add_parser().

1850 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

abstract classmethod do_add_parser(parser)
Hook for adding runner-specific options.

abstract classmethod do_create(cfg: runners.core.RunnerConfig, args: argparse.Namespace)
→ runners.core.ZephyrBinaryRunner

Hook for instance creation from command line arguments.

abstract do_run(command: str, **kwargs)
Concrete runner; run() delegates to this. Implement in subclasses.

In case of an unsupported command, raise a ValueError.

ensure_output(output_type: str) → None
Ensure self.cfg has a particular output artifact.

For example, ensure_output(‘bin’) ensures that self.cfg.bin_file refers to an existing file. Errors
out if it’s missing or undefined.

Parameters output_type – string naming the output type

static flash_address_from_build_conf(build_conf: runners.core.BuildConfiguration)
If CONFIG_HAS_FLASH_LOAD_OFFSET is n in build_conf, return the CON-
FIG_FLASH_BASE_ADDRESS value. Otherwise, return CONFIG_FLASH_BASE_ADDRESS +
CONFIG_FLASH_LOAD_OFFSET.

static get_flash_address(args: argparse.Namespace, build_conf:
runners.core.BuildConfiguration, default: int = 0) → int

Helper method for extracting a flash address.

If args.dt_flash is true, returns the address obtained from ZephyrBinaryRun-
ner.flash_address_from_build_conf(build_conf).

Otherwise (when args.dt_flash is False), the default value is returned.

static get_runners() → List[Type[runners.core.ZephyrBinaryRunner]]
Get a list of all currently defined runner classes.

logger
logging.Logger for this instance.

abstract classmethod name() → str
Return this runner’s user-visible name.

When choosing a name, pick something short and lowercase, based on the name of the tool
(like openocd, jlink, etc.) or the target architecture/board (like xtensa etc.).

popen_ignore_int(cmd: List[str]) → subprocess.Popen
Spawn a child command, ensuring it ignores SIGINT.

The returned subprocess.Popen object must be manually terminated.

static require(program: str) → str
Require that a program is installed before proceeding.

Parameters program – name of the program that is required, or path to a program
binary.

If program is an absolute path to an existing program binary, this call succeeds. Otherwise,
try to find the program by name on the system PATH.

If the program can be found, its path is returned. Otherwise, raises MissingProgram.

run(command: str, **kwargs)
Runs command (‘flash’, ‘debug’, ‘debugserver’, ‘attach’).

This is the main entry point to this runner.

8.20. West (Zephyr’s meta-tool) 1851

Zephyr Project Documentation, Release 2.7.0-rc2

run_client(client)
Run a client that handles SIGINT.

run_server_and_client(server, client)
Run a server that ignores SIGINT, and a client that handles it.

This routine portably:

• creates a Popen object for the server command which ignores SIGINT

• runs client in a subprocess while temporarily ignoring SIGINT

• cleans up the server after the client exits.

It’s useful to e.g. open a GDB server and client.

property thread_info_enabled: bool

Returns True if self.build_conf has CONFIG_DEBUG_THREAD_INFO enabled. This supports
the CONFIG_OPENOCD_SUPPORT fallback as well for now.

Doing it By Hand

If you prefer not to use West to flash or debug your board, simply inspect the build directory for the
binaries output by the build system. These will be named something like zephyr/zephyr.elf, zephyr/
zephyr.hex, etc., depending on your board’s build system integration. These binaries may be flashed
to a board using alternative tools of your choice, or used for debugging as needed, e.g. as a source of
symbol tables.

By default, these West commands rebuild binaries before flashing and debugging. This can of course
also be accomplished using the usual targets provided by Zephyr’s build system (in fact, that’s how these
commands do it).

8.20.11 Signing Binaries

The west sign extension command can be used to sign a Zephyr application binary for consumption by
a bootloader using an external tool. Run west sign -h for command line help.

MCUboot / imgtool

The Zephyr build system has special support for signing binaries for use with the MCUboot bootloader
using the imgtool program provided by its developers. You can both build and sign this type of application
binary in one step by setting some Kconfig options. If you do, west flash will use the signed binaries.

If you use this feature, you don’t need to run west sign yourself; the build system will do it for you.

Here is an example workflow, which builds and flashes MCUboot, as well as the hello_world application
for chain-loading by MCUboot. Run these commands from the zephyrproject workspace you created
in the Getting Started Guide.

west build -b YOUR_BOARD -s bootloader/mcuboot/boot/zephyr -d build-mcuboot
west build -b YOUR_BOARD -s zephyr/samples/hello_world -d build-hello-signed -- \

-DCONFIG_BOOTLOADER_MCUBOOT=y \
-DCONFIG_MCUBOOT_SIGNATURE_KEY_FILE=\"bootloader/mcuboot/root-rsa-2048.pem\"

west flash -d build-mcuboot
west flash -d build-hello-signed

Notes on the above commands:

• YOUR_BOARD should be changed to match your board

1852 Chapter 8. User and Developer Guides

https://mcuboot.com/
https://pypi.org/project/imgtool/

Zephyr Project Documentation, Release 2.7.0-rc2

• The CONFIG_MCUBOOT_SIGNATURE_KEY_FILE value is the insecure default provided and used by by
MCUboot for development and testing

• You can change the hello_world application directory to any other application that can be loaded
by MCUboot, such as the smp_svr_sample

For more information on these and other related configuration options, see:

• :kconfig:`CONFIG_BOOTLOADER_MCUBOOT`: build the application for loading by MCUboot

• :kconfig:`CONFIG_MCUBOOT_SIGNATURE_KEY_FILE`: the key file to use with west sign. If
you have your own key, change this appropriately

• :kconfig:`CONFIG_MCUBOOT_EXTRA_IMGTOOL_ARGS`: optional additional command line ar-
guments for imgtool

• :kconfig:`CONFIG_MCUBOOT_GENERATE_CONFIRMED_IMAGE`: also generate a confirmed
image, which may be more useful for flashing in production environments than the OTA-able de-
fault image

• On Windows, if you get “Access denied” issues, the recommended fix is to run pip3 install
imgtool, then retry with a pristine build directory.

If your west flash runner uses an image format supported by imgtool, you should see something like
this on your device’s serial console when you run west flash -d build-mcuboot:

*** Booting Zephyr OS build zephyr-v2.3.0-2310-gcebac69c8ae1 ***
[00:00:00.004,669] <inf> mcuboot: Starting bootloader
[00:00:00.011,169] <inf> mcuboot: Primary image: magic=unset, swap_type=0x1, copy_
→˓done=0x3, image_ok=0x3
[00:00:00.021,636] <inf> mcuboot: Boot source: none
[00:00:00.027,313] <wrn> mcuboot: Failed reading image headers; Image=0
[00:00:00.035,064] <err> mcuboot: Unable to find bootable image

Then, you should see something like this when you run west flash -d build-hello-signed:

*** Booting Zephyr OS build zephyr-v2.3.0-2310-gcebac69c8ae1 ***
[00:00:00.004,669] <inf> mcuboot: Starting bootloader
[00:00:00.011,169] <inf> mcuboot: Primary image: magic=unset, swap_type=0x1, copy_
→˓done=0x3, image_ok=0x3
[00:00:00.021,636] <inf> mcuboot: Boot source: none
[00:00:00.027,374] <inf> mcuboot: Swap type: none
[00:00:00.115,142] <inf> mcuboot: Bootloader chainload address offset: 0xc000
[00:00:00.123,168] <inf> mcuboot: Jumping to the first image slot
*** Booting Zephyr OS build zephyr-v2.3.0-2310-gcebac69c8ae1 ***
Hello World! nrf52840dk_nrf52840

Whether west flash supports this feature depends on your runner. The nrfjprog and pyocd runners
work with the above flow. If your runner does not support this flow and you would like it to, please send
a patch or file an issue for adding support.

8.20.12 Additional Zephyr extension commands

This page documents miscellaneous Zephyr Extensions.

Listing boards: west boards

The boards command can be used to list the boards that are supported by Zephyr without having to
resort to additional sources of information.

It can be run by typing:

8.20. West (Zephyr’s meta-tool) 1853

Zephyr Project Documentation, Release 2.7.0-rc2

west boards

This command lists all supported boards in a default format. If you prefer to specify the display format
yourself you can use the --format (or -f) flag:

west boards -f "{arch} :{name} "

Additional help about the formatting options can be found by running:

west boards -h

Installing CMake packages: west zephyr-export

This command registers the current Zephyr installation as a CMake config package in the CMake user
package registry.

In Windows, the CMake user package registry is found in HKEY_CURRENT_USER\Software\Kitware\
CMake\Packages.

In Linux and MacOS, the CMake user package registry is found in. ~/.cmake/packages.

You may run this command when setting up a Zephyr workspace. If you do, application CMakeLists.txt
files that are outside of your workspace will be able to find the Zephyr repository with the following:

find_package(Zephyr REQUIRED HINTS $ENV{ZEPHYR_BASE})

See share/zephyr-package/cmake for details.

Software bill of materials: west spdx

This command generates SPDX 2.2 tag-value documents, creating relationships from source files to the
corresponding generated build files. SPDX-License-Identifier comments in source files are scanned
and filled into the SPDX documents.

To use this command:

1. Pre-populate a build directory BUILD_DIR like this:

west spdx --init -d BUILD_DIR

This step ensures the build directory contains CMake metadata required for SPDX document gen-
eration.

2. Build your application using this pre-created build directory, like so:

west build -d BUILD_DIR [...]

3. Generate SPDX documents using this build directory:

west spdx -d BUILD_DIR

This generates the following SPDX bill-of-materials (BOM) documents in BUILD_DIR/spdx/:

• app.spdx: BOM for the application source files used for the build

• zephyr.spdx: BOM for the specific Zephyr source code files used for the build

• build.spdx: BOM for the built output files

1854 Chapter 8. User and Developer Guides

https://github.com/zephyrproject-rtos/zephyr/blob/main/share/zephyr-package/cmake

Zephyr Project Documentation, Release 2.7.0-rc2

Each file in the bill-of-materials is scanned, so that its hashes (SHA256 and SHA1) can be recorded,
along with any detected licenses if an SPDX-License-Identifier comment appears in the file.

SPDX Relationships are created to indicate dependencies between CMake build targets, build targets that
are linked together, and source files that are compiled to generate the built library files.

west spdx accepts these additional options:

• -n PREFIX: a prefix for the Document Namespaces that will be included in the generated SPDX
documents. See SPDX specification 2.2 section 2.5 for details. If -n is omitted, a default namespace
will be generated according to the default format described in section 2.5 using a random UUID.

• -s SPDX_DIR: specifies an alternate directory where the SPDX documents should be written instead
of BUILD_DIR/spdx/.

• --analyze-includes: in addition to recording the compiled source code files (e.g. .c, .S) in the
bills-of-materials, also attempt to determine the specific header files that are included for each .c
file.

This takes longer, as it performs a dry run using the C compiler for each .c file using the same
arguments that were passed to it for the actual build.

• --include-sdk: with --analyze-includes, also create a fourth SPDX document, sdk.spdx,
which lists header files included from the SDK.

8.20.13 History and Motivation

West was added to the Zephyr project to fulfill two fundamental requirements:

• The ability to work with multiple Git repositories

• The ability to provide an extensible and user-friendly command-line interface for basic Zephyr
workflows

During the development of west, a set of Design Constraints were identified to avoid the common pitfalls
of tools of this kind.

Requirements

Although the motivation behind splitting the Zephyr codebase into multiple repositories is outside of the
scope of this page, the fundamental requirements, along with a clear justification of the choice not to use
existing tools and instead develop a new one, do belong here.

The basic requirements are:

• R1: Keep externally maintained code in separately maintained repositories outside of the main
zephyr repository, without requiring users to manually clone each of the external repositories

• R2: Provide a tool that both Zephyr users and distributors can make use of to benefit from and
extend

• R3: Allow users and downstream distributions to override or remove repositories without having
to make changes to the zephyr repository

• R4: Support both continuous tracking and commit-based (bisectable) project updating

Rationale for a custom tool

Some of west’s features are similar to those provided by Git Submodules and Google’s repo.

Existing tools were considered during west’s initial design and development. None were found suitable
for Zephyr’s requirements. In particular, these were examined in detail:

• Google repo

8.20. West (Zephyr’s meta-tool) 1855

https://spdx.github.io/spdx-spec/2-document-creation-information/
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://gerrit.googlesource.com/git-repo/

Zephyr Project Documentation, Release 2.7.0-rc2

– Does not cleanly support using zephyr as the manifest repository (R4)

– Python 2 only

– Does not play well with Windows

– Assumes Gerrit is used for code review

• Git submodules

– Does not fully support R1, since the externally maintained repositories would still need to be
inside the main zephyr Git tree

– Does not support R3, since downstream copies would need to either delete or replace sub-
module definitions

– Does not support continuous tracking of the latest HEAD in external repositories (R4)

– Requires hardcoding of the paths/locations of the external repositories

Multiple Git Repositories

Zephyr intends to provide all required building blocks needed to deploy complex IoT applications. This
in turn means that the Zephyr project is much more than an RTOS kernel, and is instead a collection
of components that work together. In this context, there are a few reasons to work with multiple Git
repositories in a standardized manner within the project:

• Clean separation of Zephyr original code and imported projects and libraries

• Avoidance of license incompatibilities between original and imported code

• Reduction in size and scope of the core Zephyr codebase, with additional repositories containing
optional components instead of being imported directly into the tree

• Safety and security certifications

• Enforcement of modularization of the components

• Out-of-tree development based on subsets of the supported boards and SoCs

See Basics for information on how west workspaces manage multiple git repositories.

Design Constraints

West is:

• Optional: it is always possible to drop back to “raw” command-line tools, i.e. use Zephyr without
using west (although west itself might need to be installed and accessible to the build system). It
may not always be convenient to do so, however. (If all of west’s features were already conveniently
available, there would be no reason to develop it.)

• Compatible with CMake: building, flashing and debugging, and emulator support will always
remain compatible with direct use of CMake.

• Cross-platform: West is written in Python 3, and works on all platforms supported by Zephyr.

• Usable as a Library: whenever possible, west features are implemented as libraries that can be
used standalone in other programs, along with separate command line interfaces that wrap them.
West itself is a Python package named west; its libraries are implemented as subpackages.

• Conservative about features: no features will be accepted without strong and compelling moti-
vation.

• Clearly specified: West’s behavior in cases where it wraps other commands is clearly specified and
documented. This enables interoperability with third party tools, and means Zephyr developers
can always find out what is happening “under the hood” when using west.

1856 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

See Zephyr issue #6205 and for more details and discussion.

8.20.14 Moving to West

To convert a “pre-west” Zephyr setup on your computer to west, follow these steps. If you are starting
from scratch, use the Getting Started Guide instead. See Troubleshooting West for advice on common
issues.

1. Install west.

On Linux:

pip3 install --user -U west

On Windows and macOS:

pip3 install -U west

For details, see Installing west.

2. Move your zephyr repository to a new zephyrproject parent directory, and change directory there.

On Linux and macOS:

mkdir zephyrproject
mv zephyr zephyrproject
cd zephyrproject

On Windows cmd.exe:

mkdir zephyrproject
move zephyr zephyrproject
chdir zephyrproject

The name zephyrproject is recommended, but you can choose any name with no spaces anywhere
in the path.

3. Create a west workspace using the zephyr repository as a local manifest repository:

west init -l zephyr

This creates zephyrproject/.west, marking the root of your workspace, and does some other
setup. It will not change the contents of the zephyr repository in any way.

4. Clone the rest of the repositories used by zephyr:

west update

Make sure to run this command whenever you pull zephyr. Otherwise, your local repositories
will get out of sync. (Run west list for current information on these repositories.)

You are done: zephyrproject is now set up to use west.

8.20.15 Using Zephyr without west

This page provides information on using Zephyr without west. This is not recommended for beginners
due to the extra effort involved. In particular, you will have to do work “by hand” to replace these
features:

• cloning the additional source code repositories used by Zephyr in addition to the main zephyr
repository, and keeping them up to date

8.20. West (Zephyr’s meta-tool) 1857

https://github.com/zephyrproject-rtos/zephyr/issues/6205

Zephyr Project Documentation, Release 2.7.0-rc2

• specifying the locations of these repositories to the Zephyr build system

• flashing and debugging without understanding detailed usage of the relevant host tools

Note: If you have previously installed west and want to stop using it, uninstall it first:

pip3 uninstall west

Otherwise, Zephyr’s build system will find it and may try to use it.

Getting the Source

In addition to downloading the zephyr source code repository itself, you will need to manually clone the
additional projects listed in the west manifest file inside that repository.

mkdir zephyrproject
cd zephyrproject
git clone https://github.com/zephyrproject-rtos/zephyr
clone additional repositories listed in zephyr/west.yml,
and check out the specified revisions as well.

As you pull changes in the zephyr repository, you will also need to maintain those additional repositories,
adding new ones as necessary and keeping existing ones up to date at the latest revisions.

Building applications

You can build a Zephyr application using CMake and Ninja (or make) directly without west installed if
you specify any modules manually.

cmake -B build -GNinja -DZEPHYR_MODULES=module1;module2;... samples/hello_world
ninja -C build

When building with west installed, the Zephyr build system will use it to set ZEPHYR_MODULES.

If you don’t have west installed and your application does not need any of these repositories, the build
will still work.

If you don’t have west installed and your application does need one of these repositories, you must set
ZEPHYR_MODULES yourself as shown above.

See Modules (External projects) for more details.

Flashing and Debugging

Running build system targets like ninja flash, ninja debug, etc. is just a call to the corresponding
west command. For example, ninja flash calls west flash1. If you don’t have west installed on your
system, running those targets will fail. You can of course still flash and debug using any Flash & Debug
Host Tools which work for your board (and which those west commands wrap).

If you want to use these build system targets but do not want to install west on your system using pip, it
is possible to do so by manually creating a west workspace:

1 Note that west build invokes ninja, among other tools. There’s no recursive invocation of either west or ninja involved
by default, however, as west build does not invoke ninja flash, debug, etc. The one exception is if you specifically run one of
these build system targets with a command line like west build -t flash. In that case, west is run twice: once for west build,
and in a subprocess, again for west flash. Even in this case, ninja is only run once, as ninja flash. This is because these build
system targets depend on an up to date build of the Zephyr application, so it’s compiled before west flash is run.

1858 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

cd into zephyrproject if not already there
git clone https://github.com/zephyrproject-rtos/west.git .west/west

Then create a file .west/config with the following contents:

[manifest]
path = zephyr

[zephyr]
base = zephyr

After that, and in order for ninja to be able to invoke west to flash and debug, you must specify the west
directory. This can be done by setting the environment variable WEST_DIR to point to zephyrproject/.
west/west before running CMake to set up a build directory.

For details on west’s Python APIs, see west-apis.

8.21 Optimizations

Guides on how to optimize Zephyr for performance, power and footprint.

8.21.1 Optimizing for Footprint

Stack Sizes

Stack sizes of various system threads are specified generously to allow for usage in different scenarios
on as many supported platforms as possible. You should start the optimization process by reviewing all
stack sizes and adjusting them for your application:

:kconfig:`CONFIG_ISR_STACK_SIZE` Set to 2048 by default

:kconfig:`CONFIG_MAIN_STACK_SIZE` Set to 1024 by default

:kconfig:`CONFIG_IDLE_STACK_SIZE` Set to 320 by default

:kconfig:`CONFIG_SYSTEM_WORKQUEUE_STACK_SIZE` Set to 1024 by default

:kconfig:`CONFIG_PRIVILEGED_STACK_SIZE` Set to 1024 by default, depends on userspace feature.

Unused Peripherals

Some peripherals are enabled by default. You can disable unused peripherals in your project configura-
tion, for example:

CONFIG_GPIO=n
CONFIG_SPI=n

Various Debug/Informational Options

The following options are enabled by default to provide more information about the running application
and to provide means for debugging and error handling:

:kconfig:`CONFIG_BOOT_BANNER` This option can be disabled to save a few bytes.

:kconfig:`CONFIG_DEBUG` This option can be disabled for production builds

8.21. Optimizations 1859

Zephyr Project Documentation, Release 2.7.0-rc2

MPU/MMU Support

Depending on your application and platform needs, you can disable MPU/MMU support to gain some
memory and improve performance. Consider the consequences of this configuration choice though,
because you’ll lose advanced stack checking and support.

8.21.2 Optimization Tools

Footprint and Memory Usage

The build system offers 3 targets to view and analyse RAM, ROM and stack usage in generated images.
The tools run on the final image and give information about size of symbols and code being used in
both RAM and ROM. Additionally, with features available through the compiler, we can also generate
worst-case stack usage analysis:

Tools that are available as build system targets:

Build Target: puncover This target uses a 3rd party tools called puncover which can be found here.
When this target is built, it will launch a local web server which will allow you to open a web client and
browse the files and view their ROM, RAM and stack usage. Before you can use this target, you will have
to install the puncover python module:

pip3 install git+https://github.com/HBehrens/puncover --user

Then:

Using west:

west build -b reel_board samples/hello_world
west build -t puncover

Using CMake and ninja:

Use cmake to configure a Ninja-based buildsystem:
cmake -B build -GNinja -DBOARD=reel_board samples/hello_world

Now run ninja on the generated build system:
ninja -C build puncover

To view worst-case stack usage analysis, build this with the :kconfig:`CONFIG_STACK_USAGE` en-
abled.

Using west:

west build -b reel_board samples/hello_world -- -DCONFIG_STACK_USAGE=y
west build -t puncover

Using CMake and ninja:

Use cmake to configure a Ninja-based buildsystem:
cmake -B build -GNinja -DBOARD=reel_board -DCONFIG_STACK_USAGE=y samples/hello_world

Now run ninja on the generated build system:
ninja -C build puncover

1860 Chapter 8. User and Developer Guides

https://github.com/HBehrens/puncover

Zephyr Project Documentation, Release 2.7.0-rc2

Build Target: ram_report List all compiled objects and their RAM usage in a tabular form with bytes
per symbol and the percentage it uses. The data is grouped based on the file system location of the object
in the tree and the file containing the symbol.

Use the ram_report target with your board:

Using west:

west build -b reel_board samples/hello_world
west build -t ram_report

Using CMake and ninja:

Use cmake to configure a Ninja-based buildsystem:
cmake -B build -GNinja -DBOARD=reel_board samples/hello_world

Now run ninja on the generated build system:
ninja -C build ram_report

which will generate something similar to the output below:

Path ␣
→˓ Size %
==
...
...
SystemCoreClock ␣
→˓ 4 0.08%
_kernel ␣
→˓ 48 0.99%
_sw_isr_table ␣
→˓ 384 7.94%
cli.10544 ␣
→˓ 16 0.33%
gpio_initialized.9765 ␣
→˓ 1 0.02%
on.10543 ␣
→˓ 4 0.08%
poll_out_lock.9764 ␣
→˓ 4 0.08%
z_idle_threads ␣
→˓ 128 2.65%
z_interrupt_stacks ␣
→˓2048 42.36%
z_main_thread ␣
→˓ 128 2.65%
arch ␣
→˓ 1 0.02%
arm ␣
→˓ 1 0.02%

core ␣
→˓ 1 0.02%

aarch32 ␣
→˓ 1 0.02%

cortex_m ␣
→˓ 1 0.02%

mpu ␣
→˓ 1 0.02%

arm_mpu.c ␣
→˓ 1 0.02%

(continues on next page)

8.21. Optimizations 1861

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

static_regions_num ␣
→˓ 1 0.02%
drivers ␣
→˓ 536 11.09%
clock_control ␣
→˓ 100 2.07%

nrf_power_clock.c ␣
→˓ 100 2.07%

__device_clock_nrf ␣
→˓ 16 0.33%

data ␣
→˓ 80 1.65%

hfclk_users ␣
→˓ 4 0.08%
...
...

Build Target: rom_report List all compiled objects and their ROM usage in a tabular form with bytes
per symbol and the percentage it uses. The data is grouped based on the file system location of the object
in the tree and the file containing the symbol.

Use the rom_report to get the ROM report:

Using west:

west build -b reel_board samples/hello_world
west build -t rom_report

Using CMake and ninja:

Use cmake to configure a Ninja-based buildsystem:
cmake -B build -GNinja -DBOARD=reel_board samples/hello_world

Now run ninja on the generated build system:
ninja -C build rom_report

which will generate something similar to the output below:

Path ␣
→˓ Size %
==
...
...
CSWTCH.5 ␣
→˓ 4 0.02%
SystemCoreClock ␣
→˓ 4 0.02%
__aeabi_idiv0 ␣
→˓ 2 0.01%
__udivmoddi4 ␣
→˓ 702 3.37%
_sw_isr_table ␣
→˓ 384 1.85%
delay_machine_code.9114 ␣
→˓ 6 0.03%
levels.8826 ␣
→˓ 20 0.10%

(continues on next page)

1862 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

mpu_config ␣
→˓ 8 0.04%
transitions.10558 ␣
→˓ 12 0.06%
arch ␣
→˓ 1194 5.74%
arm ␣
→˓1194 5.74%

core ␣
→˓ 1194 5.74%

aarch32 ␣
→˓1194 5.74%

cortex_m ␣
→˓ 852 4.09%

fault.c ␣
→˓ 400 1.92%

bus_fault.isra.0 ␣
→˓ 60 0.29%

mem_manage_fault.isra.0 ␣
→˓ 56 0.27%

usage_fault.isra.0 ␣
→˓ 36 0.17%

z_arm_fault ␣
→˓ 232 1.11%

z_arm_fault_init ␣
→˓ 16 0.08%

irq_init.c ␣
→˓ 24 0.12%

z_arm_interrupt_init ␣
→˓ 24 0.12%

mpu ␣
→˓ 352 1.69%

arm_core_mpu.c ␣
→˓ 56 0.27%

z_arm_configure_static_mpu_regions ␣
→˓ 56 0.27%

arm_mpu.c ␣
→˓ 296 1.42%

__init_sys_init_arm_mpu_init0 ␣
→˓ 8 0.04%

arm_core_mpu_configure_static_mpu_regions ␣
→˓ 20 0.10%

arm_core_mpu_disable ␣
→˓ 16 0.08%

arm_core_mpu_enable ␣
→˓ 20 0.10%

arm_mpu_init ␣
→˓ 92 0.44%

mpu_configure_regions ␣
→˓ 140 0.67%

thread_abort.c ␣
→˓ 76 0.37%

z_impl_k_thread_abort
76 0.37%

...

...

8.21. Optimizations 1863

Zephyr Project Documentation, Release 2.7.0-rc2

Data Structures

Build Target: pahole Poke-a-hole (pahole) is an object-file analysis tool to find the size of the data
structures, and the holes caused due to aligning the data elements to the word-size of the CPU by the
compiler.

Poke-a-hole (pahole) must be installed prior to using this target. It can be obtained from https://git.
kernel.org/pub/scm/devel/pahole/pahole.git and is available in the dwarves package in both fedora
and ubuntu:

sudo apt-get install dwarves

or in fedora:

sudo dnf install dwarves

Using west:

west build -b reel_board samples/hello_world
west build -t pahole

Using CMake and ninja:

Use cmake to configure a Ninja-based buildsystem:
cmake -B build -GNinja -DBOARD=reel_board samples/hello_world

Now run ninja on the generated build system:
ninja -C build pahole

After running this target, pahole will output the results to the console:

/* Used at: zephyr/isr_tables.c */
/* <80> ../include/sw_isr_table.h:30 */
struct _isr_table_entry {

void * arg; /* 0 4 */
void (*isr)(void *); /* 4 4 */

/* size: 8, cachelines: 1, members: 2 */
/* last cacheline: 8 bytes */

};
/* Used at: zephyr/isr_tables.c */
/* <eb> ../include/arch/arm/aarch32/cortex_m/mpu/arm_mpu_v7m.h:134 */
struct arm_mpu_region_attr {

uint32_t rasr; /* 0 4 */

/* size: 4, cachelines: 1, members: 1 */
/* last cacheline: 4 bytes */

};
/* Used at: zephyr/isr_tables.c */
/* <112> ../include/arch/arm/aarch32/cortex_m/mpu/arm_mpu.h:24 */
struct arm_mpu_region {

uint32_t base; /* 0 4 */
const char * name; /* 4 4 */
arm_mpu_region_attr_t attr; /* 8 4 */

/* size: 12, cachelines: 1, members: 3 */
/* last cacheline: 12 bytes */

};
...
...

1864 Chapter 8. User and Developer Guides

https://git.kernel.org/pub/scm/devel/pahole/pahole.git
https://git.kernel.org/pub/scm/devel/pahole/pahole.git

Zephyr Project Documentation, Release 2.7.0-rc2

8.22 Zephyr CMake Package

The Zephyr CMake package is a convenient way to create a Zephyr-based application.

The Zephyr CMake package ensures that CMake can automatically select a Zephyr to use for building
the application, whether it is a Zephyr repository application, Zephyr workspace application, or a Zephyr
freestanding application.

When developing a Zephyr-based application, then a developer simply needs to write
find_package(Zephyr) in the beginning of the application CMakeLists.txt file.

To use the Zephyr CMake package it must first be exported to the CMake user package registry. This is
means creating a reference to the current Zephyr installation inside the CMake user package registry.

Ubuntu

In Linux, the CMake user package registry is found in:

~/.cmake/package/Zephyr

macOS

In macOS, the CMake user package registry is found in:

~/.cmake/package/Zephyr

Windows

In Windows, the CMake user package registry is found in:

HKEY_CURRENT_USER\Software\Kitware\CMake\Packages\Zephyr

The Zephyr CMake package allows CMake to automatically find a Zephyr base. One or more Zephyr
installations must be exported. Exporting multiple Zephyr installations may be useful when developing
or testing Zephyr freestanding applications, Zephyr workspace application with vendor forks, etc..

8.22.1 Zephyr CMake package export (west)

When installing Zephyr using west then it is recommended to export Zephyr using west zephyr-export.

8.22.2 Zephyr CMake package export (without west)

Zephyr CMake package is exported to the CMake user package registry using the following commands:

cmake -P <PATH-TO-ZEPHYR>/share/zephyr-package/cmake/zephyr_export.cmake

This will export the current Zephyr to the CMake user package registry.

To also export the Zephyr Unittest CMake package, run the following command in addition:

cmake -P <PATH-TO-ZEPHYR>/share/zephyrunittest-package/cmake/zephyr_export.cmake

8.22.3 Zephyr application structure

An application can be placed anywhere on your disk, but to better understand how the Zephyr package
is used, we will name three specific layouts.

8.22. Zephyr CMake Package 1865

https://cmake.org/cmake/help/latest/manual/cmake-packages.7.html
https://cmake.org/cmake/help/latest/manual/cmake-packages.7.html#user-package-registry

Zephyr Project Documentation, Release 2.7.0-rc2

Zephyr repository application

A Zephyr repository has the following structure:

<projects>/zephyr-workspace
zephyr

arch
boards
cmake
samples

hello_world
...

tests
...

Any application located inside this tree, is simply referred to as a Zephyr repository application. In this
example hello_world is a Zephyr repository application.

Zephyr workspace application

A Zephyr workspace has the following structure:

<projects>/zephyr-workspace
zephyr
bootloader
modules
tools
<vendor/private-repositories>
my_applications

my_first_app

Any application located in such workspace, but outside the Zephyr repository itself, is referred to as a
Zephyr workspace application. In this example my_first_app is a Zephyr workspace application.

Note: The root of a Zephyr workspace is identical to west topdir if the workspace was installed using
west

Zephyr freestanding application

A Zephyr freestanding application is a Zephyr application located outside of a Zephyr workspace.

<projects>/zephyr-workspace
zephyr
bootloader
...

<home>/app
CMakeLists.txt
prj.conf
src

main.c

In this example app is a Zephyr freestanding application.

1866 Chapter 8. User and Developer Guides

Zephyr Project Documentation, Release 2.7.0-rc2

8.22.4 Zephyr Base Environment Setting

The Zephyr CMake package search functionality allows for explicitly specifying a Zephyr base using an
environment variable.

To do this, use the following find_package() syntax:

find_package(Zephyr REQUIRED HINTS $ENV{ZEPHYR_BASE})

This syntax instructs CMake to first search for Zephyr using the Zephyr base environment setting
ZEPHYR_BASE and then use the normal search paths.

8.22.5 Zephyr CMake Package Search Order

When Zephyr base environment setting is not used for searching, the Zephyr installation matching the
following criteria will be used:

• A Zephyr repository application will use the Zephyr in which it is located. For example:

<projects>/zephyr-workspace/zephyr
samples

hello_world

in this example, hello_world will use <projects>/zephyr-workspace/zephyr.

• Zephyr workspace application will use the Zephyr that share the same workspace. For example:

<projects>/zephyr-workspace
zephyr
...
my_applications

my_first_app

in this example, my_first_app will use <projects>/zephyr-workspace/zephyr as this Zephyr is
located in the same workspace as the Zephyr workspace application.

• Zephyr freestanding application will use the Zephyr registered in the CMake user package registry.
For example:

<projects>/zephyr-workspace-1
zephyr (Not exported to CMake)

<projects>/zephyr-workspace-2
zephyr (Exported to CMake)

<home>/app
CMakeLists.txt
prj.conf
src

main.c

in this example, only <projects>/zephyr-workspace-2/zephyr is exported to the CMake package
registry and therefore this Zephyr will be used by the Zephyr freestanding application <home>/app.

If user wants to test the application with <projects>/zephyr-workspace-1/zephyr, this can
be done by using the Zephyr Base environment setting, meaning set ZEPHYR_BASE=<projects>/
zephyr-workspace-1/zephyr, before running CMake.

Note: The Zephyr package selected on the first CMake invocation will be used for all subsequent
builds. To change the Zephyr package, for example to test the application using Zephyr base

8.22. Zephyr CMake Package 1867

Zephyr Project Documentation, Release 2.7.0-rc2

environment setting, then it is necessary to do a pristine build first (See Rebuilding an Application).

8.22.6 Zephyr CMake Package Version

When writing an application then it is possible to specify a Zephyr version number x.y.z that must be
used in order to build the application.

Specifying a version is especially useful for a Zephyr freestanding application as it ensures the application
is built with a minimal Zephyr version.

It also helps CMake to select the correct Zephyr to use for building, when there are multiple Zephyr
installations in the system.

For example:

cmake_minimum_required(VERSION 3.13.1)
find_package(Zephyr 2.2.0)
project(app)

will require app to be built with Zephyr 2.2.0 as minimum. CMake will search all exported candidates to
find a Zephyr installation which matches this version criteria.

Thus it is possible to have multiple Zephyr installations and have CMake automatically select between
them based on the version number provided, see CMake package version for details.

For example:

<projects>/zephyr-workspace-2.a
zephyr (Exported to CMake)

<projects>/zephyr-workspace-2.b
zephyr (Exported to CMake)

<home>/app
CMakeLists.txt
prj.conf
src

main.c

in this case, there are two released versions of Zephyr installed at their own workspaces. Workspace 2.a
and 2.b, corresponding to the Zephyr version.

To ensure app is built with minimum version 2.a the following find_package syntax may be used:

cmake_minimum_required(VERSION 3.13.1)
find_package(Zephyr 2.a)
project(app)

Note that both 2.a and 2.b fulfill this requirement.

CMake also supports the keyword EXACT, to ensure an exact version is used, if that is required. In this
case, the application CMakeLists.txt could be written as:

cmake_minimum_required(VERSION 3.13.1)
find_package(Zephyr 2.a EXACT)
project(app)

In case no Zephyr is found which satisfies the version required, as example, the application specifies

1868 Chapter 8. User and Developer Guides

https://cmake.org/cmake/help/latest/command/find_package.html#version-selection

Zephyr Project Documentation, Release 2.7.0-rc2

cmake_minimum_required(VERSION 3.13.1)
find_package(Zephyr 2.z)
project(app)

then an error similar to below will be printed:

Could not find a configuration file for package "Zephyr" that is compatible
with requested version "2.z".

The following configuration files were considered but not accepted:

<projects>/zephyr-workspace-2.a/zephyr/share/zephyr-package/cmake/ZephyrConfig.
→˓cmake, version: 2.a.0
<projects>/zephyr-workspace-2.b/zephyr/share/zephyr-package/cmake/ZephyrConfig.

→˓cmake, version: 2.b.0

Note: It can also be beneficial to specify a version number for Zephyr repository applications and Zephyr
workspace applications. Specifying a version in those cases ensures the application will only build if the
Zephyr repository or workspace is matching. This can be useful to avoid accidental builds when only
part of a workspace has been updated.

8.22.7 Multiple Zephyr Installations (Zephyr workspace)

Testing out a new Zephyr version, while at the same time keeping the existing Zephyr in the workspace
untouched is sometimes beneficial.

Or having both an upstream Zephyr, Vendor specific, and a custom Zephyr in same workspace.

For example:

<projects>/zephyr-workspace
zephyr
zephyr-vendor
zephyr-custom
...
my_applications

my_first_app

in this setup, find_package(Zephyr) has the following order of precedence for selecting which Zephyr
to use:

• Project name: zephyr

• First project, when Zephyr projects are ordered lexicographical, in this case.

– zephyr-custom

– zephyr-vendor

This means that my_first_app will use <projects>/zephyr-workspace/zephyr.

It is possible to specify a Zephyr preference list in the application.

A Zephyr preference list can be specified as:

cmake_minimum_required(VERSION 3.13.1)

set(ZEPHYR_PREFER "zephyr-custom" "zephyr-vendor")
find_package(Zephyr)

(continues on next page)

8.22. Zephyr CMake Package 1869

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

project(my_first_app)

the ZEPHYR_PREFER is a list, allowing for multiple Zephyrs. If a Zephyr is specified in the list, but not
found in the system, it is simply ignored and find_package(Zephyr) will continue to the next candidate.

This allows for temporary creation of a new Zephyr release to be tested, without touching current Zephyr.
When testing is done, the zephyr-test folder can simply be removed. Such a CMakeLists.txt could look
as:

cmake_minimum_required(VERSION 3.13.1)

set(ZEPHYR_PREFER "zephyr-test")
find_package(Zephyr)

project(my_first_app)

8.22.8 Zephyr Build Configuration CMake package

The Zephyr Build Configuration CMake package provides a possibility for a Zephyr based project to
control Zephyr build settings in a generic way.

It is similar to the use of .zephyrrc but with the possibility to automatically allow all users to share the
build configuration through the project repository. But it also allows more advanced use cases than a
.zephyrrc-file, such as loading of additional CMake boilerplate code.

The Zephyr Build Configuration CMake package will be loaded in the Zephyr boilerplate code after initial
properties and ZEPHYR_BASE has been defined, but before CMake code execution. This allows the Zephyr
Build Configuration CMake package to setup or extend properties such as: DTS_ROOT, BOARD_ROOT,
TOOLCHAIN_ROOT / other toolchain setup, fixed overlays, and any other property that can be controlled.
It also allows inclusion of additional boilerplate code.

To provide a Zephyr Build Configuration CMake package, create ZephyrBuildConfig.cmake and place
it in a Zephyr workspace top-level folder as:

<projects>/zephyr-workspace
zephyr
...
zephyr application (can be named anything)

share/zephyrbuild-package/cmake/ZephyrBuildConfig.cmake

The Zephyr Build Configuration CMake package will not search in any CMake default search paths, and
thus cannot be installed in the CMake package registry. There will be no version checking on the Zephyr
Build Configuration package.

Note: share/zephyrbuild-package/cmake/ZephyrBuildConfig.cmake follows the same folder struc-
ture as the Zephyr CMake package.

It is possible to place ZephyrBuildConfig.cmake directly in a <zephyr application>/cmake folder or
another folder, as long as that folder is honoring the CMake package search algorithm.

A sample ZephyrBuildConfig.cmake can be seen below.

ZephyrBuildConfig.cmake sample code

To ensure final path is absolute and does not contain ../.. in variable.
get_filename_component(APPLICATION_PROJECT_DIR

(continues on next page)

1870 Chapter 8. User and Developer Guides

https://cmake.org/cmake/help/latest/command/find_package.html#search-procedure

Zephyr Project Documentation, Release 2.7.0-rc2

(continued from previous page)

${CMAKE_CURRENT_LIST_DIR}/../../..
ABSOLUTE

)

Add this project to list of board roots
list(APPEND BOARD_ROOT ${APPLICATION_PROJECT_DIR})

Default to GNU Arm Embedded toolchain if no toolchain is set
if(NOT ENV{ZEPHYR_TOOLCHAIN_VARIANT})

set(ZEPHYR_TOOLCHAIN_VARIANT gnuarmemb)
find_program(GNU_ARM_GCC arm-none-eabi-gcc)
if(NOT ${GNU_ARM_GCC} STREQUAL GNU_ARM_GCC-NOTFOUND)

The toolchain root is located above the path to the compiler.
get_filename_component(GNUARMEMB_TOOLCHAIN_PATH ${GNU_ARM_GCC}/../.. ABSOLUTE)

endif()
endif()

8.22.9 Zephyr Build Configuration CMake package (Freestanding application)

The Zephyr Build Configuration CMake package can be located outside a Zephyr workspace, for example
located with a Zephyr freestanding application.

Create the build configuration as described in the previous section, and then refer to
the location of your Zephyr Build Configuration CMake package using the CMake variable
ZephyrBuildConfiguration_ROOT.

1. At the CMake command line, like this:

cmake -DZephyrBuildConfiguration_ROOT=<path-to-build-config> ...

2. At the top of your application’s top level CMakeLists.txt, like this:

set(ZephyrBuildConfiguration_ROOT <path-to-build-config>)
find_package(Zephyr REQUIRED HINTS $ENV{ZEPHYR_BASE})

If you choose this option, make sure to set the variable before calling find_package(Zephyr ...),
as shown above.

3. In a separate CMake script which is pre-loaded to populate the CMake cache, like this:

Put this in a file with a name like "zephyr-settings.cmake"
set(ZephyrBuildConfiguration_ROOT <path-to-build-config>

CACHE STRING "pre-cached build config"
)

You can tell the build system to use this file by adding -C zephyr-settings.cmake to your CMake
command line. This principle is useful when not using west as both this setting and Zephyr modules
can be specified using the same file. See Zephyr module Without West.

8.22.10 Zephyr CMake package source code

The Zephyr CMake package source code in <PATH-TO-ZEPHYR>/share/zephyr-package/cmake contains
the CMake config package which is used by CMake find_package function.

It also contains code for exporting Zephyr as a CMake config package.

The following is an overview of those files

8.22. Zephyr CMake Package 1871

Zephyr Project Documentation, Release 2.7.0-rc2

CMakeLists.txt The CMakeLists.txt file for the CMake build system which is responsible for exporting
Zephyr as a package to the CMake user package registry.

ZephyrConfigVersion.cmake The Zephyr package version file. This file is called by CMake to determine
if this installation fulfils the requirements specified by user when calling find_package(Zephyr .
..). It is also responsible for detection of Zephyr repository or workspace only installations.

ZephyrUnittestConfigVersion.cmake Same responsibility as ZephyrConfigVersion.cmake, but for
unit tests. Includes ZephyrConfigVersion.cmake.

ZephyrConfig.cmake The Zephyr package file. This file is called by CMake to for the package meeting
which fulfils the requirements specified by user when calling find_package(Zephyr ...). This
file is responsible for sourcing of boilerplate code.

ZephyrUnittestConfig.cmake Same responsibility as ZephyrConfig.cmake, but for unit tests. Includes
ZephyrConfig.cmake.

zephyr_package_search.cmake Common file used for detection of Zephyr repository and workspace
candidates. Used by ZephyrConfigVersion.cmake and ZephyrConfig.cmake for common code.

pristine.cmake Pristine file for removing all files created by CMake during configure and generator
time when exporting Zephyr CMake package. Running pristine keeps all package related files
mentioned above.

1872 Chapter 8. User and Developer Guides

Chapter 9

Security

These documents describe the requirements, processes, and developer guidelines for ensuring security is
addressed within the Zephyr project.

9.1 Zephyr Security Overview

9.1.1 Introduction

This document outlines the steps of the Zephyr Security Subcommittee towards a defined security process
that helps developers build more secure software while addressing security compliance requirements. It
presents the key ideas of the security process and outlines which documents need to be created. After the
process is implemented and all supporting documents are created, this document is a top-level overview
and entry point.

Overview and Scope

We begin with an overview of the Zephyr development process, which mainly focuses on security func-
tionality.

In subsequent sections, the individual parts of the process are treated in detail. As depicted in Figure 1,
these main steps are:

1. Secure Development: Defines the system architecture and development process that ensures ad-
herence to relevant coding principles and quality assurance procedures.

2. Secure Design: Defines security procedures and implement measures to enforce them. A security
architecture of the system and relevant sub-modules is created, threats are identified, and counter-
measures designed. Their correct implementation and the validity of the threat models are checked
by code reviews. Finally, a process shall be defined for reporting, classifying, and mitigating secu-
rity issues..

3. Security Certification: Defines the certifiable part of the Zephyr RTOS. This includes an evaluation
target, its assets, and how these assets are protected. Certification claims shall be determined and
backed with appropriate evidence.

Intended Audience

This document is a guideline for the development of a security process by the Zephyr Security Subcom-
mittee and the Zephyr Technical Steering Committee. It provides an overview of the Zephyr security
process for (security) engineers and architects.

1873

Zephyr Project Documentation, Release 2.7.0-rc2

Fig. 1: Figure 1. Security Process Steps

Nomenclature

In this document, the keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” are to be interpreted as de-
scribed in [?].

These words are used to define absolute requirements (or prohibitions), highly recommended require-
ments, and truly optional requirements. As noted in RFC-2119, “These terms are frequently used to
specify behavior with security implications. The effects on security of not implementing a MUST or
SHOULD, or doing something the specification says MUST NOT or SHOULD NOT be done may be very
subtle. Document authors should take the time to elaborate the security implications of not following
recommendations or requirements as most implementors will not have had the benefit of the experience
and discussion that produced the specification.”

Security Document Update

This document is a living document. As new requirements, features, and changes are identified, they
will be added to this document through the following process:

1. Changes will be submitted from the interested party(ies) via pull requests to the Zephyr documen-
tation repository.

2. The Zephyr Security Subcommittee will review these changes and provide feedback or acceptance
of the changes.

3. Once accepted, these changes will become part of the document.

9.1.2 Current Security Definition

This section recapitulates the current status of secure development within the Zephyr RTOS. Currently,
focus is put on functional security and code quality assurance, although additional security features are
scoped.

The three major security measures currently implemented are:

• Security Functionality with a focus on cryptographic algorithms and protocols. Support for cryp-
tographic hardware is scoped for future releases.The Zephyr runtime architecture is a monolithic
binary and removes the need for dynamic loaders , thereby reducing the exposed attack surface.

1874 Chapter 9. Security

Zephyr Project Documentation, Release 2.7.0-rc2

• Quality Assurance is driven by using a development process that requires all code to be reviewed
before being committed to the common repository. Furthermore, the reuse of proven building
blocks such as network stacks increases the overall quality level and guarantees stable APIs. Static
code analyses are provided by Coverity Scan.

• Execution Protection including thread separation, stack and memory protection is currently avail-
able in the upstream Zephyr RTOS starting with version 1.9.0 (stack protection). Memory protec-
tion and thread separation was added in version 1.10.0 for X86 and in version 1.11.0 for ARM and
ARC.

These topics are discussed in more detail in the following subsections.

Security Functionality

The security functionality in Zephyr hinges mainly on the inclusion of cryptographic algorithms, and on
its monolithic system design.

The cryptographic features are provided through a set of cryptographic libraries. Applications can
choose TinyCrypt2 or mbedTLS based on their needs. TinyCrypt2 supports key cryptographic algorithms
required by the connectivity stacks. Tinycrypt2, however, only provides a limited set of algorithms.
mbedTLS supports a wider range of algorithms, but at the cost of additional requirements such as malloc
support. Applications can choose the solution that matches their individual requirements. Future work
may include APIs to abstract the underlying crypto library choice.

APIs for vendor specific cryptographic IPs in both hardware and software are planned, including secure
key storage in the form of secure access modules (SAMs), Trusted Platform Modules (TPMs), and Trusted
Execution Environments (TEEs).

The security architecture is based on a monolithic design where the Zephyr kernel and all applications
are compiled into a single static binary. System calls are implemented as function calls without requiring
context switches. Static linking eliminates the potential for dynamically loading malicious code.

Additional protection features are available in later releases. Stack protection mechanisms are provided
to protect against stack overruns. In addition, applications can take advantage of thread separation
features to split the system into privileged and unprivileged execution environments. Memory protection
features provide the capability to partition system resources (memory, peripheral address space, etc) and
assign resources to individual threads or groups of threads. Stack, thread execution level, and memory
protection constraints are enforced at the time of context switch.

Quality Assurance

The Zephyr project uses an automated quality assurance process. The goal is to have a process including
mandatory code reviews, feature and issue management/tracking, and static code analyses.

Code reviews are documented and enforced using a voting system before getting checked into the repos-
itory by the responsible subsystem’s maintainer. The main goals of the code review are:

• Verifying correct functionality of the implementation

• Increasing the readability and maintainability of the contributed source code

• Ensuring appropriate usage of string and memory functions

• Validation of the user input

• Reviewing the security relevant code for potential issues

The current coding principles focus mostly on coding styles and conventions. Functional correctness is
ensured by the build system and the experience of the reviewer. Especially for security relevant code,
concrete and detailed guidelines need to be developed and aligned with the developers (see: Secure
Coding).

9.1. Zephyr Security Overview 1875

Zephyr Project Documentation, Release 2.7.0-rc2

Static code analyses are run on the Zephyr code tree on a regular basis using the open source Coverity
Scan tool. Coverity Scan now includes complexity analysis.

Bug and issue tracking and management is performed using Jira. The term “survivability” was coined to
cover pro-active security tasks such as security issue categorization and management. Initial effort has
been started on the definition of vulnerability categorization and mitigation processes within Jira.

Issues determined by Coverity should have more stringent reviews before they are closed as non issues
(at least another person educated in security processes need to agree on non-issue before closing).

A security subcommittee has been formed to develop a security process in more detail; this document is
part of that process.

Execution Protection

Execution protection is supported and can be categorized into the following tasks:

• Memory separation: Memory will be partitioned into regions and assigned attributes based on
the owner of that region of memory. Threads will only have access to regions they control.

• Stack protection: Stack guards would provide mechanisms for detecting and trapping stack over-
runs. Individual threads should only have access to their own stacks.

• Thread separation: Individual threads should only have access to their own memory resources. As
threads are scheduled, only memory resources owned by that thread will be accessible. Topics such
as program flow protection and other measures for tamper resistance are currently not in scope.

System Level Security (Ecosystem, . . .)

System level security encompasses a wide variety of categories. Some examples of these would be:

• Secure/trusted boot

• Over the air (OTA) updates

• External Communication

• Device authentication

• Access control of onboard resources

– Flash updating

– Secure storage

– Peripherals

• Root of trust

• Reduction of attack surface

Some of these categories are interconnected and rely on multiple pieces to be in place to produce a full
solution for the application.

9.1.3 Secure Development Process

The development of secure code shall adhere to certain criteria. These include coding guidelines and
development processes that can be roughly separated into two categories related to software quality and
related to software security. Furthermore, a system architecture document shall be created and kept
up-to-date with future development.

1876 Chapter 9. Security

Zephyr Project Documentation, Release 2.7.0-rc2

Fig. 2: Figure 2: Zephyr System Architecture

9.1. Zephyr Security Overview 1877

Zephyr Project Documentation, Release 2.7.0-rc2

System Architecture

A high-level schematic of the Zephyr system architecture is given in Figure 2. It separates the architecture
into an OS part (kernel + OS Services) and a user-specific part (Application Services). The OS part itself
contains low-level, platform specific drivers and the generic implementation of I/O APIs, file systems,
kernel-specific functions, and the cryptographic library.

A document describing the system architecture and design choices shall be created and kept up to date
with future development. This document shall include the base architecture of the Zephyr OS and an
overview of important submodules. For each of the modules, a dedicated architecture document shall
be created and evaluated against the implementation. These documents shall serve as an entry point
to new developers and as a basis for the security architecture. Please refer to the Zephyr subsystem
documentation for detailed information.

Secure Coding

Designing an open software system such as Zephyr to be secure requires adhering to a defined set of
design standards. These standards are included in the Zephyr Project documentation, specifically in its
Secure Coding section. In [?], the following, widely accepted principles for protection mechanisms are
defined to prevent security violations and limit their impact:

• Open design as a design principle incorporates the maxim that protection mechanisms cannot be
kept secret on any system in widespread use. Instead of relying on secret, custom-tailored security
measures, publicly accepted cryptographic algorithms and well established cryptographic libraries
shall be used.

• Economy of mechanism specifies that the underlying design of a system shall be kept as simple
and small as possible. In the context of the Zephyr project, this can be realized, e.g., by modular
code [?] and abstracted APIs.

• Complete mediation requires that each access to every object and process needs to be authenti-
cated first. Mechanisms to store access conditions shall be avoided if possible.

• Fail-safe defaults defines that access is restricted by default and permitted only in specific condi-
tions defined by the system protection scheme, e.g., after successful authentication. Furthermore,
default settings for services shall be chosen in a way to provide maximum security. This corresponds
to the “Secure by Default” paradigm [?].

• Separation of privilege is the principle that two conditions or more need to be satisfied before
access is granted. In the context of the Zephyr project, this could encompass split keys [?].

• Least privilege describes an access model in which each user, program and thread shall have the
smallest possible subset of permissions in the system required to perform their task. This positive
security model aims to minimize the attack surface of the system.

• Least common mechanism specifies that mechanisms common to more than one user or process
shall not be shared if not strictly required. The example given in [?] is a function that should be
implemented as a shared library executed by each user and not as a supervisor procedure shared
by all users.

• Psychological acceptability requires that security features are easy to use by the developers in
order to ensure its usage and the correctness of its application.

In addition to these general principles, the following points are specific to the development of a secure
RTOS:

• Complementary Security/Defense in Depth: do not rely on a single threat mitigation approach.
In case of the complementary security approach, parts of the threat mitigation are performed by
the underlying platform. In case such mechanisms are not provided by the platform, or are not
trusted, a defense in depth [?] paradigm shall be used.

• Less commonly used services off by default: to reduce the exposure of the system to potential
attacks, features or services shall not be enabled by default if they are only rarely used (a threshold

1878 Chapter 9. Security

Zephyr Project Documentation, Release 2.7.0-rc2

of 80% is given in [?]). For the Zephyr project, this can be realized using the configuration man-
agement. Each functionality and module shall be represented as a configuration option and needs
to be explicitly enabled. Then, all features, protocols, and drivers not required for a particular use
case can be disabled. The user shall be notified if low-level options and APIs are enabled but not
used by the application.

• Change management: to guarantee a traceability of changes to the system, each change shall
follow a specified process including a change request, impact analysis, ratification, implementation,
and validation phase. In each stage, appropriate documentation shall be provided. All commits
shall be related to a bug report or change request in the issue tracker. Commits without a valid
reference shall be denied.

Based on these design principles and commonly accepted best practices, a secure development guide
shall be developed, published, and implemented into the Zephyr development process. Further details
on this are given in the Secure Design section.

Quality Assurance

The quality assurance part encompasses the following criteria:

• Adherence to the Coding Conventions with respect to coding style, naming schemes of modules,
functions, variables, and so forth. This increases the readability of the Zephyr code base and eases
the code review. These coding conventions are enforced by automated scripts prior to check-in.

• Adherence to Deployment Guidelines is required to ensure consistent releases with a well-
documented feature set and a trackable list of security issues.

• Code Reviews ensure the functional correctness of the code base and shall be performed on each
proposed code change prior to check-in. Code reviews shall be performed by at least one indepen-
dent reviewer other than the author(s) of the code change. These reviews shall be performed by
the subsystem maintainers and developers on a functional level and are to be distinguished from
security reviews as laid out in the Secure Design section. Refer to the Development and Contribution
Process documentation for more information.

• Static Code Analysis tools efficiently detect common coding mistakes in large code bases. All code
shall be analyzed using an appropriate tool prior to merges into the main repository. This is not per
individual commit, but is to be run on some interval on specific branches. It is mandatory to remove
all findings or waive potential false-positives before each release. Waivers shall be documented
centrally and in the form of a comment inside the source code itself. The documentation shall
include the employed tool and its version, the date of the analysis, the branch and parent revision
number, the reason for the waiver, the author of the respective code, and the approver(s) of the
waiver. This shall as a minimum run on the main release branch and on the security branch. It
shall be ensured that each release has zero issues with regard to static code analysis (including
waivers). Refer to the Development and Contribution Process documentation for more information.

• Complexity Analyses shall be performed as part of the development process and metrics such as
cyclomatic complexity shall be evaluated. The main goal is to keep the code as simple as possible.

• Automation: the review process and checks for coding rule adherence are a mandatory part of
the precommit checks. To ensure consistent application, they shall be automated as part of the
precommit procedure. Prior to merging large pieces of code in from subsystems, in addition to
review process and coding rule adherence, all static code analysis must have been run and issues
resolved.

Release and Lifecycle Management

Lifecycle management contains several aspects:

• Device management encompasses the possibility to update the operating system and/or security
related sub-systems of Zephyr enabled devices in the field.

9.1. Zephyr Security Overview 1879

Zephyr Project Documentation, Release 2.7.0-rc2

• Lifecycle management: system stages shall be defined and documented along with the transac-
tions between the stages in a system state diagram. For security reasons, this shall include locking
of the device in case an attack has been detected, and a termination if the end of life is reached.

• Release management describes the process of defining the release cycle, documenting releases,
and maintaining a record of known vulnerabilities and mitigations. Especially for certification
purposes the integrity of the release needs to be ensured in a way that later manipulation (e.g.
inserting of backdoors, etc.) can be easily detected.

• Rights management and NDAs: if required by the chosen certification, the confidentiality and
integrity of the system needs to be ensured by an appropriate rights management (e.g. separate
source code repository) and non-disclosure agreements between the relevant parties. In case of
a repository shared between several parties, measures shall be taken that no malicious code is
checked in.

These points shall be evaluated with respect to their impact on the development process employed for
the Zephyr project.

9.1.4 Secure Design

In order to obtain a certifiable system or product, the security process needs to be clearly defined and
its application needs to be monitored and driven. This process includes the development of security
related modules in all of its stages and the management of reported security issues. Furthermore, threat
models need to be created for currently known and future attack vectors, and their impact on the system
needs to be investigated and mitigated. Please refer to the Secure Coding outlined in the Zephyr project
documentation for detailed information.

The software security process includes:

• Adherence to the Secure Development Coding is mandatory to avoid that individual components
breach the system security and to minimize the vulnerability of individual modules. While this can
be partially achieved by automated tests, it is inevitable to investigate the correct implementation
of security features such as countermeasures manually in security-critical modules.

• Security Reviews shall be performed by a security architect in preparation of each security-targeted
release and each time a security-related module of the Zephyr project is changed. This process
includes the validation of the effectiveness of implemented security measures, the adherence to
the global security strategy and architecture, and the preparation of audits towards a security
certification if required.

• Security Issue Management encompasses the evaluation of potential system vulnerabilities and
their mitigation as described in Security Issue Management.

These criteria and tasks need to be integrated into the development process for secure software and
shall be automated wherever possible. On system level, and for each security related module of the
secure branch of Zephyr, a directly responsible security architect shall be defined to guide the secure
development process.

Security Architecture

The general guidelines above shall be accompanied by an architectural security design on system- and
module-level. The high level considerations include

• The identification of security and compliance requirements

• Functional security such as the use of cryptographic functions whenever applicable

• Design of countermeasures against known attack vectors

• Recording of security relevant auditable events

• Support for Trusted Platform Modules (TPM) and Trusted Execution Environments (TEE)

1880 Chapter 9. Security

Zephyr Project Documentation, Release 2.7.0-rc2

• Mechanisms to allow for in-the-field updates of devices using Zephyr

• Task scheduler and separation

The security architecture development is based on assets derived from the structural overview of the
overall system architecture. Based on this, the individual steps include:

1. Identification of assets such as user data, authentication and encryption keys, key generation data
(obtained from RNG), security relevant status information.

2. Identification of threats against the assets such as breaches of confidentiality, manipulation of
user data, etc.

3. Definition of requirements regarding security and protection of the assets, e.g. countermeasures
or memory protection schemes.

The security architecture shall be harmonized with the existing system architecture and implementation
to determine potential deviations and mitigate existing weaknesses. Newly developed sub-modules that
are integrated into the secure branch of the Zephyr project shall provide individual documents describing
their security architecture. Additionally, their impact on the system level security shall be considered and
documented.

Security Vulnerability Reporting

Please see Security Vulnerability Reporting for information on reporting security vulnerabilities.

Threat Modeling and Mitigation

The modeling of security threats against the Zephyr RTOS is required for the development of an accurate
security architecture and for most certification schemes. The first step of this process is the definition of
assets to be protected by the system. The next step then models how these assets are protected by the
system and which threats against them are present. After a threat has been identified, a corresponding
threat model is created. This model contains the asset and system vulnerabilities, as well as the descrip-
tion of the potential exploits of these vulnerabilities. Additionally, the impact on the asset, the module it
resides in, and the overall system is to be estimated. This threat model is then considered in the module
and system security architecture and appropriate counter-measures are defined to mitigate the threat or
limit the impact of exploits.

In short, the threat modeling process can be separated into these steps (adapted from [?]):

1. Definition of assets

2. Application decomposition and creation of appropriate data flow diagrams (DFDs)

3. Threat identification and categorization using the [?] and [?] approaches

4. Determination of countermeasures and other mitigation approaches

This procedure shall be carried out during the design phase of modules and before major changes of
the module or system architecture. Additionally, new models shall be created or existing ones shall be
updated whenever new vulnerabilities or exploits are discovered. During security reviews, the threat
models and the mitigation techniques shall be evaluated by the responsible security architect.

From these threat models and mitigation techniques tests shall be derived that prove the effectiveness of
the countermeasures. These tests shall be integrated into the continuous integration workflow to ensure
that the security is not impaired by regressions.

Vulnerability Analyses

In order to find weak spots in the software implementation, vulnerability analyses (VA) shall be per-
formed. Of special interest are investigations on cryptographic algorithms, critical OS tasks, and connec-
tivity protocols.

9.1. Zephyr Security Overview 1881

Zephyr Project Documentation, Release 2.7.0-rc2

On a pure software level, this encompasses

• Penetration testing of the RTOS on a particular hardware platform, which involves testing the
respective Zephyr OS configuration and hardware as one system.

• Side channel attacks (timing invariance, power invariance, etc.) should be considered. For in-
stance, ensuring timing invariance of the cryptographic algorithms and modules is required to
reduce the attack surface. This applies to both the software implementations and when using
cryptographic hardware.

• Fuzzing tests shall be performed on both exposed APIs and protocols.

The list given above serves primarily illustration purposes. For each module and for the complete Zephyr
system (in general on a particular hardware platform), a suitable VA plan shall be created and exe-
cuted. The findings of these analyses shall be considered in the security issue management process, and
learnings shall be formulated as guidelines and incorporated into the secure coding guide.

If possible (as in case of fuzzing analyses), these tests shall be integrated into the continuous integration
process.

9.1.5 Security Certification

One goal of creating a secure branch of the Zephyr RTOS is to create a certifiable system or certifiable
submodules thereof. The certification scope and scheme is yet to be decided. However, many certification
such as Common Criteria [?] require evidence that the evaluation claims are indeed fulfilled, so a general
certification process is outlined in the following. Based on the final choices for the certification scheme
and evaluation level, this process needs to be refined.

Generic Certification Process

In general, the steps towards a certification or precertification (compare [?]) are:

1. The definition of assets to be protected within the Zephyr RTOS. Potential candidates are confi-
dential information such as cryptographic keys, user data such as communication logs, and poten-
tially IP of the vendor or manufacturer.

2. Developing a threat model and security architecture to protect the assets against exploits of
vulnerabilities of the system. As a complete threat model includes the overall product including
the hardware platform, this might be realized by a split model containing a precertified secure
branch of Zephyr which the vendor could use to certify their Zephyr-enabled product.

3. Formulating an evaluation target that includes the certification claims on the security of the
assets to be evaluated and certified, as well as assumptions on the operating conditions.

4. Providing proof that the claims are fulfilled. This includes consistent documentation of the security
development process, etc.

These steps are partially covered in previous sections as well. In contrast to these sections, the certifica-
tion process only requires to consider those components that shall be covered by the certification. The
security architecture, for example, considers assets on system level and might include items not relevant
for the certification.

Certification Options

For the security certification as such, the following options can be pursued:

1. Abstract precertification of Zephyr as a pure software system: this option requires assumptions
on the underlying hardware platform and the final application running on top of Zephyr. If these
assumptions are met by the hardware and the application, a full certification can be more easily
achieved. This option is the most flexible approach but puts the largest burden on the product
vendor.

1882 Chapter 9. Security

Zephyr Project Documentation, Release 2.7.0-rc2

2. Certification of Zephyr on specific hardware platform without a specific application in mind:
this scenario describes the enablement of a secure platform running the Zephyr RTOS. The hard-
ware manufacturer certifies the platform under defined assumptions on the application. If these
are met, the final product can be certified with little effort.

3. Certification of an actual product: in this case, a full product including a specific hardware, the
Zephyr RTOS, and an application is certified.

In all three cases, the certification scheme (e.g. FIPS 140-2 [?] or Common Criteria [?]), the scope of the
certification (main-stream Zephyr, security branch, or certain modules), and the certification/assurance
level need to be determined.

In case of partial certifications (options 1 and 2), assumptions on hardware and/or software are required
for certifications. These can include [?]

• Appropriate physical security of the hardware platform and its environment.

• Sufficient protection of storage and timing channels on the hardware platform itself and all
connected devices. (No mentioning of remote connections.)

• Only trusted/assured applications running on the device

• The device and its software stack is configured and operated by properly trained and trusted
individuals with no malicious intent.

These assumptions shall be part of the security claim and evaluation target documents.

9.2 Security Vulnerability Reporting

9.2.1 Introduction

Vulnerabilities to the Zephyr project may be reported via email to the vulnerabilities@zephyrproject.org
mailing list. These reports will be acknowledged and analyzed by the security response team within 1
week. Each vulnerability will be entered into the Zephyr Project security tracking JIRA. The original
submitter will be granted permission to view the issues that they have reported.

Reporters may also submit reports by directly submitting them to the Zephyr Product security tracking
JIRA.

9.2.2 Security Issue Management

Issues within this bug tracking system will transition through a number of states according to this dia-
gram:

• New: This state represents new reports that have been entered directly by a reporter. When entered
by the response team in response to an email, the issue shall be transitioned directly to Triage.

• Triage: This issue is awaiting Triage by the response team. The response team will analyze the
issue, determine a responsible entity, assign the JIRA ticket to that individual, and move the issue
to the Assigned state. Part of triage will be to set the issue’s priority.

• Assigned: The issue has been assigned, and is awaiting a fix by the assignee.

• Review: Once there is a Zephyr pull request for the issue, the PR link will be added to a comment
in the issue, and the issue moved to the Review state.

• Accepted: Indicates that this issue has been merged into the appropriate branch within Zephyr.

• Release: The PR has been included in a released version of Zephyr.

• Public: The embargo period has ended. The issue will be made publicly visible, the associated CVE
updated, and the vulnerabilities page in the docs updated to include the detailed information.

9.2. Security Vulnerability Reporting 1883

mailto:vulnerabilities@zephyrproject.org
https://zephyrprojectsec.atlassian.net/

Zephyr Project Documentation, Release 2.7.0-rc2

The issues created in this JIRA instance are kept private, due to the sensitive nature of security reports.
The issues are only visible to certain parties:

• Members of the PSIRT mailing list

• the reporter

• others, as proposed and ratified by the Zephyr Security Subcommittee. In the general case, this
will include:

– The code owner responsible for the fix.

– The Zephyr release owners for the relevant releases affected by this vulnerability.

The Zephyr Security Subcommittee shall review the reported vulnerabilities during any meeting with
more than three people in attendance. During this review, they shall determine if new issues need to be
embargoed.

The guideline for embargo will be based on: 1. Severity of the issue, and 2. Exploitability of the issue.
Issues that the subcommittee decides do not need an embargo will be reproduced in the regular Zephyr
project bug tracking system, and a comment added to the JIRA issue pointing to the bug tracking issue.
These issues will be marked as being tracked within the Zephyr bug tracking system.

Security sensitive vulnerabilities shall be made public after an embargo period of at most 90 days. The
intent is to allow 30 days within the Zephyr project to fix the issues, and 60 days for external parties
building products using Zephyr to be able to apply and distribute these fixes.

Fixes to the code shall be made through pull requests PR in the Zephyr project github. Developers shall
make an attempt to not reveal the sensitive nature of what is being fixed, and shall not refer to CVE
numbers that have been assigned to the issue. The developer instead should merely describe what has
been fixed.

The security subcommittee will maintain information mapping embargoed CVEs to these PRs (this infor-
mation is within the JIRA issues), and produce regular reports of the state of security issues.

Each JIRA issue that is considered a security vulnerability shall be assigned a CVE number. As fixes are
created, it may be necessary to allocate additional CVE numbers, or to retire numbers that were assigned.

1884 Chapter 9. Security

Zephyr Project Documentation, Release 2.7.0-rc2

9.2.3 Vulnerability Notification

Each Zephyr release shall contain a report of CVEs that were fixed in that release. Because of the sensitive
nature of these vulnerabilities, the release shall merely include a list of CVEs that have been fixed. After
the embargo period, the vulnerabilities page shall be updated to include additional details of these
vulnerabilities. The vulnerability page shall give credit to the reporter(s) unless a reporter specifically
requests anonymity.

The Zephyr project shall maintain a vulnerability-alerts mailing list. This list will be seeded initially with
a contact from each project member. Additional parties can request to join this list by filling out the form
at the Vulnerability Registry. These parties will be vetted by the project director to determine that they
have a legimitate interest in knowing about security vulnerabilities during the embargo period.

Periodically, the security subcommittee will send information to this mailing list describing known em-
bargoed issues, and their backport status within the project. This information is intended to allow them
to determine if they need to backport these changes to any internal trees.

When issues have been triaged, this list will be informed of:

• The Zephyr Project security JIRA link (ZEPSEC).

• The CVE number assigned.

• The subsystem involved.

• The severity of the issue.

After acceptance of a PR fixing the issue (merged), in addition to the above, the list will be informed of:

• The association between the CVE number and the PR fixing it.

• Backport plans within the Zephyr project.

9.2.4 Backporting of Security Vulnerabilities

Each security issue fixed within zephyr shall be backported to the following releases:

• The current Long Term Stable (LTS) release.

• The most recent two releases.

The developer of the fix shall be responsible for any necessary backports, and apply them to any of the
above listed release branches, unless the fix does not apply (the vulnerability was introduced after this
release was made).

Backports will be tracked on the security JIRA instance using a subtask issue of type “backport”.

9.2.5 Need to Know

Due to the sensitive nature of security vulnerabilities, it is important to share details and fixes only with
those parties that have a need to know. The following parties will need to know details about security
vulnerabilities before the embargo period ends:

• Maintainers will have access to all information within their domain area only.

• The current release manager, and the release manager for historical releases affected by the vul-
nerability (see backporting above).

• The Project Security Incident Response (PSIRT) team will have full access to information. The
PSIRT is made up of representatives from platinum members, and volunteers who do work on
triage from other members.

• As needed, release managers and maintainers may be invited to attend additional security meetings
to discuss vulnerabilities.

9.2. Security Vulnerability Reporting 1885

https://www.zephyrproject.org/vulnerability-registry/

Zephyr Project Documentation, Release 2.7.0-rc2

9.3 Secure Coding

Traditionally, microcontroller-based systems have not placed much emphasis on security. They have
usually been thought of as isolated, disconnected from the world, and not very vulnerable, just because
of the difficulty in accessing them. The Internet of Things has changed this. Now, code running on small
microcontrollers often has access to the internet, or at least to other devices (that may themselves have
vulnerabilities). Given the volume they are often deployed at, uncontrolled access can be devastating1.

This document describes the requirements and process for ensuring security is addressed within the
Zephyr project. All code submitted should comply with these principles.

Much of this document comes from [?].

9.3.1 Introduction and Scope

This document covers guidelines for the Zephyr Project, from a security perspective. Many of the ideas
contained herein are captured from other open source efforts.

We begin with an overview of secure design as it relates to Zephyr. This is followed by a section on
Secure development knowledge, which gives basic requirements that a developer working on the project
will need to have. This section gives references to other security documents, and full details of how to
write secure software are beyond the scope of this document. This section also describes vulnerability
knowledge that at least one of the primary developers should have. This knowledge will be necessary
for the review process described below this.

Following this is a description of the review process used to incorporate changes into the Zephyr code-
base. This is followed by documentation about how security-sensitive issues are handled by the project.

Finally, the document covers how changes are to be made to this document.

9.3.2 Secure Coding

Designing an open software system such as Zephyr to be secure requires adhering to a defined set of
design standards. In [?], the following, widely accepted principles for protection mechanisms are defined
to help prevent security violations and limit their impact:

• Open design as a design guideline incorporates the maxim that protection mechanisms cannot be
kept secret on any system in widespread use. Instead of relying on secret, custom-tailored security
measures, publicly accepted cryptographic algorithms and well established cryptographic libraries
shall be used.

• Economy of mechanism specifies that the underlying design of a system shall be kept as simple
and small as possible. In the context of the Zephyr project, this can be realized, e.g., by modular
code [?] and abstracted APIs.

• Complete mediation requires that each access to every object and process needs to be authenti-
cated first. Mechanisms to store access conditions shall be avoided if possible.

• Fail-safe defaults defines that access is restricted by default and permitted only in specific condi-
tions defined by the system protection scheme, e.g., after successful authentication. Furthermore,
default settings for services shall be chosen in a way to provide maximum security. This corresponds
to the “Secure by Default” paradigm [?].

• Separation of privilege is the principle that two conditions or more need to be satisfied before
access is granted. In the context of the Zephyr project, this could encompass split keys [?].

• Least privilege describes an access model in which each user, program, and thread, shall have the
smallest possible subset of permissions in the system required to perform their task. This positive
security model aims to minimize the attack surface of the system.

1 An attack resulted in a significant portion of DNS infrastructure being taken down.

1886 Chapter 9. Security

https://www.zephyrproject.org/
http://www.theverge.com/2016/10/21/13362354/dyn-dns-ddos-attack-cause-outage-status-explained

Zephyr Project Documentation, Release 2.7.0-rc2

• Least common mechanism specifies that mechanisms common to more than one user or process
shall not be shared if not strictly required. The example given in [?] is a function that should be
implemented as a shared library executed by each user and not as a supervisor procedure shared
by all users.

• Psychological acceptability requires that security features are easy to use by the developers in
order to ensure their usage and the correctness of its application.

In addition to these general principles, the following points are specific to the development of a secure
RTOS:

• Complementary Security/Defense in Depth: do not rely on a single threat mitigation approach.
In case of the complementary security approach, parts of the threat mitigation are performed by
the underlying platform. In case such mechanisms are not provided by the platform, or are not
trusted, a defense in depth [?] paradigm shall be used.

• Less commonly used services off by default: to reduce the exposure of the system to potential
attacks, features or services shall not be enabled by default if they are only rarely used (a threshold
of 80% is given in [?]). For the Zephyr project, this can be realized using the configuration man-
agement. Each functionality and module shall be represented as a configuration option and needs
to be explicitly enabled. Then, all features, protocols, and drivers not required for a particular use
case can be disabled. The user shall be notified if low-level options and APIs are enabled but not
used by the application.

• Change management: to guarantee a traceability of changes to the system, each change shall
follow a specified process including a change request, impact analysis, ratification, implementation,
and validation phase. In each stage, appropriate documentation shall be provided. All commits
shall be related to a bug report or change request in the issue tracker. Commits without a valid
reference shall be denied.

9.3.3 Secure development knowledge

Secure designer

The Zephyr project must have at least one primary developer who knows how to design secure software.

This requires understanding the following design principles, including the 8 principles from [?]:

• economy of mechanism (keep the design as simple and small as practical, e.g., by adopting sweep-
ing simplifications)

• fail-safe defaults (access decisions shall deny by default, and projects’ installation shall be secure
by default)

• complete mediation (every access that might be limited must be checked for authority and be
non-bypassable)

• open design (security mechanisms should not depend on attacker ignorance of its design, but
instead on more easily protected and changed information like keys and passwords)

• separation of privilege (ideally, access to important objects should depend on more than one con-
dition, so that defeating one protection system won’t enable complete access. For example, multi-
factor authentication, such as requiring both a password and a hardware token, is stronger than
single-factor authentication)

• least privilege (processes should operate with the least privilege necessary)

• least common mechanism (the design should minimize the mechanisms common to more than one
user and depended on by all users, e.g., directories for temporary files)

• psychological acceptability (the human interface must be designed for ease of use - designing for
“least astonishment” can help)

9.3. Secure Coding 1887

Zephyr Project Documentation, Release 2.7.0-rc2

• limited attack surface (the set of the different points where an attacker can try to enter or extract
data)

• input validation with whitelists (inputs should typically be checked to determine if they are valid
before they are accepted; this validation should use whitelists (which only accept known-good
values), not blacklists (which attempt to list known-bad values)).

Vulnerability Knowledge

A “primary developer” in a project is anyone who is familiar with the project’s code base, is comfortable
making changes to it, and is acknowledged as such by most other participants in the project. A primary
developer would typically make a number of contributions over the past year (via code, documentation,
or answering questions). Developers would typically be considered primary developers if they initiated
the project (and have not left the project more than three years ago), have the option of receiving
information on a private vulnerability reporting channel (if there is one), can accept commits on behalf
of the project, or perform final releases of the project software. If there is only one developer, that
individual is the primary developer.

At least one of the primary developers must know of common kinds of errors that lead to vulnerabilities
in this kind of software, as well as at least one method to counter or mitigate each of them.

Examples (depending on the type of software) include SQL injection, OS injection, classic buffer overflow,
cross-site scripting, missing authentication, and missing authorization. See the CWE/SANS top 25 or
OWASP Top 10 for commonly used lists.

Zephyr Security Subcommittee

There shall be a “Zephyr Security Subcommittee”, responsible for enforcing this guideline, monitoring
reviews, and improving these guidelines.

This team will be established according to the Zephyr Project charter.

9.3.4 Code Review

The Zephyr project shall use a code review system that all changes are required to go through. Each
change shall be reviewed by at least one primary developer that is not the author of the change. This
developer shall determine if this change affects the security of the system (based on their general under-
standing of security), and if so, shall request the developer with vulnerability knowledge, or the secure
designer to also review the code. Any of these individuals shall have the ability to block the change from
being merged into the mainline code until the security issues have been addressed.

9.3.5 Issues and Bug Tracking

The Zephyr project shall have an issue tracking system (such as JIRA) that can be used to record and
track defects that are found in the system.

Because security issues are often sensitive, this issue tracking system shall have a field to indicate a
security issue. Setting this field shall result in the issue only being visible to the Zephyr Security Subcom-
mittee. In addition, there shall be a field to allow the Zephyr Security Subcommittee to add additional
users that will have visibility to a given issue.

This embargo, or limited visibility, shall only be for a fixed duration, with a default being a project-
decided value. However, because security considerations are often external to the Zephyr project itself,
it may be necessary to increase this embargo time. The time necessary shall be clearly annotated in the
issue itself.

The list of issues shall be reviewed at least once a month by the Zephyr Security Subcommittee. This
review should focus on tracking the fixes, determining if any external parties need to be notified or

1888 Chapter 9. Security

http://cwe.mitre.org/top25/
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.atlassian.com/software/jira

Zephyr Project Documentation, Release 2.7.0-rc2

involved, and determining when to lift the embargo on the issue. The embargo should not be lifted via
an automated means, but the review team should avoid unnecessary delay in lifting issues that have
been resolved.

9.3.6 Modifications to This Document

Changes to this document shall be reviewed by the Zephyr Security Subcommittee, and approved by
consensus.

9.4 Sensor Device Threat Model

This document describes a threat model for an IoT sensor device. Spelling out a threat model helps direct
development effort, and can be used to help prioritize these efforts as well.

This device contains a sensor of some type (for example temperature, or a pressure in a pipe), which
sends this data to an SoC running a microcontroller. This microcontroller connects to a cloud service,
and relays this sensor data to this service. The cloud service is also able to send configuration data to the
device, as well as software update images. A general diagram can be seen in Figure 1:

Apps

Sensor App Sensor

Cloud
Service

Bootloader

Software Update
App

Code execute
Verify app(s)

Update

Install slot2

Indicate update

Execute

MQTT/TLS

Update

SPI Data

Bootloader

MQTT/TLS private
keys

Code Execute

Flash Data

Software Component

Hardware

The Cloud

Fig. 3: Figure 1. Sensor General Diagram

In this sensor device, the sensor connects with the SoC via an SPI bus, and the SoC has a network inter-
face that it uses to communicate with the cloud service. The particulars of these interfaces can impact
the threat model in unexpected ways, and variants on this will need to be considered (for example, using
a separate network interface SoC connected via some type of bus).

This model also focuses on communicating via the MQTT-over-TLS protocol, as this seems to be in wide
use1.

9.4.1 Assets

One aspect of the threat model to consider are assets involved in the operation of the device. The
following list enumerates the assets included in this model:

1 See https://www.slideshare.net/kartben/iot-developer-survey-2018. As of this writing, the three major cloud IoT service
providers, AWS IoT, Google Cloud IoT, and Microsoft Azure IoT all provide MQTT over TLS. Some feedback has suggested that
some find difficulty with UDP protocols and routing issues on various networks.

9.4. Sensor Device Threat Model 1889

https://www.slideshare.net/kartben/iot-developer-survey-2018

Zephyr Project Documentation, Release 2.7.0-rc2

1. The bootloader. This is a small code/data image contained in on-device flash that is the first code
to run. In order to establish a root of trust, this image must be immutable. This model assumes
that the SoC provides a mechanism to protect a region of the flash from future writes, and that this
will be done after this image is programmed into the device, early in production [th-imboot].

2. The application firmware image. This asset consists of the remainder of the firmware run by the
microcontroller. The distinction is made because this part of the image will need to be updated
periodically as security vulnerabilities are discovered. Requirements for updates to this image are:

a. The image shall only be replaced with an authorized image [th-authrepl].

b. When an authorized replacement image is available, the update shall be done in a timely
manner [th-timely-update].

c. The image update shall be seen as atomic, meaning that when the image is run, the
flash shall contain either the update image in its entirety, or the old image in its entirety
[th-atomic-update].

3. Root certificate list. In order to authenticate the cloud service (server), the IoT device must have a
list of root certificates that are allowed to sign the certificate on the server. For cloud-provider based
services, this list will generally be provided by the service provider. Because the root certificates
can expire, and possibly be revoked, this list will need to be periodically updated [th-root-certs],
[th-root-check].

4. Client secrets. To authenticate the client to the service, the client must possess some kind of
secret. This is generally a private key, usually either an RSA key or an EC private key. When
establishing communication with the server, the device will use this secret either as part of the TLS
establishment, or to sign a message used in the communication.

This secret is generally generated by the service provider, or by software running elsewhere, and
must be securely installed on the device. Policy may dictate that this secret be replaced periodically,
which will require a way to update the client secret. Typically, the service will allow two or three
active keys to allow this update to proceed while the old key is used.

These secrets must be protected from read, and the smallest amount of code necessary shall have
access to them. [th-secret-storage]

5. Current date/time. TLS certificate verification requires knowledge of the current date and time
in order to determine if the current time falls within the certificate’s current validity time. Also,
token based client authentication will generally require the client to sign a message containing a
time window that the token is valid. Certificate validation requires the device’s notion of date and
time to be accurate within a day or so. Token generation generally requires the time to be accurate
within 5-10 minutes.

It may be possible to approximate secure time by querying an external time server. Secure NTP
is possibly beyond the capabilities of an IoT device. The main risks of having incorrect time are
denial of service (the device rejects valid certificates), and the generation of tokens with invalid
times. It could be possible to trick the device into generating tokens that are valid in the future, but
the attacker would also have to spoof the server’s certificate to be able to intercept this. [th-time]

6. Sensor data. The data received from the sensor itself, and delivered to the service shall be deliv-
ered without modification or tampering.

7. Device configuration. Various configuration data, such as the hostname of the service to connect
to, the address of a time server, frequency and parameters of when sensor data is sent to the
service, and other need to be kept by the device. This configuration data will need to be updated
periodically as the configuration changes. Updates should be allowed only from authorized parties.
[th-conf]

8. Logs. In order to assist with analysis of security issues, the device shall log information about
security-pertinent events. IoT devices generally have limited storage, and as such, these logs need
to be carefully selected. It may also be possible to send these log events to the cloud service where
they can be stored in a more resource-available environment. Types of events that should be logged
include:

1890 Chapter 9. Security

Zephyr Project Documentation, Release 2.7.0-rc2

a. Firmware image updates. The system should log the download of new images, and when an
image is successfully updated.

b. Client secret changes. Changes and new client secrets should be logged.

c. Changes to the device configuration.

[th-logs]

9.4.2 Communication

In addition to assets, the threat model also considers the locations where data or assets are communicated
between entities of the system.

1. Flash contents. The flash device contains several regions. The contents of flash can be modified
programmatically by the SoC’s CPU.

a. The bootloader. As described in the Assets section, the bootloader is a small section of the
flash device containing the code initially run. This section shall be written early in the lifecycle
of the device, and the flash device then configured to permanently disallow modification of
this section. This configuration should also prevent modification via external interfaces, such
as JTAG or SWD debuggers.

The bootloader is responsible for verifying the signature of the application image as well as
updating the application image from the update image when an update is needed.

The bootloader shall verify the signature of the update image before installing it.

The bootloader shall only accept an update image with a newer version number than the
current image.

b. The application image. The application image contains the code executed during normal op-
eration of the device. Before running this image, the bootloader shall verify a digital signature
of the image, to avoid running an image that has been tampered with. The flash/system shall
be configured such that after the bootloader has completed, the CPU will be unable to write
to the application image.

c. The update image. This is an area of flash that holds a new version of the application image.
This image will be downloaded and stored by the application during normal operation. When
this has completed, the application can trigger a reboot, and the bootloader can install the
new image.

d. Secret storage. An area of the flash will be used to store client secrets. This area is written
and read by a subset of the application image. The application shall be configured to protect
this area from both reads and writes by code that does not need to have access to it, giving
consideration to possible exploits found within a majority of the application code. Revealing
the contents of the secrets would allow the attacker to spoof this device.

Initial secrets shall be placed in the device during a provisioning activity, distinct from normal
operation of the device. Later updates can be made under the direction of communication
received over a secured channel to the service.

e. Configuration storage. There shall be an area to store other configuration information. On
resource-constrained devices, it is allowed for this to be stored in the same region as the secret
storage, however, this adds additional code that has access to the secret storage area, and as
such, more code that must be scrutinized.

f. Log storage. The device may have an area of flash where log events can be written.

2. Sensor/Actuator interface. In this design, the sensor or actuator communicates with the SoC via
a bus, such as SPI. The hardware design shall be made to make intercepting this bus difficult for
an attack. Required techniques depend on the sensitivity and use of the sensor data, and can range
from having the sensor mounted on the same PCB as the MCU to epoxy potting the entire device.

9.4. Sensor Device Threat Model 1891

Zephyr Project Documentation, Release 2.7.0-rc2

3. Communication with cloud service. Communication between the device, and the cloud service
will be done over the general internet. As such, it shall be assumed that an attacker can arbitrarily
intercept this channel and, for example, return spoofed DNS results or attempt man-in-the-middle
attacks against communication with cloud services.

The device shall use TLS for all communication with the cloud service [th-all-tls]. The TLS stack
shall be configured to use only cipher suites that are generally considered secure2, including for-
ward secrecy. The communication shall be secured by the following:

a. Cipher suite selection. The device shall only allow communication with generally agreed
secure cipher suites [th-tls-ciphers].

b. Server certificate verification. The server presented by the server shall be verified
[th-root-check].

i. Naming. The certificate shall name the host and service the cloud service server is provid-
ing. RFC6125 describes best practices for this. It is permissible for the device to require
the certificate to be more restrictive than as described in this RFC, provided the service
can use a certificate that can comply.

ii. Path validation. The device shall verify that the certificate chain has a valid signature
path from a root certificate contained within the device, to the certificate presented by
the service. RFC4158 describes this is general. The device is permitted to require a more
restricted path, provided the server certificate used complies with this restriction.

iii. Validity period. The validity period of all presented certificates shall be checked against
the device’s best notion of the current time.

c. Client authentication. The client shall authenticate itself to the service using a secret known
only to that particular device. There are several options, and the technique used is generally
mandated by the particular service provider being used [th-tls-client-auth].

i. TLS client certificates. The TLS protocol allows the client to present a certificate, and
assert its knowledge of the secret described by that certificate. Generally, these certificates
will be stored within the service provider. These certificates can be self-signed, or signed
by a CA. Since the service provider maintains a list of valid certificates (mapping them to
a device identity), having these certificates signed by a CA does not add any additional
security, but may be useful in the management of these certificates.

ii. Token-based authentication. It is also possible for the client to authenticate itself using
the password field of the MQTT CONNECT packet. However, the secret itself must not be
transmitted in this packet. Instead, a token-based protocol, such as RFC7519‘s JSON Web
Token (JWT) can be used. These tokens will generally have a small validity period (e.g.
1 hour), to prevent them from being reused if they are intercepted. The token shall not
be sent until the device has verified the identity of the server.

d. Random/Entropy source. Cryptograph communication requires the generation of secure
pseudorandom numbers. The device shall use a modern, accepted cryptographic random-bit
generator to generate these random numbers. It shall use either a Non-Deterministic Ran-
dom Bit Generator (True RBG) implemented in hardware within the SoC, or a Deterministic
Random Bit Generator (Pseudo RBG) seeded by an entropy source within the SoC. Please see
NIST SP 800-90A for information on approved RBGs and NIST SP 800-90B for information
on testing a device’s entropy source [th-entropy].

4. Communication with the time service. Ideally, the device shall contain hardware that maintains
a secure time. However, most SoCs in use do not have support for this, and it will be necessary to
consult an external time service. RFC4330 and referenced RFCs describe the Simple Network Time
Protocol that can be used to query the current time from a network time server.

5. Device lifecycle. An IoT device will have a lifecycle from production to destruction and disposal
of the device. Aspects of this lifecycle that impact security include initial provisioning, normal
operation, re-provisioning, and destruction.

2 As new exploits are discovered, what is considered secure can change. Organizations such as https://www.ssllabs.com/
provide information on current ideas of how TLS must be configured to be secure.

1892 Chapter 9. Security

https://tools.ietf.org/html/rfc6125
https://tools.ietf.org/html/rfc4158
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc4330
https://www.ssllabs.com/

Zephyr Project Documentation, Release 2.7.0-rc2

a. Initial provisioning. During the initial provisioning stage, it is necessary to program
the bootloader, an initial application image, a device secret, and initial configuration data
[th-initial-provision]. In addition, the bootloader flash protection shall be installed. Of this
information, only the device secret needs to differ per device. This secret shall be securely
maintained, and destroyed in all locations outside of the device once it has been programmed
[th-initial-secret].

b. Normal operation. Normal operation includes the behavior described by the rest of this
document.

c. Re-provisioning. Sometimes it is necessary to re-provision a device, such as for a different
application. One way to do this is to keep the same device secret, and replace the configuration
data, as well as the cloud service data associated with the device. It is also possible to program
a new device secret, but if this is done it shall be done securely, and the new secret destroyed
externally once programmed into the device [th-reprovision].

d. Destruction. To prevent the device secret from being used to spoof the device, upon decom-
missioning, the secret for a particular device shall be rendered ineffective [th-destruction].
Possibilities include:

i. Hardware destruction of the device.

ii. Securely wiping the flash area containing the secret3.

iii. Removing the device identity and certificate from the service.

9.4.3 Other Considerations

In addition to the above, network connected devices generally will need a way to configure them to
connect to the network environment they are placed in. There are numerous ways of doing this, and it is
important for these configuration methods to not circumvent the security requirements described above.

9.4.4 Threats

9.4.5 Notes

9.5 Hardening Tool

Zephyr contains several optional features that make the overall system more secure. As we take advan-
tage of hardware features, many of these options are platform specific and besides it, some of them are
unknown by developers.

To address this problem, Zephyr provides a tool that helps to check an application configuration op-
tion list against a list of hardening preferences defined by the Security Group. The tool can identify
the build target and based on that provides suggestions and recommendations on how to optimize the
configuration for security.

9.5.1 Usage

After configure of your application, change directory to the build folder and:

ninja build system:
$ ninja hardenconfig
make build system:
$ make hardenconfig

3 Note that merely erasing this flash area is unlikely to be sufficient.

9.5. Hardening Tool 1893

Zephyr Project Documentation, Release 2.7.0-rc2

The output should be similar to the one bellow:

name | current | recommended ␣
→˓|| check result
===
CONFIG_HW_STACK_PROTECTION | n | y ␣
→˓|| FAIL
CONFIG_BOOT_BANNER | y | n ␣
→˓|| FAIL
CONFIG_PRINTK | y | n ␣
→˓|| FAIL
CONFIG_EARLY_CONSOLE | y | n ␣
→˓|| FAIL
CONFIG_OVERRIDE_FRAME_POINTER_DEFAULT | n | y ␣
→˓|| FAIL
CONFIG_DEBUG_INFO | y | n ␣
→˓|| FAIL
CONFIG_TEST_RANDOM_GENERATOR | y | n ␣
→˓|| FAIL
CONFIG_BUILD_OUTPUT_STRIPPED | n | y ␣
→˓|| FAIL
CONFIG_STACK_SENTINEL | n | y ␣
→˓|| FAIL

9.6 Vulnerabilities

This page collects all of the vulnerabilities that are discovered and fixed in each release. It will also often
have more details than is available in the releases. Some vulnerabilities are deemed to be sensitive, and
will not be publicly discussed until there is sufficient time to fix them. Because the release notes are
locked to a version, the information here can be updated after the embargo is lifted.

9.6.1 CVE-2017

CVE-2017-14199

Buffer overflow in getaddrinfo().

• CVE-2017-14199

• Zephyr project bug tracker ZEPSEC-12

• PR6158 fix for 1.11.0

CVE-2017-14201

The shell DNS command can cause unpredictable results due to misuse of stack variables.

Use After Free vulnerability in the Zephyr shell allows a serial or telnet connected user to cause denial of
service, and possibly remote code execution.

This has been fixed in release v1.14.0.

• CVE-2017-14201

• Zephyr project bug tracker ZEPSEC-17

• PR13260 fix for v1.14.0

1894 Chapter 9. Security

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-14199
https://zephyrprojectsec.atlassian.net/browse/ZEPSEC-12
https://github.com/zephyrproject-rtos/zephyr/pull/6158
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-14201
https://zephyrprojectsec.atlassian.net/browse/ZEPSEC-17
https://github.com/zephyrproject-rtos/zephyr/pull/13260

Zephyr Project Documentation, Release 2.7.0-rc2

CVE-2017-14202

The shell implementation does not protect against buffer overruns resulting in unpredictable behavior.

Improper Restriction of Operations within the Bounds of a Memory Buffer vulnerability in the shell
component of Zephyr allows a serial or telnet connected user to cause a crash, possibly with arbitrary
code execution.

This has been fixed in release v1.14.0.

• CVE-2017-14202

• Zephyr project bug tracker ZEPSEC-18

• PR13048 fix for v1.14.0

9.6.2 CVE-2019

CVE-2019-9506

The Bluetooth BR/EDR specification up to and including version 5.1 permits sufficiently low encryption
key length and does not prevent an attacker from influencing the key length negotiation. This allows
practical brute-force attacks (aka “KNOB”) that can decrypt traffic and inject arbitrary ciphertext without
the victim noticing.

• CVE-2019-9506

• Zephyr project bug tracker ZEPSEC-20

• PR18702 fix for v1.14.0

• PR18659 fix for v2.0.0

9.6.3 CVE-2020

CVE-2020-10019

Buffer Overflow vulnerability in USB DFU of zephyr allows a USB connected host to cause possible
remote code execution.

This has been fixed in releases v1.14.2, v2.2.0, and v2.1.1.

• CVE-2020-10019

• Zephyr project bug tracker ZEPSEC-25

• PR23460 fix for 1.14.x

• PR23457 fix for 2.1.x

• PR23190 fix in 2.2.0

CVE-2020-10021

Out-of-bounds write in USB Mass Storage with unaligned sizes

Out-of-bounds Write in the USB Mass Storage memoryWrite handler with unaligned Sizes.

See NCC-ZEP-024, NCC-ZEP-025, NCC-ZEP-026

This has been fixed in releases v1.14.2, and v2.2.0.

• CVE-2020-10021

• Zephyr project bug tracker ZEPSEC-26

9.6. Vulnerabilities 1895

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-14202
https://zephyrprojectsec.atlassian.net/browse/ZEPSEC-18
https://github.com/zephyrproject-rtos/zephyr/pull/13048
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9506
https://zephyrprojectsec.atlassian.net/browse/ZEPSEC-20
https://github.com/zephyrproject-rtos/zephyr/pull/18702
https://github.com/zephyrproject-rtos/zephyr/pull/18659
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10019
https://zephyrprojectsec.atlassian.net/browse/ZEPSEC-25
https://github.com/zephyrproject-rtos/zephyr/pull/23460
https://github.com/zephyrproject-rtos/zephyr/pull/23457
https://github.com/zephyrproject-rtos/zephyr/pull/23190
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10021
https://zephyrprojectsec.atlassian.net/browse/ZEPSEC-26

Zephyr Project Documentation, Release 2.7.0-rc2

• PR23455 fix for v1.14.2

• PR23456 fix for the v2.1 branch

• PR23240 fix for v2.2.0

CVE-2020-10022

UpdateHub Module Copies a Variable-Size Hash String Into a Fixed-Size Array

A malformed JSON payload that is received from an UpdateHub server may trigger memory corruption
in the Zephyr OS. This could result in a denial of service in the best case, or code execution in the worst
case.

See NCC-ZEP-016

This has been fixed in the below pull requests for main, branch from v2.1.0, and branch from v2.2.0.

• CVE-2020-10022

• Zephyr project bug tracker ZEPSEC-28

• PR24154 fix for main

• PR24065 fix for branch from v2.1.0

• PR24066 fix for branch from v2.2.0

CVE-2020-10023

Shell Subsystem Contains a Buffer Overflow Vulnerability In shell_spaces_trim

The shell subsystem contains a buffer overflow, whereby an adversary with physical access to the device
is able to cause a memory corruption, resulting in denial of service or possibly code execution within the
Zephyr kernel.

See NCC-ZEP-019

This has been fixed in releases v1.14.2, v2.2.0, and in a branch from v2.1.0,

• CVE-2020-10023

• Zephyr project bug tracker ZEPSEC-29

• PR23646 fix for v1.14.2

• PR23649 fix for branch from v2.1.0

• PR23304 fix for v2.2.0

CVE-2020-10024

ARM Platform Uses Signed Integer Comparison When Validating Syscall Numbers

The arm platform-specific code uses a signed integer comparison when validating system call numbers.
An attacker who has obtained code execution within a user thread is able to elevate privileges to that of
the kernel.

See NCC-ZEP-001

This has been fixed in releases v1.14.2, and v2.2.0, and in a branch from v2.1.0,

• CVE-2020-10024

• Zephyr project bug tracker ZEPSEC-30

• PR23535 fix for v1.14.2

1896 Chapter 9. Security

https://github.com/zephyrproject-rtos/zephyr/pull/23455
https://github.com/zephyrproject-rtos/zephyr/pull/23456
https://github.com/zephyrproject-rtos/zephyr/pull/23240
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10022
https://zephyrprojectsec.atlassian.net/browse/ZEPSEC-28
https://github.com/zephyrproject-rtos/zephyr/pull/24154
https://github.com/zephyrproject-rtos/zephyr/pull/24065
https://github.com/zephyrproject-rtos/zephyr/pull/24066
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10023
https://zephyrprojectsec.atlassian.net/browse/ZEPSEC-29
https://github.com/zephyrproject-rtos/zephyr/pull/23646
https://github.com/zephyrproject-rtos/zephyr/pull/23649
https://github.com/zephyrproject-rtos/zephyr/pull/23304
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10024
https://zephyrprojectsec.atlassian.net/browse/ZEPSEC-30
https://github.com/zephyrproject-rtos/zephyr/pull/23535

Zephyr Project Documentation, Release 2.7.0-rc2

• PR23498 fix for branch from v2.1.0

• PR23323 fix for v2.2.0

CVE-2020-10027

ARC Platform Uses Signed Integer Comparison When Validating Syscall Numbers

An attacker who has obtained code execution within a user thread is able to elevate privileges to that of
the kernel.

See NCC-ZEP-001

This has been fixed in releases v1.14.2, and v2.2.0, and in a branch from v2.1.0.

• CVE-2020-10027

• Zephyr project bug tracker ZEPSEC-35

• PR23500 fix for v1.14.2

• PR23499 fix for branch from v2.1.0

• PR23328 fix for v2.2.0

CVE-2020-10028

Multiple Syscalls In GPIO Subsystem Performs No Argument Validation

Multiple syscalls with insufficient argument validation

See NCC-ZEP-006

This has been fixed in releases v1.14.2, and v2.2.0, and in a branch from v2.1.0.

• CVE-2020-10028

• Zephyr project bug tracker ZEPSEC-32

• PR23733 fix for v1.14.2

• PR23737 fix for branch from v2.1.0

• PR23308 fix for v2.2.0 (gpio patch)

CVE-2020-10058

Multiple Syscalls In kscan Subsystem Performs No Argument Validation

Multiple syscalls in the Kscan subsystem perform insufficient argument validation, allowing code execut-
ing in userspace to potentially gain elevated privileges.

See NCC-ZEP-006

This has been fixed in a branch from v2.1.0, and release v2.2.0.

• CVE-2020-10058

• Zephyr project bug tracker ZEPSEC-34

• PR23748 fix for branch from v2.1.0

• PR23308 fix for v2.2.0 (kscan patch)

9.6. Vulnerabilities 1897

https://github.com/zephyrproject-rtos/zephyr/pull/23498
https://github.com/zephyrproject-rtos/zephyr/pull/23323
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10027
https://zephyrprojectsec.atlassian.net/browse/ZEPSEC-35
https://github.com/zephyrproject-rtos/zephyr/pull/23500
https://github.com/zephyrproject-rtos/zephyr/pull/23499
https://github.com/zephyrproject-rtos/zephyr/pull/23328
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10028
https://zephyrprojectsec.atlassian.net/browse/ZEPSEC-32
https://github.com/zephyrproject-rtos/zephyr/pull/23733
https://github.com/zephyrproject-rtos/zephyr/pull/23737
https://github.com/zephyrproject-rtos/zephyr/pull/23308
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10058
https://zephyrprojectsec.atlassian.net/browse/ZEPSEC-34
https://github.com/zephyrproject-rtos/zephyr/pull/23748
https://github.com/zephyrproject-rtos/zephyr/pull/23308

Zephyr Project Documentation, Release 2.7.0-rc2

CVE-2020-10059

UpdateHub Module Explicitly Disables TLS Verification

The UpdateHub module disables DTLS peer checking, which allows for a man in the middle attack. This
is mitigated by firmware images requiring valid signatures. However, there is no benefit to using DTLS
without the peer checking.

See NCC-ZEP-018

This has been fixed in a PR against Zephyr main.

• CVE-2020-10059

• Zephyr project bug tracker ZEPSEC-36

• PR24954 fix on main (to be fixed in v2.3.0)

• PR24954 fix v2.1.0

• PR24954 fix v2.2.0

CVE-2020-10060

UpdateHub Might Dereference An Uninitialized Pointer

In updatehub_probe, right after JSON parsing is complete, objects[1] is accessed from the output struc-
ture in two different places. If the JSON contained less than two elements, this access would reference
unitialized stack memory. This could result in a crash, denial of service, or possibly an information leak.

Recommend disabling updatehub until such a time as a fix can be made available.

See NCC-ZEP-030

This has been fixed in a PR against Zephyr main.

• CVE-2020-10060

• Zephyr project bug tracker ZEPSEC-37

• PR27865 fix on main (to be fixed in v2.4.0)

• PR27865 fix for v2.3.0

• PR27865 fix for v2.2.0

• PR27865 fix for v2.1.0

CVE-2020-10061

Error handling invalid packet sequence

Improper handling of the full-buffer case in the Zephyr Bluetooth implementation can result in memory
corruption.

This has been fixed in branches for v1.14.0, v2.2.0, and will be included in v2.3.0.

• CVE-2020-10061

• Zephyr project bug tracker ZEPSEC-75

• PR23516 fix for v2.3 (split driver)

• PR23517 fix for v2.3 (legacy driver)

• PR23091 fix for branch from v1.14.0

• PR23547 fix for branch from v2.2.0

1898 Chapter 9. Security

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10059
https://zephyrprojectsec.atlassian.net/browse/ZEPSEC-36
https://github.com/zephyrproject-rtos/zephyr/pull/24954
https://github.com/zephyrproject-rtos/zephyr/pull/24999
https://github.com/zephyrproject-rtos/zephyr/pull/24997
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10060
https://zephyrprojectsec.atlassian.net/browse/ZEPSEC-37
https://github.com/zephyrproject-rtos/zephyr/pull/27865
https://github.com/zephyrproject-rtos/zephyr/pull/27889
https://github.com/zephyrproject-rtos/zephyr/pull/27891
https://github.com/zephyrproject-rtos/zephyr/pull/27893
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10061
https://zephyrprojectsec.atlassian.net/browse/ZEPSEC-75
https://github.com/zephyrproject-rtos/zephyr/pull/23516
https://github.com/zephyrproject-rtos/zephyr/pull/23517
https://github.com/zephyrproject-rtos/zephyr/pull/23091
https://github.com/zephyrproject-rtos/zephyr/pull/23547

Zephyr Project Documentation, Release 2.7.0-rc2

CVE-2020-10062

Packet length decoding error in MQTT

CVE: An off-by-one error in the Zephyr project MQTT packet length decoder can result in memory cor-
ruption and possible remote code execution. NCC-ZEP-031

The MQTT packet header length can be 1 to 4 bytes. An off-by-one error in the code can result in this
being interpreted as 5 bytes, which can cause an integer overflow, resulting in memory corruption.

This has been fixed in main for v2.3.

• CVE-2020-10062

• Zephyr project bug tracker ZEPSEC-84

• commit 11b7a37d for v2.3

• NCC-ZEP report (NCC-ZEP-031)

CVE-2020-10063

Remote Denial of Service in CoAP Option Parsing Due To Integer Overflow

A remote adversary with the ability to send arbitrary CoAP packets to be parsed by Zephyr is able to
cause a denial of service.

This has been fixed in main for v2.3.

• CVE-2020-10063

• Zephyr project bug tracker ZEPSEC-55

• PR24435 fix in main for v2.3

• PR24531 fix for branch from v2.2

• PR24535 fix for branch from v2.1

• PR24530 fix for branch from v1.14

• NCC-ZEP report (NCC-ZEP-032)

CVE-2020-10064

Improper Input Frame Validation in ieee802154 Processing

• CVE-2020-10064

• Zephyr project bug tracker ZEPSEC-65

• PR24971 fix for v2.4

• PR33451 fix for v1.4

CVE-2020-10065

OOB Write after not validating user-supplied length (<= 0xffff) and copying to fixed-size buffer (default:
77 bytes) for HCI_ACL packets in bluetooth HCI over SPI driver.

• CVE-2020-10065

• Zephyr project bug tracker ZEPSEC-66

• This issue has not been fixed.

9.6. Vulnerabilities 1899

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10062
https://zephyrprojectsec.atlassian.net/browse/ZEPSEC-84
https://github.com/zephyrproject-rtos/zephyr/pull/23821/commits/11b7a37d9a0b438270421b224221d91929843de4
https://research.nccgroup.com/2020/05/26/research-report-zephyr-and-mcuboot-security-assessment
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10063
https://zephyrprojectsec.atlassian.net/browse/ZEPSEC-55
https://github.com/zephyrproject-rtos/zephyr/pull/24435
https://github.com/zephyrproject-rtos/zephyr/pull/24531
https://github.com/zephyrproject-rtos/zephyr/pull/24535
https://github.com/zephyrproject-rtos/zephyr/pull/24530
https://research.nccgroup.com/2020/05/26/research-report-zephyr-and-mcuboot-security-assessment
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10064
https://zephyrprojectsec.atlasssian.net/browse/ZEPSEC-65
https://github.com/zephyrproject-rtos/zephyr/pull/24971
https://github.com/zephyrproject-rtos/zephyr/pull/33451
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10065
https://zephyrprojectsec.atlasssian.net/browse/ZEPSEC-66

Zephyr Project Documentation, Release 2.7.0-rc2

CVE-2020-10066

Incorrect Error Handling in Bluetooth HCI core

In hci_cmd_done, the buf argument being passed as null causes nullpointer dereference.

• CVE-2020-10066

• Zephyr project bug tracker ZEPSEC-67

• PR24902 fix for v2.4

• PR25089 fix for v1.4

CVE-2020-10067

Integer Overflow In is_in_region Allows User Thread To Access Kernel Memory

A malicious userspace application can cause a integer overflow and bypass security checks performed by
system call handlers. The impact would depend on the underlying system call and can range from denial
of service to information leak to memory corruption resulting in code execution within the kernel.

See NCC-ZEP-005

This has been fixed in releases v1.14.2, and v2.2.0.

• CVE-2020-10067

• Zephyr project bug tracker ZEPSEC-27

• PR23653 fix for v1.14.2

• PR23654 fix for the v2.1 branch

• PR23239 fix for v2.2.0

CVE-2020-10068

Zephyr Bluetooth DLE duplicate requests vulnerability

In the Zephyr project Bluetooth subsystem, certain duplicate and back-to-back packets can cause incor-
rect behavior, resulting in a denial of service.

This has been fixed in branches for v1.14.0, v2.2.0, and will be included in v2.3.0.

• CVE-2020-10068

• Zephyr project bug tracker ZEPSEC-78

• PR23707 fix for v2.3 (split driver)

• PR23708 fix for v2.3 (legacy driver)

• PR23091 fix for branch from v1.14.0

• PR23964 fix for v2.2.0

CVE-2020-10069

Zephyr Bluetooth unchecked packet data results in denial of service

An unchecked parameter in bluetooth data can result in an assertion failure, or division by zero, resulting
in a denial of service attack.

This has been fixed in branches for v1.14.0, v2.2.0, and will be included in v2.3.0.

• CVE-2020-10069

1900 Chapter 9. Security

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10066
https://zephyrprojectsec.atlasssian.net/browse/ZEPSEC-67
https://github.com/zephyrproject-rtos/zephyr/pull/24902
https://github.com/zephyrproject-rtos/zephyr/pull/25089
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10067
https://zephyrprojectsec.atlassian.net/browse/ZEPSEC-27
https://github.com/zephyrproject-rtos/zephyr/pull/23653
https://github.com/zephyrproject-rtos/zephyr/pull/23654
https://github.com/zephyrproject-rtos/zephyr/pull/23239
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10068
https://zephyrprojectsec.atlassian.net/browse/ZEPSEC-78
https://github.com/zephyrproject-rtos/zephyr/pull/23707
https://github.com/zephyrproject-rtos/zephyr/pull/23708
https://github.com/zephyrproject-rtos/zephyr/pull/23091
https://github.com/zephyrproject-rtos/zephyr/pull/23964
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10069

Zephyr Project Documentation, Release 2.7.0-rc2

• Zephyr project bug tracker ZEPSEC-81

• PR23705 fix for v2.3 (split driver)

• PR23706 fix for v2.3 (legacy driver)

• PR23091 fix for branch from v1.14.0

• PR23963 fix for branch from v2.2.0

CVE-2020-10070

MQTT buffer overflow on receive buffer

In the Zephyr Project MQTT code, improper bounds checking can result in memory corruption and
possibly remote code execution. NCC-ZEP-031

When calculating the packet length, arithmetic overflow can result in accepting a receive buffer larger
than the available buffer space, resulting in user data being written beyond this buffer.

This has been fixed in main for v2.3.

• CVE-2020-10070

• Zephyr project bug tracker ZEPSEC-85

• commit 0b39cbf3 for v2.3

• NCC-ZEP report (NCC-ZEP-031)

CVE-2020-10071

Insufficient publish message length validation in MQTT

The Zephyr MQTT parsing code performs insufficient checking of the length field on publish messages,
allowing a buffer overflow and potentially remote code execution. NCC-ZEP-031

This has been fixed in main for v2.3.

• CVE-2020-10071

• Zephyr project bug tracker ZEPSEC-86

• commit 989c4713 fix for v2.3

• NCC-ZEP report (NCC-ZEP-031)

CVE-2020-10072

All threads can access all socket file descriptors

There is no management of permissions to network socket API file descriptors. Any thread running on the
system may read/write a socket file descriptor knowing only the numerical value of the file descriptor.

• CVE-2020-10072

• Zephyr project bug tracker ZEPSEC-87

• PR25804 fix for v2.4

• PR27176 fix for v1.4

9.6. Vulnerabilities 1901

https://zephyrprojectsec.atlassian.net/browse/ZEPSEC-81
https://github.com/zephyrproject-rtos/zephyr/pull/23705
https://github.com/zephyrproject-rtos/zephyr/pull/23706
https://github.com/zephyrproject-rtos/zephyr/pull/23091
https://github.com/zephyrproject-rtos/zephyr/pull/23963
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10070
https://zephyrprojectsec.atlassian.net/browse/ZEPSEC-85
https://github.com/zephyrproject-rtos/zephyr/pull/23821/commits/0b39cbf3c01d7feec9d0dd7cc7e0e374b6113542
https://research.nccgroup.com/2020/05/26/research-report-zephyr-and-mcuboot-security-assessment
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10071
https://zephyrprojectsec.atlassian.net/browse/ZEPSEC-86
https://github.com/zephyrproject-rtos/zephyr/pull/23821/commits/989c4713ba429aa5105fe476b4d629718f3e6082
https://research.nccgroup.com/2020/05/26/research-report-zephyr-and-mcuboot-security-assessment
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10072
https://zephyrprojectsec.atlasssian.net/browse/ZEPSEC-87
https://github.com/zephyrproject-rtos/zephyr/pull/25804
https://github.com/zephyrproject-rtos/zephyr/pull/27176

Zephyr Project Documentation, Release 2.7.0-rc2

CVE-2020-10136

IP-in-IP protocol routes arbitrary traffic by default zephyrproject

• CVE-2020-10136

• Zephyr project bug tracker ZEPSEC-64

CVE-2020-13598

FS: Buffer Overflow when enabling Long File Names in FAT_FS and calling fs_stat

Performing fs_stat on a file with a filename longer than 12 characters long will cause a buffer overflow.

• CVE-2020-13598

• Zephyr project bug tracker ZEPSEC-88

• PR25852 fix for v2.4

• PR28782 fix for v2.3

• PR33577 fix for v1.4

CVE-2020-13599

Security problem with settings and littlefs

When settings is used in combination with littlefs all security related information can be extracted from
the device using MCUmgr and this could be used e.g in bt-mesh to get the device key, network key, app
keys from the device.

• CVE-2020-13599

• Zephyr project bug tracker ZEPSEC-57

• PR26083 fix for v2.4

CVE-2020-13600

Malformed SPI in response for eswifi can corrupt kernel memory

• CVE-2020-13600

• Zephyr project bug tracker ZEPSEC-91

• PR26712 fix for v2.4

CVE-2020-13601

Possible read out of bounds in dns read

• CVE-2020-13601

• Zephyr project bug tracker ZEPSEC-92

• PR27774 fix for v2.4

• PR30503 fix for v1.4

1902 Chapter 9. Security

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10136
https://zephyrprojectsec.atlassian.net/browse/ZEPSEC-64
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13598
https://zephyrprojectsec.atlasssian.net/browse/ZEPSEC-88
https://github.com/zephyrproject-rtos/zephyr/pull/25852
https://github.com/zephyrproject-rtos/zephyr/pull/28782
https://github.com/zephyrproject-rtos/zephyr/pull/33577
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13599
https://zephyrprojectsec.atlasssian.net/browse/ZEPSEC-57
https://github.com/zephyrproject-rtos/zephyr/pull/26083
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13600
https://zephyrprojectsec.atlassian.net/browse/ZEPSEC-91
https://github.com/zephyrproject-rtos/zephyr/pull/26712
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13601
https://zephyrprojectsec.atlassian.net/browse/ZEPSEC-92
https://github.com/zephyrproject-rtos/zephyr/pull/27774
https://github.com/zephyrproject-rtos/zephyr/pull/30503

Zephyr Project Documentation, Release 2.7.0-rc2

CVE-2020-13602

Remote Denial of Service in LwM2M do_write_op_tlv

In the Zephyr LwM2M implementation, malformed input can result in an infinite loop, resulting in a
denial of service attack.

• CVE-2020-13602

• Zephyr project bug tracker ZEPSEC-56

• PR26571 fix for v2.4

• PR33578 fix for v1.4

CVE-2020-13603

Possible overflow in mempool

• Zephyr offers pre-built ‘malloc’ wrapper function instead.

• The ‘malloc’ function is wrapper for the ‘sys_mem_pool_alloc’ function

• sys_mem_pool_alloc allocates ‘size + WB_UP(sizeof(struct sys_mem_pool_block))’ in an unsafe
manner.

• Asking for very large size values leads to internal integer wrap-around.

• Integer wrap-around leads to successful allocation of very small memory.

• For example: calling malloc(0xffffffff) leads to successful allocation of 7 bytes.

• That leads to heap overflow.

• CVE-2020-13603

• Zephyr project bug tracker ZEPSEC-111

• PR31796 fix for v2.4

• PR32808 fix for v1.4

9.6.4 CVE-2021

CVE-2021-3320

Mismatch between validation and handling of 802154 ACK frames, where ACK frames are considered
during validation, but not during actual processing, leading to a type confusion.

• CVE-2020-3320

• PR31908 fix for main

CVE-2021-3321

Incomplete check of minimum IEEE 802154 fragment size leading to an integer underflow.

• CVE-2020-3321

• Zephyr project bug tracker ZEPSEC-114

• PR33453 fix for v2.4

9.6. Vulnerabilities 1903

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13602
https://zephyrprojectsec.atlasssian.net/browse/ZEPSEC-56
https://github.com/zephyrproject-rtos/zephyr/pull/26571
https://github.com/zephyrproject-rtos/zephyr/pull/33578
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13603
https://zephyrprojectsec.atlassian.net/browse/ZEPSEC-111
https://github.com/zephyrproject-rtos/zephyr/pull/31796
https://github.com/zephyrproject-rtos/zephyr/pull/26571
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3320
https://github.com/zephyrproject-rtos/zephyr/pull/31908
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3321
https://zephyrprojectsec.atlassian.net/browse/ZEPSEC-114
https://github.com/zephyrproject-rtos/zephyr/pull/33453

Zephyr Project Documentation, Release 2.7.0-rc2

CVE-2021-3323

Integer Underflow in 6LoWPAN IPHC Header Uncompression

• CVE-2020-3323

• Zephyr project bug tracker ZEPSEC-116

• This issue has not been fixed.

CVE-2021-3430

Assertion reachable with repeated LL_CONNECTION_PARAM_REQ.

This has been fixed in main for v2.6.0

• CVE-2021-3430

• Zephyr project bug tracker GHSA-46h3-hjcq-2jjr

• PR 33272 fix for main

• PR 33369 fix for 2.5

• PR 33759 fix for 1.14.2

CVE-2021-3431

BT: Assertion failure on repeated LL_FEATURE_REQ

This has been fixed in main for v2.6.0

• CVE-2021-3431

• Zephyr project bug tracker GHSA-7548-5m6f-mqv9

• PR 33340 fix for main

• PR 33369 fix for 2.5

CVE-2021-3432

Invalid interval in CONNECT_IND leads to Division by Zero

This has been fixed in main for v2.6.0

• CVE-2021-3432

• Zephyr project bug tracker GHSA-7364-p4wc-8mj4

• PR 33278 fix for main

• PR 33369 fix for 2.5

CVE-2021-3433

BT: Invalid channel map in CONNECT_IND results to Deadlock

This has been fixed in main for v2.6.0

• CVE-2021-3433

• Zephyr project bug tracker GHSA-3c2f-w4v6-qxrp

• PR 33278 fix for main

• PR 33369 fix for 2.5

1904 Chapter 9. Security

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3323
https://zephyrprojectsec.atlassian.net/browse/ZEPSEC-116
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3430
https://github.com/zephyrproject-rtos/zephyr/security/advisories/GHSA-46h3-hjcq-2jjr
https://github.com/zephyrproject-rtos/zephyr/pull/33272
https://github.com/zephyrproject-rtos/zephyr/pull/33369
https://github.com/zephyrproject-rtos/zephyr/pull/33759
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3431
https://github.com/zephyrproject-rtos/zephyr/security/advisories/GHSA-7548-5m6f-mqv9
https://github.com/zephyrproject-rtos/zephyr/pull/33340
https://github.com/zephyrproject-rtos/zephyr/pull/33369
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3432
https://github.com/zephyrproject-rtos/zephyr/security/advisories/GHSA-7364-p4wc-8mj4
https://github.com/zephyrproject-rtos/zephyr/pull/33278
https://github.com/zephyrproject-rtos/zephyr/pull/33369
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3433
https://github.com/zephyrproject-rtos/zephyr/security/advisories/GHSA-3c2f-w4v6-qxrp
https://github.com/zephyrproject-rtos/zephyr/pull/33278
https://github.com/zephyrproject-rtos/zephyr/pull/33369

Zephyr Project Documentation, Release 2.7.0-rc2

CVE-2021-3434

L2CAP: Stack based buffer overflow in le_ecred_conn_req()

This has been fixed in main for v2.6.0

• CVE-2021-3434

• Zephyr project bug tracker GHSA-8w87-6rfp-cfrm

• PR 33305 fix for main

• PR 33419 fix for 2.5

• PR 33418 fix for 1.14.2

CVE-2021-3435

L2CAP: Information leakage in le_ecred_conn_req()

This has been fixed in main for v2.6.0

• CVE-2021-3435

• Zephyr project bug tracker GHSA-xhg3-gvj6-4rqh

• PR 33305 fix for main

• PR 33419 fix for 2.5

• PR 33418 fix for 1.14.2

CVE-2021-3454

Truncated L2CAP K-frame causes assertion failure

For example, sending L2CAP K-frame where SDU length field is truncated to only one byte, causes
assertion failure in previous releases of Zephyr. This has been fixed in master by commit 0ba9437 but
has not yet been backported to older release branches.

This has been fixed in main for v2.6.0

• CVE-2021-3454

• Zephyr project bug tracker GHSA-fx88-6c29-vrp3

• PR 32588 fix for main

• PR 33513 fix for 2.5

• PR 33514 fix for 2.4

CVE-2021-3455

Disconnecting L2CAP channel right after invalid ATT request leads freeze

When Central device connects to peripheral and creates L2CAP connection for Enhanced ATT, sending
some invalid ATT request and disconnecting immediately causes freeze.

This has been fixed in main for v2.6.0

• CVE-2021-3455

• Zephyr project bug tracker GHSA-7g38-3x9v-v7vp

• PR 35597 fix for main

• PR 36104 fix for 2.5

9.6. Vulnerabilities 1905

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3434
https://github.com/zephyrproject-rtos/zephyr/security/advisories/GHSA-8w87-6rfp-cfrm
https://github.com/zephyrproject-rtos/zephyr/pull/33305
https://github.com/zephyrproject-rtos/zephyr/pull/33419
https://github.com/zephyrproject-rtos/zephyr/pull/33418
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3435
https://github.com/zephyrproject-rtos/zephyr/security/advisories/GHSA-xhg3-gvj6-4rqh
https://github.com/zephyrproject-rtos/zephyr/pull/33305
https://github.com/zephyrproject-rtos/zephyr/pull/33419
https://github.com/zephyrproject-rtos/zephyr/pull/33418
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3454
https://github.com/zephyrproject-rtos/zephyr/security/advisories/GHSA-fx88-6c29-vrp3
https://github.com/zephyrproject-rtos/zephyr/pull/32588
https://github.com/zephyrproject-rtos/zephyr/pull/33513
https://github.com/zephyrproject-rtos/zephyr/pull/33514
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3455
https://github.com/zephyrproject-rtos/zephyr/security/advisories/GHSA-7g38-3x9v-v7vp
https://github.com/zephyrproject-rtos/zephyr/pull/35597
https://github.com/zephyrproject-rtos/zephyr/pull/36104

Zephyr Project Documentation, Release 2.7.0-rc2

• PR 36105 fix for 2.4

CVE-2021-3581

Under embargo until 2021/09/04

1906 Chapter 9. Security

https://github.com/zephyrproject-rtos/zephyr/pull/36105

Bibliography

[th-imboot] Must boot with an immutable bootloader.

[th-authrepl] Application image shall only be replaced with an authorized image.

[th-timely-update] Application updates shall be done in a timely manner.

[th-atomic-update] Application updates shall be atomic.

[th-root-certs] TLS must have a list of trusted root certificates.

[th-root-check] TLS must verify root certificate from server is valid.

[th-secret-storage] There must be a mechanism to securely store client secrets. The least amount of code
necessary shall have access to these secrets.

[th-time] System must have moderately accurate notion of the current date/time.

[th-conf] The system must receive, and keep configuration data.

[th-logs] The system must log security-related events, and either store them locally, or send to a service.

[th-all-tls] All communications with the cloud service shall use TLS.

[th-tls-ciphers] TLS shall be configured to allow only generally agreed cipher suites (including forward
secrecy).

[th-tls-client-auth] The device shall authenticate itself with the cloud provider using one of the methods
described.

[th-entropy] The TLS layer shall use a modern, accepted cryptographic random-bit generator seeded by
an entropy source within the SoC.

[th-initial-provision] The device shall have a per-device secret loaded before deployment.

[th-initial-secret] The initial secret shall be securely maintained, and destroyed in any external location
as soon as the device is provisioned.

[th-reprovision] Reprovisioning a device shall be done securely.

[th-destruction] Upon decommissioning, the device secret shall be rendered ineffective.

1907

Zephyr Project Documentation, Release 2.7.0-rc2

1908 Bibliography

Python Module Index

r
runners.core, 1847

1909

Zephyr Project Documentation, Release 2.7.0-rc2

1910 Python Module Index

Index

Symbols
%HOMEDRIVE%, 1834
%HOMEPATH%, 1834
%HOME%, 1834
%USERPROFILE%, 1834
[anonymous] (C enum), 169, 170, 198, 201–203,

233, 234, 237, 238, 246, 256, 257, 264,
268, 364, 377, 402, 568, 626

[anonymous].BT_CONN_LE_OPT_CODED (C enumer-
ator), 170

[anonymous].BT_CONN_LE_OPT_NONE (C enumera-
tor), 170

[anonymous].BT_CONN_LE_OPT_NO_1M (C enumer-
ator), 170

[anonymous].BT_CONN_LE_PHY_OPT_CODED_S2 (C
enumerator), 169

[anonymous].BT_CONN_LE_PHY_OPT_CODED_S8 (C
enumerator), 169

[anonymous].BT_CONN_LE_PHY_OPT_NONE (C enu-
merator), 169

[anonymous].BT_CONN_ROLE_CENTRAL (C enumer-
ator), 170

[anonymous].BT_CONN_ROLE_PERIPHERAL (C enu-
merator), 170

[anonymous].BT_CONN_TYPE_ALL (C enumerator),
169

[anonymous].BT_CONN_TYPE_BR (C enumerator),
169

[anonymous].BT_CONN_TYPE_ISO (C enumerator),
169

[anonymous].BT_CONN_TYPE_LE (C enumerator),
169

[anonymous].BT_CONN_TYPE_SCO (C enumerator),
169

[anonymous].BT_GAP_ADV_PROP_CONNECTABLE (C
enumerator), 234

[anonymous].BT_GAP_ADV_PROP_DIRECTED (C
enumerator), 234

[anonymous].BT_GAP_ADV_PROP_EXT_ADV (C enu-
merator), 234

[anonymous].BT_GAP_ADV_PROP_SCANNABLE (C
enumerator), 234

[anonymous].BT_GAP_ADV_PROP_SCAN_RESPONSE
(C enumerator), 234

[anonymous].BT_GAP_ADV_TYPE_ADV_DIRECT_IND
(C enumerator), 233

[anonymous].BT_GAP_ADV_TYPE_ADV_IND (C enu-
merator), 233

[anonymous].BT_GAP_ADV_TYPE_ADV_NONCONN_IND

(C enumerator), 233
[anonymous].BT_GAP_ADV_TYPE_ADV_SCAN_IND

(C enumerator), 233
[anonymous].BT_GAP_ADV_TYPE_EXT_ADV (C enu-

merator), 233
[anonymous].BT_GAP_ADV_TYPE_SCAN_RSP (C

enumerator), 233
[anonymous].BT_GAP_CTE_AOA (C enumerator),

234
[anonymous].BT_GAP_CTE_AOD_1US (C enumera-

tor), 234
[anonymous].BT_GAP_CTE_AOD_2US (C enumera-

tor), 234
[anonymous].BT_GAP_CTE_NONE (C enumerator),

234
[anonymous].BT_GAP_LE_PHY_1M (C enumerator),

233
[anonymous].BT_GAP_LE_PHY_2M (C enumerator),

233
[anonymous].BT_GAP_LE_PHY_CODED (C enumera-

tor), 233
[anonymous].BT_GAP_LE_PHY_NONE (C enumera-

tor), 233
[anonymous].BT_GAP_SCA_0_20 (C enumerator),

235
[anonymous].BT_GAP_SCA_101_150 (C enumera-

tor), 234
[anonymous].BT_GAP_SCA_151_250 (C enumera-

tor), 234
[anonymous].BT_GAP_SCA_21_30 (C enumerator),

235
[anonymous].BT_GAP_SCA_251_500 (C enumera-

tor), 234
[anonymous].BT_GAP_SCA_31_50 (C enumerator),

235
[anonymous].BT_GAP_SCA_51_75 (C enumerator),

235
[anonymous].BT_GAP_SCA_76_100 (C enumera-

tor), 234
[anonymous].BT_GAP_SCA_UNKNOWN (C enumera-

tor), 234
[anonymous].BT_GATT_DISCOVER_ATTRIBUTE (C

enumerator), 256
[anonymous].BT_GATT_DISCOVER_CHARACTERISTIC

(C enumerator), 256
[anonymous].BT_GATT_DISCOVER_DESCRIPTOR (C

enumerator), 256
[anonymous].BT_GATT_DISCOVER_INCLUDE (C

enumerator), 256

1911

Zephyr Project Documentation, Release 2.7.0-rc2

[anonymous].BT_GATT_DISCOVER_PRIMARY (C
enumerator), 256

[anonymous].BT_GATT_DISCOVER_SECONDARY (C
enumerator), 256

[anonymous].BT_GATT_DISCOVER_STD_CHAR_DESC
(C enumerator), 257

[anonymous].BT_GATT_ITER_CONTINUE (C enu-
merator), 246

[anonymous].BT_GATT_ITER_STOP (C enumera-
tor), 246

[anonymous].BT_GATT_PERM_NONE (C enumera-
tor), 237

[anonymous].BT_GATT_PERM_PREPARE_WRITE (C
enumerator), 238

[anonymous].BT_GATT_PERM_READ (C enumera-
tor), 237

[anonymous].BT_GATT_PERM_READ_AUTHEN (C
enumerator), 238

[anonymous].BT_GATT_PERM_READ_ENCRYPT (C
enumerator), 238

[anonymous].BT_GATT_PERM_WRITE (C enumera-
tor), 238

[anonymous].BT_GATT_PERM_WRITE_AUTHEN (C
enumerator), 238

[anonymous].BT_GATT_PERM_WRITE_ENCRYPT (C
enumerator), 238

[anonymous].BT_GATT_SUBSCRIBE_FLAG_NO_RESUB
(C enumerator), 257

[anonymous].BT_GATT_SUBSCRIBE_FLAG_VOLATILE
(C enumerator), 257

[anonymous].BT_GATT_SUBSCRIBE_FLAG_WRITE_PENDING
(C enumerator), 257

[anonymous].BT_GATT_SUBSCRIBE_NUM_FLAGS (C
enumerator), 258

[anonymous].BT_GATT_WRITE_FLAG_CMD (C enu-
merator), 239

[anonymous].BT_GATT_WRITE_FLAG_PREPARE (C
enumerator), 238

[anonymous].BT_HCI_RAW_MODE_H4 (C enumera-
tor), 268

[anonymous].BT_HCI_RAW_MODE_PASSTHROUGH (C
enumerator), 268

[anonymous].BT_LE_ADV_OPT_ANONYMOUS (C enu-
merator), 200

[anonymous].BT_LE_ADV_OPT_CODED (C enumera-
tor), 200

[anonymous].BT_LE_ADV_OPT_CONNECTABLE (C
enumerator), 198

[anonymous].BT_LE_ADV_OPT_DIR_ADDR_RPA (C
enumerator), 199

[anonymous].BT_LE_ADV_OPT_DIR_MODE_LOW_DUTY
(C enumerator), 199

[anonymous].BT_LE_ADV_OPT_DISABLE_CHAN_37
(C enumerator), 201

[anonymous].BT_LE_ADV_OPT_DISABLE_CHAN_38
(C enumerator), 201

[anonymous].BT_LE_ADV_OPT_DISABLE_CHAN_39
(C enumerator), 201

[anonymous].BT_LE_ADV_OPT_EXT_ADV (C enu-
merator), 200

[anonymous].BT_LE_ADV_OPT_FILTER_CONN (C
enumerator), 199

[anonymous].BT_LE_ADV_OPT_FILTER_SCAN_REQ
(C enumerator), 199

[anonymous].BT_LE_ADV_OPT_FORCE_NAME_IN_AD
(C enumerator), 201

[anonymous].BT_LE_ADV_OPT_NONE (C enumera-
tor), 198

[anonymous].BT_LE_ADV_OPT_NOTIFY_SCAN_REQ
(C enumerator), 199

[anonymous].BT_LE_ADV_OPT_NO_2M (C enumera-
tor), 200

[anonymous].BT_LE_ADV_OPT_ONE_TIME (C enu-
merator), 198

[anonymous].BT_LE_ADV_OPT_SCANNABLE (C enu-
merator), 200

[anonymous].BT_LE_ADV_OPT_USE_IDENTITY (C
enumerator), 198

[anonymous].BT_LE_ADV_OPT_USE_NAME (C enu-
merator), 199

[anonymous].BT_LE_ADV_OPT_USE_TX_POWER (C
enumerator), 200

[anonymous].BT_LE_PER_ADV_OPT_NONE (C enu-
merator), 201

[anonymous].BT_LE_PER_ADV_OPT_USE_TX_POWER
(C enumerator), 201

[anonymous].BT_LE_PER_ADV_SYNC_OPT_DONT_SYNC_AOA
(C enumerator), 202

[anonymous].BT_LE_PER_ADV_SYNC_OPT_DONT_SYNC_AOD_1US
(C enumerator), 202

[anonymous].BT_LE_PER_ADV_SYNC_OPT_DONT_SYNC_AOD_2US
(C enumerator), 202

[anonymous].BT_LE_PER_ADV_SYNC_OPT_NONE (C
enumerator), 201

[anonymous].BT_LE_PER_ADV_SYNC_OPT_REPORTING_INITIALLY_DISABLED
(C enumerator), 201

[anonymous].BT_LE_PER_ADV_SYNC_OPT_SYNC_ONLY_CONST_TONE_EXT
(C enumerator), 202

[anonymous].BT_LE_PER_ADV_SYNC_OPT_USE_PER_ADV_LIST
(C enumerator), 201

[anonymous].BT_LE_PER_ADV_SYNC_TRANSFER_OPT_NONE
(C enumerator), 202

[anonymous].BT_LE_PER_ADV_SYNC_TRANSFER_OPT_SYNC_NO_AOA
(C enumerator), 202

[anonymous].BT_LE_PER_ADV_SYNC_TRANSFER_OPT_SYNC_NO_AOD_1US
(C enumerator), 202

[anonymous].BT_LE_PER_ADV_SYNC_TRANSFER_OPT_SYNC_NO_AOD_2US
(C enumerator), 202

[anonymous].BT_LE_PER_ADV_SYNC_TRANSFER_OPT_SYNC_ONLY_CTE
(C enumerator), 202

[anonymous].BT_LE_SCAN_OPT_CODED (C enumer-
ator), 203

[anonymous].BT_LE_SCAN_OPT_FILTER_ACCEPT_LIST
(C enumerator), 202

[anonymous].BT_LE_SCAN_OPT_FILTER_DUPLICATE
(C enumerator), 202

1912 Index

Zephyr Project Documentation, Release 2.7.0-rc2

[anonymous].BT_LE_SCAN_OPT_NONE (C enumera-
tor), 202

[anonymous].BT_LE_SCAN_OPT_NO_1M (C enumer-
ator), 203

[anonymous].BT_LE_SCAN_TYPE_ACTIVE (C enu-
merator), 203

[anonymous].BT_LE_SCAN_TYPE_PASSIVE (C enu-
merator), 203

[anonymous].BT_QUIRK_NO_AUTO_DLE (C enumer-
ator), 264

[anonymous].BT_QUIRK_NO_RESET (C enumera-
tor), 264

[anonymous].BT_RFCOMM_CHAN_HFP_AG (C enu-
merator), 364

[anonymous].BT_RFCOMM_CHAN_HFP_HF (C enu-
merator), 364

[anonymous].BT_RFCOMM_CHAN_HSP_AG (C enu-
merator), 365

[anonymous].BT_RFCOMM_CHAN_HSP_HS (C enu-
merator), 365

[anonymous].BT_RFCOMM_CHAN_SPP (C enumera-
tor), 365

[anonymous].BT_SDP_DISCOVER_UUID_CONTINUE
(C enumerator), 377

[anonymous].BT_SDP_DISCOVER_UUID_STOP (C
enumerator), 377

[anonymous].BT_UUID_TYPE_128 (C enumerator),
402

[anonymous].BT_UUID_TYPE_16 (C enumerator),
402

[anonymous].BT_UUID_TYPE_32 (C enumerator),
402

[anonymous].FS_FATFS (C enumerator), 568
[anonymous].FS_LITTLEFS (C enumerator), 569
[anonymous].FS_TYPE_EXTERNAL_BASE (C enu-

merator), 569
[anonymous].K_WORK_CANCELING (C enumerator),

626
[anonymous].K_WORK_DELAYED (C enumerator),

627
[anonymous].K_WORK_QUEUED (C enumerator), 627
[anonymous].K_WORK_RUNNING (C enumerator),

626

A
adc_action (C enum), 1124
adc_action.ADC_ACTION_CONTINUE (C enumera-

tor), 1124
adc_action.ADC_ACTION_FINISH (C enumerator),

1124
adc_action.ADC_ACTION_REPEAT (C enumerator),

1124
adc_api_channel_setup (C type), 1122
adc_api_read (C type), 1122
adc_api_read_async (C type), 1122
adc_channel_cfg (C struct), 1126
adc_channel_cfg.acquisition_time (C var),

1126

adc_channel_cfg.channel_id (C var), 1127
adc_channel_cfg.differential (C var), 1127
adc_channel_cfg.gain (C var), 1126
adc_channel_cfg.reference (C var), 1126
adc_channel_setup (C function), 1125
adc_driver_api (C struct), 1128
adc_gain (C enum), 1122
adc_gain.ADC_GAIN_1 (C enumerator), 1123
adc_gain.ADC_GAIN_12 (C enumerator), 1123
adc_gain.ADC_GAIN_128 (C enumerator), 1123
adc_gain.ADC_GAIN_16 (C enumerator), 1123
adc_gain.ADC_GAIN_1_2 (C enumerator), 1123
adc_gain.ADC_GAIN_1_3 (C enumerator), 1123
adc_gain.ADC_GAIN_1_4 (C enumerator), 1123
adc_gain.ADC_GAIN_1_5 (C enumerator), 1122
adc_gain.ADC_GAIN_1_6 (C enumerator), 1122
adc_gain.ADC_GAIN_2 (C enumerator), 1123
adc_gain.ADC_GAIN_24 (C enumerator), 1123
adc_gain.ADC_GAIN_2_3 (C enumerator), 1123
adc_gain.ADC_GAIN_3 (C enumerator), 1123
adc_gain.ADC_GAIN_32 (C enumerator), 1123
adc_gain.ADC_GAIN_4 (C enumerator), 1123
adc_gain.ADC_GAIN_6 (C enumerator), 1123
adc_gain.ADC_GAIN_64 (C enumerator), 1123
adc_gain.ADC_GAIN_8 (C enumerator), 1123
adc_gain_invert (C function), 1124
adc_raw_to_millivolts (C function), 1125
adc_read (C function), 1125
adc_read_async (C function), 1126
adc_ref_internal (C function), 1126
adc_reference (C enum), 1124
adc_reference.ADC_REF_EXTERNAL0 (C enumera-

tor), 1124
adc_reference.ADC_REF_EXTERNAL1 (C enumera-

tor), 1124
adc_reference.ADC_REF_INTERNAL (C enumera-

tor), 1124
adc_reference.ADC_REF_VDD_1 (C enumerator),

1124
adc_reference.ADC_REF_VDD_1_2 (C enumera-

tor), 1124
adc_reference.ADC_REF_VDD_1_3 (C enumera-

tor), 1124
adc_reference.ADC_REF_VDD_1_4 (C enumera-

tor), 1124
adc_sequence (C struct), 1127
adc_sequence.buffer (C var), 1128
adc_sequence.buffer_size (C var), 1128
adc_sequence.calibrate (C var), 1128
adc_sequence.channels (C var), 1128
adc_sequence.options (C var), 1128
adc_sequence.oversampling (C var), 1128
adc_sequence.resolution (C var), 1128
adc_sequence_callback (C type), 1122
adc_sequence_options (C struct), 1127
adc_sequence_options.callback (C var), 1127
adc_sequence_options.extra_samplings (C

var), 1127

Index 1913

Zephyr Project Documentation, Release 2.7.0-rc2

adc_sequence_options.interval_us (C var),
1127

adc_sequence_options.user_data (C var), 1127
add_parser() (runners.core.ZephyrBinaryRunner

class method), 1850
AF_CAN (C macro), 879
AF_INET (C macro), 879
AF_INET6 (C macro), 879
AF_LOCAL (C macro), 879
AF_NET_MGMT (C macro), 879
AF_PACKET (C macro), 879
AF_UNIX (C macro), 879
AF_UNSPEC (C macro), 879
AI_ADDRCONFIG (C macro), 869
AI_ALL (C macro), 869
AI_CANONNAME (C macro), 869
AI_NUMERICHOST (C macro), 869
AI_NUMERICSERV (C macro), 869
AI_PASSIVE (C macro), 868
AI_V4MAPPED (C macro), 869
ALIGN_D (C macro), 880
ALIGN_H (C macro), 880
arch_buffer_validate (C function), 1737
arch_busy_wait (C function), 1728
arch_cohere_stacks (C function), 1738
arch_coredump_info_dump (C function), 1575
arch_coredump_tgt_code_get (C function), 1575
arch_cpu_active (C function), 1732
arch_cpu_atomic_idle (C function), 1731
arch_cpu_idle (C function), 1731
arch_cpustart_t (C type), 1732
arch_curr_cpu (C function), 1732
arch_float_disable (C function), 1730
arch_float_enable (C function), 1730
arch_irq_connect_dynamic (C function), 1734
arch_irq_disable (C function), 1733
arch_irq_enable (C function), 1733
arch_irq_is_enabled (C function), 1733
arch_irq_lock (C function), 1733
arch_irq_unlock (C function), 1733
arch_irq_unlocked (C function), 1733
arch_is_in_isr (C function), 1733
arch_is_user_context (C function), 1736
arch_k_cycle_get_32 (C function), 1728
arch_kernel_init (C function), 1741
arch_mem_coherent (C function), 1738
arch_mem_domain_max_partitions_get (C func-

tion), 1736
arch_mem_map (C function), 1739
arch_mem_unmap (C function), 1739
arch_new_thread (C function), 1728
arch_nop (C function), 1741
arch_page_phys_get (C function), 1740
arch_printk_char_out (C function), 1740
arch_sched_ipi (C function), 1732
arch_start_cpu (C function), 1732
arch_switch (C function), 1729
arch_switch_to_main_thread (C function), 1730

arch_syscall_invoke0 (C function), 1734
arch_syscall_invoke1 (C function), 1734
arch_syscall_invoke2 (C function), 1735
arch_syscall_invoke3 (C function), 1735
arch_syscall_invoke4 (C function), 1735
arch_syscall_invoke5 (C function), 1736
arch_syscall_invoke6 (C function), 1736
arch_syscall_oops (C function), 1737
arch_system_halt (C function), 1731
arch_timing_counter_get (C function), 1727
arch_timing_cycles_get (C function), 1727
arch_timing_cycles_to_ns (C function), 1727
arch_timing_cycles_to_ns_avg (C function),

1728
arch_timing_freq_get (C function), 1727
arch_timing_freq_get_mhz (C function), 1728
arch_timing_init (C function), 1726
arch_timing_start (C function), 1726
arch_timing_stop (C function), 1727
arch_tls_stack_setup (C function), 1731
arch_user_mode_enter (C function), 1737
arch_user_string_nlen (C function), 1738
ARCMWDT_TOOLCHAIN_PATH, 1466
ARGS_CONT_MSG (C macro), 790
arithmetic_shift_right (C function), 1438
ARRAY_SIZE (C macro), 1428
atomic_add (C function), 752
atomic_and (C function), 754
ATOMIC_BITMAP_SIZE (C macro), 750
atomic_cas (C function), 752
atomic_clear (C function), 753
atomic_clear_bit (C function), 751
atomic_dec (C function), 753
ATOMIC_DEFINE (C macro), 750
atomic_get (C function), 753
atomic_inc (C function), 753
ATOMIC_INIT (C macro), 750
atomic_nand (C function), 754
atomic_or (C function), 754
atomic_ptr_cas (C function), 752
atomic_ptr_clear (C function), 754
atomic_ptr_get (C function), 753
ATOMIC_PTR_INIT (C macro), 750
atomic_ptr_set (C function), 753
atomic_set (C function), 753
atomic_set_bit (C function), 751
atomic_set_bit_to (C function), 751
atomic_sub (C function), 752
atomic_test_and_clear_bit (C function), 751
atomic_test_and_set_bit (C function), 751
atomic_test_bit (C function), 750
atomic_xor (C function), 754
audio_channel_t (C enum), 149
audio_channel_t.AUDIO_CHANNEL_ALL (C enu-

merator), 149
audio_channel_t.AUDIO_CHANNEL_FRONT_CENTER

(C enumerator), 149

1914 Index

Zephyr Project Documentation, Release 2.7.0-rc2

audio_channel_t.AUDIO_CHANNEL_FRONT_LEFT
(C enumerator), 149

audio_channel_t.AUDIO_CHANNEL_FRONT_RIGHT
(C enumerator), 149

audio_channel_t.AUDIO_CHANNEL_LFE (C enu-
merator), 149

audio_channel_t.AUDIO_CHANNEL_REAR_CENTER
(C enumerator), 149

audio_channel_t.AUDIO_CHANNEL_REAR_LEFT (C
enumerator), 149

audio_channel_t.AUDIO_CHANNEL_REAR_RIGHT
(C enumerator), 149

audio_channel_t.AUDIO_CHANNEL_SIDE_LEFT (C
enumerator), 149

audio_channel_t.AUDIO_CHANNEL_SIDE_RIGHT
(C enumerator), 149

audio_codec_apply_properties (C function),
150

audio_codec_cfg (C struct), 151
audio_codec_configure (C function), 150
audio_codec_set_property (C function), 150
audio_codec_start_output (C function), 150
audio_codec_stop_output (C function), 150
audio_dai_cfg_t (C union), 150
audio_dai_cfg_t.i2s (C var), 151
audio_dai_type_t (C enum), 149
audio_dai_type_t.AUDIO_DAI_TYPE_I2S (C enu-

merator), 149
audio_dai_type_t.AUDIO_DAI_TYPE_INVALID (C

enumerator), 149
audio_pcm_rate_t (C enum), 148
audio_pcm_rate_t.AUDIO_PCM_RATE_16K (C enu-

merator), 148
audio_pcm_rate_t.AUDIO_PCM_RATE_192K (C

enumerator), 148
audio_pcm_rate_t.AUDIO_PCM_RATE_24K (C enu-

merator), 148
audio_pcm_rate_t.AUDIO_PCM_RATE_32K (C enu-

merator), 148
audio_pcm_rate_t.AUDIO_PCM_RATE_44P1K (C

enumerator), 148
audio_pcm_rate_t.AUDIO_PCM_RATE_48K (C enu-

merator), 148
audio_pcm_rate_t.AUDIO_PCM_RATE_8K (C enu-

merator), 148
audio_pcm_rate_t.AUDIO_PCM_RATE_96K (C enu-

merator), 148
audio_pcm_width_t (C enum), 148
audio_pcm_width_t.AUDIO_PCM_WIDTH_16_BITS

(C enumerator), 148
audio_pcm_width_t.AUDIO_PCM_WIDTH_20_BITS

(C enumerator), 148
audio_pcm_width_t.AUDIO_PCM_WIDTH_24_BITS

(C enumerator), 149
audio_pcm_width_t.AUDIO_PCM_WIDTH_32_BITS

(C enumerator), 149
audio_property_t (C enum), 149
audio_property_t.AUDIO_PROPERTY_OUTPUT_MUTE

(C enumerator), 149
audio_property_t.AUDIO_PROPERTY_OUTPUT_VOLUME

(C enumerator), 149
audio_property_value_t (C union), 151
audio_property_value_t.mute (C var), 151
audio_property_value_t.vol (C var), 151

B
bcd2bin (C function), 1439
bin2bcd (C function), 1440
bin2hex (C function), 1439
bin_file (runners.core.RunnerConfig attribute),

1848
BIT (C macro), 1430
BIT64 (C macro), 1430
BIT64_MASK (C macro), 1430
BIT_MASK (C macro), 1430
BITS_PER_LONG (C macro), 1428
block_op_t (C type), 404
BOARD, 1840, 1844
board_dir (runners.core.RunnerConfig attribute),

1848
BT_ADDR_ANY (C macro), 227
bt_addr_cmp (C function), 227
bt_addr_copy (C function), 228
bt_addr_from_str (C function), 229
BT_ADDR_IS_NRPA (C macro), 227
BT_ADDR_IS_RPA (C macro), 227
BT_ADDR_IS_STATIC (C macro), 227
BT_ADDR_LE_ANY (C macro), 227
bt_addr_le_cmp (C function), 227
bt_addr_le_copy (C function), 228
bt_addr_le_create_nrpa (C function), 228
bt_addr_le_create_static (C function), 228
bt_addr_le_from_str (C function), 229
bt_addr_le_is_identity (C function), 228
bt_addr_le_is_rpa (C function), 228
BT_ADDR_LE_NONE (C macro), 227
BT_ADDR_LE_PUBLIC (C macro), 226
BT_ADDR_LE_PUBLIC_ID (C macro), 226
BT_ADDR_LE_RANDOM (C macro), 226
BT_ADDR_LE_RANDOM_ID (C macro), 226
BT_ADDR_LE_STR_LEN (C macro), 227
bt_addr_le_t (C struct), 229
bt_addr_le_to_str (C function), 228
BT_ADDR_NONE (C macro), 227
BT_ADDR_SET_NRPA (C macro), 227
BT_ADDR_SET_RPA (C macro), 227
BT_ADDR_SET_STATIC (C macro), 227
BT_ADDR_STR_LEN (C macro), 227
bt_addr_t (C struct), 229
bt_addr_to_str (C function), 228
bt_bond_info (C struct), 226
bt_bond_info.addr (C var), 226
BT_BR_CONN_PARAM (C macro), 169
bt_br_conn_param (C struct), 189
BT_BR_CONN_PARAM_DEFAULT (C macro), 169
BT_BR_CONN_PARAM_INIT (C macro), 169

Index 1915

Zephyr Project Documentation, Release 2.7.0-rc2

bt_br_discovery_cb_t (C type), 198
bt_br_discovery_param (C struct), 226
bt_br_discovery_param.length (C var), 226
bt_br_discovery_param.limited (C var), 226
bt_br_discovery_result (C struct), 225
bt_br_discovery_result.addr (C var), 225
bt_br_discovery_result.cod (C var), 225
bt_br_discovery_result.eir (C var), 226
bt_br_discovery_result.rssi (C var), 225
bt_br_discovery_start (C function), 215
bt_br_discovery_stop (C function), 215
bt_br_oob (C struct), 226
bt_br_oob.addr (C var), 226
bt_br_oob_get_local (C function), 215
bt_br_set_connectable (C function), 216
bt_br_set_discoverable (C function), 215
BT_BUF_ACL_RX_SIZE (C macro), 192
BT_BUF_ACL_SIZE (C macro), 192
BT_BUF_CMD_SIZE (C macro), 192
BT_BUF_CMD_TX_SIZE (C macro), 192
bt_buf_data (C struct), 194
BT_BUF_EVT_RX_SIZE (C macro), 192
BT_BUF_EVT_SIZE (C macro), 192
bt_buf_get_cmd_complete (C function), 193
bt_buf_get_evt (C function), 193
bt_buf_get_rx (C function), 193
bt_buf_get_tx (C function), 193
bt_buf_get_type (C function), 194
BT_BUF_RESERVE (C macro), 192
BT_BUF_RX_SIZE (C macro), 192
bt_buf_set_type (C function), 194
BT_BUF_SIZE (C macro), 192
bt_buf_type (C enum), 192
bt_buf_type.BT_BUF_ACL_IN (C enumerator), 192
bt_buf_type.BT_BUF_ACL_OUT (C enumerator),

192
bt_buf_type.BT_BUF_CMD (C enumerator), 192
bt_buf_type.BT_BUF_EVT (C enumerator), 192
bt_buf_type.BT_BUF_H4 (C enumerator), 193
bt_buf_type.BT_BUF_ISO_IN (C enumerator), 193
bt_buf_type.BT_BUF_ISO_OUT (C enumerator),

193
bt_ccm_decrypt (C function), 190
bt_ccm_encrypt (C function), 191
BT_COMP_ID_LF (C macro), 229
bt_conn_auth_cancel (C function), 178
bt_conn_auth_cb (C struct), 187
bt_conn_auth_cb.bond_deleted (C var), 189
bt_conn_auth_cb.cancel (C var), 188
bt_conn_auth_cb.oob_data_request (C var),

188
bt_conn_auth_cb.pairing_accept (C var), 187
bt_conn_auth_cb.pairing_complete (C var),

189
bt_conn_auth_cb.pairing_confirm (C var), 188
bt_conn_auth_cb.pairing_failed (C var), 189
bt_conn_auth_cb.passkey_confirm (C var), 188
bt_conn_auth_cb.passkey_display (C var), 187

bt_conn_auth_cb.passkey_entry (C var), 187
bt_conn_auth_cb.pincode_entry (C var), 189
bt_conn_auth_cb_register (C function), 178
bt_conn_auth_pairing_confirm (C function),

178
bt_conn_auth_passkey_confirm (C function),

178
bt_conn_auth_passkey_entry (C function), 178
bt_conn_auth_pincode_entry (C function), 179
bt_conn_br_info (C struct), 181
bt_conn_br_remote_info (C struct), 182
bt_conn_br_remote_info.features (C var), 182
bt_conn_br_remote_info.num_pages (C var),

182
bt_conn_cb (C struct), 183
bt_conn_cb.connected (C var), 184
bt_conn_cb.disconnected (C var), 184
bt_conn_cb.identity_resolved (C var), 185
bt_conn_cb.le_data_len_updated (C var), 185
bt_conn_cb.le_param_req (C var), 184
bt_conn_cb.le_param_updated (C var), 185
bt_conn_cb.le_phy_updated (C var), 185
bt_conn_cb.remote_info_available (C var),

185
bt_conn_cb.security_changed (C var), 185
BT_CONN_CB_DEFINE (C macro), 168
bt_conn_cb_register (C function), 176
bt_conn_create_auto_stop (C function), 175
bt_conn_create_br (C function), 179
bt_conn_create_sco (C function), 179
bt_conn_disconnect (C function), 174
bt_conn_enc_key_size (C function), 176
bt_conn_foreach (C function), 172
bt_conn_get_dst (C function), 172
bt_conn_get_info (C function), 173
bt_conn_get_remote_info (C function), 173
bt_conn_get_security (C function), 176
bt_conn_index (C function), 172
bt_conn_info (C struct), 181
bt_conn_info.br (C var), 181
bt_conn_info.id (C var), 181
bt_conn_info.le (C var), 181
bt_conn_info.role (C var), 181
bt_conn_info.type (C var), 181
bt_conn_info.[anonymous] (C var), 181
bt_conn_le_create (C function), 174
bt_conn_le_create_auto (C function), 175
BT_CONN_LE_CREATE_CONN (C macro), 168
BT_CONN_LE_CREATE_CONN_AUTO (C macro), 168
BT_CONN_LE_CREATE_PARAM (C macro), 168
bt_conn_le_create_param (C struct), 183
bt_conn_le_create_param.interval (C var),

183
bt_conn_le_create_param.interval_coded (C

var), 183
bt_conn_le_create_param.options (C var), 183
bt_conn_le_create_param.timeout (C var), 183
bt_conn_le_create_param.window (C var), 183

1916 Index

Zephyr Project Documentation, Release 2.7.0-rc2

bt_conn_le_create_param.window_coded (C
var), 183

BT_CONN_LE_CREATE_PARAM_INIT (C macro), 168
bt_conn_le_data_len_info (C struct), 180
bt_conn_le_data_len_info.rx_max_len (C var),

180
bt_conn_le_data_len_info.rx_max_time (C

var), 180
bt_conn_le_data_len_info.tx_max_len (C var),

180
bt_conn_le_data_len_info.tx_max_time (C

var), 180
BT_CONN_LE_DATA_LEN_PARAM (C macro), 168
bt_conn_le_data_len_param (C struct), 180
bt_conn_le_data_len_param.tx_max_len (C

var), 180
bt_conn_le_data_len_param.tx_max_time (C

var), 180
BT_CONN_LE_DATA_LEN_PARAM_INIT (C macro),

167
bt_conn_le_data_len_update (C function), 174
bt_conn_le_get_tx_power_level (C function),

173
bt_conn_le_info (C struct), 180
bt_conn_le_info.dst (C var), 181
bt_conn_le_info.latency (C var), 181
bt_conn_le_info.local (C var), 181
bt_conn_le_info.phy (C var), 181
bt_conn_le_info.remote (C var), 181
bt_conn_le_info.src (C var), 181
bt_conn_le_info.timeout (C var), 181
bt_conn_le_param_update (C function), 173
bt_conn_le_phy_info (C struct), 179
bt_conn_le_phy_info.rx_phy (C var), 180
BT_CONN_LE_PHY_PARAM (C macro), 167
bt_conn_le_phy_param (C struct), 180
bt_conn_le_phy_param.pref_rx_phy (C var),

180
bt_conn_le_phy_param.pref_tx_phy (C var),

180
BT_CONN_LE_PHY_PARAM_1M (C macro), 167
BT_CONN_LE_PHY_PARAM_2M (C macro), 167
BT_CONN_LE_PHY_PARAM_ALL (C macro), 167
BT_CONN_LE_PHY_PARAM_CODED (C macro), 167
BT_CONN_LE_PHY_PARAM_INIT (C macro), 167
bt_conn_le_phy_update (C function), 174
bt_conn_le_remote_info (C struct), 182
bt_conn_le_remote_info.features (C var), 182
bt_conn_le_tx_power (C struct), 183
bt_conn_le_tx_power.current_level (C var),

183
bt_conn_le_tx_power.max_level (C var), 183
bt_conn_le_tx_power.phy (C var), 183
bt_conn_le_tx_power_phy (C enum), 170
bt_conn_le_tx_power_phy.BT_CONN_LE_TX_POWER_PHY_1M

(C enumerator), 170
bt_conn_le_tx_power_phy.BT_CONN_LE_TX_POWER_PHY_2M

(C enumerator), 170

bt_conn_le_tx_power_phy.BT_CONN_LE_TX_POWER_PHY_CODED_S2
(C enumerator), 170

bt_conn_le_tx_power_phy.BT_CONN_LE_TX_POWER_PHY_CODED_S8
(C enumerator), 170

bt_conn_le_tx_power_phy.BT_CONN_LE_TX_POWER_PHY_NONE
(C enumerator), 170

bt_conn_lookup_addr_le (C function), 172
bt_conn_oob_info (C struct), 186
bt_conn_oob_info.lesc (C var), 186
bt_conn_oob_info.oob_config (C var), 186
bt_conn_oob_info.type (C var), 186
bt_conn_oob_info.[anonymous] (C enum), 186
bt_conn_oob_info.[anonymous].BT_CONN_OOB_LE_LEGACY

(C enumerator), 186
bt_conn_oob_info.[anonymous].BT_CONN_OOB_LE_SC

(C enumerator), 186
bt_conn_pairing_feat (C struct), 186
bt_conn_pairing_feat.auth_req (C var), 186
bt_conn_pairing_feat.init_key_dist (C var),

187
bt_conn_pairing_feat.io_capability (C var),

186
bt_conn_pairing_feat.max_enc_key_size (C

var), 186
bt_conn_pairing_feat.oob_data_flag (C var),

186
bt_conn_pairing_feat.resp_key_dist (C var),

187
bt_conn_ref (C function), 172
bt_conn_remote_info (C struct), 182
bt_conn_remote_info.br (C var), 182
bt_conn_remote_info.le (C var), 182
bt_conn_remote_info.manufacturer (C var),

182
bt_conn_remote_info.subversion (C var), 182
bt_conn_remote_info.type (C var), 182
bt_conn_remote_info.version (C var), 182
BT_CONN_ROLE_MASTER (C macro), 168
BT_CONN_ROLE_SLAVE (C macro), 168
bt_conn_set_security (C function), 175
bt_conn_unref (C function), 172
bt_ctlr_set_public_addr (C function), 189
BT_DATA (C macro), 194
bt_data (C struct), 217
BT_DATA_BIG_INFO (C macro), 231
BT_DATA_BROADCAST_CODE (C macro), 231
BT_DATA_BYTES (C macro), 195
BT_DATA_CHANNEL_MAP_UPDATE_IND (C macro),

230
BT_DATA_FLAGS (C macro), 229
BT_DATA_GAP_APPEARANCE (C macro), 230
BT_DATA_LE_BT_DEVICE_ADDRESS (C macro), 230
BT_DATA_LE_ROLE (C macro), 230
BT_DATA_LE_SC_CONFIRM_VALUE (C macro), 230
BT_DATA_LE_SC_RANDOM_VALUE (C macro), 230
BT_DATA_MANUFACTURER_DATA (C macro), 231
BT_DATA_MESH_BEACON (C macro), 231
BT_DATA_MESH_MESSAGE (C macro), 230

Index 1917

Zephyr Project Documentation, Release 2.7.0-rc2

BT_DATA_MESH_PROV (C macro), 230
BT_DATA_NAME_COMPLETE (C macro), 230
BT_DATA_NAME_SHORTENED (C macro), 230
bt_data_parse (C function), 214
BT_DATA_SM_OOB_FLAGS (C macro), 230
BT_DATA_SM_TK_VALUE (C macro), 230
BT_DATA_SOLICIT128 (C macro), 230
BT_DATA_SOLICIT16 (C macro), 230
BT_DATA_SOLICIT32 (C macro), 230
BT_DATA_SVC_DATA128 (C macro), 230
BT_DATA_SVC_DATA16 (C macro), 230
BT_DATA_SVC_DATA32 (C macro), 230
BT_DATA_TX_POWER (C macro), 230
BT_DATA_URI (C macro), 230
BT_DATA_UUID128_ALL (C macro), 230
BT_DATA_UUID128_SOME (C macro), 230
BT_DATA_UUID16_ALL (C macro), 229
BT_DATA_UUID16_SOME (C macro), 229
BT_DATA_UUID32_ALL (C macro), 230
BT_DATA_UUID32_SOME (C macro), 229
bt_enable (C function), 203
bt_enable_raw (C function), 269
bt_encrypt_be (C function), 190
bt_encrypt_le (C function), 190
bt_foreach_bond (C function), 216
BT_GAP_ADV_FAST_INT_MAX_1 (C macro), 231
BT_GAP_ADV_FAST_INT_MAX_2 (C macro), 231
BT_GAP_ADV_FAST_INT_MIN_1 (C macro), 231
BT_GAP_ADV_FAST_INT_MIN_2 (C macro), 231
BT_GAP_ADV_HIGH_DUTY_CYCLE_MAX_TIMEOUT (C

macro), 232
BT_GAP_ADV_MAX_ADV_DATA_LEN (C macro), 232
BT_GAP_ADV_MAX_EXT_ADV_DATA_LEN (C macro),

232
BT_GAP_ADV_SLOW_INT_MAX (C macro), 231
BT_GAP_ADV_SLOW_INT_MIN (C macro), 231
BT_GAP_DATA_LEN_DEFAULT (C macro), 232
BT_GAP_DATA_LEN_MAX (C macro), 232
BT_GAP_DATA_TIME_DEFAULT (C macro), 232
BT_GAP_DATA_TIME_MAX (C macro), 232
BT_GAP_INIT_CONN_INT_MAX (C macro), 232
BT_GAP_INIT_CONN_INT_MIN (C macro), 232
BT_GAP_NO_TIMEOUT (C macro), 232
BT_GAP_PER_ADV_FAST_INT_MAX_1 (C macro), 231
BT_GAP_PER_ADV_FAST_INT_MAX_2 (C macro), 231
BT_GAP_PER_ADV_FAST_INT_MIN_1 (C macro), 231
BT_GAP_PER_ADV_FAST_INT_MIN_2 (C macro), 231
BT_GAP_PER_ADV_MAX_INTERVAL (C macro), 233
BT_GAP_PER_ADV_MAX_SKIP (C macro), 232
BT_GAP_PER_ADV_MAX_TIMEOUT (C macro), 232
BT_GAP_PER_ADV_MIN_INTERVAL (C macro), 232
BT_GAP_PER_ADV_MIN_TIMEOUT (C macro), 232
BT_GAP_PER_ADV_SLOW_INT_MAX (C macro), 232
BT_GAP_PER_ADV_SLOW_INT_MIN (C macro), 232
BT_GAP_RSSI_INVALID (C macro), 232
BT_GAP_SCAN_FAST_INTERVAL (C macro), 231
BT_GAP_SCAN_FAST_WINDOW (C macro), 231
BT_GAP_SCAN_SLOW_INTERVAL_1 (C macro), 231

BT_GAP_SCAN_SLOW_INTERVAL_2 (C macro), 231
BT_GAP_SCAN_SLOW_WINDOW_1 (C macro), 231
BT_GAP_SCAN_SLOW_WINDOW_2 (C macro), 231
BT_GAP_SID_INVALID (C macro), 232
BT_GAP_SID_MAX (C macro), 232
BT_GAP_TX_POWER_INVALID (C macro), 232
bt_gatt_attr (C struct), 239
bt_gatt_attr.handle (C var), 239
bt_gatt_attr.perm (C var), 239
bt_gatt_attr.read (C var), 239
bt_gatt_attr.user_data (C var), 239
bt_gatt_attr.uuid (C var), 239
bt_gatt_attr.write (C var), 239
bt_gatt_attr_func_t (C type), 245
bt_gatt_attr_get_handle (C function), 247
bt_gatt_attr_next (C function), 247
bt_gatt_attr_read (C function), 248
bt_gatt_attr_read_ccc (C function), 249
bt_gatt_attr_read_cep (C function), 250
bt_gatt_attr_read_chrc (C function), 249
bt_gatt_attr_read_cpf (C function), 250
bt_gatt_attr_read_cud (C function), 250
bt_gatt_attr_read_included (C function), 248
bt_gatt_attr_read_service (C function), 248
bt_gatt_attr_value_handle (C function), 247
bt_gatt_attr_write_ccc (C function), 249
BT_GATT_ATTRIBUTE (C macro), 245
bt_gatt_cancel (C function), 261
bt_gatt_cb (C struct), 241
bt_gatt_cb.att_mtu_updated (C var), 241
bt_gatt_cb_register (C function), 246
BT_GATT_CCC (C macro), 244
bt_gatt_ccc (C struct), 241
bt_gatt_ccc.flags (C var), 241
bt_gatt_ccc_cfg (C struct), 253
bt_gatt_ccc_cfg.id (C var), 253
bt_gatt_ccc_cfg.peer (C var), 253
bt_gatt_ccc_cfg.value (C var), 253
BT_GATT_CCC_INDICATE (C macro), 237
BT_GATT_CCC_INITIALIZER (C macro), 243
BT_GATT_CCC_MANAGED (C macro), 244
BT_GATT_CCC_MAX (C macro), 243
BT_GATT_CCC_NOTIFY (C macro), 237
BT_GATT_CEP (C macro), 244
bt_gatt_cep (C struct), 241
bt_gatt_cep.properties (C var), 241
BT_GATT_CEP_RELIABLE_WRITE (C macro), 237
BT_GATT_CEP_WRITABLE_AUX (C macro), 237
BT_GATT_CHARACTERISTIC (C macro), 243
bt_gatt_chrc (C struct), 241
bt_gatt_chrc.properties (C var), 241
bt_gatt_chrc.uuid (C var), 241
bt_gatt_chrc.value_handle (C var), 241
BT_GATT_CHRC_AUTH (C macro), 237
BT_GATT_CHRC_BROADCAST (C macro), 236
BT_GATT_CHRC_EXT_PROP (C macro), 237
BT_GATT_CHRC_INDICATE (C macro), 237
BT_GATT_CHRC_INIT (C macro), 243

1918 Index

Zephyr Project Documentation, Release 2.7.0-rc2

BT_GATT_CHRC_NOTIFY (C macro), 236
BT_GATT_CHRC_READ (C macro), 236
BT_GATT_CHRC_WRITE (C macro), 236
BT_GATT_CHRC_WRITE_WITHOUT_RESP (C macro),

236
bt_gatt_complete_func_t (C type), 245
BT_GATT_CPF (C macro), 244
bt_gatt_cpf (C struct), 242
bt_gatt_cpf.description (C var), 242
bt_gatt_cpf.exponent (C var), 242
bt_gatt_cpf.format (C var), 242
bt_gatt_cpf.name_space (C var), 242
bt_gatt_cpf.unit (C var), 242
BT_GATT_CUD (C macro), 244
BT_GATT_DESCRIPTOR (C macro), 244
bt_gatt_discover (C function), 258
bt_gatt_discover_func_t (C type), 255
bt_gatt_discover_params (C struct), 261
bt_gatt_discover_params.attr_handle (C var),

261
bt_gatt_discover_params.end_handle (C var),

261
bt_gatt_discover_params.func (C var), 261
bt_gatt_discover_params.start_handle (C

var), 261
bt_gatt_discover_params.type (C var), 262
bt_gatt_discover_params.uuid (C var), 261
BT_GATT_ERR (C macro), 236
bt_gatt_exchange_mtu (C function), 258
bt_gatt_exchange_params (C struct), 261
bt_gatt_exchange_params.func (C var), 261
bt_gatt_find_by_uuid (C function), 247
bt_gatt_foreach_attr (C function), 247
bt_gatt_foreach_attr_type (C function), 246
bt_gatt_get_mtu (C function), 253
bt_gatt_include (C struct), 240
bt_gatt_include.end_handle (C var), 240
bt_gatt_include.start_handle (C var), 240
bt_gatt_include.uuid (C var), 240
BT_GATT_INCLUDE_SERVICE (C macro), 243
bt_gatt_indicate (C function), 252
bt_gatt_indicate_func_t (C type), 245
bt_gatt_indicate_params (C struct), 254
bt_gatt_indicate_params.attr (C var), 254
bt_gatt_indicate_params.data (C var), 254
bt_gatt_indicate_params.destroy (C var), 254
bt_gatt_indicate_params.func (C var), 254
bt_gatt_indicate_params.len (C var), 254
bt_gatt_indicate_params.uuid (C var), 254
bt_gatt_indicate_params_destroy_t (C type),

245
bt_gatt_is_subscribed (C function), 252
bt_gatt_notify (C function), 251
bt_gatt_notify_cb (C function), 251
bt_gatt_notify_func_t (C type), 256
bt_gatt_notify_multiple (C function), 251
bt_gatt_notify_params (C struct), 253
bt_gatt_notify_params.attr (C var), 253

bt_gatt_notify_params.data (C var), 254
bt_gatt_notify_params.func (C var), 254
bt_gatt_notify_params.len (C var), 254
bt_gatt_notify_params.user_data (C var), 254
bt_gatt_notify_params.uuid (C var), 253
bt_gatt_notify_uuid (C function), 252
BT_GATT_PRIMARY_SERVICE (C macro), 243
bt_gatt_read (C function), 258
bt_gatt_read_func_t (C type), 255
bt_gatt_read_params (C struct), 262
bt_gatt_read_params.end_handle (C var), 262
bt_gatt_read_params.func (C var), 262
bt_gatt_read_params.handle (C var), 262
bt_gatt_read_params.handle_count (C var),

262
bt_gatt_read_params.handles (C var), 262
bt_gatt_read_params.offset (C var), 262
bt_gatt_read_params.start_handle (C var),

262
bt_gatt_read_params.uuid (C var), 262
bt_gatt_read_params.variable (C var), 262
bt_gatt_resubscribe (C function), 260
bt_gatt_scc (C struct), 241
bt_gatt_scc.flags (C var), 242
BT_GATT_SCC_BROADCAST (C macro), 237
BT_GATT_SECONDARY_SERVICE (C macro), 243
BT_GATT_SERVICE (C macro), 243
bt_gatt_service (C struct), 240
bt_gatt_service.attr_count (C var), 240
bt_gatt_service.attrs (C var), 240
BT_GATT_SERVICE_DEFINE (C macro), 242
BT_GATT_SERVICE_INSTANCE_DEFINE (C macro),

242
bt_gatt_service_register (C function), 246
bt_gatt_service_static (C struct), 240
bt_gatt_service_static.attr_count (C var),

240
bt_gatt_service_static.attrs (C var), 240
bt_gatt_service_unregister (C function), 246
bt_gatt_service_val (C struct), 240
bt_gatt_service_val.end_handle (C var), 240
bt_gatt_service_val.uuid (C var), 240
bt_gatt_subscribe (C function), 260
bt_gatt_subscribe_params (C struct), 263
bt_gatt_subscribe_params.ccc_handle (C var),

263
bt_gatt_subscribe_params.flags (C var), 263
bt_gatt_subscribe_params.notify (C var), 263
bt_gatt_subscribe_params.value (C var), 263
bt_gatt_subscribe_params.value_handle (C

var), 263
bt_gatt_subscribe_params.write (C var), 263
bt_gatt_unsubscribe (C function), 261
bt_gatt_write (C function), 259
bt_gatt_write_func_t (C type), 255
bt_gatt_write_params (C struct), 262
bt_gatt_write_params.data (C var), 263
bt_gatt_write_params.func (C var), 263

Index 1919

Zephyr Project Documentation, Release 2.7.0-rc2

bt_gatt_write_params.handle (C var), 263
bt_gatt_write_params.length (C var), 263
bt_gatt_write_params.offset (C var), 263
bt_gatt_write_without_response (C function),

260
bt_gatt_write_without_response_cb (C func-

tion), 259
bt_get_name (C function), 203
bt_hci_cmd_complete_create (C function), 266
bt_hci_cmd_status_create (C function), 266
bt_hci_driver (C struct), 266
bt_hci_driver.bus (C var), 267
bt_hci_driver.name (C var), 267
bt_hci_driver.open (C var), 267
bt_hci_driver.quirks (C var), 267
bt_hci_driver.send (C var), 267
bt_hci_driver_bus (C enum), 264
bt_hci_driver_bus.BT_HCI_DRIVER_BUS_I2C (C

enumerator), 264
bt_hci_driver_bus.BT_HCI_DRIVER_BUS_IPM (C

enumerator), 264
bt_hci_driver_bus.BT_HCI_DRIVER_BUS_PCCARD

(C enumerator), 264
bt_hci_driver_bus.BT_HCI_DRIVER_BUS_PCI (C

enumerator), 264
bt_hci_driver_bus.BT_HCI_DRIVER_BUS_RS232

(C enumerator), 264
bt_hci_driver_bus.BT_HCI_DRIVER_BUS_SDIO

(C enumerator), 264
bt_hci_driver_bus.BT_HCI_DRIVER_BUS_SPI (C

enumerator), 264
bt_hci_driver_bus.BT_HCI_DRIVER_BUS_UART

(C enumerator), 264
bt_hci_driver_bus.BT_HCI_DRIVER_BUS_USB (C

enumerator), 264
bt_hci_driver_bus.BT_HCI_DRIVER_BUS_VIRTUAL

(C enumerator), 264
bt_hci_driver_register (C function), 265
BT_HCI_ERR_EXT_HANDLED (C macro), 267
bt_hci_evt_create (C function), 266
BT_HCI_EVT_FLAG_RECV (C macro), 264
BT_HCI_EVT_FLAG_RECV_PRIO (C macro), 264
bt_hci_evt_get_flags (C function), 264
BT_HCI_RAW_CMD_EXT (C macro), 267
bt_hci_raw_cmd_ext (C struct), 269
bt_hci_raw_cmd_ext.func (C var), 269
bt_hci_raw_cmd_ext.min_len (C var), 269
bt_hci_raw_cmd_ext.op (C var), 269
bt_hci_raw_cmd_ext_register (C function), 268
bt_hci_raw_get_mode (C function), 268
bt_hci_raw_set_mode (C function), 268
bt_hci_transport_setup (C function), 266
bt_hfp_hf_at_cmd (C enum), 270
bt_hfp_hf_at_cmd.BT_HFP_HF_AT_CHUP (C enu-

merator), 270
bt_hfp_hf_at_cmd.BT_HFP_HF_ATA (C enumera-

tor), 270
bt_hfp_hf_cb (C struct), 270

bt_hfp_hf_cb.battery (C var), 271
bt_hfp_hf_cb.call (C var), 271
bt_hfp_hf_cb.call_held (C var), 271
bt_hfp_hf_cb.call_setup (C var), 271
bt_hfp_hf_cb.cmd_complete_cb (C var), 272
bt_hfp_hf_cb.connected (C var), 271
bt_hfp_hf_cb.disconnected (C var), 271
bt_hfp_hf_cb.ring_indication (C var), 272
bt_hfp_hf_cb.roam (C var), 271
bt_hfp_hf_cb.service (C var), 271
bt_hfp_hf_cb.signal (C var), 271
bt_hfp_hf_cmd_complete (C struct), 270
bt_hfp_hf_register (C function), 270
bt_hfp_hf_send_cmd (C function), 270
bt_id_create (C function), 204
BT_ID_DEFAULT (C macro), 194
bt_id_delete (C function), 205
bt_id_get (C function), 204
bt_id_reset (C function), 204
bt_l2cap_br_chan (C struct), 278
bt_l2cap_br_chan.chan (C var), 278
bt_l2cap_br_chan.rx (C var), 278
bt_l2cap_br_chan.tx (C var), 278
bt_l2cap_br_endpoint (C struct), 278
bt_l2cap_br_endpoint.cid (C var), 278
bt_l2cap_br_endpoint.mtu (C var), 278
bt_l2cap_br_server_register (C function), 275
BT_L2CAP_BUF_SIZE (C macro), 273
bt_l2cap_chan (C struct), 277
bt_l2cap_chan.conn (C var), 277
bt_l2cap_chan.ops (C var), 277
bt_l2cap_chan_connect (C function), 276
bt_l2cap_chan_destroy_t (C type), 274
bt_l2cap_chan_disconnect (C function), 276
bt_l2cap_chan_ops (C struct), 279
bt_l2cap_chan_ops.alloc_buf (C var), 279
bt_l2cap_chan_ops.connected (C var), 279
bt_l2cap_chan_ops.disconnected (C var), 279
bt_l2cap_chan_ops.encrypt_change (C var),

279
bt_l2cap_chan_ops.recv (C var), 279
bt_l2cap_chan_ops.sent (C var), 279
bt_l2cap_chan_ops.status (C var), 280
bt_l2cap_chan_recv_complete (C function), 277
bt_l2cap_chan_send (C function), 276
BT_L2CAP_CHAN_SEND_RESERVE (C macro), 273
bt_l2cap_chan_state (C enum), 274
bt_l2cap_chan_state.BT_L2CAP_CONFIG (C enu-

merator), 274
bt_l2cap_chan_state.BT_L2CAP_CONNECT (C

enumerator), 274
bt_l2cap_chan_state.BT_L2CAP_CONNECTED (C

enumerator), 274
bt_l2cap_chan_state.BT_L2CAP_DISCONNECT (C

enumerator), 274
bt_l2cap_chan_state.BT_L2CAP_DISCONNECTED

(C enumerator), 274
bt_l2cap_chan_state_t (C type), 274

1920 Index

Zephyr Project Documentation, Release 2.7.0-rc2

bt_l2cap_chan_status (C enum), 274
bt_l2cap_chan_status.BT_L2CAP_NUM_STATUS

(C enumerator), 275
bt_l2cap_chan_status.BT_L2CAP_STATUS_ENCRYPT_PENDING

(C enumerator), 275
bt_l2cap_chan_status.BT_L2CAP_STATUS_OUT

(C enumerator), 274
bt_l2cap_chan_status.BT_L2CAP_STATUS_SHUTDOWN

(C enumerator), 275
bt_l2cap_chan_status_t (C type), 274
bt_l2cap_ecred_chan_connect (C function), 275
BT_L2CAP_HDR_SIZE (C macro), 272
BT_L2CAP_LE_CHAN (C macro), 273
bt_l2cap_le_chan (C struct), 277
bt_l2cap_le_chan.chan (C var), 278
bt_l2cap_le_chan.rx (C var), 278
bt_l2cap_le_chan.tx (C var), 278
bt_l2cap_le_chan.tx_buf (C var), 278
bt_l2cap_le_chan.tx_queue (C var), 278
bt_l2cap_le_chan.tx_work (C var), 278
bt_l2cap_le_endpoint (C struct), 277
bt_l2cap_le_endpoint.cid (C var), 277
bt_l2cap_le_endpoint.credits (C var), 277
bt_l2cap_le_endpoint.init_credits (C var),

277
bt_l2cap_le_endpoint.mps (C var), 277
bt_l2cap_le_endpoint.mtu (C var), 277
BT_L2CAP_RX_MTU (C macro), 273
BT_L2CAP_SDU_BUF_SIZE (C macro), 273
BT_L2CAP_SDU_CHAN_SEND_RESERVE (C macro),

274
BT_L2CAP_SDU_HDR_SIZE (C macro), 273
BT_L2CAP_SDU_RX_MTU (C macro), 273
BT_L2CAP_SDU_TX_MTU (C macro), 273
bt_l2cap_server (C struct), 280
bt_l2cap_server.accept (C var), 280
bt_l2cap_server.psm (C var), 280
bt_l2cap_server.sec_level (C var), 280
bt_l2cap_server_register (C function), 275
BT_L2CAP_TX_MTU (C macro), 273
BT_LE_AD_GENERAL (C macro), 231
BT_LE_AD_LIMITED (C macro), 231
BT_LE_AD_NO_BREDR (C macro), 231
BT_LE_ADV_CONN (C macro), 195
BT_LE_ADV_CONN_DIR (C macro), 195
BT_LE_ADV_CONN_DIR_LOW_DUTY (C macro), 195
BT_LE_ADV_CONN_NAME (C macro), 195
BT_LE_ADV_CONN_NAME_AD (C macro), 195
BT_LE_ADV_NCONN (C macro), 195
BT_LE_ADV_NCONN_IDENTITY (C macro), 195
BT_LE_ADV_NCONN_NAME (C macro), 195
BT_LE_ADV_PARAM (C macro), 195
bt_le_adv_param (C struct), 217
bt_le_adv_param.id (C var), 218
bt_le_adv_param.interval_max (C var), 218
bt_le_adv_param.interval_min (C var), 218
bt_le_adv_param.options (C var), 218
bt_le_adv_param.peer (C var), 218

bt_le_adv_param.secondary_max_skip (C var),
218

bt_le_adv_param.sid (C var), 218
BT_LE_ADV_PARAM_INIT (C macro), 195
bt_le_adv_start (C function), 205
bt_le_adv_stop (C function), 206
bt_le_adv_update_data (C function), 206
BT_LE_CONN_PARAM (C macro), 167
bt_le_conn_param (C struct), 179
BT_LE_CONN_PARAM_DEFAULT (C macro), 167
BT_LE_CONN_PARAM_INIT (C macro), 167
BT_LE_DATA_LEN_PARAM_DEFAULT (C macro), 168
BT_LE_DATA_LEN_PARAM_MAX (C macro), 168
bt_le_ext_adv_cb (C struct), 217
bt_le_ext_adv_cb.connected (C var), 217
bt_le_ext_adv_cb.scanned (C var), 217
bt_le_ext_adv_cb.sent (C var), 217
BT_LE_EXT_ADV_CODED_NCONN (C macro), 196
BT_LE_EXT_ADV_CODED_NCONN_IDENTITY (C

macro), 196
BT_LE_EXT_ADV_CODED_NCONN_NAME (C macro),

196
BT_LE_EXT_ADV_CONN_NAME (C macro), 195
bt_le_ext_adv_connected_info (C struct), 216
bt_le_ext_adv_connected_info.conn (C var),

217
bt_le_ext_adv_create (C function), 206
bt_le_ext_adv_delete (C function), 208
bt_le_ext_adv_get_index (C function), 208
bt_le_ext_adv_get_info (C function), 208
bt_le_ext_adv_info (C struct), 219
bt_le_ext_adv_info.tx_power (C var), 219
BT_LE_EXT_ADV_NCONN (C macro), 196
BT_LE_EXT_ADV_NCONN_IDENTITY (C macro), 196
BT_LE_EXT_ADV_NCONN_NAME (C macro), 196
bt_le_ext_adv_oob_get_local (C function), 214
BT_LE_EXT_ADV_SCAN_NAME (C macro), 196
bt_le_ext_adv_scanned_info (C struct), 217
bt_le_ext_adv_scanned_info.addr (C var), 217
bt_le_ext_adv_sent_info (C struct), 216
bt_le_ext_adv_sent_info.num_sent (C var),

216
bt_le_ext_adv_set_data (C function), 207
bt_le_ext_adv_start (C function), 206
BT_LE_EXT_ADV_START_DEFAULT (C macro), 196
BT_LE_EXT_ADV_START_PARAM (C macro), 196
bt_le_ext_adv_start_param (C struct), 219
bt_le_ext_adv_start_param.num_events (C

var), 219
bt_le_ext_adv_start_param.timeout (C var),

219
BT_LE_EXT_ADV_START_PARAM_INIT (C macro),

196
bt_le_ext_adv_stop (C function), 207
bt_le_ext_adv_update_param (C function), 207
bt_le_filter_accept_list_add (C function),

213

Index 1921

Zephyr Project Documentation, Release 2.7.0-rc2

bt_le_filter_accept_list_clear (C function),
213

bt_le_filter_accept_list_remove (C function),
213

bt_le_oob (C struct), 225
bt_le_oob.addr (C var), 225
bt_le_oob.le_sc_data (C var), 225
bt_le_oob_get_local (C function), 214
bt_le_oob_get_sc_data (C function), 177
bt_le_oob_sc_data (C struct), 225
bt_le_oob_sc_data.c (C var), 225
bt_le_oob_sc_data.r (C var), 225
bt_le_oob_set_legacy_tk (C function), 177
bt_le_oob_set_sc_data (C function), 177
BT_LE_PER_ADV_DEFAULT (C macro), 197
bt_le_per_adv_list_add (C function), 211
bt_le_per_adv_list_clear (C function), 212
bt_le_per_adv_list_remove (C function), 212
BT_LE_PER_ADV_PARAM (C macro), 196
bt_le_per_adv_param (C struct), 218
bt_le_per_adv_param.interval_max (C var),

219
bt_le_per_adv_param.interval_min (C var),

219
bt_le_per_adv_param.options (C var), 219
BT_LE_PER_ADV_PARAM_INIT (C macro), 196
bt_le_per_adv_set_data (C function), 208
bt_le_per_adv_set_info_transfer (C function),

211
bt_le_per_adv_set_param (C function), 208
bt_le_per_adv_start (C function), 209
bt_le_per_adv_stop (C function), 209
bt_le_per_adv_sync_cb (C struct), 221
bt_le_per_adv_sync_cb.biginfo (C var), 222
bt_le_per_adv_sync_cb.cte_report_cb (C var),

222
bt_le_per_adv_sync_cb.recv (C var), 221
bt_le_per_adv_sync_cb.state_changed (C var),

221
bt_le_per_adv_sync_cb.synced (C var), 221
bt_le_per_adv_sync_cb.term (C var), 221
bt_le_per_adv_sync_cb_register (C function),

210
bt_le_per_adv_sync_create (C function), 210
bt_le_per_adv_sync_delete (C function), 210
bt_le_per_adv_sync_get_index (C function),

209
bt_le_per_adv_sync_get_info (C function), 209
bt_le_per_adv_sync_info (C struct), 222
bt_le_per_adv_sync_info.addr (C var), 223
bt_le_per_adv_sync_info.interval (C var),

223
bt_le_per_adv_sync_info.phy (C var), 223
bt_le_per_adv_sync_info.sid (C var), 223
bt_le_per_adv_sync_lookup_addr (C function),

209
bt_le_per_adv_sync_param (C struct), 222
bt_le_per_adv_sync_param.addr (C var), 222

bt_le_per_adv_sync_param.options (C var),
222

bt_le_per_adv_sync_param.sid (C var), 222
bt_le_per_adv_sync_param.skip (C var), 222
bt_le_per_adv_sync_param.timeout (C var),

222
bt_le_per_adv_sync_recv_disable (C function),

210
bt_le_per_adv_sync_recv_enable (C function),

210
bt_le_per_adv_sync_recv_info (C struct), 220
bt_le_per_adv_sync_recv_info.addr (C var),

220
bt_le_per_adv_sync_recv_info.cte_type (C

var), 221
bt_le_per_adv_sync_recv_info.rssi (C var),

221
bt_le_per_adv_sync_recv_info.sid (C var),

220
bt_le_per_adv_sync_recv_info.tx_power (C

var), 220
bt_le_per_adv_sync_state_info (C struct), 221
bt_le_per_adv_sync_state_info.recv_enabled

(C var), 221
bt_le_per_adv_sync_synced_info (C struct),

219
bt_le_per_adv_sync_synced_info.addr (C var),

220
bt_le_per_adv_sync_synced_info.conn (C var),

220
bt_le_per_adv_sync_synced_info.interval (C

var), 220
bt_le_per_adv_sync_synced_info.phy (C var),

220
bt_le_per_adv_sync_synced_info.recv_enabled

(C var), 220
bt_le_per_adv_sync_synced_info.service_data

(C var), 220
bt_le_per_adv_sync_synced_info.sid (C var),

220
bt_le_per_adv_sync_term_info (C struct), 220
bt_le_per_adv_sync_term_info.addr (C var),

220
bt_le_per_adv_sync_term_info.sid (C var),

220
bt_le_per_adv_sync_transfer (C function), 210
bt_le_per_adv_sync_transfer_param (C struct),

223
bt_le_per_adv_sync_transfer_param.options

(C var), 223
bt_le_per_adv_sync_transfer_param.skip (C

var), 223
bt_le_per_adv_sync_transfer_param.timeout

(C var), 223
bt_le_per_adv_sync_transfer_subscribe (C

function), 211
bt_le_per_adv_sync_transfer_unsubscribe (C

function), 211

1922 Index

Zephyr Project Documentation, Release 2.7.0-rc2

BT_LE_SCAN_ACTIVE (C macro), 197
bt_le_scan_cb (C struct), 224
bt_le_scan_cb.recv (C var), 225
bt_le_scan_cb.timeout (C var), 225
bt_le_scan_cb_register (C function), 212
bt_le_scan_cb_t (C type), 198
bt_le_scan_cb_unregister (C function), 213
BT_LE_SCAN_CODED_ACTIVE (C macro), 197
BT_LE_SCAN_CODED_PASSIVE (C macro), 197
BT_LE_SCAN_OPT_FILTER_WHITELIST (C macro),

197
BT_LE_SCAN_PARAM (C macro), 197
bt_le_scan_param (C struct), 223
bt_le_scan_param.interval (C var), 223
bt_le_scan_param.interval_coded (C var), 224
bt_le_scan_param.options (C var), 223
bt_le_scan_param.timeout (C var), 223
bt_le_scan_param.type (C var), 223
bt_le_scan_param.window (C var), 223
bt_le_scan_param.window_coded (C var), 224
BT_LE_SCAN_PARAM_INIT (C macro), 197
BT_LE_SCAN_PASSIVE (C macro), 197
bt_le_scan_recv_info (C struct), 224
bt_le_scan_recv_info.addr (C var), 224
bt_le_scan_recv_info.adv_props (C var), 224
bt_le_scan_recv_info.adv_type (C var), 224
bt_le_scan_recv_info.interval (C var), 224
bt_le_scan_recv_info.primary_phy (C var),

224
bt_le_scan_recv_info.rssi (C var), 224
bt_le_scan_recv_info.secondary_phy (C var),

224
bt_le_scan_recv_info.sid (C var), 224
bt_le_scan_recv_info.tx_power (C var), 224
bt_le_scan_start (C function), 212
bt_le_scan_stop (C function), 212
bt_le_set_auto_conn (C function), 175
bt_le_set_chan_map (C function), 214
bt_le_whitelist_add (C function), 213
bt_le_whitelist_clear (C function), 213
bt_le_whitelist_rem (C function), 213
BT_MESH_ADDR_ALL_NODES (C macro), 286
BT_MESH_ADDR_FRIENDS (C macro), 286
BT_MESH_ADDR_IS_GROUP (C macro), 287
BT_MESH_ADDR_IS_RFU (C macro), 287
BT_MESH_ADDR_IS_UNICAST (C macro), 287
BT_MESH_ADDR_IS_VIRTUAL (C macro), 287
BT_MESH_ADDR_PROXIES (C macro), 286
BT_MESH_ADDR_RELAYS (C macro), 287
BT_MESH_ADDR_UNASSIGNED (C macro), 286
BT_MESH_APP_SEG_SDU_MAX (C macro), 287
bt_mesh_auth_method_set_input (C function),

337
bt_mesh_auth_method_set_none (C function),

338
bt_mesh_auth_method_set_output (C function),

338

bt_mesh_auth_method_set_static (C function),
338

BT_MESH_BEACON_DISABLED (C macro), 347
bt_mesh_beacon_enabled (C function), 348
BT_MESH_BEACON_ENABLED (C macro), 347
bt_mesh_beacon_set (C function), 348
bt_mesh_cfg_app_key_add (C function), 305
bt_mesh_cfg_app_key_del (C function), 306
bt_mesh_cfg_app_key_get (C function), 306
bt_mesh_cfg_app_key_update (C function), 316
bt_mesh_cfg_beacon_get (C function), 301
bt_mesh_cfg_beacon_set (C function), 302
bt_mesh_cfg_cli (C struct), 318
bt_mesh_cfg_cli.model (C var), 318
bt_mesh_cfg_cli_timeout_get (C function), 317
bt_mesh_cfg_cli_timeout_set (C function), 317
bt_mesh_cfg_comp_data_get (C function), 301
bt_mesh_cfg_friend_get (C function), 302
bt_mesh_cfg_friend_set (C function), 302
bt_mesh_cfg_gatt_proxy_get (C function), 303
bt_mesh_cfg_gatt_proxy_set (C function), 303
bt_mesh_cfg_hb_pub (C struct), 319
bt_mesh_cfg_hb_pub.count (C var), 320
bt_mesh_cfg_hb_pub.dst (C var), 320
bt_mesh_cfg_hb_pub.feat (C var), 320
bt_mesh_cfg_hb_pub.net_idx (C var), 320
bt_mesh_cfg_hb_pub.period (C var), 320
bt_mesh_cfg_hb_pub.ttl (C var), 320
bt_mesh_cfg_hb_pub_get (C function), 315
bt_mesh_cfg_hb_pub_set (C function), 314
bt_mesh_cfg_hb_sub (C struct), 319
bt_mesh_cfg_hb_sub.count (C var), 319
bt_mesh_cfg_hb_sub.dst (C var), 319
bt_mesh_cfg_hb_sub.max (C var), 319
bt_mesh_cfg_hb_sub.min (C var), 319
bt_mesh_cfg_hb_sub.period (C var), 319
bt_mesh_cfg_hb_sub.src (C var), 319
bt_mesh_cfg_hb_sub_get (C function), 314
bt_mesh_cfg_hb_sub_set (C function), 314
bt_mesh_cfg_krp_get (C function), 301
bt_mesh_cfg_krp_set (C function), 301
bt_mesh_cfg_lpn_timeout_get (C function), 316
bt_mesh_cfg_mod_app_bind (C function), 306
bt_mesh_cfg_mod_app_bind_vnd (C function),

307
bt_mesh_cfg_mod_app_get (C function), 307
bt_mesh_cfg_mod_app_get_vnd (C function), 308
bt_mesh_cfg_mod_app_unbind (C function), 306
bt_mesh_cfg_mod_app_unbind_vnd (C function),

307
bt_mesh_cfg_mod_pub (C struct), 318
bt_mesh_cfg_mod_pub.addr (C var), 318
bt_mesh_cfg_mod_pub.app_idx (C var), 318
bt_mesh_cfg_mod_pub.cred_flag (C var), 318
bt_mesh_cfg_mod_pub.period (C var), 318
bt_mesh_cfg_mod_pub.transmit (C var), 319
bt_mesh_cfg_mod_pub.ttl (C var), 318
bt_mesh_cfg_mod_pub.uuid (C var), 318

Index 1923

Zephyr Project Documentation, Release 2.7.0-rc2

bt_mesh_cfg_mod_pub_get (C function), 308
bt_mesh_cfg_mod_pub_get_vnd (C function), 308
bt_mesh_cfg_mod_pub_set (C function), 309
bt_mesh_cfg_mod_pub_set_vnd (C function), 309
bt_mesh_cfg_mod_sub_add (C function), 309
bt_mesh_cfg_mod_sub_add_vnd (C function), 309
bt_mesh_cfg_mod_sub_del (C function), 310
bt_mesh_cfg_mod_sub_del_all (C function), 315
bt_mesh_cfg_mod_sub_del_all_vnd (C function),

315
bt_mesh_cfg_mod_sub_del_vnd (C function), 310
bt_mesh_cfg_mod_sub_get (C function), 313
bt_mesh_cfg_mod_sub_get_vnd (C function), 313
bt_mesh_cfg_mod_sub_overwrite (C function),

310
bt_mesh_cfg_mod_sub_overwrite_vnd (C func-

tion), 311
bt_mesh_cfg_mod_sub_va_add (C function), 311
bt_mesh_cfg_mod_sub_va_add_vnd (C function),

311
bt_mesh_cfg_mod_sub_va_del (C function), 312
bt_mesh_cfg_mod_sub_va_del_vnd (C function),

312
bt_mesh_cfg_mod_sub_va_overwrite (C func-

tion), 312
bt_mesh_cfg_mod_sub_va_overwrite_vnd (C

function), 313
bt_mesh_cfg_net_key_add (C function), 305
bt_mesh_cfg_net_key_del (C function), 305
bt_mesh_cfg_net_key_get (C function), 305
bt_mesh_cfg_net_key_update (C function), 315
bt_mesh_cfg_net_transmit_get (C function),

303
bt_mesh_cfg_net_transmit_set (C function),

303
bt_mesh_cfg_node_identity_get (C function),

316
bt_mesh_cfg_node_identity_set (C function),

316
bt_mesh_cfg_node_reset (C function), 300
bt_mesh_cfg_relay_get (C function), 304
bt_mesh_cfg_relay_set (C function), 304
bt_mesh_cfg_ttl_get (C function), 302
bt_mesh_cfg_ttl_set (C function), 302
bt_mesh_comp (C struct), 298
bt_mesh_comp.cid (C var), 299
bt_mesh_comp.elem (C var), 299
bt_mesh_comp.elem_count (C var), 299
bt_mesh_comp.pid (C var), 299
bt_mesh_comp.vid (C var), 299
bt_mesh_comp_p0 (C struct), 320
bt_mesh_comp_p0.cid (C var), 320
bt_mesh_comp_p0.crpl (C var), 320
bt_mesh_comp_p0.feat (C var), 320
bt_mesh_comp_p0.pid (C var), 320
bt_mesh_comp_p0.vid (C var), 320
bt_mesh_comp_p0_elem (C struct), 321
bt_mesh_comp_p0_elem.loc (C var), 321

bt_mesh_comp_p0_elem.nsig (C var), 321
bt_mesh_comp_p0_elem.nvnd (C var), 321
bt_mesh_comp_p0_elem_mod (C function), 318
bt_mesh_comp_p0_elem_mod_vnd (C function),

318
bt_mesh_comp_p0_elem_pull (C function), 317
bt_mesh_comp_p0_get (C function), 317
bt_mesh_default_ttl_get (C function), 349
bt_mesh_default_ttl_set (C function), 348
bt_mesh_dev_capabilities (C struct), 340
bt_mesh_dev_capabilities.algorithms (C var),

340
bt_mesh_dev_capabilities.elem_count (C var),

340
bt_mesh_dev_capabilities.input_actions (C

var), 340
bt_mesh_dev_capabilities.input_size (C var),

340
bt_mesh_dev_capabilities.output_actions (C

var), 340
bt_mesh_dev_capabilities.output_size (C

var), 340
bt_mesh_dev_capabilities.pub_key_type (C

var), 340
bt_mesh_dev_capabilities.static_oob (C var),

340
BT_MESH_ELEM (C macro), 287
bt_mesh_elem (C struct), 294
bt_mesh_elem.addr (C var), 294
bt_mesh_elem.loc (C var), 294
bt_mesh_elem.model_count (C var), 294
bt_mesh_elem.models (C var), 294
bt_mesh_elem.vnd_model_count (C var), 294
bt_mesh_elem.vnd_models (C var), 294
bt_mesh_fault_update (C function), 322
BT_MESH_FEAT_FRIEND (C macro), 281
BT_MESH_FEAT_LOW_POWER (C macro), 281
BT_MESH_FEAT_PROXY (C macro), 281
BT_MESH_FEAT_RELAY (C macro), 281
bt_mesh_feat_state (C enum), 348
bt_mesh_feat_state.BT_MESH_FEATURE_DISABLED

(C enumerator), 348
bt_mesh_feat_state.BT_MESH_FEATURE_ENABLED

(C enumerator), 348
bt_mesh_feat_state.BT_MESH_FEATURE_NOT_SUPPORTED

(C enumerator), 348
BT_MESH_FEAT_SUPPORTED (C macro), 281
bt_mesh_friend_cb (C struct), 284
bt_mesh_friend_cb.established (C var), 284
bt_mesh_friend_cb.polled (C var), 284
bt_mesh_friend_cb.terminated (C var), 284
BT_MESH_FRIEND_CB_DEFINE (C macro), 282
BT_MESH_FRIEND_DISABLED (C macro), 348
BT_MESH_FRIEND_ENABLED (C macro), 348
bt_mesh_friend_get (C function), 351
BT_MESH_FRIEND_NOT_SUPPORTED (C macro), 348
bt_mesh_friend_set (C function), 350
bt_mesh_friend_terminate (C function), 283

1924 Index

Zephyr Project Documentation, Release 2.7.0-rc2

BT_MESH_GATT_PROXY_DISABLED (C macro), 347
BT_MESH_GATT_PROXY_ENABLED (C macro), 347
bt_mesh_gatt_proxy_get (C function), 350
BT_MESH_GATT_PROXY_NOT_SUPPORTED (C macro),

348
bt_mesh_gatt_proxy_set (C function), 350
bt_mesh_hb_cb (C struct), 346
bt_mesh_hb_cb.recv (C var), 346
bt_mesh_hb_cb.sub_end (C var), 347
BT_MESH_HB_CB_DEFINE (C macro), 345
bt_mesh_hb_pub (C struct), 345
bt_mesh_hb_pub.count (C var), 345
bt_mesh_hb_pub.dst (C var), 345
bt_mesh_hb_pub.feat (C var), 345
bt_mesh_hb_pub.net_idx (C var), 345
bt_mesh_hb_pub.period (C var), 346
bt_mesh_hb_pub.ttl (C var), 345
bt_mesh_hb_pub_get (C function), 345
bt_mesh_hb_sub (C struct), 346
bt_mesh_hb_sub.count (C var), 346
bt_mesh_hb_sub.dst (C var), 346
bt_mesh_hb_sub.max_hops (C var), 346
bt_mesh_hb_sub.min_hops (C var), 346
bt_mesh_hb_sub.period (C var), 346
bt_mesh_hb_sub.remaining (C var), 346
bt_mesh_hb_sub.src (C var), 346
bt_mesh_hb_sub_get (C function), 345
bt_mesh_health_attention_get (C function),

329
bt_mesh_health_attention_set (C function),

329
bt_mesh_health_cli (C struct), 329
bt_mesh_health_cli.current_status (C var),

329
bt_mesh_health_cli.model (C var), 329
bt_mesh_health_cli_set (C function), 327
bt_mesh_health_cli_timeout_get (C function),

329
bt_mesh_health_cli_timeout_set (C function),

329
BT_MESH_HEALTH_FAULT_ACTUATOR_BLOCKED_ERROR

(C macro), 325
BT_MESH_HEALTH_FAULT_ACTUATOR_BLOCKED_WARNING

(C macro), 325
BT_MESH_HEALTH_FAULT_BATTERY_LOW_ERROR (C

macro), 324
BT_MESH_HEALTH_FAULT_BATTERY_LOW_WARNING

(C macro), 324
bt_mesh_health_fault_clear (C function), 327
BT_MESH_HEALTH_FAULT_CONDENSATION_ERROR (C

macro), 325
BT_MESH_HEALTH_FAULT_CONDENSATION_WARNING

(C macro), 325
BT_MESH_HEALTH_FAULT_CONFIGURATION_ERROR

(C macro), 325
BT_MESH_HEALTH_FAULT_CONFIGURATION_WARNING

(C macro), 325
BT_MESH_HEALTH_FAULT_DEVICE_DROPPED_ERROR

(C macro), 326
BT_MESH_HEALTH_FAULT_DEVICE_DROPPED_WARNING

(C macro), 326
BT_MESH_HEALTH_FAULT_DEVICE_MOVED_ERROR (C

macro), 326
BT_MESH_HEALTH_FAULT_DEVICE_MOVED_WARNING

(C macro), 326
BT_MESH_HEALTH_FAULT_ELEMENT_NOT_CALIBRATED_ERROR

(C macro), 325
BT_MESH_HEALTH_FAULT_ELEMENT_NOT_CALIBRATED_WARNING

(C macro), 325
BT_MESH_HEALTH_FAULT_EMPTY_ERROR (C macro),

326
BT_MESH_HEALTH_FAULT_EMPTY_WARNING (C

macro), 326
bt_mesh_health_fault_get (C function), 327
BT_MESH_HEALTH_FAULT_HOUSING_OPENED_ERROR

(C macro), 326
BT_MESH_HEALTH_FAULT_HOUSING_OPENED_WARNING

(C macro), 325
BT_MESH_HEALTH_FAULT_INPUT_NO_CHANGE_ERROR

(C macro), 325
BT_MESH_HEALTH_FAULT_INPUT_NO_CHANGE_WARNING

(C macro), 325
BT_MESH_HEALTH_FAULT_INPUT_TOO_HIGH_ERROR

(C macro), 325
BT_MESH_HEALTH_FAULT_INPUT_TOO_HIGH_WARNING

(C macro), 325
BT_MESH_HEALTH_FAULT_INPUT_TOO_LOW_ERROR

(C macro), 325
BT_MESH_HEALTH_FAULT_INPUT_TOO_LOW_WARNING

(C macro), 325
BT_MESH_HEALTH_FAULT_INTERNAL_BUS_ERROR (C

macro), 326
BT_MESH_HEALTH_FAULT_INTERNAL_BUS_WARNING

(C macro), 326
BT_MESH_HEALTH_FAULT_MECHANISM_JAMMED_ERROR

(C macro), 326
BT_MESH_HEALTH_FAULT_MECHANISM_JAMMED_WARNING

(C macro), 326
BT_MESH_HEALTH_FAULT_MEMORY_ERROR (C macro),

325
BT_MESH_HEALTH_FAULT_MEMORY_WARNING (C

macro), 325
BT_MESH_HEALTH_FAULT_NO_FAULT (C macro), 324
BT_MESH_HEALTH_FAULT_NO_LOAD_ERROR (C

macro), 324
BT_MESH_HEALTH_FAULT_NO_LOAD_WARNING (C

macro), 324
BT_MESH_HEALTH_FAULT_OVERFLOW_ERROR (C

macro), 326
BT_MESH_HEALTH_FAULT_OVERFLOW_WARNING (C

macro), 326
BT_MESH_HEALTH_FAULT_OVERHEAT_ERROR (C

macro), 325
BT_MESH_HEALTH_FAULT_OVERHEAT_WARNING (C

macro), 325
BT_MESH_HEALTH_FAULT_OVERLOAD_ERROR (C

Index 1925

Zephyr Project Documentation, Release 2.7.0-rc2

macro), 324
BT_MESH_HEALTH_FAULT_OVERLOAD_WARNING (C

macro), 324
BT_MESH_HEALTH_FAULT_POWER_SUPPLY_INTERRUPTED_ERROR

(C macro), 324
BT_MESH_HEALTH_FAULT_POWER_SUPPLY_INTERRUPTED_WARNING

(C macro), 324
BT_MESH_HEALTH_FAULT_SELF_TEST_ERROR (C

macro), 325
BT_MESH_HEALTH_FAULT_SELF_TEST_WARNING (C

macro), 325
BT_MESH_HEALTH_FAULT_SUPPLY_VOLTAGE_TOO_HIGH_ERROR

(C macro), 324
BT_MESH_HEALTH_FAULT_SUPPLY_VOLTAGE_TOO_HIGH_WARNING

(C macro), 324
BT_MESH_HEALTH_FAULT_SUPPLY_VOLTAGE_TOO_LOW_ERROR

(C macro), 324
BT_MESH_HEALTH_FAULT_SUPPLY_VOLTAGE_TOO_LOW_WARNING

(C macro), 324
BT_MESH_HEALTH_FAULT_TAMPER_ERROR (C macro),

326
BT_MESH_HEALTH_FAULT_TAMPER_WARNING (C

macro), 326
bt_mesh_health_fault_test (C function), 328
BT_MESH_HEALTH_FAULT_VENDOR_SPECIFIC_START

(C macro), 326
BT_MESH_HEALTH_FAULT_VIBRATION_ERROR (C

macro), 325
BT_MESH_HEALTH_FAULT_VIBRATION_WARNING (C

macro), 325
bt_mesh_health_period_get (C function), 328
bt_mesh_health_period_set (C function), 328
BT_MESH_HEALTH_PUB_DEFINE (C macro), 322
bt_mesh_health_srv (C struct), 323
bt_mesh_health_srv.attn_timer (C var), 324
bt_mesh_health_srv.cb (C var), 324
bt_mesh_health_srv.model (C var), 324
bt_mesh_health_srv_cb (C struct), 322
bt_mesh_health_srv_cb.attn_off (C var), 323
bt_mesh_health_srv_cb.attn_on (C var), 323
bt_mesh_health_srv_cb.fault_clear (C var),

323
bt_mesh_health_srv_cb.fault_get_cur (C var),

322
bt_mesh_health_srv_cb.fault_get_reg (C var),

323
bt_mesh_health_srv_cb.fault_test (C var),

323
bt_mesh_init (C function), 282
bt_mesh_input_action_t (C enum), 336
bt_mesh_input_action_t.BT_MESH_ENTER_NUMBER

(C enumerator), 336
bt_mesh_input_action_t.BT_MESH_ENTER_STRING

(C enumerator), 336
bt_mesh_input_action_t.BT_MESH_NO_INPUT (C

enumerator), 336
bt_mesh_input_action_t.BT_MESH_PUSH (C enu-

merator), 336

bt_mesh_input_action_t.BT_MESH_TWIST (C
enumerator), 336

bt_mesh_input_number (C function), 337
bt_mesh_input_string (C function), 337
BT_MESH_IS_DEV_KEY (C macro), 287
bt_mesh_is_provisioned (C function), 339
bt_mesh_iv_update (C function), 283
bt_mesh_iv_update_test (C function), 282
BT_MESH_KEY_ANY (C macro), 287
BT_MESH_KEY_DEV (C macro), 287
BT_MESH_KEY_DEV_ANY (C macro), 287
BT_MESH_KEY_DEV_LOCAL (C macro), 287
BT_MESH_KEY_DEV_REMOTE (C macro), 287
BT_MESH_KEY_UNUSED (C macro), 287
BT_MESH_KR_NORMAL (C macro), 347
BT_MESH_KR_PHASE_1 (C macro), 347
BT_MESH_KR_PHASE_2 (C macro), 347
BT_MESH_KR_PHASE_3 (C macro), 347
BT_MESH_LEN_EXACT (C macro), 290
BT_MESH_LEN_MIN (C macro), 290
bt_mesh_lpn_cb (C struct), 283
bt_mesh_lpn_cb.established (C var), 284
bt_mesh_lpn_cb.polled (C var), 284
bt_mesh_lpn_cb.terminated (C var), 284
BT_MESH_LPN_CB_DEFINE (C macro), 282
bt_mesh_lpn_poll (C function), 283
bt_mesh_lpn_set (C function), 283
BT_MESH_MIC_LONG (C macro), 330
BT_MESH_MIC_SHORT (C macro), 330
bt_mesh_mod_id_vnd (C struct), 297
bt_mesh_mod_id_vnd.company (C var), 297
bt_mesh_mod_id_vnd.id (C var), 297
BT_MESH_MODEL (C macro), 291
bt_mesh_model (C struct), 297
bt_mesh_model.cb (C var), 298
bt_mesh_model.groups (C var), 298
bt_mesh_model.id (C var), 298
bt_mesh_model.keys (C var), 298
bt_mesh_model.op (C var), 298
bt_mesh_model.pub (C var), 298
bt_mesh_model.user_data (C var), 298
bt_mesh_model.vnd (C var), 298
BT_MESH_MODEL_BUF_DEFINE (C macro), 330
BT_MESH_MODEL_BUF_LEN (C macro), 330
BT_MESH_MODEL_BUF_LEN_LONG_MIC (C macro),

330
BT_MESH_MODEL_CB (C macro), 290
bt_mesh_model_cb (C struct), 296
bt_mesh_model_cb.init (C var), 297
bt_mesh_model_cb.reset (C var), 297
bt_mesh_model_cb.settings_set (C var), 296
bt_mesh_model_cb.start (C var), 297
BT_MESH_MODEL_CFG_CLI (C macro), 300
BT_MESH_MODEL_CFG_SRV (C macro), 299
bt_mesh_model_data_store (C function), 293
bt_mesh_model_elem (C function), 293
bt_mesh_model_extend (C function), 294
bt_mesh_model_find (C function), 293

1926 Index

Zephyr Project Documentation, Release 2.7.0-rc2

bt_mesh_model_find_vnd (C function), 293
BT_MESH_MODEL_HEALTH_CLI (C macro), 327
BT_MESH_MODEL_HEALTH_SRV (C macro), 322
BT_MESH_MODEL_ID_CFG_CLI (C macro), 287
BT_MESH_MODEL_ID_CFG_SRV (C macro), 287
BT_MESH_MODEL_ID_GEN_ADMIN_PROP_SRV (C

macro), 288
BT_MESH_MODEL_ID_GEN_BATTERY_CLI (C macro),

288
BT_MESH_MODEL_ID_GEN_BATTERY_SRV (C macro),

288
BT_MESH_MODEL_ID_GEN_CLIENT_PROP_SRV (C

macro), 288
BT_MESH_MODEL_ID_GEN_DEF_TRANS_TIME_CLI (C

macro), 288
BT_MESH_MODEL_ID_GEN_DEF_TRANS_TIME_SRV (C

macro), 288
BT_MESH_MODEL_ID_GEN_LEVEL_CLI (C macro),

288
BT_MESH_MODEL_ID_GEN_LEVEL_SRV (C macro),

288
BT_MESH_MODEL_ID_GEN_LOCATION_CLI (C macro),

288
BT_MESH_MODEL_ID_GEN_LOCATION_SETUPSRV (C

macro), 288
BT_MESH_MODEL_ID_GEN_LOCATION_SRV (C macro),

288
BT_MESH_MODEL_ID_GEN_MANUFACTURER_PROP_SRV

(C macro), 288
BT_MESH_MODEL_ID_GEN_ONOFF_CLI (C macro),

288
BT_MESH_MODEL_ID_GEN_ONOFF_SRV (C macro),

288
BT_MESH_MODEL_ID_GEN_POWER_LEVEL_CLI (C

macro), 288
BT_MESH_MODEL_ID_GEN_POWER_LEVEL_SETUP_SRV

(C macro), 288
BT_MESH_MODEL_ID_GEN_POWER_LEVEL_SRV (C

macro), 288
BT_MESH_MODEL_ID_GEN_POWER_ONOFF_CLI (C

macro), 288
BT_MESH_MODEL_ID_GEN_POWER_ONOFF_SETUP_SRV

(C macro), 288
BT_MESH_MODEL_ID_GEN_POWER_ONOFF_SRV (C

macro), 288
BT_MESH_MODEL_ID_GEN_PROP_CLI (C macro), 288
BT_MESH_MODEL_ID_GEN_USER_PROP_SRV (C

macro), 288
BT_MESH_MODEL_ID_HEALTH_CLI (C macro), 287
BT_MESH_MODEL_ID_HEALTH_SRV (C macro), 287
BT_MESH_MODEL_ID_LIGHT_CTL_CLI (C macro),

289
BT_MESH_MODEL_ID_LIGHT_CTL_SETUP_SRV (C

macro), 289
BT_MESH_MODEL_ID_LIGHT_CTL_SRV (C macro),

289
BT_MESH_MODEL_ID_LIGHT_CTL_TEMP_SRV (C

macro), 289

BT_MESH_MODEL_ID_LIGHT_HSL_CLI (C macro),
289

BT_MESH_MODEL_ID_LIGHT_HSL_HUE_SRV (C
macro), 289

BT_MESH_MODEL_ID_LIGHT_HSL_SAT_SRV (C
macro), 289

BT_MESH_MODEL_ID_LIGHT_HSL_SETUP_SRV (C
macro), 289

BT_MESH_MODEL_ID_LIGHT_HSL_SRV (C macro),
289

BT_MESH_MODEL_ID_LIGHT_LC_CLI (C macro), 290
BT_MESH_MODEL_ID_LIGHT_LC_SETUPSRV (C

macro), 290
BT_MESH_MODEL_ID_LIGHT_LC_SRV (C macro), 290
BT_MESH_MODEL_ID_LIGHT_LIGHTNESS_CLI (C

macro), 289
BT_MESH_MODEL_ID_LIGHT_LIGHTNESS_SETUP_SRV

(C macro), 289
BT_MESH_MODEL_ID_LIGHT_LIGHTNESS_SRV (C

macro), 289
BT_MESH_MODEL_ID_LIGHT_XYL_CLI (C macro),

290
BT_MESH_MODEL_ID_LIGHT_XYL_SETUP_SRV (C

macro), 290
BT_MESH_MODEL_ID_LIGHT_XYL_SRV (C macro),

290
BT_MESH_MODEL_ID_SCENE_CLI (C macro), 289
BT_MESH_MODEL_ID_SCENE_SETUP_SRV (C macro),

289
BT_MESH_MODEL_ID_SCENE_SRV (C macro), 289
BT_MESH_MODEL_ID_SCHEDULER_CLI (C macro),

289
BT_MESH_MODEL_ID_SCHEDULER_SETUP_SRV (C

macro), 289
BT_MESH_MODEL_ID_SCHEDULER_SRV (C macro),

289
BT_MESH_MODEL_ID_SENSOR_CLI (C macro), 289
BT_MESH_MODEL_ID_SENSOR_SETUP_SRV (C macro),

289
BT_MESH_MODEL_ID_SENSOR_SRV (C macro), 288
BT_MESH_MODEL_ID_TIME_CLI (C macro), 289
BT_MESH_MODEL_ID_TIME_SETUP_SRV (C macro),

289
BT_MESH_MODEL_ID_TIME_SRV (C macro), 289
bt_mesh_model_in_primary (C function), 293
bt_mesh_model_is_extended (C function), 294
bt_mesh_model_msg_init (C function), 331
BT_MESH_MODEL_NO_OPS (C macro), 290
BT_MESH_MODEL_NONE (C macro), 290
bt_mesh_model_op (C struct), 295
bt_mesh_model_op.func (C var), 295
bt_mesh_model_op.len (C var), 295
bt_mesh_model_op.opcode (C var), 295
BT_MESH_MODEL_OP_1 (C macro), 290
BT_MESH_MODEL_OP_2 (C macro), 290
BT_MESH_MODEL_OP_3 (C macro), 290
BT_MESH_MODEL_OP_END (C macro), 290
BT_MESH_MODEL_OP_LEN (C macro), 330

Index 1927

Zephyr Project Documentation, Release 2.7.0-rc2

bt_mesh_model_pub (C struct), 295
bt_mesh_model_pub.addr (C var), 295
bt_mesh_model_pub.count (C var), 296
bt_mesh_model_pub.cred (C var), 295
bt_mesh_model_pub.fast_period (C var), 295
bt_mesh_model_pub.key (C var), 295
bt_mesh_model_pub.mod (C var), 295
bt_mesh_model_pub.msg (C var), 296
bt_mesh_model_pub.period (C var), 296
bt_mesh_model_pub.period_div (C var), 296
bt_mesh_model_pub.period_start (C var), 296
bt_mesh_model_pub.retransmit (C var), 296
bt_mesh_model_pub.send_rel (C var), 295
bt_mesh_model_pub.timer (C var), 296
bt_mesh_model_pub.ttl (C var), 296
bt_mesh_model_pub.update (C var), 296
BT_MESH_MODEL_PUB_DEFINE (C macro), 292
bt_mesh_model_publish (C function), 292
bt_mesh_model_send (C function), 292
BT_MESH_MODEL_VND (C macro), 291
BT_MESH_MODEL_VND_CB (C macro), 290
bt_mesh_msg_ack_ctx (C struct), 333
bt_mesh_msg_ack_ctx.dst (C var), 333
bt_mesh_msg_ack_ctx.op (C var), 333
bt_mesh_msg_ack_ctx.sem (C var), 333
bt_mesh_msg_ack_ctx.user_data (C var), 333
bt_mesh_msg_ack_ctx_busy (C function), 331
bt_mesh_msg_ack_ctx_clear (C function), 331
bt_mesh_msg_ack_ctx_init (C function), 331
bt_mesh_msg_ack_ctx_match (C function), 332
bt_mesh_msg_ack_ctx_prepare (C function), 331
bt_mesh_msg_ack_ctx_reset (C function), 331
bt_mesh_msg_ack_ctx_rx (C function), 332
bt_mesh_msg_ack_ctx_wait (C function), 332
bt_mesh_msg_ctx (C struct), 332
bt_mesh_msg_ctx.addr (C var), 332
bt_mesh_msg_ctx.app_idx (C var), 332
bt_mesh_msg_ctx.net_idx (C var), 332
bt_mesh_msg_ctx.recv_dst (C var), 332
bt_mesh_msg_ctx.recv_rssi (C var), 332
bt_mesh_msg_ctx.recv_ttl (C var), 333
bt_mesh_msg_ctx.send_rel (C var), 333
bt_mesh_msg_ctx.send_ttl (C var), 333
BT_MESH_NET_PRIMARY (C macro), 281
bt_mesh_net_transmit_get (C function), 349
bt_mesh_net_transmit_set (C function), 349
BT_MESH_NODE_IDENTITY_NOT_SUPPORTED (C

macro), 348
BT_MESH_NODE_IDENTITY_RUNNING (C macro), 348
BT_MESH_NODE_IDENTITY_STOPPED (C macro), 348
bt_mesh_output_action_t (C enum), 336
bt_mesh_output_action_t.BT_MESH_BEEP (C

enumerator), 336
bt_mesh_output_action_t.BT_MESH_BLINK (C

enumerator), 336
bt_mesh_output_action_t.BT_MESH_DISPLAY_NUMBER

(C enumerator), 336

bt_mesh_output_action_t.BT_MESH_DISPLAY_STRING
(C enumerator), 336

bt_mesh_output_action_t.BT_MESH_NO_OUTPUT
(C enumerator), 336

bt_mesh_output_action_t.BT_MESH_VIBRATE (C
enumerator), 336

bt_mesh_prov (C struct), 340
bt_mesh_prov.capabilities (C var), 341
bt_mesh_prov.complete (C var), 342
bt_mesh_prov.input (C var), 342
bt_mesh_prov.input_actions (C var), 341
bt_mesh_prov.input_complete (C var), 342
bt_mesh_prov.input_size (C var), 341
bt_mesh_prov.link_close (C var), 342
bt_mesh_prov.link_open (C var), 342
bt_mesh_prov.node_added (C var), 343
bt_mesh_prov.oob_info (C var), 340
bt_mesh_prov.output_actions (C var), 341
bt_mesh_prov.output_number (C var), 341
bt_mesh_prov.output_size (C var), 341
bt_mesh_prov.output_string (C var), 342
bt_mesh_prov.private_key_be (C var), 341
bt_mesh_prov.public_key_be (C var), 341
bt_mesh_prov.reset (C var), 343
bt_mesh_prov.static_val (C var), 341
bt_mesh_prov.static_val_len (C var), 341
bt_mesh_prov.unprovisioned_beacon (C var),

342
bt_mesh_prov.uri (C var), 340
bt_mesh_prov.uuid (C var), 340
bt_mesh_prov_bearer_t (C enum), 336
bt_mesh_prov_bearer_t.BT_MESH_PROV_ADV (C

enumerator), 336
bt_mesh_prov_bearer_t.BT_MESH_PROV_GATT (C

enumerator), 336
bt_mesh_prov_disable (C function), 339
bt_mesh_prov_enable (C function), 339
bt_mesh_prov_oob_info_t (C enum), 336
bt_mesh_prov_oob_info_t.BT_MESH_PROV_OOB_2D_CODE

(C enumerator), 337
bt_mesh_prov_oob_info_t.BT_MESH_PROV_OOB_BAR_CODE

(C enumerator), 337
bt_mesh_prov_oob_info_t.BT_MESH_PROV_OOB_IN_BOX

(C enumerator), 337
bt_mesh_prov_oob_info_t.BT_MESH_PROV_OOB_IN_MANUAL

(C enumerator), 337
bt_mesh_prov_oob_info_t.BT_MESH_PROV_OOB_NFC

(C enumerator), 337
bt_mesh_prov_oob_info_t.BT_MESH_PROV_OOB_NUMBER

(C enumerator), 337
bt_mesh_prov_oob_info_t.BT_MESH_PROV_OOB_ON_BOX

(C enumerator), 337
bt_mesh_prov_oob_info_t.BT_MESH_PROV_OOB_ON_DEV

(C enumerator), 337
bt_mesh_prov_oob_info_t.BT_MESH_PROV_OOB_ON_PAPER

(C enumerator), 337
bt_mesh_prov_oob_info_t.BT_MESH_PROV_OOB_OTHER

(C enumerator), 336

1928 Index

Zephyr Project Documentation, Release 2.7.0-rc2

bt_mesh_prov_oob_info_t.BT_MESH_PROV_OOB_STRING
(C enumerator), 337

bt_mesh_prov_oob_info_t.BT_MESH_PROV_OOB_URI
(C enumerator), 336

bt_mesh_prov_remote_pub_key_set (C function),
337

bt_mesh_provision (C function), 339
bt_mesh_provision_adv (C function), 339
bt_mesh_proxy_cb (C struct), 343
bt_mesh_proxy_cb.identity_disabled (C var),

344
bt_mesh_proxy_cb.identity_enabled (C var),

344
BT_MESH_PROXY_CB_DEFINE (C macro), 343
bt_mesh_proxy_identity_enable (C function),

343
BT_MESH_PUB_PERIOD_100MS (C macro), 300
BT_MESH_PUB_PERIOD_10MIN (C macro), 300
BT_MESH_PUB_PERIOD_10SEC (C macro), 300
BT_MESH_PUB_PERIOD_SEC (C macro), 300
BT_MESH_PUB_TRANSMIT (C macro), 291
BT_MESH_PUB_TRANSMIT_COUNT (C macro), 292
BT_MESH_PUB_TRANSMIT_INT (C macro), 292
BT_MESH_RELAY_DISABLED (C macro), 347
BT_MESH_RELAY_ENABLED (C macro), 347
bt_mesh_relay_get (C function), 350
BT_MESH_RELAY_NOT_SUPPORTED (C macro), 347
bt_mesh_relay_retransmit_get (C function),

350
bt_mesh_relay_set (C function), 349
bt_mesh_reset (C function), 282
bt_mesh_resume (C function), 282
bt_mesh_rpl_pending_store (C function), 283
BT_MESH_RX_SDU_MAX (C macro), 287
bt_mesh_send_cb (C struct), 298
bt_mesh_send_cb.end (C var), 298
bt_mesh_send_cb.start (C var), 298
bt_mesh_suspend (C function), 282
BT_MESH_TRANSMIT (C macro), 291
BT_MESH_TRANSMIT_COUNT (C macro), 291
BT_MESH_TRANSMIT_INT (C macro), 291
BT_MESH_TTL_DEFAULT (C macro), 292
BT_MESH_TTL_MAX (C macro), 292
BT_MESH_TX_SDU_MAX (C macro), 287
BT_PASSKEY_INVALID (C macro), 169
bt_passkey_set (C function), 178
bt_rand (C function), 190
bt_read_static_addr (C function), 265
bt_ready_cb_t (C type), 197
bt_recv (C function), 265
bt_recv_prio (C function), 265
bt_rfcomm_create_pdu (C function), 366
bt_rfcomm_dlc (C struct), 366
bt_rfcomm_dlc_connect (C function), 365
bt_rfcomm_dlc_disconnect (C function), 365
bt_rfcomm_dlc_ops (C struct), 366
bt_rfcomm_dlc_ops.connected (C var), 366
bt_rfcomm_dlc_ops.disconnected (C var), 366

bt_rfcomm_dlc_ops.recv (C var), 366
bt_rfcomm_dlc_send (C function), 365
bt_rfcomm_role (C enum), 365
bt_rfcomm_role.BT_RFCOMM_ROLE_ACCEPTOR (C

enumerator), 365
bt_rfcomm_role.BT_RFCOMM_ROLE_INITIATOR (C

enumerator), 365
bt_rfcomm_role_t (C type), 364
bt_rfcomm_server (C struct), 366
bt_rfcomm_server.accept (C var), 366
bt_rfcomm_server.channel (C var), 366
bt_rfcomm_server_register (C function), 365
BT_SDP_ADVANCED_AUDIO_SVCLASS (C macro), 367
BT_SDP_ALT16 (C macro), 375
BT_SDP_ALT32 (C macro), 375
BT_SDP_ALT8 (C macro), 375
BT_SDP_ALT_UNSPEC (C macro), 375
BT_SDP_APPLE_AGENT_SVCLASS (C macro), 370
BT_SDP_ARRAY_16 (C macro), 375
BT_SDP_ARRAY_32 (C macro), 375
BT_SDP_ARRAY_8 (C macro), 375
BT_SDP_ATTR_ADD_PROTO_DESC_LIST (C macro),

371
BT_SDP_ATTR_AUDIO_FEEDBACK_SUPPORT (C

macro), 372
BT_SDP_ATTR_BROWSE_GRP_LIST (C macro), 370
BT_SDP_ATTR_CLNT_EXEC_URL (C macro), 371
BT_SDP_ATTR_DATA_EXCHANGE_SPEC (C macro),

371
BT_SDP_ATTR_DOC_URL (C macro), 371
BT_SDP_ATTR_EXTERNAL_NETWORK (C macro), 371
BT_SDP_ATTR_FAX_CLASS1_SUPPORT (C macro),

371
BT_SDP_ATTR_FAX_CLASS20_SUPPORT (C macro),

372
BT_SDP_ATTR_FAX_CLASS2_SUPPORT (C macro),

372
BT_SDP_ATTR_GOEP_L2CAP_PSM (C macro), 371
BT_SDP_ATTR_GROUP_ID (C macro), 371
BT_SDP_ATTR_HID_BATTERY_POWER (C macro), 373
BT_SDP_ATTR_HID_BOOT_DEVICE (C macro), 373
BT_SDP_ATTR_HID_COUNTRY_CODE (C macro), 373
BT_SDP_ATTR_HID_DESCRIPTOR_LIST (C macro),

373
BT_SDP_ATTR_HID_DEVICE_RELEASE_NUMBER (C

macro), 373
BT_SDP_ATTR_HID_DEVICE_SUBCLASS (C macro),

373
BT_SDP_ATTR_HID_LANG_ID_BASE_LIST (C macro),

373
BT_SDP_ATTR_HID_NORMALLY_CONNECTABLE (C

macro), 373
BT_SDP_ATTR_HID_PARSER_VERSION (C macro),

373
BT_SDP_ATTR_HID_PROFILE_VERSION (C macro),

373
BT_SDP_ATTR_HID_RECONNECT_INITIATE (C

macro), 373

Index 1929

Zephyr Project Documentation, Release 2.7.0-rc2

BT_SDP_ATTR_HID_REMOTE_WAKEUP (C macro), 373
BT_SDP_ATTR_HID_SDP_DISABLE (C macro), 373
BT_SDP_ATTR_HID_SUPERVISION_TIMEOUT (C

macro), 373
BT_SDP_ATTR_HID_VIRTUAL_CABLE (C macro), 373
BT_SDP_ATTR_HOMEPAGE_URL (C macro), 372
BT_SDP_ATTR_ICON_URL (C macro), 371
BT_SDP_ATTR_IP4_SUBNET (C macro), 372
BT_SDP_ATTR_IP6_SUBNET (C macro), 372
BT_SDP_ATTR_IP_SUBNET (C macro), 371
BT_SDP_ATTR_LANG_BASE_ATTR_ID_LIST (C

macro), 370
BT_SDP_ATTR_MAP_SUPPORTED_FEATURES (C

macro), 372
BT_SDP_ATTR_MAS_INSTANCE_ID (C macro), 372
BT_SDP_ATTR_MAX_NET_ACCESSRATE (C macro),

372
BT_SDP_ATTR_MCAP_SUPPORTED_PROCEDURES (C

macro), 372
BT_SDP_ATTR_MPMD_SCENARIOS (C macro), 371
BT_SDP_ATTR_MPS_DEPENDENCIES (C macro), 371
BT_SDP_ATTR_MPSD_SCENARIOS (C macro), 371
BT_SDP_ATTR_NET_ACCESS_TYPE (C macro), 372
BT_SDP_ATTR_NETWORK (C macro), 371
BT_SDP_ATTR_NETWORK_ADDRESS (C macro), 372
BT_SDP_ATTR_PBAP_SUPPORTED_FEATURES (C

macro), 372
BT_SDP_ATTR_PRIMARY_RECORD (C macro), 373
BT_SDP_ATTR_PRODUCT_ID (C macro), 373
BT_SDP_ATTR_PROFILE_DESC_LIST (C macro), 371
BT_SDP_ATTR_PROTO_DESC_LIST (C macro), 370
BT_SDP_ATTR_PROVNAME_PRIMARY (C macro), 374
BT_SDP_ATTR_RECORD_HANDLE (C macro), 370
BT_SDP_ATTR_RECORD_STATE (C macro), 370
BT_SDP_ATTR_REMOTE_AUDIO_VOLUME_CONTROL (C

macro), 371
BT_SDP_ATTR_SECURITY_DESC (C macro), 372
BT_SDP_ATTR_SERVICE_AVAILABILITY (C macro),

371
BT_SDP_ATTR_SERVICE_ID (C macro), 370
BT_SDP_ATTR_SERVICE_VERSION (C macro), 371
BT_SDP_ATTR_SPECIFICATION_ID (C macro), 373
BT_SDP_ATTR_SUPPORTED_CAPABILITIES (C

macro), 372
BT_SDP_ATTR_SUPPORTED_DATA_STORES_LIST (C

macro), 371
BT_SDP_ATTR_SUPPORTED_FEATURES (C macro),

372
BT_SDP_ATTR_SUPPORTED_FEATURES_LIST (C

macro), 371
BT_SDP_ATTR_SUPPORTED_FORMATS_LIST (C

macro), 372
BT_SDP_ATTR_SUPPORTED_FUNCTIONS (C macro),

372
BT_SDP_ATTR_SUPPORTED_MESSAGE_TYPES (C

macro), 372
BT_SDP_ATTR_SUPPORTED_REPOSITORIES (C

macro), 372

BT_SDP_ATTR_SVCDB_STATE (C macro), 371
BT_SDP_ATTR_SVCDESC_PRIMARY (C macro), 374
BT_SDP_ATTR_SVCINFO_TTL (C macro), 371
BT_SDP_ATTR_SVCLASS_ID_LIST (C macro), 370
BT_SDP_ATTR_SVCNAME_PRIMARY (C macro), 373
BT_SDP_ATTR_TOTAL_IMAGING_DATA_CAPACITY (C

macro), 372
BT_SDP_ATTR_VENDOR_ID (C macro), 373
BT_SDP_ATTR_VENDOR_ID_SOURCE (C macro), 373
BT_SDP_ATTR_VERSION (C macro), 373
BT_SDP_ATTR_VERSION_NUM_LIST (C macro), 371
BT_SDP_ATTR_WAP_GATEWAY (C macro), 372
BT_SDP_ATTR_WAP_STACK_TYPE (C macro), 372
bt_sdp_attribute (C struct), 379
BT_SDP_AUDIO_SINK_SVCLASS (C macro), 367
BT_SDP_AUDIO_SOURCE_SVCLASS (C macro), 367
BT_SDP_AV_REMOTE_CONTROLLER_SVCLASS (C

macro), 368
BT_SDP_AV_REMOTE_SVCLASS (C macro), 368
BT_SDP_AV_REMOTE_TARGET_SVCLASS (C macro),

367
BT_SDP_AV_SVCLASS (C macro), 369
BT_SDP_BASIC_PRINTING_SVCLASS (C macro), 368
BT_SDP_BOOL (C macro), 374
BT_SDP_BROWSE_GRP_DESC_SVCLASS (C macro),

367
BT_SDP_CIP_SVCLASS (C macro), 369
bt_sdp_client_result (C struct), 379
BT_SDP_CORDLESS_TELEPHONY_SVCLASS (C macro),

367
bt_sdp_data_elem (C struct), 379
BT_SDP_DATA_ELEM_LIST (C macro), 375
BT_SDP_DATA_NIL (C macro), 374
BT_SDP_DIALUP_NET_SVCLASS (C macro), 367
BT_SDP_DIRECT_PRINTING_SVCLASS (C macro),

368
BT_SDP_DIRECT_PRT_REFOBJS_SVCLASS (C macro),

368
bt_sdp_discover (C function), 377
bt_sdp_discover_cancel (C function), 378
bt_sdp_discover_func_t (C type), 376
bt_sdp_discover_params (C struct), 379
bt_sdp_discover_params.func (C var), 379
bt_sdp_discover_params.pool (C var), 379
bt_sdp_discover_params.uuid (C var), 379
BT_SDP_FAX_SVCLASS (C macro), 368
BT_SDP_GENERIC_ACCESS_SVCLASS (C macro), 370
BT_SDP_GENERIC_ATTRIB_SVCLASS (C macro), 370
BT_SDP_GENERIC_AUDIO_SVCLASS (C macro), 369
BT_SDP_GENERIC_FILETRANS_SVCLASS (C macro),

369
BT_SDP_GENERIC_NETWORKING_SVCLASS (C macro),

369
BT_SDP_GENERIC_TELEPHONY_SVCLASS (C macro),

370
bt_sdp_get_addl_proto_param (C function), 378
bt_sdp_get_features (C function), 379
bt_sdp_get_profile_version (C function), 379

1930 Index

Zephyr Project Documentation, Release 2.7.0-rc2

bt_sdp_get_proto_param (C function), 378
BT_SDP_GN_SVCLASS (C macro), 368
BT_SDP_GNSS_SERVER_SVCLASS (C macro), 369
BT_SDP_GNSS_SVCLASS (C macro), 369
BT_SDP_HANDSFREE_AGW_SVCLASS (C macro), 368
BT_SDP_HANDSFREE_SVCLASS (C macro), 368
BT_SDP_HCR_PRINT_SVCLASS (C macro), 369
BT_SDP_HCR_SCAN_SVCLASS (C macro), 369
BT_SDP_HCR_SVCLASS (C macro), 369
BT_SDP_HDP_SINK_SVCLASS (C macro), 370
BT_SDP_HDP_SOURCE_SVCLASS (C macro), 370
BT_SDP_HDP_SVCLASS (C macro), 370
BT_SDP_HEADSET_AGW_SVCLASS (C macro), 368
BT_SDP_HEADSET_SVCLASS (C macro), 367
BT_SDP_HID_SVCLASS (C macro), 368
BT_SDP_IMAGING_ARCHIVE_SVCLASS (C macro),

368
BT_SDP_IMAGING_REFOBJS_SVCLASS (C macro),

368
BT_SDP_IMAGING_RESPONDER_SVCLASS (C macro),

368
BT_SDP_IMAGING_SVCLASS (C macro), 368
BT_SDP_INT128 (C macro), 374
BT_SDP_INT16 (C macro), 374
BT_SDP_INT32 (C macro), 374
BT_SDP_INT64 (C macro), 374
BT_SDP_INT8 (C macro), 374
BT_SDP_INTERCOM_SVCLASS (C macro), 368
BT_SDP_IRMC_SYNC_CMD_SVCLASS (C macro), 367
BT_SDP_IRMC_SYNC_SVCLASS (C macro), 367
BT_SDP_LAN_ACCESS_SVCLASS (C macro), 367
BT_SDP_LIST (C macro), 376
BT_SDP_MAP_MCE_SVCLASS (C macro), 369
BT_SDP_MAP_MSE_SVCLASS (C macro), 369
BT_SDP_MAP_SVCLASS (C macro), 369
BT_SDP_MPS_SC_SVCLASS (C macro), 369
BT_SDP_MPS_SVCLASS (C macro), 369
BT_SDP_NAP_SVCLASS (C macro), 368
BT_SDP_NEW_SERVICE (C macro), 376
BT_SDP_OBEX_FILETRANS_SVCLASS (C macro), 367
BT_SDP_OBEX_OBJPUSH_SVCLASS (C macro), 367
BT_SDP_PANU_SVCLASS (C macro), 368
BT_SDP_PBAP_PCE_SVCLASS (C macro), 369
BT_SDP_PBAP_PSE_SVCLASS (C macro), 369
BT_SDP_PBAP_SVCLASS (C macro), 369
BT_SDP_PNP_INFO_SVCLASS (C macro), 369
BT_SDP_PRIMARY_LANG_BASE (C macro), 373
BT_SDP_PRINTING_STATUS_SVCLASS (C macro),

368
bt_sdp_proto (C enum), 377
bt_sdp_proto.BT_SDP_PROTO_L2CAP (C enumera-

tor), 377
bt_sdp_proto.BT_SDP_PROTO_RFCOMM (C enumer-

ator), 377
BT_SDP_PUBLIC_BROWSE_GROUP (C macro), 367
BT_SDP_RECORD (C macro), 376
bt_sdp_record (C struct), 379

BT_SDP_REFERENCE_PRINTING_SVCLASS (C macro),
368

BT_SDP_REFLECTED_UI_SVCLASS (C macro), 368
bt_sdp_register_service (C function), 377
BT_SDP_SAP_SVCLASS (C macro), 369
BT_SDP_SDP_SERVER_SVCLASS (C macro), 367
BT_SDP_SEQ16 (C macro), 375
BT_SDP_SEQ32 (C macro), 375
BT_SDP_SEQ8 (C macro), 375
BT_SDP_SEQ_UNSPEC (C macro), 374
BT_SDP_SERIAL_PORT_SVCLASS (C macro), 367
BT_SDP_SERVER_RECORD_HANDLE (C macro), 370
BT_SDP_SERVICE_ID (C macro), 376
BT_SDP_SERVICE_NAME (C macro), 376
BT_SDP_SIZE_DESC_MASK (C macro), 375
BT_SDP_SIZE_INDEX_OFFSET (C macro), 375
BT_SDP_SUPPORTED_FEATURES (C macro), 376
BT_SDP_TEXT_STR16 (C macro), 374
BT_SDP_TEXT_STR32 (C macro), 374
BT_SDP_TEXT_STR8 (C macro), 374
BT_SDP_TEXT_STR_UNSPEC (C macro), 374
BT_SDP_TYPE_DESC_MASK (C macro), 375
BT_SDP_TYPE_SIZE (C macro), 375
BT_SDP_TYPE_SIZE_VAR (C macro), 375
BT_SDP_UDI_MT_SVCLASS (C macro), 369
BT_SDP_UDI_TA_SVCLASS (C macro), 369
BT_SDP_UINT128 (C macro), 374
BT_SDP_UINT16 (C macro), 374
BT_SDP_UINT32 (C macro), 374
BT_SDP_UINT64 (C macro), 374
BT_SDP_UINT8 (C macro), 374
BT_SDP_UPNP_IP_SVCLASS (C macro), 370
BT_SDP_UPNP_L2CAP_SVCLASS (C macro), 370
BT_SDP_UPNP_LAP_SVCLASS (C macro), 370
BT_SDP_UPNP_PAN_SVCLASS (C macro), 370
BT_SDP_UPNP_SVCLASS (C macro), 370
BT_SDP_URL_STR16 (C macro), 375
BT_SDP_URL_STR32 (C macro), 375
BT_SDP_URL_STR8 (C macro), 375
BT_SDP_URL_STR_UNSPEC (C macro), 375
BT_SDP_UUID128 (C macro), 374
BT_SDP_UUID16 (C macro), 374
BT_SDP_UUID32 (C macro), 374
BT_SDP_UUID_UNSPEC (C macro), 374
BT_SDP_VIDEO_CONF_GW_SVCLASS (C macro), 369
BT_SDP_VIDEO_DISTRIBUTION_SVCLASS (C macro),

370
BT_SDP_VIDEO_SINK_SVCLASS (C macro), 370
BT_SDP_VIDEO_SOURCE_SVCLASS (C macro), 370
BT_SDP_WAP_CLIENT_SVCLASS (C macro), 368
BT_SDP_WAP_SVCLASS (C macro), 368
bt_security_err (C enum), 171
bt_security_err.BT_SECURITY_ERR_AUTH_FAIL

(C enumerator), 171
bt_security_err.BT_SECURITY_ERR_AUTH_REQUIREMENT

(C enumerator), 171
bt_security_err.BT_SECURITY_ERR_INVALID_PARAM

(C enumerator), 171

Index 1931

Zephyr Project Documentation, Release 2.7.0-rc2

bt_security_err.BT_SECURITY_ERR_OOB_NOT_AVAILABLE
(C enumerator), 171

bt_security_err.BT_SECURITY_ERR_PAIR_NOT_ALLOWED
(C enumerator), 171

bt_security_err.BT_SECURITY_ERR_PAIR_NOT_SUPPORTED
(C enumerator), 171

bt_security_err.BT_SECURITY_ERR_PIN_OR_KEY_MISSING
(C enumerator), 171

bt_security_err.BT_SECURITY_ERR_SUCCESS (C
enumerator), 171

bt_security_err.BT_SECURITY_ERR_UNSPECIFIED
(C enumerator), 171

bt_security_t (C enum), 170
bt_security_t.BT_SECURITY_FORCE_PAIR (C

enumerator), 171
bt_security_t.BT_SECURITY_L0 (C enumerator),

171
bt_security_t.BT_SECURITY_L1 (C enumerator),

171
bt_security_t.BT_SECURITY_L2 (C enumerator),

171
bt_security_t.BT_SECURITY_L3 (C enumerator),

171
bt_security_t.BT_SECURITY_L4 (C enumerator),

171
bt_send (C function), 268
bt_set_bondable (C function), 176
bt_set_name (C function), 203
bt_set_oob_data_flag (C function), 177
bt_unpair (C function), 216
bt_uuid (C struct), 402
BT_UUID_128 (C macro), 381
bt_uuid_128 (C struct), 403
bt_uuid_128.uuid (C var), 403
bt_uuid_128.val (C var), 403
BT_UUID_128_ENCODE (C macro), 381
BT_UUID_16 (C macro), 381
bt_uuid_16 (C struct), 403
bt_uuid_16.uuid (C var), 403
bt_uuid_16.val (C var), 403
BT_UUID_16_ENCODE (C macro), 381
BT_UUID_32 (C macro), 381
bt_uuid_32 (C struct), 403
bt_uuid_32.uuid (C var), 403
bt_uuid_32.val (C var), 403
BT_UUID_32_ENCODE (C macro), 382
BT_UUID_AICS (C macro), 385
BT_UUID_AICS_CONTROL (C macro), 398
BT_UUID_AICS_CONTROL_VAL (C macro), 398
BT_UUID_AICS_DESCRIPTION (C macro), 398
BT_UUID_AICS_DESCRIPTION_VAL (C macro), 398
BT_UUID_AICS_GAIN_SETTINGS (C macro), 398
BT_UUID_AICS_GAIN_SETTINGS_VAL (C macro),

398
BT_UUID_AICS_INPUT_STATUS (C macro), 398
BT_UUID_AICS_INPUT_STATUS_VAL (C macro), 398
BT_UUID_AICS_INPUT_TYPE (C macro), 398
BT_UUID_AICS_INPUT_TYPE_VAL (C macro), 398

BT_UUID_AICS_STATE (C macro), 398
BT_UUID_AICS_STATE_VAL (C macro), 398
BT_UUID_AICS_VAL (C macro), 385
BT_UUID_ALERT_LEVEL (C macro), 388
BT_UUID_ALERT_LEVEL_VAL (C macro), 388
BT_UUID_APPARENT_WIND_DIR (C macro), 392
BT_UUID_APPARENT_WIND_DIR_VAL (C macro), 392
BT_UUID_APPARENT_WIND_SPEED (C macro), 392
BT_UUID_APPARENT_WIND_SPEED_VAL (C macro),

392
BT_UUID_ATT (C macro), 400
BT_UUID_ATT_VAL (C macro), 400
BT_UUID_AVCTP (C macro), 401
BT_UUID_AVCTP_VAL (C macro), 401
BT_UUID_AVDTP (C macro), 401
BT_UUID_AVDTP_VAL (C macro), 401
BT_UUID_BAR_PRESSURE_TREND (C macro), 394
BT_UUID_BAR_PRESSURE_TREND_VAL (C macro),

394
BT_UUID_BAS (C macro), 383
BT_UUID_BAS_BATTERY_LEVEL (C macro), 388
BT_UUID_BAS_BATTERY_LEVEL_VAL (C macro), 388
BT_UUID_BAS_VAL (C macro), 383
BT_UUID_BMS (C macro), 384
BT_UUID_BMS_CONTROL_POINT (C macro), 394
BT_UUID_BMS_CONTROL_POINT_VAL (C macro), 394
BT_UUID_BMS_FEATURE (C macro), 394
BT_UUID_BMS_FEATURE_VAL (C macro), 394
BT_UUID_BMS_VAL (C macro), 384
BT_UUID_BNEP (C macro), 400
BT_UUID_BNEP_VAL (C macro), 400
BT_UUID_CENTRAL_ADDR_RES (C macro), 394
BT_UUID_CENTRAL_ADDR_RES_VAL (C macro), 394
bt_uuid_cmp (C function), 402
BT_UUID_CMTP (C macro), 401
BT_UUID_CMTP_VAL (C macro), 401
bt_uuid_create (C function), 402
BT_UUID_CSC (C macro), 384
BT_UUID_CSC_FEATURE (C macro), 391
BT_UUID_CSC_FEATURE_VAL (C macro), 391
BT_UUID_CSC_MEASUREMENT (C macro), 391
BT_UUID_CSC_MEASUREMENT_VAL (C macro), 391
BT_UUID_CSC_VAL (C macro), 384
BT_UUID_CTS (C macro), 383
BT_UUID_CTS_CURRENT_TIME (C macro), 389
BT_UUID_CTS_CURRENT_TIME_VAL (C macro), 389
BT_UUID_CTS_VAL (C macro), 383
BT_UUID_DECLARE_128 (C macro), 380
BT_UUID_DECLARE_16 (C macro), 380
BT_UUID_DECLARE_32 (C macro), 380
BT_UUID_DESC_VALUE_CHANGED (C macro), 393
BT_UUID_DESC_VALUE_CHANGED_VAL (C macro),

393
BT_UUID_DEW_POINT (C macro), 393
BT_UUID_DEW_POINT_VAL (C macro), 393
BT_UUID_DIS (C macro), 383
BT_UUID_DIS_FIRMWARE_REVISION (C macro), 389

1932 Index

Zephyr Project Documentation, Release 2.7.0-rc2

BT_UUID_DIS_FIRMWARE_REVISION_VAL (C macro),
389

BT_UUID_DIS_HARDWARE_REVISION (C macro), 389
BT_UUID_DIS_HARDWARE_REVISION_VAL (C macro),

389
BT_UUID_DIS_MANUFACTURER_NAME (C macro), 389
BT_UUID_DIS_MANUFACTURER_NAME_VAL (C macro),

389
BT_UUID_DIS_MODEL_NUMBER (C macro), 388
BT_UUID_DIS_MODEL_NUMBER_VAL (C macro), 388
BT_UUID_DIS_PNP_ID (C macro), 389
BT_UUID_DIS_PNP_ID_VAL (C macro), 389
BT_UUID_DIS_SERIAL_NUMBER (C macro), 388
BT_UUID_DIS_SERIAL_NUMBER_VAL (C macro), 388
BT_UUID_DIS_SOFTWARE_REVISION (C macro), 389
BT_UUID_DIS_SOFTWARE_REVISION_VAL (C macro),

389
BT_UUID_DIS_SYSTEM_ID (C macro), 388
BT_UUID_DIS_SYSTEM_ID_VAL (C macro), 388
BT_UUID_DIS_VAL (C macro), 383
BT_UUID_ELEVATION (C macro), 391
BT_UUID_ELEVATION_VAL (C macro), 391
BT_UUID_ES_CONFIGURATION (C macro), 387
BT_UUID_ES_CONFIGURATION_VAL (C macro), 387
BT_UUID_ES_MEASUREMENT (C macro), 387
BT_UUID_ES_MEASUREMENT_VAL (C macro), 387
BT_UUID_ES_TRIGGER_SETTING (C macro), 387
BT_UUID_ES_TRIGGER_SETTING_VAL (C macro),

387
BT_UUID_ESS (C macro), 384
BT_UUID_ESS_VAL (C macro), 384
BT_UUID_FTP (C macro), 400
BT_UUID_FTP_VAL (C macro), 400
BT_UUID_GAP (C macro), 382
BT_UUID_GAP_APPEARANCE (C macro), 387
BT_UUID_GAP_APPEARANCE_VAL (C macro), 387
BT_UUID_GAP_DEVICE_NAME (C macro), 387
BT_UUID_GAP_DEVICE_NAME_VAL (C macro), 387
BT_UUID_GAP_PPCP (C macro), 387
BT_UUID_GAP_PPCP_VAL (C macro), 387
BT_UUID_GAP_VAL (C macro), 382
BT_UUID_GATT (C macro), 382
BT_UUID_GATT_CAF (C macro), 386
BT_UUID_GATT_CAF_VAL (C macro), 386
BT_UUID_GATT_CCC (C macro), 386
BT_UUID_GATT_CCC_VAL (C macro), 386
BT_UUID_GATT_CEP (C macro), 386
BT_UUID_GATT_CEP_VAL (C macro), 386
BT_UUID_GATT_CHRC (C macro), 385
BT_UUID_GATT_CHRC_VAL (C macro), 385
BT_UUID_GATT_CLIENT_FEATURES (C macro), 397
BT_UUID_GATT_CLIENT_FEATURES_VAL (C macro),

397
BT_UUID_GATT_CPF (C macro), 386
BT_UUID_GATT_CPF_VAL (C macro), 386
BT_UUID_GATT_CUD (C macro), 386
BT_UUID_GATT_CUD_VAL (C macro), 386
BT_UUID_GATT_DB_HASH (C macro), 397

BT_UUID_GATT_DB_HASH_VAL (C macro), 397
BT_UUID_GATT_INCLUDE (C macro), 385
BT_UUID_GATT_INCLUDE_VAL (C macro), 385
BT_UUID_GATT_PRIMARY (C macro), 385
BT_UUID_GATT_PRIMARY_VAL (C macro), 385
BT_UUID_GATT_SC (C macro), 387
BT_UUID_GATT_SC_VAL (C macro), 387
BT_UUID_GATT_SCC (C macro), 386
BT_UUID_GATT_SCC_VAL (C macro), 386
BT_UUID_GATT_SECONDARY (C macro), 385
BT_UUID_GATT_SECONDARY_VAL (C macro), 385
BT_UUID_GATT_SERVER_FEATURES (C macro), 398
BT_UUID_GATT_SERVER_FEATURES_VAL (C macro),

397
BT_UUID_GATT_VAL (C macro), 382
BT_UUID_GUST_FACTOR (C macro), 392
BT_UUID_GUST_FACTOR_VAL (C macro), 392
BT_UUID_HCRP_CTRL (C macro), 401
BT_UUID_HCRP_CTRL_VAL (C macro), 401
BT_UUID_HCRP_DATA (C macro), 401
BT_UUID_HCRP_DATA_VAL (C macro), 401
BT_UUID_HCRP_NOTE (C macro), 401
BT_UUID_HCRP_NOTE_VAL (C macro), 401
BT_UUID_HEAT_INDEX (C macro), 393
BT_UUID_HEAT_INDEX_VAL (C macro), 393
BT_UUID_HIDP (C macro), 401
BT_UUID_HIDP_VAL (C macro), 400
BT_UUID_HIDS (C macro), 383
BT_UUID_HIDS_BOOT_KB_IN_REPORT (C macro),

388
BT_UUID_HIDS_BOOT_KB_IN_REPORT_VAL (C

macro), 388
BT_UUID_HIDS_BOOT_KB_OUT_REPORT (C macro),

389
BT_UUID_HIDS_BOOT_KB_OUT_REPORT_VAL (C

macro), 389
BT_UUID_HIDS_BOOT_MOUSE_IN_REPORT (C macro),

390
BT_UUID_HIDS_BOOT_MOUSE_IN_REPORT_VAL (C

macro), 390
BT_UUID_HIDS_CTRL_POINT (C macro), 390
BT_UUID_HIDS_CTRL_POINT_VAL (C macro), 390
BT_UUID_HIDS_EXT_REPORT (C macro), 386
BT_UUID_HIDS_EXT_REPORT_VAL (C macro), 386
BT_UUID_HIDS_INFO (C macro), 390
BT_UUID_HIDS_INFO_VAL (C macro), 390
BT_UUID_HIDS_PROTOCOL_MODE (C macro), 391
BT_UUID_HIDS_PROTOCOL_MODE_VAL (C macro),

390
BT_UUID_HIDS_REPORT (C macro), 390
BT_UUID_HIDS_REPORT_MAP (C macro), 390
BT_UUID_HIDS_REPORT_MAP_VAL (C macro), 390
BT_UUID_HIDS_REPORT_REF (C macro), 387
BT_UUID_HIDS_REPORT_REF_VAL (C macro), 387
BT_UUID_HIDS_REPORT_VAL (C macro), 390
BT_UUID_HIDS_VAL (C macro), 383
BT_UUID_HPS (C macro), 384
BT_UUID_HPS_VAL (C macro), 384

Index 1933

Zephyr Project Documentation, Release 2.7.0-rc2

BT_UUID_HRS (C macro), 383
BT_UUID_HRS_BODY_SENSOR (C macro), 390
BT_UUID_HRS_BODY_SENSOR_VAL (C macro), 390
BT_UUID_HRS_CONTROL_POINT (C macro), 390
BT_UUID_HRS_CONTROL_POINT_VAL (C macro), 390
BT_UUID_HRS_MEASUREMENT (C macro), 390
BT_UUID_HRS_MEASUREMENT_VAL (C macro), 390
BT_UUID_HRS_VAL (C macro), 383
BT_UUID_HTS (C macro), 383
BT_UUID_HTS_MEASUREMENT (C macro), 388
BT_UUID_HTS_MEASUREMENT_VAL (C macro), 388
BT_UUID_HTS_VAL (C macro), 383
BT_UUID_HTTP (C macro), 400
BT_UUID_HTTP_CONTROL_POINT (C macro), 395
BT_UUID_HTTP_CONTROL_POINT_VAL (C macro),

395
BT_UUID_HTTP_ENTITY_BODY (C macro), 395
BT_UUID_HTTP_ENTITY_BODY_VAL (C macro), 395
BT_UUID_HTTP_HEADERS (C macro), 394
BT_UUID_HTTP_HEADERS_VAL (C macro), 394
BT_UUID_HTTP_STATUS_CODE (C macro), 395
BT_UUID_HTTP_STATUS_CODE_VAL (C macro), 394
BT_UUID_HTTP_VAL (C macro), 400
BT_UUID_HTTPS_SECURITY (C macro), 395
BT_UUID_HTTPS_SECURITY_VAL (C macro), 395
BT_UUID_HUMIDITY (C macro), 392
BT_UUID_HUMIDITY_VAL (C macro), 392
BT_UUID_IAS (C macro), 382
BT_UUID_IAS_VAL (C macro), 382
BT_UUID_INIT_128 (C macro), 380
BT_UUID_INIT_16 (C macro), 380
BT_UUID_INIT_32 (C macro), 380
BT_UUID_IP (C macro), 400
BT_UUID_IP_VAL (C macro), 400
BT_UUID_IPSS (C macro), 384
BT_UUID_IPSS_VAL (C macro), 384
BT_UUID_IRRADIANCE (C macro), 393
BT_UUID_IRRADIANCE_VAL (C macro), 393
BT_UUID_L2CAP (C macro), 401
BT_UUID_L2CAP_VAL (C macro), 401
BT_UUID_LLS (C macro), 382
BT_UUID_LLS_VAL (C macro), 382
BT_UUID_MAGN_DECLINATION (C macro), 389
BT_UUID_MAGN_DECLINATION_VAL (C macro), 389
BT_UUID_MAGN_FLUX_DENSITY_2D (C macro), 394
BT_UUID_MAGN_FLUX_DENSITY_2D_VAL (C macro),

393
BT_UUID_MAGN_FLUX_DENSITY_3D (C macro), 394
BT_UUID_MAGN_FLUX_DENSITY_3D_VAL (C macro),

394
BT_UUID_MCAP_CTRL (C macro), 401
BT_UUID_MCAP_CTRL_VAL (C macro), 401
BT_UUID_MCAP_DATA (C macro), 401
BT_UUID_MCAP_DATA_VAL (C macro), 401
BT_UUID_MESH_PROV (C macro), 384
BT_UUID_MESH_PROV_DATA_IN (C macro), 397
BT_UUID_MESH_PROV_DATA_IN_VAL (C macro), 397
BT_UUID_MESH_PROV_DATA_OUT (C macro), 397

BT_UUID_MESH_PROV_DATA_OUT_VAL (C macro),
397

BT_UUID_MESH_PROV_VAL (C macro), 384
BT_UUID_MESH_PROXY (C macro), 384
BT_UUID_MESH_PROXY_DATA_IN (C macro), 397
BT_UUID_MESH_PROXY_DATA_IN_VAL (C macro),

397
BT_UUID_MESH_PROXY_DATA_OUT (C macro), 397
BT_UUID_MESH_PROXY_DATA_OUT_VAL (C macro),

397
BT_UUID_MESH_PROXY_VAL (C macro), 384
BT_UUID_MICS (C macro), 385
BT_UUID_MICS_MUTE (C macro), 399
BT_UUID_MICS_MUTE_VAL (C macro), 399
BT_UUID_MICS_VAL (C macro), 385
BT_UUID_OBEX (C macro), 400
BT_UUID_OBEX_VAL (C macro), 400
BT_UUID_OTS (C macro), 384
BT_UUID_OTS_ACTION_CP (C macro), 396
BT_UUID_OTS_ACTION_CP_VAL (C macro), 396
BT_UUID_OTS_CHANGED (C macro), 396
BT_UUID_OTS_CHANGED_VAL (C macro), 396
BT_UUID_OTS_DIRECTORY_LISTING (C macro), 397
BT_UUID_OTS_DIRECTORY_LISTING_VAL (C macro),

397
BT_UUID_OTS_FEATURE (C macro), 395
BT_UUID_OTS_FEATURE_VAL (C macro), 395
BT_UUID_OTS_FIRST_CREATED (C macro), 396
BT_UUID_OTS_FIRST_CREATED_VAL (C macro), 395
BT_UUID_OTS_ID (C macro), 396
BT_UUID_OTS_ID_VAL (C macro), 396
BT_UUID_OTS_LAST_MODIFIED (C macro), 396
BT_UUID_OTS_LAST_MODIFIED_VAL (C macro), 396
BT_UUID_OTS_LIST_CP (C macro), 396
BT_UUID_OTS_LIST_CP_VAL (C macro), 396
BT_UUID_OTS_LIST_FILTER (C macro), 396
BT_UUID_OTS_LIST_FILTER_VAL (C macro), 396
BT_UUID_OTS_NAME (C macro), 395
BT_UUID_OTS_NAME_VAL (C macro), 395
BT_UUID_OTS_PROPERTIES (C macro), 396
BT_UUID_OTS_PROPERTIES_VAL (C macro), 396
BT_UUID_OTS_SIZE (C macro), 395
BT_UUID_OTS_SIZE_VAL (C macro), 395
BT_UUID_OTS_TYPE (C macro), 395
BT_UUID_OTS_TYPE_UNSPECIFIED (C macro), 397
BT_UUID_OTS_TYPE_UNSPECIFIED_VAL (C macro),

396
BT_UUID_OTS_TYPE_VAL (C macro), 395
BT_UUID_OTS_VAL (C macro), 384
BT_UUID_POLLEN_CONCENTRATION (C macro), 393
BT_UUID_POLLEN_CONCENTRATION_VAL (C macro),

392
BT_UUID_PRESSURE (C macro), 392
BT_UUID_PRESSURE_VAL (C macro), 391
BT_UUID_RAINFALL (C macro), 393
BT_UUID_RAINFALL_VAL (C macro), 393
BT_UUID_RFCOMM (C macro), 400
BT_UUID_RFCOMM_VAL (C macro), 400

1934 Index

Zephyr Project Documentation, Release 2.7.0-rc2

BT_UUID_RSC_FEATURE (C macro), 391
BT_UUID_RSC_FEATURE_VAL (C macro), 391
BT_UUID_RSC_MEASUREMENT (C macro), 391
BT_UUID_RSC_MEASUREMENT_VAL (C macro), 391
BT_UUID_RSCS (C macro), 383
BT_UUID_RSCS_VAL (C macro), 383
BT_UUID_SC_CONTROL_POINT (C macro), 391
BT_UUID_SC_CONTROL_POINT_VAL (C macro), 391
BT_UUID_SDP (C macro), 399
BT_UUID_SDP_VAL (C macro), 399
BT_UUID_SENSOR_LOCATION (C macro), 391
BT_UUID_SENSOR_LOCATION_VAL (C macro), 391
BT_UUID_SIZE_128 (C macro), 380
BT_UUID_SIZE_16 (C macro), 380
BT_UUID_SIZE_32 (C macro), 380
BT_UUID_STR_LEN (C macro), 382
BT_UUID_TCP (C macro), 400
BT_UUID_TCP_VAL (C macro), 400
BT_UUID_TCS_AT (C macro), 400
BT_UUID_TCS_AT_VAL (C macro), 400
BT_UUID_TCS_BIN (C macro), 400
BT_UUID_TCS_BIN_VAL (C macro), 400
BT_UUID_TEMPERATURE (C macro), 392
BT_UUID_TEMPERATURE_VAL (C macro), 392
bt_uuid_to_str (C function), 402
BT_UUID_TPS (C macro), 383
BT_UUID_TPS_TX_POWER_LEVEL (C macro), 388
BT_UUID_TPS_TX_POWER_LEVEL_VAL (C macro),

388
BT_UUID_TPS_VAL (C macro), 383
BT_UUID_TRUE_WIND_DIR (C macro), 392
BT_UUID_TRUE_WIND_DIR_VAL (C macro), 392
BT_UUID_TRUE_WIND_SPEED (C macro), 392
BT_UUID_TRUE_WIND_SPEED_VAL (C macro), 392
BT_UUID_UDI (C macro), 401
BT_UUID_UDI_VAL (C macro), 401
BT_UUID_UDP (C macro), 399
BT_UUID_UDP_VAL (C macro), 399
BT_UUID_UPNP (C macro), 400
BT_UUID_UPNP_VAL (C macro), 400
BT_UUID_URI (C macro), 394
BT_UUID_URI_VAL (C macro), 394
BT_UUID_UV_INDEX (C macro), 393
BT_UUID_UV_INDEX_VAL (C macro), 393
BT_UUID_VALID_RANGE (C macro), 386
BT_UUID_VALID_RANGE_VAL (C macro), 386
BT_UUID_VCS (C macro), 385
BT_UUID_VCS_CONTROL (C macro), 399
BT_UUID_VCS_CONTROL_VAL (C macro), 398
BT_UUID_VCS_FLAGS (C macro), 399
BT_UUID_VCS_FLAGS_VAL (C macro), 399
BT_UUID_VCS_STATE (C macro), 398
BT_UUID_VCS_STATE_VAL (C macro), 398
BT_UUID_VCS_VAL (C macro), 385
BT_UUID_VOCS (C macro), 385
BT_UUID_VOCS_CONTROL (C macro), 399
BT_UUID_VOCS_CONTROL_VAL (C macro), 399
BT_UUID_VOCS_DESCRIPTION (C macro), 399

BT_UUID_VOCS_DESCRIPTION_VAL (C macro), 399
BT_UUID_VOCS_LOCATION (C macro), 399
BT_UUID_VOCS_LOCATION_VAL (C macro), 399
BT_UUID_VOCS_STATE (C macro), 399
BT_UUID_VOCS_STATE_VAL (C macro), 399
BT_UUID_VOCS_VAL (C macro), 385
BT_UUID_WIND_CHILL (C macro), 393
BT_UUID_WIND_CHILL_VAL (C macro), 393
build_conf (runners.core.ZephyrBinaryRunner

property), 1850
build_dir (runners.core.RunnerConfig attribute),

1848
BuildConfiguration (class in runners.core), 1847
bytecpy (C function), 1439

C
call() (runners.core.ZephyrBinaryRunner

method), 1850
can_attach_isr (C function), 1110
can_attach_isr_t (C type), 1107
can_attach_msgq (C function), 1110
can_attach_msgq_t (C type), 1107
can_attach_workq (C function), 1109
can_bus_err_cnt (C struct), 1116
can_bytes_to_dlc (C function), 1108
can_calc_prescaler (C function), 1111
can_calc_timing (C function), 1111
can_configure (C function), 1112
can_copy_filter_to_zfilter (C function), 1114
can_copy_frame_to_zframe (C function), 1113
can_copy_zfilter_to_filter (C function), 1114
can_copy_zframe_to_frame (C function), 1113
CAN_DEFINE_MSGQ (C macro), 1106
can_detach (C function), 1111
can_detach_t (C type), 1107
can_dlc_to_bytes (C function), 1108
can_driver_api (C struct), 1116
CAN_EX_ID (C macro), 1105
CAN_EXT_ID_MASK (C macro), 1105
can_filter (C struct), 1114
can_frame (C struct), 1114
can_frame.can_dlc (C var), 1114
can_frame.can_id (C var), 1114
can_frame.data (C var), 1114
can_frame_buffer (C struct), 1116
can_get_core_clock (C function), 1111
can_get_core_clock_t (C type), 1107
can_get_state (C function), 1113
can_get_state_t (C type), 1107
can_ide (C enum), 1107
can_ide.CAN_EXTENDED_IDENTIFIER (C enumera-

tor), 1107
can_ide.CAN_STANDARD_IDENTIFIER (C enumera-

tor), 1107
CAN_MAX_DLC (C macro), 1105
CAN_MAX_DLEN (C macro), 1105
CAN_MAX_STD_ID (C macro), 1105
can_mode (C enum), 1108

Index 1935

Zephyr Project Documentation, Release 2.7.0-rc2

can_mode.CAN_LOOPBACK_MODE (C enumerator),
1108

can_mode.CAN_NORMAL_MODE (C enumerator), 1108
can_mode.CAN_SILENT_LOOPBACK_MODE (C enu-

merator), 1108
can_mode.CAN_SILENT_MODE (C enumerator), 1108
CAN_NO_FREE_FILTER (C macro), 1106
can_recover (C function), 1113
can_recover_t (C type), 1107
can_register_state_change_isr (C function),

1113
can_register_state_change_isr_t (C type),

1107
can_rtr (C enum), 1107
can_rtr.CAN_DATAFRAME (C enumerator), 1108
can_rtr.CAN_REMOTEREQUEST (C enumerator),

1108
can_rx_callback_t (C type), 1106
can_send (C function), 1109
can_send_t (C type), 1107
can_set_bitrate (C function), 1112
can_set_mode (C function), 1112
can_set_mode_t (C type), 1107
can_set_timing (C function), 1112
can_set_timing_t (C type), 1107
CAN_SJW_NO_CHANGE (C macro), 1106
can_state (C enum), 1108
can_state.CAN_BUS_OFF (C enumerator), 1108
can_state.CAN_BUS_UNKNOWN (C enumerator),

1108
can_state.CAN_ERROR_ACTIVE (C enumerator),

1108
can_state.CAN_ERROR_PASSIVE (C enumerator),

1108
can_state_change_isr_t (C type), 1107
CAN_STD_ID_MASK (C macro), 1105
CAN_TIMEOUT (C macro), 1106
can_timing (C struct), 1116
can_timing.phase_seg1 (C var), 1116
can_timing.phase_seg2 (C var), 1116
can_timing.prescaler (C var), 1116
can_timing.prop_seg (C var), 1116
can_timing.sjw (C var), 1116
CAN_TX_ARB_LOST (C macro), 1106
CAN_TX_BUS_OFF (C macro), 1106
can_tx_callback_t (C type), 1106
CAN_TX_EINVAL (C macro), 1106
CAN_TX_ERR (C macro), 1106
CAN_TX_OK (C macro), 1105
CAN_TX_UNKNOWN (C macro), 1106
can_write (C function), 1109
CANFD_MAX_DLC (C macro), 1105
canid_t (C type), 1106
CAP_ASYNC_OPS (C macro), 404
CAP_AUTONONCE (C macro), 404
CAP_INPLACE_OPS (C macro), 404
CAP_KEY_LOADING_API (C macro), 404
CAP_NO_IV_PREFIX (C macro), 404

CAP_OPAQUE_KEY_HNDL (C macro), 404
CAP_RAW_KEY (C macro), 404
CAP_SEPARATE_IO_BUFS (C macro), 404
CAP_SYNC_OPS (C macro), 404
capabilities() (run-

ners.core.ZephyrBinaryRunner class
method), 1850

cbc_op_t (C type), 404
cbpprintf (C function), 584
cbprintf (C function), 584
cbprintf_cb (C type), 582
cbprintf_fsc_package (C function), 584
CBPRINTF_MUST_RUNTIME_PACKAGE (C macro), 581
cbprintf_package (C function), 582
CBPRINTF_PACKAGE_ALIGNMENT (C macro), 581
CBPRINTF_STATIC_PACKAGE (C macro), 581
cbvprintf (C function), 585
cbvprintf_package (C function), 583
ccm_op_t (C type), 404
ccm_params (C struct), 407
ceiling_fraction (C macro), 1429
cfb_display_param (C enum), 560
cfb_display_param.CFB_DISPLAY_COLS (C enu-

merator), 561
cfb_display_param.CFB_DISPLAY_HEIGH (C enu-

merator), 560
cfb_display_param.CFB_DISPLAY_PPT (C enu-

merator), 560
cfb_display_param.CFB_DISPLAY_ROWS (C enu-

merator), 561
cfb_display_param.CFB_DISPLAY_WIDTH (C enu-

merator), 560
cfb_font (C struct), 562
cfb_font_caps (C enum), 561
cfb_font_caps.CFB_FONT_MONO_HPACKED (C enu-

merator), 561
cfb_font_caps.CFB_FONT_MONO_VPACKED (C enu-

merator), 561
cfb_font_caps.CFB_FONT_MSB_FIRST (C enumer-

ator), 561
cfb_framebuffer_clear (C function), 561
cfb_framebuffer_finalize (C function), 561
cfb_framebuffer_init (C function), 562
cfb_framebuffer_invert (C function), 561
cfb_framebuffer_set_font (C function), 562
cfb_get_display_parameter (C function), 561
cfb_get_font_size (C function), 562
cfb_get_numof_fonts (C function), 562
cfb_print (C function), 561
cfg (runners.core.ZephyrBinaryRunner attribute),

1850
char2hex (C function), 1439
check_call() (runners.core.ZephyrBinaryRunner

method), 1850
check_output() (run-

ners.core.ZephyrBinaryRunner method),
1850

cipher_aead_pkt (C struct), 409

1936 Index

Zephyr Project Documentation, Release 2.7.0-rc2

cipher_aead_pkt.ad (C var), 409
cipher_aead_pkt.ad_len (C var), 409
cipher_aead_pkt.tag (C var), 409
cipher_algo (C enum), 404
cipher_algo.CRYPTO_CIPHER_ALGO_AES (C enu-

merator), 404
cipher_begin_session (C function), 405
cipher_block_op (C function), 406
cipher_callback_set (C function), 406
cipher_cbc_op (C function), 406
cipher_ccm_op (C function), 407
cipher_ctr_op (C function), 406
cipher_ctx (C struct), 407
cipher_ctx.app_sessn_state (C var), 408
cipher_ctx.device (C var), 408
cipher_ctx.drv_sessn_state (C var), 408
cipher_ctx.flags (C var), 408
cipher_ctx.key (C var), 408
cipher_ctx.keylen (C var), 408
cipher_ctx.mode_params (C var), 408
cipher_ctx.ops (C var), 408
cipher_free_session (C function), 406
cipher_gcm_op (C function), 407
cipher_mode (C enum), 405
cipher_mode.CRYPTO_CIPHER_MODE_CBC (C enu-

merator), 405
cipher_mode.CRYPTO_CIPHER_MODE_CCM (C enu-

merator), 405
cipher_mode.CRYPTO_CIPHER_MODE_CTR (C enu-

merator), 405
cipher_mode.CRYPTO_CIPHER_MODE_ECB (C enu-

merator), 405
cipher_mode.CRYPTO_CIPHER_MODE_GCM (C enu-

merator), 405
cipher_op (C enum), 405
cipher_op.CRYPTO_CIPHER_OP_DECRYPT (C enu-

merator), 405
cipher_op.CRYPTO_CIPHER_OP_ENCRYPT (C enu-

merator), 405
cipher_ops (C struct), 407
cipher_pkt (C struct), 408
cipher_pkt.ctx (C var), 409
cipher_pkt.in_buf (C var), 409
cipher_pkt.in_len (C var), 409
cipher_pkt.out_buf (C var), 409
cipher_pkt.out_buf_max (C var), 409
cipher_pkt.out_len (C var), 409
cipher_query_hwcaps (C function), 405
CLAMP (C macro), 1430
clock_control (C type), 1134
clock_control_async_on (C function), 1135
clock_control_async_on_fn (C type), 1134
clock_control_cb_t (C type), 1134
clock_control_driver_api (C struct), 1136
clock_control_get (C type), 1134
clock_control_get_rate (C function), 1136
clock_control_get_status (C function), 1136
clock_control_get_status_fn (C type), 1135

clock_control_off (C function), 1135
clock_control_on (C function), 1135
clock_control_status (C enum), 1135
clock_control_status.CLOCK_CONTROL_STATUS_OFF

(C enumerator), 1135
clock_control_status.CLOCK_CONTROL_STATUS_ON

(C enumerator), 1135
clock_control_status.CLOCK_CONTROL_STATUS_STARTING

(C enumerator), 1135
clock_control_status.CLOCK_CONTROL_STATUS_UNAVAILABLE

(C enumerator), 1135
clock_control_status.CLOCK_CONTROL_STATUS_UNKNOWN

(C enumerator), 1135
CLOCK_CONTROL_SUBSYS_ALL (C macro), 1134
clock_control_subsys_t (C type), 1134
clock_device_ctrl (C function), 736
CMSG_DATA (C macro), 880
CMSG_FIRSTHDR (C macro), 880
CMSG_LEN (C macro), 880
CMSG_NXTHDR (C macro), 880
CMSG_SPACE (C macro), 880
cmsghdr (C struct), 893
coap_ack_init (C function), 1010
coap_append_block1_option (C function), 1012
coap_append_block2_option (C function), 1012
coap_append_option_int (C function), 1011
coap_append_size1_option (C function), 1012
coap_append_size2_option (C function), 1012
coap_block_context (C struct), 1017
coap_block_size (C enum), 1008
coap_block_size.COAP_BLOCK_1024 (C enumera-

tor), 1008
coap_block_size.COAP_BLOCK_128 (C enumera-

tor), 1008
coap_block_size.COAP_BLOCK_16 (C enumera-

tor), 1008
coap_block_size.COAP_BLOCK_256 (C enumera-

tor), 1008
coap_block_size.COAP_BLOCK_32 (C enumera-

tor), 1008
coap_block_size.COAP_BLOCK_512 (C enumera-

tor), 1008
coap_block_size.COAP_BLOCK_64 (C enumera-

tor), 1008
coap_block_size_to_bytes (C function), 1012
coap_block_transfer_init (C function), 1012
COAP_CODE_EMPTY (C macro), 1004
coap_content_format (C enum), 1007
coap_content_format.COAP_CONTENT_FORMAT_APP_CBOR

(C enumerator), 1008
coap_content_format.COAP_CONTENT_FORMAT_APP_EXI

(C enumerator), 1008
coap_content_format.COAP_CONTENT_FORMAT_APP_JSON

(C enumerator), 1008
coap_content_format.COAP_CONTENT_FORMAT_APP_LINK_FORMAT

(C enumerator), 1007
coap_content_format.COAP_CONTENT_FORMAT_APP_OCTET_STREAM

(C enumerator), 1007

Index 1937

Zephyr Project Documentation, Release 2.7.0-rc2

coap_content_format.COAP_CONTENT_FORMAT_APP_XML
(C enumerator), 1007

coap_content_format.COAP_CONTENT_FORMAT_TEXT_PLAIN
(C enumerator), 1007

coap_core_metadata (C struct), 1017
COAP_DEFAULT_ACK_RANDOM_FACTOR (C macro),

1004
COAP_DEFAULT_MAX_RETRANSMIT (C macro), 1004
coap_find_observer_by_addr (C function), 1014
coap_find_options (C function), 1010
coap_get_option_int (C function), 1013
coap_handle_request (C function), 1011
coap_header_get_code (C function), 1009
coap_header_get_id (C function), 1009
coap_header_get_token (C function), 1008
coap_header_get_type (C function), 1008
coap_header_get_version (C function), 1008
coap_make_response_code (C macro), 1004
coap_method (C enum), 1005
coap_method.COAP_METHOD_DELETE (C enumera-

tor), 1006
coap_method.COAP_METHOD_GET (C enumerator),

1005
coap_method.COAP_METHOD_POST (C enumerator),

1005
coap_method.COAP_METHOD_PUT (C enumerator),

1006
coap_method_t (C type), 1004
coap_msgtype (C enum), 1006
coap_msgtype.COAP_TYPE_ACK (C enumerator),

1006
coap_msgtype.COAP_TYPE_CON (C enumerator),

1006
coap_msgtype.COAP_TYPE_NON_CON (C enumera-

tor), 1006
coap_msgtype.COAP_TYPE_RESET (C enumerator),

1006
coap_next_block (C function), 1013
coap_next_id (C function), 1010
coap_next_token (C function), 1010
coap_notify_t (C type), 1004
coap_observer (C struct), 1016
coap_observer_init (C function), 1013
coap_observer_next_unused (C function), 1014
coap_option (C struct), 1017
coap_option_num (C enum), 1004
coap_option_num.COAP_OPTION_ACCEPT (C enu-

merator), 1005
coap_option_num.COAP_OPTION_BLOCK1 (C enu-

merator), 1005
coap_option_num.COAP_OPTION_BLOCK2 (C enu-

merator), 1005
coap_option_num.COAP_OPTION_CONTENT_FORMAT

(C enumerator), 1005
coap_option_num.COAP_OPTION_ETAG (C enumer-

ator), 1005
coap_option_num.COAP_OPTION_IF_MATCH (C

enumerator), 1004

coap_option_num.COAP_OPTION_IF_NONE_MATCH
(C enumerator), 1005

coap_option_num.COAP_OPTION_LOCATION_PATH
(C enumerator), 1005

coap_option_num.COAP_OPTION_LOCATION_QUERY
(C enumerator), 1005

coap_option_num.COAP_OPTION_MAX_AGE (C enu-
merator), 1005

coap_option_num.COAP_OPTION_OBSERVE (C enu-
merator), 1005

coap_option_num.COAP_OPTION_PROXY_SCHEME
(C enumerator), 1005

coap_option_num.COAP_OPTION_PROXY_URI (C
enumerator), 1005

coap_option_num.COAP_OPTION_SIZE1 (C enu-
merator), 1005

coap_option_num.COAP_OPTION_SIZE2 (C enu-
merator), 1005

coap_option_num.COAP_OPTION_URI_HOST (C
enumerator), 1005

coap_option_num.COAP_OPTION_URI_PATH (C
enumerator), 1005

coap_option_num.COAP_OPTION_URI_PORT (C
enumerator), 1005

coap_option_num.COAP_OPTION_URI_QUERY (C
enumerator), 1005

coap_option_value_to_int (C function), 1011
coap_packet (C struct), 1017
coap_packet_append_option (C function), 1010
coap_packet_append_payload (C function), 1011
coap_packet_append_payload_marker (C func-

tion), 1011
coap_packet_get_payload (C function), 1009
coap_packet_init (C function), 1009
coap_packet_parse (C function), 1009
coap_pending (C struct), 1017
coap_pending_clear (C function), 1015
coap_pending_cycle (C function), 1015
coap_pending_init (C function), 1014
coap_pending_next_to_expire (C function),

1015
coap_pending_next_unused (C function), 1014
coap_pending_received (C function), 1015
coap_pendings_clear (C function), 1016
coap_register_observer (C function), 1013
coap_remove_observer (C function), 1013
coap_replies_clear (C function), 1016
coap_reply (C struct), 1017
coap_reply_clear (C function), 1016
coap_reply_init (C function), 1014
coap_reply_next_unused (C function), 1015
coap_reply_t (C type), 1004
coap_request_is_observe (C function), 1016
COAP_REQUEST_MASK (C macro), 1004
coap_resource (C struct), 1016
coap_resource.get (C var), 1016
coap_resource_notify (C function), 1016
coap_response_code (C enum), 1006

1938 Index

Zephyr Project Documentation, Release 2.7.0-rc2

coap_response_code.COAP_RESPONSE_CODE_BAD_GATEWAY
(C enumerator), 1007

coap_response_code.COAP_RESPONSE_CODE_BAD_OPTION
(C enumerator), 1007

coap_response_code.COAP_RESPONSE_CODE_BAD_REQUEST
(C enumerator), 1006

coap_response_code.COAP_RESPONSE_CODE_CHANGED
(C enumerator), 1006

coap_response_code.COAP_RESPONSE_CODE_CONTENT
(C enumerator), 1006

coap_response_code.COAP_RESPONSE_CODE_CONTINUE
(C enumerator), 1006

coap_response_code.COAP_RESPONSE_CODE_CREATED
(C enumerator), 1006

coap_response_code.COAP_RESPONSE_CODE_DELETED
(C enumerator), 1006

coap_response_code.COAP_RESPONSE_CODE_FORBIDDEN
(C enumerator), 1007

coap_response_code.COAP_RESPONSE_CODE_GATEWAY_TIMEOUT
(C enumerator), 1007

coap_response_code.COAP_RESPONSE_CODE_INCOMPLETE
(C enumerator), 1007

coap_response_code.COAP_RESPONSE_CODE_INTERNAL_ERROR
(C enumerator), 1007

coap_response_code.COAP_RESPONSE_CODE_NOT_ACCEPTABLE
(C enumerator), 1007

coap_response_code.COAP_RESPONSE_CODE_NOT_ALLOWED
(C enumerator), 1007

coap_response_code.COAP_RESPONSE_CODE_NOT_FOUND
(C enumerator), 1007

coap_response_code.COAP_RESPONSE_CODE_NOT_IMPLEMENTED
(C enumerator), 1007

coap_response_code.COAP_RESPONSE_CODE_OK
(C enumerator), 1006

coap_response_code.COAP_RESPONSE_CODE_PRECONDITION_FAILED
(C enumerator), 1007

coap_response_code.COAP_RESPONSE_CODE_PROXYING_NOT_SUPPORTED
(C enumerator), 1007

coap_response_code.COAP_RESPONSE_CODE_REQUEST_TOO_LARGE
(C enumerator), 1007

coap_response_code.COAP_RESPONSE_CODE_SERVICE_UNAVAILABLE
(C enumerator), 1007

coap_response_code.COAP_RESPONSE_CODE_UNAUTHORIZED
(C enumerator), 1007

coap_response_code.COAP_RESPONSE_CODE_UNSUPPORTED_CONTENT_FORMAT
(C enumerator), 1007

coap_response_code.COAP_RESPONSE_CODE_VALID
(C enumerator), 1006

coap_response_received (C function), 1015
COAP_TOKEN_MAX_LEN (C macro), 1004
coap_update_from_block (C function), 1013
COAP_VERSION_1 (C macro), 1004
coap_well_known_core_get (C function), 1016
COAP_WELL_KNOWN_CORE_PATH (C macro), 1004
COMMON_PARAM_HDR (C macro), 790
COND_CODE_0 (C macro), 1432
COND_CODE_1 (C macro), 1431
CONFIG_CAN_WORKQ_FRAMES_BUF_CNT (C macro),

1106
CONTAINER_OF (C macro), 1429
coredump (C function), 1574
coredump_buffer_output (C function), 1574
coredump_cmd (C function), 1575
coredump_memory_dump (C function), 1574
coredump_query (C function), 1575
counter_alarm_callback_t (C type), 1129
counter_alarm_cfg (C struct), 1133
counter_api_cancel_alarm (C type), 1129
counter_api_get_guard_period (C type), 1129
counter_api_get_pending_int (C type), 1129
counter_api_get_top_value (C type), 1129
counter_api_get_value (C type), 1129
counter_api_set_alarm (C type), 1129
counter_api_set_guard_period (C type), 1129
counter_api_set_top_value (C type), 1129
counter_api_start (C type), 1129
counter_api_stop (C type), 1129
counter_cancel_channel_alarm (C function),

1131
counter_config_info (C struct), 1133
counter_driver_api (C struct), 1134
counter_get_frequency (C function), 1130
counter_get_guard_period (C function), 1133
counter_get_max_top_value (C function), 1130
counter_get_num_of_channels (C function),

1130
counter_get_pending_int (C function), 1132
counter_get_top_value (C function), 1132
counter_get_value (C function), 1131
counter_is_counting_up (C function), 1129
counter_set_channel_alarm (C function), 1131
counter_set_guard_period (C function), 1132
counter_set_top_value (C function), 1131
counter_start (C function), 1130
counter_stop (C function), 1130
counter_ticks_to_us (C function), 1130
counter_top_callback_t (C type), 1129
counter_top_cfg (C struct), 1133
counter_us_to_ticks (C function), 1130
crc16 (C function), 809
crc16_ansi (C function), 811
crc16_ccitt (C function), 810
crc16_itu_t (C function), 810
crc32_c (C function), 811
crc32_ieee (C function), 811
crc32_ieee_update (C function), 811
crc7_be (C function), 812
crc8 (C function), 810
crc8_ccitt (C function), 811
create() (runners.core.ZephyrBinaryRunner class

method), 1850
CROSS_COMPILE, 1467
crypto_completion_cb (C type), 404
crypto_driver_api (C struct), 407
ctr_op_t (C type), 404
ctr_params (C struct), 407

Index 1939

Zephyr Project Documentation, Release 2.7.0-rc2

D
dac_channel_cfg (C struct), 1137
dac_channel_setup (C function), 1137
dac_write_value (C function), 1137
device (C struct), 550
device.api (C var), 550
device.config (C var), 550
device.data (C var), 550
device.handles (C var), 550
device.name (C var), 550
device.state (C var), 550
device_any_busy_check (C function), 1302
device_busy_check (C function), 1302
device_busy_clear (C function), 1302
device_busy_set (C function), 1302
DEVICE_DECLARE (C macro), 545
DEVICE_DEFINE (C macro), 543
DEVICE_DT_DEFINE (C macro), 543
DEVICE_DT_GET (C macro), 544
DEVICE_DT_GET_ANY (C macro), 545
DEVICE_DT_GET_ONE (C macro), 545
DEVICE_DT_INST_DEFINE (C macro), 544
DEVICE_DT_INST_GET (C macro), 544
DEVICE_DT_NAME (C macro), 543
DEVICE_DT_NAME_GET (C macro), 544
device_from_handle (C function), 547
DEVICE_GET (C macro), 545
device_get_binding (C function), 548
DEVICE_HANDLE_ENDS (C macro), 542
device_handle_get (C function), 547
DEVICE_HANDLE_NULL (C macro), 542
DEVICE_HANDLE_SEP (C macro), 542
device_handle_t (C type), 546
device_is_ready (C function), 549
DEVICE_NAME_GET (C macro), 542
device_pm_control_nop (C macro), 1300
device_required_foreach (C function), 547
device_required_handles_get (C function), 547
device_state (C struct), 549
device_state.init_res (C var), 549
device_state.initialized (C var), 549
device_supported_foreach (C function), 548
device_supported_handles_get (C function),

547
device_usable_check (C function), 549
device_visitor_callback_t (C type), 546
disk_access_init (C function), 1346
disk_access_ioctl (C function), 1347
disk_access_read (C function), 1346
disk_access_register (C function), 1348
disk_access_status (C function), 1346
disk_access_unregister (C function), 1348
disk_access_write (C function), 1346
disk_info (C struct), 1348
disk_info.dev (C var), 1348
disk_info.name (C var), 1348
disk_info.node (C var), 1348
disk_info.ops (C var), 1348

DISK_IOCTL_CTRL_SYNC (C macro), 1347
DISK_IOCTL_GET_ERASE_BLOCK_SZ (C macro),

1347
DISK_IOCTL_GET_SECTOR_COUNT (C macro), 1347
DISK_IOCTL_GET_SECTOR_SIZE (C macro), 1347
DISK_IOCTL_RESERVED (C macro), 1347
disk_operations (C struct), 1348
DISK_STATUS_NOMEDIA (C macro), 1348
DISK_STATUS_OK (C macro), 1347
DISK_STATUS_UNINIT (C macro), 1347
DISK_STATUS_WR_PROTECT (C macro), 1348
display_blanking_off (C function), 553
display_blanking_off_api (C type), 550
display_blanking_on (C function), 553
display_blanking_on_api (C type), 550
display_buffer_descriptor (C struct), 555
display_buffer_descriptor.buf_size (C var),

555
display_buffer_descriptor.height (C var),

555
display_buffer_descriptor.pitch (C var), 555
display_buffer_descriptor.width (C var), 555
display_capabilities (C struct), 554
display_capabilities.current_orientation

(C var), 555
display_capabilities.current_pixel_format

(C var), 555
display_capabilities.screen_info (C var),

554
display_capabilities.supported_pixel_formats

(C var), 554
display_capabilities.x_resolution (C var),

554
display_capabilities.y_resolution (C var),

554
display_driver_api (C struct), 555
display_get_capabilities (C function), 554
display_get_capabilities_api (C type), 551
display_get_framebuffer (C function), 553
display_get_framebuffer_api (C type), 551
display_orientation (C enum), 552
display_orientation.DISPLAY_ORIENTATION_NORMAL

(C enumerator), 552
display_orientation.DISPLAY_ORIENTATION_ROTATED_180

(C enumerator), 552
display_orientation.DISPLAY_ORIENTATION_ROTATED_270

(C enumerator), 552
display_orientation.DISPLAY_ORIENTATION_ROTATED_90

(C enumerator), 552
display_pixel_format (C enum), 551
display_pixel_format.PIXEL_FORMAT_ARGB_8888

(C enumerator), 551
display_pixel_format.PIXEL_FORMAT_BGR_565

(C enumerator), 552
display_pixel_format.PIXEL_FORMAT_MONO01

(C enumerator), 551
display_pixel_format.PIXEL_FORMAT_MONO10

(C enumerator), 551

1940 Index

Zephyr Project Documentation, Release 2.7.0-rc2

display_pixel_format.PIXEL_FORMAT_RGB_565
(C enumerator), 551

display_pixel_format.PIXEL_FORMAT_RGB_888
(C enumerator), 551

display_read (C function), 552
display_read_api (C type), 551
display_screen_info (C enum), 552
display_screen_info.SCREEN_INFO_DOUBLE_BUFFER

(C enumerator), 552
display_screen_info.SCREEN_INFO_EPD (C enu-

merator), 552
display_screen_info.SCREEN_INFO_MONO_MSB_FIRST

(C enumerator), 552
display_screen_info.SCREEN_INFO_MONO_VTILED

(C enumerator), 552
display_screen_info.SCREEN_INFO_X_ALIGNMENT_WIDTH

(C enumerator), 552
display_set_brightness (C function), 553
display_set_brightness_api (C type), 551
display_set_contrast (C function), 553
display_set_contrast_api (C type), 551
display_set_orientation (C function), 554
display_set_orientation_api (C type), 551
display_set_pixel_format (C function), 554
display_set_pixel_format_api (C type), 551
display_write (C function), 552
display_write_api (C type), 550
dma_addr_adj (C enum), 1138
dma_addr_adj.DMA_ADDR_ADJ_DECREMENT (C enu-

merator), 1138
dma_addr_adj.DMA_ADDR_ADJ_INCREMENT (C enu-

merator), 1138
dma_addr_adj.DMA_ADDR_ADJ_NO_CHANGE (C enu-

merator), 1138
dma_block_config (C struct), 1141
dma_burst_index (C function), 1141
dma_callback_t (C type), 1138
dma_chan_filter (C function), 1140
dma_channel_direction (C enum), 1138
dma_channel_direction.MEMORY_TO_MEMORY (C

enumerator), 1138
dma_channel_direction.MEMORY_TO_PERIPHERAL

(C enumerator), 1138
dma_channel_direction.PERIPHERAL_TO_MEMORY

(C enumerator), 1138
dma_channel_direction.PERIPHERAL_TO_PERIPHERAL

(C enumerator), 1138
dma_channel_filter (C enum), 1138
dma_channel_filter.DMA_CHANNEL_NORMAL (C

enumerator), 1138
dma_channel_filter.DMA_CHANNEL_PERIODIC (C

enumerator), 1139
dma_config (C function), 1139
dma_config (C struct), 1142
dma_context (C struct), 1142
dma_get_status (C function), 1140
DMA_MAGIC (C macro), 1138
dma_release_channel (C function), 1140

dma_reload (C function), 1139
dma_request_channel (C function), 1140
dma_start (C function), 1139
dma_status (C struct), 1142
dma_stop (C function), 1139
dma_width_index (C function), 1141
dmic_build_channel_map (C function), 152
dmic_build_clk_skew_map (C function), 153
dmic_cfg (C struct), 154
dmic_configure (C function), 153
dmic_parse_channel_map (C function), 152
dmic_read (C function), 153
dmic_state (C enum), 151
dmic_state.DMIC_STATE_ACTIVE (C enumerator),

152
dmic_state.DMIC_STATE_CONFIGURED (C enumer-

ator), 152
dmic_state.DMIC_STATE_INITIALIZED (C enu-

merator), 151
dmic_state.DMIC_STATE_PAUSED (C enumerator),

152
dmic_state.DMIC_STATE_UNINIT (C enumerator),

151
dmic_trigger (C enum), 152
dmic_trigger (C function), 153
dmic_trigger.DMIC_TRIGGER_PAUSE (C enumera-

tor), 152
dmic_trigger.DMIC_TRIGGER_RELEASE (C enu-

merator), 152
dmic_trigger.DMIC_TRIGGER_RESET (C enumera-

tor), 152
dmic_trigger.DMIC_TRIGGER_START (C enumera-

tor), 152
dmic_trigger.DMIC_TRIGGER_STOP (C enumera-

tor), 152
dns_addrinfo (C struct), 899
dns_cancel_addr_info (C function), 898
dns_get_addr_info (C function), 898
DNS_MAX_NAME_SIZE (C macro), 894
dns_query_type (C enum), 895
dns_query_type.DNS_QUERY_TYPE_A (C enumera-

tor), 895
dns_query_type.DNS_QUERY_TYPE_AAAA (C enu-

merator), 895
dns_resolve_cancel (C function), 897
dns_resolve_cancel_with_name (C function),

897
dns_resolve_cb_t (C type), 894
dns_resolve_close (C function), 897
dns_resolve_context (C struct), 899
dns_resolve_context.buf_timeout (C var), 899
dns_resolve_context.dns_pending_query (C

struct), 899
dns_resolve_context.dns_pending_query.cb

(C var), 900
dns_resolve_context.dns_pending_query.ctx

(C var), 899
dns_resolve_context.dns_pending_query.id

Index 1941

Zephyr Project Documentation, Release 2.7.0-rc2

(C var), 900
dns_resolve_context.dns_pending_query.query

(C var), 900
dns_resolve_context.dns_pending_query.query_hash

(C var), 900
dns_resolve_context.dns_pending_query.query_type

(C var), 900
dns_resolve_context.dns_pending_query.timeout

(C var), 900
dns_resolve_context.dns_pending_query.timer

(C var), 899
dns_resolve_context.dns_pending_query.user_data

(C var), 900
dns_resolve_context.dns_server (C var), 899
dns_resolve_context.is_llmnr (C var), 899
dns_resolve_context.is_mdns (C var), 899
dns_resolve_context.lock (C var), 899
dns_resolve_context.net_ctx (C var), 899
dns_resolve_context.state (C var), 899
dns_resolve_context_state (C enum), 896
dns_resolve_context_state.DNS_RESOLVE_CONTEXT_ACTIVE

(C enumerator), 896
dns_resolve_context_state.DNS_RESOLVE_CONTEXT_DEACTIVATING

(C enumerator), 896
dns_resolve_context_state.DNS_RESOLVE_CONTEXT_INACTIVE

(C enumerator), 896
dns_resolve_get_default (C function), 898
dns_resolve_init (C function), 896
dns_resolve_name (C function), 897
dns_resolve_reconfigure (C function), 897
dns_resolve_status (C enum), 895
dns_resolve_status.DNS_EAI_ADDRFAMILY (C

enumerator), 895
dns_resolve_status.DNS_EAI_AGAIN (C enumer-

ator), 895
dns_resolve_status.DNS_EAI_ALLDONE (C enu-

merator), 896
dns_resolve_status.DNS_EAI_BADFLAGS (C enu-

merator), 895
dns_resolve_status.DNS_EAI_CANCELED (C enu-

merator), 896
dns_resolve_status.DNS_EAI_FAIL (C enumera-

tor), 895
dns_resolve_status.DNS_EAI_FAMILY (C enu-

merator), 895
dns_resolve_status.DNS_EAI_IDN_ENCODE (C

enumerator), 896
dns_resolve_status.DNS_EAI_INPROGRESS (C

enumerator), 896
dns_resolve_status.DNS_EAI_MEMORY (C enu-

merator), 895
dns_resolve_status.DNS_EAI_NODATA (C enu-

merator), 895
dns_resolve_status.DNS_EAI_NONAME (C enu-

merator), 895
dns_resolve_status.DNS_EAI_NOTCANCELED (C

enumerator), 896
dns_resolve_status.DNS_EAI_OVERFLOW (C enu-

merator), 895
dns_resolve_status.DNS_EAI_SERVICE (C enu-

merator), 895
dns_resolve_status.DNS_EAI_SOCKTYPE (C enu-

merator), 895
dns_resolve_status.DNS_EAI_SYSTEM (C enu-

merator), 895
do_add_parser() (run-

ners.core.ZephyrBinaryRunner class
method), 1850

do_create() (runners.core.ZephyrBinaryRunner
class method), 1851

do_run() (runners.core.ZephyrBinaryRunner
method), 1851

DT_ALIAS (C macro), 412
DT_ANY_INST_ON_BUS_STATUS_OKAY (C macro),

449
DT_BUS (C macro), 441
DT_BUS_LABEL (C macro), 441
DT_CHILD (C macro), 415
DT_CHOSEN (C macro), 503
DT_CHOSEN_ZEPHYR_CAN_PRIMARY_LABEL (C

macro), 503
DT_CHOSEN_ZEPHYR_ENTROPY_LABEL (C macro),

503
DT_CHOSEN_ZEPHYR_FLASH_CONTROLLER_LABEL (C

macro), 503
DT_CLOCKS_CELL (C macro), 456
DT_CLOCKS_CELL_BY_IDX (C macro), 455
DT_CLOCKS_CELL_BY_NAME (C macro), 456
DT_CLOCKS_CTLR (C macro), 453
DT_CLOCKS_CTLR_BY_IDX (C macro), 452
DT_CLOCKS_CTLR_BY_NAME (C macro), 453
DT_CLOCKS_LABEL (C macro), 455
DT_CLOCKS_LABEL_BY_IDX (C macro), 454
DT_CLOCKS_LABEL_BY_NAME (C macro), 454
DT_COMPAT_GET_ANY_STATUS_OKAY (C macro), 415
DT_DEP_ORD (C macro), 440
DT_DMAS_CELL_BY_IDX (C macro), 463
DT_DMAS_CELL_BY_NAME (C macro), 464
DT_DMAS_CTLR (C macro), 461
DT_DMAS_CTLR_BY_IDX (C macro), 460
DT_DMAS_CTLR_BY_NAME (C macro), 461
DT_DMAS_HAS_IDX (C macro), 465
DT_DMAS_HAS_NAME (C macro), 465
DT_DMAS_LABEL_BY_IDX (C macro), 459
DT_DMAS_LABEL_BY_NAME (C macro), 460
DT_DRV_INST (C macro), 443
DT_ENUM_IDX (C macro), 419
DT_ENUM_IDX_OR (C macro), 420
DT_ENUM_TOKEN (C macro), 422
DT_ENUM_UPPER_TOKEN (C macro), 423
DT_FIXED_PARTITION_ID (C macro), 466
DT_FOREACH_CHILD (C macro), 433
DT_FOREACH_CHILD_STATUS_OKAY (C macro), 434
DT_FOREACH_CHILD_STATUS_OKAY_VARGS (C

macro), 434
DT_FOREACH_CHILD_VARGS (C macro), 433

1942 Index

Zephyr Project Documentation, Release 2.7.0-rc2

DT_FOREACH_PROP_ELEM (C macro), 434
DT_FOREACH_PROP_ELEM_VARGS (C macro), 435
DT_FOREACH_STATUS_OKAY (C macro), 435
DT_FOREACH_STATUS_OKAY_VARGS (C macro), 436
DT_GPARENT (C macro), 414
DT_GPIO_CTLR (C macro), 467
DT_GPIO_CTLR_BY_IDX (C macro), 467
DT_GPIO_FLAGS (C macro), 470
DT_GPIO_FLAGS_BY_IDX (C macro), 469
DT_GPIO_LABEL (C macro), 468
DT_GPIO_LABEL_BY_IDX (C macro), 467
DT_GPIO_PIN (C macro), 469
DT_GPIO_PIN_BY_IDX (C macro), 468
DT_HAS_CHOSEN (C macro), 503
DT_HAS_COMPAT_STATUS_OKAY (C macro), 437
DT_HAS_FIXED_PARTITION_LABEL (C macro), 466
DT_INST (C macro), 412
DT_INST_BUS (C macro), 448
DT_INST_BUS_LABEL (C macro), 448
DT_INST_CLOCKS_CELL (C macro), 459
DT_INST_CLOCKS_CELL_BY_IDX (C macro), 458
DT_INST_CLOCKS_CELL_BY_NAME (C macro), 458
DT_INST_CLOCKS_CTLR (C macro), 457
DT_INST_CLOCKS_CTLR_BY_IDX (C macro), 457
DT_INST_CLOCKS_CTLR_BY_NAME (C macro), 457
DT_INST_CLOCKS_LABEL (C macro), 458
DT_INST_CLOCKS_LABEL_BY_IDX (C macro), 457
DT_INST_CLOCKS_LABEL_BY_NAME (C macro), 458
DT_INST_DEP_ORD (C macro), 440
DT_INST_DMAS_CELL_BY_IDX (C macro), 463
DT_INST_DMAS_CELL_BY_NAME (C macro), 464
DT_INST_DMAS_CTLR (C macro), 462
DT_INST_DMAS_CTLR_BY_IDX (C macro), 462
DT_INST_DMAS_CTLR_BY_NAME (C macro), 462
DT_INST_DMAS_HAS_IDX (C macro), 465
DT_INST_DMAS_HAS_NAME (C macro), 465
DT_INST_DMAS_LABEL_BY_IDX (C macro), 459
DT_INST_DMAS_LABEL_BY_NAME (C macro), 461
DT_INST_FOREACH_CHILD (C macro), 443
DT_INST_FOREACH_CHILD_VARGS (C macro), 443
DT_INST_FOREACH_PROP_ELEM (C macro), 450
DT_INST_FOREACH_PROP_ELEM_VARGS (C macro),

451
DT_INST_FOREACH_STATUS_OKAY (C macro), 449
DT_INST_FOREACH_STATUS_OKAY_VARGS (C macro),

450
DT_INST_GPIO_FLAGS (C macro), 472
DT_INST_GPIO_FLAGS_BY_IDX (C macro), 471
DT_INST_GPIO_LABEL (C macro), 471
DT_INST_GPIO_LABEL_BY_IDX (C macro), 470
DT_INST_GPIO_PIN (C macro), 471
DT_INST_GPIO_PIN_BY_IDX (C macro), 471
DT_INST_IO_CHANNELS_CTLR (C macro), 476
DT_INST_IO_CHANNELS_CTLR_BY_IDX (C macro),

475
DT_INST_IO_CHANNELS_CTLR_BY_NAME (C macro),

476
DT_INST_IO_CHANNELS_INPUT (C macro), 478

DT_INST_IO_CHANNELS_INPUT_BY_IDX (C macro),
478

DT_INST_IO_CHANNELS_INPUT_BY_NAME (C macro),
478

DT_INST_IO_CHANNELS_LABEL (C macro), 475
DT_INST_IO_CHANNELS_LABEL_BY_IDX (C macro),

475
DT_INST_IO_CHANNELS_LABEL_BY_NAME (C macro),

475
DT_INST_IRQ (C macro), 448
DT_INST_IRQ_BY_IDX (C macro), 448
DT_INST_IRQ_BY_NAME (C macro), 448
DT_INST_IRQ_HAS_CELL (C macro), 452
DT_INST_IRQ_HAS_CELL_AT_IDX (C macro), 452
DT_INST_IRQ_HAS_IDX (C macro), 452
DT_INST_IRQ_HAS_NAME (C macro), 452
DT_INST_IRQN (C macro), 448
DT_INST_LABEL (C macro), 444
DT_INST_NODE_HAS_PROP (C macro), 451
DT_INST_NUM_PINCTRL_STATES (C macro), 485
DT_INST_NUM_PINCTRLS_BY_IDX (C macro), 485
DT_INST_NUM_PINCTRLS_BY_NAME (C macro), 485
DT_INST_ON_BUS (C macro), 449
DT_INST_PHA (C macro), 445
DT_INST_PHA_BY_IDX (C macro), 445
DT_INST_PHA_BY_IDX_OR (C macro), 445
DT_INST_PHA_BY_NAME (C macro), 446
DT_INST_PHA_BY_NAME_OR (C macro), 446
DT_INST_PHA_HAS_CELL (C macro), 451
DT_INST_PHA_HAS_CELL_AT_IDX (C macro), 451
DT_INST_PHA_OR (C macro), 446
DT_INST_PHANDLE (C macro), 447
DT_INST_PHANDLE_BY_IDX (C macro), 446
DT_INST_PHANDLE_BY_NAME (C macro), 446
DT_INST_PINCTRL_0 (C macro), 484
DT_INST_PINCTRL_BY_IDX (C macro), 483
DT_INST_PINCTRL_BY_NAME (C macro), 484
DT_INST_PINCTRL_HAS_IDX (C macro), 485
DT_INST_PINCTRL_HAS_NAME (C macro), 485
DT_INST_PINCTRL_IDX_TO_NAME_TOKEN (C macro),

484
DT_INST_PINCTRL_IDX_TO_NAME_UPPER_TOKEN (C

macro), 484
DT_INST_PINCTRL_NAME_TO_IDX (C macro), 484
DT_INST_PROP (C macro), 443
DT_INST_PROP_BY_IDX (C macro), 444
DT_INST_PROP_BY_PHANDLE (C macro), 444
DT_INST_PROP_BY_PHANDLE_IDX (C macro), 445
DT_INST_PROP_HAS_IDX (C macro), 444
DT_INST_PROP_LEN (C macro), 444
DT_INST_PROP_OR (C macro), 444
DT_INST_PWMS_CELL (C macro), 495
DT_INST_PWMS_CELL_BY_IDX (C macro), 494
DT_INST_PWMS_CELL_BY_NAME (C macro), 495
DT_INST_PWMS_CHANNEL (C macro), 495
DT_INST_PWMS_CHANNEL_BY_IDX (C macro), 495
DT_INST_PWMS_CHANNEL_BY_NAME (C macro), 495
DT_INST_PWMS_CTLR (C macro), 494

Index 1943

Zephyr Project Documentation, Release 2.7.0-rc2

DT_INST_PWMS_CTLR_BY_IDX (C macro), 494
DT_INST_PWMS_CTLR_BY_NAME (C macro), 494
DT_INST_PWMS_FLAGS (C macro), 497
DT_INST_PWMS_FLAGS_BY_IDX (C macro), 496
DT_INST_PWMS_FLAGS_BY_NAME (C macro), 497
DT_INST_PWMS_LABEL (C macro), 493
DT_INST_PWMS_LABEL_BY_IDX (C macro), 493
DT_INST_PWMS_LABEL_BY_NAME (C macro), 493
DT_INST_PWMS_PERIOD (C macro), 496
DT_INST_PWMS_PERIOD_BY_IDX (C macro), 496
DT_INST_PWMS_PERIOD_BY_NAME (C macro), 496
DT_INST_REG_ADDR (C macro), 447
DT_INST_REG_ADDR_BY_IDX (C macro), 447
DT_INST_REG_ADDR_BY_NAME (C macro), 447
DT_INST_REG_HAS_IDX (C macro), 447
DT_INST_REG_SIZE (C macro), 448
DT_INST_REG_SIZE_BY_IDX (C macro), 447
DT_INST_REG_SIZE_BY_NAME (C macro), 447
DT_INST_REQUIRES_DEP_ORDS (C macro), 440
DT_INST_SPI_DEV_CS_GPIOS_CTLR (C macro), 501
DT_INST_SPI_DEV_CS_GPIOS_FLAGS (C macro),

502
DT_INST_SPI_DEV_CS_GPIOS_LABEL (C macro),

502
DT_INST_SPI_DEV_CS_GPIOS_PIN (C macro), 502
DT_INST_SPI_DEV_HAS_CS_GPIOS (C macro), 501
DT_INST_SUPPORTS_DEP_ORDS (C macro), 441
DT_INVALID_NODE (C macro), 410
DT_IO_CHANNELS_CTLR (C macro), 474
DT_IO_CHANNELS_CTLR_BY_IDX (C macro), 473
DT_IO_CHANNELS_CTLR_BY_NAME (C macro), 474
DT_IO_CHANNELS_INPUT (C macro), 477
DT_IO_CHANNELS_INPUT_BY_IDX (C macro), 476
DT_IO_CHANNELS_INPUT_BY_NAME (C macro), 477
DT_IO_CHANNELS_LABEL (C macro), 473
DT_IO_CHANNELS_LABEL_BY_IDX (C macro), 472
DT_IO_CHANNELS_LABEL_BY_NAME (C macro), 473
DT_IRQ (C macro), 432
DT_IRQ_BY_IDX (C macro), 432
DT_IRQ_BY_NAME (C macro), 432
DT_IRQ_HAS_CELL (C macro), 431
DT_IRQ_HAS_CELL_AT_IDX (C macro), 431
DT_IRQ_HAS_IDX (C macro), 431
DT_IRQ_HAS_NAME (C macro), 431
DT_IRQN (C macro), 433
DT_LABEL (C macro), 419
DT_MTD_FROM_FIXED_PARTITION (C macro), 466
DT_NODE_BY_FIXED_PARTITION_LABEL (C macro),

465
DT_NODE_EXISTS (C macro), 437
DT_NODE_FULL_NAME (C macro), 416
DT_NODE_HAS_COMPAT (C macro), 438
DT_NODE_HAS_COMPAT_STATUS (C macro), 438
DT_NODE_HAS_PROP (C macro), 439
DT_NODE_HAS_STATUS (C macro), 437
DT_NODE_PATH (C macro), 416
DT_NODELABEL (C macro), 411
DT_NUM_INST_STATUS_OKAY (C macro), 438

DT_NUM_IRQS (C macro), 431
DT_NUM_PINCTRL_STATES (C macro), 482
DT_NUM_PINCTRLS_BY_IDX (C macro), 481
DT_NUM_PINCTRLS_BY_NAME (C macro), 482
DT_NUM_REGS (C macro), 429
DT_ON_BUS (C macro), 442
DT_PARENT (C macro), 414
DT_PATH (C macro), 410
DT_PHA (C macro), 426
DT_PHA_BY_IDX (C macro), 425
DT_PHA_BY_IDX_OR (C macro), 426
DT_PHA_BY_NAME (C macro), 426
DT_PHA_BY_NAME_OR (C macro), 427
DT_PHA_HAS_CELL (C macro), 439
DT_PHA_HAS_CELL_AT_IDX (C macro), 439
DT_PHA_OR (C macro), 426
DT_PHANDLE (C macro), 429
DT_PHANDLE_BY_IDX (C macro), 428
DT_PHANDLE_BY_NAME (C macro), 427
DT_PINCTRL_0 (C macro), 479
DT_PINCTRL_BY_IDX (C macro), 479
DT_PINCTRL_BY_NAME (C macro), 479
DT_PINCTRL_HAS_IDX (C macro), 482
DT_PINCTRL_HAS_NAME (C macro), 483
DT_PINCTRL_IDX_TO_NAME_TOKEN (C macro), 480
DT_PINCTRL_IDX_TO_NAME_UPPER_TOKEN (C

macro), 481
DT_PINCTRL_NAME_TO_IDX (C macro), 480
DT_PROP (C macro), 417
DT_PROP_BY_IDX (C macro), 418
DT_PROP_BY_PHANDLE (C macro), 425
DT_PROP_BY_PHANDLE_IDX (C macro), 424
DT_PROP_BY_PHANDLE_IDX_OR (C macro), 424
DT_PROP_HAS_IDX (C macro), 418
DT_PROP_LEN (C macro), 417
DT_PROP_LEN_OR (C macro), 418
DT_PROP_OR (C macro), 419
DT_PWMS_CELL (C macro), 490
DT_PWMS_CELL_BY_IDX (C macro), 488
DT_PWMS_CELL_BY_NAME (C macro), 489
DT_PWMS_CHANNEL (C macro), 491
DT_PWMS_CHANNEL_BY_IDX (C macro), 490
DT_PWMS_CHANNEL_BY_NAME (C macro), 491
DT_PWMS_CTLR (C macro), 488
DT_PWMS_CTLR_BY_IDX (C macro), 487
DT_PWMS_CTLR_BY_NAME (C macro), 487
DT_PWMS_FLAGS (C macro), 493
DT_PWMS_FLAGS_BY_IDX (C macro), 492
DT_PWMS_FLAGS_BY_NAME (C macro), 492
DT_PWMS_LABEL (C macro), 487
DT_PWMS_LABEL_BY_IDX (C macro), 486
DT_PWMS_LABEL_BY_NAME (C macro), 486
DT_PWMS_PERIOD (C macro), 492
DT_PWMS_PERIOD_BY_IDX (C macro), 491
DT_PWMS_PERIOD_BY_NAME (C macro), 491
DT_REG_ADDR (C macro), 430
DT_REG_ADDR_BY_IDX (C macro), 429
DT_REG_ADDR_BY_NAME (C macro), 430

1944 Index

Zephyr Project Documentation, Release 2.7.0-rc2

DT_REG_HAS_IDX (C macro), 429
DT_REG_SIZE (C macro), 430
DT_REG_SIZE_BY_IDX (C macro), 430
DT_REG_SIZE_BY_NAME (C macro), 430
DT_REQUIRES_DEP_ORDS (C macro), 440
DT_ROOT (C macro), 410
DT_SAME_NODE (C macro), 416
DT_SPI_DEV_CS_GPIOS_CTLR (C macro), 499
DT_SPI_DEV_CS_GPIOS_FLAGS (C macro), 501
DT_SPI_DEV_CS_GPIOS_LABEL (C macro), 500
DT_SPI_DEV_CS_GPIOS_PIN (C macro), 500
DT_SPI_DEV_HAS_CS_GPIOS (C macro), 498
DT_SPI_HAS_CS_GPIOS (C macro), 497
DT_SPI_NUM_CS_GPIOS (C macro), 498
DT_STRING_TOKEN (C macro), 420
DT_STRING_UPPER_TOKEN (C macro), 421
DT_SUPPORTS_DEP_ORDS (C macro), 440

E
E2BIG (C macro), 766
EACCES (C macro), 766
EADDRINUSE (C macro), 769
EADDRNOTAVAIL (C macro), 770
EAFNOSUPPORT (C macro), 769
EAGAIN (C macro), 766
EALREADY (C macro), 770
EBADF (C macro), 766
EBADMSG (C macro), 768
EBUSY (C macro), 767
EC_HOST_CMD_HANDLER (C macro), 1143
ec_host_cmd_handler (C struct), 1145
ec_host_cmd_handler.handler (C var), 1145
ec_host_cmd_handler.id (C var), 1145
ec_host_cmd_handler.min_rqt_size (C var),

1145
ec_host_cmd_handler.min_rsp_size (C var),

1146
ec_host_cmd_handler.version_mask (C var),

1145
ec_host_cmd_handler_args (C struct), 1145
ec_host_cmd_handler_args.input_buf (C var),

1145
ec_host_cmd_handler_args.input_buf_size (C

var), 1145
ec_host_cmd_handler_args.output_buf (C var),

1145
ec_host_cmd_handler_args.output_buf_size

(C var), 1145
ec_host_cmd_handler_args.version (C var),

1145
ec_host_cmd_handler_cb (C type), 1143
EC_HOST_CMD_HANDLER_UNBOUND (C macro), 1143
ec_host_cmd_request_header (C struct), 1146
ec_host_cmd_request_header.checksum (C var),

1146
ec_host_cmd_request_header.cmd_id (C var),

1146

ec_host_cmd_request_header.cmd_ver (C var),
1146

ec_host_cmd_request_header.data_len (C var),
1146

ec_host_cmd_request_header.prtcl_ver (C
var), 1146

ec_host_cmd_request_header.reserved (C var),
1146

ec_host_cmd_response_header (C struct), 1146
ec_host_cmd_response_header.checksum (C

var), 1146
ec_host_cmd_response_header.data_len (C

var), 1147
ec_host_cmd_response_header.prtcl_ver (C

var), 1146
ec_host_cmd_response_header.reserved (C

var), 1147
ec_host_cmd_response_header.result (C var),

1146
ec_host_cmd_status (C enum), 1144
ec_host_cmd_status.EC_HOST_CMD_ACCESS_DENIED

(C enumerator), 1144
ec_host_cmd_status.EC_HOST_CMD_BUS_ERROR

(C enumerator), 1144
ec_host_cmd_status.EC_HOST_CMD_BUSY (C enu-

merator), 1145
ec_host_cmd_status.EC_HOST_CMD_ERROR (C

enumerator), 1144
ec_host_cmd_status.EC_HOST_CMD_IN_PROGRESS

(C enumerator), 1144
ec_host_cmd_status.EC_HOST_CMD_INVALID_CHECKSUM

(C enumerator), 1144
ec_host_cmd_status.EC_HOST_CMD_INVALID_COMMAND

(C enumerator), 1144
ec_host_cmd_status.EC_HOST_CMD_INVALID_HEADER

(C enumerator), 1144
ec_host_cmd_status.EC_HOST_CMD_INVALID_PARAM

(C enumerator), 1144
ec_host_cmd_status.EC_HOST_CMD_INVALID_RESPONSE

(C enumerator), 1144
ec_host_cmd_status.EC_HOST_CMD_INVALID_VERSION

(C enumerator), 1144
ec_host_cmd_status.EC_HOST_CMD_MAX (C enu-

merator), 1145
ec_host_cmd_status.EC_HOST_CMD_OVERFLOW (C

enumerator), 1144
ec_host_cmd_status.EC_HOST_CMD_REQUEST_TRUNCATED

(C enumerator), 1144
ec_host_cmd_status.EC_HOST_CMD_RESPONSE_TOO_BIG

(C enumerator), 1144
ec_host_cmd_status.EC_HOST_CMD_SUCCESS (C

enumerator), 1144
ec_host_cmd_status.EC_HOST_CMD_TIMEOUT (C

enumerator), 1144
ec_host_cmd_status.EC_HOST_CMD_UNAVAILABLE

(C enumerator), 1144
ECANCELED (C macro), 771
ECHILD (C macro), 766

Index 1945

Zephyr Project Documentation, Release 2.7.0-rc2

ECONNABORTED (C macro), 769
ECONNREFUSED (C macro), 769
ECONNRESET (C macro), 769
edac_driver_api (C struct), 566
edac_ecc_error_log_clear (C function), 565
edac_ecc_error_log_get (C function), 564
edac_error_type (C enum), 563
edac_error_type.EDAC_ERROR_TYPE_DRAM_COR

(C enumerator), 563
edac_error_type.EDAC_ERROR_TYPE_DRAM_UC (C

enumerator), 563
edac_errors_cor_get (C function), 565
edac_errors_uc_get (C function), 565
edac_inject_error_trigger (C function), 564
edac_inject_get_error_type (C function), 564
edac_inject_get_param1 (C function), 563
edac_inject_get_param2 (C function), 563
edac_inject_set_error_type (C function), 564
edac_inject_set_param1 (C function), 563
edac_inject_set_param2 (C function), 563
edac_notify_callback_set (C function), 566
edac_parity_error_log_clear (C function), 565
edac_parity_error_log_get (C function), 565
EDEADLK (C macro), 768
EDESTADDRREQ (C macro), 770
EDOM (C macro), 768
eeprom_api_read (C type), 1147
eeprom_api_size (C type), 1147
eeprom_api_write (C type), 1147
eeprom_driver_api (C struct), 1148
eeprom_get_size (C function), 1148
eeprom_read (C function), 1147
eeprom_slave_program (C function), 1174
eeprom_slave_read (C function), 1175
eeprom_write (C function), 1148
EEXIST (C macro), 767
EFAULT (C macro), 766
EFBIG (C macro), 767
EHOSTDOWN (C macro), 770
EHOSTUNREACH (C macro), 770
EILSEQ (C macro), 770
EINPROGRESS (C macro), 770
EINTR (C macro), 766
EINVAL (C macro), 767
EIO (C macro), 766
EISCONN (C macro), 770
EISDIR (C macro), 767
elf_file (runners.core.RunnerConfig attribute),

1848
ELOOP (C macro), 769
EMFILE (C macro), 767
EMLINK (C macro), 768
EMPTY (C macro), 1433
EMSGSIZE (C macro), 770
ENAMETOOLONG (C macro), 768
energy_scan_done_cb_t (C type), 990
ENETDOWN (C macro), 769
ENETRESET (C macro), 770

ENETUNREACH (C macro), 769
ENFILE (C macro), 767
ENOBUFS (C macro), 769
ENODATA (C macro), 768
ENODEV (C macro), 767
ENOENT (C macro), 766
ENOEXEC (C macro), 766
ENOLCK (C macro), 768
ENOMEM (C macro), 766
ENOMSG (C macro), 768
ENOPROTOOPT (C macro), 769
ENOSPC (C macro), 767
ENOSR (C macro), 768
ENOSTR (C macro), 768
ENOSYS (C macro), 768
ENOTBLK (C macro), 767
ENOTCONN (C macro), 770
ENOTDIR (C macro), 767
ENOTEMPTY (C macro), 768
ENOTSOCK (C macro), 769
ENOTSUP (C macro), 770
ENOTTY (C macro), 767
ensure_output() (run-

ners.core.ZephyrBinaryRunner method),
1851

ENTROPY_BUSYWAIT (C macro), 1148
entropy_driver_api (C struct), 1149
entropy_get_entropy (C function), 1149
entropy_get_entropy_isr (C function), 1149
entropy_get_entropy_isr_t (C type), 1148
entropy_get_entropy_t (C type), 1148
environment variable

%HOMEDRIVE%, 1834
%HOMEPATH%, 1834
%HOME%, 1834
%USERPROFILE%, 1834
ARCMWDT_TOOLCHAIN_PATH, 1466
BOARD, 1840, 1844
CROSS_COMPILE, 1467
GNUARMEMB_TOOLCHAIN_PATH, 138, 1465
METAWARE_ROOT, 1466
MY_VARIABLE, 122, 123
PATH, 6, 7, 123, 1459, 1789, 1794, 1795
QEMU_BIN_PATH, 132
TOOLCHAIN_ROOT, 1468
WEST_CONFIG_LOCAL, 1787
XDG_CONFIG_HOME, 1834
XTOOLS_TOOLCHAIN_PATH, 1466
ZEPHYR_BASE, 123, 1796, 1797, 1836, 1867
ZEPHYR_BOARD_ALIASES, 1469
ZEPHYR_SDK_INSTALL_DIR, 1463
ZEPHYR_TOOLCHAIN_VARIANT, 11, 1464–1468

ENXIO (C macro), 766
EOPNOTSUPP (C macro), 769
EOVERFLOW (C macro), 770
EPERM (C macro), 766
EPFNOSUPPORT (C macro), 769
EPIPE (C macro), 768

1946 Index

Zephyr Project Documentation, Release 2.7.0-rc2

EPROTO (C macro), 768
EPROTONOSUPPORT (C macro), 770
EPROTOTYPE (C macro), 769
ERANGE (C macro), 768
EROFS (C macro), 767
errno (C macro), 766
ESHUTDOWN (C macro), 769
ESOCKTNOSUPPORT (C macro), 770
espi_add_callback (C function), 1282
espi_bus_event (C enum), 1274
espi_bus_event.ESPI_BUS_EVENT_CHANNEL_READY

(C enumerator), 1274
espi_bus_event.ESPI_BUS_EVENT_OOB_RECEIVED

(C enumerator), 1274
espi_bus_event.ESPI_BUS_EVENT_VWIRE_RECEIVED

(C enumerator), 1274
espi_bus_event.ESPI_BUS_PERIPHERAL_NOTIFICATION

(C enumerator), 1274
espi_bus_event.ESPI_BUS_RESET (C enumera-

tor), 1274
espi_callback_handler_t (C type), 1273
espi_cfg (C struct), 1287
espi_cfg.channel_caps (C var), 1287
espi_cfg.io_caps (C var), 1287
espi_cfg.max_freq (C var), 1287
espi_channel (C enum), 1273
espi_channel.ESPI_CHANNEL_FLASH (C enumera-

tor), 1274
espi_channel.ESPI_CHANNEL_OOB (C enumera-

tor), 1274
espi_channel.ESPI_CHANNEL_PERIPHERAL (C

enumerator), 1274
espi_channel.ESPI_CHANNEL_VWIRE (C enumera-

tor), 1274
espi_config (C function), 1277
espi_cycle_type (C enum), 1274
espi_cycle_type.ESPI_CYCLE_MEMORY_READ32

(C enumerator), 1275
espi_cycle_type.ESPI_CYCLE_MEMORY_READ64

(C enumerator), 1275
espi_cycle_type.ESPI_CYCLE_MEMORY_WRITE32

(C enumerator), 1275
espi_cycle_type.ESPI_CYCLE_MEMORY_WRITE64

(C enumerator), 1275
espi_cycle_type.ESPI_CYCLE_MESSAGE_DATA (C

enumerator), 1275
espi_cycle_type.ESPI_CYCLE_MESSAGE_NODATA

(C enumerator), 1275
espi_cycle_type.ESPI_CYCLE_NOK_COMPLETION_NODATA

(C enumerator), 1275
espi_cycle_type.ESPI_CYCLE_OK_COMPLETION_NODATA

(C enumerator), 1275
espi_cycle_type.ESPI_CYCLE_OKCOMPLETION_DATA

(C enumerator), 1275
espi_event (C struct), 1287
espi_event.evt_data (C var), 1287
espi_event.evt_details (C var), 1287
espi_event.evt_type (C var), 1287

espi_evt_data_acpi (C struct), 1287
espi_evt_data_kbc (C struct), 1287
espi_flash_erase (C function), 1281
espi_flash_packet (C struct), 1288
espi_get_channel_status (C function), 1278
espi_init_callback (C function), 1281
espi_io_mode (C enum), 1273
espi_io_mode.ESPI_IO_MODE_DUAL_LINES (C

enumerator), 1273
espi_io_mode.ESPI_IO_MODE_QUAD_LINES (C

enumerator), 1273
espi_io_mode.ESPI_IO_MODE_SINGLE_LINE (C

enumerator), 1273
espi_oob_packet (C struct), 1288
espi_read_flash (C function), 1280
espi_read_lpc_request (C function), 1279
espi_read_request (C function), 1278
espi_receive_oob (C function), 1280
espi_receive_vwire (C function), 1280
espi_remove_callback (C function), 1282
espi_request_packet (C struct), 1288
espi_saf_activate (C function), 1284
espi_saf_add_callback (C function), 1286
espi_saf_cfg (C struct), 1288
espi_saf_config (C function), 1283
espi_saf_flash_erase (C function), 1285
espi_saf_flash_read (C function), 1284
espi_saf_flash_write (C function), 1285
espi_saf_get_channel_status (C function),

1284
espi_saf_init_callback (C function), 1285
espi_saf_packet (C struct), 1288
espi_saf_remove_callback (C function), 1286
espi_saf_set_protection_regions (C function),

1284
espi_send_oob (C function), 1280
espi_send_vwire (C function), 1279
espi_virtual_peripheral (C enum), 1274
espi_virtual_peripheral.ESPI_PERIPHERAL_8042_KBC

(C enumerator), 1274
espi_virtual_peripheral.ESPI_PERIPHERAL_DEBUG_PORT80

(C enumerator), 1274
espi_virtual_peripheral.ESPI_PERIPHERAL_HOST_IO

(C enumerator), 1274
espi_virtual_peripheral.ESPI_PERIPHERAL_HOST_IO_PVT

(C enumerator), 1274
espi_virtual_peripheral.ESPI_PERIPHERAL_UART

(C enumerator), 1274
espi_vwire_signal (C enum), 1275
espi_vwire_signal.ESPI_VWIRE_SIGNAL_DNX_ACK

(C enumerator), 1276
espi_vwire_signal.ESPI_VWIRE_SIGNAL_DNX_WARN

(C enumerator), 1276
espi_vwire_signal.ESPI_VWIRE_SIGNAL_ERR_FATAL

(C enumerator), 1276
espi_vwire_signal.ESPI_VWIRE_SIGNAL_ERR_NON_FATAL

(C enumerator), 1276
espi_vwire_signal.ESPI_VWIRE_SIGNAL_HOST_C10

Index 1947

Zephyr Project Documentation, Release 2.7.0-rc2

(C enumerator), 1276
espi_vwire_signal.ESPI_VWIRE_SIGNAL_HOST_RST_ACK

(C enumerator), 1276
espi_vwire_signal.ESPI_VWIRE_SIGNAL_HOST_RST_WARN

(C enumerator), 1275
espi_vwire_signal.ESPI_VWIRE_SIGNAL_NMIOUT

(C enumerator), 1275
espi_vwire_signal.ESPI_VWIRE_SIGNAL_OOB_RST_ACK

(C enumerator), 1276
espi_vwire_signal.ESPI_VWIRE_SIGNAL_OOB_RST_WARN

(C enumerator), 1275
espi_vwire_signal.ESPI_VWIRE_SIGNAL_PLTRST

(C enumerator), 1275
espi_vwire_signal.ESPI_VWIRE_SIGNAL_PME (C

enumerator), 1276
espi_vwire_signal.ESPI_VWIRE_SIGNAL_RST_CPU_INIT

(C enumerator), 1276
espi_vwire_signal.ESPI_VWIRE_SIGNAL_SCI (C

enumerator), 1276
espi_vwire_signal.ESPI_VWIRE_SIGNAL_SLP_A

(C enumerator), 1275
espi_vwire_signal.ESPI_VWIRE_SIGNAL_SLP_LAN

(C enumerator), 1276
espi_vwire_signal.ESPI_VWIRE_SIGNAL_SLP_S3

(C enumerator), 1275
espi_vwire_signal.ESPI_VWIRE_SIGNAL_SLP_S4

(C enumerator), 1275
espi_vwire_signal.ESPI_VWIRE_SIGNAL_SLP_S5

(C enumerator), 1275
espi_vwire_signal.ESPI_VWIRE_SIGNAL_SLP_WLAN

(C enumerator), 1276
espi_vwire_signal.ESPI_VWIRE_SIGNAL_SLV_BOOT_DONE

(C enumerator), 1276
espi_vwire_signal.ESPI_VWIRE_SIGNAL_SLV_BOOT_STS

(C enumerator), 1276
espi_vwire_signal.ESPI_VWIRE_SIGNAL_SMI (C

enumerator), 1276
espi_vwire_signal.ESPI_VWIRE_SIGNAL_SMIOUT

(C enumerator), 1275
espi_vwire_signal.ESPI_VWIRE_SIGNAL_SUS_ACK

(C enumerator), 1276
espi_vwire_signal.ESPI_VWIRE_SIGNAL_SUS_PWRDN_ACK

(C enumerator), 1275
espi_vwire_signal.ESPI_VWIRE_SIGNAL_SUS_STAT

(C enumerator), 1275
espi_vwire_signal.ESPI_VWIRE_SIGNAL_SUS_WARN

(C enumerator), 1276
espi_vwire_signal.ESPI_VWIRE_SIGNAL_WAKE

(C enumerator), 1276
espi_write_flash (C function), 1280
espi_write_lpc_request (C function), 1279
espi_write_request (C function), 1278
ESPIPE (C macro), 767
ESRCH (C macro), 766
ETH_NET_DEVICE_DT_DEFINE (C macro), 978
ETH_NET_DEVICE_DT_INST_DEFINE (C macro), 978
ETH_NET_DEVICE_INIT (C macro), 977
ethernet_api (C struct), 984

ethernet_api.get_capabilities (C var), 985
ethernet_api.get_config (C var), 985
ethernet_api.iface_api (C var), 985
ethernet_api.send (C var), 985
ethernet_api.set_config (C var), 985
ethernet_api.start (C var), 985
ethernet_api.stop (C var), 985
ethernet_context (C struct), 985
ethernet_context.carrier_work (C var), 985
ethernet_context.ethernet_l2_flags (C var),

985
ethernet_context.flags (C var), 985
ethernet_context.iface (C var), 985
ethernet_context.is_init (C var), 985
ethernet_context.is_net_carrier_up (C var),

985
ethernet_filter (C struct), 984
ethernet_filter.mac_address (C var), 984
ethernet_filter.set (C var), 984
ethernet_filter.type (C var), 984
ethernet_flags (C enum), 980
ethernet_flags.ETH_CARRIER_UP (C enumera-

tor), 980
ethernet_hw_caps (C enum), 978
ethernet_hw_caps.ETHERNET_AUTO_NEGOTIATION_SET

(C enumerator), 979
ethernet_hw_caps.ETHERNET_DSA_MASTER_PORT

(C enumerator), 979
ethernet_hw_caps.ETHERNET_DSA_SLAVE_PORT

(C enumerator), 979
ethernet_hw_caps.ETHERNET_DUPLEX_SET (C

enumerator), 979
ethernet_hw_caps.ETHERNET_HW_FILTERING (C

enumerator), 979
ethernet_hw_caps.ETHERNET_HW_RX_CHKSUM_OFFLOAD

(C enumerator), 978
ethernet_hw_caps.ETHERNET_HW_TX_CHKSUM_OFFLOAD

(C enumerator), 978
ethernet_hw_caps.ETHERNET_HW_VLAN (C enu-

merator), 978
ethernet_hw_caps.ETHERNET_HW_VLAN_TAG_STRIP

(C enumerator), 979
ethernet_hw_caps.ETHERNET_LINK_1000BASE_T

(C enumerator), 979
ethernet_hw_caps.ETHERNET_LINK_100BASE_T

(C enumerator), 979
ethernet_hw_caps.ETHERNET_LINK_10BASE_T (C

enumerator), 979
ethernet_hw_caps.ETHERNET_LLDP (C enumera-

tor), 979
ethernet_hw_caps.ETHERNET_PRIORITY_QUEUES

(C enumerator), 979
ethernet_hw_caps.ETHERNET_PROMISC_MODE (C

enumerator), 979
ethernet_hw_caps.ETHERNET_PTP (C enumera-

tor), 979
ethernet_hw_caps.ETHERNET_QAV (C enumera-

tor), 979

1948 Index

Zephyr Project Documentation, Release 2.7.0-rc2

ethernet_hw_caps.ETHERNET_QBU (C enumera-
tor), 979

ethernet_hw_caps.ETHERNET_QBV (C enumera-
tor), 979

ethernet_hw_caps.ETHERNET_TXTIME (C enumer-
ator), 979

ethernet_init (C function), 980
ethernet_mgmt_raise_carrier_off_event (C

function), 1091
ethernet_mgmt_raise_carrier_on_event (C

function), 1091
ethernet_mgmt_raise_vlan_disabled_event (C

function), 1091
ethernet_mgmt_raise_vlan_enabled_event (C

function), 1091
ethernet_qav_param (C struct), 982
ethernet_qav_param.delta_bandwidth (C var),

982
ethernet_qav_param.enabled (C var), 982
ethernet_qav_param.idle_slope (C var), 982
ethernet_qav_param.oper_idle_slope (C var),

982
ethernet_qav_param.queue_id (C var), 982
ethernet_qav_param.traffic_class (C var),

982
ethernet_qav_param.type (C var), 982
ethernet_qbu_param (C struct), 983
ethernet_qbu_param.additional_fragment_size

(C var), 984
ethernet_qbu_param.enabled (C var), 984
ethernet_qbu_param.frame_preempt_statuses

(C var), 984
ethernet_qbu_param.hold_advance (C var), 983
ethernet_qbu_param.link_partner_status (C

var), 984
ethernet_qbu_param.port_id (C var), 983
ethernet_qbu_param.release_advance (C var),

983
ethernet_qbu_param.type (C var), 983
ethernet_qbv_param (C struct), 982
ethernet_qbv_param.base_time (C var), 983
ethernet_qbv_param.cycle_time (C var), 983
ethernet_qbv_param.enabled (C var), 983
ethernet_qbv_param.extension_time (C var),

983
ethernet_qbv_param.gate_control_list_len

(C var), 983
ethernet_qbv_param.gate_status (C var), 983
ethernet_qbv_param.operation (C var), 983
ethernet_qbv_param.port_id (C var), 982
ethernet_qbv_param.row (C var), 983
ethernet_qbv_param.state (C var), 983
ethernet_qbv_param.time_interval (C var),

983
ethernet_qbv_param.type (C var), 982
ethernet_txtime_param (C struct), 984
ethernet_txtime_param.enable_txtime (C var),

984

ethernet_txtime_param.queue_id (C var), 984
ethernet_txtime_param.type (C var), 984
ETIME (C macro), 768
ETIMEDOUT (C macro), 769
ETOOMANYREFS (C macro), 770
ETXTBSY (C macro), 767
EWOULDBLOCK (C macro), 771
EXDEV (C macro), 767

F
fcb (C struct), 1356
fcb.f_active (C var), 1356
fcb.f_active_id (C var), 1356
fcb.f_align (C var), 1356
fcb.f_erase_value (C var), 1357
fcb.f_magic (C var), 1356
fcb.f_mtx (C var), 1356
fcb.f_oldest (C var), 1356
fcb.f_scratch_cnt (C var), 1356
fcb.f_sector_cnt (C var), 1356
fcb.f_sectors (C var), 1356
fcb.f_version (C var), 1356
fcb.fap (C var), 1356
fcb_append (C function), 1357
fcb_append_finish (C function), 1357
fcb_append_to_scratch (C function), 1358
fcb_clear (C function), 1359
fcb_entry (C struct), 1355
fcb_entry.fe_data_len (C var), 1355
fcb_entry.fe_data_off (C var), 1355
fcb_entry.fe_elem_off (C var), 1355
fcb_entry.fe_sector (C var), 1355
fcb_entry_ctx (C struct), 1355
fcb_entry_ctx.fap (C var), 1356
fcb_entry_ctx.loc (C var), 1356
FCB_ENTRY_FA_DATA_OFF (C macro), 1355
fcb_free_sector_cnt (C function), 1358
fcb_getnext (C function), 1358
fcb_init (C function), 1357
fcb_is_empty (C function), 1358
FCB_MAX_LEN (C macro), 1355
fcb_offset_last_n (C function), 1358
fcb_rotate (C function), 1358
fcb_walk (C function), 1358
fcb_walk_cb (C type), 1357
flash_address_from_build_conf() (run-

ners.core.ZephyrBinaryRunner static
method), 1851

flash_api_erase (C type), 1153
flash_api_get_parameters (C type), 1154
flash_api_pages_layout (C type), 1154
flash_api_read (C type), 1153
flash_api_read_jedec_id (C type), 1154
flash_api_sfdp_read (C type), 1154
flash_api_write (C type), 1153
flash_api_write_protection (C type), 1153
flash_area (C struct), 1353
flash_area.fa_dev_name (C var), 1353

Index 1949

Zephyr Project Documentation, Release 2.7.0-rc2

flash_area.fa_device_id (C var), 1353
flash_area.fa_id (C var), 1353
flash_area.fa_off (C var), 1353
flash_area.fa_size (C var), 1353
flash_area_align (C function), 1352
flash_area_cb_t (C type), 1351
flash_area_close (C function), 1351
flash_area_erase (C function), 1352
flash_area_erased_val (C function), 1353
flash_area_foreach (C function), 1352
flash_area_get_device (C function), 1353
flash_area_get_sectors (C function), 1352
flash_area_has_driver (C function), 1353
FLASH_AREA_ID (C macro), 1351
FLASH_AREA_LABEL_EXISTS (C macro), 1351
FLASH_AREA_LABEL_STR (C macro), 1351
FLASH_AREA_OFFSET (C macro), 1351
flash_area_open (C function), 1351
flash_area_read (C function), 1351
FLASH_AREA_SIZE (C macro), 1351
flash_area_write (C function), 1352
flash_driver_api (C struct), 1154
flash_erase (C function), 1150
flash_get_page_count (C function), 1151
flash_get_page_info_by_idx (C function), 1151
flash_get_page_info_by_offs (C function),

1151
flash_get_parameters (C function), 1153
flash_get_write_block_size (C function), 1152
flash_page_cb (C type), 1150
flash_page_foreach (C function), 1152
flash_pages_info (C struct), 1153
flash_pages_layout (C struct), 1154
flash_parameters (C struct), 1153
flash_read (C function), 1150
flash_read_jedec_id (C function), 1152
flash_sector (C struct), 1353
flash_sector.fs_off (C var), 1354
flash_sector.fs_size (C var), 1354
flash_sfdp_read (C function), 1152
flash_write (C function), 1150
flash_write_protection_set (C function), 1151
float32_value (C struct), 1036
float32_value_t (C type), 1026
FONT_ENTRY_DEFINE (C macro), 560
FOR_EACH (C macro), 1435
FOR_EACH_FIXED_ARG (C macro), 1436
FOR_EACH_IDX (C macro), 1436
FOR_EACH_IDX_FIXED_ARG (C macro), 1437
FOR_EACH_NONEMPTY_TERM (C macro), 1435
fprintfcb (C function), 585
fs_close (C function), 570
fs_closedir (C function), 573
fs_dir_entry_type (C enum), 568
fs_dir_entry_type.FS_DIR_ENTRY_DIR (C enu-

merator), 568
fs_dir_entry_type.FS_DIR_ENTRY_FILE (C enu-

merator), 568

fs_dir_t (C struct), 576
fs_dir_t_init (C function), 569
fs_dirent (C struct), 576
fs_file_system_t (C struct), 576
fs_file_t (C struct), 576
fs_file_t_init (C function), 569
FS_FSTAB_DECLARE_ENTRY (C macro), 568
FS_FSTAB_ENTRY (C macro), 568
fs_mkdir (C function), 572
fs_mount (C function), 574
FS_MOUNT_FLAG_AUTOMOUNT (C macro), 568
FS_MOUNT_FLAG_NO_FORMAT (C macro), 568
FS_MOUNT_FLAG_READ_ONLY (C macro), 568
fs_mount_t (C struct), 576
FS_O_APPEND (C macro), 567
FS_O_CREATE (C macro), 567
FS_O_FLAGS_MASK (C macro), 567
FS_O_MASK (C macro), 567
FS_O_MODE_MASK (C macro), 567
FS_O_RDWR (C macro), 567
FS_O_READ (C macro), 567
FS_O_WRITE (C macro), 567
fs_open (C function), 569
fs_opendir (C function), 573
fs_read (C function), 570
fs_readdir (C function), 573
fs_readmount (C function), 574
fs_register (C function), 575
fs_rename (C function), 570
fs_seek (C function), 571
FS_SEEK_CUR (C macro), 567
FS_SEEK_END (C macro), 568
FS_SEEK_SET (C macro), 567
fs_stat (C function), 574
fs_statvfs (C function), 575
fs_statvfs (C struct), 576
fs_sync (C function), 572
fs_tell (C function), 571
fs_truncate (C function), 572
fs_unlink (C function), 570
fs_unmount (C function), 574
fs_unregister (C function), 575
fs_write (C function), 571
FSTAB_ENTRY_DT_MOUNT_FLAGS (C macro), 568

G
GB (C macro), 1430
gcm_op_t (C type), 404
gcm_params (C struct), 407
gdb (runners.core.RunnerConfig attribute), 1848
GENMASK (C macro), 1428
GET_ARG_N (C macro), 1434
GET_ARGS_LESS_N (C macro), 1434
GET_BLOCK_NUM (C macro), 1004
GET_BLOCK_SIZE (C macro), 1004
get_flash_address() (run-

ners.core.ZephyrBinaryRunner static
method), 1851

1950 Index

Zephyr Project Documentation, Release 2.7.0-rc2

GET_MORE (C macro), 1004
get_runners() (runners.core.ZephyrBinaryRunner

static method), 1851
get_unused_ports() (run-

ners.core.NetworkPortHelper method),
1848

getboolean() (runners.core.BuildConfiguration
method), 1847

glcd_clear (C function), 556
glcd_color_select (C function), 558
glcd_color_set (C function), 558
glcd_cursor_pos_set (C function), 556
glcd_display_state_get (C function), 557
glcd_display_state_set (C function), 557
GLCD_DS_BLINK_OFF (C macro), 556
GLCD_DS_BLINK_ON (C macro), 555
GLCD_DS_CURSOR_OFF (C macro), 555
GLCD_DS_CURSOR_ON (C macro), 555
GLCD_DS_DISPLAY_OFF (C macro), 555
GLCD_DS_DISPLAY_ON (C macro), 555
GLCD_FS_8BIT_MODE (C macro), 556
GLCD_FS_DOT_SIZE_BIG (C macro), 556
GLCD_FS_DOT_SIZE_LITTLE (C macro), 556
GLCD_FS_ROWS_1 (C macro), 556
GLCD_FS_ROWS_2 (C macro), 556
glcd_function_get (C function), 557
glcd_function_set (C function), 557
glcd_initialize (C function), 558
glcd_input_state_get (C function), 557
glcd_input_state_set (C function), 557
GLCD_IS_ENTRY_LEFT (C macro), 556
GLCD_IS_ENTRY_RIGHT (C macro), 556
GLCD_IS_SHIFT_DECREMENT (C macro), 556
GLCD_IS_SHIFT_INCREMENT (C macro), 556
glcd_print (C function), 556
gna_config (C struct), 1156
gna_configure (C function), 1155
gna_deregister_model (C function), 1155
gna_infer (C function), 1156
gna_inference_req (C struct), 1156
gna_inference_resp (C struct), 1156
gna_inference_stats (C struct), 1156
gna_model_header (C struct), 1156
gna_model_info (C struct), 1156
gna_register_model (C function), 1155
gna_result (C enum), 1155
gna_result.GNA_RESULT_GENERIC_ERROR (C enu-

merator), 1155
gna_result.GNA_RESULT_INFERENCE_COMPLETE

(C enumerator), 1155
gna_result.GNA_RESULT_OUTPUT_BUFFER_FULL_ERROR

(C enumerator), 1155
gna_result.GNA_RESULT_PARAM_OUT_OF_RANGE_ERROR

(C enumerator), 1155
gna_result.GNA_RESULT_SATURATION_OCCURRED

(C enumerator), 1155
GNUARMEMB_TOOLCHAIN_PATH, 138, 1465
GPIO_ACTIVE_HIGH (C macro), 1159

GPIO_ACTIVE_LOW (C macro), 1159
gpio_add_callback (C function), 1170
gpio_callback (C struct), 1171
gpio_callback.handler (C var), 1172
gpio_callback.node (C var), 1172
gpio_callback.pin_mask (C var), 1172
gpio_callback_handler_t (C type), 1163
GPIO_DISCONNECTED (C macro), 1157
gpio_driver_config (C struct), 1171
gpio_driver_data (C struct), 1171
GPIO_DS_ALT_HIGH (C macro), 1159
GPIO_DS_ALT_LOW (C macro), 1158
GPIO_DS_DFLT_HIGH (C macro), 1158
GPIO_DS_DFLT_LOW (C macro), 1158
gpio_dt_flags_t (C type), 1163
gpio_dt_spec (C struct), 1171
GPIO_DT_SPEC_GET (C macro), 1161
GPIO_DT_SPEC_GET_BY_IDX (C macro), 1160
GPIO_DT_SPEC_GET_BY_IDX_OR (C macro), 1161
GPIO_DT_SPEC_GET_OR (C macro), 1161
GPIO_DT_SPEC_INST_GET (C macro), 1162
GPIO_DT_SPEC_INST_GET_BY_IDX (C macro), 1161
GPIO_DT_SPEC_INST_GET_BY_IDX_OR (C macro),

1162
GPIO_DT_SPEC_INST_GET_OR (C macro), 1162
gpio_flags_t (C type), 1163
gpio_get_pending_int (C function), 1171
gpio_init_callback (C function), 1170
GPIO_INPUT (C macro), 1157
GPIO_INT_DEBOUNCE (C macro), 1160
GPIO_INT_DISABLE (C macro), 1157
GPIO_INT_EDGE_BOTH (C macro), 1158
GPIO_INT_EDGE_FALLING (C macro), 1158
GPIO_INT_EDGE_RISING (C macro), 1157
GPIO_INT_EDGE_TO_ACTIVE (C macro), 1158
GPIO_INT_EDGE_TO_INACTIVE (C macro), 1158
GPIO_INT_LEVEL_ACTIVE (C macro), 1158
GPIO_INT_LEVEL_HIGH (C macro), 1158
GPIO_INT_LEVEL_INACTIVE (C macro), 1158
GPIO_INT_LEVEL_LOW (C macro), 1158
GPIO_MAX_PINS_PER_PORT (C macro), 1162
GPIO_OPEN_DRAIN (C macro), 1159
GPIO_OPEN_SOURCE (C macro), 1159
GPIO_OUTPUT (C macro), 1157
GPIO_OUTPUT_ACTIVE (C macro), 1157
GPIO_OUTPUT_HIGH (C macro), 1157
GPIO_OUTPUT_INACTIVE (C macro), 1157
GPIO_OUTPUT_LOW (C macro), 1157
gpio_pin_configure (C function), 1164
gpio_pin_configure_dt (C function), 1165
gpio_pin_get (C function), 1168
gpio_pin_get_dt (C function), 1168
gpio_pin_get_raw (C function), 1168
gpio_pin_interrupt_configure (C function),

1163
gpio_pin_interrupt_configure_dt (C function),

1164
gpio_pin_set (C function), 1169

Index 1951

Zephyr Project Documentation, Release 2.7.0-rc2

gpio_pin_set_dt (C function), 1169
gpio_pin_set_raw (C function), 1169
gpio_pin_t (C type), 1163
gpio_pin_toggle (C function), 1170
gpio_pin_toggle_dt (C function), 1170
gpio_port_clear_bits (C function), 1167
gpio_port_clear_bits_raw (C function), 1167
gpio_port_get (C function), 1165
gpio_port_get_raw (C function), 1165
gpio_port_pins_t (C type), 1163
gpio_port_set_bits (C function), 1166
gpio_port_set_bits_raw (C function), 1166
gpio_port_set_clr_bits (C function), 1168
gpio_port_set_clr_bits_raw (C function), 1167
gpio_port_set_masked (C function), 1166
gpio_port_set_masked_raw (C function), 1165
gpio_port_toggle_bits (C function), 1167
gpio_port_value_t (C type), 1163
GPIO_PULL_DOWN (C macro), 1159
GPIO_PULL_UP (C macro), 1159
gpio_remove_callback (C function), 1170
GPIO_VOLTAGE_1P8 (C macro), 1160
GPIO_VOLTAGE_3P3 (C macro), 1160
GPIO_VOLTAGE_5P0 (C macro), 1160
GPIO_VOLTAGE_DEFAULT (C macro), 1159
gptp_call_phase_dis_cb (C function), 1095
gptp_clk_src_time_invoke (C function), 1096
gptp_clk_src_time_invoke_params (C struct),

1098
gptp_clk_src_time_invoke_params.last_gm_freq_change

(C var), 1098
gptp_clk_src_time_invoke_params.last_gm_phase_change

(C var), 1098
gptp_clk_src_time_invoke_params.src_time

(C var), 1098
gptp_clk_src_time_invoke_params.time_base_indicator

(C var), 1098
gptp_event_capture (C function), 1095
gptp_flags (C struct), 1097
gptp_flags.all (C var), 1097
gptp_flags.octets (C var), 1097
gptp_foreach_port (C function), 1095
gptp_get_domain (C function), 1095
gptp_get_hdr (C function), 1096
gptp_hdr (C struct), 1097
gptp_hdr.control (C var), 1098
gptp_hdr.correction_field (C var), 1097
gptp_hdr.domain_number (C var), 1097
gptp_hdr.flags (C var), 1097
gptp_hdr.log_msg_interval (C var), 1098
gptp_hdr.message_length (C var), 1097
gptp_hdr.message_type (C var), 1097
gptp_hdr.port_id (C var), 1098
gptp_hdr.ptp_version (C var), 1097
gptp_hdr.reserved0 (C var), 1097
gptp_hdr.reserved1 (C var), 1097
gptp_hdr.reserved2 (C var), 1097
gptp_hdr.sequence_id (C var), 1098

gptp_hdr.transport_specific (C var), 1097
gptp_phase_dis_callback_t (C type), 1094
gptp_phase_dis_cb (C struct), 1098
gptp_phase_dis_cb.cb (C var), 1098
gptp_phase_dis_cb.node (C var), 1098
gptp_port_cb_t (C type), 1095
gptp_port_identity (C struct), 1096
gptp_port_identity.clk_id (C var), 1096
gptp_port_identity.port_number (C var), 1096
gptp_register_phase_dis_cb (C function), 1095
gptp_scaled_ns (C struct), 1096
gptp_scaled_ns.high (C var), 1096
gptp_scaled_ns.low (C var), 1096
gptp_sprint_clock_id (C function), 1095
gptp_unregister_phase_dis_cb (C function),

1095
gptp_uscaled_ns (C struct), 1096
gptp_uscaled_ns.high (C var), 1096
gptp_uscaled_ns.low (C var), 1096
GROVE_LCD_NAME (C macro), 555
GROVE_RGB_BLUE (C macro), 556
GROVE_RGB_GREEN (C macro), 556
GROVE_RGB_RED (C macro), 556
GROVE_RGB_WHITE (C macro), 556

H
hex2bin (C function), 1439
hex2char (C function), 1439
hex_file (runners.core.RunnerConfig attribute),

1849
HEXDUMP_BYTES_CONT_MSG (C macro), 790
HFP_HF_CMD_CME_ERROR (C macro), 270
HFP_HF_CMD_ERROR (C macro), 270
HFP_HF_CMD_OK (C macro), 270
HFP_HF_CMD_UNKNOWN_ERROR (C macro), 270
HID_BOOT_IFACE_CODE_KEYBOARD (C macro), 1392
HID_BOOT_IFACE_CODE_MOUSE (C macro), 1392
HID_BOOT_IFACE_CODE_NONE (C macro), 1392
hid_cb_t (C type), 1400
HID_COLLECTION (C macro), 1388
HID_COLLECTION_APPLICATION (C macro), 1393
HID_COLLECTION_PHYSICAL (C macro), 1393
HID_END_COLLECTION (C macro), 1388
HID_FEATURE (C macro), 1388
hid_idle_cb_t (C type), 1400
HID_INPUT (C macro), 1388
hid_int_ep_read (C function), 1401
hid_int_ep_write (C function), 1400
hid_int_ready_callback (C type), 1400
HID_ITEM (C macro), 1388
HID_ITEM_TAG_COLLECTION (C macro), 1392
HID_ITEM_TAG_COLLECTION_END (C macro), 1392
HID_ITEM_TAG_FEATURE (C macro), 1392
HID_ITEM_TAG_INPUT (C macro), 1392
HID_ITEM_TAG_LOGICAL_MAX (C macro), 1393
HID_ITEM_TAG_LOGICAL_MIN (C macro), 1393
HID_ITEM_TAG_OUTPUT (C macro), 1392
HID_ITEM_TAG_PHYSICAL_MAX (C macro), 1393

1952 Index

Zephyr Project Documentation, Release 2.7.0-rc2

HID_ITEM_TAG_PHYSICAL_MIN (C macro), 1393
HID_ITEM_TAG_REPORT_COUNT (C macro), 1393
HID_ITEM_TAG_REPORT_ID (C macro), 1393
HID_ITEM_TAG_REPORT_SIZE (C macro), 1393
HID_ITEM_TAG_UNIT (C macro), 1393
HID_ITEM_TAG_UNIT_EXPONENT (C macro), 1393
HID_ITEM_TAG_USAGE (C macro), 1393
HID_ITEM_TAG_USAGE_MAX (C macro), 1393
HID_ITEM_TAG_USAGE_MIN (C macro), 1393
HID_ITEM_TAG_USAGE_PAGE (C macro), 1392
HID_ITEM_TYPE_GLOBAL (C macro), 1392
HID_ITEM_TYPE_LOCAL (C macro), 1392
HID_ITEM_TYPE_MAIN (C macro), 1392
hid_kbd_code (C enum), 1395
hid_kbd_code.HID_KEY_0 (C enumerator), 1396
hid_kbd_code.HID_KEY_1 (C enumerator), 1396
hid_kbd_code.HID_KEY_2 (C enumerator), 1396
hid_kbd_code.HID_KEY_3 (C enumerator), 1396
hid_kbd_code.HID_KEY_4 (C enumerator), 1396
hid_kbd_code.HID_KEY_5 (C enumerator), 1396
hid_kbd_code.HID_KEY_6 (C enumerator), 1396
hid_kbd_code.HID_KEY_7 (C enumerator), 1396
hid_kbd_code.HID_KEY_8 (C enumerator), 1396
hid_kbd_code.HID_KEY_9 (C enumerator), 1396
hid_kbd_code.HID_KEY_A (C enumerator), 1395
hid_kbd_code.HID_KEY_APOSTROPHE (C enumera-

tor), 1397
hid_kbd_code.HID_KEY_B (C enumerator), 1395
hid_kbd_code.HID_KEY_BACKSLASH (C enumera-

tor), 1397
hid_kbd_code.HID_KEY_BACKSPACE (C enumera-

tor), 1396
hid_kbd_code.HID_KEY_C (C enumerator), 1395
hid_kbd_code.HID_KEY_CAPSLOCK (C enumera-

tor), 1397
hid_kbd_code.HID_KEY_COMMA (C enumerator),

1397
hid_kbd_code.HID_KEY_D (C enumerator), 1395
hid_kbd_code.HID_KEY_DELETE (C enumerator),

1398
hid_kbd_code.HID_KEY_DOT (C enumerator), 1397
hid_kbd_code.HID_KEY_DOWN (C enumerator),

1398
hid_kbd_code.HID_KEY_E (C enumerator), 1395
hid_kbd_code.HID_KEY_END (C enumerator), 1398
hid_kbd_code.HID_KEY_ENTER (C enumerator),

1396
hid_kbd_code.HID_KEY_EQUAL (C enumerator),

1397
hid_kbd_code.HID_KEY_ESC (C enumerator), 1396
hid_kbd_code.HID_KEY_F (C enumerator), 1395
hid_kbd_code.HID_KEY_F1 (C enumerator), 1397
hid_kbd_code.HID_KEY_F10 (C enumerator), 1398
hid_kbd_code.HID_KEY_F11 (C enumerator), 1398
hid_kbd_code.HID_KEY_F12 (C enumerator), 1398
hid_kbd_code.HID_KEY_F2 (C enumerator), 1397
hid_kbd_code.HID_KEY_F3 (C enumerator), 1397
hid_kbd_code.HID_KEY_F4 (C enumerator), 1397

hid_kbd_code.HID_KEY_F5 (C enumerator), 1397
hid_kbd_code.HID_KEY_F6 (C enumerator), 1397
hid_kbd_code.HID_KEY_F7 (C enumerator), 1397
hid_kbd_code.HID_KEY_F8 (C enumerator), 1397
hid_kbd_code.HID_KEY_F9 (C enumerator), 1398
hid_kbd_code.HID_KEY_G (C enumerator), 1395
hid_kbd_code.HID_KEY_GRAVE (C enumerator),

1397
hid_kbd_code.HID_KEY_H (C enumerator), 1395
hid_kbd_code.HID_KEY_HASH (C enumerator),

1397
hid_kbd_code.HID_KEY_HOME (C enumerator),

1398
hid_kbd_code.HID_KEY_I (C enumerator), 1395
hid_kbd_code.HID_KEY_INSERT (C enumerator),

1398
hid_kbd_code.HID_KEY_J (C enumerator), 1395
hid_kbd_code.HID_KEY_K (C enumerator), 1395
hid_kbd_code.HID_KEY_KP_0 (C enumerator),

1399
hid_kbd_code.HID_KEY_KP_1 (C enumerator),

1399
hid_kbd_code.HID_KEY_KP_2 (C enumerator),

1399
hid_kbd_code.HID_KEY_KP_3 (C enumerator),

1399
hid_kbd_code.HID_KEY_KP_4 (C enumerator),

1399
hid_kbd_code.HID_KEY_KP_5 (C enumerator),

1399
hid_kbd_code.HID_KEY_KP_6 (C enumerator),

1399
hid_kbd_code.HID_KEY_KP_7 (C enumerator),

1399
hid_kbd_code.HID_KEY_KP_8 (C enumerator),

1399
hid_kbd_code.HID_KEY_KP_9 (C enumerator),

1399
hid_kbd_code.HID_KEY_KPASTERISK (C enumera-

tor), 1398
hid_kbd_code.HID_KEY_KPENTER (C enumerator),

1398
hid_kbd_code.HID_KEY_KPMINUS (C enumerator),

1398
hid_kbd_code.HID_KEY_KPPLUS (C enumerator),

1398
hid_kbd_code.HID_KEY_KPSLASH (C enumerator),

1398
hid_kbd_code.HID_KEY_L (C enumerator), 1395
hid_kbd_code.HID_KEY_LEFT (C enumerator),

1398
hid_kbd_code.HID_KEY_LEFTBRACE (C enumera-

tor), 1397
hid_kbd_code.HID_KEY_M (C enumerator), 1395
hid_kbd_code.HID_KEY_MINUS (C enumerator),

1397
hid_kbd_code.HID_KEY_N (C enumerator), 1395
hid_kbd_code.HID_KEY_NUMLOCK (C enumerator),

Index 1953

Zephyr Project Documentation, Release 2.7.0-rc2

1398
hid_kbd_code.HID_KEY_O (C enumerator), 1395
hid_kbd_code.HID_KEY_P (C enumerator), 1395
hid_kbd_code.HID_KEY_PAGEDOWN (C enumera-

tor), 1398
hid_kbd_code.HID_KEY_PAGEUP (C enumerator),

1398
hid_kbd_code.HID_KEY_PAUSE (C enumerator),

1398
hid_kbd_code.HID_KEY_Q (C enumerator), 1396
hid_kbd_code.HID_KEY_R (C enumerator), 1396
hid_kbd_code.HID_KEY_RIGHT (C enumerator),

1398
hid_kbd_code.HID_KEY_RIGHTBRACE (C enumera-

tor), 1397
hid_kbd_code.HID_KEY_S (C enumerator), 1396
hid_kbd_code.HID_KEY_SCROLLLOCK (C enumera-

tor), 1398
hid_kbd_code.HID_KEY_SEMICOLON (C enumera-

tor), 1397
hid_kbd_code.HID_KEY_SLASH (C enumerator),

1397
hid_kbd_code.HID_KEY_SPACE (C enumerator),

1397
hid_kbd_code.HID_KEY_SYSRQ (C enumerator),

1398
hid_kbd_code.HID_KEY_T (C enumerator), 1396
hid_kbd_code.HID_KEY_TAB (C enumerator), 1397
hid_kbd_code.HID_KEY_U (C enumerator), 1396
hid_kbd_code.HID_KEY_UP (C enumerator), 1398
hid_kbd_code.HID_KEY_V (C enumerator), 1396
hid_kbd_code.HID_KEY_W (C enumerator), 1396
hid_kbd_code.HID_KEY_X (C enumerator), 1396
hid_kbd_code.HID_KEY_Y (C enumerator), 1396
hid_kbd_code.HID_KEY_Z (C enumerator), 1396
hid_kbd_led (C enum), 1399
hid_kbd_led.HID_KBD_LED_CAPS_LOCK (C enu-

merator), 1400
hid_kbd_led.HID_KBD_LED_COMPOSE (C enumera-

tor), 1400
hid_kbd_led.HID_KBD_LED_KANA (C enumerator),

1400
hid_kbd_led.HID_KBD_LED_NUM_LOCK (C enumer-

ator), 1400
hid_kbd_led.HID_KBD_LED_SCROLL_LOCK (C enu-

merator), 1400
hid_kbd_modifier (C enum), 1399
hid_kbd_modifier.HID_KBD_MODIFIER_LEFT_ALT

(C enumerator), 1399
hid_kbd_modifier.HID_KBD_MODIFIER_LEFT_CTRL

(C enumerator), 1399
hid_kbd_modifier.HID_KBD_MODIFIER_LEFT_SHIFT

(C enumerator), 1399
hid_kbd_modifier.HID_KBD_MODIFIER_LEFT_UI

(C enumerator), 1399
hid_kbd_modifier.HID_KBD_MODIFIER_NONE (C

enumerator), 1399
hid_kbd_modifier.HID_KBD_MODIFIER_RIGHT_ALT

(C enumerator), 1399
hid_kbd_modifier.HID_KBD_MODIFIER_RIGHT_CTRL

(C enumerator), 1399
hid_kbd_modifier.HID_KBD_MODIFIER_RIGHT_SHIFT

(C enumerator), 1399
hid_kbd_modifier.HID_KBD_MODIFIER_RIGHT_UI

(C enumerator), 1399
HID_KEYBOARD_REPORT_DESC (C macro), 1395
HID_LOGICAL_MAX16 (C macro), 1389
HID_LOGICAL_MAX32 (C macro), 1390
HID_LOGICAL_MAX8 (C macro), 1389
HID_LOGICAL_MIN16 (C macro), 1389
HID_LOGICAL_MIN32 (C macro), 1389
HID_LOGICAL_MIN8 (C macro), 1389
HID_MOUSE_REPORT_DESC (C macro), 1395
hid_ops (C struct), 1401
HID_OUTPUT (C macro), 1388
HID_PROTOCOL_BOOT (C macro), 1392
hid_protocol_cb_t (C type), 1400
HID_PROTOCOL_REPORT (C macro), 1392
HID_REPORT_COUNT (C macro), 1390
HID_REPORT_ID (C macro), 1390
HID_REPORT_SIZE (C macro), 1390
HID_USAGE (C macro), 1390
HID_USAGE_GEN_BUTTON (C macro), 1394
HID_USAGE_GEN_DESKTOP (C macro), 1393
HID_USAGE_GEN_DESKTOP_GAMEPAD (C macro),

1394
HID_USAGE_GEN_DESKTOP_JOYSTICK (C macro),

1394
HID_USAGE_GEN_DESKTOP_KEYBOARD (C macro),

1394
HID_USAGE_GEN_DESKTOP_KEYPAD (C macro), 1394
HID_USAGE_GEN_DESKTOP_MOUSE (C macro), 1394
HID_USAGE_GEN_DESKTOP_POINTER (C macro),

1394
HID_USAGE_GEN_DESKTOP_UNDEFINED (C macro),

1394
HID_USAGE_GEN_DESKTOP_WHEEL (C macro), 1394
HID_USAGE_GEN_DESKTOP_X (C macro), 1394
HID_USAGE_GEN_DESKTOP_Y (C macro), 1394
HID_USAGE_GEN_KEYBOARD (C macro), 1393
HID_USAGE_GEN_LEDS (C macro), 1394
HID_USAGE_MAX16 (C macro), 1391
HID_USAGE_MAX8 (C macro), 1390
HID_USAGE_MIN16 (C macro), 1391
HID_USAGE_MIN8 (C macro), 1390
HID_USAGE_PAGE (C macro), 1389
HOST_KBC_EVT_IBF (C macro), 1273
HOST_KBC_EVT_OBE (C macro), 1273
htonl (C macro), 880
htonll (C macro), 880
htons (C macro), 880
hwinfo_clear_reset_cause (C function), 1174
hwinfo_get_device_id (C function), 1173
hwinfo_get_reset_cause (C function), 1173
hwinfo_get_supported_reset_cause (C func-

tion), 1174

1954 Index

Zephyr Project Documentation, Release 2.7.0-rc2

I
I2C_ADDR_10_BITS (C macro), 1176
i2c_burst_read (C function), 1183
i2c_burst_read_dt (C function), 1183
i2c_burst_write (C function), 1184
i2c_burst_write_dt (C function), 1184
I2C_CLIENT (C macro), 1177
i2c_client_config (C struct), 1188
i2c_configure (C function), 1179
I2C_DECLARE_CLIENT_CONFIG (C macro), 1177
i2c_dt_spec (C struct), 1187
I2C_DT_SPEC_GET (C macro), 1176
I2C_DT_SPEC_INST_GET (C macro), 1176
i2c_dump_msgs (C function), 1186
I2C_GET_ADDR (C macro), 1177
I2C_GET_MASTER (C macro), 1177
I2C_MODE_MASTER (C macro), 1176
i2c_msg (C struct), 1187
i2c_msg.buf (C var), 1187
i2c_msg.flags (C var), 1187
i2c_msg.len (C var), 1187
I2C_MSG_ADDR_10_BITS (C macro), 1177
I2C_MSG_READ (C macro), 1177
I2C_MSG_RESTART (C macro), 1177
I2C_MSG_STOP (C macro), 1177
I2C_MSG_WRITE (C macro), 1176
i2c_read (C function), 1182
i2c_read_dt (C function), 1182
i2c_recover_bus (C function), 1180
i2c_reg_read_byte (C function), 1184
i2c_reg_read_byte_dt (C function), 1185
i2c_reg_update_byte (C function), 1186
i2c_reg_update_byte_dt (C function), 1186
i2c_reg_write_byte (C function), 1185
i2c_reg_write_byte_dt (C function), 1185
i2c_slave_callbacks (C struct), 1187
i2c_slave_config (C struct), 1187
i2c_slave_config.address (C var), 1188
i2c_slave_config.callbacks (C var), 1188
i2c_slave_config.flags (C var), 1188
i2c_slave_config.node (C var), 1188
i2c_slave_driver_register (C function), 1181
i2c_slave_driver_unregister (C function),

1181
I2C_SLAVE_FLAGS_ADDR_10_BITS (C macro), 1177
i2c_slave_read_processed_cb_t (C type), 1178
i2c_slave_read_requested_cb_t (C type), 1178
i2c_slave_register (C function), 1180
i2c_slave_stop_cb_t (C type), 1178
i2c_slave_unregister (C function), 1180
i2c_slave_write_received_cb_t (C type), 1177
i2c_slave_write_requested_cb_t (C type), 1177
I2C_SPEED_FAST (C macro), 1176
I2C_SPEED_FAST_PLUS (C macro), 1176
I2C_SPEED_GET (C macro), 1176
I2C_SPEED_HIGH (C macro), 1176
I2C_SPEED_MASK (C macro), 1176
I2C_SPEED_SET (C macro), 1176

I2C_SPEED_SHIFT (C macro), 1176
I2C_SPEED_STANDARD (C macro), 1176
I2C_SPEED_ULTRA (C macro), 1176
i2c_transfer (C function), 1179
i2c_transfer_dt (C function), 1179
i2c_write (C function), 1181
i2c_write_dt (C function), 1181
i2c_write_read (C function), 1182
i2c_write_read_dt (C function), 1183
i2s_buf_read (C function), 160
i2s_buf_write (C function), 161
i2s_config (C struct), 162
i2s_config_get (C function), 160
i2s_configure (C function), 159
i2s_dir (C enum), 158
i2s_dir.I2S_DIR_BOTH (C enumerator), 158
i2s_dir.I2S_DIR_RX (C enumerator), 158
i2s_dir.I2S_DIR_TX (C enumerator), 158
I2S_FMT_BIT_CLK_INV (C macro), 156
I2S_FMT_CLK_FORMAT_MASK (C macro), 156
I2S_FMT_CLK_FORMAT_SHIFT (C macro), 156
I2S_FMT_CLK_IF_IB (C macro), 157
I2S_FMT_CLK_IF_NB (C macro), 157
I2S_FMT_CLK_NF_IB (C macro), 157
I2S_FMT_CLK_NF_NB (C macro), 156
I2S_FMT_DATA_FORMAT_I2S (C macro), 154
I2S_FMT_DATA_FORMAT_LEFT_JUSTIFIED (C

macro), 155
I2S_FMT_DATA_FORMAT_MASK (C macro), 154
I2S_FMT_DATA_FORMAT_PCM_LONG (C macro), 155
I2S_FMT_DATA_FORMAT_PCM_SHORT (C macro), 155
I2S_FMT_DATA_FORMAT_RIGHT_JUSTIFIED (C

macro), 156
I2S_FMT_DATA_FORMAT_SHIFT (C macro), 154
I2S_FMT_DATA_ORDER_INV (C macro), 156
I2S_FMT_DATA_ORDER_LSB (C macro), 156
I2S_FMT_DATA_ORDER_MSB (C macro), 156
I2S_FMT_FRAME_CLK_INV (C macro), 156
i2s_fmt_t (C type), 157
I2S_OPT_BIT_CLK_CONT (C macro), 157
I2S_OPT_BIT_CLK_GATED (C macro), 157
I2S_OPT_BIT_CLK_MASTER (C macro), 157
I2S_OPT_BIT_CLK_SLAVE (C macro), 157
I2S_OPT_FRAME_CLK_MASTER (C macro), 157
I2S_OPT_FRAME_CLK_SLAVE (C macro), 157
I2S_OPT_LOOPBACK (C macro), 157
I2S_OPT_PINGPONG (C macro), 157
i2s_opt_t (C type), 157
i2s_read (C function), 160
i2s_state (C enum), 158
i2s_state.I2S_STATE_ERROR (C enumerator), 158
i2s_state.I2S_STATE_NOT_READY (C enumera-

tor), 158
i2s_state.I2S_STATE_READY (C enumerator), 158
i2s_state.I2S_STATE_RUNNING (C enumerator),

158
i2s_state.I2S_STATE_STOPPING (C enumerator),

158

Index 1955

Zephyr Project Documentation, Release 2.7.0-rc2

i2s_trigger (C function), 162
i2s_trigger_cmd (C enum), 158
i2s_trigger_cmd.I2S_TRIGGER_DRAIN (C enu-

merator), 159
i2s_trigger_cmd.I2S_TRIGGER_DROP (C enumer-

ator), 159
i2s_trigger_cmd.I2S_TRIGGER_PREPARE (C enu-

merator), 159
i2s_trigger_cmd.I2S_TRIGGER_START (C enu-

merator), 158
i2s_trigger_cmd.I2S_TRIGGER_STOP (C enumer-

ator), 159
i2s_write (C function), 161
IDENTITY (C macro), 1434
IEEE802154_ALL_CHANNELS (C macro), 997
IEEE802154_AR_FLAG_SET (C macro), 990
ieee802154_channel (C enum), 990
ieee802154_channel.IEEE802154_2_4_GHZ_CHANNEL_MAX

(C enumerator), 990
ieee802154_channel.IEEE802154_2_4_GHZ_CHANNEL_MIN

(C enumerator), 990
ieee802154_channel.IEEE802154_SUB_GHZ_CHANNEL_MAX

(C enumerator), 990
ieee802154_channel.IEEE802154_SUB_GHZ_CHANNEL_MIN

(C enumerator), 990
ieee802154_config (C struct), 994
ieee802154_config.ack_fpb (C var), 995
ieee802154_config.ack_ie (C var), 995
ieee802154_config.auto_ack_fpb (C var), 995
ieee802154_config.csl_period (C var), 995
ieee802154_config.csl_rx_time (C var), 995
ieee802154_config.event_handler (C var), 995
ieee802154_config.ext_addr (C var), 995
ieee802154_config.frame_counter (C var), 995
ieee802154_config.mac_keys (C var), 995
ieee802154_config.pan_coordinator (C var),

995
ieee802154_config.promiscuous (C var), 995
ieee802154_config.rx_slot (C var), 995
ieee802154_config.[anonymous] (C var), 995
ieee802154_config_type (C enum), 992
ieee802154_config_type.IEEE802154_CONFIG_ACK_FPB

(C enumerator), 992
ieee802154_config_type.IEEE802154_CONFIG_AUTO_ACK_FPB

(C enumerator), 992
ieee802154_config_type.IEEE802154_CONFIG_CSL_PERIOD

(C enumerator), 993
ieee802154_config_type.IEEE802154_CONFIG_CSL_RX_TIME

(C enumerator), 993
ieee802154_config_type.IEEE802154_CONFIG_ENH_ACK_HEADER_IE

(C enumerator), 994
ieee802154_config_type.IEEE802154_CONFIG_EVENT_HANDLER

(C enumerator), 993
ieee802154_config_type.IEEE802154_CONFIG_FRAME_COUNTER

(C enumerator), 993
ieee802154_config_type.IEEE802154_CONFIG_MAC_KEYS

(C enumerator), 993
ieee802154_config_type.IEEE802154_CONFIG_PAN_COORDINATOR

(C enumerator), 993
ieee802154_config_type.IEEE802154_CONFIG_PROMISCUOUS

(C enumerator), 993
ieee802154_config_type.IEEE802154_CONFIG_RX_SLOT

(C enumerator), 993
ieee802154_context (C struct), 994
ieee802154_event (C enum), 991
ieee802154_event.IEEE802154_EVENT_RX_FAILED

(C enumerator), 991
ieee802154_event.IEEE802154_EVENT_SLEEP (C

enumerator), 991
ieee802154_event.IEEE802154_EVENT_TX_STARTED

(C enumerator), 991
ieee802154_event_cb_t (C type), 990
ieee802154_filter (C struct), 994
ieee802154_filter_type (C enum), 991
ieee802154_filter_type.IEEE802154_FILTER_TYPE_IEEE_ADDR

(C enumerator), 991
ieee802154_filter_type.IEEE802154_FILTER_TYPE_PAN_ID

(C enumerator), 991
ieee802154_filter_type.IEEE802154_FILTER_TYPE_SHORT_ADDR

(C enumerator), 991
ieee802154_filter_type.IEEE802154_FILTER_TYPE_SRC_IEEE_ADDR

(C enumerator), 991
ieee802154_filter_type.IEEE802154_FILTER_TYPE_SRC_SHORT_ADDR

(C enumerator), 991
ieee802154_fpb_mode (C enum), 992
ieee802154_fpb_mode.IEEE802154_FPB_ADDR_MATCH_THREAD

(C enumerator), 992
ieee802154_fpb_mode.IEEE802154_FPB_ADDR_MATCH_ZIGBEE

(C enumerator), 992
ieee802154_hw_caps (C enum), 990
ieee802154_hw_caps.IEEE802154_HW_2_4_GHZ

(C enumerator), 991
ieee802154_hw_caps.IEEE802154_HW_CSMA (C

enumerator), 991
ieee802154_hw_caps.IEEE802154_HW_ENERGY_SCAN

(C enumerator), 991
ieee802154_hw_caps.IEEE802154_HW_FCS (C

enumerator), 990
ieee802154_hw_caps.IEEE802154_HW_FILTER (C

enumerator), 990
ieee802154_hw_caps.IEEE802154_HW_PROMISC

(C enumerator), 990
ieee802154_hw_caps.IEEE802154_HW_RXTIME (C

enumerator), 991
ieee802154_hw_caps.IEEE802154_HW_SLEEP_TO_TX

(C enumerator), 991
ieee802154_hw_caps.IEEE802154_HW_SUB_GHZ

(C enumerator), 991
ieee802154_hw_caps.IEEE802154_HW_TX_RX_ACK

(C enumerator), 991
ieee802154_hw_caps.IEEE802154_HW_TX_SEC (C

enumerator), 991
ieee802154_hw_caps.IEEE802154_HW_TXTIME (C

enumerator), 991
ieee802154_init (C function), 994
ieee802154_is_ar_flag_set (C function), 994

1956 Index

Zephyr Project Documentation, Release 2.7.0-rc2

IEEE802154_IS_CHAN_SCANNED (C macro), 997
IEEE802154_IS_CHAN_UNSCANNED (C macro), 997
ieee802154_key (C struct), 994
IEEE802154_L2_CTX_TYPE (C macro), 990
IEEE802154_MAX_ADDR_LENGTH (C macro), 990
IEEE802154_NO_CHANNEL (C macro), 990
ieee802154_radio_api (C struct), 995
ieee802154_radio_api.cca (C var), 996
ieee802154_radio_api.configure (C var), 996
ieee802154_radio_api.ed_scan (C var), 996
ieee802154_radio_api.filter (C var), 996
ieee802154_radio_api.get_capabilities (C

var), 996
ieee802154_radio_api.get_sch_acc (C var),

996
ieee802154_radio_api.get_subg_channel_count

(C var), 996
ieee802154_radio_api.get_time (C var), 996
ieee802154_radio_api.iface_api (C var), 996
ieee802154_radio_api.set_channel (C var),

996
ieee802154_radio_api.set_txpower (C var),

996
ieee802154_radio_api.start (C var), 996
ieee802154_radio_api.stop (C var), 996
ieee802154_radio_api.tx (C var), 996
ieee802154_radio_handle_ack (C function), 994
ieee802154_req_params (C struct), 999
ieee802154_req_params.channel (C var), 999
ieee802154_req_params.channel_set (C var),

999
ieee802154_req_params.duration (C var), 999
ieee802154_req_params.len (C var), 999
ieee802154_req_params.lqi (C var), 999
ieee802154_req_params.pan_id (C var), 999
ieee802154_req_params.[anonymous] (C var),

999
ieee802154_rx_fail_reason (C enum), 991
ieee802154_rx_fail_reason.IEEE802154_RX_FAIL_ADDR_FILTERED

(C enumerator), 992
ieee802154_rx_fail_reason.IEEE802154_RX_FAIL_INVALID_FCS

(C enumerator), 991
ieee802154_rx_fail_reason.IEEE802154_RX_FAIL_NOT_RECEIVED

(C enumerator), 991
ieee802154_rx_fail_reason.IEEE802154_RX_FAIL_OTHER

(C enumerator), 992
ieee802154_security_ctx (C struct), 994
ieee802154_security_params (C struct), 999
ieee802154_tx_mode (C enum), 992
ieee802154_tx_mode.IEEE802154_TX_MODE_CCA

(C enumerator), 992
ieee802154_tx_mode.IEEE802154_TX_MODE_CSMA_CA

(C enumerator), 992
ieee802154_tx_mode.IEEE802154_TX_MODE_DIRECT

(C enumerator), 992
ieee802154_tx_mode.IEEE802154_TX_MODE_TXTIME

(C enumerator), 992
ieee802154_tx_mode.IEEE802154_TX_MODE_TXTIME_CCA

(C enumerator), 992
IF_ENABLED (C macro), 1432
IFNAMSIZ (C macro), 869
ifreq (C struct), 876
in6_addr (C struct), 892
in_addr (C struct), 892
INET6_ADDRSTRLEN (C macro), 880
INET_ADDRSTRLEN (C macro), 880
INT_TO_POINTER (C macro), 1428
iovec (C struct), 893
ipm_callback_t (C type), 1188
ipm_driver_api (C struct), 1190
ipm_max_data_size_get (C function), 1190
ipm_max_data_size_get_t (C type), 1189
ipm_max_id_val_get (C function), 1190
ipm_max_id_val_get_t (C type), 1189
ipm_register_callback (C function), 1190
ipm_register_callback_t (C type), 1189
ipm_send (C function), 1189
ipm_send_t (C type), 1188
ipm_set_enabled (C function), 1190
ipm_set_enabled_t (C type), 1189
IPSO_OBJECT_ACCELEROMETER_ID (C macro), 1022
IPSO_OBJECT_BUZZER_ID (C macro), 1022
IPSO_OBJECT_GENERIC_SENSOR_ID (C macro),

1022
IPSO_OBJECT_HUMIDITY_SENSOR_ID (C macro),

1022
IPSO_OBJECT_LIGHT_CONTROL_ID (C macro), 1022
IPSO_OBJECT_ONOFF_SWITCH_ID (C macro), 1022
IPSO_OBJECT_PRESSURE_ID (C macro), 1022
IPSO_OBJECT_PUSH_BUTTON_ID (C macro), 1022
IPSO_OBJECT_TEMP_SENSOR_ID (C macro), 1022
IPSO_OBJECT_TIMER_ID (C macro), 1022
IPV6_V6ONLY (C macro), 870
IRQ_CONNECT (C macro), 648
irq_connect_dynamic (C function), 652
IRQ_DIRECT_CONNECT (C macro), 649
irq_disable (C macro), 651
irq_enable (C macro), 651
irq_get_level (C function), 652
irq_is_enabled (C macro), 651
irq_lock (C macro), 650
irq_unlock (C macro), 651
IS_ARRAY (C macro), 1428
IS_BT_QUIRK_NO_AUTO_DLE (C macro), 264
IS_EMPTY (C macro), 1432
IS_ENABLED (C macro), 1430
is_power_of_two (C function), 1438
isotp_bind (C function), 1119
isotp_fc_opts (C struct), 1121
isotp_fc_opts.bs (C var), 1121
isotp_fc_opts.stmin (C var), 1121
ISOTP_FIXED_ADDR_PRIO_MASK (C macro), 1118
ISOTP_FIXED_ADDR_PRIO_POS (C macro), 1118
ISOTP_FIXED_ADDR_RX_MASK (C macro), 1119
ISOTP_FIXED_ADDR_SA_MASK (C macro), 1118
ISOTP_FIXED_ADDR_SA_POS (C macro), 1118

Index 1957

Zephyr Project Documentation, Release 2.7.0-rc2

ISOTP_FIXED_ADDR_TA_MASK (C macro), 1118
ISOTP_FIXED_ADDR_TA_POS (C macro), 1118
isotp_msg_id (C struct), 1120
isotp_msg_id.ext_addr (C var), 1121
isotp_msg_id.id_type (C var), 1121
isotp_msg_id.use_ext_addr (C var), 1121
isotp_msg_id.use_fixed_addr (C var), 1121
isotp_msg_id.[anonymous] (C var), 1121
ISOTP_N_BUFFER_OVERFLW (C macro), 1118
ISOTP_N_ERROR (C macro), 1118
ISOTP_N_INVALID_FS (C macro), 1118
ISOTP_N_OK (C macro), 1117
ISOTP_N_TIMEOUT_A (C macro), 1117
ISOTP_N_TIMEOUT_BS (C macro), 1117
ISOTP_N_TIMEOUT_CR (C macro), 1117
ISOTP_N_UNEXP_PDU (C macro), 1118
ISOTP_N_WFT_OVRN (C macro), 1118
ISOTP_N_WRONG_SN (C macro), 1117
ISOTP_NO_BUF_DATA_LEFT (C macro), 1118
ISOTP_NO_CTX_LEFT (C macro), 1118
ISOTP_NO_FREE_FILTER (C macro), 1118
ISOTP_NO_NET_BUF_LEFT (C macro), 1118
isotp_recv (C function), 1119
isotp_recv_net (C function), 1120
ISOTP_RECV_TIMEOUT (C macro), 1118
isotp_send (C function), 1120
isotp_tx_callback_t (C type), 1119
isotp_unbind (C function), 1119
ISR_DIRECT_DECLARE (C macro), 650
ISR_DIRECT_FOOTER (C macro), 649
ISR_DIRECT_HEADER (C macro), 649
ISR_DIRECT_PM (C macro), 649
ITERABLE_SECTION_RAM (C macro), 578
ITERABLE_SECTION_RAM_GC_ALLOWED (C macro),

579
ITERABLE_SECTION_ROM (C macro), 578
ITERABLE_SECTION_ROM_GC_ALLOWED (C macro),

578
ivshmem_driver_api (C struct), 1457
ivshmem_get_id (C function), 1456
ivshmem_get_id_f (C type), 1456
ivshmem_get_mem (C function), 1456
ivshmem_get_mem_f (C type), 1456
ivshmem_get_vectors (C function), 1456
ivshmem_get_vectors_f (C type), 1456
ivshmem_int_peer (C function), 1456
ivshmem_int_peer_f (C type), 1456
ivshmem_register_handler (C function), 1456
ivshmem_register_handler_f (C type), 1456

J
json_append_bytes_t (C type), 817
json_arr_encode (C function), 820
json_arr_encode_buf (C function), 819
json_calc_encoded_len (C function), 819
json_calc_escaped_len (C function), 818
json_escape (C function), 818
json_obj_descr (C struct), 820

JSON_OBJ_DESCR_ARRAY (C macro), 813
JSON_OBJ_DESCR_ARRAY_ARRAY (C macro), 814
JSON_OBJ_DESCR_ARRAY_NAMED (C macro), 816
JSON_OBJ_DESCR_OBJ_ARRAY (C macro), 813
JSON_OBJ_DESCR_OBJ_ARRAY_NAMED (C macro),

816
JSON_OBJ_DESCR_OBJECT (C macro), 812
JSON_OBJ_DESCR_OBJECT_NAMED (C macro), 815
JSON_OBJ_DESCR_PRIM (C macro), 812
JSON_OBJ_DESCR_PRIM_NAMED (C macro), 815
json_obj_encode (C function), 819
json_obj_encode_buf (C function), 819
json_obj_parse (C function), 818
json_tokens (C enum), 817
json_tokens.JSON_TOK_COLON (C enumerator),

817
json_tokens.JSON_TOK_COMMA (C enumerator),

817
json_tokens.JSON_TOK_EOF (C enumerator), 818
json_tokens.JSON_TOK_ERROR (C enumerator),

818
json_tokens.JSON_TOK_FALSE (C enumerator),

817
json_tokens.JSON_TOK_LIST_END (C enumera-

tor), 817
json_tokens.JSON_TOK_LIST_START (C enumera-

tor), 817
json_tokens.JSON_TOK_NONE (C enumerator), 817
json_tokens.JSON_TOK_NULL (C enumerator), 818
json_tokens.JSON_TOK_NUMBER (C enumerator),

817
json_tokens.JSON_TOK_OBJECT_END (C enumera-

tor), 817
json_tokens.JSON_TOK_OBJECT_START (C enu-

merator), 817
json_tokens.JSON_TOK_STRING (C enumerator),

817
json_tokens.JSON_TOK_TRUE (C enumerator), 817
jwt_add_payload (C function), 820
jwt_builder (C struct), 821
jwt_builder.base (C var), 821
jwt_builder.buf (C var), 821
jwt_builder.len (C var), 821
jwt_builder.overflowed (C var), 821
jwt_init_builder (C function), 820
jwt_payload_len (C function), 820
jwt_sign (C function), 820

K
k_aligned_alloc (C function), 725
k_busy_wait (C function), 601
K_CALLBACK_STATE (C macro), 597
k_calloc (C function), 726
k_condvar_broadcast (C function), 674
K_CONDVAR_DEFINE (C macro), 674
k_condvar_init (C function), 674
k_condvar_signal (C function), 674
k_condvar_wait (C function), 674

1958 Index

Zephyr Project Documentation, Release 2.7.0-rc2

k_cpu_atomic_idle (C function), 748
k_cpu_idle (C function), 747
k_current_get (C function), 602
K_CYC (C macro), 735
k_cycle_get_32 (C function), 738
k_delayed_work (C struct), 640
k_delayed_work_cancel (C function), 636
K_DELAYED_WORK_DEFINE (C macro), 626
k_delayed_work_expires_ticks (C function),

636
k_delayed_work_init (C function), 636
k_delayed_work_pending (C function), 636
k_delayed_work_remaining_get (C function),

636
k_delayed_work_remaining_ticks (C function),

636
k_delayed_work_submit (C function), 636
k_delayed_work_submit_to_queue (C function),

636
K_ESSENTIAL (C macro), 596
k_fatal_error_reason (C enum), 763
k_fatal_error_reason.K_ERR_CPU_EXCEPTION

(C enumerator), 763
k_fatal_error_reason.K_ERR_KERNEL_OOPS (C

enumerator), 763
k_fatal_error_reason.K_ERR_KERNEL_PANIC (C

enumerator), 763
k_fatal_error_reason.K_ERR_SPURIOUS_IRQ (C

enumerator), 763
k_fatal_error_reason.K_ERR_STACK_CHK_FAIL

(C enumerator), 763
k_fatal_halt (C function), 764
k_fifo_alloc_put (C macro), 687
k_fifo_cancel_wait (C macro), 687
K_FIFO_DEFINE (C macro), 689
k_fifo_get (C macro), 688
k_fifo_init (C macro), 686
k_fifo_is_empty (C macro), 688
k_fifo_peek_head (C macro), 689
k_fifo_peek_tail (C macro), 689
k_fifo_put (C macro), 687
k_fifo_put_list (C macro), 687
k_fifo_put_slist (C macro), 688
K_FOREVER (C macro), 736
K_FP_REGS (C macro), 596
k_free (C function), 726
k_futex_wait (C function), 670
k_futex_wake (C function), 670
k_heap (C struct), 726
k_heap_aligned_alloc (C function), 724
k_heap_alloc (C function), 725
K_HEAP_DEFINE (C macro), 723
K_HEAP_DEFINE_NOCACHE (C macro), 724
k_heap_free (C function), 725
k_heap_init (C function), 724
K_HOURS (C macro), 736
K_INHERIT_PERMS (C macro), 597
k_is_in_isr (C function), 652

k_is_pre_kernel (C function), 652
k_is_preempt_thread (C function), 652
K_KERNEL_PINNED_STACK_ARRAY_DEFINE (C

macro), 609
K_KERNEL_PINNED_STACK_ARRAY_EXTERN (C

macro), 609
K_KERNEL_PINNED_STACK_DEFINE (C macro), 609
K_KERNEL_STACK_ARRAY_DEFINE (C macro), 609
K_KERNEL_STACK_ARRAY_EXTERN (C macro), 608
K_KERNEL_STACK_DEFINE (C macro), 609
K_KERNEL_STACK_MEMBER (C macro), 610
K_KERNEL_STACK_SIZEOF (C macro), 610
k_lifo_alloc_put (C macro), 692
K_LIFO_DEFINE (C macro), 693
k_lifo_get (C macro), 692
k_lifo_init (C macro), 692
k_lifo_put (C macro), 692
k_malloc (C function), 726
k_mbox (C struct), 715
k_mbox.rx_msg_queue (C var), 715
k_mbox.tx_msg_queue (C var), 715
k_mbox_async_put (C function), 714
k_mbox_data_get (C function), 714
K_MBOX_DEFINE (C macro), 713
k_mbox_get (C function), 714
k_mbox_init (C function), 713
k_mbox_msg (C struct), 715
k_mbox_msg.info (C var), 715
k_mbox_msg.rx_source_thread (C var), 715
k_mbox_msg.size (C var), 715
k_mbox_msg.tx_block (C var), 715
k_mbox_msg.tx_data (C var), 715
k_mbox_msg.tx_target_thread (C var), 715
k_mbox_put (C function), 714
k_mem_domain (C struct), 1412
k_mem_domain.mem_domain_q (C var), 1412
k_mem_domain.num_partitions (C var), 1412
k_mem_domain.partitions (C var), 1412
k_mem_domain_add_partition (C function), 1411
k_mem_domain_add_thread (C function), 1411
k_mem_domain_default (C var), 1411
k_mem_domain_init (C function), 1410
k_mem_domain_remove_partition (C function),

1411
k_mem_page_in (C function), 805
k_mem_page_out (C function), 805
k_mem_paging_backing_store_init (C function),

809
k_mem_paging_backing_store_location_free

(C function), 808
k_mem_paging_backing_store_location_get (C

function), 807
k_mem_paging_backing_store_page_finalize

(C function), 808
k_mem_paging_backing_store_page_in (C func-

tion), 808
k_mem_paging_backing_store_page_out (C func-

tion), 808

Index 1959

Zephyr Project Documentation, Release 2.7.0-rc2

k_mem_paging_eviction_init (C function), 807
k_mem_paging_eviction_select (C function),

807
k_mem_paging_histogram_backing_store_page_in_get

(C function), 806
k_mem_paging_histogram_backing_store_page_out_get

(C function), 807
k_mem_paging_histogram_eviction_get (C func-

tion), 806
k_mem_paging_stats_get (C function), 806
k_mem_paging_thread_stats_get (C function),

806
k_mem_partition (C struct), 1412
k_mem_partition.attr (C var), 1412
k_mem_partition.size (C var), 1412
k_mem_partition.start (C var), 1412
K_MEM_PARTITION_DEFINE (C macro), 1410
k_mem_pin (C function), 806
k_mem_slab_alloc (C function), 729
K_MEM_SLAB_DEFINE (C macro), 728
k_mem_slab_free (C function), 730
k_mem_slab_init (C function), 729
k_mem_slab_max_used_get (C function), 730
k_mem_slab_num_free_get (C function), 730
k_mem_slab_num_used_get (C function), 730
k_mem_unpin (C function), 806
K_MINUTES (C macro), 735
K_MSEC (C macro), 735
k_msgq (C struct), 703
k_msgq.buffer_end (C var), 703
k_msgq.buffer_start (C var), 703
k_msgq.flags (C var), 704
k_msgq.lock (C var), 703
k_msgq.max_msgs (C var), 703
k_msgq.msg_size (C var), 703
k_msgq.read_ptr (C var), 703
k_msgq.used_msgs (C var), 704
k_msgq.wait_q (C var), 703
k_msgq.write_ptr (C var), 704
k_msgq_alloc_init (C function), 700
k_msgq_attrs (C struct), 704
k_msgq_attrs.max_msgs (C var), 704
k_msgq_attrs.msg_size (C var), 704
k_msgq_attrs.used_msgs (C var), 704
k_msgq_cleanup (C function), 701
K_MSGQ_DEFINE (C macro), 700
K_MSGQ_FLAG_ALLOC (C macro), 700
k_msgq_get (C function), 701
k_msgq_get_attrs (C function), 703
k_msgq_init (C function), 700
k_msgq_num_free_get (C function), 702
k_msgq_num_used_get (C function), 703
k_msgq_peek (C function), 702
k_msgq_purge (C function), 702
k_msgq_put (C function), 701
k_msleep (C function), 601
k_mutex (C struct), 669
k_mutex.lock_count (C var), 669

k_mutex.owner (C var), 669
k_mutex.owner_orig_prio (C var), 669
k_mutex.wait_q (C var), 669
K_MUTEX_DEFINE (C macro), 668
k_mutex_init (C function), 668
k_mutex_lock (C function), 668
k_mutex_unlock (C function), 669
K_NO_WAIT (C macro), 734
K_NSEC (C macro), 734
K_OBJ_FLAG_ALLOC (C macro), 1417
K_OBJ_FLAG_DRIVER (C macro), 1417
K_OBJ_FLAG_INITIALIZED (C macro), 1416
K_OBJ_FLAG_PUBLIC (C macro), 1416
k_object_access_all_grant (C function), 1417
k_object_access_grant (C function), 1417
k_object_access_revoke (C function), 1417
k_object_alloc (C function), 1417
k_object_free (C function), 1418
k_object_release (C function), 1417
k_pipe (C struct), 720
k_pipe.buffer (C var), 721
k_pipe.bytes_used (C var), 721
k_pipe.flags (C var), 721
k_pipe.lock (C var), 721
k_pipe.read_index (C var), 721
k_pipe.readers (C var), 721
k_pipe.size (C var), 721
k_pipe.write_index (C var), 721
k_pipe.writers (C var), 721
k_pipe_alloc_init (C function), 719
k_pipe_cleanup (C function), 719
K_PIPE_DEFINE (C macro), 718
k_pipe_get (C function), 720
k_pipe_init (C function), 719
k_pipe_put (C function), 719
k_pipe_read_avail (C function), 720
k_pipe_write_avail (C function), 720
k_poll (C function), 658
k_poll_event (C struct), 660
k_poll_event.mode (C var), 660
k_poll_event.poller (C var), 660
k_poll_event.state (C var), 660
k_poll_event.tag (C var), 660
k_poll_event.type (C var), 660
k_poll_event.unused (C var), 660
k_poll_event.[anonymous] (C var), 660
k_poll_event_init (C function), 658
K_POLL_EVENT_INITIALIZER (C macro), 657
K_POLL_EVENT_STATIC_INITIALIZER (C macro),

657
k_poll_modes (C enum), 658
k_poll_modes.K_POLL_MODE_NOTIFY_ONLY (C

enumerator), 658
k_poll_modes.K_POLL_NUM_MODES (C enumera-

tor), 658
k_poll_signal (C struct), 660
k_poll_signal.poll_events (C var), 660
k_poll_signal.result (C var), 660

1960 Index

Zephyr Project Documentation, Release 2.7.0-rc2

k_poll_signal.signaled (C var), 660
k_poll_signal_check (C function), 659
k_poll_signal_init (C function), 659
K_POLL_SIGNAL_INITIALIZER (C macro), 657
k_poll_signal_raise (C function), 659
k_poll_signal_reset (C function), 659
K_POLL_STATE_CANCELLED (C macro), 657
K_POLL_STATE_DATA_AVAILABLE (C macro), 657
K_POLL_STATE_FIFO_DATA_AVAILABLE (C macro),

657
K_POLL_STATE_MSGQ_DATA_AVAILABLE (C macro),

657
K_POLL_STATE_NOT_READY (C macro), 657
K_POLL_STATE_SEM_AVAILABLE (C macro), 657
K_POLL_STATE_SIGNALED (C macro), 657
K_POLL_TYPE_DATA_AVAILABLE (C macro), 657
K_POLL_TYPE_FIFO_DATA_AVAILABLE (C macro),

657
K_POLL_TYPE_IGNORE (C macro), 657
K_POLL_TYPE_MSGQ_DATA_AVAILABLE (C macro),

657
K_POLL_TYPE_SEM_AVAILABLE (C macro), 657
K_POLL_TYPE_SIGNAL (C macro), 657
k_queue_alloc_append (C function), 681
k_queue_alloc_prepend (C function), 681
k_queue_append (C function), 680
k_queue_append_list (C function), 682
k_queue_cancel_wait (C function), 680
K_QUEUE_DEFINE (C macro), 680
k_queue_get (C function), 682
k_queue_init (C function), 680
k_queue_insert (C function), 682
k_queue_is_empty (C function), 683
k_queue_merge_slist (C function), 682
k_queue_peek_head (C function), 684
k_queue_peek_tail (C function), 684
k_queue_prepend (C function), 681
k_queue_remove (C function), 683
k_queue_unique_append (C function), 683
k_sched_lock (C function), 606
k_sched_time_slice_set (C function), 605
k_sched_unlock (C function), 606
K_SECONDS (C macro), 735
k_sem_count_get (C function), 664
K_SEM_DEFINE (C macro), 662
k_sem_give (C function), 663
k_sem_init (C function), 663
K_SEM_MAX_LIMIT (C macro), 662
k_sem_reset (C function), 664
k_sem_take (C function), 663
k_sleep (C function), 601
k_stack_alloc_init (C function), 695
k_stack_cleanup (C function), 696
K_STACK_DEFINE (C macro), 695
k_stack_init (C function), 695
k_stack_pop (C function), 696
k_stack_push (C function), 696
k_sys_fatal_error_handler (C function), 764

k_thread (C struct), 607
k_thread.arch (C var), 608
k_thread.callee_saved (C var), 607
k_thread.custom_data (C var), 608
k_thread.entry (C var), 608
k_thread.init_data (C var), 607
k_thread.join_queue (C var), 607
k_thread.mem_domain_info (C var), 608
k_thread.next_thread (C var), 608
k_thread.resource_pool (C var), 608
k_thread.stack_info (C var), 608
k_thread.stack_obj (C var), 608
k_thread.swap_retval (C var), 608
k_thread.switch_handle (C var), 608
k_thread.syscall_frame (C var), 608
k_thread_abort (C function), 602
K_THREAD_ACCESS_GRANT (C macro), 1416
k_thread_access_grant (C macro), 597
k_thread_cpu_mask_clear (C function), 604
k_thread_cpu_mask_disable (C function), 605
k_thread_cpu_mask_enable (C function), 604
k_thread_cpu_mask_enable_all (C function),

604
k_thread_create (C function), 599
k_thread_custom_data_get (C function), 606
k_thread_custom_data_set (C function), 606
k_thread_deadline_set (C function), 603
K_THREAD_DEFINE (C macro), 597
k_thread_foreach (C function), 598
k_thread_foreach_unlocked (C function), 598
k_thread_heap_assign (C function), 600
k_thread_join (C function), 600
k_thread_name_copy (C function), 607
k_thread_name_get (C function), 607
k_thread_name_set (C function), 606
K_THREAD_PINNED_STACK_ARRAY_DEFINE (C

macro), 611
K_THREAD_PINNED_STACK_DEFINE (C macro), 611
k_thread_priority_get (C function), 603
k_thread_priority_set (C function), 603
k_thread_resume (C function), 605
K_THREAD_STACK_ARRAY_DEFINE (C macro), 611
K_THREAD_STACK_DEFINE (C macro), 610
K_THREAD_STACK_LEN (C macro), 611
K_THREAD_STACK_MEMBER (C macro), 612
K_THREAD_STACK_SIZEOF (C macro), 610
k_thread_start (C function), 602
k_thread_state_str (C function), 607
k_thread_suspend (C function), 605
k_thread_system_pool_assign (C function), 600
k_thread_timeout_expires_ticks (C function),

602
k_thread_timeout_remaining_ticks (C func-

tion), 602
k_thread_user_cb_t (C type), 598
k_thread_user_mode_enter (C function), 600
K_TICKS (C macro), 735
K_TICKS_FOREVER (C macro), 736

Index 1961

Zephyr Project Documentation, Release 2.7.0-rc2

k_ticks_t (C type), 736
K_TIMEOUT_EQ (C macro), 736
k_timeout_t (C struct), 739
K_TIMER_DEFINE (C macro), 742
k_timer_expires_ticks (C function), 744
k_timer_expiry_t (C type), 743
k_timer_init (C function), 743
k_timer_remaining_get (C function), 744
k_timer_remaining_ticks (C function), 744
k_timer_start (C function), 743
k_timer_status_get (C function), 744
k_timer_status_sync (C function), 744
k_timer_stop (C function), 743
k_timer_stop_t (C type), 743
k_timer_user_data_get (C function), 745
k_timer_user_data_set (C function), 745
k_uptime_delta (C function), 738
k_uptime_get (C function), 738
k_uptime_get_32 (C function), 738
k_uptime_ticks (C function), 738
K_USEC (C macro), 735
K_USER (C macro), 597
k_usleep (C function), 601
k_wakeup (C function), 602
k_work (C struct), 639
k_work_busy_get (C function), 627
k_work_cancel (C function), 629
k_work_cancel_delayable (C function), 635
k_work_cancel_delayable_sync (C function),

635
k_work_cancel_sync (C function), 629
K_WORK_DEFINE (C macro), 625
k_work_delayable (C struct), 639
k_work_delayable_busy_get (C function), 632
K_WORK_DELAYABLE_DEFINE (C macro), 625
k_work_delayable_expires_get (C function),

632
k_work_delayable_from_work (C function), 631
k_work_delayable_is_pending (C function), 632
k_work_delayable_remaining_get (C function),

632
k_work_flush (C function), 628
k_work_flush_delayable (C function), 634
k_work_handler_t (C type), 626
k_work_init (C function), 627
k_work_init_delayable (C function), 631
k_work_is_pending (C function), 627
k_work_pending (C function), 636
k_work_poll_cancel (C function), 639
k_work_poll_init (C function), 638
k_work_poll_submit (C function), 638
k_work_poll_submit_to_queue (C function), 638
k_work_q (C struct), 640
k_work_q_start (C function), 636
k_work_queue_config (C struct), 640
k_work_queue_config.name (C var), 640
k_work_queue_config.no_yield (C var), 640
k_work_queue_drain (C function), 630

k_work_queue_init (C function), 630
k_work_queue_start (C function), 630
k_work_queue_thread_get (C function), 630
k_work_queue_unplug (C function), 631
k_work_reschedule (C function), 634
k_work_reschedule_for_queue (C function), 633
k_work_schedule (C function), 633
k_work_schedule_for_queue (C function), 633
k_work_submit (C function), 628
k_work_submit_to_queue (C function), 628
k_work_sync (C struct), 639
K_WORK_USER_DEFINE (C macro), 625
k_work_user_handler_t (C type), 626
k_work_user_init (C function), 636
k_work_user_is_pending (C function), 636
k_work_user_queue_start (C function), 637
k_work_user_submit_to_queue (C function), 637
k_yield (C function), 602
KB (C macro), 1430
KHZ (C macro), 1430
kscan_callback_t (C type), 1191
kscan_config (C function), 1191
kscan_disable_callback (C function), 1192
kscan_enable_callback (C function), 1191

L
led_api_blink (C type), 1192
led_api_get_info (C type), 1192
led_api_off (C type), 1193
led_api_on (C type), 1193
led_api_set_brightness (C type), 1193
led_api_set_color (C type), 1193
led_api_update_channels (C type), 1196
led_api_update_rgb (C type), 1196
led_api_write_channels (C type), 1193
led_blink (C function), 1193
led_driver_api (C struct), 1196
led_get_info (C function), 1194
led_info (C struct), 1195
led_off (C function), 1195
led_on (C function), 1195
led_rgb (C struct), 1197
led_rgb.b (C var), 1197
led_rgb.g (C var), 1197
led_rgb.r (C var), 1197
led_set_brightness (C function), 1194
led_set_channel (C function), 1194
led_set_color (C function), 1195
led_strip_driver_api (C struct), 1197
led_strip_update_channels (C function), 1196
led_strip_update_rgb (C function), 1196
led_write_channels (C function), 1194
LIST_DROP_EMPTY (C macro), 1433
log_arg_t (C type), 790
log_backend (C struct), 799
log_backend_activate (C function), 799
log_backend_api (C struct), 799
log_backend_control_block (C struct), 799

1962 Index

Zephyr Project Documentation, Release 2.7.0-rc2

log_backend_count_get (C function), 799
log_backend_deactivate (C function), 799
LOG_BACKEND_DEFINE (C macro), 797
log_backend_disable (C function), 789
log_backend_dropped (C function), 798
log_backend_enable (C function), 789
log_backend_get (C function), 799
log_backend_id_get (C function), 798
log_backend_id_set (C function), 798
log_backend_is_active (C function), 799
log_backend_msg2_process (C function), 797
log_backend_panic (C function), 798
log_backend_put (C function), 797
log_backend_put_sync_hexdump (C function),

798
log_backend_put_sync_string (C function), 797
log_backend_shell_api (C var), 1336
log_buffered_cnt (C function), 788
log_core_init (C function), 787
LOG_CORE_INIT (C macro), 787
LOG_DBG (C macro), 782
log_domain_name_get (C function), 788
LOG_ERR (C macro), 782
log_filter_get (C function), 788
log_filter_set (C function), 789
LOG_HEXDUMP_DBG (C macro), 784
LOG_HEXDUMP_ERR (C macro), 784
LOG_HEXDUMP_INF (C macro), 784
LOG_HEXDUMP_WRN (C macro), 784
LOG_INF (C macro), 782
log_init (C function), 787
LOG_INIT (C macro), 787
LOG_INST_DBG (C macro), 783
LOG_INST_ERR (C macro), 783
LOG_INST_HEXDUMP_DBG (C macro), 785
LOG_INST_HEXDUMP_ERR (C macro), 784
LOG_INST_HEXDUMP_INF (C macro), 785
LOG_INST_HEXDUMP_WRN (C macro), 785
LOG_INST_INF (C macro), 783
LOG_INST_WRN (C macro), 783
LOG_LEVEL_SET (C macro), 786
LOG_MAX_NARGS (C macro), 789
LOG_MODULE_DECLARE (C macro), 786
LOG_MODULE_REGISTER (C macro), 785
log_msg (C struct), 796
log_msg.hdr (C var), 796
log_msg.log_msg_data (C union), 796
log_msg.log_msg_data.ext (C var), 796
log_msg.log_msg_data.single (C var), 796
log_msg.next (C var), 796
log_msg.payload (C var), 796
log_msg_arg_get (C function), 791
log_msg_chunk (C union), 797
log_msg_chunk.cont (C var), 797
log_msg_chunk.head (C var), 797
log_msg_chunk_alloc (C function), 792
log_msg_cont (C struct), 796

log_msg_cont.log_msg_cont_data (C union),
796

log_msg_cont.log_msg_cont_data.args (C var),
797

log_msg_cont.log_msg_cont_data.bytes (C
var), 797

log_msg_cont.next (C var), 796
log_msg_create_0 (C function), 792
log_msg_create_1 (C function), 793
log_msg_create_2 (C function), 793
log_msg_create_3 (C function), 793
log_msg_create_n (C function), 794
log_msg_domain_id_get (C function), 790
log_msg_ext_head_data (C struct), 795
log_msg_ext_head_data.log_msg_ext_head_data_data

(C union), 795
log_msg_ext_head_data.log_msg_ext_head_data_data.args

(C var), 796
log_msg_ext_head_data.log_msg_ext_head_data_data.bytes

(C var), 796
log_msg_generic_hdr (C struct), 794
log_msg_get (C function), 790
log_msg_hdr (C struct), 795
log_msg_hdr.ids (C var), 795
log_msg_hdr.log_msg_hdr_params (C union),

795
log_msg_hdr.log_msg_hdr_params.generic (C

var), 795
log_msg_hdr.log_msg_hdr_params.hexdump (C

var), 795
log_msg_hdr.log_msg_hdr_params.raw (C var),

795
log_msg_hdr.log_msg_hdr_params.std (C var),

795
log_msg_hdr.ref_cnt (C var), 795
log_msg_hdr.timestamp (C var), 795
log_msg_head_data (C union), 795
log_msg_head_data.args (C var), 795
log_msg_head_data.bytes (C var), 795
LOG_MSG_HEXDUMP_BYTES_HEAD_CHUNK (C macro),

789
LOG_MSG_HEXDUMP_BYTES_SINGLE_CHUNK (C

macro), 789
log_msg_hexdump_create (C function), 792
log_msg_hexdump_data_get (C function), 792
log_msg_hexdump_data_put (C function), 792
log_msg_hexdump_hdr (C struct), 795
LOG_MSG_HEXDUMP_LENGTH_BITS (C macro), 790
LOG_MSG_HEXDUMP_MAX_LENGTH (C macro), 790
log_msg_ids (C struct), 794
log_msg_ids.domain_id (C var), 794
log_msg_ids.level (C var), 794
log_msg_ids.source_id (C var), 794
log_msg_is_std (C function), 791
log_msg_level_get (C function), 791
log_msg_mem_get_free (C function), 794
log_msg_mem_get_max_used (C function), 794
log_msg_mem_get_used (C function), 794

Index 1963

Zephyr Project Documentation, Release 2.7.0-rc2

log_msg_nargs_get (C function), 791
LOG_MSG_NARGS_HEAD_CHUNK (C macro), 789
LOG_MSG_NARGS_SINGLE_CHUNK (C macro), 789
log_msg_no_space_handle (C function), 792
log_msg_pool_init (C function), 790
log_msg_put (C function), 790
log_msg_source_id_get (C function), 791
log_msg_std_hdr (C struct), 794
log_msg_str_get (C function), 791
log_msg_timestamp_get (C function), 791
LOG_MSG_TYPE_HEXDUMP (C macro), 790
LOG_MSG_TYPE_STD (C macro), 790
log_output (C struct), 802
log_output_control_block (C struct), 802
log_output_ctx_set (C function), 802
LOG_OUTPUT_DEFINE (C macro), 800
log_output_dropped_process (C function), 802
LOG_OUTPUT_FLAG_COLORS (C macro), 800
LOG_OUTPUT_FLAG_CRLF_LFONLY (C macro), 800
LOG_OUTPUT_FLAG_CRLF_NONE (C macro), 800
LOG_OUTPUT_FLAG_FORMAT_SYSLOG (C macro), 800
LOG_OUTPUT_FLAG_FORMAT_SYST (C macro), 800
LOG_OUTPUT_FLAG_FORMAT_TIMESTAMP (C macro),

800
LOG_OUTPUT_FLAG_LEVEL (C macro), 800
LOG_OUTPUT_FLAG_TIMESTAMP (C macro), 800
log_output_flush (C function), 802
log_output_func_t (C type), 800
log_output_hexdump (C function), 801
log_output_hostname_set (C function), 802
log_output_msg2_process (C function), 801
log_output_msg_process (C function), 801
log_output_string (C function), 801
log_output_timestamp_freq_set (C function),

802
log_output_timestamp_to_us (C function), 802
log_panic (C function), 788
LOG_PANIC (C macro), 787
log_printk (C function), 787
LOG_PRINTK (C macro), 783
log_process (C function), 788
LOG_PROCESS (C macro), 787
log_set_timestamp_func (C function), 787
log_source_name_get (C function), 788
log_src_cnt_get (C function), 788
log_strdup (C function), 787
log_thread_set (C function), 787
log_timestamp_get_t (C type), 787
LOG_WRN (C macro), 782
logger (runners.core.ZephyrBinaryRunner at-

tribute), 1851
lpc_peripheral_opcode (C enum), 1276
lpc_peripheral_opcode.E8042_CLEAR_FLAG (C

enumerator), 1277
lpc_peripheral_opcode.E8042_CLEAR_OBF (C

enumerator), 1277
lpc_peripheral_opcode.E8042_IBF_HAS_CHAR

(C enumerator), 1276

lpc_peripheral_opcode.E8042_OBF_HAS_CHAR
(C enumerator), 1276

lpc_peripheral_opcode.E8042_PAUSE_IRQ (C
enumerator), 1277

lpc_peripheral_opcode.E8042_READ_KB_STS (C
enumerator), 1277

lpc_peripheral_opcode.E8042_RESUME_IRQ (C
enumerator), 1277

lpc_peripheral_opcode.E8042_SET_FLAG (C
enumerator), 1277

lpc_peripheral_opcode.E8042_WRITE_KB_CHAR
(C enumerator), 1276

lpc_peripheral_opcode.E8042_WRITE_MB_CHAR
(C enumerator), 1277

lpc_peripheral_opcode.EACPI_IBF_HAS_CHAR
(C enumerator), 1277

lpc_peripheral_opcode.EACPI_OBF_HAS_CHAR
(C enumerator), 1277

lpc_peripheral_opcode.EACPI_READ_STS (C
enumerator), 1277

lpc_peripheral_opcode.EACPI_WRITE_CHAR (C
enumerator), 1277

lpc_peripheral_opcode.EACPI_WRITE_STS (C
enumerator), 1277

lwm2m_acknowledge (C function), 1034
lwm2m_ctx (C struct), 1035
lwm2m_ctx.bootstrap_mode (C var), 1036
lwm2m_ctx.fault_cb (C var), 1036
lwm2m_ctx.notify_timeout_cb (C var), 1036
lwm2m_ctx.pendings (C var), 1035
lwm2m_ctx.processed_req (C var), 1035
lwm2m_ctx.remote_addr (C var), 1035
lwm2m_ctx.sec_obj_inst (C var), 1036
lwm2m_ctx.sock_fd (C var), 1036
lwm2m_ctx.srv_obj_inst (C var), 1036
lwm2m_ctx.use_dtls (C var), 1036
lwm2m_ctx.validate_buf (C var), 1036
lwm2m_ctx_event_cb_t (C type), 1026
lwm2m_device_add_err (C function), 1027
LWM2M_DEVICE_BATTERY_STATUS_CHARGE_COMP (C

macro), 1023
LWM2M_DEVICE_BATTERY_STATUS_CHARGING (C

macro), 1023
LWM2M_DEVICE_BATTERY_STATUS_DAMAGED (C

macro), 1023
LWM2M_DEVICE_BATTERY_STATUS_LOW (C macro),

1023
LWM2M_DEVICE_BATTERY_STATUS_NORMAL (C

macro), 1023
LWM2M_DEVICE_BATTERY_STATUS_NOT_INST (C

macro), 1023
LWM2M_DEVICE_BATTERY_STATUS_UNKNOWN (C

macro), 1023
LWM2M_DEVICE_ERROR_EXT_POWER_SUPPLY_OFF (C

macro), 1023
LWM2M_DEVICE_ERROR_GPS_FAILURE (C macro),

1023
LWM2M_DEVICE_ERROR_LOW_POWER (C macro), 1023

1964 Index

Zephyr Project Documentation, Release 2.7.0-rc2

LWM2M_DEVICE_ERROR_LOW_SIGNAL_STRENGTH (C
macro), 1023

LWM2M_DEVICE_ERROR_NETWORK_FAILURE (C
macro), 1023

LWM2M_DEVICE_ERROR_NONE (C macro), 1022
LWM2M_DEVICE_ERROR_OUT_OF_MEMORY (C macro),

1023
LWM2M_DEVICE_ERROR_PERIPHERAL_FAILURE (C

macro), 1023
LWM2M_DEVICE_ERROR_SMS_FAILURE (C macro),

1023
LWM2M_DEVICE_PWR_SRC_TYPE_AC_POWER (C

macro), 1022
LWM2M_DEVICE_PWR_SRC_TYPE_BAT_EXT (C macro),

1022
LWM2M_DEVICE_PWR_SRC_TYPE_BAT_INT (C macro),

1022
LWM2M_DEVICE_PWR_SRC_TYPE_DC_POWER (C

macro), 1022
LWM2M_DEVICE_PWR_SRC_TYPE_MAX (C macro),

1022
LWM2M_DEVICE_PWR_SRC_TYPE_PWR_OVER_ETH (C

macro), 1022
LWM2M_DEVICE_PWR_SRC_TYPE_SOLAR (C macro),

1022
LWM2M_DEVICE_PWR_SRC_TYPE_UNUSED (C macro),

1022
LWM2M_DEVICE_PWR_SRC_TYPE_USB (C macro),

1022
lwm2m_engine_create_obj_inst (C function),

1027
lwm2m_engine_create_res_inst (C function),

1034
lwm2m_engine_delete_obj_inst (C function),

1027
lwm2m_engine_delete_res_inst (C function),

1034
lwm2m_engine_execute_cb_t (C type), 1026
lwm2m_engine_get_bool (C function), 1031
lwm2m_engine_get_data_cb_t (C type), 1025
lwm2m_engine_get_float32 (C function), 1031
lwm2m_engine_get_objlnk (C function), 1032
lwm2m_engine_get_opaque (C function), 1030
lwm2m_engine_get_res_data (C function), 1033
lwm2m_engine_get_s16 (C function), 1031
lwm2m_engine_get_s32 (C function), 1031
lwm2m_engine_get_s64 (C function), 1031
lwm2m_engine_get_s8 (C function), 1031
lwm2m_engine_get_string (C function), 1030
lwm2m_engine_get_u16 (C function), 1030
lwm2m_engine_get_u32 (C function), 1030
lwm2m_engine_get_u64 (C function), 1030
lwm2m_engine_get_u8 (C function), 1030
lwm2m_engine_register_create_callback (C

function), 1033
lwm2m_engine_register_delete_callback (C

function), 1033
lwm2m_engine_register_exec_callback (C func-

tion), 1033
lwm2m_engine_register_post_write_callback

(C function), 1032
lwm2m_engine_register_pre_write_callback

(C function), 1032
lwm2m_engine_register_read_callback (C func-

tion), 1032
lwm2m_engine_register_validate_callback (C

function), 1032
lwm2m_engine_set_bool (C function), 1029
lwm2m_engine_set_data_cb_t (C type), 1025
lwm2m_engine_set_float32 (C function), 1029
lwm2m_engine_set_objlnk (C function), 1030
lwm2m_engine_set_opaque (C function), 1028
lwm2m_engine_set_res_data (C function), 1033
lwm2m_engine_set_s16 (C function), 1029
lwm2m_engine_set_s32 (C function), 1029
lwm2m_engine_set_s64 (C function), 1029
lwm2m_engine_set_s8 (C function), 1029
lwm2m_engine_set_string (C function), 1028
lwm2m_engine_set_u16 (C function), 1028
lwm2m_engine_set_u32 (C function), 1028
lwm2m_engine_set_u64 (C function), 1028
lwm2m_engine_set_u8 (C function), 1028
lwm2m_engine_start (C function), 1034
lwm2m_engine_update_observer_max_period (C

function), 1027
lwm2m_engine_update_observer_min_period (C

function), 1027
lwm2m_engine_update_service_period (C func-

tion), 1034
lwm2m_engine_user_cb_t (C type), 1025
LWM2M_FLOAT32_DEC_MAX (C macro), 1024
LWM2M_HAS_RES_FLAG (C macro), 1024
lwm2m_notify_timeout_cb_t (C type), 1025
LWM2M_OBJECT_ACCESS_CONTROL_ID (C macro),

1021
LWM2M_OBJECT_CONNECTIVITY_MONITORING_ID (C

macro), 1021
LWM2M_OBJECT_CONNECTIVITY_STATISTICS_ID (C

macro), 1021
LWM2M_OBJECT_DEVICE_ID (C macro), 1021
LWM2M_OBJECT_FIRMWARE_ID (C macro), 1021
LWM2M_OBJECT_LOCATION_ID (C macro), 1021
LWM2M_OBJECT_SECURITY_ID (C macro), 1021
LWM2M_OBJECT_SERVER_ID (C macro), 1021
lwm2m_objlnk (C struct), 1036
LWM2M_OBJLNK_MAX_ID (C macro), 1024
lwm2m_rd_client_event (C enum), 1026
lwm2m_rd_client_event.LWM2M_RD_CLIENT_EVENT_BOOTSTRAP_REG_COMPLETE

(C enumerator), 1026
lwm2m_rd_client_event.LWM2M_RD_CLIENT_EVENT_BOOTSTRAP_REG_FAILURE

(C enumerator), 1026
lwm2m_rd_client_event.LWM2M_RD_CLIENT_EVENT_BOOTSTRAP_TRANSFER_COMPLETE

(C enumerator), 1026
lwm2m_rd_client_event.LWM2M_RD_CLIENT_EVENT_DEREGISTER_FAILURE

(C enumerator), 1027
lwm2m_rd_client_event.LWM2M_RD_CLIENT_EVENT_DISCONNECT

Index 1965

Zephyr Project Documentation, Release 2.7.0-rc2

(C enumerator), 1027
lwm2m_rd_client_event.LWM2M_RD_CLIENT_EVENT_NETWORK_ERROR

(C enumerator), 1027
lwm2m_rd_client_event.LWM2M_RD_CLIENT_EVENT_NONE

(C enumerator), 1026
lwm2m_rd_client_event.LWM2M_RD_CLIENT_EVENT_QUEUE_MODE_RX_OFF

(C enumerator), 1027
lwm2m_rd_client_event.LWM2M_RD_CLIENT_EVENT_REG_UPDATE_COMPLETE

(C enumerator), 1026
lwm2m_rd_client_event.LWM2M_RD_CLIENT_EVENT_REG_UPDATE_FAILURE

(C enumerator), 1026
lwm2m_rd_client_event.LWM2M_RD_CLIENT_EVENT_REGISTRATION_COMPLETE

(C enumerator), 1026
lwm2m_rd_client_event.LWM2M_RD_CLIENT_EVENT_REGISTRATION_FAILURE

(C enumerator), 1026
LWM2M_RD_CLIENT_FLAG_BOOTSTRAP (C macro),

1024
lwm2m_rd_client_start (C function), 1035
lwm2m_rd_client_stop (C function), 1035
lwm2m_rd_client_update (C function), 1035
LWM2M_RES_DATA_FLAG_RO (C macro), 1024
LWM2M_RES_DATA_READ_ONLY (C macro), 1024
lwm2m_socket_fault_cb_t (C type), 1025

M
MACRO_MAP_CAT (C macro), 1438
MACRO_MAP_CAT_N (C macro), 1438
MAX (C macro), 1429
maxim_ds3231_alarm (C struct), 1220
maxim_ds3231_alarm.flags (C var), 1221
maxim_ds3231_alarm.handler (C var), 1221
maxim_ds3231_alarm.time (C var), 1221
maxim_ds3231_alarm.user_data (C var), 1221
maxim_ds3231_alarm_callback_handler_t (C

type), 1216
maxim_ds3231_check_alarms (C function), 1220
maxim_ds3231_ctrl_update (C function), 1217
maxim_ds3231_get_alarm (C function), 1218
maxim_ds3231_get_syncpoint (C function), 1219
maxim_ds3231_notify_callback (C type), 1216
maxim_ds3231_read_syncclock (C function),

1216
maxim_ds3231_req_syncpoint (C function), 1219
maxim_ds3231_set (C function), 1220
maxim_ds3231_set_alarm (C function), 1218
maxim_ds3231_stat_update (C function), 1217
maxim_ds3231_syncclock_frequency (C func-

tion), 1217
maxim_ds3231_synchronize (C function), 1218
maxim_ds3231_syncpoint (C struct), 1221
maxim_ds3231_syncpoint.rtc (C var), 1221
maxim_ds3231_syncpoint.syncclock (C var),

1221
MB (C macro), 1430
mb_display_get (C function), 559
mb_display_image (C function), 559
mb_display_mode (C enum), 558

mb_display_mode.MB_DISPLAY_FLAG_LOOP (C
enumerator), 559

mb_display_mode.MB_DISPLAY_MODE_DEFAULT (C
enumerator), 559

mb_display_mode.MB_DISPLAY_MODE_SCROLL (C
enumerator), 559

mb_display_mode.MB_DISPLAY_MODE_SINGLE (C
enumerator), 559

mb_display_print (C function), 559
mb_display_stop (C function), 560
MB_IMAGE (C macro), 558
mb_image (C struct), 560
mdio_bus_disable (C function), 1261
mdio_bus_enable (C function), 1261
mdio_read (C function), 1261
mdio_write (C function), 1261
METAWARE_ROOT, 1466
MHZ (C macro), 1430
MII_ADVERTISE_100_FULL (C macro), 989
MII_ADVERTISE_100_HALF (C macro), 989
MII_ADVERTISE_100BASE_T4 (C macro), 988
MII_ADVERTISE_10_FULL (C macro), 989
MII_ADVERTISE_10_HALF (C macro), 989
MII_ADVERTISE_ALL (C macro), 989
MII_ADVERTISE_ASYM_PAUSE (C macro), 988
MII_ADVERTISE_LPACK (C macro), 988
MII_ADVERTISE_NEXT_PAGE (C macro), 988
MII_ADVERTISE_PAUSE (C macro), 988
MII_ADVERTISE_REMOTE_FAULT (C macro), 988
MII_ADVERTISE_SEL_IEEE_802_3 (C macro), 989
MII_ADVERTISE_SEL_MASK (C macro), 989
MII_ANAR (C macro), 986
MII_ANER (C macro), 986
MII_ANLPAR (C macro), 986
MII_ANLPRNPR (C macro), 986
MII_ANNPTR (C macro), 986
MII_BMCR (C macro), 986
MII_BMCR_AUTONEG_ENABLE (C macro), 987
MII_BMCR_AUTONEG_RESTART (C macro), 987
MII_BMCR_DUPLEX_MODE (C macro), 987
MII_BMCR_ISOLATE (C macro), 987
MII_BMCR_LOOPBACK (C macro), 986
MII_BMCR_POWER_DOWN (C macro), 987
MII_BMCR_RESET (C macro), 986
MII_BMCR_SPEED_10 (C macro), 987
MII_BMCR_SPEED_100 (C macro), 987
MII_BMCR_SPEED_1000 (C macro), 987
MII_BMCR_SPEED_LSB (C macro), 987
MII_BMCR_SPEED_MASK (C macro), 987
MII_BMCR_SPEED_MSB (C macro), 987
MII_BMSR (C macro), 986
MII_BMSR_100BASE_T2_FULL (C macro), 988
MII_BMSR_100BASE_T2_HALF (C macro), 988
MII_BMSR_100BASE_T4 (C macro), 987
MII_BMSR_100BASE_X_FULL (C macro), 987
MII_BMSR_100BASE_X_HALF (C macro), 987
MII_BMSR_10_FULL (C macro), 987
MII_BMSR_10_HALF (C macro), 987

1966 Index

Zephyr Project Documentation, Release 2.7.0-rc2

MII_BMSR_AUTONEG_ABILITY (C macro), 988
MII_BMSR_AUTONEG_COMPLETE (C macro), 988
MII_BMSR_EXTEND_CAPAB (C macro), 988
MII_BMSR_EXTEND_STATUS (C macro), 988
MII_BMSR_JABBER_DETECT (C macro), 988
MII_BMSR_LINK_STATUS (C macro), 988
MII_BMSR_MF_PREAMB_SUPPR (C macro), 988
MII_BMSR_REMOTE_FAULT (C macro), 988
MII_ESTAT (C macro), 986
MII_MMD_AADR (C macro), 986
MII_MMD_ACR (C macro), 986
MII_PHYID1R (C macro), 986
MII_PHYID2R (C macro), 986
MIN (C macro), 1430
MissingProgram, 1848
modbus_adu (C struct), 862
modbus_adu.crc (C var), 862
modbus_adu.data (C var), 862
modbus_adu.fc (C var), 862
modbus_adu.length (C var), 862
modbus_adu.proto_id (C var), 862
modbus_adu.trans_id (C var), 862
modbus_adu.unit_id (C var), 862
modbus_disable (C function), 861
modbus_iface_get_by_name (C function), 861
modbus_iface_param (C struct), 864
modbus_iface_param.mode (C var), 864
modbus_iface_param.raw_tx_cb (C var), 864
modbus_iface_param.rx_timeout (C var), 864
modbus_iface_param.serial (C var), 864
modbus_init_client (C function), 861
modbus_init_server (C function), 861
MODBUS_MBAP_AND_FC_LENGTH (C macro), 856
MODBUS_MBAP_LENGTH (C macro), 856
modbus_mode (C enum), 857
modbus_mode.MODBUS_MODE_ASCII (C enumera-

tor), 857
modbus_mode.MODBUS_MODE_RAW (C enumerator),

857
modbus_mode.MODBUS_MODE_RTU (C enumerator),

857
modbus_raw_backend_txn (C function), 862
modbus_raw_cb_t (C type), 856
modbus_raw_get_header (C function), 862
modbus_raw_put_header (C function), 861
modbus_raw_set_server_failure (C function),

862
modbus_raw_submit_rx (C function), 861
modbus_read_coils (C function), 857
modbus_read_dinputs (C function), 857
modbus_read_holding_regs (C function), 858
modbus_read_holding_regs_fp (C function), 860
modbus_read_input_regs (C function), 858
modbus_request_diagnostic (C function), 859
modbus_serial_param (C struct), 863
modbus_serial_param.baud (C var), 863
modbus_serial_param.parity (C var), 863
modbus_server_param (C struct), 863

modbus_server_param.unit_id (C var), 864
modbus_server_param.user_cb (C var), 864
modbus_user_callbacks (C struct), 863
modbus_user_callbacks.coil_rd (C var), 863
modbus_user_callbacks.coil_wr (C var), 863
modbus_user_callbacks.discrete_input_rd (C

var), 863
modbus_user_callbacks.holding_reg_rd (C

var), 863
modbus_user_callbacks.holding_reg_rd_fp (C

var), 863
modbus_user_callbacks.holding_reg_wr (C

var), 863
modbus_user_callbacks.holding_reg_wr_fp (C

var), 863
modbus_user_callbacks.input_reg_rd (C var),

863
modbus_user_callbacks.input_reg_rd_fp (C

var), 863
modbus_write_coil (C function), 858
modbus_write_coils (C function), 859
modbus_write_holding_reg (C function), 859
modbus_write_holding_regs (C function), 860
modbus_write_holding_regs_fp (C function),

860
module

runners.core, 1847
mqtt_abort (C function), 1044
mqtt_binstr (C struct), 1046
mqtt_binstr.data (C var), 1046
mqtt_binstr.len (C var), 1046
mqtt_client (C struct), 1050
mqtt_client.broker (C var), 1051
mqtt_client.clean_session (C var), 1051
mqtt_client.client_id (C var), 1050
mqtt_client.evt_cb (C var), 1051
mqtt_client.internal (C var), 1050
mqtt_client.keepalive (C var), 1051
mqtt_client.password (C var), 1051
mqtt_client.protocol_version (C var), 1051
mqtt_client.rx_buf (C var), 1051
mqtt_client.rx_buf_size (C var), 1051
mqtt_client.transport (C var), 1050
mqtt_client.tx_buf (C var), 1051
mqtt_client.tx_buf_size (C var), 1051
mqtt_client.unacked_ping (C var), 1051
mqtt_client.user_name (C var), 1051
mqtt_client.will_message (C var), 1051
mqtt_client.will_retain (C var), 1051
mqtt_client.will_topic (C var), 1051
mqtt_client_init (C function), 1042
mqtt_conn_return_code (C enum), 1041
mqtt_conn_return_code.MQTT_BAD_USER_NAME_OR_PASSWORD

(C enumerator), 1041
mqtt_conn_return_code.MQTT_CONNECTION_ACCEPTED

(C enumerator), 1041
mqtt_conn_return_code.MQTT_IDENTIFIER_REJECTED

(C enumerator), 1041

Index 1967

Zephyr Project Documentation, Release 2.7.0-rc2

mqtt_conn_return_code.MQTT_NOT_AUTHORIZED
(C enumerator), 1041

mqtt_conn_return_code.MQTT_SERVER_UNAVAILABLE
(C enumerator), 1041

mqtt_conn_return_code.MQTT_UNACCEPTABLE_PROTOCOL_VERSION
(C enumerator), 1041

mqtt_connack_param (C struct), 1047
mqtt_connack_param.return_code (C var), 1047
mqtt_connack_param.session_present_flag (C

var), 1047
mqtt_connect (C function), 1042
mqtt_disconnect (C function), 1044
mqtt_evt (C struct), 1049
mqtt_evt.param (C var), 1049
mqtt_evt.result (C var), 1049
mqtt_evt.type (C var), 1049
mqtt_evt_cb_t (C type), 1039
mqtt_evt_param (C union), 1048
mqtt_evt_param.connack (C var), 1048
mqtt_evt_param.puback (C var), 1048
mqtt_evt_param.pubcomp (C var), 1049
mqtt_evt_param.publish (C var), 1048
mqtt_evt_param.pubrec (C var), 1048
mqtt_evt_param.pubrel (C var), 1048
mqtt_evt_param.suback (C var), 1049
mqtt_evt_param.unsuback (C var), 1049
mqtt_evt_type (C enum), 1039
mqtt_evt_type.MQTT_EVT_CONNACK (C enumera-

tor), 1039
mqtt_evt_type.MQTT_EVT_DISCONNECT (C enu-

merator), 1039
mqtt_evt_type.MQTT_EVT_PINGRESP (C enumera-

tor), 1040
mqtt_evt_type.MQTT_EVT_PUBACK (C enumera-

tor), 1040
mqtt_evt_type.MQTT_EVT_PUBCOMP (C enumera-

tor), 1040
mqtt_evt_type.MQTT_EVT_PUBLISH (C enumera-

tor), 1040
mqtt_evt_type.MQTT_EVT_PUBREC (C enumera-

tor), 1040
mqtt_evt_type.MQTT_EVT_PUBREL (C enumera-

tor), 1040
mqtt_evt_type.MQTT_EVT_SUBACK (C enumera-

tor), 1040
mqtt_evt_type.MQTT_EVT_UNSUBACK (C enumera-

tor), 1040
mqtt_input (C function), 1045
mqtt_internal (C struct), 1050
mqtt_internal.last_activity (C var), 1050
mqtt_internal.mutex (C var), 1050
mqtt_internal.remaining_payload (C var),

1050
mqtt_internal.rx_buf_datalen (C var), 1050
mqtt_internal.state (C var), 1050
mqtt_keepalive_time_left (C function), 1044
mqtt_live (C function), 1044
mqtt_ping (C function), 1044

mqtt_puback_param (C struct), 1047
mqtt_pubcomp_param (C struct), 1047
mqtt_publish (C function), 1042
mqtt_publish_message (C struct), 1046
mqtt_publish_message.payload (C var), 1047
mqtt_publish_message.topic (C var), 1047
mqtt_publish_param (C struct), 1047
mqtt_publish_param.dup_flag (C var), 1048
mqtt_publish_param.message (C var), 1047
mqtt_publish_param.message_id (C var), 1047
mqtt_publish_param.retain_flag (C var), 1048
mqtt_publish_qos1_ack (C function), 1042
mqtt_publish_qos2_complete (C function), 1043
mqtt_publish_qos2_receive (C function), 1043
mqtt_publish_qos2_release (C function), 1043
mqtt_pubrec_param (C struct), 1047
mqtt_pubrel_param (C struct), 1047
mqtt_qos (C enum), 1040
mqtt_qos.MQTT_QOS_0_AT_MOST_ONCE (C enumer-

ator), 1040
mqtt_qos.MQTT_QOS_1_AT_LEAST_ONCE (C enu-

merator), 1040
mqtt_qos.MQTT_QOS_2_EXACTLY_ONCE (C enumer-

ator), 1041
mqtt_read_publish_payload (C function), 1045
mqtt_read_publish_payload_blocking (C func-

tion), 1045
mqtt_readall_publish_payload (C function),

1045
mqtt_sec_config (C struct), 1049
mqtt_sec_config.cipher_count (C var), 1049
mqtt_sec_config.cipher_list (C var), 1049
mqtt_sec_config.hostname (C var), 1049
mqtt_sec_config.peer_verify (C var), 1049
mqtt_sec_config.sec_tag_count (C var), 1049
mqtt_sec_config.sec_tag_list (C var), 1049
mqtt_suback_param (C struct), 1047
mqtt_suback_return_code (C enum), 1041
mqtt_suback_return_code.MQTT_SUBACK_FAILURE

(C enumerator), 1041
mqtt_suback_return_code.MQTT_SUBACK_SUCCESS_QoS_0

(C enumerator), 1041
mqtt_suback_return_code.MQTT_SUBACK_SUCCESS_QoS_1

(C enumerator), 1041
mqtt_suback_return_code.MQTT_SUBACK_SUCCESS_QoS_2

(C enumerator), 1041
mqtt_subscribe (C function), 1043
mqtt_subscription_list (C struct), 1048
mqtt_subscription_list.list (C var), 1048
mqtt_subscription_list.list_count (C var),

1048
mqtt_subscription_list.message_id (C var),

1048
mqtt_topic (C struct), 1046
mqtt_topic.qos (C var), 1046
mqtt_topic.topic (C var), 1046
mqtt_transport (C struct), 1050
mqtt_transport.sock (C var), 1050

1968 Index

Zephyr Project Documentation, Release 2.7.0-rc2

mqtt_transport.type (C var), 1050
mqtt_transport_type (C enum), 1041
mqtt_transport_type.MQTT_TRANSPORT_NON_SECURE

(C enumerator), 1041
mqtt_transport_type.MQTT_TRANSPORT_NUM (C

enumerator), 1042
mqtt_unsuback_param (C struct), 1047
mqtt_unsubscribe (C function), 1043
mqtt_utf8 (C struct), 1046
mqtt_utf8.size (C var), 1046
mqtt_utf8.utf8 (C var), 1046
MQTT_UTF8_LITERAL (C macro), 1039
mqtt_version (C enum), 1040
mqtt_version.MQTT_VERSION_3_1_0 (C enumera-

tor), 1040
mqtt_version.MQTT_VERSION_3_1_1 (C enumera-

tor), 1040
msghdr (C struct), 893
MY_VARIABLE, 122, 123

N
name() (runners.core.ZephyrBinaryRunner class

method), 1851
net_addr_ntop (C function), 890
net_addr_pton (C function), 890
net_addr_state (C enum), 883
net_addr_state.NET_ADDR_ANY_STATE (C enu-

merator), 883
net_addr_state.NET_ADDR_DEPRECATED (C enu-

merator), 883
net_addr_state.NET_ADDR_PREFERRED (C enu-

merator), 883
net_addr_state.NET_ADDR_TENTATIVE (C enu-

merator), 883
net_addr_type (C enum), 883
net_addr_type.NET_ADDR_ANY (C enumerator),

883
net_addr_type.NET_ADDR_AUTOCONF (C enumera-

tor), 883
net_addr_type.NET_ADDR_DHCP (C enumerator),

883
net_addr_type.NET_ADDR_MANUAL (C enumera-

tor), 883
net_addr_type.NET_ADDR_OVERRIDABLE (C enu-

merator), 884
net_buf (C struct), 954
net_buf.data (C var), 955
net_buf.flags (C var), 955
net_buf.frags (C var), 954
net_buf.len (C var), 955
net_buf.node (C var), 954
net_buf.pool_id (C var), 955
net_buf.ref (C var), 955
net_buf.size (C var), 955
net_buf.user_data (C var), 955
net_buf_add (C function), 943
net_buf_add_be16 (C function), 943
net_buf_add_be24 (C function), 944

net_buf_add_be32 (C function), 944
net_buf_add_be48 (C function), 944
net_buf_add_be64 (C function), 945
net_buf_add_le16 (C function), 943
net_buf_add_le24 (C function), 944
net_buf_add_le32 (C function), 944
net_buf_add_le48 (C function), 944
net_buf_add_le64 (C function), 945
net_buf_add_mem (C function), 943
net_buf_add_u8 (C function), 943
net_buf_alloc (C function), 940
net_buf_alloc_fixed (C function), 940
net_buf_alloc_len (C function), 940
net_buf_alloc_with_data (C function), 941
net_buf_allocator_cb (C type), 929
net_buf_append_bytes (C function), 953
net_buf_clone (C function), 942
net_buf_data_alloc (C struct), 955
net_buf_data_cb (C struct), 955
net_buf_destroy (C function), 941
NET_BUF_EXTERNAL_DATA (C macro), 928
net_buf_frag_add (C function), 952
net_buf_frag_del (C function), 952
net_buf_frag_insert (C function), 952
net_buf_frag_last (C function), 952
NET_BUF_FRAGS (C macro), 927
net_buf_frags_len (C function), 953
net_buf_get (C function), 941
net_buf_headroom (C function), 951
net_buf_id (C function), 940
net_buf_linearize (C function), 952
net_buf_max_len (C function), 951
net_buf_pool (C struct), 955
net_buf_pool.alloc (C var), 955
net_buf_pool.buf_count (C var), 955
net_buf_pool.destroy (C var), 955
net_buf_pool.free (C var), 955
net_buf_pool.uninit_count (C var), 955
NET_BUF_POOL_DEFINE (C macro), 929
net_buf_pool_fixed (C struct), 956
NET_BUF_POOL_FIXED_DEFINE (C macro), 928
net_buf_pool_get (C function), 940
NET_BUF_POOL_HEAP_DEFINE (C macro), 928
NET_BUF_POOL_VAR_DEFINE (C macro), 929
net_buf_pull (C function), 949
net_buf_pull_be16 (C function), 950
net_buf_pull_be24 (C function), 950
net_buf_pull_be32 (C function), 950
net_buf_pull_be48 (C function), 951
net_buf_pull_be64 (C function), 951
net_buf_pull_le16 (C function), 950
net_buf_pull_le24 (C function), 950
net_buf_pull_le32 (C function), 950
net_buf_pull_le48 (C function), 951
net_buf_pull_le64 (C function), 951
net_buf_pull_mem (C function), 949
net_buf_pull_u8 (C function), 949
net_buf_push (C function), 947

Index 1969

Zephyr Project Documentation, Release 2.7.0-rc2

net_buf_push_be16 (C function), 948
net_buf_push_be24 (C function), 948
net_buf_push_be32 (C function), 948
net_buf_push_be48 (C function), 949
net_buf_push_be64 (C function), 949
net_buf_push_le16 (C function), 948
net_buf_push_le24 (C function), 948
net_buf_push_le32 (C function), 948
net_buf_push_le48 (C function), 948
net_buf_push_le64 (C function), 949
net_buf_push_mem (C function), 947
net_buf_push_u8 (C function), 947
net_buf_put (C function), 942
net_buf_ref (C function), 942
net_buf_remove_be16 (C function), 945
net_buf_remove_be24 (C function), 946
net_buf_remove_be32 (C function), 946
net_buf_remove_be48 (C function), 946
net_buf_remove_be64 (C function), 947
net_buf_remove_le16 (C function), 945
net_buf_remove_le24 (C function), 946
net_buf_remove_le32 (C function), 946
net_buf_remove_le48 (C function), 946
net_buf_remove_le64 (C function), 947
net_buf_remove_mem (C function), 945
net_buf_remove_u8 (C function), 945
net_buf_reserve (C function), 943
net_buf_reset (C function), 941
NET_BUF_SIMPLE (C macro), 927
net_buf_simple (C struct), 954
net_buf_simple.data (C var), 954
net_buf_simple.len (C var), 954
net_buf_simple.size (C var), 954
net_buf_simple_add (C function), 930
net_buf_simple_add_be16 (C function), 931
net_buf_simple_add_be24 (C function), 931
net_buf_simple_add_be32 (C function), 932
net_buf_simple_add_be48 (C function), 932
net_buf_simple_add_be64 (C function), 932
net_buf_simple_add_le16 (C function), 931
net_buf_simple_add_le24 (C function), 931
net_buf_simple_add_le32 (C function), 931
net_buf_simple_add_le48 (C function), 932
net_buf_simple_add_le64 (C function), 932
net_buf_simple_add_mem (C function), 930
net_buf_simple_add_u8 (C function), 931
net_buf_simple_clone (C function), 930
NET_BUF_SIMPLE_DEFINE (C macro), 927
NET_BUF_SIMPLE_DEFINE_STATIC (C macro), 927
net_buf_simple_headroom (C function), 939
net_buf_simple_init (C function), 930
net_buf_simple_init_with_data (C function),

930
net_buf_simple_max_len (C function), 939
net_buf_simple_pull (C function), 936
net_buf_simple_pull_be16 (C function), 937
net_buf_simple_pull_be24 (C function), 938
net_buf_simple_pull_be32 (C function), 938

net_buf_simple_pull_be48 (C function), 938
net_buf_simple_pull_be64 (C function), 938
net_buf_simple_pull_le16 (C function), 937
net_buf_simple_pull_le24 (C function), 937
net_buf_simple_pull_le32 (C function), 938
net_buf_simple_pull_le48 (C function), 938
net_buf_simple_pull_le64 (C function), 938
net_buf_simple_pull_mem (C function), 937
net_buf_simple_pull_u8 (C function), 937
net_buf_simple_push (C function), 934
net_buf_simple_push_be16 (C function), 935
net_buf_simple_push_be24 (C function), 935
net_buf_simple_push_be32 (C function), 936
net_buf_simple_push_be48 (C function), 936
net_buf_simple_push_be64 (C function), 936
net_buf_simple_push_le16 (C function), 935
net_buf_simple_push_le24 (C function), 935
net_buf_simple_push_le32 (C function), 936
net_buf_simple_push_le48 (C function), 936
net_buf_simple_push_le64 (C function), 936
net_buf_simple_push_mem (C function), 935
net_buf_simple_push_u8 (C function), 935
net_buf_simple_remove_be16 (C function), 933
net_buf_simple_remove_be24 (C function), 933
net_buf_simple_remove_be32 (C function), 934
net_buf_simple_remove_be48 (C function), 934
net_buf_simple_remove_be64 (C function), 934
net_buf_simple_remove_le16 (C function), 933
net_buf_simple_remove_le24 (C function), 933
net_buf_simple_remove_le32 (C function), 933
net_buf_simple_remove_le48 (C function), 934
net_buf_simple_remove_le64 (C function), 934
net_buf_simple_remove_mem (C function), 932
net_buf_simple_remove_u8 (C function), 933
net_buf_simple_reserve (C function), 941
net_buf_simple_reset (C function), 930
net_buf_simple_restore (C function), 939
net_buf_simple_save (C function), 939
net_buf_simple_state (C struct), 954
net_buf_simple_state.len (C var), 954
net_buf_simple_state.offset (C var), 954
net_buf_simple_tail (C function), 939
net_buf_simple_tailroom (C function), 939
net_buf_skip (C function), 953
net_buf_slist_get (C function), 942
net_buf_slist_put (C function), 941
net_buf_tail (C function), 952
net_buf_tailroom (C function), 951
net_buf_unref (C function), 942
net_buf_user_data (C function), 942
net_bytes_from_str (C function), 891
net_can_ptr (C function), 890
net_capture_cleanup (C function), 924
net_capture_disable (C function), 925
net_capture_enable (C function), 925
net_capture_is_enabled (C function), 925
net_capture_send (C function), 925
net_capture_setup (C function), 924

1970 Index

Zephyr Project Documentation, Release 2.7.0-rc2

net_config_init (C function), 1053
net_config_init_app (C function), 1053
net_config_init_by_iface (C function), 1053
NET_CONFIG_NEED_IPV4 (C macro), 1053
NET_CONFIG_NEED_IPV6 (C macro), 1053
NET_CONFIG_NEED_ROUTER (C macro), 1053
NET_DEVICE_DT_DEFINE (C macro), 1058
NET_DEVICE_DT_DEFINE_INSTANCE (C macro),

1059
NET_DEVICE_DT_INST_DEFINE (C macro), 1058
NET_DEVICE_DT_INST_DEFINE_INSTANCE (C

macro), 1059
NET_DEVICE_DT_INST_OFFLOAD_DEFINE (C macro),

1060
NET_DEVICE_DT_OFFLOAD_DEFINE (C macro), 1060
NET_DEVICE_INIT (C macro), 1058
NET_DEVICE_INIT_INSTANCE (C macro), 1059
NET_DEVICE_OFFLOAD_INIT (C macro), 1060
net_dhcpv4_start (C function), 1054
net_dhcpv4_stop (C function), 1054
net_eth_carrier_off (C function), 981
net_eth_carrier_on (C function), 981
net_eth_get_hw_capabilities (C function), 980
net_eth_get_ptp_clock (C function), 981
net_eth_get_ptp_clock_by_index (C function),

981
net_eth_get_ptp_port (C function), 982
net_eth_get_vlan_iface (C function), 981
net_eth_get_vlan_status (C function), 981
net_eth_get_vlan_tag (C function), 980
net_eth_ipv6_mcast_to_mac_addr (C function),

980
net_eth_is_vlan_enabled (C function), 981
net_eth_promisc_mode (C function), 981
net_eth_vlan_disable (C function), 980
net_eth_vlan_enable (C function), 980
net_eth_vlan_get_dei (C function), 971
net_eth_vlan_get_pcp (C function), 971
net_eth_vlan_get_vid (C function), 971
net_eth_vlan_set_dei (C function), 971
net_eth_vlan_set_pcp (C function), 972
net_eth_vlan_set_vid (C function), 971
net_event_ieee802154_cmd (C enum), 998
net_event_ieee802154_cmd.NET_EVENT_IEEE802154_CMD_SCAN_RESULT

(C enumerator), 998
NET_EVENT_IEEE802154_SCAN_RESULT (C macro),

997
net_family2str (C function), 892
net_hostname_get (C function), 1055
net_hostname_init (C function), 1055
NET_HOSTNAME_MAX_LEN (C macro), 1055
net_hostname_set_postfix (C function), 1055
net_if (C struct), 1084
net_if.config (C var), 1084
net_if.if_dev (C var), 1084
net_if_addr (C struct), 1080
net_if_addr.addr_state (C var), 1080
net_if_addr.addr_type (C var), 1080

net_if_addr.address (C var), 1080
net_if_addr.is_infinite (C var), 1080
net_if_addr.is_mesh_local (C var), 1080
net_if_addr.is_used (C var), 1080
net_if_addr_set_lf (C function), 1065
net_if_are_pending_tx_packets (C function),

1080
net_if_call_link_cb (C function), 1078
net_if_cb_t (C type), 1061
net_if_config (C struct), 1083
net_if_config.ip (C var), 1083
net_if_config_get (C function), 1065
net_if_config_ipv4_get (C function), 1073
net_if_config_ipv4_put (C function), 1073
net_if_config_ipv6_get (C function), 1065
net_if_config_ipv6_put (C function), 1066
net_if_dev (C struct), 1083
net_if_dev.dev (C var), 1084
net_if_dev.l2 (C var), 1084
net_if_dev.l2_data (C var), 1084
net_if_dev.link_addr (C var), 1084
net_if_dev.mtu (C var), 1084
net_if_down (C function), 1079
net_if_flag (C enum), 1061
net_if_flag.NET_IF_FORWARD_MULTICASTS (C

enumerator), 1061
net_if_flag.NET_IF_IPV4 (C enumerator), 1062
net_if_flag.NET_IF_IPV6 (C enumerator), 1062
net_if_flag.NET_IF_NO_AUTO_START (C enumer-

ator), 1061
net_if_flag.NET_IF_POINTOPOINT (C enumera-

tor), 1061
net_if_flag.NET_IF_PROMISC (C enumerator),

1061
net_if_flag.NET_IF_SUSPENDED (C enumerator),

1061
net_if_flag.NET_IF_UP (C enumerator), 1061
net_if_flag_clear (C function), 1062
net_if_flag_is_set (C function), 1062
net_if_flag_set (C function), 1062
net_if_flag_test_and_set (C function), 1062
net_if_foreach (C function), 1079
net_if_get_by_iface (C function), 1079
net_if_get_by_index (C function), 1078
net_if_get_by_link_addr (C function), 1065
net_if_get_config (C function), 1064
net_if_get_default (C function), 1065
net_if_get_device (C function), 1063
net_if_get_first_by_type (C function), 1065
net_if_get_link_addr (C function), 1064
net_if_get_mtu (C function), 1064
net_if_ip (C struct), 1083
net_if_ipv4 (C struct), 1082
net_if_ipv4.gw (C var), 1083
net_if_ipv4.mcast (C var), 1083
net_if_ipv4.netmask (C var), 1083
net_if_ipv4.ttl (C var), 1083
net_if_ipv4.unicast (C var), 1082

Index 1971

Zephyr Project Documentation, Release 2.7.0-rc2

net_if_ipv4_addr_add (C function), 1073
net_if_ipv4_addr_add_by_index (C function),

1074
net_if_ipv4_addr_lookup (C function), 886,

1073
net_if_ipv4_addr_lookup_by_index (C func-

tion), 1074
net_if_ipv4_addr_mask_cmp (C function), 886,

1076
net_if_ipv4_addr_rm (C function), 1074
net_if_ipv4_addr_rm_by_index (C function),

1074
net_if_ipv4_get_global_addr (C function),

1077
net_if_ipv4_get_ll (C function), 1077
net_if_ipv4_get_ttl (C function), 1073
net_if_ipv4_is_addr_bcast (C function), 886,

1076
net_if_ipv4_maddr_add (C function), 1074
net_if_ipv4_maddr_is_joined (C function),

1075
net_if_ipv4_maddr_join (C function), 1075
net_if_ipv4_maddr_leave (C function), 1075
net_if_ipv4_maddr_lookup (C function), 1075
net_if_ipv4_maddr_rm (C function), 1075
net_if_ipv4_router_add (C function), 1076
net_if_ipv4_router_find_default (C function),

1075
net_if_ipv4_router_lookup (C function), 1075
net_if_ipv4_router_rm (C function), 1076
net_if_ipv4_select_src_addr (C function),

1076
net_if_ipv4_select_src_iface (C function),

1076
net_if_ipv4_set_gw (C function), 1077
net_if_ipv4_set_gw_by_index (C function),

1077
net_if_ipv4_set_netmask (C function), 1077
net_if_ipv4_set_netmask_by_index (C func-

tion), 1077
net_if_ipv4_set_ttl (C function), 1073
net_if_ipv6 (C struct), 1082
net_if_ipv6.base_reachable_time (C var),

1082
net_if_ipv6.hop_limit (C var), 1082
net_if_ipv6.mcast (C var), 1082
net_if_ipv6.prefix (C var), 1082
net_if_ipv6.reachable_time (C var), 1082
net_if_ipv6.retrans_timer (C var), 1082
net_if_ipv6.unicast (C var), 1082
net_if_ipv6_addr_add (C function), 1066
net_if_ipv6_addr_add_by_index (C function),

1066
net_if_ipv6_addr_lookup (C function), 884,

1066
net_if_ipv6_addr_lookup_by_iface (C func-

tion), 1066

net_if_ipv6_addr_lookup_by_index (C func-
tion), 1066

net_if_ipv6_addr_onlink (C function), 1070
net_if_ipv6_addr_rm (C function), 1067
net_if_ipv6_addr_rm_by_index (C function),

1067
net_if_ipv6_addr_update_lifetime (C func-

tion), 1067
net_if_ipv6_calc_reachable_time (C function),

1071
net_if_ipv6_dad_failed (C function), 1072
net_if_ipv6_get_global_addr (C function),

1073
net_if_ipv6_get_hop_limit (C function), 1071
net_if_ipv6_get_ll (C function), 1072
net_if_ipv6_get_ll_addr (C function), 1072
net_if_ipv6_get_reachable_time (C function),

1071
net_if_ipv6_get_retrans_timer (C function),

1072
net_if_ipv6_maddr_add (C function), 1067
net_if_ipv6_maddr_is_joined (C function),

1068
net_if_ipv6_maddr_join (C function), 1068
net_if_ipv6_maddr_leave (C function), 1068
net_if_ipv6_maddr_lookup (C function), 884,

1067
net_if_ipv6_maddr_rm (C function), 1067
net_if_ipv6_prefix (C struct), 1081
net_if_ipv6_prefix.iface (C var), 1081
net_if_ipv6_prefix.is_infinite (C var), 1081
net_if_ipv6_prefix.is_used (C var), 1081
net_if_ipv6_prefix.len (C var), 1081
net_if_ipv6_prefix.lifetime (C var), 1081
net_if_ipv6_prefix.prefix (C var), 1081
net_if_ipv6_prefix_add (C function), 1069
net_if_ipv6_prefix_get (C function), 1068
net_if_ipv6_prefix_lookup (C function), 1069
net_if_ipv6_prefix_rm (C function), 1069
net_if_ipv6_prefix_set_lf (C function), 1069
net_if_ipv6_prefix_set_timer (C function),

1069
net_if_ipv6_prefix_unset_timer (C function),

1069
net_if_ipv6_router_add (C function), 1070
net_if_ipv6_router_find_default (C function),

1070
net_if_ipv6_router_lookup (C function), 1070
net_if_ipv6_router_rm (C function), 1071
net_if_ipv6_router_update_lifetime (C func-

tion), 1070
net_if_ipv6_select_src_addr (C function),

1072
net_if_ipv6_select_src_iface (C function),

1072
net_if_ipv6_set_base_reachable_time (C func-

tion), 1071
net_if_ipv6_set_reachable_time (C function),

1972 Index

Zephyr Project Documentation, Release 2.7.0-rc2

1071
net_if_ipv6_set_retrans_timer (C function),

1071
net_if_is_ip_offloaded (C function), 1063
net_if_is_promisc (C function), 1080
net_if_is_socket_offloaded (C function), 1063
net_if_is_up (C function), 1079
net_if_l2 (C function), 1062
net_if_l2_data (C function), 1063
net_if_link_callback_t (C type), 1061
net_if_link_cb (C struct), 1085
net_if_link_cb.cb (C var), 1085
net_if_link_cb.node (C var), 1085
net_if_lookup_by_dev (C function), 1065
net_if_mcast_addr (C struct), 1080
net_if_mcast_addr.address (C var), 1080
net_if_mcast_addr.is_joined (C var), 1081
net_if_mcast_addr.is_used (C var), 1081
net_if_mcast_callback_t (C type), 1061
net_if_mcast_mon_register (C function), 1068
net_if_mcast_mon_unregister (C function),

1068
net_if_mcast_monitor (C function), 1068
net_if_mcast_monitor (C struct), 1084
net_if_mcast_monitor.cb (C var), 1085
net_if_mcast_monitor.iface (C var), 1084
net_if_mcast_monitor.node (C var), 1084
net_if_need_calc_rx_checksum (C function),

1078
net_if_need_calc_tx_checksum (C function),

1078
net_if_offload (C function), 1063
net_if_queue_tx (C function), 1063
net_if_recv_data (C function), 1063
net_if_register_link_cb (C function), 1078
net_if_router (C struct), 1081
net_if_router.address (C var), 1081
net_if_router.iface (C var), 1081
net_if_router.is_default (C var), 1082
net_if_router.is_infinite (C var), 1082
net_if_router.is_used (C var), 1082
net_if_router.life_start (C var), 1081
net_if_router.lifetime (C var), 1082
net_if_router.node (C var), 1081
net_if_router_ipv4 (C function), 1075
net_if_router_ipv6 (C function), 1070
net_if_router_rm (C function), 1065
net_if_select_src_iface (C function), 1078
net_if_send_data (C function), 1062
net_if_set_link_addr (C function), 1064
net_if_set_mtu (C function), 1064
net_if_set_promisc (C function), 1079
net_if_start_dad (C function), 1064
net_if_start_rs (C function), 1064
net_if_stop_rs (C function), 1064
net_if_unregister_link_cb (C function), 1078
net_if_unset_promisc (C function), 1079
net_if_up (C function), 1079

net_ip_mtu (C enum), 882
net_ip_mtu.NET_IPV4_MTU (C enumerator), 882
net_ip_mtu.NET_IPV6_MTU (C enumerator), 882
net_ip_protocol (C enum), 881
net_ip_protocol.IPPROTO_ICMP (C enumerator),

881
net_ip_protocol.IPPROTO_ICMPV6 (C enumera-

tor), 881
net_ip_protocol.IPPROTO_IGMP (C enumerator),

881
net_ip_protocol.IPPROTO_IP (C enumerator),

881
net_ip_protocol.IPPROTO_IPIP (C enumerator),

881
net_ip_protocol.IPPROTO_IPV6 (C enumerator),

881
net_ip_protocol.IPPROTO_RAW (C enumerator),

881
net_ip_protocol.IPPROTO_TCP (C enumerator),

881
net_ip_protocol.IPPROTO_UDP (C enumerator),

881
net_ip_protocol_secure (C enum), 881
net_ip_protocol_secure.IPPROTO_DTLS_1_0 (C

enumerator), 882
net_ip_protocol_secure.IPPROTO_DTLS_1_2 (C

enumerator), 882
net_ip_protocol_secure.IPPROTO_TLS_1_0 (C

enumerator), 881
net_ip_protocol_secure.IPPROTO_TLS_1_1 (C

enumerator), 882
net_ip_protocol_secure.IPPROTO_TLS_1_2 (C

enumerator), 882
net_ipaddr_copy (C macro), 880
net_ipaddr_parse (C function), 891
net_ipv4_addr_cmp (C function), 885
net_ipv4_addr_mask_cmp (C function), 886
net_ipv4_broadcast_address (C function), 886
net_ipv4_is_addr_bcast (C function), 886
net_ipv4_is_addr_loopback (C function), 884
net_ipv4_is_addr_mcast (C function), 885
net_ipv4_is_addr_unspecified (C function),

885
net_ipv4_is_ll_addr (C function), 885
net_ipv4_is_my_addr (C function), 886
net_ipv4_unspecified_address (C function),

886
net_ipv6_addr_based_on_ll (C function), 889
net_ipv6_addr_cmp (C function), 885
net_ipv6_addr_create (C function), 889
net_ipv6_addr_create_iid (C function), 889
net_ipv6_addr_create_ll_allnodes_mcast (C

function), 889
net_ipv6_addr_create_ll_allrouters_mcast

(C function), 889
net_ipv6_addr_create_solicited_node (C func-

tion), 888
net_ipv6_is_addr_loopback (C function), 884

Index 1973

Zephyr Project Documentation, Release 2.7.0-rc2

net_ipv6_is_addr_mcast (C function), 884
net_ipv6_is_addr_mcast_all_nodes_group (C

function), 888
net_ipv6_is_addr_mcast_global (C function),

887
net_ipv6_is_addr_mcast_group (C function),

888
net_ipv6_is_addr_mcast_iface (C function),

887
net_ipv6_is_addr_mcast_iface_all_nodes (C

function), 888
net_ipv6_is_addr_mcast_link (C function), 887
net_ipv6_is_addr_mcast_link_all_nodes (C

function), 888
net_ipv6_is_addr_mcast_mesh (C function), 887
net_ipv6_is_addr_mcast_org (C function), 888
net_ipv6_is_addr_mcast_scope (C function),

887
net_ipv6_is_addr_mcast_site (C function), 887
net_ipv6_is_addr_solicited_node (C function),

886
net_ipv6_is_addr_unspecified (C function),

886
net_ipv6_is_ll_addr (C function), 885
net_ipv6_is_my_addr (C function), 884
net_ipv6_is_my_maddr (C function), 884
net_ipv6_is_prefix (C function), 884
net_ipv6_is_same_mcast_scope (C function),

887
net_ipv6_is_ula_addr (C function), 885
net_ipv6_set_hop_limit (C function), 1071
net_ipv6_unspecified_address (C function),

886
net_l2 (C struct), 1087
net_l2.enable (C var), 1088
net_l2.get_flags (C var), 1088
net_l2.recv (C var), 1087
net_l2.send (C var), 1087
net_l2_flags (C enum), 1087
net_l2_flags.NET_L2_MULTICAST (C enumera-

tor), 1087
net_l2_flags.NET_L2_MULTICAST_SKIP_JOIN_SOLICIT_NODE

(C enumerator), 1087
net_l2_flags.NET_L2_POINT_TO_POINT (C enu-

merator), 1087
net_l2_flags.NET_L2_PROMISC_MODE (C enumer-

ator), 1087
NET_LINK_ADDR_MAX_LENGTH (C macro), 1089
net_link_type (C enum), 1089
net_link_type.NET_LINK_BLUETOOTH (C enumer-

ator), 1089
net_link_type.NET_LINK_CANBUS (C enumera-

tor), 1089
net_link_type.NET_LINK_CANBUS_RAW (C enu-

merator), 1089
net_link_type.NET_LINK_DUMMY (C enumerator),

1089
net_link_type.NET_LINK_ETHERNET (C enumera-

tor), 1089
net_link_type.NET_LINK_IEEE802154 (C enu-

merator), 1089
net_link_type.NET_LINK_UNKNOWN (C enumera-

tor), 1089
net_linkaddr (C struct), 1090
net_linkaddr.addr (C var), 1090
net_linkaddr.len (C var), 1090
net_linkaddr.type (C var), 1090
net_linkaddr_cmp (C function), 1089
net_linkaddr_set (C function), 1090
net_linkaddr_storage (C struct), 1090
net_linkaddr_storage.addr (C var), 1090
net_linkaddr_storage.len (C var), 1090
net_linkaddr_storage.type (C var), 1090
net_lldp_chassis_tlv (C struct), 974
net_lldp_chassis_tlv.subtype (C var), 974
net_lldp_chassis_tlv.type_length (C var),

974
net_lldp_chassis_tlv.value (C var), 974
net_lldp_config (C function), 973
net_lldp_config_optional (C function), 973
net_lldp_init (C function), 974
net_lldp_port_tlv (C struct), 974
net_lldp_port_tlv.subtype (C var), 974
net_lldp_port_tlv.type_length (C var), 974
net_lldp_port_tlv.value (C var), 975
net_lldp_recv (C function), 974
net_lldp_recv_cb_t (C type), 972
net_lldp_register_callback (C function), 974
net_lldp_set_lldpdu (C macro), 972
net_lldp_time_to_live_tlv (C struct), 975
net_lldp_time_to_live_tlv.ttl (C var), 975
net_lldp_time_to_live_tlv.type_length (C

var), 975
net_lldp_tlv_type (C enum), 973
net_lldp_tlv_type.LLDP_TLV_CHASSIS_ID (C

enumerator), 973
net_lldp_tlv_type.LLDP_TLV_END_LLDPDU (C

enumerator), 973
net_lldp_tlv_type.LLDP_TLV_MANAGEMENT_ADDR

(C enumerator), 973
net_lldp_tlv_type.LLDP_TLV_ORG_SPECIFIC (C

enumerator), 973
net_lldp_tlv_type.LLDP_TLV_PORT_DESC (C

enumerator), 973
net_lldp_tlv_type.LLDP_TLV_PORT_ID (C enu-

merator), 973
net_lldp_tlv_type.LLDP_TLV_SYSTEM_CAPABILITIES

(C enumerator), 973
net_lldp_tlv_type.LLDP_TLV_SYSTEM_DESC (C

enumerator), 973
net_lldp_tlv_type.LLDP_TLV_SYSTEM_NAME (C

enumerator), 973
net_lldp_tlv_type.LLDP_TLV_TTL (C enumera-

tor), 973
net_lldp_unset_lldpdu (C macro), 972
net_lldpdu (C struct), 975

1974 Index

Zephyr Project Documentation, Release 2.7.0-rc2

net_lldpdu.chassis_id (C var), 975
net_lldpdu.port_id (C var), 975
net_lldpdu.ttl (C var), 975
NET_MAX_PRIORITIES (C macro), 880
net_mgmt (C macro), 903
net_mgmt_add_event_callback (C function), 903
NET_MGMT_DEFINE_REQUEST_HANDLER (C macro),

903
net_mgmt_del_event_callback (C function), 903
net_mgmt_event_callback (C struct), 905
net_mgmt_event_callback.event_mask (C var),

905
net_mgmt_event_callback.handler (C var), 905
net_mgmt_event_callback.node (C var), 905
net_mgmt_event_callback.raised_event (C

var), 905
net_mgmt_event_callback.sync_call (C var),

905
net_mgmt_event_callback.[anonymous] (C var),

905
net_mgmt_event_handler_t (C type), 903
net_mgmt_event_init (C function), 905
net_mgmt_event_notify (C function), 904
net_mgmt_event_notify_with_info (C function),

903
net_mgmt_event_wait (C function), 904
net_mgmt_event_wait_on_iface (C function),

904
net_mgmt_init_event_callback (C function),

903
NET_MGMT_REGISTER_REQUEST_HANDLER (C macro),

903
net_mgmt_request_handler_t (C type), 903
net_pkt (C struct), 969
net_pkt.context (C var), 970
net_pkt.cursor (C var), 970
net_pkt.fifo (C var), 969
net_pkt.iface (C var), 970
net_pkt.slab (C var), 969
net_pkt.[anonymous] (C var), 969
net_pkt_acknowledge_data (C function), 969
net_pkt_alloc (C function), 962
net_pkt_alloc_buffer (C function), 963
net_pkt_alloc_from_slab (C function), 963
net_pkt_alloc_on_iface (C function), 963
net_pkt_alloc_with_buffer (C function), 963
net_pkt_append_buffer (C function), 964
net_pkt_available_buffer (C function), 964
net_pkt_available_payload_buffer (C func-

tion), 964
net_pkt_clone (C function), 966
net_pkt_compact (C function), 962
net_pkt_copy (C function), 966
net_pkt_cursor (C struct), 969
net_pkt_cursor.buf (C var), 969
net_pkt_cursor.pos (C var), 969
net_pkt_cursor_backup (C function), 965
net_pkt_cursor_get_pos (C function), 965

net_pkt_cursor_init (C function), 965
net_pkt_cursor_restore (C function), 965
net_pkt_data_access (C struct), 970
NET_PKT_DATA_ACCESS_CONTIGUOUS_DEFINE (C

macro), 960
NET_PKT_DATA_ACCESS_DEFINE (C macro), 960
NET_PKT_DATA_POOL_DEFINE (C macro), 960
net_pkt_frag_add (C function), 962
net_pkt_frag_del (C function), 962
net_pkt_frag_insert (C function), 962
net_pkt_frag_ref (C function), 961
net_pkt_frag_unref (C function), 962
net_pkt_get_contiguous_len (C function), 968
net_pkt_get_current_offset (C function), 968
net_pkt_get_data (C function), 968
net_pkt_get_frag (C function), 961
net_pkt_get_info (C function), 962
net_pkt_get_reserve_rx_data (C function), 960
net_pkt_get_reserve_tx_data (C function), 961
net_pkt_is_contiguous (C function), 968
net_pkt_memset (C function), 966
net_pkt_print_frags (C macro), 960
net_pkt_pull (C function), 968
net_pkt_read (C function), 966
net_pkt_read_be16 (C function), 967
net_pkt_read_be32 (C function), 967
net_pkt_read_le16 (C function), 967
net_pkt_read_u8 (C function), 966
net_pkt_ref (C function), 961
net_pkt_remaining_data (C function), 967
net_pkt_remove_tail (C function), 964
net_pkt_rx_alloc (C function), 963
net_pkt_rx_alloc_on_iface (C function), 963
net_pkt_rx_alloc_with_buffer (C function),

964
net_pkt_set_data (C function), 969
net_pkt_shallow_clone (C function), 966
net_pkt_skip (C function), 965
NET_PKT_SLAB_DEFINE (C macro), 960
net_pkt_trim_buffer (C function), 964
NET_PKT_TX_SLAB_DEFINE (C macro), 960
net_pkt_unref (C function), 961
net_pkt_update_length (C function), 968
net_pkt_write (C function), 967
net_pkt_write_be16 (C function), 967
net_pkt_write_be32 (C function), 967
net_pkt_write_le16 (C function), 967
net_pkt_write_le32 (C function), 967
net_pkt_write_u8 (C function), 967
net_priority (C enum), 882
net_priority.NET_PRIORITY_BE (C enumerator),

882
net_priority.NET_PRIORITY_BK (C enumerator),

882
net_priority.NET_PRIORITY_CA (C enumerator),

883
net_priority.NET_PRIORITY_EE (C enumerator),

882

Index 1975

Zephyr Project Documentation, Release 2.7.0-rc2

net_priority.NET_PRIORITY_IC (C enumerator),
883

net_priority.NET_PRIORITY_NC (C enumerator),
883

net_priority.NET_PRIORITY_VI (C enumerator),
883

net_priority.NET_PRIORITY_VO (C enumerator),
883

net_priority2vlan (C function), 892
net_promisc_mode_off (C function), 915
net_promisc_mode_on (C function), 915
net_promisc_mode_wait_data (C function), 915
net_ptp_extended_time (C struct), 1099
net_ptp_extended_time.[anonymous] (C var),

1099
net_ptp_time (C struct), 1099
net_ptp_time.nanosecond (C var), 1099
net_ptp_time.[anonymous] (C var), 1099
net_recv_data (C function), 1056
NET_REQUEST_IEEE802154_ACTIVE_SCAN (C

macro), 997
NET_REQUEST_IEEE802154_ASSOCIATE (C macro),

997
NET_REQUEST_IEEE802154_CANCEL_SCAN (C

macro), 997
net_request_ieee802154_cmd (C enum), 998
net_request_ieee802154_cmd.NET_REQUEST_IEEE802154_CMD_ACTIVE_SCAN

(C enumerator), 998
net_request_ieee802154_cmd.NET_REQUEST_IEEE802154_CMD_ASSOCIATE

(C enumerator), 998
net_request_ieee802154_cmd.NET_REQUEST_IEEE802154_CMD_CANCEL_SCAN

(C enumerator), 998
net_request_ieee802154_cmd.NET_REQUEST_IEEE802154_CMD_DISASSOCIATE

(C enumerator), 998
net_request_ieee802154_cmd.NET_REQUEST_IEEE802154_CMD_GET_CHANNEL

(C enumerator), 998
net_request_ieee802154_cmd.NET_REQUEST_IEEE802154_CMD_GET_EXT_ADDR

(C enumerator), 998
net_request_ieee802154_cmd.NET_REQUEST_IEEE802154_CMD_GET_PAN_ID

(C enumerator), 998
net_request_ieee802154_cmd.NET_REQUEST_IEEE802154_CMD_GET_SECURITY_SETTINGS

(C enumerator), 998
net_request_ieee802154_cmd.NET_REQUEST_IEEE802154_CMD_GET_SHORT_ADDR

(C enumerator), 998
net_request_ieee802154_cmd.NET_REQUEST_IEEE802154_CMD_GET_TX_POWER

(C enumerator), 998
net_request_ieee802154_cmd.NET_REQUEST_IEEE802154_CMD_PASSIVE_SCAN

(C enumerator), 998
net_request_ieee802154_cmd.NET_REQUEST_IEEE802154_CMD_SET_ACK

(C enumerator), 998
net_request_ieee802154_cmd.NET_REQUEST_IEEE802154_CMD_SET_CHANNEL

(C enumerator), 998
net_request_ieee802154_cmd.NET_REQUEST_IEEE802154_CMD_SET_EXT_ADDR

(C enumerator), 998
net_request_ieee802154_cmd.NET_REQUEST_IEEE802154_CMD_SET_PAN_ID

(C enumerator), 998
net_request_ieee802154_cmd.NET_REQUEST_IEEE802154_CMD_SET_SECURITY_SETTINGS

(C enumerator), 998

net_request_ieee802154_cmd.NET_REQUEST_IEEE802154_CMD_SET_SHORT_ADDR
(C enumerator), 998

net_request_ieee802154_cmd.NET_REQUEST_IEEE802154_CMD_SET_TX_POWER
(C enumerator), 998

net_request_ieee802154_cmd.NET_REQUEST_IEEE802154_CMD_UNSET_ACK
(C enumerator), 998

NET_REQUEST_IEEE802154_DISASSOCIATE (C
macro), 997

NET_REQUEST_IEEE802154_GET_CHANNEL (C
macro), 997

NET_REQUEST_IEEE802154_GET_EXT_ADDR (C
macro), 997

NET_REQUEST_IEEE802154_GET_PAN_ID (C macro),
997

NET_REQUEST_IEEE802154_GET_SHORT_ADDR (C
macro), 997

NET_REQUEST_IEEE802154_GET_TX_POWER (C
macro), 997

NET_REQUEST_IEEE802154_PASSIVE_SCAN (C
macro), 997

NET_REQUEST_IEEE802154_SET_ACK (C macro),
997

NET_REQUEST_IEEE802154_SET_CHANNEL (C
macro), 997

NET_REQUEST_IEEE802154_SET_EXT_ADDR (C
macro), 997

NET_REQUEST_IEEE802154_SET_PAN_ID (C macro),
997

NET_REQUEST_IEEE802154_SET_SHORT_ADDR (C
macro), 997

NET_REQUEST_IEEE802154_SET_TX_POWER (C
macro), 997

NET_REQUEST_IEEE802154_UNSET_ACK (C macro),
997

net_rx_priority2tc (C function), 892
net_send_data (C function), 1056
net_sin (C function), 889
net_sin6 (C function), 889
net_sin6_ptr (C function), 890
net_sin_ptr (C function), 890
net_sll_ptr (C function), 890
net_sock_type (C enum), 882
net_sock_type.SOCK_DGRAM (C enumerator), 882
net_sock_type.SOCK_RAW (C enumerator), 882
net_sock_type.SOCK_STREAM (C enumerator), 882
net_stats (C struct), 910
net_stats.bytes (C var), 910
net_stats.ip_errors (C var), 910
net_stats.processing_error (C var), 910
net_stats_bytes (C struct), 906
net_stats_bytes.received (C var), 906
net_stats_bytes.sent (C var), 906
net_stats_eth (C struct), 911
net_stats_eth_csum (C struct), 911
net_stats_eth_errors (C struct), 910
net_stats_eth_flow (C struct), 911
net_stats_eth_hw_timestamp (C struct), 911
net_stats_icmp (C struct), 907

1976 Index

Zephyr Project Documentation, Release 2.7.0-rc2

net_stats_icmp.chkerr (C var), 908
net_stats_icmp.drop (C var), 908
net_stats_icmp.recv (C var), 908
net_stats_icmp.sent (C var), 908
net_stats_icmp.typeerr (C var), 908
net_stats_ip (C struct), 907
net_stats_ip.drop (C var), 907
net_stats_ip.forwarded (C var), 907
net_stats_ip.recv (C var), 907
net_stats_ip.sent (C var), 907
net_stats_ip_errors (C struct), 907
net_stats_ip_errors.chkerr (C var), 907
net_stats_ip_errors.fragerr (C var), 907
net_stats_ip_errors.hblenerr (C var), 907
net_stats_ip_errors.lblenerr (C var), 907
net_stats_ip_errors.protoerr (C var), 907
net_stats_ip_errors.vhlerr (C var), 907
net_stats_ipv4_igmp (C struct), 910
net_stats_ipv4_igmp.drop (C var), 910
net_stats_ipv4_igmp.recv (C var), 910
net_stats_ipv4_igmp.sent (C var), 910
net_stats_ipv6_mld (C struct), 909
net_stats_ipv6_mld.drop (C var), 910
net_stats_ipv6_mld.recv (C var), 909
net_stats_ipv6_mld.sent (C var), 909
net_stats_ipv6_nd (C struct), 909
net_stats_pkts (C struct), 906
net_stats_pkts.rx (C var), 907
net_stats_pkts.tx (C var), 907
net_stats_pm (C struct), 910
net_stats_ppp (C struct), 911
net_stats_ppp.chkerr (C var), 911
net_stats_ppp.drop (C var), 911
net_stats_rx_time (C struct), 910
net_stats_t (C type), 906
net_stats_tc (C struct), 910
net_stats_tcp (C struct), 908
net_stats_tcp.ackerr (C var), 908
net_stats_tcp.bytes (C var), 908
net_stats_tcp.chkerr (C var), 908
net_stats_tcp.conndrop (C var), 909
net_stats_tcp.connrst (C var), 909
net_stats_tcp.drop (C var), 908
net_stats_tcp.recv (C var), 908
net_stats_tcp.resent (C var), 908
net_stats_tcp.rexmit (C var), 909
net_stats_tcp.rst (C var), 909
net_stats_tcp.rsterr (C var), 909
net_stats_tcp.seg_drop (C var), 908
net_stats_tcp.sent (C var), 908
net_stats_tx_time (C struct), 910
net_stats_udp (C struct), 909
net_stats_udp.chkerr (C var), 909
net_stats_udp.drop (C var), 909
net_stats_udp.recv (C var), 909
net_stats_udp.sent (C var), 909
NET_TC_RX_STATS_COUNT (C macro), 906
NET_TC_TX_STATS_COUNT (C macro), 906

net_tcp_seq_cmp (C function), 891
net_tcp_seq_greater (C function), 891
net_timeout (C struct), 913
net_timeout.node (C var), 914
net_timeout_deadline (C function), 912
net_timeout_evaluate (C function), 913
NET_TIMEOUT_MAX_VALUE (C macro), 912
net_timeout_remaining (C function), 913
net_timeout_set (C function), 912
net_traffic_class (C struct), 1083
net_traffic_class.fifo (C var), 1083
net_traffic_class.handler (C var), 1083
net_traffic_class.stack (C var), 1083
net_trickle (C struct), 919
net_trickle.c (C var), 919
net_trickle.cb (C var), 919
net_trickle.I (C var), 919
net_trickle.Imax (C var), 919
net_trickle.Imax_abs (C var), 919
net_trickle.Imin (C var), 919
net_trickle.Istart (C var), 919
net_trickle.k (C var), 919
net_trickle_cb_t (C type), 918
net_trickle_consistency (C function), 919
net_trickle_create (C function), 918
net_trickle_inconsistency (C function), 919
net_trickle_is_running (C function), 919
net_trickle_start (C function), 918
net_trickle_stop (C function), 918
net_tuple (C struct), 893
net_tuple.ip_proto (C var), 893
net_tuple.local_addr (C var), 893
net_tuple.local_port (C var), 893
net_tuple.remote_addr (C var), 893
net_tuple.remote_port (C var), 893
net_tx_priority2tc (C function), 891
net_verdict (C enum), 1056
net_verdict.NET_CONTINUE (C enumerator), 1056
net_verdict.NET_DROP (C enumerator), 1056
net_verdict.NET_OK (C enumerator), 1056
net_vlan2priority (C function), 892
NET_VLAN_TAG_UNSPEC (C macro), 971
NetworkPortHelper (class in runners.core), 1848
NI_DGRAM (C macro), 869
NI_MAXHOST (C macro), 869
NI_NAMEREQD (C macro), 869
NI_NOFQDN (C macro), 869
NI_NUMERICHOST (C macro), 869
NI_NUMERICSERV (C macro), 869
ntohl (C macro), 879
ntohll (C macro), 880
ntohs (C macro), 879
NUM_VA_ARGS_LESS_1 (C macro), 1437
nvs_calc_free_space (C function), 1345
nvs_clear (C function), 1343
nvs_delete (C function), 1344
nvs_fs (C struct), 1343
nvs_init (C function), 1343

Index 1977

Zephyr Project Documentation, Release 2.7.0-rc2

nvs_read (C function), 1344
nvs_read_hist (C function), 1344
nvs_write (C function), 1343

O
onoff_cancel (C function), 1310
onoff_cancel_or_release (C function), 1311
onoff_client (C struct), 1313
onoff_client.notify (C var), 1313
onoff_client_callback (C type), 1308
ONOFF_CLIENT_EXTENSION_POS (C macro), 1307
ONOFF_FLAG_ERROR (C macro), 1307
ONOFF_FLAG_ONOFF (C macro), 1307
ONOFF_FLAG_TRANSITION (C macro), 1307
onoff_has_error (C function), 1309
onoff_manager (C struct), 1313
onoff_manager_init (C function), 1309
ONOFF_MANAGER_INITIALIZER (C macro), 1307
onoff_monitor (C struct), 1313
onoff_monitor.callback (C var), 1313
onoff_monitor_callback (C type), 1308
onoff_monitor_register (C function), 1312
onoff_monitor_unregister (C function), 1312
onoff_notify_fn (C type), 1308
onoff_release (C function), 1310
onoff_request (C function), 1309
onoff_reset (C function), 1311
ONOFF_STATE_ERROR (C macro), 1307
ONOFF_STATE_MASK (C macro), 1307
ONOFF_STATE_OFF (C macro), 1307
ONOFF_STATE_ON (C macro), 1307
ONOFF_STATE_RESETTING (C macro), 1307
ONOFF_STATE_TO_OFF (C macro), 1307
ONOFF_STATE_TO_ON (C macro), 1307
onoff_sync_finalize (C function), 1312
onoff_sync_lock (C function), 1312
onoff_sync_service (C struct), 1314
onoff_transition_fn (C type), 1308
onoff_transitions (C struct), 1313
ONOFF_TRANSITIONS_INITIALIZER (C macro),

1307
openocd (runners.core.RunnerConfig attribute),

1849
openocd_search (runners.core.RunnerConfig at-

tribute), 1849

P
PART_OF_ARRAY (C macro), 1429
PATH, 6, 7, 123, 1459, 1789, 1794, 1795
pcm_stream_cfg (C struct), 154
pdm_chan_cfg (C struct), 154
pdm_io_cfg (C struct), 154
pdm_lr (C enum), 152
pdm_lr.PDM_CHAN_LEFT (C enumerator), 152
pdm_lr.PDM_CHAN_RIGHT (C enumerator), 152
peci_buf (C struct), 1214
PECI_CC_ILLEGAL_REQUEST (C macro), 1209

PECI_CC_OUT_OF_RESOURCES_TIMEOUT (C macro),
1208

PECI_CC_RESOURCES_LOWPWR_TIMEOUT (C macro),
1208

PECI_CC_RSP_SUCCESS (C macro), 1208
PECI_CC_RSP_TIMEOUT (C macro), 1208
peci_command_code (C enum), 1212
peci_command_code.PECI_CMD_GET_DIB (C enu-

merator), 1213
peci_command_code.PECI_CMD_GET_TEMP0 (C

enumerator), 1212
peci_command_code.PECI_CMD_GET_TEMP1 (C

enumerator), 1212
peci_command_code.PECI_CMD_PING (C enumera-

tor), 1212
peci_command_code.PECI_CMD_RD_IAMSR0 (C

enumerator), 1212
peci_command_code.PECI_CMD_RD_IAMSR1 (C

enumerator), 1212
peci_command_code.PECI_CMD_RD_PCI_CFG0 (C

enumerator), 1212
peci_command_code.PECI_CMD_RD_PCI_CFG1 (C

enumerator), 1212
peci_command_code.PECI_CMD_RD_PCI_CFG_LOCAL0

(C enumerator), 1212
peci_command_code.PECI_CMD_RD_PCI_CFG_LOCAL1

(C enumerator), 1213
peci_command_code.PECI_CMD_RD_PKG_CFG0 (C

enumerator), 1212
peci_command_code.PECI_CMD_RD_PKG_CFG1 (C

enumerator), 1212
peci_command_code.PECI_CMD_WR_IAMSR0 (C

enumerator), 1212
peci_command_code.PECI_CMD_WR_IAMSR1 (C

enumerator), 1212
peci_command_code.PECI_CMD_WR_PCI_CFG0 (C

enumerator), 1212
peci_command_code.PECI_CMD_WR_PCI_CFG1 (C

enumerator), 1212
peci_command_code.PECI_CMD_WR_PCI_CFG_LOCAL0

(C enumerator), 1213
peci_command_code.PECI_CMD_WR_PCI_CFG_LOCAL1

(C enumerator), 1213
peci_command_code.PECI_CMD_WR_PKG_CFG0 (C

enumerator), 1212
peci_command_code.PECI_CMD_WR_PKG_CFG1 (C

enumerator), 1212
peci_config (C function), 1213
peci_disable (C function), 1213
peci_enable (C function), 1213
peci_error_code (C enum), 1212
peci_error_code.PECI_GENERAL_SENSOR_ERROR

(C enumerator), 1212
peci_error_code.PECI_OVERFLOW_SENSOR_ERROR

(C enumerator), 1212
peci_error_code.PECI_UNDERFLOW_SENSOR_ERROR

(C enumerator), 1212
PECI_GET_DIB_CMD_LEN (C macro), 1209

1978 Index

Zephyr Project Documentation, Release 2.7.0-rc2

PECI_GET_DIB_DEVINFO (C macro), 1209
PECI_GET_DIB_DOMAIN_BIT_MASK (C macro), 1209
PECI_GET_DIB_MAJOR_REV_MASK (C macro), 1209
PECI_GET_DIB_MINOR_REV_MASK (C macro), 1209
PECI_GET_DIB_RD_LEN (C macro), 1209
PECI_GET_DIB_REVNUM (C macro), 1209
PECI_GET_DIB_WR_LEN (C macro), 1209
PECI_GET_TEMP_CMD_LEN (C macro), 1209
PECI_GET_TEMP_ERR_LSB_GENERAL (C macro),

1209
PECI_GET_TEMP_ERR_LSB_RES (C macro), 1209
PECI_GET_TEMP_ERR_LSB_TEMP_HI (C macro),

1209
PECI_GET_TEMP_ERR_LSB_TEMP_LO (C macro),

1209
PECI_GET_TEMP_ERR_MSB (C macro), 1209
PECI_GET_TEMP_LSB (C macro), 1209
PECI_GET_TEMP_MSB (C macro), 1209
PECI_GET_TEMP_RD_LEN (C macro), 1209
PECI_GET_TEMP_WR_LEN (C macro), 1209
peci_msg (C struct), 1214
peci_msg.addr (C var), 1214
peci_msg.cmd_code (C var), 1214
peci_msg.flags (C var), 1214
peci_msg.rx_buffer (C var), 1214
peci_msg.tx_buffer (C var), 1214
PECI_PING_LEN (C macro), 1209
PECI_PING_RD_LEN (C macro), 1209
PECI_PING_WR_LEN (C macro), 1209
PECI_RD_IAMSR_CMD_LEN (C macro), 1210
PECI_RD_IAMSR_LEN_BYTE (C macro), 1210
PECI_RD_IAMSR_LEN_DWORD (C macro), 1210
PECI_RD_IAMSR_LEN_QWORD (C macro), 1210
PECI_RD_IAMSR_LEN_WORD (C macro), 1210
PECI_RD_IAMSR_WR_LEN (C macro), 1210
PECI_RD_PCICFG_CMD_LEN (C macro), 1211
PECI_RD_PCICFG_LEN_BYTE (C macro), 1211
PECI_RD_PCICFG_LEN_DWORD (C macro), 1211
PECI_RD_PCICFG_LEN_WORD (C macro), 1211
PECI_RD_PCICFG_WR_LEN (C macro), 1211
PECI_RD_PCICFGL_CMD_LEN (C macro), 1211
PECI_RD_PCICFGL_RD_LEN_BYTE (C macro), 1211
PECI_RD_PCICFGL_RD_LEN_DWORD (C macro), 1211
PECI_RD_PCICFGL_RD_LEN_WORD (C macro), 1211
PECI_RD_PCICFGL_WR_LEN (C macro), 1211
PECI_RD_PKG_CMD_LEN (C macro), 1210
PECI_RD_PKG_LEN_BYTE (C macro), 1210
PECI_RD_PKG_LEN_DWORD (C macro), 1210
PECI_RD_PKG_LEN_WORD (C macro), 1210
PECI_RD_PKG_WR_LEN (C macro), 1210
peci_transfer (C function), 1213
PECI_WR_IAMSR_CMD_LEN (C macro), 1211
PECI_WR_IAMSR_LEN_BYTE (C macro), 1210
PECI_WR_IAMSR_LEN_DWORD (C macro), 1210
PECI_WR_IAMSR_LEN_QWORD (C macro), 1210
PECI_WR_IAMSR_LEN_WORD (C macro), 1210
PECI_WR_IAMSR_RD_LEN (C macro), 1210
PECI_WR_PCICFG_CMD_LEN (C macro), 1211

PECI_WR_PCICFG_LEN_BYTE (C macro), 1211
PECI_WR_PCICFG_LEN_DWORD (C macro), 1211
PECI_WR_PCICFG_LEN_WORD (C macro), 1211
PECI_WR_PCICFG_RD_LEN (C macro), 1211
PECI_WR_PCICFGL_CMD_LEN (C macro), 1211
PECI_WR_PCICFGL_RD_LEN (C macro), 1211
PECI_WR_PCICFGL_WR_LEN_BYTE (C macro), 1211
PECI_WR_PCICFGL_WR_LEN_DWORD (C macro), 1211
PECI_WR_PCICFGL_WR_LEN_WORD (C macro), 1211
PECI_WR_PKG_CMD_LEN (C macro), 1210
PECI_WR_PKG_LEN_BYTE (C macro), 1210
PECI_WR_PKG_LEN_DWORD (C macro), 1210
PECI_WR_PKG_LEN_WORD (C macro), 1210
PECI_WR_PKG_RD_LEN (C macro), 1210
PF_CAN (C macro), 879
PF_INET (C macro), 878
PF_INET6 (C macro), 878
PF_LOCAL (C macro), 879
PF_NET_MGMT (C macro), 879
PF_PACKET (C macro), 878
PF_UNIX (C macro), 879
PF_UNSPEC (C macro), 878
pinmux_driver_api (C struct), 1199
PINMUX_FUNC_A (C macro), 1198
PINMUX_FUNC_B (C macro), 1198
PINMUX_FUNC_C (C macro), 1198
PINMUX_FUNC_D (C macro), 1198
PINMUX_FUNC_E (C macro), 1198
PINMUX_FUNC_F (C macro), 1198
PINMUX_FUNC_G (C macro), 1198
PINMUX_FUNC_H (C macro), 1198
PINMUX_FUNC_I (C macro), 1198
PINMUX_FUNC_J (C macro), 1198
PINMUX_FUNC_K (C macro), 1198
PINMUX_FUNC_L (C macro), 1198
PINMUX_FUNC_M (C macro), 1198
PINMUX_FUNC_N (C macro), 1198
PINMUX_FUNC_O (C macro), 1198
PINMUX_FUNC_P (C macro), 1198
PINMUX_FUNC_Q (C macro), 1198
PINMUX_FUNC_R (C macro), 1198
PINMUX_FUNC_S (C macro), 1198
PINMUX_FUNC_T (C macro), 1198
PINMUX_INPUT_ENABLED (C macro), 1198
PINMUX_OUTPUT_ENABLED (C macro), 1199
pinmux_pin_get (C function), 1199
pinmux_pin_input_enable (C function), 1199
pinmux_pin_pullup (C function), 1199
pinmux_pin_set (C function), 1199
PINMUX_PULLUP_DISABLE (C macro), 1198
PINMUX_PULLUP_ENABLE (C macro), 1198
pm_constraint_get (C macro), 1299
pm_constraint_release (C macro), 1299
pm_constraint_set (C macro), 1299
pm_device (C struct), 1303
pm_device.condvar (C var), 1303
pm_device.dev (C var), 1303
pm_device.enable (C var), 1303

Index 1979

Zephyr Project Documentation, Release 2.7.0-rc2

pm_device.lock (C var), 1303
pm_device.state (C var), 1303
pm_device.usage (C var), 1303
pm_device.work (C var), 1303
pm_device_action (C enum), 1301
pm_device_action.PM_DEVICE_ACTION_FORCE_SUSPEND

(C enumerator), 1301
pm_device_action.PM_DEVICE_ACTION_LOW_POWER

(C enumerator), 1301
pm_device_action.PM_DEVICE_ACTION_RESUME

(C enumerator), 1301
pm_device_action.PM_DEVICE_ACTION_SUSPEND

(C enumerator), 1301
pm_device_action.PM_DEVICE_ACTION_TURN_OFF

(C enumerator), 1301
pm_device_busy_clear (C function), 1302
pm_device_busy_set (C function), 1302
pm_device_control_callback_t (C type), 1300
pm_device_flag (C enum), 1300
pm_device_flag.PM_DEVICE_FLAG_BUSY (C enu-

merator), 1300
pm_device_flag.PM_DEVICE_FLAG_COUNT (C enu-

merator), 1301
pm_device_flag.PM_DEVICE_FLAG_TRANSITIONING

(C enumerator), 1301
pm_device_flag.PM_DEVICE_FLAGS_WS_CAPABLE

(C enumerator), 1301
pm_device_flag.PM_DEVICE_FLAGS_WS_ENABLED

(C enumerator), 1301
pm_device_is_any_busy (C function), 1302
pm_device_is_busy (C function), 1302
pm_device_state (C enum), 1300
pm_device_state.PM_DEVICE_STATE_ACTIVE (C

enumerator), 1300
pm_device_state.PM_DEVICE_STATE_LOW_POWER

(C enumerator), 1300
pm_device_state.PM_DEVICE_STATE_OFF (C enu-

merator), 1300
pm_device_state.PM_DEVICE_STATE_SUSPENDED

(C enumerator), 1300
pm_device_state_get (C function), 1302
pm_device_state_set (C function), 1301
pm_device_state_str (C function), 1301
pm_device_wakeup_enable (C function), 1302
pm_device_wakeup_is_capable (C function),

1303
pm_device_wakeup_is_enabled (C function),

1302
pm_notifier (C struct), 1299
pm_notifier.state_entry (C var), 1299
pm_notifier.state_exit (C var), 1299
pm_notifier_register (C macro), 1299
pm_notifier_unregister (C macro), 1299
pm_power_state_exit_post_ops (C macro), 1299
pm_power_state_set (C macro), 1299
PM_STATE_ACTIVE (C enumerator), 1291
PM_STATE_RUNTIME_IDLE (C enumerator), 1291
PM_STATE_SOFT_OFF (C enumerator), 1292

PM_STATE_STANDBY (C enumerator), 1291
PM_STATE_SUSPEND_TO_DISK (C enumerator), 1292
PM_STATE_SUSPEND_TO_IDLE (C enumerator), 1291
PM_STATE_SUSPEND_TO_RAM (C enumerator), 1292
pmux_get (C type), 1199
pmux_input (C type), 1199
pmux_pullup (C type), 1199
pmux_set (C type), 1199
POINTER_TO_INT (C macro), 1428
POINTER_TO_UINT (C macro), 1428
popen_ignore_int() (run-

ners.core.ZephyrBinaryRunner method),
1851

printfcb (C function), 586
ps2_callback_t (C type), 1207
ps2_config (C function), 1207
ps2_disable_callback (C function), 1208
ps2_enable_callback (C function), 1207
ps2_read (C function), 1207
ps2_write (C function), 1207
pwm_capture_callback_handler_t (C type), 1200
PWM_CAPTURE_MODE_CONTINUOUS (C macro), 1200
PWM_CAPTURE_MODE_SINGLE (C macro), 1200
PWM_CAPTURE_TYPE_BOTH (C macro), 1200
PWM_CAPTURE_TYPE_PERIOD (C macro), 1199
PWM_CAPTURE_TYPE_PULSE (C macro), 1199
pwm_driver_api (C struct), 1206
pwm_flags_t (C type), 1200
pwm_get_cycles_per_sec (C function), 1203
pwm_get_cycles_per_sec_t (C type), 1201
pwm_pin_capture_cycles (C function), 1203
pwm_pin_capture_nsec (C function), 1205
pwm_pin_capture_usec (C function), 1205
pwm_pin_configure_capture (C function), 1201
pwm_pin_configure_capture_t (C type), 1200
pwm_pin_cycles_to_nsec (C function), 1204
pwm_pin_cycles_to_usec (C function), 1204
pwm_pin_disable_capture (C function), 1202
pwm_pin_disable_capture_t (C type), 1200
pwm_pin_enable_capture (C function), 1202
pwm_pin_enable_capture_t (C type), 1200
pwm_pin_set_cycles (C function), 1201
pwm_pin_set_nsec (C function), 1204
pwm_pin_set_t (C type), 1200
pwm_pin_set_usec (C function), 1204

Q
QEMU_BIN_PATH, 132

R
rb_contains (C function), 844
RB_FOR_EACH (C macro), 843
RB_FOR_EACH_CONTAINER (C macro), 843
rb_get_max (C function), 844
rb_get_min (C function), 844
rb_insert (C function), 844
rb_lessthan_t (C type), 843
rb_remove (C function), 844

1980 Index

Zephyr Project Documentation, Release 2.7.0-rc2

rb_visit_t (C type), 843
rb_walk (C function), 844
rbtree (C struct), 844
regulator_disable (C function), 1215
regulator_driver_api (C struct), 1215
regulator_enable (C function), 1215
require() (runners.core.ZephyrBinaryRunner

static method), 1851
RESET_BROWNOUT (C macro), 1172
RESET_CLOCK (C macro), 1173
RESET_CPU_LOCKUP (C macro), 1173
RESET_DEBUG (C macro), 1172
RESET_LOW_POWER_WAKE (C macro), 1173
RESET_PARITY (C macro), 1173
RESET_PIN (C macro), 1172
RESET_PLL (C macro), 1173
RESET_POR (C macro), 1172
RESET_SECURITY (C macro), 1173
RESET_SOFTWARE (C macro), 1172
RESET_WATCHDOG (C macro), 1172
RESULT_CONNECTION_LOST (C macro), 1024
RESULT_DEFAULT (C macro), 1024
RESULT_INTEGRITY_FAILED (C macro), 1024
RESULT_INVALID_URI (C macro), 1024
RESULT_NO_STORAGE (C macro), 1024
RESULT_OUT_OF_MEM (C macro), 1024
RESULT_SUCCESS (C macro), 1024
RESULT_UNSUP_FW (C macro), 1024
RESULT_UNSUP_PROTO (C macro), 1024
RESULT_UPDATE_FAILED (C macro), 1024
REVERSE_ARGS (C macro), 1437
ring_buf_capacity_get (C function), 851
RING_BUF_DECLARE (C macro), 850
ring_buf_get (C function), 855
ring_buf_get_claim (C function), 854
ring_buf_get_finish (C function), 854
ring_buf_init (C function), 851
ring_buf_is_empty (C function), 851
RING_BUF_ITEM_DECLARE_POW2 (C macro), 850
RING_BUF_ITEM_DECLARE_SIZE (C macro), 850
ring_buf_item_get (C function), 852
ring_buf_item_put (C function), 851
ring_buf_peek (C function), 855
ring_buf_put (C function), 853
ring_buf_put_claim (C function), 852
ring_buf_put_finish (C function), 853
ring_buf_reset (C function), 851
ring_buf_size_get (C function), 851
ring_buf_space_get (C function), 851
ROUND_DOWN (C macro), 1429
ROUND_UP (C macro), 1429
run() (runners.core.ZephyrBinaryRunner method),

1851
run_client() (runners.core.ZephyrBinaryRunner

method), 1851
run_server_and_client() (run-

ners.core.ZephyrBinaryRunner method),
1852

RunnerCaps (class in runners.core), 1848
RunnerConfig (class in runners.core), 1848
runners.core

module, 1847

S
sa_family_t (C type), 881
SCM_TXTIME (C macro), 870
sec_tag_t (C type), 876
sensor_attr_get (C function), 1234
sensor_attr_get_t (C type), 1227
sensor_attr_set (C function), 1233
sensor_attr_set_t (C type), 1227
sensor_attribute (C enum), 1232
sensor_attribute.SENSOR_ATTR_ALERT (C enu-

merator), 1233
sensor_attribute.SENSOR_ATTR_CALIB_TARGET

(C enumerator), 1233
sensor_attribute.SENSOR_ATTR_CALIBRATION

(C enumerator), 1233
sensor_attribute.SENSOR_ATTR_COMMON_COUNT

(C enumerator), 1233
sensor_attribute.SENSOR_ATTR_CONFIGURATION

(C enumerator), 1233
sensor_attribute.SENSOR_ATTR_FEATURE_MASK

(C enumerator), 1233
sensor_attribute.SENSOR_ATTR_FULL_SCALE (C

enumerator), 1233
sensor_attribute.SENSOR_ATTR_HYSTERESIS (C

enumerator), 1233
sensor_attribute.SENSOR_ATTR_LOWER_THRESH

(C enumerator), 1232
sensor_attribute.SENSOR_ATTR_MAX (C enumer-

ator), 1233
sensor_attribute.SENSOR_ATTR_OFFSET (C enu-

merator), 1233
sensor_attribute.SENSOR_ATTR_OVERSAMPLING

(C enumerator), 1233
sensor_attribute.SENSOR_ATTR_PRIV_START (C

enumerator), 1233
sensor_attribute.SENSOR_ATTR_SAMPLING_FREQUENCY

(C enumerator), 1232
sensor_attribute.SENSOR_ATTR_SLOPE_DUR (C

enumerator), 1232
sensor_attribute.SENSOR_ATTR_SLOPE_TH (C

enumerator), 1232
sensor_attribute.SENSOR_ATTR_UPPER_THRESH

(C enumerator), 1232
sensor_channel (C enum), 1227
sensor_channel.SENSOR_CHAN_ACCEL_X (C enu-

merator), 1227
sensor_channel.SENSOR_CHAN_ACCEL_XYZ (C

enumerator), 1228
sensor_channel.SENSOR_CHAN_ACCEL_Y (C enu-

merator), 1227
sensor_channel.SENSOR_CHAN_ACCEL_Z (C enu-

merator), 1228

Index 1981

Zephyr Project Documentation, Release 2.7.0-rc2

sensor_channel.SENSOR_CHAN_ALL (C enumera-
tor), 1231

sensor_channel.SENSOR_CHAN_ALTITUDE (C enu-
merator), 1229

sensor_channel.SENSOR_CHAN_AMBIENT_TEMP (C
enumerator), 1228

sensor_channel.SENSOR_CHAN_BLUE (C enumera-
tor), 1229

sensor_channel.SENSOR_CHAN_CO2 (C enumera-
tor), 1229

sensor_channel.SENSOR_CHAN_COMMON_COUNT (C
enumerator), 1231

sensor_channel.SENSOR_CHAN_CURRENT (C enu-
merator), 1229

sensor_channel.SENSOR_CHAN_DIE_TEMP (C enu-
merator), 1228

sensor_channel.SENSOR_CHAN_DISTANCE (C enu-
merator), 1229

sensor_channel.SENSOR_CHAN_GAS_RES (C enu-
merator), 1229

sensor_channel.SENSOR_CHAN_GAUGE_AVG_CURRENT
(C enumerator), 1230

sensor_channel.SENSOR_CHAN_GAUGE_AVG_POWER
(C enumerator), 1230

sensor_channel.SENSOR_CHAN_GAUGE_CYCLE_COUNT
(C enumerator), 1231

sensor_channel.SENSOR_CHAN_GAUGE_DESIGN_VOLTAGE
(C enumerator), 1231

sensor_channel.SENSOR_CHAN_GAUGE_DESIRED_CHARGING_CURRENT
(C enumerator), 1231

sensor_channel.SENSOR_CHAN_GAUGE_DESIRED_VOLTAGE
(C enumerator), 1231

sensor_channel.SENSOR_CHAN_GAUGE_FULL_AVAIL_CAPACITY
(C enumerator), 1230

sensor_channel.SENSOR_CHAN_GAUGE_FULL_CHARGE_CAPACITY
(C enumerator), 1230

sensor_channel.SENSOR_CHAN_GAUGE_MAX_LOAD_CURRENT
(C enumerator), 1230

sensor_channel.SENSOR_CHAN_GAUGE_NOM_AVAIL_CAPACITY
(C enumerator), 1230

sensor_channel.SENSOR_CHAN_GAUGE_REMAINING_CHARGE_CAPACITY
(C enumerator), 1230

sensor_channel.SENSOR_CHAN_GAUGE_STATE_OF_CHARGE
(C enumerator), 1230

sensor_channel.SENSOR_CHAN_GAUGE_STATE_OF_HEALTH
(C enumerator), 1231

sensor_channel.SENSOR_CHAN_GAUGE_STDBY_CURRENT
(C enumerator), 1230

sensor_channel.SENSOR_CHAN_GAUGE_TEMP (C
enumerator), 1230

sensor_channel.SENSOR_CHAN_GAUGE_TIME_TO_EMPTY
(C enumerator), 1231

sensor_channel.SENSOR_CHAN_GAUGE_TIME_TO_FULL
(C enumerator), 1231

sensor_channel.SENSOR_CHAN_GAUGE_VOLTAGE
(C enumerator), 1230

sensor_channel.SENSOR_CHAN_GREEN (C enumer-
ator), 1229

sensor_channel.SENSOR_CHAN_GYRO_X (C enu-
merator), 1228

sensor_channel.SENSOR_CHAN_GYRO_XYZ (C enu-
merator), 1228

sensor_channel.SENSOR_CHAN_GYRO_Y (C enu-
merator), 1228

sensor_channel.SENSOR_CHAN_GYRO_Z (C enu-
merator), 1228

sensor_channel.SENSOR_CHAN_HUMIDITY (C enu-
merator), 1228

sensor_channel.SENSOR_CHAN_IR (C enumera-
tor), 1229

sensor_channel.SENSOR_CHAN_LIGHT (C enumer-
ator), 1228

sensor_channel.SENSOR_CHAN_MAGN_X (C enu-
merator), 1228

sensor_channel.SENSOR_CHAN_MAGN_XYZ (C enu-
merator), 1228

sensor_channel.SENSOR_CHAN_MAGN_Y (C enu-
merator), 1228

sensor_channel.SENSOR_CHAN_MAGN_Z (C enu-
merator), 1228

sensor_channel.SENSOR_CHAN_MAX (C enumera-
tor), 1231

sensor_channel.SENSOR_CHAN_PM_10 (C enumer-
ator), 1229

sensor_channel.SENSOR_CHAN_PM_1_0 (C enu-
merator), 1229

sensor_channel.SENSOR_CHAN_PM_2_5 (C enu-
merator), 1229

sensor_channel.SENSOR_CHAN_POS_DX (C enu-
merator), 1230

sensor_channel.SENSOR_CHAN_POS_DY (C enu-
merator), 1230

sensor_channel.SENSOR_CHAN_POS_DZ (C enu-
merator), 1230

sensor_channel.SENSOR_CHAN_POWER (C enumer-
ator), 1229

sensor_channel.SENSOR_CHAN_PRESS (C enumer-
ator), 1228

sensor_channel.SENSOR_CHAN_PRIV_START (C
enumerator), 1231

sensor_channel.SENSOR_CHAN_PROX (C enumera-
tor), 1228

sensor_channel.SENSOR_CHAN_RED (C enumera-
tor), 1229

sensor_channel.SENSOR_CHAN_RESISTANCE (C
enumerator), 1229

sensor_channel.SENSOR_CHAN_ROTATION (C enu-
merator), 1230

sensor_channel.SENSOR_CHAN_RPM (C enumera-
tor), 1230

sensor_channel.SENSOR_CHAN_VOC (C enumera-
tor), 1229

sensor_channel.SENSOR_CHAN_VOLTAGE (C enu-
merator), 1229

sensor_channel_get (C function), 1235
sensor_channel_get_t (C type), 1227

1982 Index

Zephyr Project Documentation, Release 2.7.0-rc2

sensor_degrees_to_rad (C function), 1235
sensor_driver_api (C struct), 1236
SENSOR_G (C macro), 1226
sensor_g_to_ms2 (C function), 1235
sensor_ms2_to_g (C function), 1235
SENSOR_PI (C macro), 1227
sensor_rad_to_degrees (C function), 1235
sensor_sample_fetch (C function), 1234
sensor_sample_fetch_chan (C function), 1234
sensor_sample_fetch_t (C type), 1227
sensor_trigger (C struct), 1236
sensor_trigger.chan (C var), 1236
sensor_trigger.type (C var), 1236
sensor_trigger_handler_t (C type), 1227
sensor_trigger_set (C function), 1234
sensor_trigger_set_t (C type), 1227
sensor_trigger_type (C enum), 1231
sensor_trigger_type.SENSOR_TRIG_COMMON_COUNT

(C enumerator), 1232
sensor_trigger_type.SENSOR_TRIG_DATA_READY

(C enumerator), 1231
sensor_trigger_type.SENSOR_TRIG_DELTA (C

enumerator), 1231
sensor_trigger_type.SENSOR_TRIG_DOUBLE_TAP

(C enumerator), 1232
sensor_trigger_type.SENSOR_TRIG_FREEFALL

(C enumerator), 1232
sensor_trigger_type.SENSOR_TRIG_MAX (C enu-

merator), 1232
sensor_trigger_type.SENSOR_TRIG_NEAR_FAR

(C enumerator), 1232
sensor_trigger_type.SENSOR_TRIG_PRIV_START

(C enumerator), 1232
sensor_trigger_type.SENSOR_TRIG_TAP (C enu-

merator), 1232
sensor_trigger_type.SENSOR_TRIG_THRESHOLD

(C enumerator), 1232
sensor_trigger_type.SENSOR_TRIG_TIMER (C

enumerator), 1231
sensor_value (C struct), 1236
sensor_value.val1 (C var), 1236
sensor_value.val2 (C var), 1236
sensor_value_from_double (C function), 1236
sensor_value_to_double (C function), 1236
settings_call_set_handler (C function), 1451
settings_commit (C function), 1447
settings_commit_subtree (C function), 1447
settings_delete (C function), 1447
settings_dst_register (C function), 1451
SETTINGS_EXTRA_LEN (C macro), 1445
settings_handler (C struct), 1447
settings_handler.h_commit (C var), 1448
settings_handler.h_export (C var), 1448
settings_handler.h_get (C var), 1447
settings_handler.h_set (C var), 1448
settings_handler.name (C var), 1447
settings_handler.node (C var), 1448
settings_handler_static (C struct), 1448

settings_handler_static.h_commit (C var),
1449

settings_handler_static.h_export (C var),
1449

settings_handler_static.h_get (C var), 1448
settings_handler_static.h_set (C var), 1449
settings_handler_static.name (C var), 1448
settings_load (C function), 1446
settings_load_arg (C struct), 1451
settings_load_arg.cb (C var), 1452
settings_load_arg.param (C var), 1452
settings_load_arg.subtree (C var), 1452
settings_load_direct_cb (C type), 1445
settings_load_subtree (C function), 1446
settings_load_subtree_direct (C function),

1446
SETTINGS_MAX_DIR_DEPTH (C macro), 1444
SETTINGS_MAX_NAME_LEN (C macro), 1444
SETTINGS_MAX_VAL_LEN (C macro), 1445
SETTINGS_NAME_END (C macro), 1445
settings_name_next (C function), 1450
SETTINGS_NAME_SEPARATOR (C macro), 1445
settings_name_steq (C function), 1449
settings_parse_and_lookup (C function), 1451
settings_read_cb (C type), 1445
settings_register (C function), 1446
settings_runtime_commit (C function), 1450
settings_runtime_get (C function), 1450
settings_runtime_set (C function), 1450
settings_save (C function), 1447
settings_save_one (C function), 1447
settings_src_register (C function), 1451
SETTINGS_STATIC_HANDLER_DEFINE (C macro),

1445
settings_store (C struct), 1451
settings_store.cs_itf (C var), 1451
settings_store.cs_next (C var), 1451
settings_store_itf (C struct), 1452
settings_store_itf.csi_load (C var), 1452
settings_store_itf.csi_save (C var), 1452
settings_store_itf.csi_save_end (C var),

1452
settings_store_itf.csi_save_start (C var),

1452
settings_subsys_init (C function), 1446
shell (C struct), 1340
shell.ctx (C var), 1341
shell.default_prompt (C var), 1341
shell.iface (C var), 1341
shell_bypass_cb_t (C type), 1331
SHELL_CMD (C macro), 1327
SHELL_CMD_ARG (C macro), 1326
SHELL_CMD_ARG_REGISTER (C macro), 1324
SHELL_CMD_DICT_CREATE (C macro), 1328
shell_cmd_entry (C struct), 1336
shell_cmd_entry.union_cmd_entry (C union),

1337

Index 1983

Zephyr Project Documentation, Release 2.7.0-rc2

shell_cmd_entry.union_cmd_entry.dynamic_get
(C var), 1337

shell_cmd_entry.union_cmd_entry.entry (C
var), 1337

shell_cmd_handler (C type), 1330
SHELL_CMD_HELP_PRINTED (C macro), 1330
SHELL_CMD_REGISTER (C macro), 1325
SHELL_COND_CMD (C macro), 1328
SHELL_COND_CMD_ARG (C macro), 1326
SHELL_COND_CMD_ARG_REGISTER (C macro), 1325
SHELL_COND_CMD_REGISTER (C macro), 1325
shell_ctx (C struct), 1340
shell_ctx.cmd_buff (C var), 1340
shell_ctx.cmd_buff_len (C var), 1340
shell_ctx.cmd_buff_pos (C var), 1340
shell_ctx.cmd_tmp_buff_len (C var), 1340
shell_ctx.internal (C var), 1340
shell_ctx.prompt (C var), 1340
shell_ctx.receive_state (C var), 1340
shell_ctx.selected_cmd (C var), 1340
shell_ctx.state (C var), 1340
shell_ctx.temp_buff (C var), 1340
shell_ctx.uninit_cb (C var), 1340
shell_ctx.vt100_ctx (C var), 1340
SHELL_DEFINE (C macro), 1329
shell_device_lookup (C function), 1332
shell_dict_cmd_handler (C type), 1330
SHELL_DYNAMIC_CMD_CREATE (C macro), 1326
shell_dynamic_get (C type), 1330
shell_echo_set (C function), 1336
SHELL_ERROR (C macro), 1329
shell_error (C macro), 1330
shell_execute_cmd (C function), 1335
SHELL_EXPR_CMD (C macro), 1328
SHELL_EXPR_CMD_ARG (C macro), 1327
shell_flag (C enum), 1332
shell_flag.SHELL_FLAG_CRLF_DEFAULT (C enu-

merator), 1332
shell_flag.SHELL_FLAG_OLF_CRLF (C enumera-

tor), 1332
shell_flags (C struct), 1339
shell_flags.cmd_ctx (C var), 1339
shell_flags.echo (C var), 1339
shell_flags.history_exit (C var), 1339
shell_flags.insert_mode (C var), 1339
shell_flags.last_nl (C var), 1339
shell_flags.mode_delete (C var), 1339
shell_flags.obscure (C var), 1339
shell_flags.print_noinit (C var), 1339
shell_flags.processing (C var), 1339
shell_flags.use_colors (C var), 1339
shell_fprintf (C function), 1333
shell_help (C function), 1334
shell_hexdump (C function), 1334
shell_hexdump_line (C function), 1334
SHELL_INFO (C macro), 1329
shell_info (C macro), 1329
shell_init (C function), 1333

shell_insert_mode_set (C function), 1335
shell_internal (C union), 1339
shell_internal.flags (C var), 1339
shell_internal.value (C var), 1339
shell_mode_delete_set (C function), 1336
SHELL_NORMAL (C macro), 1329
shell_obscure_set (C function), 1336
SHELL_OPTION (C macro), 1329
shell_print (C macro), 1329
shell_process (C function), 1334
shell_prompt_change (C function), 1334
shell_receive_state (C enum), 1331
shell_receive_state.SHELL_RECEIVE_DEFAULT

(C enumerator), 1331
shell_receive_state.SHELL_RECEIVE_ESC (C

enumerator), 1331
shell_receive_state.SHELL_RECEIVE_ESC_SEQ

(C enumerator), 1331
shell_receive_state.SHELL_RECEIVE_TILDE_EXP

(C enumerator), 1331
shell_set_bypass (C function), 1335
shell_set_root_cmd (C function), 1335
shell_signal (C enum), 1332
shell_signal.SHELL_SIGNAL_KILL (C enumera-

tor), 1332
shell_signal.SHELL_SIGNAL_LOG_MSG (C enu-

merator), 1332
shell_signal.SHELL_SIGNAL_RXRDY (C enumera-

tor), 1332
shell_signal.SHELL_SIGNAL_TXDONE (C enumer-

ator), 1332
shell_signal.SHELL_SIGNALS (C enumerator),

1332
shell_start (C function), 1333
shell_state (C enum), 1331
shell_state.SHELL_STATE_ACTIVE (C enumera-

tor), 1331
shell_state.SHELL_STATE_INITIALIZED (C enu-

merator), 1331
shell_state.SHELL_STATE_PANIC_MODE_ACTIVE

(C enumerator), 1331
shell_state.SHELL_STATE_PANIC_MODE_INACTIVE

(C enumerator), 1332
shell_state.SHELL_STATE_UNINITIALIZED (C

enumerator), 1331
shell_static_args (C struct), 1337
shell_static_args.mandatory (C var), 1337
shell_static_args.optional (C var), 1337
shell_static_entry (C struct), 1337
shell_static_entry.args (C var), 1337
shell_static_entry.handler (C var), 1337
shell_static_entry.help (C var), 1337
shell_static_entry.subcmd (C var), 1337
shell_static_entry.syntax (C var), 1337
SHELL_STATIC_SUBCMD_SET_CREATE (C macro),

1326
shell_stats (C struct), 1338
shell_stats.log_lost_cnt (C var), 1339

1984 Index

Zephyr Project Documentation, Release 2.7.0-rc2

shell_stop (C function), 1333
SHELL_SUBCMD_DICT_SET_CREATE (C macro), 1328
SHELL_SUBCMD_SET_END (C macro), 1326
shell_transport (C struct), 1338
shell_transport_api (C struct), 1337
shell_transport_api.enable (C var), 1338
shell_transport_api.init (C var), 1338
shell_transport_api.read (C var), 1338
shell_transport_api.uninit (C var), 1338
shell_transport_api.update (C var), 1338
shell_transport_api.write (C var), 1338
shell_transport_evt (C enum), 1332
shell_transport_evt.SHELL_TRANSPORT_EVT_RX_RDY

(C enumerator), 1332
shell_transport_evt.SHELL_TRANSPORT_EVT_TX_RDY

(C enumerator), 1332
shell_transport_handler_t (C type), 1331
shell_uninit (C function), 1333
shell_uninit_cb_t (C type), 1331
shell_use_colors_set (C function), 1336
shell_vfprintf (C function), 1333
shell_warn (C macro), 1330
SHELL_WARNING (C macro), 1329
snprintfcb (C function), 587
sntp_close (C function), 916
sntp_ctx (C struct), 917
sntp_ctx.expected_orig_ts (C var), 917
sntp_init (C function), 916
sntp_query (C function), 916
sntp_simple (C function), 916
sntp_time (C struct), 917
SO_BINDTODEVICE (C macro), 870
SO_ERROR (C macro), 869
SO_PRIORITY (C macro), 870
SO_PROTOCOL (C macro), 870
SO_RCVTIMEO (C macro), 870
SO_REUSEADDR (C macro), 869
SO_SNDTIMEO (C macro), 870
SO_SOCKS5 (C macro), 870
SO_TIMESTAMPING (C macro), 870
SO_TXTIME (C macro), 870
SO_TYPE (C macro), 869
SOC_FLASH_0_ID (C macro), 1350
sockaddr (C struct), 893
sockaddr_can_ptr (C struct), 893
sockaddr_in (C struct), 892
sockaddr_in6 (C struct), 892
sockaddr_in6_ptr (C struct), 892
sockaddr_in_ptr (C struct), 892
sockaddr_ll (C struct), 893
sockaddr_ll_ptr (C struct), 893
socklen_t (C type), 881
SOL_SOCKET (C macro), 869
SOL_TLS (C macro), 868
spi_api_io (C type), 1240
spi_api_io_async (C type), 1240
spi_api_release (C type), 1240
spi_buf (C struct), 1246

spi_buf_set (C struct), 1246
spi_config (C struct), 1245
SPI_CONFIG_DT (C macro), 1239
SPI_CONFIG_DT_INST (C macro), 1239
SPI_CS_ACTIVE_HIGH (C macro), 1238
spi_cs_control (C struct), 1245
SPI_CS_CONTROL_PTR_DT (C macro), 1238
SPI_CS_CONTROL_PTR_DT_INST (C macro), 1239
spi_driver_api (C struct), 1246
spi_dt_spec (C struct), 1245
SPI_DT_SPEC_GET (C macro), 1239
SPI_DT_SPEC_INST_GET (C macro), 1240
SPI_FLASH_0_ID (C macro), 1351
SPI_HOLD_ON_CS (C macro), 1238
spi_is_ready (C function), 1240
SPI_LINES_DUAL (C macro), 1238
SPI_LINES_MASK (C macro), 1238
SPI_LINES_OCTAL (C macro), 1238
SPI_LINES_QUAD (C macro), 1238
SPI_LINES_SINGLE (C macro), 1238
SPI_LOCK_ON (C macro), 1238
SPI_MODE_CPHA (C macro), 1237
SPI_MODE_CPOL (C macro), 1237
SPI_MODE_GET (C macro), 1237
SPI_MODE_LOOP (C macro), 1237
SPI_MODE_MASK (C macro), 1237
SPI_OP_MODE_GET (C macro), 1237
SPI_OP_MODE_MASK (C macro), 1237
SPI_OP_MODE_MASTER (C macro), 1237
SPI_OP_MODE_SLAVE (C macro), 1237
spi_read (C function), 1241
spi_read_async (C function), 1243
spi_read_dt (C function), 1242
spi_release (C function), 1244
spi_release_dt (C function), 1244
spi_transceive (C function), 1241
spi_transceive_async (C function), 1243
spi_transceive_dt (C function), 1241
SPI_TRANSFER_LSB (C macro), 1237
SPI_TRANSFER_MSB (C macro), 1237
SPI_WORD_SET (C macro), 1238
SPI_WORD_SIZE_GET (C macro), 1237
SPI_WORD_SIZE_MASK (C macro), 1237
SPI_WORD_SIZE_SHIFT (C macro), 1237
spi_write (C function), 1242
spi_write_async (C function), 1244
spi_write_dt (C function), 1242
STATE_DOWNLOADED (C macro), 1023
STATE_DOWNLOADING (C macro), 1023
state_entry (C var), 1299
state_exit (C var), 1299
STATE_IDLE (C macro), 1023
STATE_UPDATING (C macro), 1023
stream_flash_buffered_write (C function),

1360
stream_flash_bytes_written (C function), 1360
stream_flash_callback_t (C type), 1359
stream_flash_ctx (C struct), 1361

Index 1985

Zephyr Project Documentation, Release 2.7.0-rc2

stream_flash_erase_page (C function), 1361
stream_flash_init (C function), 1360
stream_flash_progress_clear (C function),

1361
stream_flash_progress_load (C function), 1361
stream_flash_progress_save (C function), 1361
STRUCT_SECTION_FOREACH (C macro), 579
STRUCT_SECTION_ITERABLE (C macro), 579
STRUCT_SECTION_ITERABLE_ALTERNATE (C macro),

579
sys_clock_announce (C function), 737
sys_clock_driver_init (C function), 736
sys_clock_elapsed (C function), 738
sys_clock_idle_exit (C function), 737
sys_clock_set_timeout (C function), 737
sys_csrand_get (C function), 1305
SYS_DEVICE_DEFINE (C macro), 543
sys_dlist_append (C function), 838
SYS_DLIST_CONTAINER (C macro), 835
SYS_DLIST_FOR_EACH_CONTAINER (C macro), 835
SYS_DLIST_FOR_EACH_CONTAINER_SAFE (C macro),

835
SYS_DLIST_FOR_EACH_NODE (C macro), 833
SYS_DLIST_FOR_EACH_NODE_SAFE (C macro), 834
sys_dlist_get (C function), 839
sys_dlist_has_multiple_nodes (C function),

836
sys_dlist_init (C function), 836
sys_dlist_insert (C function), 838
sys_dlist_insert_at (C function), 838
sys_dlist_is_empty (C function), 836
sys_dlist_is_head (C function), 836
sys_dlist_is_tail (C function), 836
SYS_DLIST_ITERATE_FROM_NODE (C macro), 834
sys_dlist_peek_head (C function), 837
SYS_DLIST_PEEK_HEAD_CONTAINER (C macro), 835
sys_dlist_peek_head_not_empty (C function),

837
sys_dlist_peek_next (C function), 837
SYS_DLIST_PEEK_NEXT_CONTAINER (C macro), 835
sys_dlist_peek_next_no_check (C function),

837
sys_dlist_peek_prev (C function), 837
sys_dlist_peek_prev_no_check (C function),

837
sys_dlist_peek_tail (C function), 838
sys_dlist_prepend (C function), 838
sys_dlist_remove (C function), 839
SYS_DLIST_STATIC_INIT (C macro), 835
sys_dlist_t (C type), 836
sys_dnode_init (C function), 836
sys_dnode_is_linked (C function), 836
sys_dnode_t (C type), 836
SYS_INIT (C macro), 545
SYS_KERNEL_VER_MAJOR (C macro), 760
SYS_KERNEL_VER_MINOR (C macro), 760
SYS_KERNEL_VER_PATCHLEVEL (C macro), 760
sys_kernel_version_get (C function), 760

SYS_MUTEX_DEFINE (C macro), 670
sys_mutex_init (C function), 671
sys_mutex_lock (C function), 671
sys_mutex_unlock (C function), 671
sys_notify (C struct), 165
sys_notify.method (C union), 166
sys_notify.method.callback (C var), 166
sys_notify.method.signal (C var), 166
sys_notify_fetch_result (C function), 164
sys_notify_finalize (C function), 164
sys_notify_generic_callback (C type), 163
sys_notify_get_method (C function), 164
sys_notify_init_callback (C function), 165
sys_notify_init_signal (C function), 165
sys_notify_init_spinwait (C function), 164
sys_notify_uses_callback (C function), 165
sys_notify_validate (C function), 164
sys_port_trace_k_condvar_broadcast_enter

(C macro), 1590
sys_port_trace_k_condvar_broadcast_exit (C

macro), 1590
sys_port_trace_k_condvar_init (C macro),

1590
sys_port_trace_k_condvar_signal_blocking

(C macro), 1590
sys_port_trace_k_condvar_signal_enter (C

macro), 1590
sys_port_trace_k_condvar_signal_exit (C

macro), 1590
sys_port_trace_k_condvar_wait_enter (C

macro), 1590
sys_port_trace_k_condvar_wait_exit (C

macro), 1590
sys_port_trace_k_fifo_alloc_put_enter (C

macro), 1595
sys_port_trace_k_fifo_alloc_put_exit (C

macro), 1595
sys_port_trace_k_fifo_alloc_put_list_enter

(C macro), 1595
sys_port_trace_k_fifo_alloc_put_list_exit

(C macro), 1595
sys_port_trace_k_fifo_alloc_put_slist_enter

(C macro), 1596
sys_port_trace_k_fifo_alloc_put_slist_exit

(C macro), 1596
sys_port_trace_k_fifo_cancel_wait_enter (C

macro), 1594
sys_port_trace_k_fifo_cancel_wait_exit (C

macro), 1595
sys_port_trace_k_fifo_get_enter (C macro),

1596
sys_port_trace_k_fifo_get_exit (C macro),

1596
sys_port_trace_k_fifo_init_enter (C macro),

1594
sys_port_trace_k_fifo_init_exit (C macro),

1594
sys_port_trace_k_fifo_peek_head_entry (C

1986 Index

Zephyr Project Documentation, Release 2.7.0-rc2

macro), 1596
sys_port_trace_k_fifo_peek_head_exit (C

macro), 1596
sys_port_trace_k_fifo_peek_tail_entry (C

macro), 1596
sys_port_trace_k_fifo_peek_tail_exit (C

macro), 1596
sys_port_trace_k_fifo_put_enter (C macro),

1595
sys_port_trace_k_fifo_put_exit (C macro),

1595
sys_port_trace_k_heap_aligned_alloc_blocking

(C macro), 1605
sys_port_trace_k_heap_aligned_alloc_enter

(C macro), 1604
sys_port_trace_k_heap_aligned_alloc_exit

(C macro), 1605
sys_port_trace_k_heap_alloc_enter (C macro),

1605
sys_port_trace_k_heap_alloc_exit (C macro),

1605
sys_port_trace_k_heap_free (C macro), 1605
sys_port_trace_k_heap_init (C macro), 1604
sys_port_trace_k_heap_sys_k_aligned_alloc_enter

(C macro), 1605
sys_port_trace_k_heap_sys_k_aligned_alloc_exit

(C macro), 1605
sys_port_trace_k_heap_sys_k_calloc_enter

(C macro), 1606
sys_port_trace_k_heap_sys_k_calloc_exit (C

macro), 1606
sys_port_trace_k_heap_sys_k_free_enter (C

macro), 1606
sys_port_trace_k_heap_sys_k_free_exit (C

macro), 1606
sys_port_trace_k_heap_sys_k_malloc_enter

(C macro), 1605
sys_port_trace_k_heap_sys_k_malloc_exit (C

macro), 1605
sys_port_trace_k_lifo_alloc_put_enter (C

macro), 1597
sys_port_trace_k_lifo_alloc_put_exit (C

macro), 1597
sys_port_trace_k_lifo_get_enter (C macro),

1597
sys_port_trace_k_lifo_get_exit (C macro),

1597
sys_port_trace_k_lifo_init_enter (C macro),

1597
sys_port_trace_k_lifo_init_exit (C macro),

1597
sys_port_trace_k_lifo_put_enter (C macro),

1597
sys_port_trace_k_lifo_put_exit (C macro),

1597
sys_port_trace_k_mbox_async_put_enter (C

macro), 1602
sys_port_trace_k_mbox_async_put_exit (C

macro), 1602
sys_port_trace_k_mbox_data_get (C macro),

1602
sys_port_trace_k_mbox_get_blocking (C

macro), 1602
sys_port_trace_k_mbox_get_enter (C macro),

1602
sys_port_trace_k_mbox_get_exit (C macro),

1602
sys_port_trace_k_mbox_init (C macro), 1601
sys_port_trace_k_mbox_message_put_blocking

(C macro), 1601
sys_port_trace_k_mbox_message_put_enter (C

macro), 1601
sys_port_trace_k_mbox_message_put_exit (C

macro), 1601
sys_port_trace_k_mbox_put_enter (C macro),

1601
sys_port_trace_k_mbox_put_exit (C macro),

1602
sys_port_trace_k_mem_slab_alloc_blocking

(C macro), 1606
sys_port_trace_k_mem_slab_alloc_enter (C

macro), 1606
sys_port_trace_k_mem_slab_alloc_exit (C

macro), 1607
sys_port_trace_k_mem_slab_free_enter (C

macro), 1607
sys_port_trace_k_mem_slab_free_exit (C

macro), 1607
sys_port_trace_k_mem_slab_init (C macro),

1606
sys_port_trace_k_msgq_alloc_init_enter (C

macro), 1599
sys_port_trace_k_msgq_alloc_init_exit (C

macro), 1599
sys_port_trace_k_msgq_cleanup_enter (C

macro), 1599
sys_port_trace_k_msgq_cleanup_exit (C

macro), 1600
sys_port_trace_k_msgq_get_blocking (C

macro), 1600
sys_port_trace_k_msgq_get_enter (C macro),

1600
sys_port_trace_k_msgq_get_exit (C macro),

1600
sys_port_trace_k_msgq_init (C macro), 1599
sys_port_trace_k_msgq_peek (C macro), 1601
sys_port_trace_k_msgq_purge (C macro), 1601
sys_port_trace_k_msgq_put_blocking (C

macro), 1600
sys_port_trace_k_msgq_put_enter (C macro),

1600
sys_port_trace_k_msgq_put_exit (C macro),

1600
sys_port_trace_k_mutex_init (C macro), 1589
sys_port_trace_k_mutex_lock_blocking (C

macro), 1589

Index 1987

Zephyr Project Documentation, Release 2.7.0-rc2

sys_port_trace_k_mutex_lock_enter (C macro),
1589

sys_port_trace_k_mutex_lock_exit (C macro),
1589

sys_port_trace_k_mutex_unlock_enter (C
macro), 1589

sys_port_trace_k_mutex_unlock_exit (C
macro), 1589

sys_port_trace_k_pipe_alloc_init_enter (C
macro), 1603

sys_port_trace_k_pipe_alloc_init_exit (C
macro), 1603

sys_port_trace_k_pipe_block_put_enter (C
macro), 1604

sys_port_trace_k_pipe_block_put_exit (C
macro), 1604

sys_port_trace_k_pipe_cleanup_enter (C
macro), 1603

sys_port_trace_k_pipe_cleanup_exit (C
macro), 1603

sys_port_trace_k_pipe_get_blocking (C
macro), 1604

sys_port_trace_k_pipe_get_enter (C macro),
1603

sys_port_trace_k_pipe_get_exit (C macro),
1604

sys_port_trace_k_pipe_init (C macro), 1603
sys_port_trace_k_pipe_put_blocking (C

macro), 1603
sys_port_trace_k_pipe_put_enter (C macro),

1603
sys_port_trace_k_pipe_put_exit (C macro),

1603
sys_port_trace_k_poll_api_event_init (C

macro), 1587
sys_port_trace_k_poll_api_poll_enter (C

macro), 1587
sys_port_trace_k_poll_api_poll_exit (C

macro), 1587
sys_port_trace_k_poll_api_signal_check (C

macro), 1587
sys_port_trace_k_poll_api_signal_init (C

macro), 1587
sys_port_trace_k_poll_api_signal_raise (C

macro), 1587
sys_port_trace_k_poll_api_signal_reset (C

macro), 1587
sys_port_trace_k_queue_alloc_append_enter

(C macro), 1591
sys_port_trace_k_queue_alloc_append_exit

(C macro), 1592
sys_port_trace_k_queue_alloc_prepend_enter

(C macro), 1592
sys_port_trace_k_queue_alloc_prepend_exit

(C macro), 1592
sys_port_trace_k_queue_append_enter (C

macro), 1591
sys_port_trace_k_queue_append_exit (C

macro), 1591
sys_port_trace_k_queue_append_list_enter

(C macro), 1592
sys_port_trace_k_queue_append_list_exit (C

macro), 1593
sys_port_trace_k_queue_cancel_wait (C

macro), 1591
sys_port_trace_k_queue_get_blocking (C

macro), 1593
sys_port_trace_k_queue_get_enter (C macro),

1593
sys_port_trace_k_queue_get_exit (C macro),

1593
sys_port_trace_k_queue_init (C macro), 1591
sys_port_trace_k_queue_insert_blocking (C

macro), 1592
sys_port_trace_k_queue_insert_enter (C

macro), 1592
sys_port_trace_k_queue_insert_exit (C

macro), 1592
sys_port_trace_k_queue_merge_slist_enter

(C macro), 1593
sys_port_trace_k_queue_merge_slist_exit (C

macro), 1593
sys_port_trace_k_queue_peek_head (C macro),

1594
sys_port_trace_k_queue_peek_tail (C macro),

1594
sys_port_trace_k_queue_prepend_enter (C

macro), 1592
sys_port_trace_k_queue_prepend_exit (C

macro), 1592
sys_port_trace_k_queue_queue_insert_blocking

(C macro), 1591
sys_port_trace_k_queue_queue_insert_enter

(C macro), 1591
sys_port_trace_k_queue_queue_insert_exit

(C macro), 1591
sys_port_trace_k_queue_remove_enter (C

macro), 1593
sys_port_trace_k_queue_remove_exit (C

macro), 1593
sys_port_trace_k_queue_unique_append_enter

(C macro), 1594
sys_port_trace_k_queue_unique_append_exit

(C macro), 1594
sys_port_trace_k_sem_give_enter (C macro),

1588
sys_port_trace_k_sem_give_exit (C macro),

1588
sys_port_trace_k_sem_init (C macro), 1588
sys_port_trace_k_sem_reset (C macro), 1588
sys_port_trace_k_sem_take_blocking (C

macro), 1588
sys_port_trace_k_sem_take_enter (C macro),

1588
sys_port_trace_k_sem_take_exit (C macro),

1588

1988 Index

Zephyr Project Documentation, Release 2.7.0-rc2

sys_port_trace_k_stack_alloc_init_enter (C
macro), 1598

sys_port_trace_k_stack_alloc_init_exit (C
macro), 1598

sys_port_trace_k_stack_cleanup_enter (C
macro), 1598

sys_port_trace_k_stack_cleanup_exit (C
macro), 1598

sys_port_trace_k_stack_init (C macro), 1598
sys_port_trace_k_stack_pop_blocking (C

macro), 1599
sys_port_trace_k_stack_pop_enter (C macro),

1599
sys_port_trace_k_stack_pop_exit (C macro),

1599
sys_port_trace_k_stack_push_enter (C macro),

1598
sys_port_trace_k_stack_push_exit (C macro),

1598
sys_port_trace_k_thread_abort (C macro),

1583
sys_port_trace_k_thread_busy_wait_enter (C

macro), 1582
sys_port_trace_k_thread_busy_wait_exit (C

macro), 1582
sys_port_trace_k_thread_create (C macro),

1581
sys_port_trace_k_thread_foreach_enter (C

macro), 1581
sys_port_trace_k_thread_foreach_exit (C

macro), 1581
sys_port_trace_k_thread_foreach_unlocked_enter

(C macro), 1581
sys_port_trace_k_thread_foreach_unlocked_exit

(C macro), 1581
sys_port_trace_k_thread_info (C macro), 1584
sys_port_trace_k_thread_join_blocking (C

macro), 1581
sys_port_trace_k_thread_join_enter (C

macro), 1581
sys_port_trace_k_thread_join_exit (C macro),

1581
sys_port_trace_k_thread_msleep_enter (C

macro), 1582
sys_port_trace_k_thread_msleep_exit (C

macro), 1582
sys_port_trace_k_thread_name_set (C macro),

1583
sys_port_trace_k_thread_pend (C macro), 1584
sys_port_trace_k_thread_priority_set (C

macro), 1583
sys_port_trace_k_thread_ready (C macro),

1584
sys_port_trace_k_thread_resume_enter (C

macro), 1583
sys_port_trace_k_thread_resume_exit (C

macro), 1583
sys_port_trace_k_thread_sched_abort (C

macro), 1584
sys_port_trace_k_thread_sched_lock (C

macro), 1583
sys_port_trace_k_thread_sched_pend (C

macro), 1584
sys_port_trace_k_thread_sched_priority_set

(C macro), 1584
sys_port_trace_k_thread_sched_ready (C

macro), 1584
sys_port_trace_k_thread_sched_resume (C

macro), 1585
sys_port_trace_k_thread_sched_suspend (C

macro), 1585
sys_port_trace_k_thread_sched_unlock (C

macro), 1583
sys_port_trace_k_thread_sched_wakeup (C

macro), 1584
sys_port_trace_k_thread_sleep_enter (C

macro), 1582
sys_port_trace_k_thread_sleep_exit (C

macro), 1582
sys_port_trace_k_thread_start (C macro),

1583
sys_port_trace_k_thread_suspend_enter (C

macro), 1583
sys_port_trace_k_thread_suspend_exit (C

macro), 1583
sys_port_trace_k_thread_switched_in (C

macro), 1584
sys_port_trace_k_thread_switched_out (C

macro), 1584
sys_port_trace_k_thread_user_mode_enter (C

macro), 1581
sys_port_trace_k_thread_usleep_enter (C

macro), 1582
sys_port_trace_k_thread_usleep_exit (C

macro), 1582
sys_port_trace_k_thread_wakeup (C macro),

1583
sys_port_trace_k_thread_yield (C macro),

1583
sys_port_trace_k_timer_init (C macro), 1607
sys_port_trace_k_timer_start (C macro), 1607
sys_port_trace_k_timer_status_sync_blocking

(C macro), 1608
sys_port_trace_k_timer_status_sync_enter

(C macro), 1607
sys_port_trace_k_timer_status_sync_exit (C

macro), 1608
sys_port_trace_k_timer_stop (C macro), 1607
sys_port_trace_k_work_cancel_enter (C

macro), 1586
sys_port_trace_k_work_cancel_exit (C macro),

1586
sys_port_trace_k_work_cancel_sync_blocking

(C macro), 1586
sys_port_trace_k_work_cancel_sync_enter (C

macro), 1586

Index 1989

Zephyr Project Documentation, Release 2.7.0-rc2

sys_port_trace_k_work_cancel_sync_exit (C
macro), 1586

sys_port_trace_k_work_flush_blocking (C
macro), 1586

sys_port_trace_k_work_flush_enter (C macro),
1586

sys_port_trace_k_work_flush_exit (C macro),
1586

sys_port_trace_k_work_init (C macro), 1585
sys_port_trace_k_work_submit_enter (C

macro), 1585
sys_port_trace_k_work_submit_exit (C macro),

1585
sys_port_trace_k_work_submit_to_queue_enter

(C macro), 1585
sys_port_trace_k_work_submit_to_queue_exit

(C macro), 1585
sys_rand32_get (C function), 1305
sys_rand_get (C function), 1305
sys_sem_count_get (C function), 665
SYS_SEM_DEFINE (C macro), 664
sys_sem_give (C function), 665
sys_sem_init (C function), 665
sys_sem_take (C function), 665
sys_sflist_append (C function), 830
sys_sflist_append_list (C function), 831
SYS_SFLIST_CONTAINER (C macro), 828
sys_sflist_find_and_remove (C function), 832
SYS_SFLIST_FLAGS_MASK (C macro), 829
SYS_SFLIST_FOR_EACH_CONTAINER (C macro), 828
SYS_SFLIST_FOR_EACH_CONTAINER_SAFE (C

macro), 829
SYS_SFLIST_FOR_EACH_NODE (C macro), 827
SYS_SFLIST_FOR_EACH_NODE_SAFE (C macro), 828
sys_sflist_get (C function), 831
sys_sflist_get_not_empty (C function), 831
sys_sflist_init (C function), 829
sys_sflist_insert (C function), 831
sys_sflist_is_empty (C function), 830
SYS_SFLIST_ITERATE_FROM_NODE (C macro), 827
sys_sflist_merge_sflist (C function), 831
sys_sflist_peek_head (C function), 829
SYS_SFLIST_PEEK_HEAD_CONTAINER (C macro),

828
sys_sflist_peek_next (C function), 830
SYS_SFLIST_PEEK_NEXT_CONTAINER (C macro),

828
sys_sflist_peek_next_no_check (C function),

830
sys_sflist_peek_tail (C function), 829
SYS_SFLIST_PEEK_TAIL_CONTAINER (C macro),

828
sys_sflist_prepend (C function), 830
sys_sflist_remove (C function), 832
SYS_SFLIST_STATIC_INIT (C macro), 829
sys_sfnode_flags_get (C function), 829
sys_sfnode_flags_set (C function), 830
sys_sfnode_init (C function), 829

sys_slist_append (C function), 826
sys_slist_append_list (C function), 826
SYS_SLIST_CONTAINER (C macro), 824
sys_slist_find_and_remove (C function), 827
SYS_SLIST_FOR_EACH_CONTAINER (C macro), 824
SYS_SLIST_FOR_EACH_CONTAINER_SAFE (C macro),

824
SYS_SLIST_FOR_EACH_NODE (C macro), 823
SYS_SLIST_FOR_EACH_NODE_SAFE (C macro), 824
sys_slist_get (C function), 826
sys_slist_get_not_empty (C function), 826
sys_slist_init (C function), 825
sys_slist_insert (C function), 826
sys_slist_is_empty (C function), 825
SYS_SLIST_ITERATE_FROM_NODE (C macro), 823
sys_slist_merge_slist (C function), 826
sys_slist_peek_head (C function), 825
SYS_SLIST_PEEK_HEAD_CONTAINER (C macro), 824
sys_slist_peek_next (C function), 825
SYS_SLIST_PEEK_NEXT_CONTAINER (C macro), 824
sys_slist_peek_next_no_check (C function),

825
sys_slist_peek_tail (C function), 825
SYS_SLIST_PEEK_TAIL_CONTAINER (C macro), 824
sys_slist_prepend (C function), 825
sys_slist_remove (C function), 827
SYS_SLIST_STATIC_INIT (C macro), 825
sys_trace_idle (C function), 1581
sys_trace_isr_enter (C function), 1581
sys_trace_isr_exit (C function), 1581
sys_trace_isr_exit_to_scheduler (C function),

1581

T
task_wdt_add (C function), 1363
task_wdt_callback_t (C type), 1362
task_wdt_delete (C function), 1363
task_wdt_feed (C function), 1363
task_wdt_init (C function), 1362
TCP_NODELAY (C macro), 870
thread_analyzer_cb (C type), 1569
thread_analyzer_info (C struct), 1569
thread_analyzer_info.name (C var), 1569
thread_analyzer_info.stack_size (C var),

1569
thread_analyzer_info.stack_used (C var),

1569
thread_analyzer_print (C function), 1569
thread_analyzer_run (C function), 1569
thread_info_enabled (run-

ners.core.ZephyrBinaryRunner property),
1852

timeutil_sync_config (C struct), 1367
timeutil_sync_config.local_Hz (C var), 1368
timeutil_sync_config.ref_Hz (C var), 1368
timeutil_sync_estimate_skew (C function),

1366
timeutil_sync_instant (C struct), 1368

1990 Index

Zephyr Project Documentation, Release 2.7.0-rc2

timeutil_sync_instant.local (C var), 1368
timeutil_sync_instant.ref (C var), 1368
timeutil_sync_local_from_ref (C function),

1367
timeutil_sync_ref_from_local (C function),

1366
timeutil_sync_skew_to_ppb (C function), 1367
timeutil_sync_state (C struct), 1368
timeutil_sync_state.base (C var), 1369
timeutil_sync_state.cfg (C var), 1369
timeutil_sync_state.latest (C var), 1369
timeutil_sync_state.skew (C var), 1369
timeutil_sync_state_set_skew (C function),

1366
timeutil_sync_state_update (C function), 1365
timeutil_timegm (C function), 1365
timeutil_timegm64 (C function), 1364
timing_counter_get (C function), 1454
timing_cycles_get (C function), 1454
timing_cycles_to_ns (C function), 1454
timing_cycles_to_ns_avg (C function), 1454
timing_freq_get (C function), 1454
timing_freq_get_mhz (C function), 1455
timing_init (C function), 1454
timing_start (C function), 1454
timing_stop (C function), 1454
TLS_ALPN_LIST (C macro), 867
TLS_CIPHERSUITE_LIST (C macro), 866
TLS_CIPHERSUITE_USED (C macro), 866
tls_credential_add (C function), 877
tls_credential_delete (C function), 878
tls_credential_get (C function), 877
tls_credential_type (C enum), 876
tls_credential_type.TLS_CREDENTIAL_CA_CERTIFICATE

(C enumerator), 877
tls_credential_type.TLS_CREDENTIAL_NONE (C

enumerator), 876
tls_credential_type.TLS_CREDENTIAL_PRIVATE_KEY

(C enumerator), 877
tls_credential_type.TLS_CREDENTIAL_PSK (C

enumerator), 877
tls_credential_type.TLS_CREDENTIAL_PSK_ID

(C enumerator), 877
tls_credential_type.TLS_CREDENTIAL_SERVER_CERTIFICATE

(C enumerator), 877
TLS_DTLS_HANDSHAKE_TIMEOUT_MAX (C macro),

867
TLS_DTLS_HANDSHAKE_TIMEOUT_MIN (C macro),

867
TLS_DTLS_ROLE (C macro), 867
TLS_DTLS_ROLE_CLIENT (C macro), 868
TLS_DTLS_ROLE_SERVER (C macro), 868
TLS_HOSTNAME (C macro), 866
TLS_PEER_VERIFY (C macro), 866
TLS_PEER_VERIFY_NONE (C macro), 868
TLS_PEER_VERIFY_OPTIONAL (C macro), 868
TLS_PEER_VERIFY_REQUIRED (C macro), 868
TLS_SEC_TAG_LIST (C macro), 866

TOOLCHAIN_ROOT, 1468

U
u8_to_dec (C function), 1440
uart_callback_set (C function), 1250
uart_callback_t (C type), 1246
uart_config (C struct), 1259
uart_config_data_bits (C enum), 1249
uart_config_data_bits.UART_CFG_DATA_BITS_5

(C enumerator), 1250
uart_config_data_bits.UART_CFG_DATA_BITS_6

(C enumerator), 1250
uart_config_data_bits.UART_CFG_DATA_BITS_7

(C enumerator), 1250
uart_config_data_bits.UART_CFG_DATA_BITS_8

(C enumerator), 1250
uart_config_data_bits.UART_CFG_DATA_BITS_9

(C enumerator), 1250
uart_config_flow_control (C enum), 1250
uart_config_flow_control.UART_CFG_FLOW_CTRL_DTR_DSR

(C enumerator), 1250
uart_config_flow_control.UART_CFG_FLOW_CTRL_NONE

(C enumerator), 1250
uart_config_flow_control.UART_CFG_FLOW_CTRL_RTS_CTS

(C enumerator), 1250
uart_config_get (C function), 1253
uart_config_parity (C enum), 1249
uart_config_parity.UART_CFG_PARITY_EVEN (C

enumerator), 1249
uart_config_parity.UART_CFG_PARITY_MARK (C

enumerator), 1249
uart_config_parity.UART_CFG_PARITY_NONE (C

enumerator), 1249
uart_config_parity.UART_CFG_PARITY_ODD (C

enumerator), 1249
uart_config_parity.UART_CFG_PARITY_SPACE

(C enumerator), 1249
uart_config_stop_bits (C enum), 1249
uart_config_stop_bits.UART_CFG_STOP_BITS_0_5

(C enumerator), 1249
uart_config_stop_bits.UART_CFG_STOP_BITS_1

(C enumerator), 1249
uart_config_stop_bits.UART_CFG_STOP_BITS_1_5

(C enumerator), 1249
uart_config_stop_bits.UART_CFG_STOP_BITS_2

(C enumerator), 1249
uart_configure (C function), 1253
uart_device_config (C struct), 1259
uart_driver_api (C struct), 1259
uart_driver_api.configure (C var), 1259
uart_driver_api.err_check (C var), 1259
uart_driver_api.fifo_fill (C var), 1259
uart_driver_api.fifo_read (C var), 1259
uart_driver_api.irq_callback_set (C var),

1260
uart_driver_api.irq_err_disable (C var),

1260
uart_driver_api.irq_err_enable (C var), 1260

Index 1991

Zephyr Project Documentation, Release 2.7.0-rc2

uart_driver_api.irq_is_pending (C var), 1260
uart_driver_api.irq_rx_disable (C var), 1260
uart_driver_api.irq_rx_enable (C var), 1260
uart_driver_api.irq_rx_ready (C var), 1260
uart_driver_api.irq_tx_complete (C var),

1260
uart_driver_api.irq_tx_disable (C var), 1260
uart_driver_api.irq_tx_enable (C var), 1260
uart_driver_api.irq_tx_ready (C var), 1260
uart_driver_api.irq_update (C var), 1260
uart_driver_api.poll_in (C var), 1259
uart_drv_cmd (C function), 1257
uart_err_check (C function), 1252
uart_event (C struct), 1258
uart_event.type (C var), 1258
uart_event.uart_event_data (C union), 1258
uart_event.uart_event_data.rx (C var), 1259
uart_event.uart_event_data.rx_buf (C var),

1259
uart_event.uart_event_data.rx_stop (C var),

1259
uart_event.uart_event_data.tx (C var), 1259
uart_event_rx (C struct), 1258
uart_event_rx.buf (C var), 1258
uart_event_rx.len (C var), 1258
uart_event_rx.offset (C var), 1258
uart_event_rx_buf (C struct), 1258
uart_event_rx_stop (C struct), 1258
uart_event_rx_stop.data (C var), 1258
uart_event_rx_stop.reason (C var), 1258
uart_event_tx (C struct), 1257
uart_event_tx.buf (C var), 1257
uart_event_tx.len (C var), 1257
uart_event_type (C enum), 1247
uart_event_type.UART_RX_BUF_RELEASED (C

enumerator), 1248
uart_event_type.UART_RX_BUF_REQUEST (C enu-

merator), 1248
uart_event_type.UART_RX_DISABLED (C enumer-

ator), 1248
uart_event_type.UART_RX_RDY (C enumerator),

1248
uart_event_type.UART_RX_STOPPED (C enumera-

tor), 1248
uart_event_type.UART_TX_ABORTED (C enumera-

tor), 1248
uart_event_type.UART_TX_DONE (C enumerator),

1248
uart_fifo_fill (C function), 1253
uart_fifo_read (C function), 1253
uart_irq_callback_set (C function), 1256
uart_irq_callback_user_data_set (C function),

1256
uart_irq_callback_user_data_t (C type), 1246
uart_irq_config_func_t (C type), 1246
uart_irq_err_disable (C function), 1255
uart_irq_err_enable (C function), 1255
uart_irq_is_pending (C function), 1256

uart_irq_rx_disable (C function), 1254
uart_irq_rx_enable (C function), 1254
uart_irq_rx_ready (C function), 1255
uart_irq_tx_complete (C function), 1255
uart_irq_tx_disable (C function), 1254
uart_irq_tx_enable (C function), 1254
uart_irq_tx_ready (C function), 1254
uart_irq_update (C function), 1256
uart_line_ctrl (C enum), 1247
uart_line_ctrl.UART_LINE_CTRL_BAUD_RATE (C

enumerator), 1247
uart_line_ctrl.UART_LINE_CTRL_DCD (C enu-

merator), 1247
uart_line_ctrl.UART_LINE_CTRL_DSR (C enu-

merator), 1247
uart_line_ctrl.UART_LINE_CTRL_DTR (C enu-

merator), 1247
uart_line_ctrl.UART_LINE_CTRL_RTS (C enu-

merator), 1247
uart_line_ctrl_get (C function), 1257
uart_line_ctrl_set (C function), 1257
uart_poll_in (C function), 1252
uart_poll_out (C function), 1252
uart_rx_buf_rsp (C function), 1251
uart_rx_disable (C function), 1252
uart_rx_enable (C function), 1251
uart_rx_stop_reason (C enum), 1248
uart_rx_stop_reason.UART_BREAK (C enumera-

tor), 1249
uart_rx_stop_reason.UART_ERROR_COLLISION

(C enumerator), 1249
uart_rx_stop_reason.UART_ERROR_FRAMING (C

enumerator), 1249
uart_rx_stop_reason.UART_ERROR_OVERRUN (C

enumerator), 1248
uart_rx_stop_reason.UART_ERROR_PARITY (C

enumerator), 1249
uart_tx (C function), 1250
uart_tx_abort (C function), 1251
UINT_TO_POINTER (C macro), 1428
unit_test_noop (C function), 1760
usb_cancel_transfer (C function), 1382
usb_cancel_transfers (C function), 1383
usb_cfg_data (C struct), 1383
usb_cfg_data.cb_usb_status (C var), 1384
usb_cfg_data.endpoint (C var), 1384
usb_cfg_data.interface (C var), 1384
usb_cfg_data.interface_config (C var), 1384
usb_cfg_data.interface_descriptor (C var),

1384
usb_cfg_data.num_endpoints (C var), 1384
usb_cfg_data.usb_device_description (C var),

1384
usb_dc_attach (C function), 1374
usb_dc_detach (C function), 1374
usb_dc_ep_callback (C type), 1372
usb_dc_ep_cb_status_code (C enum), 1373

1992 Index

Zephyr Project Documentation, Release 2.7.0-rc2

usb_dc_ep_cb_status_code.USB_DC_EP_DATA_IN
(C enumerator), 1373

usb_dc_ep_cb_status_code.USB_DC_EP_DATA_OUT
(C enumerator), 1373

usb_dc_ep_cb_status_code.USB_DC_EP_SETUP
(C enumerator), 1373

usb_dc_ep_cfg_data (C struct), 1378
usb_dc_ep_cfg_data.ep_addr (C var), 1378
usb_dc_ep_cfg_data.ep_mps (C var), 1378
usb_dc_ep_cfg_data.ep_type (C var), 1378
usb_dc_ep_check_cap (C function), 1375
usb_dc_ep_clear_stall (C function), 1375
usb_dc_ep_configure (C function), 1375
usb_dc_ep_disable (C function), 1376
usb_dc_ep_enable (C function), 1376
usb_dc_ep_flush (C function), 1376
usb_dc_ep_halt (C function), 1375
usb_dc_ep_is_stalled (C function), 1375
usb_dc_ep_mps (C function), 1378
usb_dc_ep_read (C function), 1376
usb_dc_ep_read_continue (C function), 1377
usb_dc_ep_read_wait (C function), 1377
usb_dc_ep_set_callback (C function), 1377
usb_dc_ep_set_stall (C function), 1375
usb_dc_ep_synchronozation_type (C enum),

1373
usb_dc_ep_synchronozation_type.USB_DC_EP_ADAPTIVE

(C enumerator), 1374
usb_dc_ep_synchronozation_type.USB_DC_EP_ASYNCHRONOUS

(C enumerator), 1374
usb_dc_ep_synchronozation_type.USB_DC_EP_NO_SYNCHRONIZATION

(C enumerator), 1374
usb_dc_ep_synchronozation_type.USB_DC_EP_SYNCHRONOUS

(C enumerator), 1374
usb_dc_ep_transfer_type (C enum), 1373
usb_dc_ep_transfer_type.USB_DC_EP_BULK (C

enumerator), 1373
usb_dc_ep_transfer_type.USB_DC_EP_CONTROL

(C enumerator), 1373
usb_dc_ep_transfer_type.USB_DC_EP_INTERRUPT

(C enumerator), 1373
usb_dc_ep_transfer_type.USB_DC_EP_ISOCHRONOUS

(C enumerator), 1373
usb_dc_ep_write (C function), 1376
usb_dc_reset (C function), 1374
usb_dc_set_address (C function), 1374
usb_dc_set_status_callback (C function), 1374
usb_dc_status_callback (C type), 1372
usb_dc_status_code (C enum), 1372
usb_dc_status_code.USB_DC_CLEAR_HALT (C

enumerator), 1373
usb_dc_status_code.USB_DC_CONFIGURED (C

enumerator), 1372
usb_dc_status_code.USB_DC_CONNECTED (C enu-

merator), 1372
usb_dc_status_code.USB_DC_DISCONNECTED (C

enumerator), 1372

usb_dc_status_code.USB_DC_ERROR (C enumera-
tor), 1372

usb_dc_status_code.USB_DC_INTERFACE (C enu-
merator), 1373

usb_dc_status_code.USB_DC_RESET (C enumera-
tor), 1372

usb_dc_status_code.USB_DC_RESUME (C enumer-
ator), 1372

usb_dc_status_code.USB_DC_SET_HALT (C enu-
merator), 1373

usb_dc_status_code.USB_DC_SOF (C enumera-
tor), 1373

usb_dc_status_code.USB_DC_SUSPEND (C enu-
merator), 1372

usb_dc_status_code.USB_DC_UNKNOWN (C enu-
merator), 1373

usb_dc_wakeup_request (C function), 1378
usb_deconfig (C function), 1380
USB_DESC_HID (C macro), 1391
USB_DESC_HID_PHYSICAL (C macro), 1391
USB_DESC_HID_REPORT (C macro), 1391
usb_disable (C function), 1380
usb_enable (C function), 1380
usb_ep_callback (C type), 1379
usb_ep_cfg_data (C struct), 1383
usb_ep_cfg_data.ep_addr (C var), 1383
usb_ep_cfg_data.ep_cb (C var), 1383
usb_ep_clear_stall (C function), 1381
usb_ep_read_continue (C function), 1381
usb_ep_read_wait (C function), 1381
usb_ep_set_stall (C function), 1381
USB_HID_GET_IDLE (C macro), 1391
USB_HID_GET_PROTOCOL (C macro), 1391
USB_HID_GET_REPORT (C macro), 1391
usb_hid_init (C function), 1401
usb_hid_register_device (C function), 1400
USB_HID_SET_IDLE (C macro), 1392
usb_hid_set_proto_code (C function), 1401
USB_HID_SET_PROTOCOL (C macro), 1392
USB_HID_SET_REPORT (C macro), 1391
usb_interface_cfg_data (C struct), 1383
usb_interface_cfg_data.class_handler (C

var), 1383
usb_interface_cfg_data.custom_handler (C

var), 1383
usb_interface_cfg_data.vendor_handler (C

var), 1383
usb_interface_config (C type), 1379
usb_read (C function), 1380
usb_request_handler (C type), 1379
usb_set_config (C function), 1380
USB_TRANS_NO_ZLP (C macro), 1379
USB_TRANS_READ (C macro), 1379
USB_TRANS_WRITE (C macro), 1379
usb_transfer (C function), 1382
usb_transfer_callback (C type), 1379
usb_transfer_ep_callback (C function), 1382
usb_transfer_is_busy (C function), 1383

Index 1993

Zephyr Project Documentation, Release 2.7.0-rc2

usb_transfer_sync (C function), 1382
usb_wakeup_request (C function), 1383
usb_write (C function), 1380
UTIL_AND (C macro), 1434
UTIL_LISTIFY (C macro), 1434
UTIL_OR (C macro), 1434

V
vfprintfcb (C function), 586
video_api_dequeue_t (C type), 1266
video_api_enqueue_t (C type), 1266
video_api_flush_t (C type), 1266
video_api_get_caps_t (C type), 1266
video_api_get_ctrl_t (C type), 1266
video_api_get_format_t (C type), 1266
video_api_set_ctrl_t (C type), 1266
video_api_set_format_t (C type), 1266
video_api_set_signal_t (C type), 1266
video_api_stream_start_t (C type), 1266
video_api_stream_stop_t (C type), 1266
video_buffer (C struct), 1271
video_buffer_alloc (C function), 1270
video_buffer_release (C function), 1270
video_caps (C struct), 1271
VIDEO_CID_CAMERA_BRIGHTNESS (C macro), 1272
VIDEO_CID_CAMERA_COLORBAR (C macro), 1272
VIDEO_CID_CAMERA_CONTRAST (C macro), 1272
VIDEO_CID_CAMERA_EXPOSURE (C macro), 1272
VIDEO_CID_CAMERA_GAIN (C macro), 1272
VIDEO_CID_CAMERA_QUALITY (C macro), 1272
VIDEO_CID_CAMERA_SATURATION (C macro), 1272
VIDEO_CID_CAMERA_WHITE_BAL (C macro), 1272
VIDEO_CID_CAMERA_ZOOM (C macro), 1272
VIDEO_CID_HFLIP (C macro), 1272
VIDEO_CID_VFLIP (C macro), 1272
VIDEO_CTRL_CLASS_CAMERA (C macro), 1271
VIDEO_CTRL_CLASS_GENERIC (C macro), 1271
VIDEO_CTRL_CLASS_JPEG (C macro), 1271
VIDEO_CTRL_CLASS_MPEG (C macro), 1271
VIDEO_CTRL_CLASS_VENDOR (C macro), 1272
video_dequeue (C function), 1268
video_driver_api (C struct), 1271
video_endpoint_id (C enum), 1267
video_endpoint_id.VIDEO_EP_ANY (C enumera-

tor), 1267
video_endpoint_id.VIDEO_EP_IN (C enumera-

tor), 1267
video_endpoint_id.VIDEO_EP_NONE (C enumera-

tor), 1267
video_endpoint_id.VIDEO_EP_OUT (C enumera-

tor), 1267
video_enqueue (C function), 1268
video_flush (C function), 1268
video_format (C struct), 1270
video_format_cap (C struct), 1270
video_fourcc (C macro), 1265
video_get_caps (C function), 1269
video_get_ctrl (C function), 1269

video_get_format (C function), 1267
VIDEO_PIX_FMT_BGGR8 (C macro), 1265
VIDEO_PIX_FMT_GBRG8 (C macro), 1265
VIDEO_PIX_FMT_GRBG8 (C macro), 1265
VIDEO_PIX_FMT_JPEG (C macro), 1265
VIDEO_PIX_FMT_RGB565 (C macro), 1265
VIDEO_PIX_FMT_RGGB8 (C macro), 1265
VIDEO_PIX_FMT_UYVY (C macro), 1266
VIDEO_PIX_FMT_VYVU (C macro), 1266
VIDEO_PIX_FMT_YUYV (C macro), 1265
VIDEO_PIX_FMT_YVYU (C macro), 1265
video_set_ctrl (C function), 1269
video_set_format (C function), 1267
video_set_signal (C function), 1270
video_signal_result (C enum), 1267
video_signal_result.VIDEO_BUF_ABORTED (C

enumerator), 1267
video_signal_result.VIDEO_BUF_DONE (C enu-

merator), 1267
video_signal_result.VIDEO_BUF_ERROR (C enu-

merator), 1267
video_stream_start (C function), 1269
video_stream_stop (C function), 1269
vprintfcb (C function), 586
vsnprintfcb (C function), 587

W
WB_DN (C macro), 1429
WB_UP (C macro), 1429
wdt_api_disable (C type), 1262
wdt_api_feed (C type), 1263
wdt_api_install_timeout (C type), 1262
wdt_api_setup (C type), 1262
wdt_callback_t (C type), 1262
wdt_disable (C function), 1263
wdt_feed (C function), 1264
WDT_FLAG_RESET_CPU_CORE (C macro), 1262
WDT_FLAG_RESET_MASK (C macro), 1262
WDT_FLAG_RESET_NONE (C macro), 1262
WDT_FLAG_RESET_SHIFT (C macro), 1262
WDT_FLAG_RESET_SOC (C macro), 1262
wdt_install_timeout (C function), 1263
WDT_OPT_PAUSE_HALTED_BY_DBG (C macro), 1262
WDT_OPT_PAUSE_IN_SLEEP (C macro), 1262
wdt_setup (C function), 1263
wdt_timeout_cfg (C struct), 1264
wdt_window (C struct), 1264
websocket_connect (C function), 922
websocket_connect_cb_t (C type), 921
websocket_disconnect (C function), 923
WEBSOCKET_FLAG_BINARY (C macro), 921
WEBSOCKET_FLAG_CLOSE (C macro), 921
WEBSOCKET_FLAG_FINAL (C macro), 921
WEBSOCKET_FLAG_PING (C macro), 921
WEBSOCKET_FLAG_PONG (C macro), 921
WEBSOCKET_FLAG_TEXT (C macro), 921
websocket_init (C function), 923
websocket_opcode (C enum), 921

1994 Index

Zephyr Project Documentation, Release 2.7.0-rc2

websocket_opcode.WEBSOCKET_OPCODE_CLOSE (C
enumerator), 921

websocket_opcode.WEBSOCKET_OPCODE_CONTINUE
(C enumerator), 921

websocket_opcode.WEBSOCKET_OPCODE_DATA_BINARY
(C enumerator), 921

websocket_opcode.WEBSOCKET_OPCODE_DATA_TEXT
(C enumerator), 921

websocket_opcode.WEBSOCKET_OPCODE_PING (C
enumerator), 922

websocket_opcode.WEBSOCKET_OPCODE_PONG (C
enumerator), 922

websocket_recv_msg (C function), 922
websocket_request (C struct), 923
websocket_request.cb (C var), 923
websocket_request.host (C var), 923
websocket_request.http_cb (C var), 923
websocket_request.optional_headers (C var),

923
websocket_request.optional_headers_cb (C

var), 923
websocket_request.tmp_buf (C var), 923
websocket_request.tmp_buf_len (C var), 924
websocket_request.url (C var), 923
websocket_send_msg (C function), 922
WEST_CONFIG_LOCAL, 1787
WRITE_BIT (C macro), 1430

X
XDG_CONFIG_HOME, 1834
XTOOLS_TOOLCHAIN_PATH, 1466

Z
zassert (C macro), 1760
zassert_equal (C macro), 1761
zassert_equal_ptr (C macro), 1762
zassert_false (C macro), 1761
zassert_is_null (C macro), 1761
zassert_mem_equal (C macro), 1762
zassert_mem_equal__ (C macro), 1762
zassert_not_equal (C macro), 1762
zassert_not_null (C macro), 1761
zassert_ok (C macro), 1761
zassert_true (C macro), 1761
zassert_unreachable (C macro), 1761
zassert_within (C macro), 1762
zcan_filter (C struct), 1115
zcan_filter.id (C var), 1115
zcan_filter.id_mask (C var), 1115
zcan_filter.id_type (C var), 1115
zcan_filter.rtr (C var), 1115
zcan_filter.rtr_mask (C var), 1115
zcan_frame (C struct), 1114
zcan_frame.brs (C var), 1115
zcan_frame.dlc (C var), 1115
zcan_frame.fd (C var), 1115
zcan_frame.id (C var), 1115
zcan_frame.id_type (C var), 1115

zcan_frame.res (C var), 1115
zcan_frame.rtr (C var), 1115
zcan_frame.[anonymous] (C var), 1115
zcan_work (C struct), 1116
ZEPHYR_BASE, 123, 1796, 1797, 1836, 1867
ZEPHYR_BOARD_ALIASES, 1469
ZEPHYR_SDK_INSTALL_DIR, 1463
ZEPHYR_TOOLCHAIN_VARIANT, 11, 1464–1468
ZephyrBinaryRunner (class in runners.core), 1849
ZERO_OR_COMPILE_ERROR (C macro), 1428
zsock_accept (C function), 872
zsock_addrinfo (C struct), 876
zsock_bind (C function), 872
zsock_close (C function), 871
zsock_connect (C function), 872
zsock_fcntl (C function), 873
ZSOCK_FD_CLR (C function), 875
ZSOCK_FD_ISSET (C function), 875
ZSOCK_FD_SET (C function), 875
zsock_fd_set (C struct), 876
zsock_fd_set (C type), 870
ZSOCK_FD_SETSIZE (C macro), 870
ZSOCK_FD_ZERO (C function), 875
zsock_freeaddrinfo (C function), 874
zsock_gai_strerror (C function), 875
zsock_get_context_object (C function), 870
zsock_getaddrinfo (C function), 874
zsock_gethostname (C function), 874
zsock_getnameinfo (C function), 875
zsock_getsockname (C function), 874
zsock_getsockopt (C function), 873
zsock_inet_ntop (C function), 874
zsock_inet_pton (C function), 874
zsock_listen (C function), 872
ZSOCK_MSG_DONTWAIT (C macro), 868
ZSOCK_MSG_PEEK (C macro), 868
ZSOCK_MSG_TRUNC (C macro), 868
ZSOCK_MSG_WAITALL (C macro), 868
zsock_poll (C function), 873
ZSOCK_POLLERR (C macro), 867
zsock_pollfd (C struct), 876
ZSOCK_POLLHUP (C macro), 868
ZSOCK_POLLIN (C macro), 867
ZSOCK_POLLNVAL (C macro), 868
ZSOCK_POLLOUT (C macro), 867
ZSOCK_POLLPRI (C macro), 867
zsock_recv (C function), 873
zsock_recvfrom (C function), 873
zsock_select (C function), 875
zsock_send (C function), 872
zsock_sendmsg (C function), 873
zsock_sendto (C function), 872
zsock_setsockopt (C function), 874
ZSOCK_SHUT_RD (C macro), 868
ZSOCK_SHUT_RDWR (C macro), 868
ZSOCK_SHUT_WR (C macro), 868
zsock_shutdown (C function), 872
zsock_socket (C function), 871

Index 1995

Zephyr Project Documentation, Release 2.7.0-rc2

zsock_socketpair (C function), 871
zsock_timeval (C struct), 876
ztest_1cpu_unit_test (C macro), 1759
ztest_1cpu_user_unit_test (C macro), 1759
ZTEST_BMEM (C macro), 1759
ztest_check_expected_data (C macro), 1764
ztest_check_expected_value (C macro), 1764
ztest_copy_return_data (C macro), 1764
ZTEST_DMEM (C macro), 1759
ztest_expect_data (C macro), 1764
ztest_expect_value (C macro), 1763
ztest_get_return_value (C macro), 1765
ztest_get_return_value_ptr (C macro), 1765
ztest_mem_partition (C var), 1760
ztest_return_data (C macro), 1764
ztest_returns_value (C macro), 1764
ztest_run_test_suite (C macro), 1759
ZTEST_SECTION (C macro), 1759
ztest_test_fail (C function), 1760
ztest_test_pass (C function), 1760
ztest_test_skip (C function), 1760
ztest_test_suite (C macro), 1759
ztest_unit_test (C macro), 1759
ztest_unit_test_setup_teardown (C macro),

1758
ztest_user_unit_test (C macro), 1759
ztest_user_unit_test_setup_teardown (C

macro), 1758

1996 Index

	Introduction
	Licensing
	Distinguishing Features
	Community Support
	Resources
	Fundamental Terms and Concepts

	Getting Started Guide
	Select and Update OS
	Install dependencies
	Get Zephyr and install Python dependencies
	Install a Toolchain
	Build the Blinky Sample
	Flash the Sample
	Next Steps
	Asking for Help
	How to Ask
	Use Copy/Paste

	Contribution Guidelines
	Licensing
	Components using other Licenses
	Licensing of Zephyr Project components

	Copyrights Notices
	Developer Certification of Origin (DCO)
	DCO Sign-Off Methods
	Notes

	Prerequisites
	Repository layout
	Pull Requests and Issues
	Tools and Git Setup
	Signed-off-by
	gitlint
	twister
	uncrustify

	Coding Style
	Other Guidelines
	Coding Guidelines
	Main rules
	Additional rules
	Rule A.1: Conditional Compilation
	Severity
	Description
	Rationale

	Rule A.2: Inclusive Language
	Severity
	Description
	Rationale
	Status

	Documentation Guidelines
	Headings
	Content Highlighting
	Lists
	Multi-column lists
	Tables
	File names and Commands
	Internal Cross-Reference Linking
	External Cross-Reference Linking
	`any` links
	Non-ASCII Characters
	Code and Command Examples
	Images
	Tabs, spaces, and indenting
	zephyr-app-commands Directive
	Alternative Tabbed Content
	Instruction Steps
	Put your right hand in

	Contribution Workflow
	Commit Guidelines
	Commit Message Body
	Other Commit Expectations
	Submitting Proposals
	Identifying Contribution Origin

	Continuous Integration (CI)
	Contributions to External Modules
	Contributing External Components
	Contributing source code from external projects
	Software License
	Merit
	Mode of integration
	Integration in the main tree
	Integration as a module

	Ongoing maintenance
	Submission and review process

	Development and Contribution Process
	TSC Project Roles
	Main Roles
	Contributor
	Collaborator
	Maintainer

	Role Retirement
	Teams and Supporting Activities
	Assignee
	Release Engineering Team
	Release Manager
	Roles / Permissions

	MAINTAINERS File
	Release Activity
	Merge Criteria
	Escalation Process

	Release Process
	Merge Window
	Release Quality Criteria
	Releases
	Long Term Support (LTS)
	Product Focused
	Extended Stabilisation Period
	Stable APIs
	Quality Driven Process
	Long Term Support and Maintenance

	Auditable Code Base

	Release Procedure
	Milestones
	Release Checklist
	Tagging
	Listing all closed GitHub issues

	Feature Tracking
	Proposals and RFCs
	Roadmap and Release Plans
	Project Roadmap
	Release Plans

	Code Flow and Branches
	Introduction
	Roles and Responsibilities

	Modifying Contributions made by other developers
	Scenarios
	Accepted policies

	Development Environment and Tools
	Code Review
	Give reviewers time to review before code merge
	Workflow
	Categories/Labels
	Hotfix
	Trivial
	Maintainer
	Security
	TSC and Working Groups

	A Pull-Request should have an Assignee
	Pull Request should not be merged by author without review
	Reviewers shall not ‘Request Changes’ without comments or justification
	Pull Requests should have at least 2 approvals before they are merged
	Reviewers should keep track of pull requests they have provided feedback to
	Closing Stale Issues and Pull Requests

	Continuous Integration
	Labeling issues and pull requests in GitHub
	Area
	Platform
	To be discussed in a meeting
	Stable API changes
	Minimum PR review time
	Issue priority labels
	Miscellaneous labels
	For both PRs and issues
	PR only labels
	Issue only labels

	Bug Reporting
	Reporting a regression issue

	Communication and Collaboration
	Code Documentation
	API Documentation
	Reference to Requirements
	Test Documentation
	Documentation Guidelines
	Test Code

	Terminology

	Build and Configuration Systems
	Build System (CMake)
	Build and Configuration Phases
	Configuration Phase
	Build Phase
	Pre-build
	First-pass binary
	Final binary
	Post processing

	Supporting Scripts and Tools
	scripts/gen_syscalls.py
	scripts/gen_handles.py
	scripts/gen_kobject_list.py
	scripts/gen_offset_header.py
	scripts/parse_syscalls.py
	arch/x86/gen_idt.py
	arch/x86/gen_gdt.py
	scripts/gen_relocate_app.py
	scripts/process_gperf.py
	scripts/gen_app_partitions.py

	Configuration System (Kconfig)
	Interactive Kconfig interfaces
	Setting Kconfig configuration values
	Visible and invisible Kconfig symbols
	Setting symbols in configuration files
	The Initial Configuration
	Configuring invisible Kconfig symbols
	Motivation for Kconfig.defconfig files
	Configuring choices
	More Kconfig resources

	Kconfig - Tips and Best Practices
	What to turn into Kconfig options
	What not to turn into Kconfig options
	Options enabling individual devices
	Options that specify a device in the system by name
	Options that specify fixed hardware configuration

	select statements
	select pitfalls
	Alternatives to select
	Using select for helper symbols
	select recommendations

	(Lack of) conditional includes
	“Stuck” symbols in menuconfig and guiconfig
	Assignments to promptless symbols in configuration files
	depends on and string/int/hex symbols
	menuconfig symbols
	Checking changes in menuconfig/guiconfig
	Checking changes with scripts/kconfig/lint.py
	Style recommendations and shorthands
	Factoring out common dependencies
	Redundant defaults
	Common Kconfig shorthands
	Prompt strings
	Header comments and other nits

	Lesser-known/used Kconfig features
	The imply statement
	Optional prompts
	Optional choices
	visible if conditions

	Other resources

	Custom Kconfig Preprocessor Functions
	Devicetree-related Functions
	Example Usage

	Kconfig extensions

	Application Development
	Overview
	Source Tree Structure
	Example standalone application
	Creating an Application
	Setting Variables
	Option 1: Just Once
	Option 2: In all Terminals
	Option 3: Using zephyrrc files
	Option 4: Using Zephyr Build Configuration CMake package

	Important Build System Variables
	Application CMakeLists.txt
	CMakeCache.txt
	Application Configuration
	Kconfig Configuration
	Devicetree Overlays

	Application-Specific Code
	Third-party Library Code

	Building an Application
	Basics
	Build Directory Contents
	Rebuilding an Application
	Building for a board revision

	Run an Application
	Running on a Board
	Running in an Emulator

	Application Debugging
	Custom Board, Devicetree and SOC Definitions
	Boards
	SOC Definitions
	Devicetree Definitions

	Debug with Eclipse
	Overview
	Set Up the Eclipse Development Environment
	Generate and Import an Eclipse Project
	Create a Debugger Configuration
	RTOS Awareness

	API Reference
	API Status / Guidelines
	API Overview
	API Lifecycle
	Experimental
	Peripheral APIs (Hardware Related)

	Unstable
	Peripheral APIs (Hardware Related)
	Hardware Agnostic APIs

	Stable
	Introducing incompatible changes

	Deprecated
	Retired

	API Design Guidelines
	Using Callbacks
	Examples

	Conditional Data and APIs
	Return Codes

	API Terminology
	reschedule
	Details

	sleep
	Explanation

	no-wait
	Explanation

	isr-ok
	Explanation

	pre-kernel-ok
	Explanation

	async
	Explanation

	supervisor

	Audio
	Audio Codec
	Overview
	Configuration Options
	API Reference

	Audio DMIC
	Overview
	Configuration Options
	API Reference

	I2S
	Overview
	Configuration Options
	API Reference

	Asynchronous Notification APIs
	API Reference

	Bluetooth
	Connection Management
	API Reference

	Bluetooth Controller
	API Reference

	Cryptography
	API Reference

	Data Buffers
	API Reference

	Generic Access Profile (GAP)
	API Reference

	Generic Attribute Profile (GATT)
	API Reference
	GATT Server
	GATT Client

	HCI Drivers
	API Reference

	HCI RAW channel
	Overview
	API Reference

	Hands Free Profile (HFP)
	API Reference

	Logical Link Control and Adaptation Protocol (L2CAP)
	API Reference

	Bluetooth Mesh Profile
	Core
	Low Power Node
	Replay Protection List
	API reference

	Access layer
	Mesh models
	Opcode list
	AppKey list
	Subscription list
	Model publication
	Extended models
	Model data storage

	API reference

	Foundation models
	Configuration Server
	API reference

	Configuration Client
	API reference

	Health Server
	Faults
	Attention state
	API reference
	Health faults

	Health Client
	API reference

	Message
	API reference

	Provisioning
	The Provisioning process
	Beaconing
	Uniform Resource Identifier
	Provisioning invitation
	Public key exchange
	Authentication
	Data transfer

	Provisioning security
	API reference

	Proxy
	API reference

	Heartbeat
	Heartbeat messages
	Heartbeat publication
	Heartbeat subscription
	API reference

	Runtime Configuration
	API reference

	Bluetooth Mesh Shell
	Prerequisites
	Application
	Basic usage
	Provisioning
	Configuration
	Message sending

	Parameter formats
	Commands
	General configuration
	mesh init
	mesh reset <addr>
	mesh lpn <value: off, on>
	mesh poll
	mesh ident
	mesh dst [destination address]
	mesh netidx [NetIdx]
	mesh appidx [AppIdx]
	mesh net-send <hex string>
	Testing
	mesh iv-update
	mesh iv-update-test <value: off, on>
	mesh rpl-clear
	Provisioning
	mesh pb-gatt <val: off, on>
	mesh pb-adv <val: off, on>
	mesh provision-adv <UUID> <NetKeyIndex> <addr> <AttentionDuration>
	mesh uuid <UUID: 1-16 hex values>
	mesh input-num <number>
	mesh input-str <string>
	mesh static-oob [val: 1-16 hex values]
	mesh provision <NetKeyIndex> <addr> [IVIndex]
	mesh beacon-listen <val: off, on>
	Configuration Client model
	mesh timeout [timeout in seconds]
	mesh get-comp [page]
	mesh beacon [val: off, on]
	mesh ttl [ttl: 0x00, 0x02-0x7f]
	mesh friend [val: off, on]
	mesh gatt-proxy [val: off, on]
	mesh relay [<val: off, on> [<count: 0-7> [interval: 10-320]]]
	mesh net-transmit-param [<count: 0-7> <interval: 10-320>]
	mesh net-key-add <NetKeyIndex> [val]
	mesh net-key-get
	mesh net-key-del <NetKeyIndex>
	mesh app-key-add <NetKeyIndex> <AppKeyIndex> [val]
	mesh app-key-get <NetKeyIndex>
	mesh app-key-del <NetKeyIndex> <AppKeyIndex>
	mesh mod-app-bind <addr> <AppIndex> <Model ID> [Company ID]
	mesh mod-app-unbind <addr> <AppIndex> <Model ID> [Company ID]
	mesh mod-app-get <elem addr> <Model ID> [Company ID]
	mesh mod-pub <addr> <mod id> [cid] [<PubAddr> <AppKeyIndex> <cred: off, on> <ttl> <period> <count> <interval>]
	mesh mod-sub-add <elem addr> <sub addr> <Model ID> [Company ID]
	mesh mod-sub-del <elem addr> <sub addr> <Model ID> [Company ID]
	mesh mod-sub-add-va <elem addr> <Label UUID> <Model ID> [Company ID]
	mesh mod-sub-del-va <elem addr> <Label UUID> <Model ID> [Company ID]
	mesh mod-sub-get <elem addr> <Model ID> [Company ID]
	mesh hb-sub [<src> <dst> <period>]
	mesh hb-pub [<dst> <count> <period> <ttl> <features> <NetKeyIndex>]
	Health Client model
	mesh fault-get <Company ID>
	mesh fault-clear <Company ID>
	mesh fault-clear-unack <Company ID>
	mesh fault-test <Company ID> <Test ID>
	mesh fault-test-unack <Company ID> <Test ID>
	mesh period-get
	mesh period-set <divisor>
	mesh period-set-unack <divisor>
	mesh attention-get
	mesh attention-set <timer>
	mesh attention-set-unack <timer>
	Health Server model
	mesh add-fault <Fault ID>
	mesh del-fault [Fault ID]
	Configuration database
	mesh cdb-create [NetKey]
	mesh cdb-clear
	mesh cdb-show
	mesh cdb-node-add <UUID> <addr> <num-elem> <NetKeyIdx> [DevKey]
	mesh cdb-node-del <addr>
	mesh cdb-subnet-add <NeyKeyIdx> [<NetKey>]
	mesh cdb-subnet-del <NetKeyIdx>
	mesh cdb-app-key-add <NetKeyIdx> <AppKeyIdx> [<AppKey>]
	mesh cdb-app-key-del <AppKeyIdx>

	Serial Port Emulation (RFCOMM)
	API Reference

	Service Discovery Protocol (SDP)
	API Reference

	Universal Unique Identifiers (UUIDs)
	API Reference

	Crypto
	Overview
	API Reference

	Devicetree
	Devicetree API
	Generic APIs
	Node identifiers and helpers
	Property access
	reg property
	interrupts property
	For-each macros
	Existence checks
	Inter-node dependencies
	Bus helpers

	Instance-based APIs
	Hardware specific APIs
	Clocks
	DMA
	Fixed flash partitions
	GPIO
	IO channels
	Pinctrl (pin control)
	PWM
	SPI

	Chosen nodes

	Bindings index
	Vendor index
	Bindings by vendor
	Generic or vendor-independent
	Altera Corp. (altr)
	AMS AG (ams)
	Analog Devices, Inc. (adi)
	Andes Technology Corporation (andestech)
	Apa Electronic Co., Ltd (apa)
	Aptina Imaging (aptina)
	Arduino (arduino)
	ARM Ltd. (arm)
	Asahi Kasei Corp. (asahi-kasei)
	ASMedia Technology Inc. (asmedia)
	Atmel Corporation (atmel)
	Avago Technologies (avago)
	betterlife (betterlife)
	Bosch Sensortec GmbH (bosch)
	Broadcom Corporation (brcm)
	Cadence Design Systems Inc. (cdns)
	Cypress Semiconductor Corporation (cypress)
	Dalian Good Display Co., Ltd. (gooddisplay)
	Espressif Systems (espressif)
	Fairchild Semiconductor (fcs)
	FocalTech Systems Co.,Ltd (focaltech)
	Freescale Semiconductor (fsl)
	Future Technology Devices International Ltd. (ftdi)
	Gaisler (gaisler)
	GreeLed Electronic Ltd. (greeled)
	Guangzhou Aosong Electronic Co., Ltd. (aosong)
	Holtek Semiconductor, Inc. (holtek)
	Honeywell (honeywell)
	HOPERF Microelectronics Co. Ltd (hoperf)
	ILI Technology Corporation (ILITEK) (ilitek)
	Infineon Technologies (infineon)
	Intel Corporation (intel)
	Intersil (isil)
	InvenSense Inc. (invensense)
	Inventek Systems (inventek)
	ITE Tech. Inc. (ite)
	JEDEC Solid State Technology Association (jedec)
	Linaro Limited (linaro)
	LISTENAI (listenai)
	LiteX SoC builder (litex)
	Maxim Integrated Products (maxim)
	Measurement Specialties (meas)
	Micro:bit Educational Foundation (microbit)
	Microchip Technology Inc. (microchip)
	Microchip Technology Inc. (formerly Microsemi Corporation) (microsemi)
	Nordic Semiconductor (nordic)
	Nuvoton Technology Corporation (nuvoton)
	NXP Semiconductors (nxp)
	OmniVision Technologies (ovti)
	open-isa.org (openisa)
	OpenCores.org (opencores)
	Panasonic Corporation (panasonic)
	Plantower Co., Ltd (plantower)
	QEMU, a generic and open source machine emulator and virtualizer (qemu)
	Qorvo, Inc (formerly Decawave) (decawave)
	Quectel Wireless Solutions Co., Ltd. (quectel)
	QuickLogic Corp. (quicklogic)
	Renesas Electronics Corporation (renesas)
	RISC-V Foundation (riscv)
	ROCKTECH DISPLAYS LIMITED (rocktech)
	Seeed Technology Co., Ltd (seeed)
	SEGGER Microcontroller GmbH (segger)
	Semtech Corporation (semtech)
	Sensirion AG (sensirion)
	Sharp Corporation (sharp)
	Sierra Wireless (swir)
	SiFive, Inc. (sifive)
	Silicon Laboratories (silabs)
	Sitronix Technology Corporation (sitronix)
	Skyworks Solutions, Inc. (skyworks)
	Smart Battery System (sbs)
	Solomon Systech Limited (solomon)
	Standard Microsystems Corporation (smsc)
	STMicroelectronics (st)
	Synopsys, Inc. (snps)
	Synopsys, Inc. (formerly ARC International PLC) (arc)
	Telink Semiconductor (telink)
	Texas Instruments (ti)
	u-blox (u-blox)
	Vishay Intertechnology, Inc (vishay)
	Wistron NeWeb Corporation (wnc)
	WIZnet Co., Ltd. (wiznet)
	Worldsemi Co., Limited (worldsemi)
	Würth Elektronik GmbH. (we)
	Xilinx (xlnx)
	Zephyr-specific binding (zephyr)
	Unknown vendor

	Device Driver Model
	Introduction
	Standard Drivers
	Synchronous Calls
	Driver APIs
	Driver Data Structures
	Subsystems and API Structures
	Device-Specific API Extensions
	Single Driver, Multiple Instances
	Initialization Levels
	System Drivers
	Error handling
	Memory Mapping
	Device Model Drivers with one MMIO region
	Device Model Drivers with multiple MMIO regions
	Drivers that do not use Zephyr Device Model
	Drivers that do not use DTS

	API Reference

	Display Interface
	API Reference
	Generic Display Interface
	Grove LCD Display
	BBC micro:bit Display
	Monochrome Character Framebuffer

	Error Detection And Correction (EDAC) API
	API Reference

	File Systems
	Samples
	API Reference

	Iterable Sections
	Usage
	API Reference

	Formatted Output
	Cbprintf Packaging
	Cbprintf package format

	API Reference

	Kernel Services
	Scheduling, Interrupts, and Synchronization
	Threads
	Lifecycle
	Thread Creation
	Thread Termination
	Thread Aborting
	Thread Suspension

	Thread States
	Thread Stack objects
	Kernel-only Stacks
	Thread stacks

	Thread Priorities
	Meta-IRQ Priorities

	Thread Options
	Thread Custom Data
	Implementation
	Spawning a Thread
	User Mode Constraints
	Dropping Permissions
	Terminating a Thread

	Runtime Statistics
	Suggested Uses
	Configuration Options
	API Reference

	Scheduling
	Concepts
	Scheduling Algorithm
	Cooperative Time Slicing
	Preemptive Time Slicing
	Scheduler Locking
	Thread Sleeping
	Busy Waiting

	Suggested Uses

	System Threads
	Implementation
	Writing a main() function

	Suggested Uses

	Workqueue Threads
	Work Item Lifecycle
	Delayable Work
	Triggered Work
	System Workqueue
	How to Use Workqueues
	Defining and Controlling a Workqueue
	Submitting a Work Item
	Scheduling a Delayable Work Item
	Synchronizing with Work Items

	Workqueue Best Practices
	Avoid Race Conditions
	Check Return Values
	Don’t Optimize Prematurely

	Suggested Uses
	Configuration Options
	API Reference

	Zephyr Without Threads
	What Can be Expected to Work
	What Cannot be Expected to Work
	Subsystem Behavior Without Thread Support
	Flash
	GPIO
	UART

	Interrupts
	Concepts
	Multi-level Interrupt handling
	Preventing Interruptions
	Zero Latency Interrupts
	Offloading ISR Work

	Implementation
	Defining a regular ISR
	Defining a ‘direct’ ISR
	Implementation Details
	Vector Table
	SW ISR Table
	x86 Details

	Suggested Uses
	Configuration Options
	API Reference

	Polling API
	Concepts
	Implementation
	Using k_poll()
	Using k_poll_signal_raise()

	Suggested Uses
	Configuration Options
	API Reference

	Semaphores
	Concepts
	Implementation
	Defining a Semaphore
	Giving a Semaphore
	Taking a Semaphore

	Suggested Uses
	Configuration Options
	API Reference
	User Mode Semaphore API Reference

	Mutexes
	Concepts
	Reentrant Locking
	Priority Inheritance

	Implementation
	Defining a Mutex
	Locking a Mutex
	Unlocking a Mutex

	Suggested Uses
	Configuration Options
	API Reference
	Futex API Reference
	User Mode Mutex API Reference

	Condition Variables
	Concepts
	Implementation
	Defining a Condition Variable
	Waiting on a Condition Variable
	Signaling a Condition Variable

	Suggested Uses
	Configuration Options
	API Reference

	Symmetric Multiprocessing
	Synchronization
	Spinlocks
	Legacy irq_lock() emulation

	CPU Mask
	SMP Boot Process
	Interprocessor Interrupts
	SMP Kernel Internals
	Per-CPU data
	Switch-based context switching

	Data Passing
	Queues
	Configuration Options
	API Reference

	FIFOs
	Concepts
	Implementation
	Defining a FIFO
	Writing to a FIFO
	Reading from a FIFO

	Suggested Uses
	Configuration Options
	API Reference

	LIFOs
	Concepts
	Implementation
	Defining a LIFO
	Writing to a LIFO
	Reading from a LIFO

	Suggested Uses
	Configuration Options
	API Reference

	Stacks
	Concepts
	Implementation
	Defining a Stack
	Pushing to a Stack
	Popping from a Stack

	Suggested Uses
	Configuration Options
	API Reference

	Message Queues
	Concepts
	Implementation
	Defining a Message Queue
	Writing to a Message Queue
	Reading from a Message Queue
	Peeking into a Message Queue

	Suggested Uses
	Configuration Options
	API Reference

	Mailboxes
	Concepts
	Message Format
	Message Lifecycle
	Thread Compatibility
	Message Flow Control

	Implementation
	Defining a Mailbox
	Message Descriptors
	Sending a Message
	Sending an Empty Message
	Sending Data Using a Message Buffer
	Sending Data Using a Message Block
	Receiving a Message
	Retrieving Data at Receive Time
	Retrieving Data Later Using a Message Buffer
	Retrieving Data Later Using a Message Block

	Suggested Uses
	Configuration Options
	API Reference

	Pipes
	Concepts
	Implementation
	Writing to a Pipe
	Reading from a Pipe

	Suggested uses
	Configuration Options
	API Reference

	Memory Management
	Memory Heaps
	Synchronized Heap Allocator
	Creating a Heap
	Allocating Memory
	Releasing Memory

	Low Level Heap Allocator
	Implementation

	System Heap
	Defining the Heap Memory Pool
	Allocating Memory
	Releasing Memory
	Suggested Uses
	Configuration Options
	API Reference

	Memory Slabs
	Concepts
	Internal Operation

	Implementation
	Defining a Memory Slab
	Allocating a Memory Block
	Releasing a Memory Block

	Suggested Uses
	Configuration Options
	API Reference

	Timing
	Kernel Timing
	Time Units
	Conversion

	Uptime
	Timeouts
	Timing Internals
	Timeout Queue
	Timer Drivers
	SMP Details
	Time Slicing
	Subsystems that keep millisecond APIs
	Subsystems using k_timeout_t
	API Reference

	Timers
	Concepts
	Implementation
	Defining a Timer
	Using a Timer Expiry Function
	Reading Timer Status
	Using Timer Status Synchronization

	Suggested Uses
	Configuration Options
	API Reference

	Other
	CPU Idling
	Concepts
	Implementation
	Making the CPU idle
	Making the CPU idle in an atomic fashion

	Suggested Uses
	API Reference

	Atomic Services
	Concepts
	Implementation
	Defining an Atomic Variable
	Manipulating an Atomic Variable
	Manipulating an Array of Atomic Variables

	Suggested Uses
	Configuration Options
	API Reference

	Floating Point Services
	Concepts
	No FP registers mode
	Unshared FP registers mode
	Shared FP registers mode
	ARM Cortex-M architecture (with the Floating Point Extension)
	ARM64 architecture
	ARCv2 architecture
	RISC-V architecture
	SPARC architecture
	x86 architecture

	Implementation
	Performing Floating Point Arithmetic

	Suggested Uses
	Configuration Options
	API Reference

	C++ Support for Applications
	Version
	API Reference

	Fatal Errors
	Software Errors Triggered in Source Code
	Runtime Assertions
	__ASSERT()
	__ASSERT_EVAL()
	__ASSERT_NO_MSG()
	Build Assertions
	BUILD_ASSERT()
	Kernel Oops
	Kernel Panic

	Exceptions
	Spurious Interrupts
	Stack Overflows
	Other Exceptions

	Fatal Error Handling
	API Reference

	Thread Local Storage (TLS)
	Configuration
	Declaring and Using Thread Local Variables

	C standard library
	API Reference
	Error numbers

	Logging
	Global Kconfig Options
	Usage
	Logging in a module
	Logging in a module instance
	Controlling the logging

	Logging panic
	Architecture
	Default Frontend
	Log message v1
	Log message v2
	Log message allocation
	Run-time filtering

	Custom Frontend
	Logging strings
	Logging v1
	Logging v2

	Logging backends
	Logging v1
	Logging v2
	Message formatting

	Dictionary-based Logging
	Configuration
	Usage

	Limitations and recommendations
	Logging v1
	Logging v2

	Benchmark
	API Reference
	Logger API
	Logger control
	Log message
	Logger backend interface
	Logger output formatting

	Memory Management
	Demand Paging
	Terminology
	Paging Statistics
	Eviction Algorithm
	Backing Store
	API Reference
	Eviction Algorithm APIs
	Backing Store APIs

	Miscellaneous APIs
	Checksum APIs
	CRC

	Structured Data APIs
	JSON
	JWT

	Data Structures
	Single-linked List
	Single-linked List Internals
	Flagged List
	Single-linked List API Reference
	Flagged List API Reference

	Double-linked List
	Double-linked List Internals
	Doubly-linked List API Reference

	Multi Producer Single Consumer Packet Buffer
	Internals
	Allocation
	Allocation with overwrite

	Usage
	Packet header definition
	Packet buffer configuration
	Packet producing
	Packet consuming

	Balanced Red/Black Tree
	Tree Internals
	Red/Black Tree API Reference

	Ring Buffers
	Concepts
	Data item mode
	Byte mode
	Concurrency
	Internal Operation

	Implementation
	Defining a Ring Buffer
	Enqueuing Data
	Retrieving Data

	Configuration Options
	API Reference

	MODBUS
	Samples
	API Reference

	Networking
	Network APIs
	BSD Sockets
	Overview
	Secure Sockets
	TLS credentials subsystem
	Secure Socket Creation
	Secure Sockets options

	API Reference
	BSD Sockets
	TLS Credentials

	IPv4/IPv6 Primitives and Helpers
	Overview
	API Reference

	DNS Resolve
	Overview
	Sample usage
	API Reference

	Network Management
	Overview
	Requesting a defined procedure
	Listening to network events
	Defining a network management procedure
	Signaling a network event
	API Reference

	Network Statistics
	Overview
	API Reference

	Network Timeout
	Overview
	Use
	API Reference

	Networking Context
	Promiscuous Mode
	Overview
	Sample usage
	API Reference

	Simple Network Time Protocol Library
	Overview
	API Reference

	SOCKS5 Proxy Support
	Overview
	SOCKS5 API
	SOCKS5 Proxy Usage in MQTT

	Trickle Timer Library
	Overview
	API Reference

	Websocket Client API
	Overview
	Websocket Transport
	API Reference

	Network Packet Capture
	Overview
	Sample usage
	API Reference

	Network Buffer Management
	Network Buffer
	Overview
	Creating buffers
	Common Operations
	Reference Counting
	API Reference

	Packet Management
	Overview
	Architectural notes

	Memory management
	Allocation
	Buffer allocation
	Deallocation

	Operations
	Read and Write access
	Data access

	API Reference

	Networking Technologies
	Ethernet
	Virtual LAN (VLAN) Support
	Overview
	API Reference

	Link Layer Discovery Protocol
	Overview
	API Reference

	IEEE 802.1Qav
	Overview
	Enabling 802.1Qav
	Configuring 802.1Qav

	Overview
	API Reference

	IEEE 802.15.4
	Overview
	API Reference
	IEEE 802.15.4
	IEEE 802.15.4 Management

	Thread protocol
	Overview
	Internet connectivity
	Sample usage

	Point-to-Point Protocol (PPP) Support
	Overview
	Testing

	Protocols
	CoAP
	Overview
	Sample Usage
	CoAP Server
	CoAP Client

	Testing
	libcoap
	TTCN3

	API Reference

	Lightweight M2M (LWM2M)
	Overview
	Example LwM2M object and resources: Device
	Sample usage
	Using LwM2M library with DTLS
	API Reference

	MQTT
	Overview
	Sample usage
	Using MQTT with TLS
	API Reference

	Network System Management
	Network Configuration Library
	Overview
	Sample usage
	API Reference

	DHCPv4
	Overview
	Sample usage
	API Reference

	Hostname Configuration
	Overview
	API Reference

	Network Core Helpers
	Overview
	API Reference

	Network Interface
	Overview
	API Reference

	L2 Layer Management
	Overview
	L2 layer API
	Network Device drivers
	Ethernet device driver
	IEEE 802.15.4 device driver

	API Reference

	Network Traffic Offloading
	Network Offloading
	Overview
	API Reference

	Socket Offloading
	Overview

	Link Layer Address Handling
	Overview
	API Reference

	Ethernet Management
	Overview
	API Reference

	Traffic Classification
	Overview

	Network Shell

	Time Sensitive Networking
	generic Precision Time Protocol (gPTP)
	Overview
	Supported features
	Supported hardware
	Enabling the stack
	Application interfaces
	Testing
	API Reference

	Precision Time Protocol (PTP) time format
	Overview
	API Reference

	Controller Area Network
	Controller Area Network (CAN)
	Overview
	Sending
	Receiving
	Setting the bitrate
	SocketCAN
	Samples
	API Reference

	ISO-TP Transport Protocol
	Overview
	API Reference

	Generic GSM Modem
	Overview

	Peripherals
	ADC
	Overview
	API Reference

	Counter
	Overview
	API Reference

	Clock Control
	Overview
	Configuration Options
	API Reference

	DAC
	Overview
	Configuration Options
	API Reference

	DMA
	Overview
	API Reference

	EC Host Command
	Overview
	API Reference

	EEPROM
	Overview
	Configuration Options
	API Reference

	Entropy
	Overview
	API Reference

	Flash
	Overview
	User API Reference
	Implementation interface API Reference

	GNA
	Overview
	Configuration Options
	API Reference

	GPIO
	Overview
	Configuration Options
	API Reference

	Hardware Information
	Overview
	Configuration Options
	API Reference

	I2C EEPROM Slave
	Overview
	API Reference

	I2C
	Overview
	I2C Master API
	I2C Slave API

	Configuration Options
	API Reference

	IPM
	Overview
	API Reference

	KSCAN
	Overview
	Configuration Options
	API Reference

	LED
	Overview
	Configuration Options
	API Reference
	LED
	LED Strip

	Pinmux
	Overview
	API Reference

	PWM
	Overview
	API Reference

	PS/2
	Overview
	Configuration Options
	API Reference

	PECI
	Overview
	Configuration Options
	API Reference

	Regulators
	API Reference

	RTC
	Overview
	API Reference

	Sensors
	Basic Operation
	Channels
	Values
	Fetching Values

	Configuration and Attributes
	Triggers
	API Reference

	SPI
	Overview
	API Reference

	UART
	Overview
	API Reference

	MDIO
	Overview
	API Reference

	Watchdog
	Overview
	API Reference

	Video
	Basic Operation
	Video Device
	Endpoint
	Video Buffer
	Controls

	Configuration Options
	API Reference

	eSPI
	Overview
	API Reference

	Power Management
	Terminology
	Overview
	System Power Management
	Power States
	Power States Constraint
	Power Management Policies
	Residency
	Application

	Device Power Management Infrastructure
	Runtime Device Power Management
	System Power Management
	Device Power Management States
	Device Power Management Operations
	Device Model with Power Management Support
	Device Power Management API
	Get Device List
	Device Set Power State
	Device Get Power State

	Busy Status Indication
	Indicate Busy Status API
	Clear Busy Status API
	Check Busy Status of Single Device API
	Check Busy Status of All Devices API
	Wakeup capability

	Device Runtime Power Management
	Device Runtime Power Management API
	Enable Device Runtime Power Management of a Device API
	Disable Device Runtime Power Management of a Device API
	Resume Device asynchronously API
	Resume Device synchronously API
	Suspend Device asynchronously API
	Suspend Device synchronously API

	Power Management Configuration Flags
	API Reference
	Power Management Hook Interface
	System Power Management APIs
	Device Power Management APIs

	Random Number Generation
	Kconfig Options
	API Reference

	Resource Management
	On-Off Manager

	Shell
	Overview
	Connecting to Segger RTT via TCP (on macOS, for example)

	Commands
	Creating commands
	Static commands

	Dictionary commands
	Dynamic commands

	Commands execution
	Command handler
	Command help
	Parent commands

	Built-in commands

	Tab Feature
	History Feature
	Wildcards Feature
	Meta Keys Feature
	Getopt Feature
	Obscured Input Feature
	Shell Logger Backend Feature
	Usage
	API Reference

	Storage
	Non-Volatile Storage (NVS)
	Flash wear
	Calculating expected device lifetime

	Flash write block size migration
	Sample
	Troubleshooting
	API Reference

	Disk Access
	Overview
	SD Card support
	SD Card support via SPI

	Disk Access API Configuration Options
	API Reference
	Disk Driver Configuration Options
	Disk Driver Interface

	Flash map
	Relationship with Devicetree
	API Reference

	Flash Circular Buffer (FCB)
	Description
	Usage
	API Reference
	Data structures
	API functions

	Stream Flash
	Persistent stream write progress
	API Reference

	Task Watchdog
	Overview
	Configuration Options
	API Reference

	Time Utilities
	Overview
	Time Utility APIs
	Representation Transformation
	Time Scale Synchronization

	Concepts Underlying Time Support in Zephyr
	Relevant Time Scales
	Example of Time Scale Differences
	Functional Requirements
	Selecting an External Source and Time Scale

	USB device stack
	USB Vendor and Product identifiers
	USB device controller drivers
	USB Device Controller API

	USB device core layer
	USB Device Core Layer API

	USB device class drivers
	Implementing non standard USB class

	Testing USB over USP/IP in native_posix
	USB Human Interface Devices (HID) support
	HID Item helpers
	HID Mouse and Keyboard report descriptors

	HID Class Device API

	User Mode
	Overview
	Threat Model
	Design Goals

	High-level Policy Details
	Constraints

	Memory Protection Design
	Boot Time Memory Configuration
	Hardware Stack Overflow
	Thread Stack
	Thread Resource Pools
	Memory Domains
	Memory Partitions
	Manual Memory Partitions
	Automatic Memory Partitions
	Automatic Partitions for Static Library Globals
	Pre-defined Memory Partitions

	Memory Domain Usage
	Create a Memory Domain
	Add Memory Partitions into a Memory Domain
	Memory Domain Assignment
	Remove a Memory Partition from a Memory Domain
	Available Partition Attributes

	Configuration Options
	API Reference

	Kernel Objects
	Object Placement
	Dynamic Objects
	Implementation Details

	Supervisor Thread Access Permission
	User Thread Access Permission
	Initialization State
	Creating New Kernel Object Types
	Creating New Core Kernel Objects
	Creating New Driver Subsystem Kernel Objects

	Configuration Options
	API Reference

	System Calls
	Components
	C Prototype
	Invocation Context
	Implementation Details

	Implementation Function
	Verification Function
	Argument Validation
	Verifier Definition
	Verification Memory Access Policies
	Verification Return Value Policies

	Configuration Options
	APIs

	MPU Stack Objects
	Thread Stack Creation
	Stack Guards
	Memory Placement

	MPU Backed Userspace

	Utilities
	Settings
	Handlers
	Backends
	Zephyr Storage Backends
	Loading data from persisted storage
	Storing data to persistent storage
	Garbage collection

	Example: Device Configuration
	Example: Persist Runtime State
	Example: Custom Backend Implementation
	API Reference
	API for general settings usage
	API for key-name processing
	API for runtime settings manipulation
	API of backend interface

	Executing Time Functions
	Configuration
	Usage
	Example

	API documentation

	Virtualization
	Inter-VM Shared Memory
	Overview
	Support
	API Reference

	User and Developer Guides
	Beyond the Getting Started Guide
	Python and pip
	Advanced Setup and tool chain alternatives
	Install Linux Host Dependencies
	Update Your Operating System
	Install Requirements and Dependencies
	CMake
	DTC (Device Tree Compiler)
	Python

	Install the Zephyr Software Development Kit (SDK)
	Building on Linux without the Zephyr SDK

	macOS alternative setup instructions
	Important note about Gatekeeper
	Additional notes for MacPorts users

	Windows alternative setup instructions
	Windows 10 WSL (Windows Subsystem for Linux)

	Set Up a Toolchain
	3rd Party Toolchains
	GNU ARM Embedded
	Intel oneAPI Toolkit
	DesignWare ARC MetaWare Development Toolkit (MWDT)
	Crosstool-NG

	Other Cross Compilers
	Host Toolchains
	Custom CMake Toolchains

	Cloning the Zephyr Repositories
	Keeping Zephyr updated

	Export Zephyr CMake package
	Board Aliases
	Build and Run an Application
	Build Blinky
	Run the Application by Flashing to a Board
	Setting udev rules
	Run the Application in QEMU
	Run a Sample Application natively (POSIX OS)

	Architecture-related Guides
	Zephyr support status on ARC processors
	Overview
	Support status
	Notes

	Arm Cortex-M Developer Guide
	Overview
	Key supported features
	Notes

	OS features
	Threads
	Thread stack alignment
	Stack pointers

	Thread context switching
	Stack limit checking (Arm v8-M)

	Interrupt handling features
	Interrupt priority levels
	Reserved priority levels
	Locking and unlocking IRQs
	Dynamic direct interrupts
	Zero Latency interrupts

	CPU Idling
	Memory protection features
	User mode system calls
	MPU-assisted stack overflow detection

	Memory map and MPU considerations
	Fixed MPU regions
	Static MPU regions
	Dynamic MPU regions
	Considerations

	Floating point Services

	Misc
	Chain-loadable images
	HW initialization at boot
	Software vector relaying

	Code relocation

	Linking Cortex-M applications
	CMSIS
	Testing
	QEMU
	Maintainers & Collaborators

	x86 Developer Guide
	Overview
	Virtual Memory
	Separate Virtual Address Space from Physical Address Space

	Specifying Additional Memory Mappings at Build Time

	Bluetooth
	Overview
	Supported Features

	Bluetooth Stack Architecture
	Overview
	BLE Layers
	Host Controller Interface
	Configurations
	Build Types

	Source tree layout
	Host
	Peripheral role
	Central role
	Observer role
	Broadcaster role
	Connections
	Security
	L2CAP
	GATT
	Mesh
	Persistent storage

	BLE Controller
	Standard
	Split

	Bluetooth Qualification
	Qualification Listings
	Host qualifications
	Mesh qualifications
	Controller qualifications

	ICS Features
	GAP ICS
	Device Configuration
	Modes
	Security Aspects
	Idle Mode Procedures
	Establishment Procedures
	LE Roles
	Broadcaster Physical Layer
	Broadcaster Link Layer States
	Broadcaster Link Layer Advertising Event Types
	Broadcaster Link Layer Advertising Data Types
	Broadcaster Connection Modes and Procedures
	Broadcaster Broadcasting and Observing Features
	Broadcaster Privacy Feature
	Periodic Advertising Modes and Procedures
	Broadcaster Security Aspects Features
	Observer Physical Layer
	Observer Link Layer States
	Observer Link Layer Scanning Types
	Observer Connection Modes and Procedures
	Observer Broadcasting and Observing Features
	Observer Privacy Feature
	Periodic Advertising Modes and Procedures
	Observer Security Aspects Features
	Peripheral Physical Layer
	Peripheral Link Layer States
	Peripheral Link Layer Advertising Event Types
	Peripheral Link Layer Advertising Data Types
	Peripheral Link Layer Control Procedures
	Peripheral Discovery Modes and Procedures
	Peripheral Connection Modes and Procedures
	Peripheral Bonding Modes and Procedures
	Peripheral Security Aspects Features
	Peripheral Privacy Feature
	Peripheral GAP Characteristics
	Periodic Advertising Modes and Procedures
	Central Physical Layer
	Central Link Layer States
	Central Link Layer Scanning Types
	Central Link Layer Control Procedures
	Central Discovery Modes and Procedures
	Central Connection Modes and Procedures
	Central Bonding Modes and Procedures
	Central Security Features
	Central Privacy Feature
	Central GAP Characteristics
	Periodic Advertising Modes and Procedures
	BR/EDR/LE Roles
	Central BR/EDR/LE Security Aspects
	Peripheral BR/EDR/LE Security Aspects
	Central Simultaneous BR/EDR and LE Transports
	Peripheral Simultaneous BR/EDR and LE Transports

	GATT ICS
	Generic Attribute Profile Support
	GATT role configuration
	Attribute Protocol Transport
	Generic Attribute Profile Feature Support, by Client
	Generic Attribute Profile Feature Support, by Server
	SDP Interoperability
	Attribute Protocol Transport Security
	Multiple Simultaneous ATT Bearers

	L2CAP ICS
	L2CAP Transport Configuration
	Roles
	General Operation
	Configurable Parameters

	SM ICS
	Role
	Security Properties
	Encryption Key Size
	Pairing Method
	Security Initiation
	Signing Algorithm
	Key Distribution
	Cross-Transport Key Derivation

	RFCOMM PICS
	Protocol Version
	Supported Procedures

	MESH ICS
	Major Profile Version (X.Y)
	Minor Profile Version (X.Y.Z)
	Roles
	Node Capabilities - Bearers
	Node Capabilities - Provisioning
	Node Capabilities – Network Layer
	Node Capabilities – Lower Transport Layer
	Node Capabilities – Upper Transport Layer
	Node Capabilities – Access Layer
	Node Capabilities – Security
	Node Capabilities – Mesh Management
	Node Capabilities – Foundation Mesh Models
	Node Capabilities – Proxy
	Mesh GATT Services
	GATT Server Requirements
	GATT Client Requirements
	GAP Requirements
	Provisioner – Bearers
	Provisioner – Provisioning
	Provisioner – Mesh Management
	GATT Client Requirements
	GAP Requirements

	DIS ICS
	Service Version
	Transport Requirements
	Service Requirements

	Bluetooth tools
	Mobile applications
	Using BlueZ with Zephyr
	Running on QEMU and Native POSIX
	Using the Host System Bluetooth Controller
	Using a Zephyr-based BLE Controller
	HCI Tracing

	Using Zephyr-based Controllers with BlueZ

	Developing Bluetooth Applications
	Hardware setup
	Embedded
	Embedded HCI tracing

	Host on Linux with an external Controller
	QEMU
	Native POSIX

	Simulated nRF52 with BabbleSim

	Initialization
	Bluetooth Application Example

	AutoPTS on Windows 10 with nRF52 board
	Overview
	Update Windows and drivers
	Install Python 3
	Install Git
	Install PTS 8
	Setup Zephyr project for Windows
	Setup WSL1 with Ubuntu 20.4
	Install nrftools
	Connect devices
	Flash board
	Setup auto-pts project
	Install socat.exe
	Running AutoPTS
	Troubleshooting

	AutoPTS on Linux
	Overview
	Setup Linux
	Setup Zephyr project
	Update OS
	Install dependencies
	Get Zephyr and install Python dependencies
	Install a Toolchain

	Install nrftools (only required in the actual hardware test mode)
	Setup Windows 10 virtual machine
	Update Windows
	Setup static IP
	WMWare Works
	VirtualBox
	Windows

	Install Python 3
	Install Git
	Install PTS 8
	Connect PTS dongle

	Connect devices (only required in the actual hardware test mode)
	Flash board (only required in the actual hardware test mode)
	Setup auto-pts project
	AutoPTS client on Linux
	Autopts server on Windows virtual machine

	Running AutoPTS
	Troubleshooting

	Documentation Generation
	Documentation overview
	Installing the documentation processors
	Documentation presentation theme
	Running the documentation processors
	Filtering expected warnings
	Developer-mode Document Building

	Coccinelle
	Getting Coccinelle
	Supplemental documentation
	Using Coccinelle on Zephyr
	Examples
	Coccinelle parallelization
	Using Coccinelle with a single semantic patch
	Controlling which files are processed by Coccinelle
	Debugging Coccinelle SmPL patches
	Additional Flags
	SmPL patch specific options
	Proposing new semantic patches
	Example
	Example
	Example
	Example

	Detailed description of the report mode
	Example

	Detailed description of the patch mode
	Example

	Detailed description of the context mode
	Example

	Detailed description of the org mode
	Example

	Coccinelle Mailing List

	Code And Data Relocation
	Overview
	Details
	Additional Configurations
	Sample

	Cryptography
	TinyCrypt Cryptographic Library
	Overview
	Design Goals
	Important Remarks
	General Remarks
	Specific Remarks
	Examples of Applications
	Test Vectors
	References

	Flashing and Hardware Debugging
	Flash & Debug Host Tools
	SAM Boot Assistant (SAM-BA)
	Typical flash layout and configuration
	Enabling SAM-BA runner

	J-Link Debug Host Tools
	OpenOCD Debug Host Tools
	pyOCD Debug Host Tools

	Debug Probes
	LPC-Link2 J-Link Onboard Debug Probe
	OpenSDA DAPLink Onboard Debug Probe
	OpenSDA J-Link Onboard Debug Probe
	J-Link External Debug Probe
	ST-LINK/V2-1 Onboard Debug Probe
	Flash and debug with ST-Link
	Updating or restoring ST-Link firmware

	Debugging and Tracing
	Thread analyzer
	Configuration
	API documentation

	Core Dump
	Configuration
	Usage
	Example

	File Format
	File Header
	Architecture-specific Block
	Memory Block

	Adding New Target
	API documentation

	GDB stub
	Overview
	Features

	Tracing
	Overview
	Serialization Formats
	Common Trace Format (CTF) Support
	A Generic Interface
	CTF Top-Layer Example

	SEGGER SystemView Support
	User-Defined Tracing

	Transport Backends
	Using Tracing
	Using RAM backend

	Visualisation Tools
	TraceCompass

	Future LTTng Inspiration
	I/O Taxonomy

	API
	Common
	Threads
	Work Queues
	Poll
	Semaphore
	Mutex
	Condition Variables
	Queues
	FIFO
	LIFO
	Stacks
	Message Queues
	Mailbox
	Pipes
	Heaps
	Memory Slabs
	Timers

	Device Management
	MCUmgr
	Overview
	Command-line Tool
	Configuring the transport
	Saving the connection config
	General options
	List of Commands
	Image Management
	Statistics Management
	Filesystem Management
	Bootloader integration

	Device Firmware Upgrade
	Overview
	Bootloaders
	MCUboot

	Devicetree Guide
	Introduction to devicetree
	Syntax and structure
	Unit address examples
	Important properties
	Writing property values
	Aliases and chosen nodes
	Input and output files
	Input files
	Scripts and tools
	Output files

	Design goals
	Single source for all hardware information
	Examples
	Example remaining work

	Source compatibility with other operating systems
	Examples
	Example remaining work

	Devicetree bindings
	Introduction
	A simple example
	What the build system does with bindings
	Other ways nodes are matched to bindings
	Where bindings are located

	Bindings file syntax
	Description
	Compatible
	Properties
	Example property definitions
	Property entry syntax
	Required properties
	Property types
	Deprecated properties
	Default values for properties
	Enum values
	Const

	Child-binding
	Bus
	On-bus
	Specifier cell names (*-cells)
	Include

	Inferred bindings

	Devicetree access from C/C++
	A note for Linux developers
	Node identifiers
	Node identifiers are not values
	Property access
	Checking properties and values
	Simple properties
	reg properties
	interrupts properties
	phandle properties

	Other APIs
	Device driver conveniences
	Hardware specific APIs
	Generated macros

	Devicetree HOWTOs
	Get your devicetree and generated header
	Get a struct device from a devicetree node
	Find a devicetree binding
	Set devicetree overlays
	Use devicetree overlays
	Write device drivers using devicetree APIs
	Option 1: create devices using instance numbers
	Option 2: create devices using node labels

	Device drivers that depend on other devices
	Applications that depend on board-specific devices

	Troubleshooting devicetree
	Try again with a pristine build directory
	Make sure <devicetree.h> is included
	Make sure you’re using the right names
	Look at the preprocessor output
	Validate properties
	Check for missing bindings
	Errors with DT_INST_() APIs

	Devicetree versus Kconfig

	Peripheral and Hardware Emulators
	Overview
	Concept
	Available emulators
	Samples

	Modules (External projects)
	Module Repositories
	Synchronizing with upstream
	Requirements for allowed practices
	Allowed practices

	Contributing to Zephyr modules
	Individual Roles & Responsibilities
	Maintaining the module codebase
	Contributing changes to modules
	Contribution guidelines

	Licensing requirements and policies
	License policies
	License checks

	Documentation requirements
	Testing requirements
	Deprecating and removing modules
	Integrate modules in Zephyr build system
	Module yaml file description
	Module name
	Module integration files (in-module)
	Build system integration
	Zephyr module dependencies
	Module integration files (external)
	Module integration files in Zephyr
	Module integration files in a custom location
	Module integration files (zephyr/module.yml)

	Build settings
	Twister (Test Runner)
	Module Inclusion
	Using West
	Without West
	Not using modules

	Submitting changes to modules
	Process for submitting a new module
	Process for submitting changes to existing modules

	Networking
	Overview
	Supported Features
	Source Tree Layout

	Network Stack Architecture
	Network Packet Processing Statistics
	High level overview of the network stack
	Network data flow
	Data receiving (RX)
	Data sending (TX)

	Network packet processing statistics

	Network Connectivity API
	Networking with the host system
	Networking with native_posix board
	Prerequisites
	Basic Setup
	Step 1 - Create Ethernet interface
	Step 2 - Start app in native_posix board
	Step 3 - Connect to console (optional)

	Networking with QEMU Ethernet
	Prerequisites
	Basic Setup
	Step 1 - Create Ethernet interface
	Step 2 - Start app in QEMU board

	Networking with QEMU
	Prerequisites
	Basic Setup
	Step 1 - Create helper socket
	Step 2 - Start TAP device routing daemon
	Step 3 - Start app in QEMU
	Step 4 - Run apps on host
	Step 5 - Stop supporting daemons

	Setting up Zephyr and NAT/masquerading on host to access Internet
	Network connection between two QEMU VMs
	Terminal #1:
	Terminal #2:

	Running multiple QEMU VMs of the same sample
	Terminal #1:
	Terminal #2:

	USB Device Networking
	Basic Setup
	Choosing IP addresses
	Setting IPv4 address and routing
	Setting IPv6 address and routing

	Testing connection

	Networking with QEMU User
	Introduction
	Using SLIRP with Zephyr
	Limitations

	Networking with multiple Zephyr instances
	Prerequisites
	Basic Setup
	Step 1 - Create configuration files
	Step 2 - Create Ethernet interfaces
	Step 3 - Setup network bridging
	Step 4 - Start Zephyr instances

	Networking with QEMU and IEEE 802.15.4
	Basic Setup
	Step 1 - Compile and start echo-server
	Step 2 - Compile and start echo-client

	Monitor Network Traffic
	Host Configuration
	Zephyr Configuration
	Wireshark Configuration

	Using with PlatformIO
	What is PlatformIO?
	Installation
	Configuration
	Tutorials
	Project Examples
	Next Steps

	OS Abstraction
	POSIX Support
	System Overview
	Units of Functionality
	Option Requirements

	Units of Functionality
	POSIX_THREADS_BASE
	XSI_THREAD_EXT
	XSI_THREAD_MUTEX_EXT
	POSIX_C_LANG_SUPPORT
	POSIX_SINGLE_PROCESS
	POSIX_SIGNALS
	POSIX_DEVICE_IO

	CMSIS RTOS v1
	CMSIS RTOS v2
	Features not supported in Zephyr implementation
	Return values not supported in the Zephyr implementation

	Porting
	Architecture Porting Guide
	Early Boot Sequence
	Interrupt and Exception Handling
	Thread Context Switching
	Thread Creation and Termination
	Thread Local Storage
	Device Drivers
	Interrupt Controllers
	System Clock
	Console Over Serial Line

	Utility Libraries
	CPU Idling/Power Management
	Fault Management
	Toolchain and Linking
	Memory Management
	Stack Objects
	No Memory Protection
	HW-based stack overflow detection
	CPU-based stack overflow detection
	Guard-based stack overflow detection

	User mode enabled
	Non power-of-two memory region requirements
	Power-of-two memory region requirements

	User Mode Threads
	API Reference
	Timing
	Threads
	Power Management
	Symmetric Multi-Processing
	Interrupts
	Userspace
	Memory Management
	Miscellaneous Architecture APIs

	Board Porting Guide
	Boards, SoCs, etc.
	Make sure your SoC is supported
	Architecture
	CPU Core
	SoC

	Create your board directory
	Write your devicetree
	Example: FRDM-K64F and Hexiwear K64

	Write Kconfig files
	Build, test, and fix
	General recommendations
	Flash and debug support
	Multiple board revisions
	Numeric revisions
	Fuzzy numeric revision matching
	Exact numeric revision matching
	Letter revision matching
	board_check_revision() details

	Custom revision.cmake files
	Contributing your board

	Shields
	Shield porting and configuration
	Board compatibility
	Board specific shield configuration

	Shield activation
	Shield variants
	GPIO nexus nodes

	Testing
	Test Framework
	Quick start - Integration testing
	Listing Tests
	Skipping Tests

	Quick start - Unit testing
	Best practices for declaring the test suite

	API reference
	Running tests
	Assertions
	Mocking

	Customizing Test Output

	Test Runner (Twister)
	Board Configuration
	Test Cases
	Running in Integration Mode
	Running Tests on Hardware
	Executing tests on a single device
	Executing tests on multiple devices
	Fixtures
	Notes
	Overriding Board Identifier
	Quarantine

	Generating coverage reports
	Test coverage reports in embedded devices or QEMU
	Overview
	Details
	Steps to generate code coverage reports

	Coverage reports using the POSIX architecture
	Coverage reports using Twister

	Trusted Firmware-M
	Trusted Firmware-M Overview
	What Does TF-M Offer?
	Build System Integration
	Architecture Overview
	Root of Trust (RoT) Architecture
	Isolation Levels

	Secure Boot
	Secure Processing Environment
	Secure Services
	Key Management and Derivation

	Non-Secure Processing Environment

	TF-M Requirements
	Software Requirements

	TF-M Build System
	Images Created by the TF-M Build
	Signing Images
	Custom CMake arguments

	Trusted Firmware-M Integration
	Board Definitions
	Example: mps2_an521_ns

	West (Zephyr’s meta-tool)
	Installing west
	Structure
	Enabling shell completion

	West Release Notes
	v0.11.1
	v0.11.0
	v0.10.1
	v0.10.0
	v0.9.1
	v0.9.0
	v0.8.0
	v0.7.3
	v0.7.2
	v0.7.1
	v0.7.0
	v0.6.3
	v0.6.2
	v0.6.1
	v0.6.0
	v0.5.x
	Versions Before v0.5.x

	Troubleshooting West
	west update fetching failures
	“‘west’ is not recognized as an internal or external command, operable program or batch file.’
	“Error: unexpected keyword argument ‘requires_workspace’”
	“invalid choice: ‘build’” (or ‘flash’, etc.)
	“invalid choice: ‘post-init’”
	“already in an installation”

	Basics
	Example workspace
	Workspace concepts
	west init and west update
	west init basics
	west update basics

	Other built-in commands
	Zephyr Extensions
	Troubleshooting

	Built-in commands
	west init
	west update
	Other project commands
	Other built-in commands

	Workspaces
	The manifest-rev branch
	The refs/west/* Git refs
	Private repositories
	Fetching via HTTPS
	Fetching via SSH

	Project locations
	Topologies supported
	T1: Star topology, zephyr is the manifest repository
	T2: Star topology, application is the manifest repository
	T3: Forest topology

	West Manifests
	Multiple Repository Model
	Manifest Files
	Remotes
	Projects
	Defaults
	Self
	Version
	Group-filter

	Project Groups and Active Projects
	Project Groups
	Enabled and Disabled Project Groups
	Active and Inactive Projects
	Project Group Examples
	Example 1: no disabled groups
	Example 2: Disabling one group via manifest
	Example 3: Disabling multiple groups via manifest
	Example 4: Disabling a group via configuration
	Example 5: Overriding a disabled group via configuration
	Example 6: Overriding multiple disabled groups via configuration
	Example 7: Disabling multiple groups via configuration

	Group Filters and Imports
	Example 1: no overrides
	Example 2: overriding an imported group-filter via manifest
	Example 3: overriding an imported group-filter via configuration

	Git Submodules in Projects
	Option 1: Boolean
	Option 2: List of mappings

	Manifest Imports
	Troubleshooting Note
	Option 1: Boolean
	Example 1.1: Downstream of a Zephyr release
	Example 1.2: “Rolling release” Zephyr downstream
	Example 1.3: Downstream of a Zephyr release, with module fork

	Option 2: Relative path
	Example 2.1: Downstream of a Zephyr release with explicit path
	Example 2.2: Downstream with directory of manifest files
	Example 2.3: Continuous Integration overrides

	Option 3: Mapping
	Example 3.1: Downstream with name allowlist
	Example 3.2: Downstream with path allowlist
	Example 3.3: Downstream with path blocklist
	Example 3.4: Import into a subdirectory

	Option 4: Sequence
	Example 4.1: Downstream with sequence of manifest files
	Example 4.2: Import order illustration

	Manifest Import Details
	Overview
	Projects
	Extensions
	Group filters

	Manifest Command
	Resolving Manifests
	Freezing Manifests
	Validating Manifests
	Get the manifest path

	Configuration
	West Configuration Files
	west config
	Built-in Configuration Options

	Extensions
	Disabling Extension Commands
	Adding a West Extension
	Step 1: Implement Your Command
	Step 2: Add or Update Your west-commands.yml
	Step 3: Update Your Manifest

	Building, Flashing and Debugging
	Building: west build
	Basics
	Examples
	Forcing CMake to Run Again
	Setting a Default Board
	Setting Source and Build Directories
	Setting the Build System Target
	Pristine Builds
	Verbose Builds
	One-Time CMake Arguments
	Permanent CMake Arguments
	Build tool arguments
	Build parallelism

	Configuration Options

	Flashing: west flash
	Basics
	Choosing a Runner
	Configuration Overrides
	Runner-Specific Overrides

	Debugging: west debug, west debugserver
	Basics
	Choosing a Runner
	Configuration Overrides
	Runner-Specific Overrides

	Flash and debug runners
	Hacking
	Doing it By Hand

	Signing Binaries
	MCUboot / imgtool

	Additional Zephyr extension commands
	Listing boards: west boards
	Installing CMake packages: west zephyr-export
	Software bill of materials: west spdx

	History and Motivation
	Requirements
	Rationale for a custom tool
	Multiple Git Repositories
	Design Constraints

	Moving to West
	Using Zephyr without west
	Getting the Source
	Building applications
	Flashing and Debugging

	Optimizations
	Optimizing for Footprint
	Stack Sizes
	Unused Peripherals
	Various Debug/Informational Options
	MPU/MMU Support

	Optimization Tools
	Footprint and Memory Usage
	Build Target: puncover
	Build Target: ram_report
	Build Target: rom_report

	Data Structures
	Build Target: pahole

	Zephyr CMake Package
	Zephyr CMake package export (west)
	Zephyr CMake package export (without west)
	Zephyr application structure
	Zephyr repository application
	Zephyr workspace application
	Zephyr freestanding application

	Zephyr Base Environment Setting
	Zephyr CMake Package Search Order
	Zephyr CMake Package Version
	Multiple Zephyr Installations (Zephyr workspace)
	Zephyr Build Configuration CMake package
	Zephyr Build Configuration CMake package (Freestanding application)
	Zephyr CMake package source code

	Security
	Zephyr Security Overview
	Introduction
	Overview and Scope
	Intended Audience
	Nomenclature
	Security Document Update

	Current Security Definition
	Security Functionality
	Quality Assurance
	Execution Protection
	System Level Security (Ecosystem, …)

	Secure Development Process
	System Architecture
	Secure Coding
	Quality Assurance
	Release and Lifecycle Management

	Secure Design
	Security Architecture
	Security Vulnerability Reporting
	Threat Modeling and Mitigation
	Vulnerability Analyses

	Security Certification
	Generic Certification Process
	Certification Options

	Security Vulnerability Reporting
	Introduction
	Security Issue Management
	Vulnerability Notification
	Backporting of Security Vulnerabilities
	Need to Know

	Secure Coding
	Introduction and Scope
	Secure Coding
	Secure development knowledge
	Secure designer
	Vulnerability Knowledge
	Zephyr Security Subcommittee

	Code Review
	Issues and Bug Tracking
	Modifications to This Document

	Sensor Device Threat Model
	Assets
	Communication
	Other Considerations
	Threats
	Notes

	Hardening Tool
	Usage

	Vulnerabilities
	CVE-2017
	CVE-2017-14199
	CVE-2017-14201
	CVE-2017-14202

	CVE-2019
	CVE-2019-9506

	CVE-2020
	CVE-2020-10019
	CVE-2020-10021
	CVE-2020-10022
	CVE-2020-10023
	CVE-2020-10024
	CVE-2020-10027
	CVE-2020-10028
	CVE-2020-10058
	CVE-2020-10059
	CVE-2020-10060
	CVE-2020-10061
	CVE-2020-10062
	CVE-2020-10063
	CVE-2020-10064
	CVE-2020-10065
	CVE-2020-10066
	CVE-2020-10067
	CVE-2020-10068
	CVE-2020-10069
	CVE-2020-10070
	CVE-2020-10071
	CVE-2020-10072
	CVE-2020-10136
	CVE-2020-13598
	CVE-2020-13599
	CVE-2020-13600
	CVE-2020-13601
	CVE-2020-13602
	CVE-2020-13603

	CVE-2021
	CVE-2021-3320
	CVE-2021-3321
	CVE-2021-3323
	CVE-2021-3430
	CVE-2021-3431
	CVE-2021-3432
	CVE-2021-3433
	CVE-2021-3434
	CVE-2021-3435
	CVE-2021-3454
	CVE-2021-3455
	CVE-2021-3581

	Bibliography
	Python Module Index
	Index

